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Abstract—Most positron emission tomography (PET) emission
scans are corrected for accidental coincidence (AC) events by
real-time subtraction of delayed-window coincidences, leaving
only the randoms-precorrected data available for image recon-
struction. The real-time randoms precorrection compensates in
mean for AC events but destroys the Poisson statistics. The exact
log-likelihood for randoms-precorrected data is inconvenient, so
practical approximations are needed for maximum likelihood
or penalized-likelihood image reconstruction. Conventional
approximations involve setting negative sinogram values to
zero, which can induce positive systematic biases, particularly
for scans with low counts per ray. We propose new likelihood
approximations that allow negative sinogram values without
requiring zero-thresholding. With negative sinogram values, the
log-likelihood functions can be nonconcave, complicating maxi-
mization; nevertheless, we develop monotonic algorithms for the
new models by modifying the separable paraboloidal surrogates
and the maximum-likelihood expectation-maximization (ML-EM)
methods. These algorithms ascend to local maximizers of the
objective function. Analysis and simulation results show that the
new shifted Poisson (SP) model is nearly free of systematic bias
yet keeps low variance. Despite its simpler implementation, the
new SP performs comparably to the saddle-point model which has
shown the best performance (as to systematic bias and variance)
in randoms-precorrected PET emission reconstruction.

Index Terms—Accidental coincidences, maximum-likelihood
reconstruction, positron emission tomography (PET), randoms-
precorrected PET.

I. INTRODUCTION

ACCIDENTAL coincidence (AC) events, also known as
randoms, are a primary source of background noise in

positron emission tomography (PET) [1]. AC events occur
when two photons that arise from separate positron emissions
are detected within a coincidence timing window and recorded
as having originated from the same emission [2], [3]. Quantita-
tive PET studies require correction for AC events.
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Usually, PET systems detect coincidence events during
“prompt” windows and “delayed” windows [4], [5]. The de-
layed coincidences represent AC events (or randoms), and the
prompt coincidences represent true coincidences contaminated
by AC events (plus Compton scatter events). In most PET
scans, the prompt data are precorrected for the effects of AC
events by real-time subtraction of the delayed coincidences
[1]. The subtraction compensates for the AC events in terms
of the mean but increases the variance of the data [6]. Ideally,
scanners would maintain both prompt and randoms sinograms.
One could then estimate the mean of AC events from the ran-
doms sinogram [6]–[9] and incorporate these estimates into an
appropriate model for the prompt measurement [3], [6], [8] to
estimate unknown parameters (radioactivity for emission scans
and attenuation coefficients for transmission scans). However,
because of data storage limitations and historical momentum,
most PET centers store the randoms-precorrected data only [5].
This paper focuses on the problem of reconstructing emission
images by considering the measurement statistics based on only
randoms-precorrected data without access to separate prompt
and randoms sinograms. We do assume that a rough estimate of
the randoms contribution is available, such as can be computed
from the block singles rates that are often available [6].

Whereas both (prompt and randoms) sinograms are well
approximated as being Poisson distributed [10], the randoms-
precorrected data do not follow Poisson statistics. The exact
log-likelihood of precorrected data is inconvenient to maximize.
Several practical approximations to the exact log-likelihood
have been investigated [5], [11]–[14]. A shifted Poisson (SP)
model and a saddle-point (SD) model are such approximations
[5], [11]. For transmission scans both SP and SD models have
been shown to outperform conventional ordinary Poisson (OP)
and weighted least squares models in terms of systematic bias
and variance [5], [11], [12]. In transmission image reconstruc-
tion, the SP model seems more attractive than the SD model
since its implementation is simpler but their performance is
comparable.

