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Abstract— In some types of magnetic resonance (MR) imaging, For MR scans with long readout times, there afé
particularly functional brain scans, the conventiona_l F_ourie_r resonance effects, caused by magnetic field inhomogeneity
model for the measurements is inaccurate. Magnetic field in- (5in field imperfections and magnetic susceptibility aari
homogeneities, caused by imperfect main fields and by magnetic . . .
susceptibility variations, induce distortions in images that are t|ons), and/orrelax_atlon effects that depart from the simple
reconstructed by conventional Fourier methods. These artifas  Fourier model. Failure to compensate for such effects léads
hamper the use of functional MR imaging (fMRI) in brain geometric distortions in echo-planar imaging, and blgrand
regions near air/tissue interfaces. Recently, iterative methods grtifacts when imaging with non-Cartesian trajectoridsede
that combine the conjugate gradient (CG) algorithm with non- - e radations can be severe in brain scans based on the BOLD

uniform FFT (NUFFT) operations have been shown to provide - . . .
considerably improved image quality relative to the conjugate- effect [2], hampering the use of fMRI in brain regions near

phase method. However, for non-Cartesian k-space trajectées, air/tissue interfaces. Numerous solutions have been pempo
each CG-NUFFT iteration requires numerous k-space interpola- based both on data acquisition strategies and reconstnucti
tions, operations that are computationally expensive and poorly methods [3]-[22].

suited to fast hardware implementations. This paper proposes a | the presence of such non-Fourier effects, a more realisti
faster iterative approach to field-corrected MR image reconstuc- . S
model for MR measurements is the following:

tion based on the CG algorithm and certain Toeplitz matrices.
This CG-Toeplitz approach requires k-space interpolations only . Lo
for the initial iteration; thereafter only FFTs are required. Ely:] = /f(F) e” ANt gm0 2T 7, (3)
Simulation results show that the proposed CG-Toeplitz approach

produces equivalent image quality as the CG-NUFFT method where ¢; denotes the time of théth sample. The complex
with significantly reduced computation time. quantity z(7) can include both relaxation and off-resonance

Index Terms—fMRI imaging, spiral trajectory, magnetic sus- effects as follows:
ceptibility, non-Cartesian sampling
2(7) = a(F) +rw(7F) . 4)

|. INTRODUCTION The real functiona(7) corresponds to the relaxation term

N magnetic resonance (MR) imaging, the standard modggg" an 1tj map) at spatial position, and the real fgngtion
for the measurements = (y1, ..., yar) is wf‘) corresptlnds to off-resongnce effe.c&s‘;( sqsceptlblllty).
Since botha(7) andw(7) have inverse time units, we refer to
Elyi] = /f(F) e 2T g7 i=1,...,M, (1) z(7) as therate map hereafter. For simplicity here, we address
the problem where the rate magr) is known,i.e., where we
where f(7) denotes the unknown object magnetizatioh, '€ given relaxation maps(r) and field maps.(7’) and the
denotes 2D or 3D spatial coordinatesdenotes the (possibly 90@l is to reconstruct the objeg¢tfrom the measurements,
nonuniform) frequency-space sample locations associdgited €9 [21]. For f|?lq-corrected MR recopstrluctlon, usually one
the specific MR pulse sequence, affel denotes expectation, 3SSUMES that(r) is zero. F_urther ap_pllca_nons of the g_eneral
MR measurements contain additive white complex Gaussi@RProach described here include situations where eitter th

noise [1, Ch. 15]: field map w(7) is unknown and also to be estimateslgy.,
[23]-[25], or the relaxation map(7) is also to be estimated,
yi = Ely;] +e, i=1,..., M. (2) eg., [26], [27] or both,eg., [28]-[35]. We focus on the case

of a single receive coil, although the methods extend rgadil

The goal is to reconstrucgt() from y. . g ; . .
. : to,parallel imaging with multiple coilse.g., [36].
The usual Fourier model (1) is reasonable for some types of ; :
. .~ The standard approach to correcting these effects is the
magnetic resonance (MR) scans, and many MR reconstruction . . . .
conjugate-phase image reconstruction method and its fast
methods are based on that model.

