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Understanding the movement of tumors caused by respiratory motion is very important for confor-
mal radiatherapy. However, respiratory motion is very difficult to study by conventional x-ray CT
imaging since object motion causes inconsistent projection views, leading to artifacts in recon-
structed images. We propose to estimate the parameters of a nonrigid, free breathing motion model
from a set of projection views of the thorax that are acquired using a slowly rotating cone-beam CT
scanner. This approach involves deforming a motion-free reference thorax volume according to the
estimated parameters and comparing its projections to the corresponding measured projection
views. The parameters are optimized by minimizing a regularized squared error cost function.
Simulation results with a fan-beam geometry show good agreement between the estimated motion
and the true motion, which supports the potential of this approach for estimating four-dimensional
(three-dimensional spatial- temporal respiratory motion. ©2005 American Association of
Physicists in Medicing DOI: 10.1118/1.1879132
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I. INTRODUCTION breathing state either as a trigger signal to initiate the scan to
acquire data at a certain breathing stater as a metric to

Conformal radiotherapy requires that the delivery of radia-sort the CT scans into bins of equivalent breathing states to
tion is focused on the tumor area while sparing the normaj,m a volumet® 4

adjacent tissue. Although various methods have been devel- Although lots of work has been carried out related to 4D

oped for delivering precise radiotherapy, respiratory motion-T imaging, there have been fewer studies on building a 4D
remains a significant source of error in treatment planningy,qqel for free breathing motiot:* Nagaet al. proposed to
for the thorax and upper abdomen. Conventional teChn'queéstimate respiratory motion by registering several three-

to deal with the motion effects often involve an increase indimensionaI(BD) CT volumes at ordered breathing states
the margin of the target volume. To suppress respiratory MOuhich are acquired using gated image acquisition

t'f)n’ treqtment can be done undt_arégreathhold conqmon astéchniqueé.5 Usually, this technique requires multiple scans
sisted with breathing control devices.But some patients, (about 15 for each table position. Such motion estimation

especially those with lung cancer, have difficulty holding methods are promising, but currently have two drawbacks
their breath, so techniques for treatment in free breathin(%irst due 1o x-ra dos;a limitation. the motion model can.
conditions are now being investigat%dh those techniques, ' . y ' .

only be estimated from a few CT volumes which may be

consideration of organ motion is essential. ) o : . . .
insufficient to fit the respiratory motion of a whole breathing

Because of the significance of motion effects in radio- | 4 wh . h di .
therapy, a growing number of studies have been dedicated gycle. Second, when sorting the two- imensio@D) CT

four-dimensiona4D) CT imaging. Most work in this field §Iices corresponding to the same breathing state to form a $D
focuses on the reconstruction of a CT volume with mini-iMmage, the accuracy depends on the bin size of the breathing
mized motion artifacts. This work can be divided into threeStateés and the accuracy of the device that measures the
main categories: fast scanning, reconstruction for motiorfPreathing states. Zijt al. proposed a novel idea to sort the
compensation, and gated image acquisition. In the first clas§one-beam x-ray projection images into several bins of
researchers endeavor to shorten scanner rotation times fBfeathing phases based on the position of the diaphragm in
data acquisition to reduce motion artifacts and improve temthe projection image¥ They detected the diaphragm by us-
poral resolutiorf® In the second class, reconstruction algo-ing image enhancement techniques and tracked the superior—
rithms for motion compensation are based on assumptions dfferior position of the diaphragm to generate a periodic one-
a priori deformation modef;® or based on the estimation or dimensional breathing signal. Then 4D thorax volumes were
detection of motion using extra hardwafe In gated image reconstructed using the projections corresponding to the
acquisition techniques, devices are used to measure tleame breathing phase. The advantage of this method is that
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no extra device is required. But one limitation of such meth-
ods is the assumption of periodicity of the respiratory mo- 9mn= fL fi (odl, n=1,...N, m=1,...M, (1)
tion. by