For emission scans the SP and SD models again lead to lower
variance than the OP model [13]. However, SP suffers from a
positive systematic bias for low counts per ray, albeit generally
less than OP, while SD seems to be free of such a bias [13]. The
systematic bias is caused by zeroing negative sinogram values
(note randoms-precorrected data can be negative) [13]; it can af-
fect contrast and quantitative studies adversely. The zero-thresh-
olding of negative values for SP and OP was a natural choice
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since those models are based on Poisson approximations. More-
over, negative sinogram values can cause reconstruction algo-
rithms like classic ML-EM to diverge. Negative sinogram values
also cause the Poisson log-likelihood to become nonconcave,
and it is difficult to develop algorithms that globally maximize
a nonconcave objective function. By contrast, in a transmission
case, negative values do not cause reconstruction algorithms to
diverge; in fact, they help ensure concavity of the log-likelihood
that otherwise could be nonconcave [14, Sec. 4.6].

To eliminate the positive systematic bias in emission scans,
we propose new SP and OP models that allow negative sino-
gram values, departing from the conventional tendency to zero-
threshold them [13], [15]–[17]. We will henceforth call our new
methods “ ” and “ ” to differentiate from the conven-
tional ones with zero-thresholding that will be called, in this
paper, “ ” and “ .” In contrast to some previous methods
that allow the pixel values to be negative [18], here we en-
force the usual nonnegativity constraint in the image domain
but allow the sinogram values to be negative for and .
We show that negative sinogram values in emission scans need
not cause divergence of appropriate algorithms for and

. Although negative values can cause the likelihood for
or to be nonconcave, one can achieve at least a locally

optimal reconstruction by employing algorithms that increase
the objective function monotonically. We use the “optimization
transfer principle” [19] to derive two monotonic algorithms that
allow negative values: separable paraboloidal surrogates (SPS)
and a variant of maximum likelihood expectation maximization
(ML-EM). Our practical experience is that the locally optimal
reconstruction obtained by monotonic algorithms are very good
regardless of initializations.

We show analytically that our new model is nearly free
of systematic bias (as is the new model) and leads to less
variance than other methods including and filtered back-
projection (FBP); this is corroborated by simulation results in
Section VII. In other words, the new model, our recom-
mended method for randoms-precorrected emission image re-
construction, is comparable, in spite of its simpler implementa-
tion, to SD which has shown the best performance in terms of
systematic bias and variance.

Section II reviews the statistical model for precorrected
measurements and its exact log-likelihood. Section III de-
scribes conventional approximation models and our new ones
for emission scans. We analyze the systematic bias due to
zero-thresholding and the asymptotic variances in Sections IV
and V. Section VI provides monotonic algorithms for the new
models and Section VII gives simulation results.

II. MEASUREMENT MODEL AND EXACT LOG-LIKELIHOOD

Let denote the precorrected measurements
for PET emission scans, where denotes vector and matrix trans-
pose. The precorrected measurement for the th bin is

(1)

where and are the number of coincidences de-
tected within the prompt and delayed windows, respectively.

The prompts and delays can be modeled reasonably as indepen-
dent Poisson random variables [10] as follows:

(2)

(3)

where is the entry in the system matrix incorporating
scan geometry, attenuation, detector efficiencies, etc.;
is the activity at the th voxel; and and are
the means of AC events and scatters, respectively. We assume
that and are known1 in order
to focus on the problem of estimating the unknown activity

based on the non-Poisson distributed
measurements without access to and . In other
words, we investigate the “upper bound” of performance of each
reconstruction method that needs estimates of and . In [9], the
effects of randoms estimates on bias for various reconstruction
methods were investigated. We also assume for all for
simplicity; the analysis and algorithms are easily adopted to in-
clude rays where .

Let be an observed realization of . Since
the measurements are independent, one can obtain the exact log-
likelihood, ignoring constants independent of , as in [5], [11]

(4)

with

(5)

and

(6)

where . For notational simplicity, we omit an
argument indicating the dependence of on in (4) and (6).

For penalized-likelihood (PL) reconstruction, one must find
a maximizer of the objective function

(7)

over a nonnegativity constraint on the image , where is a reg-
ularization term that controls a trade-off of resolution and noise
in the reconstructed image. The exact log-likelihood function
(4) is inconvenient to maximize although it can be expressed
without the infinite summations in (6) using Bessel functions
[14, Sec. 3.2]. Section III describes practical approximations to
the exact log-likelihood.

