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Intensity-Based Image Registration Using Robust
Correlation Coefficients
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Abstract—The ordinary sample correlation coefficient is a
popular similarity measure for aligning images from the same
or similar modalities. However, this measure can be sensitive to
the presence of “outlier” objects that appear in one image but
not the other, such as surgical instruments, the patient table, etc.,
which can lead to biased registrations. This paper describes an
intensity-based image registration technique that uses a robust
correlation coefficient as a similarity measure. Relative to the
ordinary sample correlation coefficient, the proposed similarity
measure reduces the influence of outliers. We also compared the
performance of the proposed method with the mutual informa-
tion-based method. The robust correlation-based method should
be useful for image registration in radiotherapy (KeV to MeV
X-ray images) and image-guided surgery applications. We have
investigated the properties of the proposed method by theoretical
analysis, computer simulations, a phantom experiment, and with
functional magnetic resonance imaging data.

Index Terms—Image registration, mutual information, outlier,
robust correlation coefficient, robustness.

I. INTRODUCTION

IMAGE registration is a useful technique for aiding diag-
nosis, performing patient set-up estimation for radiation

therapy [1] and for image-guided surgery [2], [3], etc. For the
set-up estimation problem, a preoperative image [usually a
computed tomography (CT) volume] is transformed geomet-
rically to align with measured radiographs. Intensity-based
registration methods work by maximizing a similarity measure
based on the intensity values of the two images. Therefore, de-
signing an effective similarity measure is very important. This
paper proposes a robust similarity measure for intramodality
image registration.

One fundamental design criterion is that a similarity measure
should be maximized at the true registered position in the ab-
sence of noise. Establishing this characteristic analytically is
challenging since the behavior of the objective function depends
on the nature of the images being registered. Another important
criteria is the statistical efficiency of the registration method, i.e.,
the variability that would result from repeating the registration
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with identical images except for noise. In addition, registration
methods can differ in their robustness to the presence of unex-
pected objects in images.

Many intensity-based image registration methods implicitly
treat the intensity pairs taken from corresponding spatial loca-
tions in two images as independent identically distributed (i.i.d.)
samples of two random variables. With that assumption, statis-
tical concepts such as correlation, joint entropy and mutual in-
formation (MI) are used as similarity measures by estimating
those statistical properties from the i.i.d. samples.

The correlation coefficient is a particularly popular similarity
measure, and is a natural choice when registering two images
from the same modality [4], [5]. Although correlation is poor
similarity measure for multimodality image registration, in
terms of statistical efficiency and computational efficiency, the
correlation coefficient is one of the best similarity measures for
intramodality image registration. Since image registration for
set-up estimation in radiation therapy and image-guided surgery
often involves images from the same (or similar) modality, the
correlation coefficient can be useful for those applications.

The sample correlation coefficient has been used widely to es-
timate the correlation coefficient due to its simplicity. However,
a drawback of the sample correlation coefficient is its sensitivity
to outliers [6, p. 199]. Even a few outliers can affect the sample
correlation coefficient greatly and, thus, degrade image regis-
tration performance. A significant number of “outliers” may be
present in the image-guided surgery application due to the pres-
ence of operating instruments and in the radiation therapy ap-
plication due to the effect of radiotherapy table [1]. For X-ray
CT images, differences in contrast agents also occur. Although
a bias in estimating the correlation coefficient need not directly
imply a bias in image registration, we have observed such biases
empirically when outliers are present [7].

The MI similarity measure is used widely for multimodality
image registration since it does not assume any functional rela-
tionship between the two image values [8]–[10]. In this sense,
the MI method has an inherent degree of robustness. However,
as illustrated by our empirical results in Section III and analyses
in the Appendices, for intramodality image registration, the ro-
bustness of the MI method depends on the particular images
being registered. Moreover, the MI method can be statistically
inefficient, i.e., the registration variability due to noise can ex-
ceed that of the sample correlation coefficient.

To overcome the drawbacks of the sample correlation method
and the MI method, we have investigated an image registration
method that uses robust correlation coefficients [6, p. 204] as
a similarity measure, thereby improving the robustness without
compromising the statistical efficiency much.
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Robust estimation of mean and covariance has been studied
extensively in statistics [6], [11]–[13]. The basic idea of robust
estimation is to weight the measured samples in a way that re-
duces the effect of outlier samples, or even removes them com-
pletely.

For example, one may compute the statistical distance of each
sample value from the mean, the Mahalanobis distance, eval-
uate a weighting function based on that distance, and determine
a new weighted mean and covariance and iterate until conver-
gence [12]. Alternatively, one may estimate the probability den-
sity function (pdf) after trimming out the outliers by determining
the minimum volume ellipsoidal pdf [13] or minimum covering
ellipsoidal pdf [11]. A robust mean and covariance may then be
estimated from the estimated pdf.

There were also several investigations that applied robust
statistics for image registration. For example, robust similarity
measures such as weighted square error and nonquadratic error
were applied for registering MRI and other modality images
[14], [15]. The performance of such robust methods were
compared with other methods empirically [16].

In this study, we focused on M-estimation methods for ro-
bust correlation estimation [6, p. 211]. This framework helps
to explain why the sample correlation coefficient is sensitive to
outliers and provides insight into how to design a method with
improved robustness. Moreover, we can explain some proper-
ties of the MI method within the same framework.

Investigating the advantages and disadvantages of using al-
ternative robust correlation estimation methods for image regis-
tration in the presence of outliers is deferred to future research.
Such a study should consider the sample distributions of repre-
sentative images in a particular context.

