
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 9, SEPTEMBER 2005 3393

Toeplitz-Based Iterative Image
Reconstruction for MRI With Correction for

Magnetic Field Inhomogeneity
Jeffrey A. Fessler, Senior Member, IEEE, Sangwoo Lee, Student Member, IEEE,

Valur T. Olafsson, Student Member, IEEE, Hugo R. Shi, Student Member, IEEE, and Douglas C. Noll, Member, IEEE

Abstract—In some types of magnetic resonance (MR) imaging,
particularly functional brain scans, the conventional Fourier
model for the measurements is inaccurate. Magnetic field inho-
mogeneities, which are caused by imperfect main fields and by
magnetic susceptibility variations, induce distortions in images
that are reconstructed by conventional Fourier methods. These ar-
tifacts hamper the use of functional MR imaging (fMRI) in brain
regions near air/tissue interfaces. Recently, iterative methods that
combine the conjugate gradient (CG) algorithm with nonuniform
FFT (NUFFT) operations have been shown to provide consid-
erably improved image quality relative to the conjugate-phase
method. However, for non-Cartesian k-space trajectories, each
CG-NUFFT iteration requires numerous k-space interpolations;
these are operations that are computationally expensive and poorly
suited to fast hardware implementations. This paper proposes a
faster iterative approach to field-corrected MR image reconstruc-
tion based on the CG algorithm and certain Toeplitz matrices.
This CG-Toeplitz approach requires k-space interpolations only
for the initial iteration; thereafter, only fast Fourier transforms
(FFTs) are required. Simulation results show that the proposed
CG-Toeplitz approach produces equivalent image quality as the
CG-NUFFT method with significantly reduced computation time.

Index Terms—fMRI imaging, magnetic susceptibility,
non-Cartesian sampling, spiral trajectory.

I. INTRODUCTION

I N magnetic resonance (MR) imaging, the standard model
for the measurements is

(1)

where denotes the unknown object magnetization,
denotes two-dimensional or three-dimensional (2-D or 3-D)
spatial coordinates, denotes the (possibly nonuniform) fre-
quency-space sample locations associated with the specific MR
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pulse sequence, and denotes expectation. MR measure-
ments contain additive white complex Gaussian noise [1, Ch.
15]:

(2)

The goal is to reconstruct from .

The usual Fourier model (1) is reasonable for some types of
MR scans, and many MR reconstruction methods are based on
that model.

For MR scans with long readout times, there are off-reso-
nance effects that are caused by magnetic field inhomogeneity
(main field imperfections and magnetic susceptibility vari-
ations) and/or relaxation effects that depart from the simple
Fourier model. Failure to compensate for such effects leads to
geometric distortions in echo-planar imaging and blurring and
artifacts when imaging with non-Cartesian trajectories. These
degradations can be severe in brain scans based on the BOLD
effect [2], hampering the use of fMRI in brain regions near
air/tissue interfaces. Numerous solutions have been proposed
based both on data acquisition strategies and reconstruction
methods [3]–[22].

In the presence of such non-Fourier effects, a more realistic
model for MR measurements is the following:

(3)

where denotes the time of the th sample. The complex quan-
tity can include both relaxation and off-resonance effects
as follows:

(4)

The real function corresponds to the relaxation term (e.g.,
an map) at spatial position , and the real function
corresponds to off-resonance effects (e.g., susceptibility). Since
both and have inverse time units, we refer to
as the rate map hereafter. For simplicity here, we address the
problem where the rate map is known, i.e., where we are
given relaxation maps and field maps , and the goal is
to reconstruct the object from the measurements , e.g., [21].
For field-corrected MR reconstruction, usually one assumes that

is zero. Further applications of the general approach de-
scribed here include situations where either the field map
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is unknown and must be estimated, e.g., [23]–[25], or the relax-
ation map is also to be estimated, e.g., [26], [27] or both,
e.g., [28]–[35]. We focus on the case of a single receive coil,
although the methods extend readily to parallel imaging with
multiple coils, e.g., [36].