1Even in a case where one does not have access to the delayed events sepa-
rately, the total number of AC events or the block singles rates are often available
at the end of the scan and can be used to estimate AC rates [6], [20]. Indeed, ap-
proximate models like SP and SD are known to be robust to errors in estimating
AC rates [11]. Regarding scatter estimation and correction, see [6], [21], [22]
for example.
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III. APPROXIMATIONS TO EXACT LOG-LIKELIHOOD

A. Ordinary Poisson Approximation

A simple approach that does not need an estimate of AC
events is to approximate the measurements as Poisson random
variables as follows:

(8)

This model matches the first moment of only. The log-likeli-
hood corresponding to this “ ” approximation2 is of
the form (4) with

(9)

We assume in (9); otherwise, negative values would
cause reconstruction algorithms to diverge since

for and . To avoid such divergence, past
studies of the OP approach [13], [16] for emission scans have
used zero-thresholded values as follows:

(10)

called the “ ” approximation in this paper. (Note the slightly
different use of terms from [13].) The zero-thresholding is nat-
ural in view of the nonnegative nature of Poisson random vari-
ables in (8). Moreover, it guarantees the concavity of ,
and hence the existence and uniqueness of the PL reconstruc-
tion under mild conditions [23]. However, zero-thresholding de-
stroys the first moment matching in (8), and the increase of the
precorrected data by zero-thresholding causes the estimators to
have a positive systematic bias since emission data is linearly
related to activity in the mean. Section IV shows that the seem-
ingly unnatural use of negative sinogram values in the Poisson
framework can alleviate the systematic bias problem of .

B. Shifted Poisson Approximation

An improved approximation is to match both the first and
second moments as follows:

(11)

where in practice one must use an estimate . This “ ” ap-
proximation3 leads to a log-likelihood function of the
form (4) with

(12)

Similarly, its conventional zero-thresholded version uses
[13]

(13)

The zero-thresholding again ensures the concavity of but
also causes positive systematic bias, albeit generally less than
that of since it is more likely that than .
Section IV describes the details.

2The minus sign signifies that this approximation allows negative precor-
rected data y < 0.

3The minus sign signifies that this approximation allows y + 2r < 0.

C. Saddle-Point Approximation

Another approach is to make a second-order Taylor series ap-
proximation in the -transform domain to the probability gen-
erating function and then carry out the inverse transform [24],
[25]. The log-likelihood corresponding to this SD approx-
imation [13] is of the form (4) with

(14)

where

for
for

and

The SD model for emission image reconstruction is free of sys-
tematic bias and leads to lower variance than [13]. Indeed,
in all cases studied to date, the SD model has shown the best per-
formance for randoms-precorrected PET emission reconstruc-
tion. We observe those properties empirically in Section VII.
However, the new , despite its simpler implementation, per-
forms comparably to SD.

D. Log-Likelihood for Prompt Data

If one has access to the prompt data , then one can
use the log-likelihood for the prompt data in the form (4) with

We include this PR model for comparing the bias and variance
of the methods for randoms-precorrected data in Section VII.
Since has lower variance than , it serves as a baseline
for comparing algorithms.

IV. EFFECTS OF ZERO-THRESHOLDING ON BIAS

The sinogram zero-thresholding in (10) and (13) increases the
mean values of the data. This section analyzes the effects of this
shift.

First, we focus on a single ray to investigate the properties of
and . Let be a precorrected measurement modeled

as the difference of two independent Poisson random variables
as follows:

(15)

where and denote the mean number of trues (possibly in-
cluding scatters) and AC events, respectively. The normalized
effective mean of trues are given by

and

as a function of . Note and would be unity
without zero-thresholding. We calculated these expectations
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Fig. 1. Effective means of trues increased by zero-thresholding for OP and
SP . In this figure, randoms fractions in % denote (mean of randoms)/(mean
of trues).

using the Bessel function expression for the probability mass
function for [14, Sec. 3.2] as follows:

where and is the Bessel function of the first kind
of order [26, p. 575]. Fig. 1 shows the results, from which
we infer that 1) for counts per ray higher than 10 (or 1), there
is little effect of zero-thresholding for (or ) as long
as randoms amount to less than 100% of trues, and 2)
generally leads to a higher bias than . For extremely low
counts or low AC rates, and yield similar results.

