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Iterative Tomographic Image Reconstruction Using
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Abstract—TIterative image reconstruction algorithms play an
increasingly important role in modern tomographic systems,
especially in emission tomography. With the fast increase of
the sizes of the tomographic data, reduction of the computation
demands of the reconstruction algorithms is of great impor-
tance. Fourier-based forward and back-projection methods
have the potential to considerably reduce the computation time
in iterative reconstruction. Additional substantial speed-up of
those approaches can be obtained utilizing powerful and cheap
off-the-shelf fast Fourier transform (FFT) processing hardware.
The Fourier reconstruction approaches are based on the rela-
tionship between the Fourier transform of the image and Fourier
transformation of the parallel-ray projections. The critical
two steps are the estimations of the samples of the projection
transform, on the central section through the origin of Fourier
space, from the samples of the transform of the image, and vice
versa for back-projection. Interpolation errors are a limitation of
Fourier-based reconstruction methods. We have applied min-max
optimized Kaiser—Bessel interpolation within the nonuniform
FFT (NUFFT) framework and devised ways of incorporation of
resolution models into the Fourier-based iterative approaches. Nu-
merical and computer simulation results show that the min-max
NUFFT approach provides substantially lower approximation
errors in tomographic forward and back-projection than conven-
tional interpolation methods. Our studies have further confirmed
that Fourier-based projectors using the NUFFT approach provide
accurate approximations to their space-based counterparts but
with about ten times faster computation, and that they are viable
candidates for fast iterative image reconstruction.

Index Terms—Fast forward and back-projectors, gridding, iter-
ative tomographic reconstruction, min-max interpolation, nonuni-
form FFT.

1. INTRODUCTION

TERATIVE image reconstruction algorithms using statis-
I tical models of acquired data play an increasingly important
role in modern tomographic systems, especially in emission
tomography characterized by data with low counts, and conse-
quently, low signal-to-noise ratio [1]-[3]. The computational
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bottleneck of iterative reconstruction algorithms is the com-
putation of forward and back-projection operations. With the
fast increase of the sizes of the tomographic data, reduction
of the computation demands of forward and back-projectors
is of great importance, as demonstrated by the recent increase
of interest in fast computational procedures for calculation
of these operations (for example, [4]-[9]). For a family of
shift-invariant error norms, another approach [10] uses Fourier
methods to combine the forward and backprojection steps into
a single operation that can be implemented efficiently with a
fast Fourier transform (FFT). Our focus is on positron emis-
sion tomography (PET) scans for which Poisson likelihoods
or data-weighted least-squares criteria are needed, but these
do not belong to the shift-invariant family considered in [10].
Therefore, in the work reported in this paper, we apply Fourier
methods to accelerate the forward and backprojection steps
separately for iterative tomographic reconstruction. In addition
to their computational efficiency, the Fourier-based approaches
have potential for additional substantial speed-up by utilizing
powerful and cheap off-the-shelf FFT processing hardware.

It has been known for a long time that direct Fourier methods
(DFM), that build up the Fourier transform of the object using
the Fourier transforms of the projections, have the potential
for accurate and high speed reconstruction [11]-[16]. The
Fourier-slice theorem was later proposed as a tool for per-
forming the reprojection operation (e.g., [17] and [18]). The
crucial step influencing the reconstruction quality and speed
is the interpolation between polar and Cartesian rasters in
frequency space. Gridding interpolation [19], [20], with proper
interpolating [21] and data weighting functions, as investigated
in the magnetic resonance imaging literature [22]-[24], brought
improvement in the direct Fourier reconstruction. Recently, the
Fourier-based reprojection has been applied for (noniterative)
fully three-dimensional (3-D) PET reconstruction [25] and
for calculation of attenuation correction factors in PET [26].
In these works, Kaiser-Bessel (KB) windows were used for
interpolation, which are known to be reasonably accurate, but
the accuracy was not evaluated explicitly. The concept of the
nonuniform FFT (NUFFT)[27] used in this paper is related to
gridding methods for interpolation in frequency space. The KB
interpolation kernels used in this work have been optimized
using a min-max approach [28], thus providing substantial
improvement of the interpolation accuracy.

In the previous works on gridding, the focus was on using
the interpolation to find a noniterative approximate solution
to an inverse problem. In contrast, we use Fourier-based for-
ward-projection as a tool for calculating the forward problem,
and allow iterative reconstruction methods to solve the inverse
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problem. Iterative algorithms need also the ability to compute
matrix-vector multiplication by the transpose of the matrix cor-
responding to forward projection, even though the matrix itself
might not be stored explicitly. It is straightforward to reverse
(not invert) the steps executed during the forward-projection
computation to develop an algorithm to perform multiplication
by the transpose, corresponding to the adjoint of the forward
operator, which is a form of back-projection. The inverse
problem approach used in this paper is also an alternative to
gridding in MR image reconstruction [29].

Section II contains descriptions of basic principles of the
Fourier-based forward and back-projectors (Section II-A)
and of their efficient implementation using NUFFT approach
(Section II-B), an outline of the iterative reconstruction ap-
proaches using Fourier-based forward and back-projectors
(Section II-C), discussion of incorporation of basis functions
(Section II-D) and resolution models (Section II-E), and finally
discussion of optimized NUFFT interpolation parameters
(Section II-F). Results of the numerical error analysis of the
NUFFT interpolators based on the min-max methodology are
presented in Section III. Effects of interpolation parameters on
accuracy of the NUFFT-based forward and back-projectors,
as stand alone modules and within iterative reconstruction, are
further evaluated using simulated data in Section IV, including
performance comparisons of the optimized versions of the
Fourier-based forward and back-projectors to their space-based
counterparts. Section V contains performance comparisons of
the Fourier-based and space-based projectors within iterative
reconstruction using physical phantom transmission data
acquired on a commercial PET scanner. Finally, discussion and
conclusions are in Sections VI and VII.