variantse.g., [5], [37]. That family of methods is relatively fast
This work was supported in part by NIH grant NIDA RO1 DA15410.  since it is non-iterative, but it only partially compensafer



off-resonance effects. Recently, iterative methods thatline For cases with large within-voxel gradients of the rate map,
the conjugate gradient (CG) algorithm with non-uniform FFBne can use smaller voxels to reduce signal loss, albeit with
(NUFFT) operations have been shown to provide consideraticreased computation [44] [45, p. 140].

improved image quality relative to the conjugate-phasénpet  Under these assumptions, the integral signal model (3)
[21]. However, for non-Cartesian k-space trajectorieshsag simplifies to the following discrete-to-discrete sim

spirals, each CG-NUFFT iteration requires numerous k&pac N

interpqlations, also known as “griddingé.g., [38]. These_ i(x) = E[y;] = P, ij ezt g 12mTTy 8)
operations are computationally expensive and poorly guite =

to fast hardware implementations.

This paper proposes a faster iterative approach to fie
corrected MR image reconstruction based on the CG algorithm
and certain Toeplitz matrices. This CG-Toeplitz approach
requires k-space interpolations only for the initial ité8; |, nhatrix-vector form:
thereafter only FFTs are required, making the method more
suitable for fast hardware implementations. In the absefice y(x) = Az, A ={ai;}, 9)
field inhomogeneity, this method is closely related to derta 2T
algorithms for band-limited signal interpolatioe,g., [39]. © T (10)
The Toeplitz/FFT structure has been investigated prelfousiypically the matrix A is too large to be stored explicitly,
for MR image reconstruction in the context of sensitivitso we would like to use procedures like FFT operations to
encoded imaging [40], [41]. The primary contribution herevaluateAx, rather than explicit matrix-vector multiplication.
is the extension of such methods to the non-Fourier modghfortunately, A is not a Fourier matrix in general. In any
(3). Simulation results with a realistic brain field map showase, the MR reconstruction problem is to reconstatiétom
that the proposed CG-Toeplitz approach significantly reducy using (9).
computation time yet produces image quality equivalenhé&o t
CG-NUFFT method. . S

The outline of this paper is as follow§ll describes the B. I?egulanzed LS minimization ] ]
basic CG approaches for iterative MR image reconstruction.SiNc€ MR measurements have white complex gaussian
§1ll compares approximation methods for the non-FouridlPiS€; we focus on methods that form an estimatef =
exponentiale= *M % in (3). §IV applies one of those ap- by rr12|n|m|2|ng regularized least-squares cost functionshef
proximations to derive the CG-Toeplitz methdp/ presents fOrm 1 )
simulation results showing the efficiency of the proposed V() = 3 ly —y(@)||” + R(z), (11)
approach.

|ltlls_ing the following Fourier transform:

P2 P(i) = / p(F) e 27T 4.

aj = Pie b

where R(x) denotes any differentiable roughness penalty
function andy denotes the measured data defined in (2). The
Il. REGULARIZED LS RECONSTRUCTION goal is to find the image: that minimizes this cost function,

A. Object discretization typically by using gradi_ent-ba_sec_i iterative glgorithms)sh‘_/lof

the work in such algorithms is in computing the gradient of

Equation (3) is a continuous-to-discrete model that i, and we focus on this computation hereafter.

challenging to manipulate (see [42], [43]). The problem is One way to write the gradient oF is:
simplified by parameterizing the obje¢t) using a linear
combination of N basis functions: Vi¥(z) = —A(y — Az) + V R(x), (12)