Next, we consider a one-parameter example for the OP ap-
proach to illustrate how allowing negative values can be helpful
for reducing systematic positive bias. Let the measurements be
the difference of two independent Poisson random variables as
follows:

(16)

for . Setting , ML estimates based on
and models [see (4) with (9) and (10)] with an image non-
negativity constraint have the following analytical solutions:

(17)

and

(18)

Note the zero-thresholding in (17) is due to the image-domain
nonnegativity constraint and not a primary source of the positive

bias, whereas the zero-thresholding in (18) is in the sino-
gram domain from (10). In view of Fig. 1, is more biased
than . For instance, if , , , and

, then the estimator biases can be computed using Fig. 1
with (17) and (18) as follows:

and
. So the model reduces significantly the positive

bias in . This example suggests that when the rays passing
through a particular voxel have low counts but high AC rates,

will yield a higher positive systematic bias than . The
comparison of and would be similar although there
are no closed-form estimators for and like (17) and
(18).

For high counts per ray cases, sinogram zero-thresholding
is not problematic since the probability of negative values is
greatly reduced. Section V investigates the asymptotic behavior
of the estimators for high counts.

V. ASYMPTOTIC ANALYSIS

This section analyzes the asymptotic bias and covariance of
, , and SD estimators for high counts (per ray) cases.

The purpose of the analysis is to compare the estimator prop-
erties rather than to accurately predict estimator behavior. (The
prediction of the mean and covariance of PL or ML estimators
could be conducted following [27]; see [12] for such analysis
for randoms-precorrected PET transmission scans). We focus
on ML estimators for simplicity. We do not consider and

since and should behave quite similarly to
and , respectively, for high counts per ray.

A. Asymptotic Unbiasedness and Asymptotic Covariance

Let the precorrected measurement be
such that

(19)
for where is defined in (5) and represents
a factor proportional to the number of total counts or the scan
time. Define , then4

(20)

as by the weak law of large numbers [28, p. 112] where
and “ ” denotes convergence in

probability. Also,

(21)

as by the central limit theorem [29, p. 61] where
and “ ” denotes

convergence in law (or distribution). Because in (9) is
affine in , we can write the estimate based on as fol-
lows:

(22)

4Note YYY is identical to the sum of n iid random vectors each of which is
identical to YYY .
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(23)

where is of the form (4) with (9). One can show
for all since

attains a maximum over at . We assume
that the system matrix has full column rank, ensuring

uniqueness of the noiseless reconstruction .
One can easily show that and that

is positive definite since has full column rank where
and denote the column gradient oper-

ator and the Hessian operator, respectively. Then is
continuously differentiable at by the implicit function the-
orem [30, p. 668].

Since is continuous at , one can show [28, p. 124]

as , in view of (20). In other words, the estimator
(and as well) is asymptotically unbiased.

Next, we investigate the asymptotic variance for . Since

is continuously differentiable in a neighborhood of ,
it can be shown by the Delta method [29, p. 61], in view of (21),
that

with

where denotes the row gradient oper-

ator. The gradient of the implicitly defined function
(23) can be computed as in [27]. Some manipulation yields the
asymptotic covariance as follows:

(24)
where

Similarly, one can show that the method (and as
well) is also asymptotically unbiased and that its asymptotic co-
variance is

(25)

To analyze the SD case, one needs the following approxima-
tion that, from (14), is valid for large :

(26)

with where

and

The SD estimate can be written as follows:

Since 1) has the unique maximizer (over ), 2)

(note can be shown to be strictly con-
cave) and 3) the approximation (26) becomes more accurate as

increases, it can be shown that the SD method is also asymp-
totically unbiased. By similar manipulations, one can obtain the
asymptotic covariance for SD as follows:

(27)

which is equal to (25).
Both and SD are asymptotically efficient in the following

sense. Noting is asymptotically normal with mean and co-
variance from (21), one can obtain the Cramér-Rao
bound from the asymptotic normal likelihood as follows:

Now one can see and SD asymptotically achieve this bound
from (25) and (27). Note that the exact CR bound appears in-
tractable due to form of (6).

