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for Penalized-Likelihood Reconstruction in Fully 3-D
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Abstract—Resolution and covariance predictors have been de-
rived previously for penalized-likelihood estimators. These predic-
tors can provide accurate approximations to the local resolution
properties and covariance functions for tomographic systems given
a good estimate of the mean measurements. Although these pre-
dictors may be evaluated iteratively, circulant approximations are
often made for practical computation times. However, when nu-
merous evaluations are made repeatedly (as in penalty design or
calculation of variance images), these predictors still require large
amounts of computing time. In Stayman and Fessler (2000), we
discussed methods for precomputing a large portion of the pre-
dictor for shift-invariant system geometries. In this paper, we gen-
eralize the efficient procedure discussed in Stayman and Fessler
(2000) to shift-variant single photon emission computed tomog-
raphy (SPECT) systems. This generalization relies on a new at-
tenuation approximation and several observations on the symme-
tries in SPECT systems. These new general procedures apply to
both two-dimensional and fully three-dimensional (3-D) SPECT
models, that may be either precomputed and stored, or written in
procedural form. We demonstrate the high accuracy of the pre-
dictions based on these methods using a simulated anthropomor-
phic phantom and fully 3-D SPECT system. The evaluation of these
predictors requires significantly less computation time than tra-
ditional prediction techniques, once the system geometry specific
precomputations have been made.

Index Terms—Image quality, local impulse response, noise, to-
mography, variance.

I. INTRODUCTION

I N THE ANALYSIS of tomographic systems and their re-
construction algorithms, one would often like to be able to

predict the noise and resolution properties of the reconstructed
images. Much of the literature discussing noise and resolution
properties investigates the image properties as a function of spe-
cific algorithm and iteration [2]–[4]. Here, we focus on the noise
and resolution properties of estimators that maximize penal-
ized-likelihood objective functions using algorithms that have
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been iterated to a nearly converged solution. Equations for pre-
dicting the mean and variance of such estimators have been de-
rived in [5] and for resolution properties in [6]. These predic-
tions have been applied to several applications including penalty
design for uniform resolution [1], [6], [7], contrast optimization
[8], and for computer observer models [9], [10]. While resolu-
tion and noise prediction has potential uses across a range of
applications, calculation of the predictions is computationally
expensive. This paper investigates a number of approximations
that make these evaluations more practical when many evalua-
tions need to be made for a particular SPECT geometry.

Approximations based on local space-invariance have been
used [1], [9], [11] to provide good noise and resolution predic-
tions with reasonable computation times. However, when very
many estimates are required (e.g.: when resolution estimates are
made for every pixel position, or noise estimates are made re-
peatedly for different reconstruction parameters or objects), the
computational burden is still high. Generally the dominant com-
putation is the calculation of repeated weighted backprojections
of projection data. In some cases, as in an idealized positron
emission tomography (PET) system where the system response
is space-invariant, computation time can be reduced through an
appropriate factorization and precomputation (see [1]). Qi [11]
has used such a factorization and identified a number of system
symmetries in three-dimensional (3-D) PET to greatly reduce
computation and storage requirements for resolution and covari-
ance prediction. (Similar techniques will be adopted here for
use in the context of 3-D SPECT.) However, the previously in-
vestigated factorization approaches used in PET rely on a shift-
invariant geometric system model and are not directly appli-
cable to space-variant systems, such as for SPECT with a depth-
dependent detector response. We have previously investigated
fast methods for cases where the space-variant system may be
modeled with a precomputed system matrix [7]. Such methods
are generally impractical for three-dimensional system models,
where the system model is too large to be precomputed and
stored. Other attempts at reducing the calculation time have
been made in [12] and [13] using the frequency-distance prin-
ciple [14] and the approximation developed in [6, (30)–(32)].

In this paper, we discuss an alternative technique for making
noise and resolution estimates for both two-dimensional (2-D)
and fully 3-D SPECT systems. These methods are appropriate
for systems where the system matrix must be computed “on-the-
fly,” and apply generally to systems that include noncircular or-
bits, nonuniform attenuation, and depth-dependent detector re-
sponse. The approach presented here is an extension of the linear
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operator approach discussed in [1] for space-invariant PET sys-
tems. Section II reviews the resolution and covariance predictors
for penalized-likelihood SPECT reconstruction. Sections III and
IV identify various approximations that allow us to precompute
and store portions of the resolution and covariance predictors
that are object-independent. We show how to use these precom-
putations to arrive at rapid predictions once the object-depen-
dencies (i.e., the attenuation map and an estimate of the mean
measurements) are known. This section also includes a discus-
sion of the computation and storage requirements. In Section V,
we validate our approximations using a simulated 3-D SPECT
system and digital phantom. We show that our approximate res-
olution predictions are very close to iteratively calculated pre-
dictions. Similarly, we demonstrate that our covariance approx-
imations agree well with sample covariances calculated from an
ensemble of 3-D reconstructions.

II. BACKGROUND

Consider the following SPECT model. Let
denote the vector of measurements. We

parameterize the emission image using a pixel or voxel basis
where denotes a vector of nonnegative
emission densities. Let , , and, denote image coordinates
and , , and , denote the number of voxels along each
direction of the discretized volume. The and terms denote
the in-plane coordinates, the term represents the axial coordi-
nate, and . The measurements means are related
to the emission image through the following linear model:

(1)

where is the system matrix that contains the
terms that model the projection operation. The vector

is assumed to be a known quantity that
represents the mean contribution of random events like back-
ground and scatter. The system matrix, , models all projection
effects including detector responses, the detector orbit, and
object-dependent effects like attenuation. This matrix can be
precalculated, or defined implicitly as in the case of projectors
and backprojectors that are implemented in a procedural form.