N where A denotes the adjoint (complex conjugate transpose)
FE) = ap(F—77). (5) of A. The computational bottleneck in (12) is calculating
j=1 the matrix-vector productsAxz and A'r, where r denotes
gng residualy — Axz. We previously used the above gradient
expression and combined NUFFTs [46] with temporal inter-
coefficients. For simplicity, we focus on rect functionse(thpOI"’ltlon based on a tlme-sggmentatlon e}pprOX|mat|orsE5]
. ; : . . as to be able to compute efficientyx and A'r [21]. We refer
voxel basis), as in [21], in which cas¥ is the number of »
X 9 : s to (12) as the NUFFT approach.
pixels,eg., 64, andz; is the jth pixel value. We also assume An alternative, mathematically equivalent gradient expre
that the rate map has (approximately) constant values over . . y €q 9 P
A sion is the following:
each voxel, so we can write

VU(x) =Tz - b+ V R(x), (13)

So the image reconstruction problem becomes that of e
mating the parameter vectar = (x1,...,2y) Of expansion

lIn problems wherez; is estimated by linearization, an extra;™ term
appears in the summation [35]. One can absorb this itaand then all
remaining formulae are also applicable to such problems.

2An unweighted norm is used in the usual case where the measueme
a . . ] have equal variances, although the approach generaliadéyréo weighted
zj = a(7;) rw(r;), j=1,...,N. (7) norms.

N
2(F) =Y 2z p(F = 7), (6)
j=1

where



whereT £ A A andb £ Ay. SinceT is Toeplitz when the A. Time segmentation (TS) approximations

rate mapz is zero, with some a},buse of terminology we refer |, the context of MR reconstruction with field inhomogene-
to (13) as the Toeplitz approach.” The primary bottleneck in i correction, Nollet al. evaluated the exponentials %t at

using (13) is multiplication ofI" by x each iteration. IfT" 4 predetermined set of time point{il S = 1,...,L}, and

were Toeplitz, then this could be done efficiently using wellen ysed a linear interpolation method for times between

known FFT methods [47], as has been proposed previouglse points [5], [37]. We can express thistie ssgmentation”
for iterative MR image reconstruction [40], [41]. Her®&, approach as an approximation of the form (14) where
is not Toeplitz due to the rate man so we will introduce

approximations. by 2 by(t)e ™, oy te AN, (16)
The next section first examines the approximations that hals__z

been used to evaluate (1&)V then returns to methods for

computing efficiently the gradient expression (13).

&ch b;(t) denotes a temporal interpolator, andienotes an
(optional) baseline rate map value.

Originally, shift-invariant temporal interpolators wensed
[5]. These were generalized to min-max optimal temporal
interpolators in [21], significantly reducing approxinuati
error. (Segslll-F below.)

In the expression (10) for the elements of the matdix I one c_hoosesz =0, then the choice (16) reverts to_ the
the problematic part is the non-Fourier exponential ternfi@SSical time segmentation method. Alternativelyz(f) is
==t Direct implementation ofdz using (8) would require uniform with valuez, then (15) tjgcomes exact if we c_:hoose
O(MN) computations, which is undesirably slow. To reducé =l andb(t;) = 1. A baselinez is useful for conventional

computation, one must make approximations, but these mU‘g.Frpolators, _bUt IS not needed for the LS time-segmesmati
be sufficiently accurate. method described in (21) below.

All of the known approximations are special cases of the

IIl. APPROXIMATIONS FOR EXPONENTIALS

following general form: B. Frequency segmentation
. Instead of choosing time samples, an alternative approach
o—Ziti szl o j=1...,N (14) is to choose a set of “frequency” samples for [ =
— el i=1,...,M, 1,...,L, and interpolate between these values to evaluate the

exponential [37], [48], [49]. We can express thisefjuency
for various choices for thé; and ¢;; terms. Substituting Segmentation” approach as an approximation of the form (14)
such an approximation into the discrete signal model (8) amdth B
rearranging yields by 2 e @ imh g B ogy(zy) el (17)