In this work, we develop a different approach to estimateyheref,(x), x € RY denotes the attenuation coefficients af a
respiratory motion from two sets of measurements. One Sfimensional object d=2 or 3 at timet, Omn the projection
is a sequence of projection views acquired from a slowly,a|ye at thenth element of the detector from projection angle
rotating cone-beam CT scanner, such as the type of Images N the number of detector elementd, the number of
that could be incorporated into a radiotherapy system. UsUyypjection views, and.,_, the line between the x-ray source
ally such systems take about 1 min per rotation. During such g thenth detector pi)?él at projection anglg.,

a long acquisition period, patients would breathe freely, so | ot Ay _denote the projection operator for anglg, then
the measured projection views capture information about resEq_ ) can be written simply as follows:

piratory motion. We also assume that we have available a
motion-free reference volume, such as the reconstructed tho- 9m=Ag_fi . (2

rax images acquired by conventional breath-hold x-ray CTwheregm:(gmyl, .. Gmn)- lgnoring beam hardening effects,

on a modern fast scanner. Our approach involves deformin
: . : : . e measuremeni from an x-ray detector are related to the
this reference image according to the estimated motion pa- ~. . , 7
rojections by Beer’s lavt’

rameters and comparing its projections to the correspondinB
measured projection views. In contrast to gated imaging E[Yqnnl=lne€9mn+S,,, n=1,...N, m=1,... M,
techniques, our method requires only one to two scans in- (3)
stead of dozens of scans. Moreover, because the measured
projection views correspond to the naturally continuouswhereE[:] stands for the expectation of a random variable,
breathing state, the external state-measuring devices are uhsn iS @ constant related to the incident x-ray intensity, and
necessary. Snn denotes the scatter contributiondg .

As is well known, estimation is an inverse procedure
aimed at recovering unknown parameters from availabld3. Measurement model
measurements. Generally, for a nonlinear estimation prob-

4 . : . The proposed method uses two sets of measurements.

lem, there are three main tasks: define a suitable systela

: ._One set is a motionless thorax imagg, obtained with a
model, choose a good cost function, and select appropriate . .
S h S . “conventional fast breath-hold CT scan. This image serves as
optimization algorithms. In our estimation problem, motion

. . . . a reference image and all the deformations are applied to this
is defined by a parametric model based on B-splines. The . s )
L7 . . Image. The other set is a sequencehMfprojection views

cost function is the penalized least square error. The optimi; : - _
. . . from a slowly rotating scanne{g,,},, m=1, ... M, whereg,,
zation algorithm we used is the Levenberg—Marquardt S . e .
is the projection angle at timg,. The projection views are

method, . . . . estimated from the measuremeivtas follows:
The paper is organized as follows. Section Il describes the
problem and Sec. lll describes the proposed estimation . Im,

(4)

— n
method, including the temporal motion model, similarity gm'”_log(ym’n_sm,)’
measure, and optimization method. Section IV presents our

fan-beam simulation results. Finally, we set out our concluWhereSn, is a(possibly zerp scatter estimate. _
sion and future work. Our method could also work with faster scanning, but

recently developed cone-beam CT systems for radiotherapy
usually have rotation speeds of approximately 6°/s. A full
Il. PROBLEM STATEMENT . . )
© _ S . o ~_ 360° rotation takes about 1 min. Patients breathe naturally
_The following defines the estimation problem, beginningquring the scan. Although we allow the cone-beam scanner
with a description of the x-ray projection operator, and thenyg rotate slowly, we require the acquisition time of each pro-
turning to an explanation of the measurements we will coljection view to be short. For example, recently developed

lect for the estimation problem. systems can acquire 15 frames/s, i.e., around 0.067 s/frame.
o We therefore assume that the respiratory motion is negligible
A. X-ray projection operator within each single projection view.

