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Abstract
We compare two different implementations of a 3D SPECT system model for
iterative reconstruction, both of which compensate for non-uniform photon
attenuation and depth-dependent system response. One implementation
performs fast rotation of images represented using a basis of rectangular voxels,
whereas the other represents images using a basis of rotationally symmetric
volume elements. In our simulations the blob-based approach was found to
slightly outperform the rotation-based one in terms of the bias-variance trade-
off in the reconstructed images. Their difference can be significant, however,
in terms of computational load. The rotation-based method is faster for many
typical SPECT reconstruction problems, but the blob-based one can be better-
suited to cases where the reconstruction algorithm needs to process one volume
element at a time.

1. Introduction

Statistical reconstruction is now widely used in computed tomography, since it produces higher
image quality than analytical methods such as filtered back-projection (FBP). However, this
improved quality is achieved at the cost of increased computation time. A key component
of the accuracy-computation trade-off in the iterative algorithms used for statistical image
reconstruction is that typically one projection and one backprojection operation have to be
performed at each iteration of the algorithm. The implementation of these operations requires a
model for the imaging system at hand. In general, more detailed models result in higher image
quality but also in higher computational load, which can become especially cumbersome in
3D problems.
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In this paper we focus on system models for 3D single-photon emission computed
tomography (SPECT), which compensate for non-uniform photon attenuation as well as the
depth-dependent response inherent in SPECT systems. In particular, we consider here rotation-
and blob-based implementations. Several rotation-based models have been found to achieve
superior accuracy when compared to the simple line-integral model in 2D reconstruction
(Di Bella et al 1995). Furthermore, models that represent images in terms of spherically
symmetric blobs have been applied to 3D positron-emission tomography (PET) and have been
found to possess better bias-variance properties than models using cubic voxel representations
(Matej and Lewitt 1996). The blob-based methods are computationally tractable for shift-
variant PET system models when the ‘footprint’ (2D projection) of the 3D blob is pre-
computed and saved. However, it is not clear if the same holds true for SPECT, where the
depth-dependent blur causes these footprints to expand considerably with increasing distance
from the detector. Also, for the purpose of SPECT reconstructions, it is of interest to know
how these blob-based models compare in terms of bias-variance properties and speed to the
rotation-based models.

We have implemented both types of system models for fully 3D SPECT. We present
an overview of the two implementations in section 2 and analyse them in terms of
computational load and memory usage in sections 3 and 4 respectively. We present results
from reconstructions of simulated phantom data in section 5 and further discuss those results
in section 6.

2. System models

For both types of system models we have implemented the back-projector as the exact adjoint
of the respective projector. Using a simpler back-projector can speed up reconstruction but it
does not preserve the convergence properties of the iterative reconstruction algorithm and it
introduces artefacts that may accumulate with every iteration (Zeng and Gullberg 2000). To
ensure a comparison untarnished of such artefacts, we utilized adjoint pairs.

Both types of system models compensate for non-uniform attenuation. For the sake of
speed, the attenuation factors are pre-computed for every volume element (cubic voxel or
blob) at every projection angle. Utilizing the central ray approximation, an attenuation factor
is computed by summing over the attenuation map along the perpendicular line from the centre
of the volume element to the detector.

2.1. Rotation-based projector

The rotation-based projector we use follows the processing steps listed in Zeng and Gullberg
(1992) and performs the rotation step using the fast and accurate three-pass separable rotation
method described in Unser et al (1995). The three-pass method decomposes the rotation of a
2D image into three sets of 1D interpolations. These interpolations are equivalent to applying
appropriate non-integer shifts first to each row, then to each column, and then again to each
row of the image.

Projectors utilizing the three-pass method with linear and cubic interpolation have been
compared in Di Bella et al (1995) and the latter outperformed the line-integral projector in
projection accuracy. However, cubic interpolation introduces negative values in the rotated
image, which is unnatural in emission tomography, where image values represent photon
counts. Thus, we use linear interpolation hereafter.