The reasons that and SD are asymptotically efficient are
the following. First, for , the precorrected data are mod-
eled as the Poisson approximation in (11) that matches the first
and second moments, so the SP model approaches the asymp-
totic normal distribution in (21) of the precorrected data in (19)
for large . Intuitively, this suggests that SP estimators approach
ML estimators for large , and consequently, they are asymptot-
ically efficient. Next, noting the SD approximation of a normal
variate is exact, one could also expect SD estimators to approach
ML estimators asymptotically; so, they should also be asymp-
totically efficient.

To summarize, we have shown that all , and SD are
asymptotically unbiased, and we have derived their asymptotic
covariances (24), (25) and (27). We have also shown that
and SD are asymptotically efficient.

B. Comparison of Covariances

We compare the asymptotic variances of and
(equivalently, SD) estimators for a simple one-parameter
example introduced in (16) (see [5], [11] for a similar com-
parison in a transmission case). Using (24) and (25), one
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obtains asymptotic variances (or approximate variances for
high counts) for and :

and

Using the Schwartz inequality [31, pp. 107], one can show

(28)

where equality holds if and only if the
ratios are equal, which is impossible as long as

and . Therefore, the inequality (28) is strict; the variance
of is higher than that of (or SD). This is corroborated
by empirical results for a multi-parameter case in Section VII.

VI. RECONSTRUCTION ALGORITHMS

After choosing a suitable likelihood approximation, one
needs an algorithm to maximize the corresponding objective
function for ML or PL estimation. It is straightforward to use
globally convergent (and monotonic) algorithms5 such as SPS
[32] and ML-EM [34], [35] for PR, , and SD, all
of which have concave log-likelihoods. However, the new

and models can have nonconcave log-likelihood
functions when negative sinogram values are present. The
algorithms need some modifications to ensure monotonicity
for the nonconcave case as well. Monotonicity is one of the
most desirable properties to enable at least a locally optimal
reconstruction.

A large class of monotonic iterative algorithms (including
SPS and ML-EM) are based on the “optimization transfer prin-
ciple”: at each iteration we choose a surrogate function that is
easier to maximize than the original objective function, and then
maximize that surrogate. To ensure monotonicity, the surrogate
function is chosen so that increasing the surrogate guarantees
the increase of the original objective function (for sufficient con-
ditions for such surrogates, see [19], [36], [37]).

The idea for extending the algorithms to allow negative ’s
is to choose a linear surrogate when a marginal log-likelihood
is convex. That is, for , if , a tangent line to
at a current iterate in projection domain

(29)

is a proper surrogate for in light of [36, Eq. 7] since
lies below for all due to convexity of , as illustrated
in Fig. 2.

The same principle applies to when . We
derive modified SPS and ML-EM applicable to and ,
using a linear surrogate (29) when needed.

5Ordered subsets algorithms [32], [33] can also be used with the aim of ac-
celerating convergence speeds at the expense of monotonicity or global conver-
gence.

Fig. 2. Illustration of a linear surrogate q [see (29)] at l = 1 for anOP
log-likelihood h for a negative value y < 0. The concave surrogate q
lies below the objective h that is convex. One can see that q (l; l ) �
q (l ; l ) implies that h (l) � h (l ) for l � 0.

A. SPS for and (and SD)

We consider the PL objective function in (7) with a
quadratic penalty for simplicity:

(30)

where is a regularization parameter that controls
the smoothness of the reconstructed image, denotes the
neighborhood of the th pixel, and is a weighting factor. A
monotonic SPS method for and is readily derived
following [32] with (29). The resulting algorithm differs only
slightly from the ordinary SPS algorithm in [32], and uses the
following iteration:

(31)

with

(32)

where and

,

(33)

in which represents for and for , and
we define

for
for .