The standard approach to correcting these effects is the con-
jugate-phase image reconstruction method and its fast variants,
e.g., [5], [37]. That family of methods is relatively fast since it
is noniterative, but it only partially compensates for off-reso-
nance effects. Recently, iterative methods that combine the con-
jugate gradient (CG) algorithm with nonuniform FFT (NUFFT)
operations have been shown to provide considerably improved
image quality relative to the conjugate-phase method [21]. How-
ever, for non-Cartesian k-space trajectories such as spirals, each
CG-NUFFT iteration requires numerous k-space interpolations,
which are also known as “gridding,” e.g., [38]. These operations
are computationally expensive and poorly suited to fast hard-
ware implementations.

This paper proposes a faster iterative approach to field-cor-
rected MR image reconstruction based on the CG algorithm and
certain Toeplitz matrices. This CG-Toeplitz approach requires
k-space interpolations only for the initial iteration; thereafter,
only fast Fourier transforms (FFTs) are required, making the
method more suitable for fast hardware implementations. In the
absence of field inhomogeneity, this method is closely related
to certain algorithms for bandlimited signal interpolation, e.g.,
[39]. The Toeplitz/FFT structure has been investigated previ-
ously for MR image reconstruction in the context of sensitivity
encoded imaging [40], [41]. The primary contribution here is the
extension of such methods to the non-Fourier model (3). Simu-
lation results with a realistic brain field map show that the pro-
posed CG-Toeplitz approach significantly reduces computation
time, yet produces image quality equivalent to the CG-NUFFT
method.

The outline of this paper is as follows. Section II describes
the basic CG approaches for iterative MR image reconstruc-
tion. Section III compares approximation methods for the non-
Fourier exponential in (3). Section IV applies one of
those approximations to derive the CG-Toeplitz method. Sec-
tion V presents simulation results, showing the efficiency of the
proposed approach.

II. REGULARIZED LS RECONSTRUCTION

A. Object Discretization

Equation (3) is a continuous-to-discrete model that is chal-
lenging to manipulate (see [42] and [43]). The problem is sim-
plified by parameterizing the object using a linear combi-
nation of basis functions:

(5)

Therefore, the image reconstruction problem becomes that of
estimating the parameter vector of expansion
coefficients. For simplicity, we focus on rect functions (the voxel
basis), as in [21], in which case, is the number of pixels,

e.g., , and is the th pixel value. We also assume that the
rate map has (approximately) constant values over each voxel;
therefore, we can write

(6)

where

(7)

For cases with large within-voxel gradients of the rate map,
one can use smaller voxels to reduce signal loss, albeit with in-
creased computation [44], [45, p. 140].

Under these assumptions, the integral signal model (3) sim-
plifies to the following discrete-to-discrete sum:1

(8)

using the following Fourier transform:

In matrix-vector form

(9)

(10)

Typically, the matrix is too large to be stored explicitly; there-
fore, we would like to use procedures like FFT operations to
evaluate , rather than explicit matrix-vector multiplication.
Unfortunately, is not a Fourier matrix in general. In any case,
the MR reconstruction problem is to reconstruct from using
(9).

B. Regularized LS Minimization

Since MR measurements have white complex Gaussian noise,
we focus on methods that form an estimate of by minimizing
regularized least-squares cost functions of the form2

(11)

where denotes any differentiable roughness penalty func-
tion, and denotes the measured data defined in (2). The goal is
to find the image that minimizes this cost function, typically
by using gradient-based iterative algorithms. Most of the work
in such algorithms is in computing the gradient of , and we
focus on this computation hereafter.

One way to write the gradient of is

(12)

1In problems where z is estimated by linearization, an extra “t ” term ap-
pears in the summation [35]. One can absorb this intoP , and then, all remaining
formulae are also applicable to such problems.