The rotation-based 3D SPECT projector implemented for this comparison compensates
for depth-dependent detector response. For every projection angle, it first rotates the input
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Figure 1. If the FWHM of the system blur does not increase very fast with distance (relatively to
the size of the blob), assume that it is approximately constant throughout the blob.

emission volume around its z-axis by applying the three-pass method to every slice of
the volume separately. It then applies to every voxel the appropriate attenuation factor.
Subsequently, every image plane that corresponds to a different distance from the detector face
is blurred by a 2D convolution kernel that models the detector response at the corresponding
distance. Finally, the voxels are summed along the direction that is perpendicular to the
detector to produce a 2D projection of the emission volume.

2.2. Blob-based projector

Rotationally symmetric volume elements can provide a basis that is more natural than cubic
voxels for representing smooth radioactivity distributions. Moreover, their symmetry makes
them appealing for some image reconstruction applications since the line integrals through
them are independent of projection angle and only depend on the distance of the line of
integration from the centre of the element (Lewitt 1990, 1992).

Desired properties of the rotationally symmetric basis functions are effective band-
limitedness (to match the band-limitedness of tomographic data) and finite spatial support
(to facilitate computation). By these criteria, a choice that is nearly optimal yet easy to
compute is the Kaiser–Bessel blob:

bR,α,m(r) =
{

[
√

1 − (r/R)2]m Im[α
√

1 − (r/R)2]/Im(α) 0 � r � R

0 otherwise
(1)

where Im denotes the modified Bessel function of the first kind of order m,R controls the
blob support, α controls the blob taper and m controls the number of continuous derivatives at
r = R.

We have implemented a 3D SPECT projector utilizing Kaiser–Bessel blobs, similar to
the one described for PET in Matej and Lewitt (1996). The additional step in our projector
is that the blobs at each different distance from the detector now need to be blurred by the
corresponding point-spread function (PSF) of the SPECT detector.

Of course, different points within a 3D blob lie at different distances from the detector
and therefore correspond to different PSFs. However, when the full width at half-maximum
(FWHM) of the depth-dependent system blur changes slowly with distance relatively to the
blob size, as illustrated in figure 1, we can assume that the blur FWHM is approximately
the same throughout a blob as it is at the blob’s centre. This approximation simplifies the
implementation significantly, since it makes projecting the blurred blob equivalent to blurring
the projections of the blob. Thus, we can pre-compute and save a set of finely sampled 2D
footprints of the blob, blurred by the detector PSF at each of a set of distances from the
detector.
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The spacing of the stored samples for a single footprint, as well as the number of
different distances for which footprints are stored, depends on the required accuracy of the
implementation. Clearly, although the continuous projections of the rotationally symmetric
volume elements are angle-independent, the discrete projections are not necessarily so. In
general, the same footprint is sampled at slightly different points (by a small shift) at different
angles. However, we do not have to store a different footprint for each angle, as we may
have done if applying this method to, say, cubic voxels. Storing a finely sampled version of
the footprint and picking out samples based on the nearest-neighbour criterion will yield
adequate accuracy for SPECT. A similar nearest-neighbour approach is taken with respect to
distance from the detector when choosing which of the stored footprints to use. In some sense,
this approximation is used implicitly by the rotation-based model as well, since after rotation
by a non-trivial angle, some edges of the cubic voxel will be at different distances from the
detector than others.

We also model the attenuation as being constant throughout a single blob, as we did
for cubic voxels in the rotation-based implementation. We arrange the blobs over a uniform
3D Cartesian grid for simplicity, although more efficient blob arrangements are also possible
(Matej and Lewitt 1995).

Taking all of the above into account, a projection operation with the blob-based model
is performed as follows. At each projection angle and for each blob in the volume, we
select the footprint that corresponds to the distance of the blob from the detector in a nearest-
neighbour sense. For every sample on this footprint that corresponds to a projection bin in a
nearest-neighbour sense, we multiply the sample by the appropriate attenuation factor and the
coefficient cj of the blob and add the product onto the projection plane.

