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Conjugate Phase MRI Reconstruction With Spatially
Variant Sample Density Correction

Douglas C. Noll*, Member, IEEE, Jeffrey A. Fessler, Senior Member, IEEE, and Bradley P. Sutton, Member, IEEE

Abstract—A new image reconstruction method to correct for the
effects of magnetic field inhomogeneity in non-Cartesian sampled
magnetic resonance imaging (MRI) is proposed. The conjugate
phase reconstruction method, which corrects for phase accumu-
lation due to applied gradients and magnetic field inhomogeneity,
has been commonly used for this case. This can lead to incomplete
correction, in part, due to the presence of gradients in the field
inhomogeneity function. Based on local distortions to the k-space
trajectory from these gradients, a spatially variant sample density
compensation function is introduced as part of the conjugate
phase reconstruction. This method was applied to both simulated
and experimental spiral imaging data and shown to produce
more accurate image reconstructions. Two approaches for fast
implementation that allow the use of fast Fourier transforms are
also described. The proposed method is shown to produce fast and
accurate image reconstructions for spiral sampled MRI.

Index Terms—Image reconstruction, magnetic field inhomo-
geneity, magnetic resonance imaging, spiral imaging.

1. INTRODUCTION

MAGE reconstruction in conventional magnetic resonance

imaging (MRI) is usually performed via an inverse Fourier
transform of samples acquired in k-space (Fourier domain). This
can be accomplished using a simple discrete Fourier transform
if the samples lie on a Cartesian grid and if the underlying static
magnetic fields are essentially uniform across space. This paper
examines image reconstruction for the case where these con-
ditions do not hold. The conventional approach for image re-
construction of non-Cartesian sampled MRI is the conjugate
phase reconstruction method, as originally proposed by Ma-
covski [1]. This was extended in [2], [3] to include correction
for magnetic field inhomogeneities and explicit expressions for
sample density correction. Image reconstruction without com-
pensation for the density variation can result in a severely de-
graded point spread function. Determination of the density com-
pensation term has been an active topic for investigation with an-
alytical [2], [4], [5] and numerical approaches [6], [7]. Common
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to all of these approaches is that the density compensation func-
tion (DCF) depends only on the time or k-space location al-
lowing this correction to be implemented by a simple scaling
of the acquired data. Over the years, there has been substan-
tial progress in developing computationally efficient approaches
to the conjugate phase reconstruction, for example convolution
gridding interpolation [8], [9] to map the samples to a Cartesian
grid, thus allowing the use of the fast Fourier transform (FFT)
for Fourier inversion. Noll et al. [10], [11] have demonstrated
fast algorithms for implementation of the conjugate phase re-
construction that combine with time or frequency approxima-
tions to the inhomogeneity-related phase accumulation terms.
For Cartesian sampled MRI like spin-warp imaging or echo-
planar imaging (EPI), sample density correction is generally
not necessary and magnetic field inhomogeneities can lead to
geometric and intensity distortions. There is an extensive body
of literature on correction of these distortions; one of the more
common approaches is the pixel shift method [12], [13].

The conjugate phase (CP) reconstruction and most of the
spin-warp and EPI correction methods assume the integrity of
the k-space trajectory. That is, images are reconstructed based
on the assumption that the underlying static magnetic fields do
not affect the k-space sample locations. However, any smoothly
varying inhomogeneity function will have in-plane gradients
that vary spatially. This results in a distorted k-space trajectory,
which also varies spatially. In other words, each point in space
has its own k-space trajectory and this needs to be accounted
for in the image reconstruction. The concept of local k-space
has been proposed previously in several imaging application in-
cluding echo-planar imaging [14] and spiral imaging [15], [16].
These works noted changes in sensitivity, apparent echo time,
and signal loss resulting from in-plane gradients.

In this paper, we observe that the spatially variant distortions
in k-space trajectory change the overall pattern of the acquisition
of spatial frequency information and also the density of samples
within that pattern. This causes both shape and intensity distor-
tions to the point-spread function, which can lead to blurring or
intensity variations in the resultant images. We propose a modi-
fication to the conjugate phase reconstruction in which the DCF
depends on both time and space for objects with spatially variant
magnetic field inhomogeneity. This approach is shown to cor-
rect for these distortions to the point-spread function. We also
demonstrate that the same concept can be used to explain and
correct for intensity variations in EPI and spin-warp imaging.
Finally, we investigate rapid algorithms to implement or closely
approximate the spatially variant conjugate phase reconstruc-
tion.
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II. THEORY

This theory section starts with an analysis of the effects of
in-plane gradients in one-dimension (1-D). The results here are
directly applicable to distortions and their correction in EPI and
spin-warp imaging. Next, we derive the conjugate phase (CP)
reconstruction method for 2-D spiral imaging with explicit ex-
pressions for the DCF. Following that, we analyze linear and
local gradients that distort the k-space trajectory and modify the
DCEF. The net result is a modified CP reconstruction with spa-
tially variant DCF. Finally, we introduce a fast approximation to
the proposed method.

A. Conjugate Phase Reconstruction in One Dimension With
Inhomogeneity

We first examine a 1-D frequency encoding pulse sequence
with a constant gradient G. For g = (v/27)G, the gradient in
units of frequency/distance (e.g., Hz/cm) and A f, the inhomo-
geneity function, the signal equation is

= /m(x) exp (—i2m (Af(z) + gz)t)dz. (1)
We now define a coordinate transformation operator

:17,125[33]:;1:4—%
g

2
where S[-] is the operator that maps true object locations to dis-
torted image locations. Assuming that (d/dz)Af(xz) + g =
Af'(z)+g > 0, the frequency f(z) = Af(z)+ gz is a mono-
tonically increasing function of x and the transformation oper-
ator of (2) is invertible: x = S~™![z4]. A typical value of g for
an EPI pulse sequence is 100 Hz/cm and in the experimental
data below, the peak derivative is =50 Hz/cm, so the condition
is often valid in practice. Note that the inverse transformation
may be numerically unstable when the peak derivative is close
in magnitude to the peak gradient values.