L N wheret is a nominal time referencee., an echo time, or
~ P _ o\ a—12T simply ¢ = 0) and where each,(-) denotes a frequency-
Az], ~ P ;bd ; (@je1;) e - 19) domain interpolator.
! In the original version [37], they;'s were chosen to be
In matrix form, either nearest-neighbor, linear, or Hanning interpokat(®ee
also [20].) Later, Maret al. described a least-squares approach
L (cf. (19) below) to choosing the interpolatatg-) [49].
A ~ diag{P;} Z diag{b;i} G'diag{c;;}, In the frequency segmentation approach, a practical issue i
=1 choosing the frequency samplé¢s;}. The traditional choice
. is equally-spaced frequencies that span the band-widtheof t
whereG_t{;eggtgs thall>  NUFFT operator having elementsge map. However, that choice is suboptimal for nonuniform
iy = © *71, and diag{F;} denotes a diagonal matrixg, map distributions. Instead, it is preferable to corns
W't.h diagonal element¢?}. We can evaluate (15) efﬁmently more frequency components where they are most needed based
using L NUFFT calls [46], since the bracketed expressiof, ihe rate map histogram. We achieve this by using the

is an NUFFT of the signalz;ciy, ..., oyew). In Short, an g vatic theory of quantization, which specifies therogti
approximation of the form (14) reduces computation since dtensity of centroids for high-rate quantization [50].

contains no terms that depend on bothnd ;.
Each NUFFT require®) (K log N) + O(J¢M) where K _ o
is the over-sampled FFT size (typicallf = 2¢N for d- C. Generalized approximations

dimensional imaging) and is the frequency domain inter- Both “time segmentation” and “frequency segmentation”
polator width (typically.J = 6) [46]. So computingAx via lead to approximations of the form (14), and both enable
(15) reduces the total count fro@(M N) to O(L(cN log N+ the efficient implementation (15). Thus, from the point of
J4M)) for a small constant. view of rapid computation, time segmentation and frequency

The remainder of the section summarizes and compasEgmentation are equally viable methods. In fact, for argive
possible choices for the; andc;; terms, including efficient L, any choices for theb; and ¢;; terms lead to the same
methods for computing those terms. compute time for evaluatinglx.



Since compute times are determined only by(and N F. LS time-segmentation approach

and M), rather than by the form o, andcj;, it is natural 1o avoid SVDs altogether, a simpler approach is to choose
to consider choosing thé; and c;; terms tominimize the the matrix C that corresponds to the time segmentation
error in the approximation (14). LeB = {b;} € C*** and  gpproximation (16), and then optimizB by least squares

C = {¢;;} € C"*N. We would like to examine choices f@  [21]. (when B is thus optimized, thez term in (16) is
and C' that are “optimal” in some sense, without necessariynnecessary.) Again, to reduce computation we histogram th
being constrained to the exponential forms used in (16) apgte map values as described above [21]. Letthfe) =

(17). (bi(t;),...,br(t;)) denote theith row of B, we find B by
The possibility of using non-exponential bases was explorgne following WLS criterion:
in [49] using SVD analysis, with the conclusion that freqoen 5

. . . . . . K L

segmentation is nearly optimal. However, that investayati B ) . 5
used equally weighted, equally-spaced frequency samples, b(t) —aggegynzhk e _Zble o
which corresponds implicitly tarate mapshaving uniform _k:l =1 _
distributions (a rectangular histogram). In practice, taee Where i, was defined before (20). Fak' <¢ N histogram

(2D

mapsfor real brain scans can be quite nonuniform. bins, the computation oB is O(LK (M + L) + L*M).
The least-squares optimal choices Brand C minimize .
the Frobenius norm G. Comparisons
_ ) We evaluated the above approximations for a wide variety
afgfgln IE = BC|l§ron of simulated and real fieldmaps. We summarize here one
’ 5 representative comparison, using the brain fieldmap shawn i