We reconstruct the emission densities from the measurements
using a penalized-likelihood estimator, which is written as the
implicit maximizer of an objective function (which we assume
to be strictly convex to ensure a unique solution)

(2)

where the objective function, , is the difference of a log-
likelihood term, , and a roughness penalty term, .
We consider log-likelihoods of the following form:

(3)

where is a function that represents the log-likelihood
for the th measurement, , and its mean, . The general form
of (3) accommodates a wide range of noise models with inde-
pendent measurements.

A. Resolution Properties

Resolution properties for converged solutions of implicitly
defined estimators have been discussed in [6], [7]. One can
quantify local resolution properties by finding the local impulse
response. The local impulse response was derived in [6] and
can be written as follows:

(4)
where is an operator that yields a matrix whose th
element is , is an operator that yields a ma-

trix whose th element is , and ,
the estimate of using the mean data. Here, is a vector that
represents the 2-D or 3-D local impulse response function for a
perturbation of the th voxel.

Plugging (1) and (3) into (4), we find that the formulation for
the local impulse response can be written as

(5)

where denotes the transpose operation, denotes the th unit
vector, is the Hessian of the penalty, and and are
diagonal matrices whose elements are defined as follows:

(6)

(7)

where and
. We will assume throughout the paper

that (5) is a well-behaved function. This is true for sufficiently
regularized image reconstruction problems; however, for un-
regularized maximum-likelihood estimation (5) is often not
well-behaved and is not a good way to predict resolution
properties.

In cases where the mean measurements are unavailable, it is
common to approximate responses by simply plugging the noisy
measurements, into and . This does not change the
basic form for the local impulse response and typically yields
good approximations. Nonquadratic penalties will require some
kind of estimate of to evaluate , if is unknown. How-
ever, the Hessian of quadratic penalties can be represented by a
constant matrix, , which is object-independent.

Direct evaluation of (5) is often difficult due to the size of the
matrices and the presence of the matrix inverse. While one may
approximate the local impulse response using iterative tech-
niques,1 for many applications this is too computationally ex-
pensive. However, since and are approx-
imately locally space-invariant for varying , one can use a cir-

1Recall that (5) represents the solution to a linear system of equations
([HHH DDD HHH +RRR(�)]x = HHH DDD HHHe ) which may be solved iteratively using a
number of different approaches such as the conjugate gradient algorithm.
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culant approximation to (5) [1], [8], [11]. Specifically, we may
approximate2 (5) as

(8)

where represents the 2-D or 3-D (as appropriate) Fourier
transform of its vector argument, the division is an ele-
ment-by-element division, and represents an element-by-el-
ement multiplication. This approximation relies on the fact that
the 3-D (or 2-D) Fourier transform can be used to diagonalize
a triply (doubly) block-circulant matrix and the eigenvalues
of that matrix may be formed by Fourier transforming a row
of that circulant matrix. Also note the inclusion of the
term that incorporates the appropriate shift3 to ensure the
response is “centered” at location . Thus, (8) can be calculated
relatively quickly using fast Fourier transforms. Generally the
most computationally expensive part of calculating (8) lies
in the calculation of the weighted projection/backprojections.
For fully 3-D SPECT systems the computational burden of the
projections and backprojections greatly outweighs the burden
due to the Fourier transform operations.

B. Covariance Estimation

In [5], an approximation for the covariance of implicitly de-
fined estimators was derived. We restate that approximation here

(9)

Plugging in (1) and (3), yields

(10)

with and as defined in (6) and (7). Under the assump-
tion of independent measurements is a diagonal ma-
trix, thus we may write

(11)

where . As with the resolution predictor,
we will assume that (11) is a well-behaved function.

As in the case of the local impulse response, computing (11)
is usually impractical. Iterative techniques were described in [5]
for evaluating columns of (11), but they still require consider-
able computation. One may use a circulant approximation [11]

2Additionally, we must assume that RRR(��)e is also locally space-invariant.
3In practice, shifting near the edge of the field-of-view (FOV) presents some

problems due to truncation effects. Typically, responses must be “filled in” using
symmetry arguments or other methods. We have found that by using a system
model that intentionally models a FOV that is larger than the actual physical
FOV, one can obtain highly accurate resolution (and covariance) estimates.

to (11), so that the covariance for the th pixel position is ap-
proximated as

(12)

Again, calculations are dominated by the evaluation of terms
of the form , where we have taken to denote a
generic diagonal weighting. (That is, could be any one
of .) This term is commonly referred to as the
Fisher information matrix, since often represents an inverse
of the measurement covariance, and the same form arises from
estimation bounds on variance. This form can be found in
a number of applications including resolution and variance
prediction. Therefore, it would be very helpful to find efficient
ways of calculating .

Fast calculation of has been previously explored
for resolution [6] and variance [15] predictors for space-in-
variant systems, where . In this case

represents a space-invariant operator and is premultiplied
and postmultiplied by a diagonal weighting matrix. While this
method yields fairly good variance estimates, the approxi-
mation often poorly models anisotropy in the local impulse
response [1] and the covariance function.

III. EFFICIENT CALCULATION OF

We have previously investigated a better approximations for
efficient for calculation of , when can be factored
such that , where is approximately circulant
(i.e., a space-invariant operator) and is a diagonal matrix
[1]. In this case, all object-dependence enters through the diag-
onal term, and represents the geometric system model. Such
factorizations are possible for idealized PET systems, and the
methods in [1] allow one to precalculate many of the operations
necessary for the evaluation of . Due to attenuation,
this kind of factorization is inappropriate for SPECT. Neverthe-
less, we can generalize the ideas used in [1] and apply them to
the SPECT model. This section describes a series of approxi-
mations that allow many operations to be precomputed for the
evaluation of , when the system matrix fits a SPECT
model. Similarly, these methods can be used for resolution and
covariance prediction in shift-variant PET systems. In the spe-
cial case of a space-invariant system and a PET-style attenuation
model the results here simplify to the methods presented in [1].

A. Linear Operators

One important property of used in [1] is that it is
linear in terms of the diagonal elements of . That is, we may
write

(13)

where are position-dependent vectors that are related to .
Similarly, we may write this linear combination in terms of a

matrix, , and a vector of the diagonal
elements of , which are denoted as with .