Making a substitution of variables for =4 and using dzy =
(1 + Af'(x)/g)dx, we rewrite the signal equation as

m (S‘l[xd])

s(t) = m exp (-'LZ']Tk(t)iUd) d.Td
g

= /md(xd) exp (—i2mk(t)xq) dea= My (k(t)) (3)

where k(t fo gdT = gt is the k-space location, and my and
M, are the distorted object and its Fourier transform. A standard
Fourier reconstruction yields

m (S‘l[a:])

= F7H{My(k)} = ma(z) = 14 AFGTRD
g

() @)

which is the original object with both a coordinate (geo-
metric) distortion ST'[z] and an intensity distortion
(1+Af(S7 xD)/g)7"

From this equation, we can easily see that the desired image
can be obtained by spatial shifts [12], [13] and correcting for
intensity variations. To determine m(z(), we merely need to
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look in the distorted image, 712, at location z = S|x¢] and then
adjust the image intensity.

We now examine the CP reconstruction in this context. For
this approach, we define (g + Af’(x)) as a “local sample den-
sity”” correction term that varies as a function of space rather
than the usual case where it varies as a function of & or time.
The CP reconstruction is then

iep(s) = (9+ AT (@) [ s(t)exp (i2n [Af(0) + ga] ) dr.

&)
By substituting k(t) = gt, dk = g dt and s(t) = Ma(k(t)),
this expression can be written as
Mep(T) = <1 + Af ) /Md exp (127kS|x]) dk
_ <1 ; —Afg(x)) ma (Sla]) = m(x). ©

In one dimension, the CP reconstruction can be thought of
as a Fourier domain interpolation equivalent to the pixel shift
method. Note that for these implementations, both the pixel
shift method and conjugate phase reconstruction method re-
quire the undistorted field map and its derivative. There are
other pixel shift methods that use distorted field maps [17] and
other reconstruction approaches, such as the simulated phase
evolution rewinding (SPHERE) method [18], that use distorted
field maps and do not require its derivative.

B. Image Reconstruction for Two-Dimensional (2-D) Spiral
Imaging

The method developed in Section II-D, below, is applicable
to a variety of trajectories; however, for concreteness we focus
on the CP method and the DCF for spiral imaging. In 2-D, the
signal equation without magnetic field inhomogeneity is

= // m(x)exp (—i27k(t) - x)dx = M (k(t)) (7)

where k(t) is the spiral k-space trajectory. We parameterize k()
in a manner similar to radial k-space imaging, that is, as a func-
tion of time and an idealized continuum of starting phase an-
gles, ¢, which can represent shot number. For this case, the CP
method [2], [5] is

_ / / M(K) exp(i2rk - x)dk

- [ o

where |0(k,, ky)/0(t, ¢)| is the determinant of the Jacobian of
the transformation from (¢, ¢) to (k. k, ). Hoge et al. [5] noted
that this Jacobian, which matches the areas of integration in the
two coordinate systems, is a sample DCEF. If the Jacobian is non-
singular, then m(x) = m(x).

The determinant of the Jacobian of this transformation is
Oky kg

T qdg (8)

ot as | | 92(t) —ky(t)
D(t) = a;tiy %k;, = g, (1) kz(t)‘
= g(t) - k(1)
= |g(t)! [k(t)| cos (Lg(t) — Lk(1)) ©)
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where ¢ = (v/2m)G is the gradient in Hz/cm. This expres-
sion contains 1) the outward velocity of the k-trajectory,
lg(t)] cos(Lg(t) — Lk(t)), times 2) the k-space radius, |k(¢)|.
Hoge et al. [5] postulated that these two terms represent 1)
speed away from origin and 2) the |p| weighting terms appro-
priate for radial sampling strategies (e.g., projection imaging).
For the special case of an Archimedean spiral, the expressions
in (9) can also be shown to be equivalent to another DCF
derived by Meyer ef al. [4] (contrary to an assertion in [5]). For
the Archimedean spiral parameterized as

k(t) = ka(t) + ik, (t) = Ap(t) exp (i ((t) + ¢))  (10)
where @(t) is the angular position versus time function and A =
N;/(2w - FOV) where Nj is the number of shots, the DCF
simplifies to Meyer’s expression

D(t) = Alg(t)|sin (Zg(t) — Zk(1)). (11)

This expression is often better behaved numerically, particularly
for large k-space values. In many spiral trajectories, the sample
density approaches a constant for large |k| values and (9) re-
lies on approximate cancellation of large |k| and a small out-
ward velocity, which is very sensitive to numerical errors in cal-
culating the latter. The expression in (9), however, is valid for
non-Archimedean spirals such as variable density spirals.

C. Image Reconstruction for 2-D Spiral Imaging for Linearly
Distorted Trajectories

As a prelude to the shift variant case, in this section, we
modify the DCF to accommodate a spiral trajectory distorted
by a linear gradient. Irarrazabal, et al. [19] proposed an image
reconstruction approach where the inhomogeneity function can
be approximated by an offset frequency and a constant back-
ground gradient

Af(x) = Afo+g-x (12)
where
OAf(z,y) G
T Gyb

Combining this gradient with the applied gradient yields a dis-
torted k-space trajectory

(14)

ka(t) = [Ago(t) cos (p(t) + ¢) + gmz,t}

Ap(t)sin ((t) + &) + gyt

and the signal equation is

s(t) = exp(—i27A fot) // m(x) exp(—i2rky - x)dx
= exp(—12m A fot)sa(t) (15)

where s,4(t) is the signal evaluated on the distorted trajectory.