(34)

The only difference from the ordinary SPS method (using op-
timum curvatures) in [32] is that here we set to zero for
in (33) (note that never occurs for previous zero-thresh-
olding or prompt models). So one can easily modify existing
codes to apply or . Nonquadratic penalties are in-
cluded as in [32].

Being constructed by the optimization transfer principle, the
iteration (31) increases the objective function every iteration.
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Since the step (32) requires an “extra” backprojection, we often
forego strict monotonicity by replacing the curvatures with
the following precomputed values,

where . This allows to
be computed prior to iterating.

Paraboloidal surrogates algorithms for SD were developed in
[14, sec. 5.6]. A monotonic SPS version has the form of (31)
and (32) with the following curvatures,

otherwise

and

with and where
is a root of a polynomial [14, Appendix E].

In this case for SD, the following precomputed curvatures can
be used for saving computation at the expense of monotonicity,

where , or one could use a simple esti-
mate .

B. Variation of ML-EM for and

Following the derivation of ML-EM in a surrogates frame-
work in [38], using (29), leads to a variation of ML-EM for
and . Although we used SPS rather than ML-EM variants
for the results in Section VII, we provide the ML-EM variants
for completeness as follows (see Appendix for derivation):

(35)

or

with

(36)

where is defined in (34), and

(37)

where

for
for .

(38)

This variation of ML-EM reverts to classic ML-EM [35], [39] as
a special case for nonnegative sinogram values. Regularization
can also be incorporated as in [38]. The steps (36) require an
extra backprojection each iteration compared to classic ML-EM
[35], [39].

Fig. 3. Digital phantom used in simulations. The background, left cold disc,
and right hot disc have relative emission activities of 2, 0.5, and 4, respectively.

VII. SIMULATIONS

A. Methods

To compare the bias and variance properties of the estimators
( , , , , and SD), we simulated two-dimen-
sional (2-D) PET emission scans. The PR model was also in-
cluded for comparison purposes since in this simulation we had
access to and separately.

The synthetic emission phantom shown in Fig. 3 was used; its
warm background, left cold disc, and right hot disc had relative
emission activities of 2, 0.5, and 4, respectively. The sinograms
had 192 radial bins and 120 angles uniformly sampled over
180 degrees. The system matrix was generated using ASPIRE
[40]; the system geometry was approximated with 3-mm-wide
strip integrals and 3-mm ray spacing. We simulated nonuniform
detector efficiencies using pseudorandom log-normal variates
with standard deviation of 0.3. Attenuation was not considered
in this simulation. The reconstructed images were 64 32 with
9-mm pixels. The known and factors corresponded to a uni-
form field of 60% randoms and 10% scatters, respectively.6

The specific aim of the simulation was to compare biases for
low counts and to compare variances for high counts. We per-
formed two studies with and total counts. We gener-
ated 500 realizations of pseudorandom emission measurements
according to (1) with (2) and (3). For each realization, images
were reconstructed using 100 iterations of the SPS method for

counts, and using 40 iterations of the SPS method after 10
iterations of ordered subsets SPS (with 8 subsets) [32] for
counts. The FBP reconstruction for each realization served as an
initial image for the iterations. The number of iterations was de-
termined by looking at objective function values over iteration
for a few realizations to ensure that convergence was reasonably
achieved. For initial FBP reconstructions, a Hanning filter was
used with such a cut-off frequency that their impulse responses
were of 3 pixels full-width at half-maximum (FWHM).

For regularization, we used a second-order quadratic penalty
(30) where is 1 for horizontal or vertical neighborhoods,

for diagonal neighborhoods, and 0 otherwise. It is impor-
tant to match the spatial resolution in reconstructed images for
a fair comparison of different estimators. Penalty functions can
be designed to achieve spatially uniform resolution [41]–[43].
However, in this simulation, we used a simpler hybrid technique

6The fractions in % denote (mean of randoms)/(mean of trues) and (mean of
scatters)/(mean of trues), respectively.
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[43] consisting of two steps: 1) for each method, we adjusted a
global regularization parameter so that the local impulse re-
sponse7 at the center pixel was of 1.5 pixels FWHM, and then
performed PL reconstructions; 2) we applied a 2-D Gaussian
postsmoothing filter to the PL reconstructions so that the overall
local impulse response (at the center pixel), which is the convo-
lution of the postsmoothing filter and the original local impulse
response (of 1.5 pixels FWHM), achieved a target resolution of
3 pixels FWHM.