The paper is organized as follows. Section II reviews the
image registration problem and describes the proposed simi-
larity measure. Section III compares the image registration ac-
curacies of the proposed robust correlation similarity measure,
the conventional sample correlation coefficient and the MI sim-
ilarity measure. Three comparisons are reported: one-dimen-
sional simulation, two–dimensional (2-D) functional magnetic
resonance imaging (fMRI) image registration, and three-dimen-
sional (3-D)/2–D registration of an X-ray CT volume to orthog-
onal radiographs of an anthropomorphic chest phantom.

The appendices present analyses of the statistical proper-
ties of the correlation-based and MI-based image registration
methods by approximating the mean and the variance using
first-order Taylor series expansions [17]. Since image registra-
tion is highly nonlinear and the objective function is an implicit
function of the images, it is challenging to obtain concise and
insightful results from such approximations. Nevertheless, we
summarize some theoretical arguments that complement the
empirical results.

II. THEORY: SIMILARITY MEASURES

The goal of image registration is to find a geometric trans-
formation (rigid or nonrigid), denoted , that aligns two given

images, denoted and , where denotes the spatial co-
ordinates1. Intensity-based image registration methods achieve
this goal by maximizing a similarity measure based on the image
intensity values. If we parameterize the transformation using

(e.g., three translation and three rotation parameters for rigid
transformation), the image registration becomes a parameter es-
timation problem

(1)

where is some measure of the similarity between the
images and . In practice, registration is performed using
finite number of samples and as follows:

(2)

where denotes the sample locations, and where
denotes a spatially transformed (and interpolated) version of

. Since depends on the parameter , all statistical quan-
tities computed using are functions of . However, for sim-
plicity of notation, often we leave this dependence implicit.

Considering the sampling, a more precise expression for the
registration problem is

(3)

where and .
A variety of similarity measures have been proposed for

image registration. Many of these are statistical quantities such
as the correlation coefficient, joint entropy and MI. For such
metrics, there is an underlying assumption that the pairs
are i.i.d. samples of jointly distributed random variables with
some (unknown) joint pdf . This i.i.d. assumption is
somewhat artificial, but nevertheless leads to useful similarity
measures so we continue in this tradition in this paper.

Next we review the usual correlation coefficient similarity
measure and contrast it with our proposed robust correlation
coefficient approach.

A. Correlation Coefficient Estimates

For two random variables and with joint pdf ,
the correlation coefficient is defined as follows:

(4)

where the covariance is

(5)

and where and denote the means, and and
denote the variances of the random variables. Note that (under
mild regularity conditions on ), the correlation coef-
ficient is well-defined even if the pdf is not param-
eterized in terms of it.

Given i.i.d. sample pairs , there are several ways
to estimate the correlation coefficient . For example, one

1We focus on image-to-image or volume-to-volume registration, but the
general approach applies equally to volume-to-projection registration, e.g.,
[1]. Also, we treat s ~t and s ~t as continuous-space functions in the
presentation; in practice, sampling and interpolation are essential [9].



1432 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 11, NOVEMBER 2004

could first use the samples to compute an estimated joint pdf
, and then substitute into (4) to estimate

. The following subsections describe two other approaches.
1) Sample Correlation Coefficient: Perhaps the most pop-

ular way to estimate is the sample correlation coefficient, de-
fined as follows:

(6)

where the sample means, sample variances, and sample covari-
ance are defined in the usual way as follows:

(7)

Relative to alternative methods for estimating the correlation
coefficient, the sample correlation method has the advantage
of simplicity since is an explicit function of the data
samples . Furthermore, on the surface it appears not to
require any specific model for the joint pdf . A minor
drawback is that is not unbiased, even for normal dis-
tributions although it is asymptotically unbiased in that case [18,
p. 90]. More importantly, is not robust to outliers [6,
p. 199], as explained intuitively in the next subsection.

2) Maximum Likelihood Estimates of : An alternative ap-
proach to estimating is the following: a) hypothesize a para-
metric form for the joint distribution of and
that depends on ; b) find the maximum likelihood (ML) esti-
mate of the parameters given the data and ; and
c) determine from the ML parameter estimates. Usu-
ally we will have to compute the ML estimates numerically, so
the estimator will be an implicit function of and . To our
knowledge, previous similarity measures used in image regis-
tration have all been explicit functions of the two images, so the
proposed approach departs from that convention.

We propose to adapt the spirit of this ML approach for the
purpose of robust image registration. However, since the joint
pdf is a somewhat artificial concept in this context,
we do not expect to model the pdf precisely. We con-
sider the model for to be a function chosen by the al-
gorithm designer to impart desirable properties on the resulting
estimates, such as robustness.

Let denote the pairs of corresponding image
intensity values. As usual, we consider the ’s to be i.i.d. sam-
ples of a two-dimensional random vector . Fol-
lowing Huber [6, p. 211], we construct a model for the pdf of

having elliptical contours as follows. First, we choose a non-
negative function for which the corresponding 2-D circularly

symmetric density integrates to unity over , where
. Then we consider an (unknown) nondegen-

erate transformation that leads to the following
density:

(8)

Under this parametric model, denotes the mean of and the
2 2 covariance matrix of is . In other words,

. For example, if one were to choose

(9)

then (8) would become the bivariate normal distribution.
Having chosen some , one may estimate the mean and

the covariance term from the sample pairs in the spirit of
ML estimation as follows:

(10)

Usually, there is no closed-form expression for the estimates
and , so (10) is an implicit definition.

In classical estimation theory, ideally would be chosen so
that the pdf in (8) agrees with the actual distribution of the

’s. However, since the notion that the ’s are i.i.d. is some-
what artificial in the context of image registration, it is more
useful to think of as a user-selectable function.