1546 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 12, DECEMBER 2004

One could construct using the superposition principle.
Specifically, may be found by applying diagonalized unit
vectors for each measurement such that

(14)

In principle, if could be precalculated, then
can be evaluated for different diagonal matrices

using about one half the computation of an ordinary evaluation.
(Later, we will identify a series of approximations that rely
on this precomputed form to drastically reduce computation
time.) Unfortunately, there are several problems with this kind
of precomputation. Perhaps the most significant problem is
that, even if one were to calculate all operators,
these linear operators are object-dependent because the SPECT
system matrix depends on the attenuation properties of the
object. Thus, any such “precalculation” would need to be
performed for every object. While one might be able to use a
generic attenuation model in cases like brain imaging where
there is less variability, we would like to develop an efficient
technique that applies to a wide range of attenuating objects.

Another problem is the sheer size of . One must be
able to store these precomputed linear operators to exploit any
computational speed-up. Recall that each operator is
in size. Generally it would be unfeasible to store all operators
since they have a similar degree of sparsity as the system matrix,

.
We address these issues in the following sections.

B. Attenuation Approximations

To use the linear operator technique effectively we must elim-
inate the object-dependence from the precomputed portions of

. In SPECT, attenuation is typically modeled as both a
pixel-dependent and ray-dependent effect4 such that

(15)

where the terms incorporate the geometric response in-
cluding all detector effects like the depth-dependent response.
The terms denote ray-dependent factors like uniformity
correction factors to compensate for differences in sensitivity
across the detector face. The terms incorporate the attenua-
tion effects due to the object and generally reflect a “survival”
probability for a photon emitted at the th location and detected
at the th detector. These terms are often formed by approx-
imating the attenuation using a central ray approximation in
combination with Beer’s Law

(16)

where denotes the attenuation coefficient distribution
for the object and represents the line segment con-
necting the th pixel with the th detector.

4For comparison, in PET, it is usual for attenuation effects to be modeled as
a purely ray-dependent effect.

Thus, we can write a factorization of the SPECT system ma-
trix as

(17)

where is a diagonal matrix of terms and and , are col-
lections of the attenuation terms, , and geometric terms, ,
respectively. (We do not require that geometric operator be
a shift-invariant operator.) This factorization isolates all of the
object-dependence in the term. Since the same factorization
applies to PET systems with and with PET attenuation
factors in , the following prediction techniques may also be
used for space-variant PET systems.

Let denote the entire weighted projection-back-
projection operator. Using the factorization in (17), we make the
following sequence of observations regarding the th ele-
ment of

(18)

where the diagonal matrix, , has the following elements:

(19)

The equalities in (18) are the key to the method developed in
this paper.

Because generally varies relatively smoothly with
changing and is fairly concentrated about the pixel
position , we utilize (18) and (19) to make the following
approximation:

(20)

with elements of the diagonal matrix, , defined as

(21)

Thus, we approximate using the geometric model
and a position-dependent diagonal weighting . This ap-

proximation is exact at location and yields very good results
for the neighborhood around . Because the attenuation terms,

, are formed from the integral in (16), there is an implicit
smoothing in going from an attenuation map to . Thus, the
above approximation tends to work well even for discontinuous
attenuation maps.

The approximation for shown in (20) is important
since all object-dependence enters through the “inner” diagonal
term. In contrast, the approximation methods for 2-D and 3-D
PET described in [1], [6], [11], and [15] move the object-de-
pendence to the “outside” of the equation such that

, where is a diagonal term that incorporates ob-
ject-dependence. Xing [12], [13] has used a variation on these
“outer” diagonal approximations to make weighted projection-
backprojection estimates for shift-variant SPECT systems.
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TABLE I
METHODS USED IN REDUCING THE COMPUTATION AND STORAGE REQUIREMENTS FOR THE CALCULATION OF HHH DHDHDHe

All stated storage and computational reductions are relative to the case of unapproximated precomputed linear operators in (13).

Since the righthand side of (20) is a linear function of the
diagonal elements of , we may now calculate approximate
precomputed operators, , whose columns are given by

(22)

Since these vectors depend only on the system geometry ,
but not on the object itself, we can precompute the object-inde-
pendent portion of . These operators may be applied
to form the approximation given in (20) as

(23)

where is a vector constructed from the elements of in
(21).

It is reasonable to include terms in the calculation of ,
since these factors generally must be computed for the recon-
struction method that is chosen to estimate the SPECT image.
In fact, while is often too large to precompute and store for
3-D-SPECT, if is modeled with the central ray approxima-
tion and the simple line integral model of (16), is very sparse
with only a single value per voxel per projection angle. Thus
in some situations, it may be possible to compute and store
for a given object for both estimation of the SPECT image, and
for evaluation of . (This storage is not required for our
technique. The terms may instead be computed on-the-fly.)

Equation (23) represents an approximation that allows for
precomputation of a portion of using the linear op-
erator technique of [1]. However, unlike the shift-invariant PET
case described in [1], because the geometric response is space-
variant for SPECT, it appears that one needs to calculate very
many linear operators. Specifically, without further simplifica-
tions, one would need to compute, store, and use one
matrix for each voxel. In the following sections we demonstrate
ways to reduce both storage requirements and computation time.

C. Image-Domain Simplifications

There are a number of observations and approximations that
allow us to reduce the computation and storage requirements to
practical levels. We break these simplifications into two groups:
1) Image-domain simplifications, that reduce either the number
of operators that are stored, or the number of rows in each of
the matrices. 2) Projection-domain simplifications, that reduce
the number of columns required for each , and consequently
the number of diagonal weighting elements (i.e., a smaller ).
We discuss the image-domain simplifications in this section, and
discuss projection-domain simplifications in Section III-D.