In general, we assume that the object x(�r) can be represented as a linear combination of
shifted copies of some volume element b(�r):

x(�r) =
∑

j

cj b(�r − �rj )

and we attempt to reconstruct the coefficients cj from noisy projections of the object. The
rotation-based model assumes b(�r) to be a rect function, whereas the blob-based model
assumes b(�r) to have the form (1), where r = ||�r||. Therefore, an extra step of convolving the
reconstructed coefficients with the blob function is needed when using the blob-based model,
if the images are to be displayed or compared to images represented in voxel space.

3. Computation

We provide here an assessment of the number of floating-point operations (additions and
multiplications) required by each implementation to compute one projection of an nx ×ny ×nz

image.
The operations performed by the rotation-based projector are as follows.

• Rotation. Let ni be the length of the 1D interpolation filter used by the separable three-
pass rotation method. To rotate one nx × ny slice of the input volume, each of the three
passes convolves the interpolation filter with all rows or all columns of the slice. This
amounts to a total of 3π

4 (2ni −1)nxnynz operations to rotate all slices of the input volume.
The π

4 factor stems from the fact that the rotation algorithm is not applied to all nxny

voxels in a slice but only to those that lie within the circle inscribed in the slice. More
computation is required when the interpolation filter must be preceded by an IIR filter,
e.g. for cubic interpolation (Unser et al 1993). For linear interpolation, where ni = 2 and
no IIR pre-processing is needed, the rotation requires 9π

4 nxnynz ≈ 7.1nxnynz operations.
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• Attenuation. Applying the pre-computed attenuation factors to all voxels of the rotated
volume requires nxnynz multiplications.

• Blurring. In general, convolving all ny planes in the volume with 2D PSFs of average size
nh × nh, requires

(
2n2

h − 1
)
nxnynz operations. However, this step can be significantly

speeded up for certain convenient PSF shapes. If, for example, the system PSFs are
separable, each 2D convolution is reduced to two 1D convolutions, in which case this step
can be implemented with as few as 2(2nh − 1)nxnynz operations.

• Projection. Summing the ny blurred planes of size nx × nz requires nxnynz additions.

Therefore, with linear interpolation in the rotation step, the rotation-based projector
performs a total of

(
2n2

h + 8.1
)
nxnynz operations in the general case of non-separable PSFs or

(4nh + 7.1)nxnynz operations in the case of separable PSFs.
On the other hand, the blob-based projector has to perform the following operations for

each blob in the object support.

• Attenuation. 1 multiplication of the blob coefficient by a pre-computed attenuation factor.
• Projection. n2

bb multiplications to scale the blob footprint by the blob coefficient and n2
bb

additions to add it onto the projection view, where nbb × nbb is the average size of the
blob footprint after it has been blurred by the appropriate PSF.

On paper, the 2n2
bb operations needed for the projection step above could be reduced to

π
2 n2

bb, if we only projected the footprint samples that lay within the circular support of the
footprint, rather than the entire nbb × nbb square. However, we do not consider this reduction
further, as it is not trivial to implement. In the rotation-based projector, the π

4 improvement
corresponds to a unique circle, the one inscribed in the image matrix, and it is simple to
pre-compute its limits and reuse them throughout the computations. In the blob-based case,
the π

4 factor would correspond to a different circle for each blob, whose limits change with
blob position from angle to angle. Pre-computing and reusing those limits would require
a large amount of memory and the overhead due to memory access would undermine the
computational savings.

Therefore the operations add up to 2n2
bb + 1 per blob. Assuming that the blob grid is the

same as the voxel grid used by the rotation-based projector above, the blob-based projector
performs a total of

(
2n2

bb + 1
)
nxnynz operations for the entire projection view. If nb is the

width of the basic blob before blurring, then nbb = nb + nh − 1. For any blob radius between
1 and 2 times the grid spacing, nb = 3 and therefore the blob-based projector performs a total
of

(
2n2

h + 8nh + 9
)
nxnynz operations.