CT is a noninvasive imaging technique allowing the visu- 1 h€ measured projections will be degraded by noise. For
alization of the internal structure of an object. In a CT sys-Simplicity, we treat the x-ray detector outputs as independent

tem, the patient is placed between an x-ray source and dnCiSSOn random variables:

array of x-ray detectors. By rotating the source and the de- Ymn ~ POisSORE[Yp,nl}, n=1,...N, m=1,... M.
tector simultaneously around the patient, a large number of 5)
x-ray projections from different angles can be obtained dur-

ing the data acquisition period. Ideally, each projection rep- We want to estimate a sequence of moving objéctss-
resents the summation or line integral of the attenuation coing f ¢ from {§,}t;. This is not a conventional image recon-
efficients of an object along a particular ray path, which carstruction problem. Most reconstruction algorithms assume
be represented mathematically as follows: that the object is motionless during the whole data acquisi-

Medical Physics, Vol. 32, No. 4, April 2005



986 Zeng, Fessler, and Balter: Respiratory motion estimation from slowly rotating x-ray projections 986

tion period, or assume simple motion models such asained from a CT scanner is a discrete image, interpolation is
affine’™ In our problem the object deforms while being needed. We used uniform cubic B-splines for image-domain
scanned and the task is to estimate the motion by minimizingnterpolation:

the difference between the measured projection views and

the calculated projection views of the estimated moving ob- refX) = zr: GB(x-r), 9)
jects. This is a kind of “tomographic image registration”
problem. where the coefficients, are determined by prefiltering the

reference CT volume appropriatéefy.

I1l. THEORY B. Estimation

. We estimate the deformation parameters by minimizing
A. Temporal motion model . o .
the difference between the measured projection views and

Let {f,(x)}, xe RY, te[0,T] denote the moving thorax the calculated projection views of the deformed reference
volumes over scan duratioh We assume the moving vol- image. For simplicity, we focus here on the least-squared

umes are all deformations of the reference thorax volfyge error metric:

because they are from the same patient. Thus there exists M
geometric correspondence betwegiand f . as follows: Lo==> [8m— Ay W0t e (10)
2 1 m '
fi(x) = fre TTX; 0,1), (6) "

) . . The principle generalizes to more complicated statistical
where 71(x; 0,t) is the unknown deformation function de- podels.

scribed by parametei Usually, warping at each time point  pepending on how many motion parameters one uses, for
is described byl deformation functions, each along one di- siaple estimation it may be necessary to include regulariza-

mension. . LA .
L .- ion. We compute the estima#by minimizing the follow-
We assume the motion is nonrigid but smooth. We moderng regularized least-squares cost function:

the deformation function using a weighted sum of shifted A
basis functions, 6=argmiry (0,

K
T0c00=x+3S 0T‘ib<L_T>3<L_i>, @ VO=LO+R0), (11)
= A = whereL(6) is described in Eq(10), R(#) denotes the regu-

whereA, controls the width of the spatial basis functiB(x) larization function, and the scalar controls the trade-off
andA, controls the width of the temporal basis functioft). ~ between the similarity term and the regularity term. We se-
The general approach applies to any differentiable basi$ctR(6) to encourage smoothness of respiratory motion by
functions. Here we chose(t) to be a cubic B-spliné® and ~ using

,£3(x()j to be the tensi)r product of cubic. B-spllines, i,ﬂ(x)' R(6) = %”(30”2, (12)

=TI7 B(x), where x=[xq,...,Xq]’, a d-dimensional spatial

position vector. We chose B-splines for several reasongvhereC is a differencing matrix. The regularity term can be
B-splines offer good approximation of band-limited @ combination of both temporal and spatial roughness penal-
signals%8 and B-splines have been used extensively for modties.