To help understand the “ML estimates” (10), we differentiate
(10) with respect to and . Zeroing these expressions yields
the following two necessary conditions [6, p. 212]:

(11)

(12)

where denotes the following weighting function:

(13)

Huber proposed a simple iterative procedure for solving these
two nonlinear equations to obtain the ML estimates [6, p. 215].

After estimating the covariance term , we can extract an
estimate of the correlation coefficient as follows:

(14)

where and denote the ML estimated variances of and
under the assumed model (8).
After finding the estimates and , one can compute the

weighting function to examine the relative in-
fluence of different data values on the estimates. (See Fig. 3(b)
for an example.) The weighting function is plotted in the joint
pdf domain for illustrative purposes only. In practice, one esti-
mates the robust correlation coefficient by solving (11) and (12)
without estimating the joint pdf explicitly.
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If we were to choose (9) for , then the weighting function
in (13) simplifies to . In this special case, there is an
explicit solution for the ML estimates: is simply the sample
mean of the ’s, and is the square root of the inverse of the
sample covariance of the ’s. This corresponds to the well-
known result that the sample correlation coefficient is the ML
estimator for under a bivariate normal density. However, using
constant weighting means that all data points are
weighted equally, even outliers. As a result, the sample mean,
sample covariance, and sample correlation coefficient are all
sensitive to outliers [6].

B. Robust Correlation Coefficient

The nonrobustness of the sample correlation coefficient can
be explained by considering that it is the ML estimator for an
assumed normal distribution, which has “light tails” so outliers
are modeled as being extremely unlikely. Conversely, if an ML
estimate is based on a model distribution that has “heavy tails,”
then data values that are far from the mean have less effect on
the likelihood function. Thus, to design a robust estimator, we
choose a model pdf that has “heavy tails.” One choice would
be the Laplacian distribution, which would correspond to using

for some constant . However, that is not
differentiable at , so the expression (13) is inapplicable.
Instead, we have chosen the following function:

(15)

where is the constant that ensures that (8) integrates to unity.
The constant is a design parameter. For small , this
model approaches the Laplacian distribution, and for large ,
it approaches the normal distribution.

For the choice (15), the weighting function in (13) be-
comes the following:

(16)

Unlike with the normal choice (9), for this model the weighting
of a given data point will decrease with in-
creasing statistical distance from the mean . This has the de-
sirable effect of reducing the influence of outliers that are, by
definition, data points that are far from the mean.

We can make no claim of optimality of the choice (15). In-
deed, the optimal choice would depend on the actual “distribu-
tion” of the ’s, which is unknown in practice. The function

is simply a design parameter for our robust estimator. For
example, one could try to increase robustness relative to (16) by
using the following weighting:

(17)

One may use many different weighting functions to compute
robust correlation coefficients. Although it may be challenging
to compare relative robustness among different weighting func-
tions, any underlying pdf with heavier tails than a normal dis-
tribution should improve robustness relative to the conventional
sample correlation coefficient.

Huber’s algorithm for solving (11) and (12) is the following
iteration:

(18)

(19)

We initialize using the sample median and using the ma-
trix square root of the inverse of the sample covariance of the

’s. We then continue to iterate until two stopping criteria are
satisfied: and

. User-specified constants and control the precision of
solutions.

Unfortunately, Huber’s algorithm for solving (11) and (12)
has been proven to converge only when estimating one of the
two parameters, i.e., or , but not necessarily both [6, p. 237].
However, in practice, the algorithm converged every time in our
simulations and experiments.

In summary, our robust registration method works as follows.
For the similarity measure described in (3), we propose to use
the robust correlation coefficient

(20)

where was defined in (14) for the weighting function defined
in (16) or (17). To maximize with respect to , one must use
some type of search algorithm such as the simplex method [19].
For each trial value of the registration parameter , one must
compute by interpolation, and then compute by applying
Huber’s algorithm. So there are “iterations within iterations” in
this approach; fortunately, the inner iteration converges quite
quickly.

C. Mutual Information

Another similarity measure that has robust characteristics is
mutual information (MI). MI is a measure of the statistical de-
pendence between two random variables. The MI is
defined in terms of marginal and joint entropies as follows:

(21)

Usually, MI is estimated by first estimating the joint pdf
, and then computing the MI using (21). Two popular

pdf estimation methods are the kernel density approach2[20]
and the histogram approach. Kernel density estimates are
smooth and differentiable but can require considerable compu-
tation. Histogram estimates are usually faster to compute but
yield pdfs that are discontinuous functions of the registration
parameter . As a practical compromise, we have used the
interpolated joint histogram method in which the effect of a
sample is distributed to four adjacent histogram bins using

2This is often called the Parzen window method.
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bilinear interpolation; this approach remedies the discontinuity
problem of the histogram with modest computation. Methods
for estimating MI directly from the samples without first esti-
mating a pdf are also under development [21], [22].

D. Analytical Comparisons

Most previous studies of image registration methods have fo-
cused on empirical comparisons. The appendices of this paper
describe approximate analyses of the statistical properties of
image registration methods using mean and variance approxi-
mations presented in Appendix A. We used these approxima-
tions because exact analytical expressions are unavailable since
the estimator for image registration is defined implicitly as the
maximizer of an objective function. Even if an analytical ex-
pression were available, finding exact expressions for the mean
and variance would still remain difficult since the estimator is
a nonlinear function of the images.

Our approximation method uses a first-order Taylor series ex-
pansion of the estimator about the mean data, an approach that
has been used successfully for image reconstruction problems
[17]. By comparison, the estimators used for image registration
are more nonlinear, but we proceed with linearization neverthe-
less, hoping for insights.