II. PRINCIPLES AND IMPLEMENTATION
A. Fourier-Based Projectors

Fourier-based forward and back-projectors are based on the
central section theorem (also called projection theorem) as out-
lined in the following. Let u € R™ (n = 2,3) denote a point in
the n-dimensional image x(u). Let X (U) be the image spec-
trum, obtained by the n-dimensional Fourier transform

X(U) — —i27ru-Udu.

R

z(u)e

Let a straight line in R™ be represented by a direction § € S™~1
(unit sphere in R™) and a point u as {u + t0 : t € R} . Let
6+ C R™ represent the subspace orthogonal to the direction 6,
thatis 0+ = {u € R" : w -6 = 0}, and 7 € R™ ! are local
coordinates within the subspace §--. Then, the projection (X-ray
transform) is defined as
po(r) = /x(uam + t0)dt
Rl
where wg - are the coordinates in R™ of the point at location 7 of

the subspace . The central section theorem [12] is given then
by

Py(R) = X(Us,r)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 4, APRIL 2004

where Py(R) is the (n — 1)-dimensional Fourier transform of
pe(r). Using the central section theorem, the projection at di-
rection  and as a function of 7, can be obtained from the image
spectrum X4(R) = X(Up gr) by

po(r) = / Xo(R)e?™TdR.
gL

Alternatively, using the same apparatus in reverse, the back-pro-
jection can be obtained by depositing the Fourier transform
of the projection into the proper locations of the central sec-
tion of the n-dimensional spectral domain, followed by the
n-dimensional inverse Fourier transform. Note that this back-
projection operator is the adjoint of the forward-projection
operator employed in the iterative reconstruction approaches,
and not the inverse Radon operator used in the direct Fourier
or filtered backprojection reconstructions. The inverse Radon
operator takes into account additionally the local density of
the input data spectrum (“ramp filtering” for the case of the
polar spectrum raster).

B. Nonuniform FFT

Practical implementation of Fourier projectors is based
on the discretized version of the projection theorem. The
crucial step is obtaining samples of projection spectrum values
Py(R)|p=sa > where S € Z" ! (Z denotes integer numbers),
distributed on the central section planes 6 with grid spacing
Ap (forming the polar raster in the two-dimensional (2-D)
case) from the values of the samples of image spectrum
X(U)|lv=ga,,Q € Z", distributed on the uniform Cartesian
raster with spacing Ay (forming the rectangular raster in 2-D
case). Direct evaluation of image spectrum values at the central
section locations using (exact) discrete Fourier transform
(DSFT) would require O(N*) operations for the 2-D image of
size N x N. Using NUFFT (related to gridding) allows uti-
lization of fast FT algorithms, thus, substantially speeding-up
this process. For the 2-D case, the NUFFT projectors require
only O(N?log N) operations, compared to O(N?) needed by
the spatial forward-projection algorithms. Basic steps of the
NUFFT are as follows:

1) image of size N is first pre-compensated (scaled) for
imperfections of the subsequent frequency domain inter-
polation [19] (step 1 in Fig. 1);

2) calculation of the K /N times oversampled (in each direc-
tion) FFT (step 2 in Fig. 1)—image is zeropadded before
the FFT (for the efficient implementation of the oversam-
pled FFT, see [13] and [28]);

3) interpolation onto the desired frequency locations within
the central section of the spectrum using small local
neighborhoods in the frequency domain—this is a crucial
operation determining the NUFFT accuracy (step 4 in
Fig. 1).

The result of these three steps is the NUFFT, and forward
projections are then obtained by performing inverse FFT’s
on the central section samples (polar lines in 2-D case; step
5 in Fig. 1). The discrete back-projection represents the same
set of operations executed in the reverse order. Fourier-based
forward and back-projectors for the statistical reconstruction



MATE] et al.: ITERATIVE TOMOGRAPHIC IMAGE RECONSTRUCTION USING FOURIER-BASED FORWARD AND BACK-PROJECTORS 403

AW
(Basis function filter)

3

A

Interpolation |/

Image X

Image spectrum X

Fig. 1.

4

Basic steps of the NUFFT forward-projection illustrated on the 2-D case:
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1) point-wise multiplication of the image with the Scale

function—pre-compensation for interpolation imperfections; 2) Fast Fourier Transform on uniform (rectangular) rasters from image into spectrum domain;
3) point-wise spectrum multiplication by Basis function filter—modeling effects of the image representation using basis functions (Section II-D) and of the
shift-invariant detector resolution kernels (Section II-E1, for other possibilities of resolution modeling see text); 4) Interpolation into nonuniform (polar) data
spectrum raster locations—using the fixed size interpolation kernel; 5) Inverse Fast Fourier Transforms on set of polar lines to obtain a set of projections

(sinogram).

techniques should additionally take into account the shape of
basis functions used for image representation and resolution
properties (e.g., LOR profiles) as described in Sections II-D
and II-E (step 3 in Fig. 1).