eling nonrigid deformation®® The compact support of

B-splines, and hence small overlap between knots, reducés Optimization

the dependency between parameters thus makes the Optimi'GeneraI-purpose methods can be used to search for the

zation problem easier to solve. Combining E(®.and(7),  \ajues of parameter8 that minimize the cost functiork(6).
we can write the deformed object as We chose the Levenberg—Marquardt methbbecause it of-
fo = W(0,0)f e, (8) ten offers fast convergence for least-squares problems. The
iterative scheme is represented as follows:
)[/(\;hEe(rqezé\;(a,t) denotes the warping operator corresponding 0™1= 0"~ (H+\, diagH}) LV ("), (13)
Based on the above-defined motion model, the motiorwhereVy{(@#")is the gradient of/( ) evaluated a®", H is an
estimation problem is to find the deformation parameters approximation of the Hessian matrix @f @), and A, is a
These parameters characterize both the temporal and spatf@dsitive tuning parameter. Usually,, is initialized to be a
motion. After estimatingd, one can determine the motion of modest value, say,=10. After a successful step, it is de-
each point of the object at any time within the scanningcreased by a factor of 10; otherwise, it is increased by a
period, because the motion mod@) is continuous with re-  factor of 10 for the next iteration. The gradient and Hessian
spect to the spatial variablesand the time variablé are found using the chain rule. See the Appendix for explicit
In Eq. (6), the deformation acts on a continuous-spaceexpressions. To save computation time, we update the Hes-
reference imagé,«(x). Since the actual reference image ob- sian only when the current iteration fails.
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Fic. 1. The reference CT imaggy.
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IV. SIMULATION tion is usually smaller than what we generated. But since this
This section presents our simulation results. For simplic!S & 2D simulation, we have exaggerated the deformation to
ity, we started with fan-beani2D) geometry to study the emulate the 'Iarger motion seen in 3D respiratory motion.
performance of the proposed approach. After generating the deformed images, we computed 32 pro-
jection views for a fan-beam geometry with projection
angles evenly spaced over 360°. The fan beam had 400
samples spaced by 2.60 mm, and the source to detector dis-
Figure 1 shows the 200200 reference imagkesused in  tance and isocenter to detection distance were 95 and
our simulation, one slice from a 3D breathhold thorax CT40.8 cm, respectively. We added the effects of Poisson noise
scan. The pixel size of this reference image is 1.96 mm. Tgs described in Sec. II B to produce the noisy data set

form a sequence of moving imagé 132, we warpedfe;  {§,432,, shown in Fig. 2b). The noise corresponds to 610

A. Experiment methods

according to the following synthetic motion functions: incident photons per detector eleménfor this initial in-
(at (X = Xo) vestigaiior_n we simulated an imaging. system tiiat acquired
T(X,y,t) =x— 32 sirf T cos % 32 projection views over 360° over a single respiratory cycle

(T=4 9. In practice multiple respiratory cycles will occur
p[ (Zx )2] p[ <2y )2] when collecting projection views over such a large angular
Xexpl -8 —-1) |exp -8 —= -1/ |, . .
X Y range. In our future work we expect to include quasi-
(14) periodicity regularization terms to use projection views that
span multiple respiratory cycles, but here we focus on the
7y = Vo) case (_)f a single cycle_for simplicity. _
—) To illustrate the artifacts in reconstructed images caused
Y by motion effects, we applied filtered backprojection recon-
2X 2 2y 2 struction method to both the motion-free projections and the
xexp[—S(Y‘l> ]eXp[_8<7_l) ] motion-corrupted projectiongFig. 2). Figure Zd) shows
(15) blurring artifacts at the inner chest wall and degraded con-
trast of the mass between the lungs because of the inconsis
whereX andY denote the width and height of the referencetent projection views caused by motion. Since our goal is to
image, respectively, andy, the coordinates of the upper- estimate respiratory motion rather than image reconstruction,
left pixel, andT the scan duration. The motion generated bywe are not concerned about the streak artifacts present in
these two equations are smooth and symbolically represent®th reconstructed images due to the small number of pro-
expansion and contraction of a breathing cycle. The real mgection views.