2An unweighted norm is used in the usual case where the measurements have
equal variances, although the approach generalizes readily to weighted norms.
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where denotes the adjoint (complex conjugate transpose) of
. The computational bottleneck in (12) is calculating the ma-

trix-vector products and , where denotes the residual
. We previously used the above gradient expression and

combined NUFFTs [46] with temporal interpolation based on a
“time-segmentation” approximation [5] so as to compute effi-
ciently and [21]. We refer to (12) as the “NUFFT ap-
proach.”

An alternative, mathematically equivalent gradient expres-
sion is the following:

(13)

where , and . Since is Toeplitz when the
rate map is zero, with some abuse of terminology, we refer to
(13) as the “Toeplitz approach.” The primary bottleneck in using
(13) is multiplication of by for each iteration. If were
Toeplitz, then this could be done efficiently using well-known
FFT methods [47], as has been proposed previously for iterative
MR image reconstruction [40], [41]. Here, is not Toeplitz due
to the rate map , so we will introduce approximations.

The next section first examines the approximations that have
been used to evaluate (12). Section IV then returns to methods
for computing efficiently the gradient expression (13).

III. APPROXIMATIONS FOR EXPONENTIALS

In the expression (10) for the elements of the matrix , the
problematic part is the non-Fourier exponential terms .
Direct implementation of using (8) would require
computations, which is undesirably slow. To reduce computa-
tion, one must make approximations, but these must be suffi-
ciently accurate.

All of the known approximations are special cases of the fol-
lowing general form:

(14)

for various choices for the and terms. Substituting such an
approximation into the discrete signal model (8) and rearranging
yields

(15)

In matrix form

diag diag diag

where denotes the NUFFT operator having elements
, and diag denotes a diagonal matrix

with diagonal elements . We can evaluate (15) efficiently
using NUFFT calls [46] since the bracketed expression
is an NUFFT of the signal . In short, an
approximation of the form (14) reduces computation since it
contains no terms that depend on both and .

Each NUFFT requires , where
is the over-sampled FFT size (typically for -di-
mensional imaging), and is the frequency domain interpo-
lator width (typically ) [46]. Therefore, computing via
(15) reduces the total count from to

for a small constant .
The remainder of the section summarizes and compares

possible choices for the and terms, including efficient
methods for computing those terms.

A. Time Segmentation (TS) Approximations

In the context of MR reconstruction with field inhomogeneity
correction, Noll et al. evaluated the exponentials at a pre-
determined set of time points and then used
a linear interpolation method for times between those points [5],
[37]. We can express this “ time segmentation” approach as an
approximation of the form (14), where

(16)

Each denotes a temporal interpolator, and denotes an
(optional) baseline rate map value.

Originally, shift-invariant temporal interpolators were used
[5]. These were generalized to min–max optimal temporal in-
terpolators in [21], significantly reducing approximation error.
(See Section III-F below.)

If one chooses , then the choice (16) reverts to the clas-
sical time segmentation method. Alternatively, if is uni-
form with value , then (16) becomes exact if we choose
and . A baseline is useful for conventional interpo-
lators but is not needed for the LS time-segmentation method
described in (21) below.

B. Frequency Segmentation

Instead of choosing time samples, an alternative approach is
to choose a set of “frequency” samples , for ,
and interpolate between these values to evaluate the exponential
[37], [48], [49]. We can express this “frequency segmentation”
approach as an approximation of the form (14) with

(17)

where is a nominal time reference (e.g., an echo time, or simply
), and where each denotes a frequency-domain inter-

polator.
In the original version [37], the ’s were chosen to be ei-

ther nearest-neighbor, linear, or Hanning interpolators. (See also
[20].) Later, Man et al. described a least-squares approach [cf.
(19) below] to choosing the interpolators [49].