For simplicity we focus on the asymptotic case as the number
of image samples increases to infinity, i.e., the images are con-
tinuous-space functions. In addition, if there are no outliers,
we assume that two images being registered are the same im-
ages except for the geometric transformation and additive white
Gaussian noise.

The main points of the analyses can be summarized as fol-
lows. First, if there are no outliers, the sample correlation-based
estimator is unbiased and is the most efficient (i.e., the esti-
mator that has the smallest variance) among unbiased estima-
tors. We argued that the sample correlation-based estimator is
unbiased since the sample correlation coefficient without noise
is maximized at true registered position3. Regarding efficiency,
the sample correlation-based estimator is the most efficient one
among unbiased estimators since it is the maximum-likelihood
estimation (MLE) [23], if there are no outliers. The variance ap-
proximation of the sample correlation-based estimator matches
the Cramer-Rao bound (see Appendix C). However, the sample
correlation-based estimator can be significantly biased due to
outliers as argued in Appendix B. In summary, the sample cor-
relation-based estimator has good properties such as unbiased-
ness and efficiency, but poor robustness to outliers.

For the robust correlation-based estimator, if there are no out-
liers, we argue that it is also unbiased using the similar approx-
imation as for the sample correlation-based estimator (see Ap-
pendix B). Moreover, even in the presence of outlier samples,
the robust correlation-based estimator is more robust than the
sample correlation-based estimator since the effects of the out-
lier samples are reduced by smaller weighting (see Appendix B).
However, for data without outliers, the variance of the robust

3In our approximation, if the gradient of an objective function without noise
is zero at true registered position, it is unbiased estimator (see Appendix A).

correlation-based estimator is larger than the sample correla-
tion-based estimator as argued using Cauchy-Shwarz inequality
[24] (see Appendix C).

For the MI-based estimator, it is not easy to argue analytically
that the estimator is unbiased even if there are no outliers. In-
stead, we explain qualitatively why the MI is maximized at the
true registered position. At the true registered position, the es-
timated joint pdf is the most clustered along the line in
the joint pdf domain, thereby making the values of the joint pdf
around the line maxima and values elsewhere minima.
Therefore, the gradient of the estimated joint pdf is zero almost
everywhere, which implies that the MI is maximized since the
gradient of the MI is zero. Nevertheless, due to the smoothing
effect of kernel function,4 it is difficult to prove the unbiasedness
analytically except for some special cases [25].

We also argue qualitatively that the MI-based estimator has
a certain degree of robustness. Suppose that the portion of the
estimated pdf from inliers is the most clustered at the true reg-
istered position but that from outliers is not the most clustered.5

In that case, the estimated MI is maximized at a position where
the entire pdf is the most clustered in average sense. Since the
portion of the pdf from inliers is usually much larger than that
from outliers, the entire pdf is likely to be the most clustered
around the true position. Nevertheless, since the robustness of
the MI method is due to the behavior of the joint pdf rather than
explicitly reducing the influence of outliers, the robustness can
depend greatly on images being registered.

Another interesting perspective is to express MI as a general-
ized weighted correlation coefficient as follows:

(22)
where is
a kind of generalized weighting. The robustness characteris-
tics and statistical efficiency of MI can depend on the images
being registered since the weighting depends on the estimated
joint pdf. For example, if the estimated pdf is a normal distri-
bution, the weighting is almost constant and the MI method is
almost the same as the sample correlation method. In that case,
the MI method can be very efficient, like the sample correla-
tion method. In fact, joint entropy and the correlation coefficient
have a one-to-one relationship for bivariate normal distributions
[26]. For most intramodality images with nonconstant ,
the MI method is less efficient than the sample correlation co-
efficient for Gaussian noise.

In summary, both the robust correlation method and the MI
method have improved robustness but larger variance compared
to the sample correlation method, when noise is Gaussian. Di-
rect analytical comparisons of the statistical properties of the
robust correlation method and the MI method are difficult since
the properties depend not only on design parameters (such as
the underlying pdf for robust correlation method and the pdf es-
timation method for MI method), but also on the images being
registered.

4We consider the kernel density approach since the histogram approach is not
differentiable.

5Apparently, if pdf from outliers is also the most clustered at true position,
there should be no bias due to outliers.
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Fig. 1. Reference signal s ~t (signal being translated to achieve registration)
and observed signal s ~t with outliers and Gaussian noise (STD = 0:3). (a)
s ~t . (b) s ~t .

III. EXPERIMENTAL RESULTS

To evaluate the statistical properties of the proposed image
registration method, we performed three studies: simula-
tions using a synthetic one-dimensional (1-D) signal, affine
2-D-to-2-D registration of fMRI images, and rigid 3-D-to-2-D
registration of a torso phantom.

A. One-Dimensional Simulation

We first consider a 1-D “registration” problem where the
only unknown parameter is the translation of the signal. (This
is called delay estimation in communications.) This problem
illustrates the statistical properties of the registration methods
in the simplest possible setting. Fig. 1(a) shows the reference
signal that must be translated for registration with the
signal shown in Fig. 1(b) that includes both additive
Gaussian noise and a segment of “outlier” signal values.

Using these signals, we computed three similarity mea-
sures as a function of the translation parameter : the sample
correlation coefficient, the robust correlation coefficient using
weighting (17) with and the estimated MI using a 32 32
interpolated joint histogram.

Fig. 2. Sample and robust correlation coefficients versus 1-D translation.