The Jacobian determinant for the transformation from (¢, ¢)
to (k‘zo./ ]Cy(]) is

D'(t) = (g(t) + &) - k(?)
= [k(@)| (Ig(t)] cos (£g(t) — Lk(t))

+ lgs| cos (Lgp — k(1)) . (16)

Here, the outward velocity term is modified by the back-
ground gradient. The second half of this expression is analo-
gous to the (¢ + Af/(z)) density correction term in the 1-D
case. When the background gradient is in the same direction of
the k-space location, the gradient pushes the trajectories farther
apart, requiring an increase in the sample density correction in
an amount proportional to |g;|. The CP method is possible if the
Jacobian determinant is positive, so we require that

d|k(?)]

— 17
> el (7
i.e., the outward velocity of the k-space trajectory must be larger
than the background gradient.

An alternate expression for the Jacobian determinant is

D'(t) = Alg(t)|sin (Zg(t) — /(1)
+ Igol [k(t)| cos (Lgp — k(1))
= D(t) + Dy(t). (18)
Using the Jacobian determinant corrects for variations in sample
density due to the background gradients, whereas Irarrazabal,
et al. [19] used a postgridding density compensation approach.
Fig. 1 shows a standard k-space trajectory and its DCF as well
as two distorted trajectories and their DCFs.

The proposed CP image reconstruction method for this case
will be

n(x) = / / salt) exp (i27ka(t) - x) DY (1) dtdg

- // s(t) exp (127w A f(x)t)

x exp (i27k(t) - x) D'(t)dtd¢. (19)
If the condition (17) is satisfied, this is an exact reconstruction.
The last expression in (19) looks exactly like the CP reconstruc-
tion with off-resonance corrections, except that the DCF, D’(t),
is different.

D. Image Reconstruction for 2-D Spiral Imaging for Spatially
Varying Inhomogeneity

We now extend the above analysis to allow for a spatially
variant off-resonance function A f(x) with a nonconstant back-
ground gradient

BAf(r,y)
8(%) = VAS(X) = | a %) =[
9y

gxb($y):|
g (r,y) | (20)
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Fig. 1.

Top row: Central portion of a spiral k-space trajectory with no background gradient and with background gradients of 25 and 100 Hz/cm. Bottom row:

The corresponding DCFs, D(#), for these three cases. For the 100 Hz/cm case, the Jacobian determinant is negative for some time points (when the trajectory

crosses over itself).

We propose that the CP reconstruction with spatially variant
density compensation be

m(x)://s(t)exp(i27rAf(x)t)exp(ink(t) -x)D(x,t)dtd¢

2D
where D(x,t) is a spatially variant DCF based on the Jacobian
determinant, for example

D(x. 1) = Alg(t)]sin (Zg(t) — /k(1))
+ lgs (x)] [k(#)] cos (£gn(x) — Zk(?))
=D(t) + Dy(x,1). (22)
Here, D(t) is the standard density correction term and Dy (x, t)
is the sample density adjustment due to the background gradi-
ents. The criteria for the nonnegativity of the Jacobian determi-
nant is now

dlk(®)] 2o(%)|

o (23)

for all ¢ and x. It is possible that this condition may not be sat-
isfied only for particular points in space and particular samples
in time. One strategy for addressing this situation is to set the
DCEF equal to zero for these combinations of spatial locations
and k-space samples, resulting in these samples being excluded
from the image reconstruction.

Another interpretation of the condition in (23) is that when
a point is reconstructed at a location xg, no other voxel loca-
tions will blur onto that location. In 1-D imaging with a constant
gradient, the off-resonance induced spatial shiftis A f(z)/g. In
this case, we argue that the distorted PSF will not shift from x

to xg if the frequency difference between these points divided
by the gradient is less than the difference between spatial loca-
tions of these points (e.g., |Af(z) — Af(zo)|/g < |z — zol)-
In spiral imaging, the gradient vector points in all directions
and the shift/blur from the smallest gradient will dominate. The
smallest gradient is the outwards (radial) gradient, and, thus, we
argue that the criterion for which the center of the point spread
function (PSF) will not blur from x to xq is

[Af(x) = Af(x0)]

- dlk(@)]
min —dt

< |x — x| (24)

for all x. Thus,
|Af(x) — Af(xn)]

|x — %,

dk(t)]
dt

< max |gp(x)| < min (25)
which is the same condition as (23). This is a formal description
of smoothness necessary for the CP reconstruction, which has
been described heuristically by Schomberg [20].

E. Fast Algorithms

The image reconstruction method in (21) cannot be imple-
mented directly using gridding and FFTs [8], [9]. In Noll, ez
al. [10], [11], fast algorithms were proposed based on segmen-
tation of the off-resonance term, exp(i2mw A f(x)t), along either
the time or frequency dimensions. These approaches implement
the standard CP reconstruction that uses only the spatially in-
variant density compensation term, D(t)

() = / / s(t) exp (12 A F(x)E) exp (i27k(£)-x) D(8)dtdp.
o (26)
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We briefly summarize the time-segmented approach, in which
(26) can be approximated as

0= [[ [ alt — 17) exp (2 A F)I7)

x exp (i2wk(t) - x) D(t)dtdp (27)

where L and 7 are the number and spacing of time segments,
respectively. The terms in the square brackets approximate the
complex exponential in time and a(-) can be thought of as an
interpolation kernel that interpolates between samples of the ex-
ponential at times /7. This equation can be rewritten as

Zexp 2r A f(x)lT)

[//

where the terms in the square brackets represent the reconstruc-
tion of the signal s(t)a(¢ — I7). This expression can now be
implemented rapidly using gridding and FFTs. Accordingly,
this conjugate phase reconstruction can be implemented with
L FFTs and the accuracy of the reconstruction is controlled by
the number of segments, L. Sutton, et al. [21], derive optimal
interpolation kernels and also evaluate error versus number of
segments for a variety of different field maps.

Unfortunately, the temporal-spatial variability of the Dy (x, )
term in (21) prevents the direct use of this fast algorithm. Brute
force implementation would require approximately O(N*) op-
erations, where N is the image matrix size along one-dimen-
sion. By comparison, the time- or frequency-segmented recon-
struction [10], [11] requires approximately O(LN?log N) op-
erations. This difference can be substantial, particularly for large
images like N = 256, where the difference in reconstruction
time is approximately three orders of magnitude (e.g., several
seconds versus one hour).