Based on the calculations above, the rotation-based implementation would always be faster
than the blob-based implementation with a regular cubic grid of the same size. However, when
the blobs are arranged on a body-centred cubic (BCC) grid instead of the Cartesian grid, the
operations required by the blob-based method can be reduced by a factor of

√
2 without loss

in image quality, as described in Matej and Lewitt (1995).
If the system PSFs are separable (e.g. Gaussian), the rotation-based model with separable

1D convolutions would be faster than the blob-based model even with the BCC arrangement.
In the general case of non-separable PSFs, the blob-based model with the BCC grid will be
faster only when 2n2

h + 8nh + 9 <
√

2
(
2n2

h + 8.1
)
, which is true for nh � 10 pixels. Whether

this is a realistic PSF size will depend on the properties of the imaging system, the radius
of the detector orbit and the size of the reconstruction. For example, in the case of the two
SPECT reconstruction problems tackled in the simulations of section 5 (technetium and iodine
studies), where the diameters of the system PSF at the centre of the field of view were about
31 and 52 mm respectively, this would mean that the blobs would be faster for a pixel size
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Table 1. Projection speed (s) on a 3 GHz xeon processor.

nx × ny × nz nθ Blob Blob BCC Rot 2D Rot 1D

64 × 64 × 25 60 3.3 2.3 3.2 1.6
128 × 128 × 50 120 113. 80. 69. 31.

Column 3: CPU times for blob-based model with R = 2 times the grid spacing, α = 10.4,
m = 2, and the same Cartesian grid as the rotation-based model. Column 4: CPU times from
column 3 divided by

√
2 (a prediction of CPU times for blobs with the BCC grid). Column 5:

CPU times for rotation-based model with 2D FFTs. Column 6: CPU times for rotation-based
model with separable 1D convolutions.

smaller than 3.1 and 5.2 mm respectively, which would be true for matrix sizes of 128 × 128
or larger.

Furthermore, because the blob-based implementation processes the blobs in the image
grid sequentially, it can very naturally take advantage of the object support, which is readily
available in SPECT from the attenuation map. If λ � 1 is the ratio of blobs inside the
object support, the projector or back-projector only needs to process λnxnynz blobs (or
approximately 1√

2
λnxnynz blobs when using the BCC grid). The rotation-based projector

could also be modified to take advantage of the object support to some extent. However, it
would be less natural than it would be in the blob case and it would significantly increase the
complexity of the rotation-based implementation and its underlying data structure.

4. Memory usage

Both system models pre-compute and store attenuation factors corresponding to all volume
elements at all angles, to reuse them over iterations. This amounts to an array of type float
and size nθnxnynz, where nθ is the number of projection views, and it is the dominant term in
the total memory usage of both models. For a total of 128 × 128 × 50 volume elements and
120 projection views, this requires roughly 400 Mbytes of memory, which is reasonable for
modern workstations.

5. Simulation results

The CPU time required to calculate a full projection set with each system model on a 3 GHz
xeon processor with 2 GB RAM, gcc and Linux is shown in table 1. Times are reported for a
system with a pixel size of 4 mm and 2 mm in the 64 × 64 × 25 and 128 × 128 × 50 cases
respectively, and PSF widths identical to those described for the simulations below. We assume
the object support to be the circle that is inscribed in the nx × ny image matrix, therefore the
blob-based model benefits by only processing π

4 nxnynz grid positions. Since our blob-based
implementation uses a Cartesian grid, we also provide a prediction of the speed that could
be attained with the BCC grid by dividing the practical CPU times by a factor of

√
2. CPU

times for the rotation-based model are reported both for separable PSFs (implemented with
1D separable convolutions as in the analysis above) and for non-separable PSFs (implemented
here with 2D FFTs). For the 64 × 64 × 25 matrix the computational savings afforded by the
BCC grid and the circular object support make the blob-based model faster than the rotation-
based model with 2D FFTs, whereas this is not the case for the 128 × 128 × 50 matrix.
The blob-based model with a Cartesian grid is consistently the slowest and the rotation-based
model with separable 1D convolution is consistently the fastest.
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Figure 2. Anthropomorphic chest phantom used in the simulations (downsampled to 64×64×23).