For each approximation, we first describe the basic principle
in words, and then give an explicit mathematical representation.
Since matrices in the following sections represent operations on
3-D projections or images, care should be taken in interpreting
the mathematical forms. A summary of simplifications and ap-
proximations can be found in Table I.

1) Single Slice Sampling: Because is object-dependent
due to attenuation, there are generally few symmetries that
would allow one to reduce computation and storage require-
ments. However, because we are utilizing (22), which requires
only the geometric model, , we can take advantage of sym-
metries in the SPECT geometry.

For many SPECT systems there are a number of symmetries
in the imaging system that can simplify our goals. For most
parallel and fan collimators, the detector response is essentially
shift-invariant for axial shifts of the detector, excluding magni-
tude scaling factors [i.e., the terms in (15)]. Thus, if one varies

only in the axial direction, only changes by a axial shift
(with the exception of truncation effects at the edge of the field
of view). Similarly, for the same , the columns of our precal-
culated in (22) would only differ by axial shifts.

Therefore it is not necessary to compute (22) for all . A
single slice is sufficient. Thus, we let

(24)

where and denote the and -coordinates of the th voxel,
and reflects the axial coordinate of the center slice. Conse-
quently

(25)

where shifts an image from the center slice to the -coordi-
nate of the voxel, is formed from columns of (24),
and is the projection domain analogue of , which shifts
projection values along the axial direction. In terms of storage,
we may now store operators instead of .

2) Partial Orbital Sampling: We can also take advantage
of symmetries in the SPECT detector orbit. Consider the 360
elliptical orbit SPECT system shown in Fig. 1. Suppose that
we may only compute weighted projection-backprojections for
points in quadrant IV. If one has obtained the projections for
the black point in quadrant IV, one can obtain the projections
for the gray point in quadrant I simply by reordering the pro-
jection images. Similarly, if one may only backproject projec-
tions obtained from points in quadrant IV, one can obtain pro-
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Fig. 1. Symmetries in elliptical orbit SPECT.

jection-backprojections for points in the other quadrants using
simple flips about the axes. In this way, we need to precompute
only a single quadrant of linear operators. (For circular system
geometries, only a single radial line of operators is required.)

While such symmetries can reduce storage requirements, po-
sition-dependent change of coordinates operations are required
to calculate responses at all positions. (For example, there is a
quadrant dependence for these operations for the elliptical orbit
in Fig. 1.) For a system geometry with generic symmetries, we
can represent the projection-domain reordering operation for the
th voxel by , and the image-domain change of variables for

the th voxel by . Incorporating this calculation technique
into (25), we write the approximation of the weighted response
as

(26)

where the operators are still calculated via (24), but
only over a subset of locations appropriate for the specific
system symmetries.

3) Small Volume of Support: Because is fairly
concentrated about voxel , many calculations involving

are also very concentrated about . Specifically, the
resolution and covariance functions generally go to zero far
from , and can be well-approximated using relatively small
regions of support [7].

Thus, it is not necessary to store all the rows of . Choosing
a small volume5 about voxel , reduces the dimension
of each to . For a typical SPECT system where

, a choice of represents a decrease in
storage by a factor of almost 40.

Thus, (24) and (26) become

(27)

and

(28)

where represents a position-dependent matrix that
represents a truncation function that selects a small volume
about pixel . The image-domain shift operation in (25) is no

5There is no fundamental reason why the subvolumes must be cubes. We
choose a cubical subvolume for simplicity.

longer necessary due to the truncation function , since there
is an implicit “centering” of the subvolume. Moreover, we note
that now operates on subvolumes instead of the
entire image volume.

4) Spatial Subsampling: The weighted responses,
, typically vary smoothly with position. Because

this is the case, we have found that one can subsample the
image domain over a grid of every th voxel and evaluate

over a subset of positions and find the remaining
positions using interpolation [7]. Using the single slice approx-
imation, this reduces storage requirements by .

D. Projection-Domain Simplifications

Just as one can approximate using image-domain
simplifications, one can make projection-domain approxima-
tions that reduce dimensionality, storage requirements, and
computation times. Specifically, in the following subsections,
we describe approximations that will reduce the number of
columns required for the linear operators, .

1) Projection-Constant Weightings: One approximation
investigated in [1] relies on the observation that projections of
a point are highly localized. That is, for individual projection
angles, yields a relatively narrow response. Fig. 2(a)
shows several projections of a point. The diagonal term, ,
simply scales each element of the projection and is typically a
smoothly-varying function over each projection. Recall from
(6) and (7), elements of are often defined as functions of the
mean measurements, which are themselves relatively smooth
due to the blur of the projection operator. Because these weight-
ings are relatively smooth for each projection angle and the
point projections are localized, we can approximate with a
new diagonal weighting which scales projections for individual
angles by a single value.

Let denote the th row of , and denote the
set of measurements in the projection at angle . We make the
approximation

(29)

where represents the position-dependent, projection-con-

stant weighting for the th angle, and the vector denotes the
collection of all projection-constant weightings over all an-
gles. The matrix combines measurements within a
single projection angle into a single value, and is used to form

the new diagonal matrix, . This combination matrix can be
written as

(30)

where is an indicator vector where the th element of the
vector is one if the element belongs in the projection at angle ,
and is zero otherwise.