ity L Fig. 1. This map, a brain slice near the ear canals, was axtjuir
e e Zb“CU using standard delayed-echo field mapping methods on a GE
=1 3T MR scanner [51]. Fig. 2 shows the histogram of this field
or a weighted generalization thereof, whdteis the M x N map.
matrix with elementse;; = e~%% . This minimization is a  For evaluation, we usetl’s with 5 ;s sampling forM =
“principal components” problem that is solved by t8¢D of 3770, corresponding to a 18.855 ms readout time. This time is
E. This solution can be of theoretical interest as a perfoaaantypical for one-shot spiral trajectories on our 3T GE scanne
benchmark, but appears to require too much memory aftdt 64 x 64 brain scans with a 22 cm FOV.
computation for routine use. We compared four approximations: (i) the SVD approach of
Rather than optimizing bottB and C jointly, one can §llI-D using the histogram approximation (20) withh = 40
first chooseB heuristically and then find the matri€' that bins; (i) the time-segmentation (TS) approachgtf-F with
optimizes (18), or one can first chooée and then optimize the WLS criterion (21); (iii) the frequency segmentation \FS
B. These two alternatives are explored next. method of§lll-E using the LS-optimal interpolators (19). For
FS, we found that uniformly spacef] values worked well
only for a simple fieldmap that varied linearly over space,
which has a uniform field histogram (results not shown). As an
For a given matrixB, the LS-optimal choice o€ is alternative, we applied the Lloyd-Max algorithm from scala
guantizer design to choose the frequency samples from the
fieldmap histograms. This reduced error in all cases.

We now focus on choosing efficiently. To simplify (18), we _ Fig- 3 shows the r110rmalized root mean-squared error
histogram the rate map valuds;} into K < N bins with (NRMSE), defined by [|E — BCllron (See (18)), as a
centerszy, k= 1,.... K, possibly spaced unequally, and lefunction of L for the fieldmap shown in Fig. 1, for all four
hy, denote the number of, values in thekth bin. Then a approximations. Naturally, as the number of approximation

natural approximation to (18) is the following WLS criterion terms L increases, the error decreases. In all cases, for any

given L the SVD approach has the minimum error. However,

M N
= argmin Z Zl ) (18)
j=

B.C =i

D. Histogram principal components

C =|B'B]"'B'E. (19)

& _ 1~ 112 the TS approximation has only slightly larger error. In fact
argémnz hi.||éx — B[B'B] " B'é,||" (20) {0 achieve a NRMSE less than 1%, both the SVD and the TS
k=1 methods requird. = 6 for this fieldmap.

where we defing,, = (e~ ... e %!m) The solutionto  From these representative results and others not shown, we
this minimization problem is given by the firgt left singular conclude that TS approximations, when optimized §#rF,

vectors of theM x K matrix [vhié; ... Vhgéx]. Since provide the most attractive tradeoff between accuracy asd e
K < N, this SVD is much more practica| than (18) of Computation. This conclusion is fortuitous since theﬂTﬂiE

approach described iV is most efficient when implemented
) with TS approximations.
E. LS frequency-segmentation approach
As described in [49], one can choaBeusing the frequency- IV. TOEPLITZ APPROACH
segmentation choice (17), and then find the corresponding LSNow we turn to computing the “Toeplitz approach” (13)
optimal choice ofC using (19). efficiently. Under the model (9), the matrik in (13) has the
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for the field map shown in Fig. 1.

following elements:
M

(Al = Z ey
=1

M

Z |Pi|2 e—(z;:-i—zj)t,; e—szﬁi'(Fj—Fk) ) (22)
i=1

In the usual case where the voxel centgrare spaced equally,
this matrix would be Toeplitzin the absence of relaxation
effects and off-resonance effecis., whenz(7) = 0.

In the presence of such effectd; is not Toeplitz due
to the problematic terme—(*:+2/)%, So we must introduce
approximations to develop fast methods for computing the
matrix-vector producl’x required in the gradient calculation
(13). Two possible approaches are described next.