We propose two methods for rapid implementation of (21).
For the first method, we start by rewriting (22) as

D(x,t) = D(t) + gup(x) k() + gyp(x)ky (t)

which can be implemented rapidly as the weighted sum of three
time-segmented gridding reconstructions, for example

= //s(t) exp (i2rA f(x)t)
x exp (i2rk(t) - x) D(t)dtd¢

(t
T gun(x // )exp (i2r A f(x)t)
%) k(1) dtd
(
(t

a(t — Ir)exp (i2rwk(t) - x) D

(t)dtdp|  (28)

(29)

x exp (127k(t
+ gyp(x // exp (i2r A f(x)t)
x exp (i2rk(t) - x) ky (t)dtd¢. (30)

In essence, the reconstruction takes the result of the reconstruc-
tion with the invariant density compensation [the first line of
(30)] and adds to it the corrections for the x and y background
gradients (the second and third lines, respectively). One issue
for this density compensation term is how to handle the situation
where the maximum background gradient condition is violated.

When this occurs, the Jacobian determinant becomes negative
and in general, one would set Dy (x, ) to zero to eliminate par-
ticular data samples from the image reconstruction for partic-
ular locations in space. This can be done for the O(N*) recon-
struction, but cannot be done for the fast algorithm described
here. In practice, we have found that the differences between
these two approaches are imperceptible as they affect only a
small number of k-space samples for a small number of points
in space. This reconstruction can, therefore, be implemented as
O(3LN?log N), achieving substantial computational savings.

A second approximation to the reconstruction in (21) is suit-
able for use in gradient echo (GRE) imaging. In GRE, a back-
ground gradient leads to a shifted k-space trajectory and thus,
there is different sample density for the origin in k-space (un-
less the background gradient is so large that the origin is not ac-
quired at all). Here, a simple correction is to adjust the intensity
of the reconstructed values from a standard density compensated
reconstruction by a multiplicative correction factor. To do this,
the DCF is evaluated at a single time point

(. y) = arg, (go(z,y)(TE + ) + k(t) = 0)
= arg, (|gs (2, y)(TE +1)| = [k(?)])

that is, the time 7 where the shifted k-space trajectory crosses
the origin. At this time point, g; and k point in either the same
or opposite directions for typical spiral-in [22] and spiral-out
trajectories acquisitions, respectively. Thus, the cosine term in

(3D

(22) is 1 or —1, respectively, and the correction term is
D (r(z,y) + Dy (z,y,7(z,y))
Clony) = D (7 ()
D (7(z,y))

(+ and — for the spiral-in and spiral-out trajectories, respec-
tively). This is illustrated graphically in Fig. 2 for a spiral-out
acquisition with a TE = 20 ms and a background gradient of 25
Hz/cm. Observe that the k-space trajectory is shifted toward pos-
itive k., positions and the point where the trajectory crosses the
origin in k-space is sampled with higher density. The spatially
variant DCF is reduced relative to the invariant DCF and the in-
tensity correction factor, C, is the ratio of these values. This
correction, therefore, will reduce the intensity variations and
allow the use of a fast reconstruction, but this does not correct
for distortion in the PSF. In this approach, the conjugate phase
reconstruction with inhomogeneity correction is modified with
a point-by-point correction factor, C(z, y). This reconstruction
can be implemented as O(LN? log N) and also achieves a sub-
stantial computational savings over the reconstruction in (21).

III. METHODS
A. Simulation Study

To evaluate the effectiveness of the proposed spatially variant
density compensation, we performed two simulation studies. In
the first, a circular object of radius 2 cm was simulated for no
background gradient and for a constant background gradient of
9= = 25 Hz/cm. The object was reconstructed using the conju-
gate phase reconstruction using DCF functions D(t), D’(t), and
using the postreconstruction intensity compensation. We also
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Fig. 2. Top: The central portion of a spiral-out k-space trajectory with a
background gradient of 25 Hz/cm and a gradient echo TE = 20 ms. The
origin of k-space is denoted by 9. Bottom: The spatially invariant and variant
DCFs for this trajectory with values at the time corresponding to crossing of
the k-space origin denoted by .

simulated the effects of errors in the inhomogeneity function
used for image reconstruction, including errors in Af and in
the parallel (g,.) and orthogonal (g, ) gradient terms.

In the second simulation study, spiral data were simulated
using a high-resolution simulation model of the human head.
This model was derived from imaging data acquired on a 3.0 T
GE Signa scanner using a three—dimensional (3-D) acquisition
using two different echo times (spoiled GRE pulse, TE = 9
and 10 ms, TR = 33, Flip angle = 25, FOV = 16.5 x 22 ¢m,
matrix = 192 x 256, slice thickness = 1 mm, and 128
slices). Images were reconstructed off-line preserving the
phase information, and the magnetic field (resonant frequency)
map was determined from the phase difference [23] using
Aw(z,y) = Ad(z,y)/ATE. The selection of ATE = 1 ms
prevented 27 phase jumps in the phase maps. Fat suppression
was used to eliminate jumps in the frequency map associated
with water/fat boundaries. To reduce noise in the frequency
map, we filtered Aw(z, y, z) by smoothing this map with a 3-D
Gaussian kernel with width ¢ = 3.2 * (pixel size). To estimate
a smooth field map for the slice of interest, we used the conju-
gate gradient algorithm to minimize a quadratic cost function
consisting of a weighted norm term (based on the magnitude
image) and a quadratic roughness penalty. This particular
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smoothing approach was chosen because it smoothly extends
the field map over gaps in the image and into the background.
The simulated signal samples were calculated using

Sn =5(tn)
= Z m(z,y) exp (—i2m (kg (tn)z + ky(tn)y)

.y
x exp (—tAw(z,y)(t, + TE)) (33)
where m(z,y) is the high-resolution imaging data set (from
TE = 9 ms) and ¢, is the time relative to the echo time as-
sociated with sample s,, (e.g., for the spiral-in trajectory, where
samples occur before the TE, ¢,, will be negative). The magneti-
zation image, m(z, y) was thresholded to eliminate background
noise from the simulation. Ty decay was not included in the sim-
ulation.