While there are many ways to calculate , elements of this
vector can generally be approximated by some form of position-
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Fig. 2. Approximation of the weighted point projection-backprojection, HHH DHDHDHe , using a projection-constant weighting. (a) Shows a particular point within
the imaging volume and a few of its projections,HHHe . (b) Shows several projection weightings in the diagonal weightingDDD, and a cross section of the associated
weighted response, HHH DHDHDHe (shown at the center). We identify the approximate positions of the point projection using a small black circle in each projection.
Because the point projections are highly localized, we may approximate the projection weighting using a position-dependent projection-constant weighting, ~DDD ,
shown in (c). The associated weighted response,HHH CCC ~DDD CCC HHHe , is nearly identical to the unapproximated response,HHH DHDHDHe .

dependent weighted average. For example, one simple tech-
nique that weighs elements of by the intensity of a point pro-
jection is

(31)

where is some form of the system matrix, . Because we
have found that the approximation in (29) is relatively insensi-
tive to the exact weightings, it is often sufficient to use an ap-
proximate . In fact, we find using a simple line integral model
without attenuation is often sufficient for . Thus, it is straight-
forward to precompute and store the necessary weightings to

compute .
Fig. 2 demonstrates the efficacy of this technique. Fig. 2(a)

shows a few unweighted projections of a single point. Fig. 2(b)
shows sample projection weights and a transaxial cross sec-
tion of the associated weighted response. Approximate positions
of the point projection are indicated with small black circles.
We find an approximate projection-constant weighting based on
(31), with equal to a simple line integral model with no at-
tenuation. Thus (31) is simply a bilinear interpolation for each
projection. (We suspect that even simple nearest-neighborhood
interpolation would also be adequate.) Fig. 2(c) shows the pro-
jection-constant weights and a cross section of the weighted re-
sponse. The two transaxial cross sections are nearly indistin-
guishable.

Before we discuss the resulting linear operator form of the
approximation, we discuss one additional approximation that
further reduces the the size of the diagonal weighting.

2) Angular Subsampling: Rather than computing the pro-
jections, , over all angles, we further approximate the pro-
jection (and backprojection) by reducing the number of projec-
tion angles involved. We will divide projection angles into
contiguous blocks, where a single block combines a neighbor-
hood of angles. Letting denote the set of angles belonging
to the th block, we write

(32)

where the combination matrix is defined as

(33)

where the indicator vector, , indicates membership of an

angle in the set . We also define .
We choose approximate position-dependent weights, , by

simply averaging over angles in each set, . Specifically

(34)

The diagonal matrix, , represents a significant decrease in
the dimension from the original weighting, . Recall that is

, where is the product of the number of measurements
per projection (i.e., the number of pixels in each projection),
and the number of projection angles, . In comparison, is
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, where is the number of projection angles, , divided
by the number of angles in each subset, .

E. Simplified Linear Operators

We now combine the simplifications discussed in the previous
sections to obtain a set of linear operators that is practical to
implement and store.

Section III-D discussed two approximations that reduce the
dimension of from to . We may calculate the
reduced dimension linear operator by applying the approxima-
tions in Section III-D to (27) to obtain

(35)

For each position where (35) is evaluated a single point pro-
jection must be performed, followed by (truncated) partial
backprojections, which collectively have the same complexity
as a single (truncated) backprojection.

The projection-constant weighting discussed in Sec-
tion III-D-1 eliminates the need for the projection-domain
shift operation introduced in (25). Thus, we may now write6

(36)

The vector is formed from joining (34) with the attenuation
approximation in (21). Specifically, the th element of is

(37)

In terms of storage, we now have matrices, , that
are . From Section III-C, we need to store these ma-
trices within only a single slice, or a single-quadrant of a single
slice for orbits with two-fold symmetries. We may further sub-
sample this quadrant to reduce computational costs. Thus for
elliptical orbit SPECT, using all these simplifications in con-
junction means we must store

(38)

floating point numbers. Consider a sample SPECT system that
incorporates a image volume and projections
over 110 angles. For a sampling of every fourth image pixel in
and , a subvolume of , and blocks of 10 angles, we
must store about 76 million floating point numbers. If stored as
standard single precision floating point numbers, this represents
about 290 Mb of storage space.

All of the computation and storage reductions we have dis-
cussed are summarized in Table I. This table specified whether
or not a given technique is exact or an approximation and the
level of reduction in computations and/or storage.

Equations (35), (36), and (37) represent a set of precomputa-
tions and the necessary operations for approximating .
While this weighted projection-backprojection may be of in-
terest for some applications, additional simplifications can be
made when resolution or covariance prediction is the goal. The
following section discusses such simplifications.

6Note that the P operator has the same function as was described in Sec-
tion III-C-2, but now operates on the smaller vector, �d , which contains projec-
tion weights for blocks of angles. Similarly, VVV now operates on � � � � �

subvolumes.

IV. ADDITIONAL SIMPLIFICATIONS FOR RESOLUTION AND

COVARIANCE PREDICTION

To predict resolution or covariance, one can plug the approx-
imation of the weighted projection-backprojection in (36) di-
rectly into the resolution or covariance predictors in (8) and (12).
However, further investigation allows us to make additional sim-
plifications that reduce storage and computation time.

Both (8) and (12) are based on using a circulant approxima-
tion to . Because circulant matrices can be diagonalized
using Fourier bases, we may find the eigenvalues of the circu-
lant approximation using Fourier transforms, which allows one
to avoid the full matrix inverse computations in (5) and (11).
Because is a diagonal matrix composed of nonnegative ele-
ments, the eigenvalues of are necessarily real and non-
negative. It is common to enforce these constraints when Fourier
transforming the weighted response . The real con-
straint is typically enforced by ensuring point symmetry through
the center of the response7 (i.e., voxel ). An equivalent ap-
proach is to only use the real part of the Fourier transformed
image. The nonnegativity constraint is often enforced simply
by zeroing any negative components. The same constraints are
applied to the penalty terms in (8) and (12). Thus, the resolution
and covariance predictors may be written as follows:

(39)

where

(40)

(41)

and the are applied to shift the local impulse response
or covariance measurement to the th voxel. (Equivalently, this
may be applied as an image-domain shifting operation.)