To evaluate the two models in terms of the bias-variance trade-off, we reconstructed
64 × 64 × 23 images of an anthropomorphic chest phantom (shown in figure 2) from
projections taken at 60 uniformly spaced angles over a [0, 2π) range. The heart, liver,
lungs, spine and surrounding tissue in the phantom have uniform radioactivity densities with
ratio 4:3:1:0:2 and uniform attenuation coefficients equal to 0.15, 0.15, 0.027, 0.191 and
0.15 cm−1 respectively, values appropriate for the 140 keV photons emitted by Tc-99m.

The pixel size of the system was set to 4 mm. The depth-dependent PSFs were assumed
to be 2D Gaussians with a FWHM increasing from 9.4 at the plane of the emission volume
that is nearest to the detector to 22.6 mm at the one that is furthest. The same set of PSFs was
used at all projection angles, as in a circular orbit.

The noiseless 256 × 256 projections were generated from a high-resolution version of
the phantom image using the rotation-based projector (therefore the central ray approximation
used by both system models to apply attenuation is here consistent with the data) and were then
downsampled to 64 × 64 by averaging1. We normalized this set of downsampled projections
to a total of 5 × 106 counts. To crudely simulate scatter, we uniformly added to the projection
set a number of scattered counts equal to 10% of the total true counts. We used this new
projection set to generate Poisson-distributed measurements.

We reconstructed images from 200 realizations of the noisy Poisson data using each system
model and the ordered subset expectation maximization (OSEM) algorithm with six subsets.
The system models that we used in the OSEM reconstructions assumed the same PSFs as the
system that we used to generate the noiseless projections. Although it would be of interest

1 Since the 2D projections are downsampled along two dimensions, if the reconstructed images are to be compared
with the true 3D object, a scaling factor equal to the downsampling ratio must be applied. The bias in the reconstructed
images as they appear in Yendiki and Fessler (2003) is due to lack of this scaling.
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Figure 3. Bias-variance trade-off per OSEM iteration and per post-smoothing FWHM.

to compare the performance of the system models under PSF mismatch, this was beyond the
scope of this paper. Our intention here was to isolate the effects of the choice of volume
elements from the effects of such a mismatch. The OSEM reconstructions also assumed
knowledge of the average scattered counts in the measurements (Daube-Witherspoon et al
1992).

We produced two different sets of bias versus standard deviation plots by varying two
different parameters that are commonly used to control the bias-variance trade-off, namely the
number of iterations or the FWHM of a post-filter. In the first case we initialized the OSEM
reconstructions with a uniform image and plotted the bias and standard deviation of the total
uptake in the heart area per iteration, up to 50 iterations. In the second case we initialized the
OSEM reconstructions with a smooth FBP image (whose non-positive values had been set to
a very small positive value) and allowed the algorithm to run for 1000 iterations. We then
smoothed the reconstructed images (in the blob-based case after synthesizing them from the
reconstructed coefficients) using 3D Gaussian post-filters of various FWHMs, up to 7 pixels.
Similarly, we recorded the bias and standard deviation of the total uptake in the heart area for
each post-filter FWHM. Figure 3 shows plots of the standard deviation versus bias normalized
as a percentage of the true total heart activity. The FBP curve in figure 3 was acquired from
plain FBP reconstructions with a Hanning window of variable width and Chang attenuation
correction but no attempt to compensate for the depth-dependent system blur. These curves are
just provided for reference, as the focus here was on comparing the blob- and rotation-based
system models rather than iterative reconstruction and FBP.

Figure 4 shows the seventh slice from an image reconstructed with OSEM using the
rotation-based model and two different blob-based models. The images were chosen at
different iterations to have a similar bias level (about 16.5%) on the per iteration bias-variance
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Figure 4. A slice and profiles through OSEM-reconstructed images of a single realization of the
noisy data. Superimposed on the profile of the true high-resolution phantom (x) are those of the
images reconstructed with the rotation-based model (x̂R , NMSE = 3.26%), the blob-based model
with α = 0 (x̂B0, NMSE = 2.76%) and the blob-based model with α = 10.4 (x̂B1, NMSE =
2.87%).

plot. A profile of these slices through the heart area is also shown, superimposed on the
corresponding profile of the noiseless high-resolution phantom. Similarly, figure 5 shows
the seventh slice from a set of the post-smoothed 1000-iteration OSEM resonstructions with
the three different system models, chosen to have a similar bias level (about 19%) on the per
FWHM bias-variance plot. All images in figures 4 and 5 were reconstructed from the same
realization of the noisy data.