The simulated spiral acquisitions used a field of view of 22 cm
and covered a k-space area of diameter 64 using 4617 data sam-
ples. The simulated sample period was 4 us for a total readout
duration of 18.46 ms. The outward velocity d|k|/dt varied from
341 Hz/cm to 53 Hz/cm. The spiral-out (forward) data used a
simulated TE = 20 ms and spiral-in (reverse) used a simulated
TE = 30 ms. The following reconstruction methods were per-
formed for both simulated spiral-out and spiral-in acquisitions:

1) the direct Fourier reconstruction in (8) without inhomo-
geneity correction;

2) the CP reconstruction in (19) using only the spatially in-
variant DCF term, D(t), implemented with the fast time-
segmented approximation;

3) the CP reconstruction in (21) using the combined spatially
variant DCF, D(x,t), implemented using a brute force
summation;

4) the fast approximation to 3) described in (30), again im-
plemented with the fast time-segmented approximation;

5) the reconstruction of part 2) using spatially invariant DCF
with the postreconstruction intensity correction of (32);

6) the SPHERE method [18];

7) the iterative conjugate gradient [21] using a small number
of iterations.

The fast time-segmented gridding approximation to the CP re-
construction used gridding with interpolation kernels of width
four Cartesian samples to map the samples to a two-times over-
sampled Cartesian grid, and used L. = 5 time segments with
min-max optimized temporal interpolators of Sutton ef al. [21].
In addition to differences resulting from fast implementation of
the conjugate phase reconstruction, 3) and 4) also differ in the
handling of the case of a negative Jacobian determinant. For the
approach in 3), samples where the Jacobian is negative are ex-
cluded from the reconstruction whereas in 4), they are included
using the negative weighting. For reconstruction methods 3)-5),
the gradients necessary for spatially variant image reconstruc-
tions were calculated from the inhomogeneity map using 3 x
3 and 5 x 5 derivative kernels, the latter being less sensitive to
noise in the field map.

In addition to variants of the CP reconstruction, for compar-
ison, we have also implemented two other approaches to cor-
rect for magnetic field inhomogeneity. The first of these, the
SPHERE method [18], takes the distorted image and field map
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Top left: Profiles along « direction for the reconstruction of a simulated circular object of radius 2 pixels for no background gradient and for an 2 direction

background gradient of 25 Hz/cm and a gradient echo with TE = 20 ms. The spatially invariant DCF produces overestimated the image intensity. Top right:
comparison of response of spatially variant DCF to the invariant DCF response with intensity scaled by the ratio of DCF values in Fig. 2. Bottom left: Effect of
error in estimated @ gradient. Bottom right: effect of error in the estimated y gradient and magnetic field strength.

and creates a synthetic k-space data set using the negative inho-
mogeneity function. This synthetic data set is then reconstructed
to produce a corrected image. The main idea is to exactly undo
phase effects from magnetic field inhomogeneity and requires
that the field maps lie in the same frame as the distorted image.
For some applications this is a potential advantage, but for our
simulations the distorted field maps were generated from two
simulated images with different echo times and then smoothed
using a 3 x 3 kernel to remove small ripples in the calculated
map. Fast time-segmented approaches are possible, though they
were not used in this implementation.

The second non-CP approach is the iterative conjugate gra-
dient approach of Sutton et al. [21]. This approach also simu-
lates the raw data from an estimated object, but using the undis-
torted field map (rather than the negative and distorted maps
in SPHERE). Conceptually, this can be seen as simulating the
physics of the MRI acquisition and then differences between
the measured and simulated raw data drives updates to the esti-
mated image. This approach is particularly interesting since the
first iteration is the same as the CP reconstruction [21], [24] if
the image is initialized to zeros and the data are weighted by
the DCF. The DCF weighting, however, is statistically subop-
timal, so we follow the approach suggested in [21] by using
the DCF weighting for only the first iteration and uniform data
weighting for all subsequent iterations. The iterative reconstruc-
tion method was implemented using the fast time-segmented ap-
proximations. With this implementation, two iterations of the it-
erative reconstruction will use approximately the same number
of computations as the reconstruction in 4) Ten iterations were
performed, and the images were analyzed after each iteration.
The regularization parameter for this work was set to a value

of 4, which produced a PSF with a full-width half maximum of
1.15 pixels for both spiral-in and spiral-out.

All images from the different reconstruction methods were
compared to a “gold standard” reference image using a normal-
ized root-mean-square error (NRMSE), where the errors were
normalized by the RMS value of the reference image. The ref-
erence image was created by simulating raw data and recon-
structing the same head slice with a standard Fourier reconstruc-
tion, but with the inhomogeneity term, Aw, set equal to zero.

The sensitivity of each reconstruction method to noise in the
field map as well as noise in the raw data was also tested. To
evaluate the effect of noise in the field map, 20 realizations of
white Gaussian noise with standard deviations varying from 0
to 5 Hz were added to the field map used in the reconstruction.
For cases where a gradient must be calculated, we also used
the noisy field maps. The NRMSE was calculated with respect
to the no noise case for each reconstruction and plotted versus
standard deviation. This was examined for nonlinear behavior
and the slope of the NRMSE versus standard deviation line was
determined. To evaluate the effect of noise in the raw data, 20
realizations of bi-variate white Gaussian noise were added to the
simulated raw data with standard deviations that were selected
to produce signal-to-noise ratios that varied from O to approxi-
mately 10. Again, the NRMSE versus standard deviation plots
were examined for nonlinear behavior and the slopes of these
lines were calculated.