This technique enables us to obtain reconstructions with var-
ious target resolutions by simply changing the postsmoothing
filter. As the postsmoothing filter becomes wider (higher
FWHM), the overall resolution becomes more uniform spa-
tially since postsmoothing dominates the overall response. To
check the spatial uniformity, the overall resolutions at every
third pixel were investigated and it was found that, except the
2 pixel wide strip along the phantom boundary, each pixel
achieved the target resolution (3 pixels FWHM) within 5%
errors for all estimators—reasonably uniform resolution.

B. Results

Fig. 4(a) shows the profiles through the sample mean images
of different estimators for counts—very low counts. Both

and showed large positive systematic biases particu-
larly in the cold spot (pixels 12–25) and near the ends (phantom
boundary). Zero-thresholding in sinogram domain contributes
to the positive bias since the rays passing through those regions
(cold spot and boundary) have low counts, as discussed in Sec-
tion IV. Overall the systematic bias of was slightly larger
than that of , as predicted in Section IV.

On the other hand, other methods ( , , SD, and PR)
seem reasonably free of such a bias. However, some positive
biases are present in the cold spot (pixels 12–25) for , ,
SD, and PR. The positive bias in the cold spot is mainly due to the
interaction of the image-domain nonnegativity constraints and
the large variances, which causes the nonnegativity constraints
to be active frequently and, consequently, increases image mean
values. Note the bias is not due to zero- thresholding in sinogram
domain since PR does not require any such thresholding. The
coefficients of variation for those methods are larger than 100%
in the cold spot in Fig. 4(b). In fact, the positive biases in the cold
spot for and are caused by both sinogram-domain
zero-thresholding and image-domain nonnegativity combined
with large variances. Also, note small negative biases in back-
ground and hot regions for , , SD, and PR in Fig. 4(a).
Our hypothesis is that the positive bias in the cold spot tends to
decrease image values in other regions since the reconstruction
methods try to make projections of image values close to given
sinogram data. However, it is hard to analyze the effects of

7The approximate expression for the local impulse response, which could be
interpreted as the point spread function, of an implicitly defined estimator was
given in [41, Eq. 14]. It can be computed efficiently using 2-D fast Fourier trans-
forms by assuming local shift-invariance as in [42, Eq. 9]. All resolutions in
this paper (except those of simple linear FBP reconstruction) were computed
as FWHM of the local impulse response (at a specific pixel) obtained using
the methods in [41], [42]. One might doubt the feasibility of the approximate
expressions in a low-counts-per-ray case where nonnegativity constraints are
often active; however, in Section VII, (the sample means of) reconstructed im-
ages seem to have reasonably matched resolutions for different methods even
for extremely low counts per ray.

Fig. 4. (a) Horizontal profile through sample mean of estimators for 2K

counts. (b) Horizontal profile through sample standard deviation of estimators
for 2K counts.

image-domain nonnegativity constraints or to study them even
experimentally since we would need, for comparison purposes,
new models and algorithms (like NEG-ML in [18]) allowing
negative image values. Further investigation is needed, and it
would be interesting future work. To summarize, the results
showed that both and SD were comparable to PR, the
baseline reconstruction, and that they were free of systematic
bias caused by sinogram-domain zero-thresholding which
appeared in and .

As shown in Fig. 4(a), FBP was nearly unbiased since image-
domain nonnegativity constraints are not imposed on the FBP
reconstruction. However, it showed significantly large variances
in Fig. 4(b). Although not shown here, we found that even if FBP
is constrained by image nonnegativity, it still shows larger bias
and variance than other methods [44].