T,(xy,H) =y + 16 sir?(%t) cos(
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Motion—free projections Motion—corrupted projections

Fi. 2. lllustration of motion effects in
image reconstruction. Motion-free

1 A) 400 1 ®) 400 projections(a) and the corresponding
Reconstructed image Reconstructed image conventional fan-beam FBP recon-
from motion—free projections from motion—corrupted projections structed image(c). Motion-corrupted

projections{g.}32, (b) and the corre-

sponding reconstructed image).

200

1 ©) 200 1 (D) 200

For optimization, the deformation parameters were all ini-eration consumed about 26 s without Hessian calculation and
tialized to be zero. We terminated the optimization algorithmabout 54 s otherwise. Fortunately the Hessian was updated
when the absolute difference of the cost function value beenly rarely. In fact here the computation of Hessian was
tween the two most current iterations was less than a thresimeeded only once at the beginning of the optimization. Fig-
old. An important step for the estimation is to decide how toure 3 displays the transverse and longitudinal movement of a
distribute the control knots. Generally, a finer control grid ispoint located at the edge of the right lung. Figure 4 compares
favored for the motion that changes fastiesss smoothly'®  the motion vector of the image field &2 s. Both figures
However, there is tradeoff. Coarse control grids may not béndicate good agreement between the estimates and the truth,
able to capture the real motion in detail; whereas overly fineeven though there is model mismatch between the true de-
control grids require more parameters, increase computatiofiprmation (14), (15 and our deformation modg7). The
and may overfit noise. We adjusted knot spacings manuallynean absolute error of the estimated motion for the whole
starting with a relatively coarse control grid, and then de-image field was 0.23 mm and the maximum error was
creased the knot spacings until the optimizations with thel.94 mm. These errors are small compared to the synthetic
two most recent control grids reached very similar resultsmotion, which has a maximum displacement of 15.14 mm
This manual procedure finally arrived at a spatial control gridand a mean absolute displacement of 1.11 mm. To examine
of 7X7 knots and a temporal grid &=5 knots, with the  the spatial distribution of errors, Fig. 5 shows the contours of
knot spacings A,=20 pixels, A,=20 pixels, and A; the reference image superimposed upon an image of the dif-
=8 pixels. So the deformation model contains two sets oference between the estimated deformation and the true de-
245 parameters with each defining the deformation abong formation (at timet=2 s). The relatively large errors tend to
andy direction, respectively. We placed the knots in the im-gccur in image regions that lack structure, which may not
age region where the support of each knot overlaps with th@ave significant effect on generating deformed images based
thorax. This placement helps prevent near zero-valued elgyn the estimated motion. Figure 6 illustrates this viewpoint—
ments in the Hessian matrix, and also reduces computatiognly small discrepancies exist in the difference im#gig.
relative to covering the entire square array. For regularizag(c)] between the true and the estimated deformed images.
tion, we seta=5x107® and used the second-order spatial  Since there was model mismatch between the B-spline
and temporal roughness penalties with a typical row of thenotion model and the synthetic motion, we did B-spline

differencing matrixC in Eg. (12) having the form(...,0,  |east-squares fitting of the synthetic motion using the same
-1,2,-1,0,..). control grid to investigate how much error would result from
B. Results estimation alone. We found that the B-spline fitting rms error

was 0.03 mm and the maximum absolute error 0.48 mm. So
The Levenberg—Marquardt algorithm took about 15 itera-in this study model mismatch was a second source of error.
tions to converge. On a Pentium 2 GHz computer, each itAlthough using much finer control grids would reduce model

Medical Physics, Vol. 32, No. 4, April 2005



989

Zeng, Fessler, and Balter: Respiratory motion estimation from slowly rotating x-ray projections

Transverse movement of point (120,80)

t(sec)