Fig. 2 shows the two correlation coefficients versus , where
the true value is . Due to the presence of the outliers,
the sample correlation coefficient is maximized at an incorrect
translation ( ). This type of systematic offset is
observed for most noise realizations. In contrast, the robust
correlation coefficient is maximized near the true translation
( ), illustrating the robustness of this similarity
measure. This robustness can be understood by considering the
joint histogram shown in Fig. 3(a) and the weighting function

shown in Fig. 3(b) (at the registered position
where ). Although most of the histogram mass lies along
the line, there is a group of outliers that degrade the
conventional correlation coefficient estimate. Fig. 3(b) shows
that the weighting function decreases the influence of those
outliers, particularly those that are far from the primary linear
ridge, thereby providing robustness.

Fig. 4 shows that the estimated MI is maximized at more cor-
rect translation ( ) than the sample correlation co-
efficient. This robustness of MI-based method is expected as ar-
gued in the preceding section.

The preceding results were for a single noise realization, so
they do not fully characterize the bias and variance of the trans-
lation estimates. We performed 1000 noise realizations at each
of several noise levels and computed translation estimates
using each of the three similarity measures for each realization.

Fig. 5(a) shows the empirical translation estimation biases
caused by the presence of the outliers for all three methods. As
expected, the sample correlation coefficient method-based reg-
istration technique was the most sensitive to outliers, as argued
in Appendix B.

The robust correlation-based method showed almost zero bi-
ases for low noise levels but increased biases for high noise
levels. The MI-based method had the similar characteristics to
the robust correlation-based method. However, the bias of the
MI method was larger than the robust correlation-based method
for all noise levels.

Fig. 5(b) shows the standard deviations of the three estima-
tors. As expected, the sample correlation coefficient method had
the smallest variance as argued in Appendix C. Also, shown for
reference is the Cramer-Rao bound computed for a “no outlier”
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Fig. 3. Joint pdf and weighting function at registered position (evaluated on
32� 32 joint histogram). (a) Joint pdf. (b) Weighting function.

Fig. 4. MI similarity measure (32� 32 interpolated joint histogram) versus
1-D translation.

model. In general, one would not expect the sample correlation
method to match this bound for data containing outliers. How-
ever, for the particular signals in Fig. 1(a), (b), the standard de-
viation of the sample correlation method happened to match the
Cramer-Rao bound. The standard deviation of the robust corre-
lation method was almost the same as that of the MI method.

Fig. 5. Biases and standard deviations of the translation estimators versus
Gaussian noise levels. (a) Biases. (b) Standard deviations.

Fig. 6. Standard deviations versus bias of the translation estimators (upper part
for noise STD = 0:4, lower part for noise STD = 0:2).

Since one may trade off robustness and efficiency by
changing design parameter (i.e., for the robust correlation
coefficient method and the number of bins for the MI method),
we investigated bias-variance tradeoff of the estimators to
evaluate the performance of each method.
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TABLE I
COMPUTATION TIME FOR EVALUATING EACH SIMILARITY MEASURE ONE TIME

Fig. 6 shows bias-variance plots of low noise case (lower
part) with noise and high noise case (upper part)
with noise . Design parameters for the robust cor-
relation method were , 3, 4, 5, 6, 8, 10 and for the MI
method were bin size 8 8, 10 10, 12 12, 16 16, 20 20,
24 24, 28 28.

For the robust correlation method, smaller yielded smaller
bias but larger variance. This is consistent with our analytical re-
sults, since smaller values for correspond to a pdf model with
“heavier tails.” The robust correlation coefficient was almost
the same as the sample correlation coefficient when was very
large, as expected. For the MI method, there was a trend that
larger number of bins (i.e., less smoothing) yielded smaller bias
but larger variance. However, for low noise signal, the bias-vari-
ance characteristic of the MI method was very irregular. The
performance of the robust correlation method was better than
the MI method in the sense that the bias was smaller at the same
variance or the variance was smaller at the same bias.

The better performance of the robust correlation method was
achieved at the expense of computation time. Table I summa-
rizes computation time requirement for evaluating each simi-
larity measure one time on 3 GHz Intel Pentium 4 machine and
the average number of iterations required for computing robust
correlation coefficient one time. The computation time for the
sample correlation coefficient was the smallest while the com-
putation time requirement for the robust correlation coefficient
was the most intensive. The computation time for the robust cor-
relation coefficient depends greatly on the design parameter
and the stopping criteria. Note that the robust correlation coef-
ficient for larger was computed more quickly.

For the signals in Fig. 1(a), (b), the MI method showed a cer-
tain degree of robustness to outliers. However, in that example,
the “outliers” in the observed signal had a constant intensity
value. To investigate the behavior of each similarity measure for
a different outlier distribution, we also generated the reference
and observed signal shown in Fig. 7. In this case, the outliers
corresponded to shifting a small portion of the reference signal.

Fig. 8 shows the three similarity measures as a function of the
translation parameter. The sample correlation coefficient as well
as the MI were maximized at incorrect positions due to outliers.
However, the robust correlation coefficient was maximized at
the correct translation. This example partly supports the argu-
ment that the robustness of the MI-based method depends on
the particular images being registered.

B. Two-Dimensional MRI Image Registration

We investigated the three similarity measures for the problem
of registering two functional MRI images acquired with a spiral

-space trajectory. Both images were reconstructed from the

Fig. 7. Reference signal and measured signal with outliers and additive noise.

Fig. 8. Changes of the three similarity measures versus 1-D translation.

same raw data but one image was reconstructed with field inho-
mogeneity correction [27] while the other was without correc-
tion, so the true registered geometric transformation is identity.

Because of field inhomogeneity, there are signal voids in por-
tions of the uncorrected images. We chose these images to test
the registration methods since the true registered position (i.e.,
identity transformation) is known, yet the voids act as outliers.
The robustness of the MI method for occluded images has been
investigated previously [9].