B. Experimental Study

Spiral data were acquired on a human volunteer subject
using a single-shot, gradient echo spiral-out acquisition with
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Fig. 4. Simulation of a spiral acquisition for case of homogeneous field in (a). (b) Contains the corresponding magnetic field map (in Hertz, the corresponding
range in ppmis —0.8 to 0.4) and (c) contains the absolute value of the gradient (in Hz/cm). (d)—(k) Spiral-out results and (1)—(s) are spiral-in results with the following
image reconstruction approaches: (d), (1) reconstructions with no inhomogeneity correction, (e), (m) the conjugate phase reconstruction with the standard DCF,
(f), (n) the conjugate phase reconstruction with spatially variant DCF, (g), (o) reconstructions for (e), (m) modified by the postreconstruction intensity correction,
(h), (p) SPHERE reconstruction, and (i)—(k), (q)—(s) iterative reconstruction with 2, 4, and 10 iterations, respectively.

parameters TR = 3000 ms, TE = 15 ms, flip angle =
90 degrees, field of view = 22 cm, slice thickness = 3 mm,
k-space diameter 64, and 3769 samples with 5 us sampling for
a total readout duration of 18.85 ms. To have a reference image
with very little image distortion, an image was acquired using
the same pulse sequence parameters, but using an 8-shot ac-
quisition with 495 samples (2.48 ms readout). Field maps were
derived using the phase difference method [23] and acquisitions
using TE = 17.5 ms. For the CP and iterative reconstructions,
the 8-shot data were used to derive the field map and were
smoothed using the conjugate gradient algorithm with quadratic
cost function as previously described. The gradients necessary
for spatially variant image reconstructions were calculated from
the inhomogeneity map using 3 x 3 Sobel derivative kernels.
For the SPHERE reconstruction, a single-shot acquisition was
used for the field map and it was smoothed using a 3 x 3
kernel. We applied the same reconstruction approaches as in
the simulation study.

IV. RESULTS
A. Simulation Study

Fig. 3 shows simulation results for the circular object with
the spiral-out acquisition. The reconstruction using the spatially

variant DCF most closely matches the amplitude of the orig-
inal object (given the limited spatial frequency) while the spa-
tially invariant DCF overestimates the object amplitude. When
the postreconstruction intensity correction of (32) is applied, the
spatially invariant DCF produces a response very similar to that
of the spatially variant DCF, though the spatially variant DCF
appears to have a sharper transition. Results were similar for
the spiral-in acquisition (not shown) except that the spatially
invariant DCF prior to intensity correction underestimated the
object intensity. Fig. 3 also shows the effect of errors in the in-
homogeneity function used for reconstruction. The largest effect
comes from errors in the parallel (g, ) gradient terms, which re-
sult in an approximate scaling of the stimulated object due to
over- or under-correction of the sample density effects. Errors
in the orthogonal (g, ) gradient terms seemed to have no effect
on the reconstructed object while errors in A f induced blurring
of the object, as expected.

Reconstruction results for the simulated head are given in
Fig. 4 for an axial slice approximately 2 cm above the sphenoid
nasal sinus. Fig. 4(a) contains the reference spiral image for
the object reconstructed with no magnetic field inhomogeneity.
Fig. 4(b) contains the magnetic field map used to generate
the simulated data. This map and Fig. 4(c), the gradient map,
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Comparison of the postreconstruction intensity correction of Equation (32) to corrections provided by full spatially variant DCF for both spiral-out (left)

and spiral-in (right) images. Solid line represents the postreconstruction intensity correction factor while dots represent the ratio of pixel intensities for Fig. 4(f) or
(e) and Fig. 4(n) or (m), respectively. For gradient echo imaging, there is a reasonably close relationship between these two correction approaches.

TABLE 1

COMPARISON OF RECONSTRUCTION METHODS FOR SIMULATED DATA: RECONSTRUCTION ERRORS AND NOISE SENSITIVITY

Spiral-Out Spiral-In Spiral-Out Spiral-Out
Reconstruction Simulation Simulation Simulation Simulation
Method (no noise) (no noise) Noise in field map Noise in data
% NRMSE % NRMSE (% NRMSE/Hz) (% NRMSE/unit

noise)

No Correction (a.) 18.4 16.0 0 1.04

CP with Invariant 16.9 10.9 0.9 1.04

DCEF (b.)

Slow CP with 7.6 32 4.1%/1.6" 1.05

Variant DCF (c.)

Fast CP with 7.6 32 41%/1.6 1.05

Variant DCF (d.)

CP with Intensity 9.1 4.4 10.5/3.1° 0.92

Correction (e.)

SPHERE (f.) 7.3 5.5 4.4 0.99

Iterative (g.) — 9.6 8.9 1.2 1.01

2 Iterations

Iterative (g.) — 7.7 7.3 1.4 1.01

3 Iterations

Iterative (g.) — 6.6 54 1.7 1.00

4 Tterations

Iterative (g.) — 6.4 4.4 2.1 1.00

5 Tterations

Iterative (g.) — 6.3 3.7 24 1.04

10 Iterations

23x3 and "5x5 kernels for gradient calculation

were used in the reconstruction process. Fig. 4(d)—(k) shows
the eight reconstructed images for the spiral-out data and Fig.
4(1)—(s) shows the results for the spiral-in data. Only the re-
sults for the fast implementation of the spatially variant DCF
[method 4)] are given as they are visually indistinguishable (nor-
malized RMS difference of ~0.1%) from the slower implemen-
tation [method 3)]. Amongst CP reconstruction methods, the
use of the spatially variant DCF and the postreconstruction in-
tensity correction clearly produce images that are closest to the
reference image. The image from the SPHERE method and it-
erative reconstruction also produced images that are very close
to the ideal reference image. Table I contains the normalized
RMS errors for all reconstruction methods. For the spiral-out

data, the iterative method has the lowest NRMSE and the for
the spiral-in data, the spatially variant CP reconstruction had the
lowest NRMSE.