C. Fourier-Based Iterative Reconstruction

Forward and back-projection operations represent the
computational bottlenecks within any iterative reconstruction
approach. The general flowchart of iterative reconstruction
in which the operations of forward and back-projection were
substituted by their fast Fourier-based counterparts is depicted
in Fig. 2. Specific iterative algorithms will be distinguished
one from another by unique discrepancy and update operators.
Note that the Fourier-based iterative techniques do not require
special treatment of any missing portions of the data, similarly
to spatial-based iterative approaches but unlike the trans-
form reconstruction approaches (3-D filtered backprojection
method with reprojection (3DRP) [30], 3-D direct Fourier
method with Fourier reprojection (3D-FRP) [25]) which do
require estimation of missing portions of the data before
being employed. In the Fourier-based iterative approaches, the
discrepancy operator will provide complete correction data
vectors (to be Fourier transformed), including elements having
value zero indicating “no-backprojection” in the regions in
which data were not measured. These are valid values for the
(additive) back-projection operator and result in “no-change”
back-projection for the corresponding (image) regions, which
is equivalent to “not doing back-projection” for those regions in
a typical implementation of the space-based iterative methods.

Within the fast Fourier-based approaches most of the compu-
tation time is spent by the calculations of the Fourier transforms
on data and image grids. For both forward and back-projec-
tion operations of Fourier-based iterative techniques, the (in-
verse) Fourier transformation of the image (spectrum) has to
be done only once per kth image update (i.e., per iteration,
or data subset) making it desirable to use large subset sizes
(i.e., a low number of subsets) for block-type algorithms. On
the other hand, the large subset sizes typically require more
passes through the data (iterations). It is easy to show that
for linear algorithms the discrepancy operator (based on data
difference) and update operator (based on additive operation)
can be moved into the Fourier domain, thus eliminating the
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Fig. 2. Flowchart of iterative reconstruction using Fourier-based forward and
back-projection. Discrepancy and Update operators are defined by a particular
iterative technique. For the 2-D case, the Fourier transformations are 1-D (I)FT
of projections on the data side and 2-D (I)FT on the image side. Interpolation
operations are performed between data (polar) and image (rectangular) spectrum
grids. For Scale and Basis function filter, see caption of Fig. 1.

need to do FFT calculations on image and data rasters at each
image update and consequently eliminating the need to use
large subset sizes. However, typical statistical reconstruction
approaches for emission data are not linear. Fortunately, the
speed-up brought by the Fourier-based approaches makes it
possible to use increased number of iterations, compared to the
space-based approaches, while still providing clinically prac-
tical times even for the big subset sizes. Additional substantial
speed-up of the Fourier-based approaches can be obtained by
using relatively cheap off-the-shelf FFT processor boards.

D. Emulation of Image Representation Using Basis Functions

In the conventional space-domain iterative algorithms, the re-
constructed image is usually represented by a set of coefficients
of basis functions (e.g., pixels, or blobs [31]), rather than by the
set of image samples. In this case, the values of the continuous
image x(u),u € R™, can be approximated from coefficients
x4, where g represents the discrete set of locations . = gA,,, of
basis function a(u) by

w(w) = 3 y alu— 5)

If the basis functions are spatially invariant (the typical case),
the NUFFT projections through the image composed from those
basis functions can be emulated by including a proper spectral
filter into the NUFFT path (Basis function filter in Fig. 2). The
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filtering is done simply as multiplication by the basis function
spectrum A(U). Among the most popular spatial basis functions
are square pixels or rotationally symmetric Kaiser Bessel basis
functions (blobs) [31] in the 2-D case and cubic voxels or spher-
ically symmetric blobs in the 3-D case.

E. Resolution Modeling

A discretized version of the Fourier-section theorem provides
discrete samples of the (continuous) projection function pg(r)
which might be an over-simplified description of the measured
data in many tomographic applications. Iterative reconstruction
approaches provide convenient ways to include more realistic
data acquisition models into their system matrix, such as blur-
ring effects in both sinogram space (e.g., finite detector reso-
lution and crystal penetration) and image space (e.g., positron
range). A very useful property of this system matrix is that it can
be factored to provide sequence of separate operations modeling
individual physical and data acquisition effects [32]. In the fol-
lowing, we describe possibilities of incorporation (in a similar
way) of more realistic resolution models into the Fourier-based
forward and back-projectors.

1) Shift-Invariant Detector Resolution Model: Assuming
that the detector response can be modeled by a shift-invariant
blur with impulse response h(r), with corresponding frequency
response H (R), the measured data b can be approximated by

bo(sA) = (h*po)(sD,) = /H(R)PQ(R)eiZWR-SArdR
QL

(6)

where A, is detector sampling unit, s € Z™=1. The detector
blur can, thus, be modeled by simple multiplication of spectrum
of the data, or image, by H(R). Typical examples of h(r) are
rect function modeling simple integration over an uniform strip,
Gaussian resolution kernel of defined width, or an experimen-
tally obtained resolution kernel.

2) Shift-Variant Detector Resolution Model: The detector
resolution function hg s(r) = hg(s,r) depends on the detector
surface location, i.e., it typically depends on both # and s. The
measured data can be approximated by

bo(sAr) = D ho(s'Ar,s0,) pa(s'Ay)  (7)

S/EZn—l

using separate resolution kernel function for each projection line
location (6, s). This operation has to be performed in the pro-
jection domain, since it does not have an efficient counterpart in
the spectrum domain. Fortunately, the resolution function can
usually be approximated by small localized kernels leading to
only a minor increase of the computation demands.