In the frequency segmentation approach, a practical issue is
choosing the frequency samples . The traditional choice is
equally spaced frequencies that span the bandwidth of the field
map. However, that choice is suboptimal for nonuniform field
map distributions. Instead, it is preferable to concentrate more
frequency components where they are most needed based on the
rate map histogram. We achieve this by using the asymptotic
theory of quantization, which specifies the optimal density of
centroids for high-rate quantization [50].

fessler
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C. Generalized Approximations

Both “time segmentation” and “frequency segmentation”
lead to approximations of the form (14), and both enable the
efficient implementation (15). Thus, from the point of view of
rapid computation, time segmentation and frequency segmen-
tation are equally viable methods. In fact, for a given , any
choices for the and terms lead to the same compute time
for evaluating .

Since computing times are determined only by (and and
), rather than by the form of and , it is natural to con-

sider choosing the and terms to minimize the error in the
approximation (14). Let and

. We would like to examine choices for and that are
“optimal” in some sense, without necessarily being constrained
to the exponential forms used in (16) and (17).

The possibility of using nonexponential bases was explored
in [49] using SVD analysis, with the conclusion that frequency
segmentation is nearly optimal. However, that investigation
used equally weighted, equally spaced frequency samples,
which corresponds implicitly to rate maps having uniform
distributions (a rectangular histogram). In practice, the rate
maps for real brain scans can be quite nonuniform.

The least-squares optimal choices for and minimize the
Frobenius norm

(18)

or a weighted generalization thereof, where is the ma-
trix with elements . This minimization is a “prin-
cipal components” problem that is solved by the SVD of . This
solution can be of theoretical interest as a performance bench-
mark but appears to require too much memory and computation
for routine use.

Rather than optimizing both and jointly, one can first
choose heuristically and then find the matrix that optimizes
(18), or one can first choose and then optimize . These two
alternatives are explored next.

D. Histogram Principal Components

For a given matrix , the LS-optimal choice of is

(19)

We now focus on choosing efficiently. To simplify (18), we
histogram the rate map values into bins with
centers , , possibly spaced unequally, and let
denote the number of values in the th bin. Then, a natural
approximation to (18) is the following WLS criterion:

(20)

Fig. 1. Brain field map !(~r)=2�.

where we define . The solution to
this minimization problem is given by the first left singular
vectors of the matrix . Since

, this singular value dcompositoin (SVD) is much more prac-
tical than (18).

E. LS Frequency-Segmentation Approach

As described in [49], one can choose using the fre-
quency-segmentation choice (17) and then find the corre-
sponding LS-optimal choice of using (19).

F. LS Time-Segmentation Approach

To avoid SVDs altogether, a simpler approach is to choose
the matrix that corresponds to the time segmentation approx-
imation (16) and then optimize by least squares [21]. (When

is thus optimized, the term in (16) is unnecessary.) Again,
to reduce computation, we histogram the rate map values as de-
scribed above [21]. Letting denote
the th row of , we find by the following WLS criterion:

(21)

where was defined before (20). For histogram bins,
the computation of is .

G. Comparisons

We evaluated the above approximations for a wide variety of
simulated and real fieldmaps. We summarize here one repre-
sentative comparison, using the brain fieldmap shown in Fig. 1.
This map (a brain slice near the ear canals) was acquired using
standard delayed-echo field mapping methods on a GE 3T MR
scanner [51]. Fig. 2 shows the histogram of this field map.

For evaluation, we used ’s with 5 s sampling for
, corresponding to a 18.855-ms readout time. This time is

typical for one-shot spiral trajectories on our 3T GE scanner for
64 64 brain scans with a 22-cm field of view (FOV).

We compared three approximations: i) the SVD approach
of Section III-D using the histogram approximation (20) with
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Fig. 2. Histogram of the fieldmap shown in Fig. 1.

Fig. 3. Normalized RMS error for approximations to the exponentials e
for the field map shown in Fig. 1.

bins; ii) the time-segmentation (TS) approach of Sec-
tion III-F with the WLS criterion (21); iii) the frequency-seg-
mentation (FS) method of Section III-E using the LS-optimal
interpolators (19). For FS, we found that uniformly spaced
values worked well only for a simple fieldmap that varied lin-
early over space, which has a uniform field histogram (results
not shown). As an alternative, we applied the Lloyd–Max al-
gorithm from scalar quantizer design to choose the frequency
samples from the fieldmap histograms. This reduced error in all
cases.