Since the approximation to discussed in Section III
is eventually plugged into the above expressions, it would be
advantageous to include as many of the operations in (40) in the
precomputation step as possible. Because the Fourier transform
is a linear operation, it is natural to incorporate these operations
in as well. Specifically, we may now redefine the operators
specified in (35) as

(42)
Noting that the change of coordinates represented by is in-
vertible, approximation (36) becomes

(43)

7In general, SPECT responses can be asymmetric. Future work should include
investigations of how best to handle cases such as 180 SPECT where responses
can be highly asymmetric.
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The transformation appears inside the Fourier trans-
form, which appears to complicate our task. Fortunately, be-
cause the transformation is only a renaming of image coordi-
nates, we may apply the transformation in either image domain.
That is, either before the operation or after the opera-
tion. Therefore we may rewrite the circulant approximation to
the predictors as

(44)

(45)

with

(46)

(47)

Because of the truncation operators, , in (42) and (47), there
is an implicit “centering” about location and the terms
of (39) are no longer needed. Consequently, the predicted local
impulse response in (44), and the covariance prediction in (45)
are evaluated over a smaller support defined by . Thus, in
order to form even an approximate equality with (8) and (12),
these small support approximations must be embedded into the
larger image space. [We have ignored this embedding in (44)
and (45).]

We have found that generally contains negative
values that are important for prediction. Thus we cannot apply
the negative thresholding in the precomputation step. It must be
applied after the operator is applied to , as shown in (46).

Equations (44)–(47) represent the final form of the approx-
imate predictors developed in this paper. These predictors re-
quire storage of a set of matrices, , which consist of

(48)

floating point numbers. The storage requirements are roughly
one-half of that which is stated in (38) since the Fourier trans-
form of a real signal results in coefficients whose real part is
symmetric.

Once the linear operators have been precomputed, the fol-
lowing set of calculations are required for resolution and covari-
ance prediction: 1) The term is calculated via (37). Using a
simple line integral model requires approximately floating
point operations (flops). 2) Calculation of (46), which takes
about due to the application of the linear operator.
[We concentrate on the case when , which is a re-
alistic assumption8 for most SPECT systems.] 3) Computation
of the resolution or covariance prediction using (44) and (45),
respectively. This entails a single inverse Fourier transform plus
roughly flops for a local resolution prediction and flops
for a local covariance estimate.

8Moreover, we have concentrated on a Poisson noise model which is appro-
priate for SPECT. However, these fast methods may be applicable to other sys-
tems with similar forms of shift-variance under other noise models as well.

In many cases (47) can be computed once, such as ellip-
tical orbit systems with penalties for which exhibits
three-fold planar symmetry9 across each coordinate axis. For ex-
ample, such is the case if the penalty is isotropic. For anisotropic
penalties, one can decompose the penalty into symmetric and
asymmetric portions, which can be formed from a small set of
bases precomputed from terms. Thus, (47) generally involves
relatively little computation.

The remaining computation is in applying a linear operator
and a single inverse Fourier transform for each position

of interest. In comparison, recall the original expressions for
the predictors in Section II, which require multiple

Fourier transform operations, a point projection, and a full
backprojection for every position.

For some prediction tasks, even the single inverse Fourier
transform may be eliminated. For example, for variance pre-
diction one needs only to calculate the peak of the covariance
function. Thus, one can eliminate both leading transform oper-
ations in (45), and simply sum over the Fourier coefficients
and perform an appropriate normalization. Similar simplifica-
tions can be made to (44) for the contrast recovery coefficient
studied in [8].

V. RESULTS

This section illustrates the predictors discussed in Section IV.
We compare the performance of our resolution and covariance
predictors versus more traditional predictors and estimators on
a simulated fully 3-D SPECT system.

A. SPECT System and Object Model

The SPECT model includes 128 projection angles and 128
30 pixel projection views with 4.5-mm pixels. The image

volume is discretized into voxels, where each
voxel is a 4.5-mm cube.10 The SPECT camera follows an ellip-
tical orbit with a 283-mm radius on the axis and a 220-mm
radius on the axis. The SPECT detector model includes a
depth-dependent Gaussian response that is 1.75-mm full-width
at half-maximum (FWHM) at the face of the collimator and in-
creases linearly with a slope of 0.044 as the distance to the colli-
mator is increased. When the camera aims along the axis, this
slope corresponds to a FWHM of about 14.2 mm at the center
of the field of view.

We chose to simulate a bone scan using the Zubal
phantom [16], [17]. We modified this digital phantom to include
an attenuating patient bed and resampled the data onto a 4.5-mm
grid. Fig. 3 displays this phantom data. We assigned relative
emission rates of 3.0 to the spine, rib cage, and kidneys, 1.5 to
the long bones in the arms, 3.0 to the long bone marrow, and 0.5
to the remaining soft tissue background. The attenuation map
used attenuation coefficients appropriate for 140-keV photons
with 0.23 for bone, 0.15 for all soft tissues, and
0.18 for the table.

9It is important not to confuse the orbital symmetries associated with the VVV
transformations, with the point symmetry through the origin, which is imposed
by the real constraint on the Fourier coefficients.

10The fast methods presented here do not required matched sizes for image
voxels and projection pixels.
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Fig. 3. The above figure shows the 3-D digital phantom used in the simulation studies. The anthropomorphic phantom simulates a Tc bone scan, with high
activity in the bones and kidneys. A central slice of the emission image and the attenuation map is shown in the two images at the left. The orbit of the SPECT
camera is indicated by the black ellipse. Additionally, five positions are indicated with + marks for the investigation of resolution and covariance predictors.

We generated simulated SPECT measurements from
the above phantom and system model. All studies used
pseudo-random Poisson measurement data with a mean of
500 000 counts per slice, including a 20% known uniform
background level [the terms in (1)] to approximate the effects
of scatter.

B. Reconstruction

We applied the penalized-likelihood estimator in (2) for
reconstructing the emission images from the measurement
data. The penalized-likelihood objective was maximized using
an ordered-subsets paraboloidal surrogates iterative approach
[18]–[20]. The algorithm was initialized with a filtered back-
projection reconstruction. Following many iterations using
16 subsets, we applied convergent single subset iterations, to
ensure a nearly converged solution For the penalty function
we use a shift-invariant first-order quadratic penalty with the
regularization parameter chosen to yield a spatial resolution of
about 2 cm at the center of the field of view. For this penalty,
the resolution at the edge of the object was about 4.5 mm. The
reconstruction model matches the projection model exactly and
used the true attenuation map.