3) Image-Space Shift-Variant Resolution Model: This
model takes into account those resolution effects which cause
variation of the resolution properties throughout the image
space, but are independent on angle and location of the pro-
jection lines, such as positron range in PET. It is possible that
this model might be able to include also other spatially variant
resolution properties (similar to deconvolution procedures),
but this topic is open for future investigations. Although
Fourier-based projectors can not directly take into account
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the space variant resolution properties, their effect can be
modeled in the image domain (rather than during the projection
generation process), similarly as it was proposed in [33]. In
this case the forward-projection calculation is preceded by
blurring of image with the spatially variant resolution kernel

gq(u) = g(q,u)

Bghu) = > 9(d' DusgAy) - a(q Ay) ®)

qlezn

where A, is image sampling unit and ¢ € Z". For the back-pro-
jection, the blurring operation (with the transpose of the blurring
matrix g) is performed on the correction image (cgk) in Fig. 2)
after the back-projection operation and before the update opera-
tion. Again, for the small localized resolution kernels this opera-
tion represents only a minor increase of the overall computation
demands.

FE. Min-Max Interpolation Optimization

The single most important operation within the Fourier-based
approaches influencing their quality in a crucial way is the
interpolation between the spectrum rasters. In [28], a method
was developed for designing and optimization of the finite sup-
port interpolators and of the corresponding scaling functions in
the min-max sense. The developed min-max analysis provides
the interpolator that minimizes the worst case interpolation
error over all signals of unit norm. Unfortunately, no analytical
formula was found for specifying the optimal choice for the
scaling function. Consequently, the space of scaling functions
is searched numerically. The true min-max interpolator was
further compared to conventional interpolation kernels whose
parameters were optimized in the min-max sense. One of
the most suitable candidates among them, providing good
compromise between accuracy and simplicity, was found to be
the KB interpolation kernel. The KB window function has the
form [31]

o (R) = Iml(a) [ 1-(23/‘7)2}1”1,” {a\/ 1—(2R/J)1
©

for 0 < R < J/2 and value zero for R > J/2, where R is
the distance from the KB kernel center, /,, denotes the mod-
ified Bessel function [34] of order m, .J is the size of the KB
window and « is a parameter controlling the KB window shape
and frequency characteristics [31], [35] (see examples of KB
window functions and of their spectra in Figs. 3 and 4). The
interpolation kernel can be given as a radially symmetric KB
window function, or as a separable (in spectrum components
Ry, R,, ...) window function, both of which can be optimized
using the same min-max approach. However, although the ra-
dially symmetric kernels have very attractive properties if used
as basis functions for the image representation within the to-
mographic reconstruction [31], [35], the separable kernels are
preferable, and easier to implement, for the interpolation pur-
poses within NUFFT approaches. The separable KB interpola-
tion kernels used in our studies are given by

km,,],a(RlvRZ) = km,],a(Rl) : km,],a(RZ)- (10)
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Fig.3. Profiles of four KB interpolation kernels of size J = 6 using optimum

(alpha_o) and suboptimum parameters for m = 0 and K/N = 2. alpha_—
and alpha_4 represent two suboptimum KB kernels (v parameter located on
both sides from the optimum—star symbols in Fig. 5) providing comparable
maximum errors, which are about 6.5 times higher than in the optimum case.
For comparison, we show also alpha_s representing typical KB window
having desirable properties for the spatial image representation [35], but poor
performance as the interpolation kernel. It is interesting that although all of
them have similar shape, they provide quite dramatic difference in the NUFFT
performance.

We use a scaling function corresponding to the Fourier transform
of the KB window. This scaling function gives the lowest
worst case error [28], provided the parameters that determine
the shape of the KB function were chosen appropriately. In
the min-max optimization, the parameters (a,m) of the KB
function are varied by brute-force search, and the values that
minimize the worst case error are found numerically for each
interpolation kernel size .J. Based on the results in [28] and
on the numerical and experimental results presented in the
following we believe that these interpolators are quite close
to optimal for the NUFFT problem.

III. NUMERICAL ERROR ANALYSIS RESULTS

In [28] it was shown that for the one-dimensional (1-D)
NUFFT, a KB window with m = 0 and a/J ~ 2.34 approx-
imately minimizes F\,.x, the worst case interpolation error
over all 1-D signals of length N with unit norm. It was further
shown that the theoretical error bound of the separable 2-D
interpolation kernels is only slightly higher than the worst case
error obtained for the 1-D kernels (see formula for the 2-D
error in [28]). However, there is no guarantee that a window
that is optimized for 1-D worst case error will be optimal for
2-D projection and backprojection with realistic objects. In
Section IV, we investigate the effect of the order m and shape
parameter « on the accuracy of the 2-D NUFFT step within 2-D
forward and backprojection operations for an anthropomorphic
object. In this section, we first refine the optimization of o and
m for the 1-D NUFFT for comparison to the 2-D case.

We have calculated the maximum error F,,,, for the range of
oversampling factors (K/N = 1,1.5,2, 3), interpolation kernel
sizes (J = 4,5,6,7), orders of KB window (m € [—2,2]) and
KB shape (width) parameter (a, where o/.J € [1, 3]). The inter-

KB Power spectra - J=6, m=0, K/IN=2
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——alpha_o, alpha/J=2.34 1
-140 - —alpha_-, alpha/J=2.00 1-f_Nq
-160
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Fig. 4. Power spectra of KB interpolation kernels using optimum (alpha_o)
and suboptimum parameters for J = 6, m = 0 and K /N = 2, whose profiles
are shown in Fig. 3.
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Fig. 5. Maximum error E,,., of KB interpolator as a function of the shape
parameter «, for several interpolation kernel sizes .J, Bessel order m = 0
and using 100% zero-padding of the spatial domain (KX'/N = 2) (NUFFT
interpolator has been found to perform best for the KB orders close to m =
0—see Fig. 6). Note that the optimum ratio v/ J is about 2.34 for various kernel
sizes.

polation error is rapidly decreasing with the amount of oversam-
pling. We show results (Figs. 5-7) only for the case K/N = 2 (a
reasonable compromise between the speed and quality) and for
the 1-D interpolation window. The behavior for other oversam-
pling cases is similar, as shown in [36]. The optimum order of
the KB interpolator is close to zero for all /N, contrary to our
previous experiences with the KB window used as spatial image
basis function [35]. At m = 0, the optimal values of «/.J ratio
are approximately constant over a range of KB kernel sizes, but
the optimal «/.J is different for different oversampling factors
(about 1.5 for K/N = 1, about 2.05 for K/N = 1.5, about
2.34 for K/N = 2, and about 2.6 for K/N = 3).