Fig. 5 contains a comparison of the pixel values between the
spatially invariant and variant DCFs. The postreconstruction in-
tensity correction values are also shown in this figure as a solid
line. These plots demonstrate that postreconstruction intensity
correction produces images that are similar to those produced
by the full spatially variant DCF. This also shows that for gra-
dient echo imaging, a substantial amount of the correction im-
parted by the variant DCF is an intensity correction.

The noise sensitivity of each of the reconstruction methods is
also included in Table I. All of the reconstruction methods pro-
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Fig. 6. Experimental results for the slice shown in (a), which as acquired using an 8 shot acquisition. (b) Contains the corresponding magnetic field map (in
Hz, corresponding range in ppm is —0.6 to 0.3 ppm) and (c) contains the absolute value of the gradient (in Hz/cm) of (b). (d)—(k) Images reconstructed with
the following image reconstruction approaches: (d) reconstructions with no inhomogeneity correction, (e) the conjugate phase reconstruction with the invariant
DCEF, and (f) the conjugate phase reconstruction with spatially variant DCF. (g) Reconstructions of (¢) modified by the postreconstruction intensity correction, (h)
SPHERE reconstruction, (i)—(k) Iterative reconstruction with 2, 4, and 10 iterations, respectively.

duced images with noise measures that varied approximately
linearly with respect to noise level in the field map or raw data.
The standard CP reconstruction method 2) is least sensitive to
noise in the field map and the CP reconstruction with spatially
variant DCF is substantially more sensitive, but this sensitivity
can be reduced through the use of larger gradient estimators
that employ more averaging. With respect to noise in the raw
data, none of the reconstruction methods show any noise ampli-
fication relative to the standard Fourier reconstruction. The CP
reconstruction with postreconstruction intensity correction has
somewhat reduced noise, most likely from the multiplicative in-
tensity reduction necessary for the spiral-out case.

The computational demands of the different CP reconstruc-
tion methods depend upon the exact implementation. The fast
implementation we have used requires precalculation of inter-
polation coefficients for the gridding step and optimization of
the temporal interpolators. On an 800 MHz Intel Pentium pro-
cessor, this precalculation requires 13.6 s and if an approxi-
mate or generic field map is used [21] most of these calcula-
tions can be performed off-line. The additional reconstruction
time for each image was 0.6, 1.7, and 0.7 s for methods 2),
4), and 5, respectively. These times are for L = 5 time-seg-
ments, and time can be further reduced by reducing the number
of time segments, however this increases error. The normalized
RMS difference between the fast and slow implementation was
about 1.6%, 0.5% and 0.1% for L = 3, 4, and 5 segments, re-
spectively. The slow implementation method 3) of the spatially

variant reconstruction requires calculation of a large matrix that
implements the density compensation and conjugate phase re-
construction (42.1 s) and a matrix multiplication with the raw
data (1.0 s). Unlike, the fast implementation, the matrix is field
map specific and would need to be recalculated for every slice.

B. Experimental Data

Reconstruction results for the experimental spiral data are
given in Fig. 6 for an oblique axial slice approximately 2 cm
above the sphenoid sinus. Fig. 6(a) contains the 8-shot data,
which serves as a reference image, Fig. 6(b), (c) shows the mag-
netic field and gradient maps used in the reconstruction process,
and Fig. 6(d)—(k) shows images reconstructed by the various ap-
proaches. These results demonstrate that the CP reconstruction
with a spatially variant DCF as well as with intensity correction
can produce images that closely approximate the undistorted
image acquired using an 8-shot acquisition.

V. DISCUSSION AND CONCLUSION

Most image reconstruction in MRI is based on Fourier in-
version of k-space data, where k-space is defined from the gra-
dient waveforms. The concept of k-space, however, assumes
that the underlying magnetic field is perfectly uniform. When
this is not the case, it is appropriate to consider modifications
to the k-space formulation that may lead to a modified Fourier
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inversion approach or alternatively, to consider entirely new re-
construction approaches based on modeling the MR physics. In
this paper, we consider the former by performing a Taylor series
expansion of the underlying magnetic field around every point
in the object. Keeping only the first two terms produces a signal
equation with an effective k-space trajectory that is distorted and
is space variant. Reconstruction from this distorted trajectory
requires modification of the sample DCF to a form that is also
space variant. Each point in space has its own effective k-space
trajectory and thus, its own sample density compensation.

In both simulation and experimental data, we demonstrate the
effect of distortions to k-space caused by the gradient term from
magnetic field inhomogeneity. In spiral imaging, these distor-
tions can lead to changes in intensity and distortions to the point
spread function. A significant portion of the image distortions
can be removed by the proposed image reconstruction that uses
a spatially variant DCF. In the simulations, however, we found
that this method does not lead exactly to the reconstructed image
produced by simulation without magnetic field inhomogeneity
for two reasons. First, the k-space region acquired is not exactly
the same as that acquired for the homogeneous case. For ex-
ample, in Fig. 2(left), we see a k-space trajectory for a particular
point in space that is shifted from the ideal trajectory in Fig. 1.
The spiral-in case produces results that are much closer to the
homogeneous magnetic field case because the k-space area for
the distorted trajectory is more similar to the ideal trajectory.
The second reason that the reconstruction is not perfect is that
the smoothly varying condition of (23) may be violated for some
points, in which case the Jacobian determinant is negative and
the Fourier inversion has singularities.

Our derivation of the spatially variant DCF is based on the
Jacobian determinant and modifications thereof. For sample
values where this determinant is zero, the trajectories cross
on top of themselves and the DCF is set to zero. It may,
however, be advantageous to keep these samples because they
can improve the estimated image in locations with large back-
ground gradients. Keeping these sample values, however, may
require the use of other approaches for the calculation of DCF.
Numerical approaches [6], [7] can accommodate self crossing
trajectories gracefully. In addition to spiral acquisitions, these
approaches would also be very useful for trajectories that in-
tentionally have self crossings, for example, rosette trajectories
[25]. In this case, we are aware of no simple formulae to adjust
the DCF for distortions to local k-space. While highly attrac-
tive for these cases, the numerical approaches for DCF calcu-
lation may be computationally impractical since each image
voxel will require a new execution of the DCF calculation
procedure.