Fig. 5(a) shows the profiles through the sample mean images
of different estimators for counts—high counts. All of the
methods are seen to be unbiased, as predicted from the analysis
in Section V. Fig. 5(b) shows profiles through the sample stan-
dard deviation images. FBP again showed the highest standard
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Fig. 5. (a) Horizontal profile through sample mean of estimators for 2M

counts. (b) Horizontal profile through sample standard deviation of estimators
for 2M counts.

deviation and PR showed the lowest as expected. and SD
showed similar performance, and led to higher standard
deviation than both of them. These empirical results corrobo-
rate the analysis of asymptotic variance in Section V. For each
pixel, we computed the ratios of the sample standard deviation
of different methods to the sample standard deviation of PR
(see [44] for histograms of the ratios), and the means (over the
entire image) of the ratios were 1.20 for FBP, 1.16 for ,
1.11 for , and 1.12 for SD. This also supports the claim
that both and SD lead to less variance than (and
FBP).

Whereas performed comparably to SD, the computation
time for reconstruction was shorter than SD by 3–20% (de-
pending on curvature type and counts) for the image and sino-
gram size here in our C and MATLAB implementation. How-
ever, as the image and sinogram size increases, the difference in
computation would become smaller since projection and back-
projection operations will contribute more significantly to the
computational cost.

VIII. CONCLUSION

We proposed new log-likelihood approximations ( and
) for randoms-precorrected PET emission image recon-

struction by allowing negative sinogram values and also devel-
oped algorithms (SPS and ML-EM variants) for the new models.
The new methods are free of the positive systematic bias that
degrades and images. The positive biases appearing
in and are more distinguishable in low counts per
ray regions such as cold spots, the boundary of an object, or
high attenuation regions rather than depending solely on total
counts. Our new models seem particularly promising for fully
three-dimensional PET emission scans where AC rates are high
and photon counts per ray can be low, essentially for newer scan-
ners with small crystals.

The new model yields less variance (than and
FBP). Its performance is comparable to SD in terms of sys-
tematic bias and variance; yet its implementation is simpler.
Indeed, when implemented with the usual ordered-subsets ap-
proach [23], the modified OS-SPS algorithm presented in this
paper for the new model has essentially the same compute
complexity as the popular OS-EM method for PET.

We recommend the PR method if the prompt and the randoms
data are accessible separately; however, if only randoms-pre-
corrected data are available, the new is our recommended
method.

APPENDIX

DERIVATION OF A VARIATION OF ML-EM FOR AND

Define and
with where ,

, and are defined in (5), (34), and (38), respectively. Then,
by concavity of log [38]

where is defined in (37) and is a constant with respect to
. On the other hand, since is convex for

where is a constant with respect to . Since

and , one can show is a proper
surrogate [36] for . The surrogate can be max-
imized by setting its derivative to zero, and as a result, its max-
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imizer is calculated as (35). Because of the optimization
transfer principle, this derivation ensures monotonicity.

The following is an alternative “intuitive” but not rigorous
derivation. The partial derivatives of the log-likelihood func-
tion or at a nonnegative maximizer are, by the
Karush–Kuhn–Tucker conditions [30, p. 310]

where and are defined in (34) and (37), respectively. So,
for

Moving the subtracted term to the other side (cf. [45], [46]) leads
to the following:

The ratio of these terms yields the multiplicative update (35). In
other words, is a fixed point of the iteration (35), and so is it
for .
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[6] E. Ü Mumcuoǧlu, R. M. Leahy, and S. R. Cherry, “Bayesian reconstruc-
tion of PET images: Methodology and performance analysis,” Phys.
Med. Biol., vol. 41, no. 9, pp. 1777–1807, Sept. 1996.

[7] M. E. Casey and E. J. Hoffman, “Quantitation in positron emission com-
puted tomography: 7 a technique to reduce noise in accidental coinci-
dence measurements and coincidence efficiency calibration,” J. Comput.
Assist. Tomogr., vol. 10, no. 5, pp. 845–850, 1986.
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