Fig. 3 shows the normalized root mean-squared error
(NRMSE), which is defined by [see
(18)], as a function of for the fieldmap shown in Fig. 1, for all
four approximations. Naturally, as the number of approxima-
tion terms increases, the error decreases. In all cases, for any
given , the SVD approach has the minimum error. However,
the TS approximation has only slightly larger error. In fact,
to achieve a NRMSE less than 1%, both the SVD and the TS
methods require for this fieldmap.

From these representative results and others not shown, we
conclude that TS approximations, when optimized per Sec-
tion III-F, provide the most attractive tradeoff between accuracy
and ease of computation. This conclusion is fortuitous since
the Toeplitz approach described in Section IV is most efficient
when implemented with TS approximations.

IV. TOEPLITZ APPROACH

Now, we turn to computing the “Toeplitz approach” (13) ef-
ficiently. Under the model (9), the matrix in (13) has the fol-
lowing elements:

(22)

In the usual case where the voxel centers are spaced equally,
this matrix would be Toeplitz3 in the absence of relaxation ef-
fects and off-resonance effects, i.e., when .

In the presence of such effects, is not Toeplitz due to the
problematic term . Therefore, we must introduce ap-
proximations to develop fast methods for computing the ma-
trix-vector product required in the gradient calculation (13).
Two possible approaches are described next.

A. Approach

One approach is to separate the problematic exponential first
and then make approximations as follows:

i.e., to invoke approximations of the form (14) twice. Substi-
tuting into (22) and rearranging leads to the following:

(23)

where diag , and

Each matrix is Toeplitz, and therefore, we can multiply this
approximation to by a vector using pairs of FFTs [47].
An advantage of this approach is that one can use the and
matrices corresponding to any exponential approximation (14).
However, a significant disadvantage is that it requires
computation.

B. Approach

To reduce computation, we would like to use an approxima-
tion for the problematic exponential term that will allow us to

3For simplicity, we say “Toeplitz” rather than “block Toeplitz with Toeplitz
blocks” [47].
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“separate” the term in (22) after making the approxima-
tion. Of the various approximation methods described in Sec-
tion III, only the time segmentation approach appears to have the
desired property. (Fortunately, the time segmentation approach
is also sufficiently accurate, as shown in Section III-G.) Substi-
tuting the approximation (16) (with ) into (22) yields the
following approximation to the elements of :

(24)

where the element of each matrix is defined by

(25)

In matrix form

(26)

where diag . Each matrix is Toeplitz, and
therefore, one can multiply by a vector efficiently using a
pair of FFTs [47]. These FFTs use the first row of , which we
precompute prior to iterating by a pair of NUFFT calls. Each
matrix is diagonal; therefore, multiplying with it is trivial. Thus,
to compute (approximately) requires pairs of FFTs, for an
operation count of . In contrast, the NUFFT ap-
proach that uses the gradient expression in (12) with an approx-
imation like (15) requires pairs of NUFFTs, which is more
computation due to interpolations [46].

A subtle but key issue in using (24) is choosing the interpo-
lators . If the rate map contains frequency offsets in the
range to , then the term will contain fre-
quency offsets in the range to . In
other words, its “bandwidth” is twice as wide as the bandwidth
of . Therefore, we have found that it can be necessary to
use larger values of for the Toeplitz approximation (24) than
for the NUFFT approximation (15). Nevertheless, by avoiding
discrete Fourier transform (DFT) interpolations, the Toeplitz ap-
proach is still faster than the NUFFT approach.

For (25) to be accurate, we would like to choose to pro-
vide an LS approximation to terms of the form .
For a fieldmap with a given histogram , the histogram of

is given by the auto-correlation function of . There-
fore, to design for the Toeplitz approach, we first find the
fieldmap histogram, then compute the auto-correlation function
of that histogram, and then apply the WLS criterion (21) using
that auto-correlated histogram. We found that this approach pro-
vided much improved accuracy relative to using (21) with the
original histogram. Furthermore, because “auto-correlated” his-
tograms are symmetric about zero, the resulting matrix is real
valued, saving computation in precomputing the Toeplitz ker-
nels in (25).