C. Resolution Prediction

For the above SPECT system with Poisson measurements, the
local impulse response of the penalized-likelihood estimator is
given in (5) with diagonal components11

(49)

The “traditional” slow approach to computing the local impulse
response is to evaluate (5) iteratively. We initialized iterations
with an impulse at the response position and used 500 conju-
gate gradient iterations to estimate the response. This yields a
well-converged estimate. We compare this approach to the fast
predictions described in Sections III and IV. For all fast predic-
tions, we used the precomputed linear operators given in (42).
The predictors were applied using the modified diagonal ele-
ments in (37).

11For the diagonal in (49), we have assumed that the blur due to the system
model is much greater than the blur induced by regularization of the estimator.
Thus, �Y (�) � �Y (��).
Moreover, when the true projections, �Y , are unknown, one can often obtain
good estimates via a simple plug-in approach using the noisy data Y .

Because the resolution properties of SPECT systems are
space-variant, we investigated the resolution at several positions
in the object. These positions are identified with marks in
the left two central slice images in Fig. 3. From left to right,
we label these positions: “Rib,” “Left kidney,” “Center,” “Soft
tissue,” and “Right elbow.”

For the first resolution investigation, we used precomputed
operators with a subvolume [i.e., in (48)]
and 32 blocks of 4 angles. We stored operators within a single
quadrant of the elliptical orbit and used a spatial subsampling
with . Operators for unsampled positions are formed
using bilinear interpolation. Thus, the precomputed and stored
operators may be stored as single precision floating point num-
bers in approximately 125 Mb.

Fig. 4 compares the local impulse responses at four different
locations. The left set of figures compares local impulse re-
sponses calculated at the “Rib” position. Transverse, sagittal,
and coronal slices of the 3-D response are shown for the itera-
tively calculated response (top row) and for our fast prediction
(middle row). The bottom row shows profiles through each axis
of the iteratively calculated response (dashed line) and the fast
prediction (solid line). The right set of figures shows axial pro-
files for three more points. (None of these locations coincide
with operator sampling positions. Thus all fast predictions are
based on interpolated operators.) The local impulse responses
are space-variant and anisotropic with coarser resolution near
the center of the field of view. Despite the multiple approxima-
tions and subsampling, our predictions are very close to the iter-
atively calculated responses. This is true even for the “Rib” po-
sition where the attenuation map changes rapidly near the eval-
uation position.

Assuming the and matrices have been precomputed
and loaded, the Matlab implementation of the resolution pre-
dictor used to compute the above predictions, takes roughly 1/15
of a second to compute a single local impulse response on an
800-MHz Pentium III computer. For comparison with the “tra-
ditional” slow iterative approach, we note that a single projec-
tion operation, , implemented as an “on-the-fly” procedure
in an efficient compiled C program takes more than a minute on
the same computer.

The required size of the precomputed operators depends on a
number of factors including the desired accuracy of the approx-
imation, available storage, desired computation speed, the
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Fig. 4. A comparison of local impulse responses using the predictors of Section IV and an iterative calculation for four locations in the image volume. The left
column compares transverse, sagittal, and coronal images of the 3-D local impulse response at the rib location using the iterative method (top row) versus the fast
predictor (middle row). The bottom row shows profiles through each axis of the response for the iterative method (dashed line) and the fast predictor (solid line).
The right column shows the axial profiles for three more image locations.

space-variance of the system, and the space-variance due to the
object. We present two studies where the size of the operators
are varied and briefly discuss the associated tradeoffs.

We first studied the local impulse responses at the five posi-
tions shown in Fig. 3 using operators computed with a range of
support sizes. Specifically, cases where , , , and
voxels are stored. All angles are stored (i.e., 128 blocks) and
the locations are sampled positions (therefore no interpolation
of operators is performed). The results of this investigation are
presented in Fig. 5.

Most support sizes give remarkably similar predictions across
the supported pixels, even for the smaller support sizes where
there is significant truncation of the local impulse response func-
tion. However, there are some noticeable differences for the
smaller support sizes. Specifically, with additional truncation
there are growing mismatches in the sidelobe behavior shown
in the X and Y profiles for the center pixel’s response. Simi-
larly, for the smallest subvolume, a mismatch in the peak value
of the local impulse response begins to be evident. We quantify
this local impulse response mismatch for the five locations in
the table in Fig. 5, where we have defined the normalized error
as

(50)

where denotes elements of the local impulse response at
the th location, as calculated by the “traditional” iterative

approach, and denotes elements of the response as calculated
by the fast approach. We also list the computation time for a
single local impulse response evaluation for each support size.
Since it appears that relatively good approximations can be
made within the stored support, one may only need to store
voxels over a region slightly larger than the desired portion of
the response. This not only saves storage space for the precom-
puted operators, but also decreases prediction computation time
by greatly reducing the dimension of the matrix multiplications.

We performed a second study, where the support size is held
constant using voxels and the angular subsampling is varied
with 128 blocks, 16 blocks, 8 blocks, and a single block. Fig. 6
summarizes these results. For the coarser angular sampling,
there are significant differences in the sidelobe behavior. These
differences are most noticeable in the negative sidelobes in the
X profile for the two coarsest samplings. These mismatches
should be most pronounced in locations that differ from the
geometric response in a very anisotropic fashion. The degree
of mismatch will of course depend on the particular angular
sampling and the properties of the object and system geometry.
For this particular object and geometry, using only 8 blocks still
yields approximations with less than 10% normalized error.
We note that the “Rib” location generally has higher errors
than the other locations. This is most likely due to the rapid
local changes in attenuation, which are less likely to fit the
approximation made in (20).