Fig. 9(a), (b) shows the reference image and the target image.
The anterior of the brain shows signal void in target image that
is corrected in the reference image.

We plotted the change of each similarity measure as a func-
tion of vertical translation and scale. Fig. 10(a) shows that the
sample correlation coefficient is maximized at incorrect position
since if we translate the reference image down, brighter pixels
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Fig. 9. Reference fMRI image with field inhomogeneity correction and target
fMRI image without field inhomogeneity correction. (a) Reference image. (b)
Target image.

in the reference image correspond to brighter pixels in target
image better. Moreover, if we shrink the reference image, the
correlation coefficient increases more since the brighter pixel re-
gion in Fig. 9(a) is larger than Fig. 9(b). As a result, the sample
correlation coefficient is maximized at around 5% scaling down
and translation. As expected from the analysis, the
sample correlation-based method was biased due to the outliers.

Fig. 10(b) and (c) shows that the registration errors of both
MI and robust correlation-based estimators are smaller than the
sample correlation-based estimator.

We tested the bias and variance of each estimator using 100
noise realizations. We added Rician noise since noise in recon-
structed magnitude images is Rician [28], whereas noise in MRI
raw data is complex Gaussian. Table II shows the empirical
means and standard deviations based on 100 registration trials of
the three cost functions, for the case case of a horizontal ( ) and
vertical ( ) translation and vertical scaling ( ). The sample
correlation method had the smallest variance but the largest bias
due to the outliers. The robust correlation method had the best
robustness (i.e., the smallest bias due to the outliers) and had
smaller variance than the MI method. The MI method was more
robust than the sample correlation method. The robustness of
the MI method was improved as the number of histogram bins
increased while the statistical efficiency was degraded. These
tradeoffs are consistent with the 1-D simulations.

Fig. 10. Contour plots of the three similarity measures versus vertical scaling
and translation. (a) Sample correlation coefficient. (b) Robust correlation
coefficient. (c) MI.

C. The 3-D/2-D Phantom Study

Previously we conducted an anthropomorphic phantom ex-
periment to evaluate the performance of the set-up estimators
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TABLE II
MEAN (AND STD) OF ESTIMATED REGISTRATION PARAMETERS FOR 2-D-2-D MRI REGISTRATION

Fig. 11. Measured lateral radiograph and computed DRR from 3-D CT image
for 3-D/2-D registration. (a) Measured lateral radiograph. (b) Lateral DRR
computed from 3-D CT volume.

using 3-D/2-D image registration [1]. We estimated six param-
eters, rotations and translations along the , , axes, from two
orthogonal cone-beam projection views. For this study we used
only one lateral view to estimate one rotation parameter and two
translation parameters that are associated with in-plane motion.
We chose this approach to better illustrate the effects of outliers
since only the lateral image had noticeable outliers caused by
the radiotherapy table. For this study, we held the other three
parameters fixed at the “ground truth” values that were estab-
lished by the most accurate marker-based method using eleven
1 mm diameter lead markers attached to the phantom’s surface
[1].

One could estimate the three parameters using 2-D/2-D regis-
tration of digitally reconstructed radiograph (DRR) and the ra-
diograph that geometrically transforms the DRR in 2-D plane to
achieve registration. We did not follow this approach. Instead,

Fig. 12. Estimated joint pdf using 64� 64 interpolated joint histogram and
weighting function corresponding to the proposed robust correlation coefficient,
displayed over the domain of the histogram shown in Fig. 12(a). (a) Estimated
joint pdf at the registered position. (b) Weighting function at the registered
position.

we chose 3-D/2-D registration that computes DRR at each op-
timization step from transformed 3-D CT image. We chose this
approach to demonstrate that general principles explained in this
investigation are also applicable for volume-to- projection reg-
istration.

A 512 512 398 voxel CT image with
0.9375 0.9375 1 mm spacing was acquired on a
GE CT/i scanner with a 140 kv x-ray source. Tattoos were
drawn on the phantom where three alignment laser planes
crossed the phantom to facilitate consistent set-up in a
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TABLE III
MEAN (AND STD) OF ESTIMATED SET-p PARAMETERS FOR 3-D-2-D REGISTRATION

treatment room. Next, the phantom was moved to the treatment
room and it was set up at the isocenter by manually aligning
tattoos to three laser planes in the treatment room. Four
radiographs were obtained from different angles by rotating the
x-ray source and Varian Portal Vision amorphous silicon active
matrix flat panel image detector in 30 increments. For 90
view, we acquired 10 repeated radiographs without realignment
for evaluating the effect of noise on the estimator. The x-ray
source voltage was 6 MV and the detector size was 512 384
pixels with 0.78 mm 0.78 mm spacing. We used only the 90
radiograph (i.e., the lateral image) for the correlation-based
methods and the MI-based method. However, to enhance the
accuracy of the “ground truth,” we used all four radiographs for
the fiducial marker-based method. For all other methods except
for the marker-based method, the planning CT image was
down-sampled by four along each axis to reduce computation
time and memory usage.

For image registration, while geometrically transforming the
CT image, we computed DRR of the transformed CT from the
same angle as the radiograph. The registration is achieved by
maximizing the similarity measure between such DRR and ra-
diograph. We used only the central 400 300 subimage of the
DRR and the radiograph to avoid the effect of the markers which
are not usually used in clinical practice. We have established the
geometry of the EPID imaging systems by determining radia-
tion field edges using simple thresholding method [29].