Fig. 4. Block diagram of MR image reconstruction data flow.

We summarize all of the required steps as follows. Fig. 4 il-
lustrates the data flow.4

CG-Toeplitz Algorithm
• Determine the relaxation map and/or the field map to form

the rate map in (4).
• Compute the histogram of that rate map and then the auto-

correlation function of that histogram.
• Using that auto-correlated histogram, use (21) and (16) to

compute the interpolators and the coefficients using
the LS time-segmentation method of Section III-F.

• Precompute using the combination of temporal in-
terpolation and NUFFT methods described in [21] and [46].
Since this need only be done once, rather than each iteration,
it can be done with a high-accuracy approximation.

• Precompute the first row of for using (25),
in preparation for using a oversampled FFT to perform
the operation of matrix-vector multiplication by [47].
This requires pairs of NUFFT calls.

• Using (26) to compute approximately for the gra-
dient expression (13), apply a gradient-based optimization
method such as the CG algorithm (e.g., [21]) to find
iteratively.

V. SIMULATION

We compared four methods for field-corrected MR image re-
construction: i) the conjugate-phase reconstruction method [5]
using Voronoi-based density compensation factors [52] and the
LS-optimal time-segmentation approximation described in Sec-
tion III-F, ii) the CG-NUFFT method based on the gradient ex-
pression (12), using the time-segmentation approximation de-
scribed in Section III-F [21], iii) the CG–Toeplitz method based
on the gradient expression (13) using the approximation
described in Section IV, and iv) for completeness, the conjugate-
phase method without field correction. For the CG methods, we
used quadratic regularization with a small regularization param-
eter, chosen such that the FWHM of the PSF was about 1.36
pixels. For simplicity, we initialized the CG algorithms with

.
To evaluate the methods quantitatively, we performed simu-

lations using the brain fieldmap shown in Fig. 1, and the syn-
thetic image shown in Fig. 5. We evaluated the reconstruction
methods using a spiral trajectory containing 3770 points with
a sampling time of 5 s so that the data acquisition time was

4Software available on web site http://www.eecs.umich.edu/�fessler.
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Fig. 5. True imagexxx used in simulations. Only pixels within the outer elliptical
region were reconstructed.

Fig. 6. NRMSE of x̂xx versus iteration for the two CG construction methods for
the spiral trajectory.

18.855 ms. This spiral trajectory is used routinely on our GE 3T
MR system. To generate the (noiseless) simulated data , we
used the exact system matrix (10).

For all methods, we estimated only the 2936 pixels within the
elliptical region of interest shown in Fig. 5. For reconstruction,
we used NUFFTs with oversampling and , which we
have found previously to be sufficiently accurate.

Fig. 6 shows the NRMS error as a function of iteration, which
is defined as for the values of
listed. Larger values of did not reduce the error further. Since
there was no noise in the simulated k-space data, the lower limit
on NRMS error is a function of the (modest) regularization used
and the inherent NUFFT approximations. For these values of
(or larger), the CG algorithm essentially converged by 15 itera-
tions.

Fig. 7 shows the NRMS error as a function of . To achieve
the same accuracy, the CG-Toeplitz approach requires to be
slightly larger than for CG-NUFFT. The RMS error of the CP

Fig. 7. NRMSE of x̂xx versus approximation orderL for the three field-corrected
reconstruction methods for the spiral trajectory.

method changes relatively little for , apparently because
that error is dominated by imperfect density compensation for
the spiral trajectory. We separately examined a Cartesian trajec-
tory (results not shown), where density compensation is moot,
and in that case, the NRMS error decreased monotonically in
until reaching a minimum value of 14% at .