True motion vectors at t=2s

50

100

150

200
0

Transverse estimation error (in mm)

- 10.6

- 10.4

at t=2s

200

Medical Physics, Vol. 32, No. 4, April 2005

10+

Longitudinal movement of point (120,80)

— - Estimated
— True

£
£
2}
0 1 2 3
t(sec)
Estimated motion vectors at t=2s
0
50
100
150
200
0

Longitudinal estimation error (in mm)
att=2s

1 200

0.6

989

Fic. 3. Transverse(left pane) and
longitudinal (right pane) movement
for point (120, 80 located at the edge
of the right lung.

Fic. 4. True(left pane) and estimated
(right pane] motion vectors at=2 s
(the time of maximum displacement

Fic. 5. Distribution of deformation es-
timation error, illustrated by superim-
posing the deformation estimation er-
ror image at=2 s with the contour of
the reference image. Transverse esti-
mation error(left pane) and longitudi-
nal estimation errofright pane).
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True deformed image at t=2s Estimated deformed image at t=2s

Fic. 6. True deformed image at

1 (A) 200 1 (B 200 =2 s (top left panel, estimated de-
formed image att=2s (top right
Difference image between (A) & (B) pane), and the difference image at

=2 s(bottom right panel

200

1 (©) 200

mismatch error, more degrees of freedom associated witapproximation of the Hessian or alternate optimization algo-
finer control grids would increase the number of localrithms not requiring a Hessian will be needed. We will con-
minima, degrading the performance of optimization algo-duct 4D studies in the near future, including experiments
rithms. with real thorax data.

V. DISCUSSION AND CONCLUSION

This paper described a method for estimating nonrigidACKNOWLEDGMENTS
motion from a motion-free reference image and a sequence This work is supported in part by NIH Grants Nos. PO1
of slowly rotating projection views of the moving object. ~A59827 and RO1 CAG0711.
Cubic B-spline functions were applied as the basis of our
parametric temporal motion model. We used a regularized
least-squares estimator of the motion parameters. For low-
dose projection views, better performance may be achievabl@PPENDIX: CALCULATION OF THE GRADIENT

by applying the maximum-likelihood estimator for a PoissonAND HESSIAN

statistic model. As proposed, the method does not require \\e need to calculate the gradient and Hessian to imple-
any external respiratory monitoring device. However, the apment the optimization algorithm described in Sec. Il C. Ex-
proach could be generalized to use information from SUCbeicit derivatives can be found using the chain rule.
devices, e.g., by adding appropriate terms to the cost func- There are two termd,(6) andR(6), in the cost function
tions. ¥(6). We first compute the partial derivatives lof6).

Our initial investigation used a simulated fan-beam geom- : _ .
etry. Since the theory described in Sec. Il generalizes readil}ge]!; ?:nl:asd Iggj?edcl,:;?cra_m:vn(al_’;';‘);g‘zgfldenogi Lh: tﬁztlcr:r:)ztfe d
. k - ) -

to ‘.1D’ _the method should also be appllcablg to cone—b.earﬁcient of thekth knot in thepth dimension. Starting from Eqg.
projections of 3D thorax data and real respiratory rnOtlon’(10) we obtain the first partial derivatives as follows:

although the memory requirement and computation time will

increase significantly. The parts that consume most of the M -

computation time are the calculation of the gradient and Hes- st == <(g -A fm) A ﬁn>

sian in Eq.(10). Based on EqgA1)—(A3), the complexity of o o\ o m ¢”‘00E

the calculation of gradient I®(MV), and that of the Hessian M .
i ;
m=1

is O(CMV), whereV is the number of voxelgyl the frame - A @A, T Ifm
¢m(gm ¢m m)’ 0')65

Al
number of projection views, an@ the number of knots of (AD)

the deformation control grid. In the 4D case, computing the
Hessian may require prohibitive memory and time, so a gooénd the second partial derivatives
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