Fig. 11(a) shows the radiograph and Fig. 11(b) shows the
DRR at the registered position. The radiotherapy table causes
pixels along the rightmost part of the radiograph to be brighter
than the corresponding DRR pixels.

Fig. 12(a) shows the estimated joint histogram from the reg-
istered DRR and radiograph. The histogram has a dominant dis-
tribution along the line and an outlier distribution caused
by the radiotherapy table. Fig. 12(b) shows the weighting func-
tion from the robust correlation estimate. This weighting clearly
reduces the influence of the outliers.

We repeated 10 estimations using 10 acquisitions of the ra-
diograph. Table III summarizes the experimental results. Since
a small rotation error may result in a large registration error
depending on the location of the rotation center, we evaluated
target registration error (TRE) values [30] in addition to param-
eter estimation error values. We computed TRE values at the
spatial locations along the bottom row of in Fig. 11(a), locations
that are far from the rotation center. The average TRE values are
shown in Table III for each method. The experimental results
were consistent with the previous simulation results. The robust
correlation coefficient using (17) with had the smallest
bias due to outliers (i.e., the most robust to outliers). The sample
correlation-based method was the worst in terms of the robust-

ness but the best in terms of the variance. Interestingly, the MI
method showed small variance and small bias as well. We think
that this was because the shape of the estimated joint pdf was
close to a normal distribution and the number of samples from
outliers was small.

IV. DISCUSSION

Statistical properties such as bias, robustness, efficiency
are very important in designing image registration methods.
In previous investigations, the bias of the sample correlation
method for intramodality image registration and that of the
MI method for multimodality registration have been studied
extensively empirically6 [1], [4], [5], [8], [9]. Some authors also
reported that the MI method is more robust to outliers than the
sample correlation coefficient method [1], [31].

The sample correlation is a natural similarity measure for
intramodality image registration [4], [5], [31] and the MI
method performs well for both intramodality [28], [31] and
multimodality image registrations [8]–[10]. Considering only
intramodality image registration, we point out that those two
most well known similarity measures have drawbacks such
as nonrobustness to outliers of the sample correlation method
and statistical inefficiency of the MI method. Moreover, even
though the MI method has a certain degree of robustness for
many cases, it may not be very robust for some cases since the
MI method does not reject nor reduce the influence of outliers
directly.

We have proposed a robust correlation coefficient-based
image registration method to improve the robustness of the
sample correlation method without compromising statistical ef-
ficiency very much. We showed analytically and experimentally
that the robust correlation method has improved robustness but
larger variance compared with the sample correlation method.

The statistical properties of the robust correlation method are
controlled by underlying pdf model. More specifically, one may
improve the robustness by using “heavier tail” underlying pdf
model in (10) at the expense of the efficiency.

For the MI-based method, it is difficult to relate the design pa-
rameters (i.e., joint pdf estimation method) to its statistical prop-
erties analytically. Instead, if we summarize empirical observa-
tions in our simulations and experiments, the MI method be-
come more robust but less efficient when more bins were used.
Roughly speaking, increasing the number of bins is equivalent
to narrowing the Parzen window, i.e., to less smoothing. We also
observed that using joint histograms without interpolation in-
creased variance, and increasing the number of bins excessively

6Since many previous studies ignored the effect of noise, bias was called reg-
istration error.
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led to many local maxima. More analyses are needed to relate
the statistical properties of the MI-based method to the joint pdf
estimation method. One method for designing kernel functions
was proposed in a different point of view [8].

Even when qualitative relationships between design parame-
ters and statistical properties are available, automatic determi-
nation of the design parameters remains challenging. In our sim-
ulations and experiments, we determined for the robust corre-
lation-based method and the number of bins for the MI-based
method empirically. More investigations are required to auto-
mate this selection. Such studies should consider image sample
distributions and noise characteristics in a particular context.

It is challenging to compare the performance of one image
registration method with another since the performances de-
pend both on design parameters and on the images being reg-
istered. Despite the difficulty, if we compare the performance
of the robust correlation method with the MI method based on
our simulations and experiments, the robust correlation method
performed better than the MI method in our 1-D simulation and
2-D MRI simulation in the sense that the variance of the robust
correlation method was smaller at the same bias or the bias was
smaller at the same variance. Interestingly, the MI method was
very efficient in the 3-D/2-D phantom experiments. We suspect
that this was because the estimated pdf shape was close to the
normal distribution as argued in Section II-D.

We believe that there exist several advantages of the robust
correlation method over the MI method. First of all, the robust
correlation method always has robustness to outliers since it re-
duces or rejects the effects of the outlier samples based on the
statistical distances. In contrast, the robustness of the MI method
depends on the behavior of estimated pdf without explicitly ex-
cluding the effects of outlier samples. Therefore, its robustness
can be very image dependent. We suspect that the MI method
may not be very robust for some images, as illustrated in Fig. 7.
Another advantage is that the design parameters of the robust
correlation method relate directly to the statistical properties,
whereas the relationship of the MI method is less clear analyti-
cally.

The disadvantage of the robust correlation method is in-
creased computation time. In our simulations and experiments,
computation time for the robust correlation coefficient increased
when “heavier tail” underlying pdfs were assumed. Since the
robust correlation coefficient by -estimation method requires
numerical optimization, the computation time depends not only
on the images being registered and the underlying pdf but also
on the stopping criteria. However, for nonrigid registration
problems, computing the warping interpolations is likely to
outweigh the cost of evaluating the similarity measure.

Conceivably the performance of the MI method could be
improved by designing different MI estimation methods and/or
using more generalized Rényi entropy [9], [26]. Similarly, one
might improve the robust correlation method using different
robust techniques for estimating the correlation coefficient
[11]–[13].