Figs. 3 and 4 show profiles and power spectra, respectively, of
optimal and suboptimal interpolation kernels. Note that the in-
terpolation operation is performed in the Fourier domain of the
image. Consequently, the image and its periodic repeats (caused
by the discretization of the image and Fourier domains) are mul-
tiplied by the interpolation kernel spectrum. That means that the
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Fig. 6. Maximum error E,,.x of KB interpolator as a function of the order m,
for several sizes J, 100% zero-padding (K'/N = 2) and using optimum ratio
a/ J for each particular value of . The optimum order parameter m is slightly
above 0 for all kernel sizes; ¢ in the legend represent global optimum of the
« parameter for the given kernel size.
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Fig.7. Values of the optimum ratio ( op¢ / J) as afunction of the KB order m,
for 100% zero-padding (K /N = 2). The values of optimum ratio for individual
kernel sizes cluster around similar value for order 1= = 0 and diverge for other
orders. Similar behavior have been observed for other values of K /N, but with
different value of the optimum ratio at m = 0.

kernel spectrum value at the frequency 1.0 (sampling frequency)
multiplies the first periodic repeat of the center of the image,
and the spectrum value at the frequency 1 — f_Nq (periodic re-
peat of the negative Nyquist frequency — f_Nq) multiplies the
image value at the periodic repeat of its left boundary. The area
between f_Nq and 1 — f_Nq will not be occupied by either
image or its periodic repeat, and its size depends on the size
of the oversampling factor K /N. The ideal interpolation kernel
would suppress all of the image periodic repeats, thus leading
to the requirement that it has (effectively) zero value beyond
its spectrum frequency 1 — f_Nq. In practice, the optimum KB
interpolation kernel is a compromise between the requirements
that the main lobe of its spectrum decays to negligible values at,
or before, the image periodic repeat 1 — f_Nq (limiting « from
the top) and that its side lobes are effectively zero beyond that
point (requiring large o). Any deviation from this compromise
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leads to a dramatic increase of the interpolation errors (see star
symbols in Fig. 5), in spite of very similar kernel shapes (Fig. 3).

IV. COMPUTER SIMULATION RESULTS
A. Forward-Projector

In addition to the numerical evaluation of the NUFFT-based
forward projector for the worst case error, we have evaluated the
accuracy of the NUFFT-based forward projector using the dig-
ital Zubal phantom. We cropped the original 128 x 128 image
to the size 100 x 100 so that the phantom torso fully occupies
the whole image region in its wider dimension (see bottom
left image in Fig. 11), to avoid any extra zero-padding, other
than that given by K/N. We have simulated a parallel-beam
tomographic system, with a sinogram size of 100 radial bins
by 192 angles over 180°, including a rectangular detector
response h(r) = rect(r) with width equal to the pixel size,
partially representing the finite detector width in a PET system
(rather than using overly idealized line integrals). We have
computed forward projections for this system in four ways:
using Fourier-based projector with exact (to within double
precision in Matlab) evaluation of the 2-D FT (DSFT), using
Fourier-based projector with the 2-D NUFFT approximation
(to the DSFT) utilizing min-max optimized KB interpolation,
using Fourier-based projector with bilinear interpolation,
and using space-based projector. Examples of sinograms
obtained by Fourier-based and space-based projectors, and
corresponding absolute difference images are shown in Fig. 8.

Based on the difference between the exact FT and NUFFT
method we have evaluated maximum error, root mean square
error, and mean error. In the following graphs, we show only
maximum error defined as the maximum absolute difference be-
tween exact FT and NUFFT method in percent of the maximum
value of the exact FT method. Other errors have been found
to exhibit similar behavior, as shown in [36]. The errors have
been evaluated for the same set of the NUFFT parameters as in
the numerical analysis. The error curves as a function of the
(Fig. 9) show very similar behavior to the numerical case, with
nearly exactly the same optima. The optima over m (Fig. 10)
are less consistent compared to the theoretical case (Fig. 6) but
the locations of the smallest maximum error F,,,, are still clus-
tered around m = 0. The calculated sinograms for the op-
timum values are visually indistinguishable (from the exact FT
approach) with errors within 0.06% when K/N = 2 even for
the smallest kernel size (J = 4). By comparison, conventional
bilinear interpolation for the Cartesian to polar conversion gives
about two orders of magnitude higher maximum error than this
small kernel. Table I shows maximum forward-projection errors
for optimum shape parameters for different levels of oversam-
pling K/N and different kernel sizes .J.

B. Back-Projector

We compared the adjoint operator (back-projector) of the
NUFFT-based forward projector using the KB interpolator
to the adjoint of the exact Fourier-based reprojector when
applied to ramp-filtered ideal sinograms of the Zubal phantom
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Space Based Projector
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rms=1,6% max=6.1% rms=0.020% max=0.061%

Fig. 8. Example of sinograms (illustrated using 144 angular samples) of
Zubal phantom obtained by Fourier-based forward-projector using bilinear
interpolation (K/N = 2) (top left), Fourier-based forward-projector using
NUFFT with optimized KB kernel (K/N = 2,m = 0,J = 4, and
a/J = 2.4) (top middle) and a space-based forward-projector (SBP)
(top right). Illustrative times are for Matlab implementations. Bottom row
shows corresponding absolute difference sinograms (including measures of
root-mean-square difference and maximum absolute difference) with respect
to the exact Fourier projector (DSFT) (bottom left and middle), and Fourier
NUFFT projector (bottom right).