One other adjustable value is the coarseness of the operator
position sampling represented by . We have found that
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Fig. 5. Resolution prediction with varying support size. The plots at left show profiles through the X and Y axes of the 3-D local impulse response at the center
voxel with a support size of 60 voxels (+), 30 voxels (�), 20 voxels ( ), and 14 voxels (4). The iteratively computed response is also shown (dashed
line). The table on the right summarizes normalized error and computation time for resolution predictions at various locations and support sizes.

Fig. 6. Resolution prediction with varying angular sampling. The plots at left show profiles through the X and Y axes of the 3-D local impulse response at the
center voxel with 128 blocks (+), 16 blocks (�), 8 blocks ( ), and a single block (4). The iteratively computed response is also shown (dashed line). The table
on the right summarizes normalized error and computation time for resolution predictions at various locations and angular samplings.

one can use a fairly coarse sampling , since the
(unweighted) geometric response varies very smoothly. Finer
sampling helps reduce interpolation computations. However,
the required sampling is quite coarse, and ultimately depends
on the particular system geometry.

D. Covariance Prediction

We also investigated local covariance predictions. We com-
pared the fast predicted covariance functions versus empirical
covariance functions estimated from 500 noisy reconstructions.
As with the resolution predictors, we use the precomputed op-
erators given in (42) in conjunction with the modified diagonal
elements stated in (37). We use the covariance equation given in
(45) and the diagonal weighting , as in (49). We used
the same operator dimensions and subsamplings as in the initial
resolution investigation.

Fig. 7 presents the empirical covariance functions and the
predicted covariance functions for four positions in the digital
phantom. The variation in the sample covariances is quite evi-
dent in the image slices and the profiles. Thus, we have included
error bars on the sample covariance estimates (based on an as-
sumption of a Gaussian distribution of the reconstructed image
values). These error bars indicate plus and minus one standard
deviation of the covariance estimate. The covariance predictions
appear quite accurate over these four positions, lying within the
error bars for most locations. It seems likely that these predic-
tions would be sufficiently accurate for typical applications such

as making variance images or evaluating computer observer per-
formance.

We performed one final investigation of the accuracy and
speed of the predictions. We calculated a variance image for the
central slice of the 3-D phantom. We used precomputed opera-
tors with voxels and 16 blocks of 8 angles. We stored oper-
ators with over a single quadrant (within the elliptical
orbit). This takes approximately 160 Mb of storage space.

We used the variance predictor discussed in Section IV, which
eliminates the inverse Fourier transforms. We also applied the
scaling technique developed by Qi in [11] to account for the ef-
fects of nonnegativity constraint on the reconstructed images.
Fig. 8 shows the predicted and empirical standard deviation
images. Sample standard deviations were calculated using the
500 noisy reconstructions (left image) and the fast predictors
(center). We also show a central horizontal profile of the stan-
dard deviations, which have been normalized to be a percentage
of the warm background in the phantom. Plus and minus single
standard deviation error bars on the sample variance estimates
are also shown. The predictions agree very well with the sample
variance estimates laying within the error bars for almost all po-
sitions.

Given the precomputed matrices specified by (42) and the
precomputed bilinear interpolator, in (37), the entire (single
slice) standard deviation image was computed in less than 20 s
using a Matlab implementation on an 800–MHz Pentium III
processor. Thus, the variance of the entire volume can be pre-
dicted in less than 10 min. We expect that efficient routines
written in a compiled C program would be significantly faster.
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Fig. 7. A comparison of covariance functions calculated using the predictors of Section IV and estimates the sample covariance from 500 noisy reconstructions
for four locations in the image volume. The left column compares transverse, sagittal, and coronal images of the 3-D covariance function at the elbow location
calculated from the 500 reconstructions (top row) versus the fast predictor (middle row). The bottom row shows profiles through each axis of the response for
sample covariance (dashed line) and the fast predictor (solid line). The right column shows the axial profiles for three more image locations.

Fig. 8. A comparison of central slice standard deviation images created from calculating the sample standard deviation of 500 3-D reconstructions, and from the
fast variance predictor discussed in Section IV. A horizontal profile is shown at left showing the sample standard deviation values (dashed line) and the predicted
values (solid line).

VI. DISCUSSION

This paper has presented extensions of the techniques dis-
cussed in [1] to allow for rapid calculation of the local noise and
resolution properties of penalized-likelihood image estimates.
These techniques are appropriate for 2-D or 3-D SPECT sys-
tems with nonuniform attenuation and are based on precom-
puting portions of the predictors that are independent of the ob-
ject being scanned. The projection and backprojection operators
for SPECT system need not be available in precomputed form.
Of course, the attenuation factors represented by must be

readily available to provide rapid predications. The predictions
based on these methods are very accurate and can be evaluated
with very practical computation times, once the precomputa-
tions have been performed for a given SPECT geometry.

Shift-variant PET systems can also use the methods presented
here. Similarly, some of the general principles may apply to
other shift-variant statistical reconstruction problems such as
X-ray computed tomography and magnetic resonance imaging.

The prediction speed is a function of the size and sampling
of the precomputed operators, . Thus the speed is directly
related to how many precomputations one is willing to store.
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We have demonstrated that accurate predictions can be made for
practical storage sizes (e.g., better than 10% error with 125 Mb
of storage for the sample SPECT system we have investigated),
but the exact tradeoff must be specified by the user’s require-
ments on the accuracy and speed of the predictions.

The fast predictors we have developed are most appropriate
for situations that require repeated predictions for a static system
geometry. Such situations include object-dependent penalty de-
sign as in [1] and [8], where predictions are required for every
voxel. Without fast techniques for resolution and noise predic-
tion, these penalty designs methods would be too slow for prac-
tical implementations. Such fast predictors are also important
for the study of computer observers [9], where repeated covari-
ance estimates may be required.

Future work should compare other fast methods like those
discussed in [12] to the methods presented here. Additionally,
the methods presented here may not be appropriate for 180
SPECT, where responses may be highly asymmetric. Future fast
resolution and covariance predictor studies should try to accom-
modate such operating modes.
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