Ty

A. O(L?) approach

One approach is to separate the problematic exponential
first, and then make approximations as follows:

* L
e~ GrtEt = o2t o7 3t <Z bwcwk) Zbilcljv
U'=1 =1
i.e., to invoke approximations of the form (14) twice. Substi-
tuting into (22) and rearranging leads to the following:

L L
T~ Z Z D, T, D, (23)

I'=11=1
where D, = diag{clj} and

Ty = 5 P by 275 G50
=1

Each matrixT} ; is Toeplitz, so we can multiply this approx-

imation to T by a vectorz using L? pairs of FFTs [47]. An

advantage of this approach is that one can useBhand

C matrices corresponding to any exponential approximation

(14). But a significant disadvantage is that it requit&d.?)

computation.

B. O(L) approach

To reduce computation, we would like to use an approxi-
mation for the problematic exponential term that will allow
to “separate” the;} + z; term in (22) after making the approx-
imation. Of the various approximation methods described in
§lll, only the time segmentation approach appears to have the
desired property. (Fortunately the time segmentationaautr
is also sufficiently accurate, as showngiil-G.) Substituting
the approximation (16) (withz = 0) into (22) yields the
following approximation to the elements f;

Z‘P‘ Zble (z5+25) ] —27 ;- (7 —T)
=1 1=1

zktz Tl zjt} , (24)

T

Q

Il
I Mh

SFor simplicity, we say “Toeplitz” rather than “block Toegliwvith
Toeplitz blocks” [47].



where the element of each matffx are defined by e Precompute the first row df; for [ = 1,..., L using (25),

M in preparation for using ax over-sampled FFT to perform
[T))x; = Z |P; | by e 277 (T3 =) (25) the operation of matrix-vector multiplication by; [47].
=1 This requiresL pairs of NUFFT calls.

In matrix form e Using (26) to computel’x approximately for the gradi-

L ent expression (13), apply a gradient-based optimization
T~ DD, (26) method such as the CG algorithreg;, [21]) to find &
1=1 iteratively.
whereD; = diag e—2t L Each matrixT} is Toeplitz, so one Field Map
can multiply T; by a vector efficiently using a pair of FFTS| (Optional)
[47]. These FFTs use the first row @}, which we precompute Design basis | B Compute FFT of
prior to iterating by a pair of NUFFT calls. Ead® MatriX [ gejay Map and coefficients Toeplitz matrix row
is diagonal, so multiplying with it is trivial. Thus, to corae (Optional)
Tx (approximately) requireg pairs of FFTs, for an operation c T
count of O(LN log N). In contrast, the NUFFT approach that
uses the gradient expression in (12) with an approximati@n || MR k-space Y Gradient-based Image
(15) requiresL pairs of NUFFTSs, which is more computation Measured Data Optimization Display

due to interpolations [46].
A subtle but key issue in using (24) is choosing the

interpolatorsb;;. If the rate mape; contains frequency offsetsFig. 4. Block diagram of MR image reconstruction data flow.

in the rangevmin 10 Vmax, then the terme=(zit2)t will

contain frequency offsets in the rang&(¥max — Vmin) tO

Vmax — Vmin. IN Other words, its “bandwidth” is twice as V. SIMULATION

wide as the bandwidth of . So we have found that it \ve compared four methods for field-corrected MR image
can be necessary to use larger valuesLofor the Toeplitz oqqnstryction: (i) the conjugate-phase reconstructiethod
approximation (24) than for the NUFFT approximation (15)[5] using Voronoi-based density compensation factors §2]
Neverthelgss, _by avoiding DFT interpolations, the Toeplit} o LS-optimal time-segmentation approximation desctiloe
approach is still faster than the NUFFT approach. §l1I-F, (i) the CG-NUFFT method based on the gradient
qu (25) to be ac_cura}te, we would like to °h9$&f}° expression (12), using the time-segmentation approxanati
provide a LS approximation to terms of the fokm (=i =) oo ane inellI-E [21], (iil) the CG-Toeplitz method based
For a fleldr_nap_wnh a given hlstograr{'h;?}, the h!stogram on the gradient expression (13) using theL) approximation
of 2k + 2 IS given by the aut(_)-correlanon funct|0_n d'fkj described in§lV, and (iv) for completeness, the conjugate-
So to designB for the Toeplitz approach, we first findn,qe methoanithout field correction. For the CG methods
the fieldmap histogram, then compute the auto-correlatig, \,eq quadratic regularization with a small regulararati