Forward-Projection Error for K/N=2 and m=0
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Fig. 9. Maximum interpolation error (% of projection maximum) of
forward-projection of modified Zubal phantom using NUFFT with KB
interpolator of several sizes J as a function of the parameter . Same set of
parameters used as for the Fig. 5.

of limited size (Fig. 11, bottom left). Examples of images
obtained by Fourier-based and space-based back-projectors
and corresponding absolute difference images are shown in
Fig. 11. Similar to the case of the forward-projector, we have
evaluated NUFFT-based back-projector errors for a range of
parameters. The maximum errors (shown in graphs in Figs. 12
and 13) have been calculated within the phantom torso region
as the percent error of the maximum value in the DSFT images.
Again, the error curves are consistent with the previous cases
and the NUFFT approach agrees with the exact approach
within 0.015%, even for the smallest kernel size (J = 4) and

for each m
pt

T T T
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Fig. 10. Maximum interpolation error (% of projection maximum) of
forward-projection of modified Zubal phantom using NUFFT with KB
interpolator of several sizes J as a function of the KB order m. For each
individual m an optimum « was used. o, in the legend represent global
optimum of the o parameter for the given kernel size.

TABLE 1
MAXIMUM FORWARD-PROJECTION ERRORS FOR DIFFERENT OVERSAMPLING
AND KERNEL SIZES, USING m = (0 AND OPTIMUM «

Oversampling J=4 J=5 J=6 J=7

K/N=1 5.21% 2.27% 2.94% 1.17%
K/N=1.5 0.11% 0.021% 0.0039% 0.00033%
K/N=2 0.061%  0.0037%  0.00078%  0.000042%
K/N=3 0.033%  0.0011%  0.00019%  0.000007%

K/N = 2. Table II shows maximum back-projection errors for
optimum shape parameters for different levels of oversampling
K/N and for different kernel sizes .J.

C. Forward and Back-Projector Within Iterative
Reconstruction

Since iterative algorithms require repeated forward and
back-projections, it is conceivable that even small errors in
the reprojector could accumulate. To study practical perfor-
mance of the NUFFT forward and back-projector within the
iterative reconstruction process, the following experiments
have been performed. We have simulated noisy PET sinogram
measurements (including attenuation, randoms, and scatter)
from the 128 x 128 Zubal phantom. We have simulated a
parallel-beam tomographic system with a sinogram size of 160
radial bins by 192 angles over 180°. We have run 17 itera-
tions of the conjugate gradient algorithm for a data-weighted
least-squares cost function [37] with a standard quadratic
first-order roughness penalty. The presented results were
obtained using a model of rectangular detector response with
a pixel basis function, consistent with the preceding subsec-
tions. For the Fourier-based approaches, we have repeated
reconstruction studies with a data model involving spatially
invariant bell-shaped detector response of equivalent width
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Exact DSFT H 2 Fourier NUFFT w o Space Based B-Proj H 2
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Zubal phantom 5 |NUFFT-DSFT| - |SBBP-NUFFT]| .

0 rms=0.009% max=0.015% rms=0.22% max=1.2% 0

Fig. 11.

Example of images obtained by back-projection of filtered sinograms (192 projections) of Zubal phantom (bottom left) using exact Fourier-based

back-projector (DSFT) (top left), Fourier-based back-projector using NUFFT with optimized KB kernel (K/N = 2,m = 0,J = 4, and o/ .J = 2.35) (top
middle) and a space-based back-projector (top right). Illustrative times are for Matlab implementations. Inconsistency between the back-projection times shown
here and the corresponding forward-projection times shown in Fig. 8 is caused by the memory access ordering in the Matlab implementation. Back-projection and
forward-projection would take about the same time with special-purpose implementations. Bottom (middle and right) row shows corresponding absolute difference
images (including measures of root-mean-square difference and maximum absolute difference) with respect to the exact Fourier back-projector (DSFT) (bottom

middle), and Fourier NUFFT projector (bottom right).
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Fig. 12.  Maximum interpolation error (% of phantom maximum) of discrete

back-projection using NUFFT with KB interpolator of several sizes J as a
function of the parameter «v. Same set of parameters used as for the Figs. 5
and 9.

to the image grid size and modeling image representation
by smooth (blob) basis functions. Examples of reconstructed
images using Fourier-based and space-based forward and
back-projectors and corresponding absolute difference images
are shown in Fig. 14. The reconstructed images using DSFT,
NUFFT and space-based projectors with pixel basis functions
(top row) are visually indistinguishable. Reconstructions with
an image model involving smooth basis functions (illustrated
at the bottom left) provide decreased noise levels, as expected.

The errors of NUFFT-based forward and back-projectors
within the iterative reconstruction, as compared to the re-
construction using exact FT projectors (DSFT), have been
evaluated for the same set of parameters as in the previous

Back-Proj Error for KIN=2 and o tfor each m
op!

J=4 o._=23J ' ' ‘ ‘
opt

J=5 a_=2.35J E
opt
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Fig. 13. Maximum interpolation error (% of phantom maximum) of discrete
back-projection using NUFFT with KB interpolator of several sizes J as a
function of the KB order rn. For each individual 1 an optimum « was used.
,py¢ in the legend represent global optimum of the o parameter for the given
kernel size.