In addition to application of the spatially variant DCF, we ex-
amined an alternate method for correcting for the effects of lo-
cally distorted k-space trajectories. In this method, we applied
an intensity correction to the images reconstructed using a spa-
tially invariant DCF. The intensity correction is based on the
relative density of samples when the true origin of k-space is
acquired. This is done for every point in space to create an in-
tensity correction mask. This approach produces results that are
very similar to the full spatially variant DCF, as demonstrated by
Fig. 4. Fig. 5 further demonstrates that the corrections resulting
from the two approaches are very similar, but that differences

remain. These differences are likely due to changes in the point
spread function (PSF) that result from the density compensa-
tion for all parts of k-space rather than just the compensation
at the origin. For spin-echo imaging, the origin is sampled with
roughly the same density irrespective of background gradients
(see top of Fig. 1, for example). In this case, the spatially variant
DCF will still improve the PSF, but the postreconstruction inten-
sity correction will have no effect.

We have proposed two approaches for rapid implementation
of this reconstruction. The first approach implements the full
spatially variant DCF using three image reconstructions and
the second does a single reconstruction using a spatially in-
variant DCF followed by a point-by-point intensity correction.
Both approaches use the conjugate phase reconstruction with a
time-segmented approximation to the phase accumulation due
to off-resonance effects [10], [11]. They also use gridding [8],
[9] with FFTs for fast Fourier inversion. The gridding recon-
struction with appropriate selection of convolution kernels [9]
can produce images with extremely small difference relative to
the discrete Fourier summation (NRMSEs of less than 10~°). In
addition, the interpolation kernels used to approximate the accu-
mulation of off-resonance phase can be minimized through the
use of optimized temporal interpolators, such as the min-max
interpolator of Sutton et al. [21]. Both rapid methods required
approximately O(LN? log N) operations where N is the image
dimension and L is the number of time or frequency segments
and led to substantial reductions in computation time. The fast
approach for the spatially variant DCF [method 4)] was very
close to the slower implementation with a normalized RMS dif-
ference about 0.1%. This difference included errors resulting
from both errors in the fast approximation and differences in
how a negative Jacobian determinant was handled.

One apparent disadvantage of the proposed methods is the
sensitivity to noise and/or errors in the field and gradient maps.
The results in Fig. 3 show that the errors or noise in the gra-
dient component parallel to the true background gradient have
predominantly a scaling effect on the image, whereas the er-
rors in the orthogonal direction have negligible effects. Errors
in the field map can lead to additional blurring of the image
in a manner similar to the standard CP reconstruction. Table I
shows that the while the proposed methods do not amplify ad-
ditive noise in the raw data, they can be quite sensitive to noise
in the field map. The relative insensitivity of the standard CP
reconstruction to field map errors together with the reduction
in noise sensitivity through the use of a larger kernel for esti-
mating gradients imply that the noise sensitivity is dominated
by noise in the gradient maps. In practice, noise in the field
maps and gradient maps can be controlled by smoothing the
field map and through the use of larger kernels for calculation
of gradients. Furthermore, our noise analysis shows that postre-
construction intensity correction is somewhat more sensitive to
gradient noise than the reconstruction with the spatially variant
DCEF. This approach uses the estimated gradient to determine the
time of the crossing of the k-space origin in (31) and then uses
it again in the determination of the correction factor, resulting
in an amplification of the noise relative to the full the spatially
variant DCF method.

Our proposed method corrects for the effects of local gradi-
ents by adjusting for sample density variations in a local k-space
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representation. There are other approaches that can address the
distortions to k-space without explicit calculation of gradient
maps and we have tested two of these in the current work.
Both of these approaches rely on modeling the signal equation
physics [e.g., (15)] with the negative (SPHERE method) or
positive (iterative method) field map. Unlike the inverse so-
lution, this equation does not depend on the assumption of a
uniform underlying magnetic field. The SPHERE method [18]
uses the field map in an attempt to create undistorted k-space
data from a distorted image, and the iterative method [21]
attempts to find the image that best matches the acquired data
using a cost function. Our simulation data summaries in Fig. 4
and Table I show that both of these approaches are effective in
reducing both image distortions from field inhomogeneity and
intensity variations that result from sample density variations,
resulting in reconstruction errors that are similar to those found
with spatially variant CP reconstruction (in some cases better
and in other cases worse). The SPHERE method can also be
implemented in a computationally efficient manner and can use
a distorted field map, but in our implementation it was more
sensitive to noise in the field map than the CP reconstructions.
As previously mentioned, with appropriate data weighting,
one iteration of the conjugate gradient method is equivalent to
the CP reconstruction [21], [24], which does correct for most
spatial distortions, but additional iterations (between 3 and 10)
were required to eliminate in the intensity variation from the
sample density variations. The iterative approach also has fast
implementations [21] but with larger numbers of iterations, it is
still slower than the proposed approach. The iterative approach
could, of course, be initialized with the new CP method and
could further reduce the number of iterations. Unlike the CP
and SPHERE methods, the iterative reconstruction approach
also does not require a smoothly varying field, such as the
condition in (23). Finally, the iterative approach also showed
some increase in sensitivity to noise in the field map for larger
numbers of iterations.

In conclusion, we have developed a new CP method to re-
construct images corrected for the effects of magnetic field in-
homogeneity. Our approach is based on the idea that gradients
in the magnetic field inhomogeneity function can lead to spa-
tially varying distortions in an effective k-space trajectory. Since
these distortions lead to altered sampling patterns, they require
different DCFs for every point in space. We have developed spe-
cific formulae for the spatially variant compensation for use in
spiral MRI and have described fast implementations of this re-
construction that allow the use of FFTs. We have applied the CP
reconstruction with a spatially variant compensation function to
simulated and experimental spiral data and this has resulted in
substantially more accurate image reconstructions than the stan-
dard CP reconstruction.
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