function of that histogram, and then apply the WLS criteriog, o meter, chosen such that the FWHM of the PSF was about
(21) using that_ auto-corre!ated histogram. We fou_nd thist t!"'_1.36 pixels. For simplicity we initialized the CG algoritsm
approach provided much improved accuracy relative to usig, .. — o,

(21) with the original histogram. Furthermore, becausddau 14 eyajuate the methods quantitatively, we performed sim-
correlated” histograms are symmetric about zero, the tiagul ulations using the brain fieldmap shown in Fig. 1, and the

B matrix .is real valu.ed, saving computation in precomputimgg,mhetiC imager shown in Fig. 5. We evaluated the recon-
the Toeplitz kelrnels in (25). , _struction methods using a spiral trajectory containing B77
. We summarize all of the required steps as follows. Fig. ﬁbints with a sampling time of %&s, so the data acquisition
illustrates the data flofv time was 18.855 ms. This spiral trajectory is used routiely

CG-ToepIi.tz Algorithm i i our GE 3T MR system. To generate the (noiseless) simulated
e Determine the relaxation map and/or the field map to forﬂ‘atag we used the exact system matrix (10).

the rate map:(r) in (4). For all methods, we estimated only the 2936 pixels within

. Comput_e the his_togram of th_at rate map, and then the aufg, elliptical region of interest shown in Fig. 5. For recioas-
correlation function of that histogram. tion, we used NUFFTs with 2 over-sampling and/ = 6,

e Using that auto-correlated histogram, use (21) and (16) {ich we have found previously to be sufficiently accurate.
compute the interpolator® and the coefficient€” using Fig. 6 shows the NRMS error as a function of iteration,

the LS time-segm?ntatign mﬁthOd @ﬂ-F ' . Ideﬁned aﬂ‘ii? o wtrue” / ||wtrue|| . 100(707 for the values ofL
e Precomputeb = A'y using the combination of temporalisieq | arger values of. did not reduce the error further.
interpolation and NUFFT methods described in [21], [46knce there was no noise in the simulated k-space data, the
S_lncg this need only *?e don_e once, rather than gach &%&%er limit on NRMS error is a function of the (modest)
tion, it can be done with a high accuracy approx'mat'on'regularization used and the inherent NUFFT approximations
450ftware available on web site For these values of (or larger) the CG algorithm essentially
http: // www. eecs. uni ch. edu/ ~f essl er. converged by 15 iterations.



Fig. 7 shows the NRMS error as a function/afTo achieve
the same accuracy, the CG-Toeplitz approach requirgsbe
slightly larger than for CG-NUFFT. The RMS error of the CP
method changes relatively little fdr > 1, apparently because
that error is dominated by imperfect density compensation
for the spiral trajectory. We separately examined a Catesi
trajectory (results not shown), where density compensétio
moot, and in that case the NRMS error decreased monotoni-
cally in L until reaching a minimum value of 14% &t= 6.

Fig. 8 shows the reconstructed images. Based on the results
in Fig. 7, we usedl. = 6 for the conjugate phase and CG-
NUFFT approaches, and = 8 for the CG-Toeplitz approach. .

Table | compares the CPU time of the various reconstruction
methods (using MTLAB’s cputi ne on a Dell 650n with o
3.06GHz Xeon CPU). For the CG methods, the times are ! *
for 15 iterations, which is adequate based on Fig. 6. T'll?g . True imagex used in simulations. Only pixels within the outer
total times shown in the table include the time requwednpncal region were reconstructed.