6. Discussion

For the blob-based reconstructions above, we tried two different blob shapes, both of them
with radius R = 2 times the grid increment and m = 2 (continuous and with continuous first
derivative at r = 2) but with different taper parameters and therefore FWHMs. The blob
with α = 10.4 has a FWHM 1.33 times the grid increment and has been shown in Matej and
Lewitt (1996) to possess good properties with respect to the approximation of the constant
3D function. The blob with α = 0 does not possess such properties and in fact is a uniform
sphere with a FWHM equal to its diameter.

Although the shape of these two blobs is quite different, their bias-variance performance
was not characterized by statistically significant differences at the commonly acceptable range
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Figure 5. A slice and profiles through over-iterated and post-smoothed OSEM-reconstructed
images of a single realization of the noisy data. Superimposed on the profile of the true high-
resolution phantom (x) are those of the images reconstructed with the rotation-based model (x̂R ,
NMSE = 4.12%), the blob-based model with α = 0 (x̂B0, NMSE = 2.99%) and the blob-based
model with α = 10.4 (x̂B1, NMSE = 3.60%).

of bias values, as shown by the error bars in figure 3. In addition to these two choices of
blob shape, we also considered the other choices listed in table 1 of Matej and Lewitt (1996)
and they resulted in similar performance, although these results are not shown here to avoid
excessive clutter in the plots. No further effort was made here to optimize the blob parameters
for SPECT reconstruction. It appears that the wide PSFs of the SPECT detector dominated
the bias-variance properties of the reconstruction and varying the blob shape did not make a
significant difference in the simulations presented here.

The plots do show, however, that the bias-variance performance of the blob-based
projectors was somewhat better than that of the rotation-based one, similarly to what
investigators have reported for PET (Matej et al 1994, Matej and Lewitt 1996). It is possible
that spherically symmetric volume elements were a better match for the contours of the shapes
in the high-resolution phantom used in our simulations. However, as shown by the bias-
variance plots and confirmed by the reconstructed images, the improvement is modest for
SPECT.

The spacing of the pre-computed blob footprint samples that we used in all the simulations
above was equal to 1/10 of the system pixel size. Decreasing this sample spacing did not
affect the quality of the reconstructed images.

Similar results (not shown here) were obtained when simulating an I-131 study with the
same phantom and system parameters appropriate for an ultra-high energy collimator (PSF
FWHM from 3 to 43 mm, pixel size 7.2 mm).
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In general, our simulations indicated only a slightly superior performance of the blob-
based implementations of the 3D SPECT system model in terms of the bias-variance trade-off.
On the other hand, the differences in terms of computational load were significant. When the
system PSFs can be considered separable, such as the Gaussians used above, the rotation-based
model with 1D separable convolutions will always be faster. If we wanted to model collimator
properties in greater detail with non-symmetric PSFs, we would resort to 2D convolutions,
and in that case the blob-based model with an efficient grid could be faster for large PSF sizes.
However, FFTs can be used instead of 2D convolutions to speed up the rotation-based model
with those larger PSFs.

The fact that use of the object support can be very naturally built into the blob-based system
model makes it very suitable for cases where we only need to reconstruct a few or even a single
volume element from the object, such as in a recently proposed method for fast estimation
of resolution and covariance in SPECT (Stayman and Fessler 2002) and in algorithms that
perform element-by-element processing, such as the space-alternating generalized EM (SAGE)
algorithm (Fessler and Hero 1995).

Finally, our simulations did not include realistic Compton scatter effects. We speculate that
since Compton scatter is relatively spatially smooth, and since scatter computations are usually
performed with relatively coarse sampling (Ollinger 1996, Watson et al 1999, Beekman et al
2002), including a realistic scatter model would not significantly alter the outcome of our
comparisons in favour of any choice of basis function.
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