TABLE 11
MAXIMUM BACK-PROJECTION ERRORS FOR DIFFERENT OVERSAMPLING AND
KERNEL SIZES, USING 1 = 0 AND OPTIMUM «

Oversampling J=4 J=5 J=6 J=7

K/N=1 9.10% 1.32% 1.75% 0.71%
K/N=1.5 0.099% 0.020% 0.0042% 0.00068%
K/N=2 0.015% 0.0015% 0.00034% 0.000019%
K/N=3 0.0075%  0.00044%  0.000063%  0.000002%

cases. The maximum error has been calculated within the
phantom torso region and expressed as the percent error
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Fig. 14. Example of QPWLS-CG reconstructions (17 iterations) of thorax phantom using exact DSFT (top left), Fourier-based NUFFT with optimized KB kernel
(K/N =2,m =0,J = 4,and o/ J = 2.55) (top middle) and space-based (SBR) (top right) forward and back-projectors. Illustrative times are for Matlab
implementations. Bottom left is illustration of NUFFT iterative reconstruction including modeling of a blob basis function and bell-shaped detector resolution
kernel. Bottom (middle and right) row shows corresponding absolute difference images (including measures of root-mean-square difference and maximum absolute
difference) with respect to the exact Fourier projectors (DSFT) (bottom middle), and Fourier NUFFT projectors (bottom right).

Reconstr Error for 17 iterations, K/N=2 and m=0
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Fig. 15. Maximum interpolation error (% of phantom maximum) of 17
iterations of QPWLS reconstruction using NUFFT forward and back-projectors
with KB interpolator of several sizes J as a function of the parameter . Same
set of interpolation parameters used as for the Figs. 5, 9, and 12.

relative to the maximum value in the phantom. The error
curves (Figs. 15 and 16) show again similar behavior, with the
optimum slightly shifted toward higher parameter o values.
This is probably caused by the fact that the phantom does
not cover the whole image region (essentially constituting
additional zero-padding). The maximum error is below 0.06%
for the smallest kernel size (J = 4) and K/N = 2. Table III
shows the maximum reconstruction errors for optimum shape
parameters for different levels of oversampling K /N and for
different kernel sizes .J. Fourier-based reconstructions with an
image model involving smooth basis functions showed similar
comparisons with slightly decreased errors, as shown in [36].

Reconstr Error for 17 iterations, K/N=2 and o tfor eachm
10° - . T T T -
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Fig. 16. Maximum interpolation error (% of phantom maximum) of 17
iterations of QPWLS reconstruction using NUFFT forward and back-projectors
with KB interpolator of several sizes .J as a function of the KB order m. For
each individual m an optimum a was used. a,,,¢ in the legend represent global
optimum of the o parameter for the given kernel size.

TABLE III
MAXIMUM RECONSTRUCTION ERRORS FOR DIFFERENT OVERSAMPLING AND
KERNEL SIZES, USING 1 = 0 AND OPTIMUM «

Oversampling J=4 J=5 J=6 =7

K/N=1 0.59% 0.23% 0.056% 0.031%
K/N=1.5 0.098%  0.0081%  0.0011% 0.00055%
K/N=2 0.057%  0.0032%  0.00023%  0.000034%
K/N=3 0.039%  0.0020%  0.00010%  0.000010%
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Fig. 17. FBP (serving as initial image) (top left) and T-PL-OSPS reconstructions (200 iterations) from transmission data (from ECAT-921 scanner) of physical
thorax phantom using Fourier-based NUFFT with (theoretically) optimized KB kernel (K/N = 2,m = 0,J = 4, and «/J = 2.34) (top middle) and
space-based (SBR) (top right) forward and back-projectors. Illustrative times are for Matlab implementations. Bottom left is illustration of NUFFT iterative
reconstruction including modeling of a blob basis function and bell-shaped detector resolution kernel. Bottom right is absolute difference image (including measures
of root-mean-square difference and maximum absolute difference) between reconstructions using Fourier-based NUFFT and space-based projectors.

V. ITERATIVE RECONSTRUCTION USING REAL DATA

The performance of the Fourier-based forward and back-
projectors within iterative reconstruction has been further tested
(and compared to the space-based projectors) using real PET
data. For this study, we have used transmission data of a physical
torso phantom acquired on the clinical scanner ECAT-921. The
data contained 160 radial bins by 192 angles over 180°, with
projection ray size 3.38 mm and reconstructed image pixel
size 4.22 mm. The attenuation image has been reconstructed
using 200 iterations of the transmission penalized-likelihood
algorithm T-PL-OSPS [38] (with number of subsets equal to
one) initialized by the filtered-backprojection image (shown
at top left in Fig. 17). Although the number of iterations used
in practice would be much lower, we have run the algorithms
for 200 iterations to test if there is any accumulation of
errors or any instability in the Fourier-based approach, as
the iterations progress. The Fourier-based approach showed
stable behavior consistent with the space-based approach. The
observed measures of the difference between the two approaches
did not change by more than 1% (of their respective maximum
values at iteration 200, reported in Fig. 17) during the last
110-120 iterations.

Examples of reconstructed images using Fourier-based and
space-based forward and back-projectors and a corresponding
absolute difference image are shown in Fig. 17. Horizontal pro-
files through the center part of the reconstructed images are
shown in Fig. 18. The reconstructed images using NUFFT and
space-based projectors with pixel basis functions (Fig. 17 top
middle and right, Fig. 18 solid line profiles) are visually indis-
tinguishable. Reconstructions with an image model involving
smooth basis functions (illustrated in Fig. 17 at the bottom left)
provide decreased noise levels while preserving the edges (see
dashed line profile in Fig. 18).