“precompute” B, C, etc. The Toeplitz approach shows

O Toeplitz L=6
S|gn|f|cant acceleration. In MrLAB, for the samel the 30t A Toeglitz L=7
Toeplitz approach runs several times faster per iteratiam t x  NUFFT L=5
the NUFFT approach, because it avoids the NUFFT interpc o5} + NUFFT L=6

lations. The Toeplitz approach requires a slightly largaug
for L and requires precomputing the kernels of theterms, |, 5o
but despite this “overhead” the overall compute time id stil £
reduced significantly. DC
To investigate whether the approximations would mcreas
sensitivity to noise, we added several different levels o
pseudo-random white complex gaussian noiseytand re-
peated the reconstructions. Table | shows that the nois 5 5 -
properties of the CG-NUFFT and CG-Toeplitz approach ar ~ °f ' ' ]
indistinguishable, because the chosknvalues ensure that
approximation error is negligible relative to estimatiamoe 0

Iteration
VI. SUMMARY

This paper has described a new CG-Toeplitz method fop- 6. NRMSE ofz versus iteration for the two CG reconstruction methods
field-corrected MR image reconstruction using the appraxmfor the sp'ral rajectory. . .
tions (26). Simulation results show that this proposed oebth N
is as accurate as the previously proposed CG-NUFFT meth¢ 30 W
[21] but is considerably faster. The CG-Toeplitz approact - CpP
is also better suited to fast hardware implementation sinc  25[ ; gg mm "I\'ICL)JeF'I:i-trz
only FFTs are required during the iterations, eliminatihg t D
frequency domain interpolations required by the CG-NUFFTY 20r
approach. We believe the CG-Toeplitz approach is the methc 2
of choice for iterative field-corrected MR image reconstruc Z 15
tion. The improved image quality in regions with severe fielc &
inhomogeneity may enable detection of brain activatiomeve 1o}
in regions near air/tissue interfaces.

An alternative CG approach has recently proposed by Barn st B
et al. [53]. That approach involves expressions of the forn
AA, which is never Toeplitz, even when the rate map is . . . . .
zero, so it cannot benefit from the accelerations propose 2 4 6 8 10
here. Furthermore, it is limited to the special case of qaiicir L
regularization with an invertible Hessian, whereas theligra-
based approach that uses (12) or (13) can accommodate {\g%@cted
non-quadratic regularization methoasy., [54].

There are several opportunities to extend this work.
e Whenz(7) = 0, the matrixT in (22) is Toeplitz, and good

circulant preconditioners are available [47]. Whe¥) #

i)
2]
H

NRMSE of& versus approximation ordef for the three field-
reconstruction methods for the spiral trajectory



Precomputation NRMS % vs SNR
[ Method [ L] BC|]ADy [b=Ay [ T, 15iter || Total Time [ oo [ 50dB | 40dB | 30dB | 20 dB
Conj. Phase| 6 0.4 0.2 0.6 30.7 37.3 46.5 65.3 99.9
CG-NUFFT | 6 0.4 5.0 5.4 5.6 16.7 26.5 43.0 70.4
CG-Toeplitz | 8 0.4 0.2 0.6 1.3 2.5 55 16.7 26.4 42.9 70.4
TABLE |

CPUTIMES (SECONDS, INCLUDING PRECOMPUTATION TIMES AND NRMS ERROR(%) FOR THREE FIELDCORRECTEDMR IMAGE RECONSTRUCTION
METHODS. THE PROPOSEDCG-TOEPLITZ APPROACH IS FASTER THANCG-NUFFTYET EQUALLY ACCURATE.

methods may tolerate smaller over-sampling factors [41].
Whether the Toeplitz approach could also tolerate reduced
over-sampling requires further investigation, particiylan

the presence of field inhomogeneity.

e For the methods described here, we separated the problems
of designing the “temporal” interpolato®® and C' and of
designing the interpolators that are used in the frequency
domain for the NUFFT operation. Whether one could de-
sign both interpolators simultaneously to improve accyrac
(or reduce computation) is an interesting challenge.

Uncorrected Conj. Phase, L=6
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