The sample correlation-based estimator is the most effi-
cient estimator among unbiased estimators when noise is i.i.d.
Gaussian and there are no outliers (see Appendix C). Even
though the noise was not Gaussian in practice (Rician for MRI

simulation, Poisson for 3-D/2-D experiment) and outliers were
present, the sample correlation method was the most efficient in
all of our simulations and experiments. We suspect that this is
because Rician and Poisson noise are approximately Gaussian,
although the variance at each pixel is not the same.

Analysis using mean and variance approximations provided
qualitative arguments about the statistical properties of the
intensity-based image registration methods. By choosing the

-estimation method for robust correlation estimation, we
were able to analyze the robust correlation and the sample cor-
relation within the same framework. In addition, we were able
to analyze the MI-based method by representing estimated MI
as a type of weighted correlation. Beyond the analysis carried
out in this investigation, it would be desirable if the statistical
properties of estimators can be related analytically to design
parameters. For example, if one can approximate the bias and
variance of the MI-based estimator as a function of Parzen
window width, that approximation can be very useful. Since
the statistical properties of the image registration methods have
not been analyzed much, we expect that our analysis can be a
first step for further investigations.

V. CONCLUSION

We have introduced a novel intensity-based similarity
measure, a robust correlation coefficient, to design an image
registration method that is robust to outliers. Using the proposed
image registration technique, we achieved improved robustness
relative to the sample correlation-coefficient-based method
without compromising statistical efficiency much. Moreover,
in 1-D simulation, 2-D and 3-D experiments, the proposed
method performed better than the well-known MI-based image
registration method. We believe that the robust correlation
coefficient is an effective similarity measure for intramodality
image registration task where the presence of the outliers is
unavoidable such as set-up estimation for radiotherapy and
image-guided surgery.

APPENDIX A
MEAN AND COVARIANCE APPROXIMATION

This appendix presents approximations for the mean and vari-
ance of implicitly defined estimators such as (1). Let be
an objective function depending on unknown parameter and
noisy measurement . We assume that the objective function
has a unique maximum for any and that one can find the max-
imum by zeroing the partial derivatives of to determine
the estimates :

(23)

Since is an implicit function of , it is difficult to determine
its exact mean and variance. To approximate its mean and vari-
ance, we linearize the gradient of .

Define the column gradient of the objective function as fol-
lows:

(24)
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where the th element of operator is . Lin-
earizing around the true parameter by the first-order
Taylor series expansion yields

(25)

where the th element of operator is .
We assume that is a positive definite symmetric
matrix so that its inverse is well defined. Since by
(23), the estimator can be approximated as follows:

(26)

Rearranging (26) yields the following bias approximation:

(27)

where possible approximations for matrix include

(28)

The covariance of the estimator is approximated as follows:

(29)

One may approximate the mean and covariance further by lin-
earizing with respect to the measurements as devel-
oped previously [17].

APPENDIX B
BIAS AND ROBUSTNESS OF CORRELATION BASED METHODS

This appendix uses the general results from Appendix A to
analyze the bias and robustness of correlation-based registration
methods. Define the noisy measurement . We
represent for notational convenience and

. Without loss of generality, we as-
sume that the volume of the field of view is unity, and the image
empirical means are zero: and .

The empirical variances are, thus,
and .

We analyze the robust correlation method having fixed zero
mean and the following objective function:

(30)

where . The gra-
dient of the objective function is evaluated as follows:

(31)

where , and
.

If with a constant , (i.e., the two
images are linearly related at true registered position),
then since and

. Therefore, the bias
approximation using (27) is zero. This holds not only for
the constant weighting function but also for any weighting
function.

Next, we consider bias due to outliers. Suppose that there
are additive outlier components and noise such that

. In this case, does
not equal zero due to the outliers, in general. For simplicity, we
assume7 that for all . With this assump-
tion, we approximate the Hessian matrix at the true registered
position as follows:

(32)
Plugging (32) and into (27) yields the bias approx-
imation shown in (33) at the bottom of the page.

For constant weighting, such as in the sample correla-
tion method, the estimator can be biased by outliers since

is nonzero in general. For the robust
correlation method, the bias can be reduced significantly by the
weighting in the final bracketed term in (33).

APPENDIX C
EFFICIENCY

The sample correlation coefficient-based method is the MLE
if the two images have constant backgrounds and are identical

7If the backgrounds of the images have constant values, then this assumption
holds for constant weighting (i.e., the sample correlation coefficient).

(33)
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except for geometric transformation and additive i.i.d. Gaussian
noise [32]. Thus, the covariance of the sample correlation-based
estimator asymptotically equals the inverse of the following
Fisher information matrix [23]:

where is the noise power.
For robust correlation-based estimators, we use the covari-

ance approximation developed in Appendix A. First, we approx-
imate the covariance matrix of as follows:

(34)

where . We approximate the matrix
without outliers using (32)

(35)
Finally, the covariance is approximated by plugging (34) and

(35) into (29)

(36)

where and
.

By the vector Cauchy-Schwarz inequality [24], one can prove
the following inequality:

(37)

where means the positive semi-definiteness of ma-
trix , and equality holds iff

for a constant . Thus, any nonconstant
weighting function will yield larger covariance than the ordi-
nary sample correlation-based estimator, whereas the sample
correlation coefficient method achieves (asymptotically) the
Cramer-Rao bound (the inverse of the Fisher information ma-
trix). However, this analysis assumed ,
which is unrealistic in the presence of outliers. When outliers
occur, the noise variance is not uniform. One may also approx-
imate the covariance matrix of each estimator in the presence
of outliers. However, it is challenging to find an inequality such
as (37) for this case.
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