Fig. 8 shows the reconstructed images. Based on the results in
Fig. 7, we used for the conjugate phase and CG-NUFFT
approaches and for the CG-Toeplitz approach.

Table I compares the CPU time of the various reconstruction
methods (using MATLAB’s on a Dell 650 n with 3.06
GHz Xeon CPU). For the CG methods, the times are for 15
iterations, which is adequate based on Fig. 6. The total times
shown in the table include the time required to “precompute”

, , etc. The Toeplitz approach shows significant accelera-
tion. In MATLAB, for the same , the Toeplitz approach runs sev-
eral times faster per iteration than the NUFFT approach because
it avoids the NUFFT interpolations. The Toeplitz approach re-
quires a slightly larger value for and requires precomputing
the kernels of the terms, but despite this “overhead,” the
overall compute time is still reduced significantly.

To investigate whether the approximations would in-
crease sensitivity to noise, we added several different levels
of pseudo-random white complex Gaussian noise to and
repeated the reconstructions. Table I shows that the noise
properties of the CG-NUFFT and CG-Toeplitz approach are
indistinguishable because the chosen values ensure that
approximation error is negligible relative to estimation error.

VI. SUMMARY

This paper has described a new CG-Toeplitz method for field-
corrected MR image reconstruction using the approximations
(26). Simulation results show that this proposed method is as
accurate as the previously proposed CG-NUFFT method [21]
but is considerably faster. The CG-Toeplitz approach is also
better suited to fast hardware implementation since only FFTs
are required during the iterations, eliminating the frequency do-
main interpolations required by the CG-NUFFT approach. We
believe that the CG-Toeplitz approach is the method of choice
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Fig. 8. Reconstructed images for the spiral trajectory.

TABLE I
CPU TIMES (IN SECONDS), INCLUDING PRECOMPUTATION TIMES AND NRMS ERROR (%) FOR THREE FIELD-CORRECTED MR IMAGE RECONSTRUCTION

METHODS. THE PROPOSED CG-TOEPLITZ APPROACH IS FASTER THAN CG-NUFFT YET EQUALLY ACCURATE

for iterative field-corrected MR image reconstruction. The im-
proved image quality in regions with severe field inhomogeneity
may enable detection of brain activation, even in regions near
air/tissue interfaces.

An alternative CG approach has recently been proposed by
Barnet et al. [53]. That approach involves expressions of the
form , which is never Toeplitz, even when the rate map is
zero; therefore, it cannot benefit from the accelerations proposed
here. Furthermore, it is limited to the special case of quadratic
regularization with an invertible Hessian, whereas the gradient-

based approach that uses (12) or (13) can accommodate even
nonquadratic regularization methods, e.g., [54].

There are several opportunities to extend this work.

• When , the matrix in (22) is Toeplitz, and
good circulant preconditioners are available [47]. When

, then is approximately the “weighted sum”
of Toeplitz matrices in (26). An open question for future
work is how to precondition this sum effectively; pre-
conditioners have been developed for other shift-variant
problems [47], [55].
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• The model (6) assumes that the rate map is constant over
each voxel. To compensate for within-voxel field gradi-
ents, one can use smaller voxels [44]. This increases com-
putation; therefore, an interesting challenge is to try to
account for field gradients with less computation.

• For echo-planar imaging (EPI), the primary blur is in the
readout direction. This affects the properties of the ma-
trices, and it may be possible to further reduce computa-
tion.

• For both the NUFFT and Toeplitz methods investigated
here, we used FFTs with oversampling in each dimen-
sion. In the absence of field inhomogeneity, NUFFT-type
methods may tolerate smaller oversampling factors [41].
Whether the Toeplitz approach could also tolerate re-
duced oversampling requires further investigation, partic-
ularly in the presence of field inhomogeneity.

• For the methods described here, we separated the prob-
lems of designing the “temporal” interpolators and
and of designing the interpolators that are used in the
frequency domain for the NUFFT operation. Whether
one could design both interpolators simultaneously to im-
prove accuracy (or reduce computation) is an interesting
challenge.
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