Horizontal profiles (65-th row)

\
|
1
)
0.02 =
—— Space-Based Reconstruction

001 f —— Fourier NUFFT (pixel basis) 4
- - - Fourier NUFFT (blob basis) i

20 40 60 80 100 120

Fig. 18. Horizontal profiles through the iterative reconstructions shown
in Fig. 17. Space-based and Fourier-based reconstructions using pixel basis
functions (solid lines) are closely overlapping. Fourier-based reconstruction
modeling blob basis function (dashed line) provides lower noise levels
(while preserving edges), in agreement with our previous experiences with
(space-based) iterative reconstructions using blob basis functions [35].

VI. DISCUSSION

The results reported within this paper were obtained for the
2-D case. The illustrative computation times reported in the
figures are for Matlab implementations. The Fourier-based
forward and back-projectors were found to be more than 10
times faster compared to their space-based counterparts (see
Figs. 8 and 11). Similar speed-up is expected for optimized
special-purpose implementations of both approaches. The
Fourier-based approaches can be straightforwardly extended to
the 3-D case as was done for the 3-D version of direct Fourier
method (3D-FRP [25]), which involved both back-projection
and forward-projection (reprojection) operations. Extrapolating



MATE] et al.: ITERATIVE TOMOGRAPHIC IMAGE RECONSTRUCTION USING FOURIER-BASED FORWARD AND BACK-PROJECTORS 411

from experience with the 3D-FRP [25], the fully 3-D iterative
approaches using Fourier-based projectors will have the po-
tential to speed-up the reconstruction time about 5-10 times
for images of size 1283, and this speed-up will be increasing
with the image size. An additional substantial speed-up of
Fourier-based approaches is feasible using relatively cheap
off-the-shelf FFT processor boards. The speed-up of the
reconstruction approaches is very important, as supported by
the observations [6] that the data volumes in modern PET
systems might be increasing at a faster rate than the increase of
computer power as described by Moore’s law.

It is worth mentioning that the two Fourier-based reconstruc-
tion approaches mentioned above (3D-FRP and iterative), both
use back-projection and forward/reprojection operations and,
thus, both benefit considerably from the Fourier-based forward
and back-projectors, but the two approaches are quite distinc-
tive in nature. 3D-FRP is based on the discretized inverse Radon
formula derived for the ideal continuous model and the image is
obtained in one pass through the data which are weighted in the
frequency domain for the sampling density of the data spectrum
and for nonuniformities introduced by the interpolation. On the
other hand, the Fourier-based iterative approaches, which are
the focus of this paper, are derived based on a discrete image and
data acquisition model while taking into account data statistics.
Here, the image is gradually built-up and/or refined (based on
particular discrepancy and update operations) through an itera-
tive process, and the image update step is based on the simple
back-projection (without data filtering) which is an adjoint op-
eration to the forward projection.

Direct application of the NUFFT approach is limited to
uniformly spaced parallel projection data. However, it can
be easily extended to fan beam, cone beam, or any other
kind of data that can be resorted into sets of parallel lines
with nonequidistant spacing. In this case, by using the duality
principle, the nonuniform raster is defined by the distribution of
the parallel projection lines for each direction # and the NUFFT
output is the uniform spectral raster of the projection data on #=.
This operation (or its adjoint) replaces the operation of (I)FFT
of projections within the NUFFT back (forward)-projectors
described in Section II-B. On the other hand, it should be
mentioned that the Fourier-based approaches are not applicable
to the unsorted (e.g., list-mode) data.

A noteworthy property of the Fourier-based approaches is
that they can be straightforwardly applied to the case of data
and/or image defined on the efficient spatial grids (hexagon in
2-D case and body-centered cubic grid in 3-D case [39]) thanks
to the existence of efficient FFT algorithms for those grids.

Finally, it is important to emphasize that we have been
utilizing KB window functions in two quite distinct ways
within the framework of the Fourier-based iterative approaches.
First, the KB window has been utilized as the localized in-
terpolation kernel in the spectrum-domain interpolation—the
crucial NUFFT operation. Second, it has been used in the
optional operation of modeling of the spatial-domain image
basis function. These are independent operations having quite
different requirements on the KB window shape, as illustrated
in Section III.

VII. CONCLUSION

Our results show very good agreement of the theoretical
min-max error analysis of the NUFFT forward and back-pro-
jectors with their practical performance. Consequently, the
min-max approach offers a valid and practical framework for
the optimization of the NUFFT interpolation parameters.

Our results further show that the NUFFT-based forward and
back-projectors with the min-max optimized KB interpolation
are fast and very accurate. In particular, their approximation er-
rors have been found to be extremely low as compared to the
exact discrete Fourier transform approach, and they have mani-
fested a very good match to the space-based projectors, even for
small oversampling and interpolation kernel sizes. For example,
it has been observed that for the optimized KB interpolators it
might be sufficient to use just 50% FFT oversampling and the
interpolation kernels of diameter spanning just4 to 5 grid points.

In summary, it has been demonstrated that the Fourier-based
forward and back-projectors utilizing the NUFFT approach pro-
vide fast and extremely accurate tools for iterative tomographic
reconstruction. The Fourier-based projectors are especially at-
tractive for the fully 3-D iterative reconstruction approaches in
PET characterized by very large data volumes. An additional
advantage of the Fourier-based approaches is the possibility of
utilizing the powerful and cheap off-the-shelf FFT processing
hardware.
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