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Intensity-based Image Registration using Robust
Correlation Coefficients
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Abstract—The ordinary sample correlation coefficient is a locations in two images as i.i.d. (independent and identi-
popular similarity measure for aligning images from the same or cally distributed) samples of two random variables. With
similar modalities. However, this measure can be sensitive to the o+ assumption, statistical concepts such as correlation, joint

presence of “outlier” objects that appear in one image but not ¢ d tual inf fi M d imilarit
the other, such as surgical instruments, the patient table, etc., entropy and mutual information (MI) are used as similarity

which can lead to biased registrations. This paper describes an Mmeasures by estimating those statistical properties from the
intensity-based image registration technique that uses aobust i.i.d. samples.

correlation coefficient as a similarity measure. Relative to the The correlation coefficient is a particularly popular similar-
ordinary sample correlation coefficient, the proposed similarity ity measure, and is a natural choice when registering two im-

measure reduces the influence of outliers. We also compared the f th dalitv 141, 151. Alth h lation i
performance of the proposed method with the mutual information ages from the same modality [4], [5]. ough correfation 1S

based method. The robust correlation-based method should be POOr similarity measure for multi-modality image registration,
useful for image registration in radiotherapy (KeV to MeV X- in terms of statistical efficiency and computational efficiency,
ray images) and image-guided surgery applications. We have the correlation coefficient is one of the best similarity measures

investigated the properties of the proposed method by theoretical ¢, jntra-modality image registration. Since image registration

?&;ll)%';;ompmer simulations, & phantom experiment, and with for set-up estimation in radiation therapy and image-guided

surgery often involves images from the same (or similar)

Index Terms—Image registration, robustness, outlier, robust ,qajity the correlation coefficient can be useful for those

correlation coefficient, mutual information.

applications.
The sample correlation coefficient has been used widely
I. INTRODUCTION to estimate the correlation coefficient due to its simplicity.

Image registration is a useful technique for aiding diagnosidowever, a drawback of the sample correlation coefficient
performing patient set-up estimation for radiation therag§ its sensitivity to outliers [6, p. 199]. Even a few outliers
[1] and for image-guided surgery [2], [3], etc. For the seg€an affect the sample correlation coefficient greatly and thus
up estimation problem, a pre-operative image (usually a Gfegrade image registration performance. A significant number
volume) is transformed geometrically to align with measure@f “outliers” may be present in the image-guided surgery
radiographs. Intensity-based registration methods work Bpplication due to the presence of operating instruments and
maximizing a similarity measure based on the intensity valués the radiation therapy application due to the effect of
of the two images. Therefore, designing an effective similarifiadiotherapy table [1]. For X-ray CT images, differences in
measure is very important. This paper proposes a robgéntrast agents also occur. Although a bias in estimating the
similarity measure for intra-modality image registration.  correlation coefficient need not directly imply a bias in image

One fundamental design criterion is that a similarity medgegistration, we have observed such biases empirically when
sure should be maximized at the true registered position in tpetliers are present [7].
absence of noise. Establishing this characteristic analyticallyThe Ml similarity measure is used widely for multi-modality
is challenging since the behavior of the objective functioifnage registration since it does not assume any functional
depends on the nature of the images being registered. Anoti@dationship between the two image values [8]-[10]. In this
important criteria is the statisticafficiencyof the registration sense, the Ml method has an inherent degree of robustness.
method,i.e., the variability that would result from repeatingHowever, as illustrated by our empirical results in Section llI
the registration with identical images except for noise. land analyses in the Appendices, for intra-modality image
addition, registration methods can differ in theabustness registration, the robustness of the Ml method depends on the
to the presence of unexpected objects in images. particular images being registered. Moreover, the Ml method

Many intensity-based image registration methods implicitigan be statistically inefficient,e., the registration variability
treat the intensity pairs taken from corresponding spati@ue to noise can exceed that of the sample correlation coeffi-

cient.
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extensively in statistics [6], [11]-[13]. The basic idea of robushethods achieve this goal by maximizing a similarity measure
estimation is to weight the measured samples in a way thmtsed on the image intensity values. If we parameterize the
reduces the effect of outlier samples, or even removes thémansformationT using 6 (e.g, three translation and three
completely. rotation parameters for rigid transformation), the image regis-
For example, one may compute the statistical distance todition becomes a parameter estimation problem:
each sample value from the mean, tlahalanobis distance -
evaluate a weighting function based on that distance, and 0= argglaxq)(sl(%('))’52('))’ @
determine a new weighted mean and covariance and iter
until convergence [12]. Alternatively, one may estimate the pg
after trimming out the outliers by determining the minimun?in
volume ellipsoidal pdf [13] or minimum covering ellipsoidal
pdf [11]. A robust mean and covariance may then be estimated X; = s1(Ty(ty)) (2)
from the estimated pdf. Y = sofy), i=1,.
There were also several investigations that applied the robust . .
statistics for image registration. For example, robust similarifyhere{#;} denotes the sample locations, and wher(-))
measures such as weighted square error and non-quadi@igotes a spatially transformed (and interpolated) version of
error were applied for registering MRI and other modality?l(f)-_ Since X; depends on the parametér all statistical
images [14], [15]. The performance of such robust methog¥antities computed using; are functions of). However, for
were compared with other methods empirically [16]. S|mpl|c¢y of_ notation, ofte_n we leave this erendence_ implicit.
In this study, we focused oM-estimation methods for C?ons@erlng the sa_mpllng, a more precise expression for the
robust correlation estimation [6, p. 211]. This framework helg&gistration problem is

Were@(sl, s2) is some measure of tremilarity between the
agess; andss. In practice, registration is performed using
ite number of sampleX(; andY; as follows:

ey 5

to explain why the sample correlation coefficient is sensitive f = arg max (X (0),Y), ©)
to outliers and provides insight into how to design a method 0

with improved robustness. Moreover, we can explain somghere X = (X;,...,Xy) andY = (Yi,...,Yn).

properties of the MI method within the same framework. A variety of similarity measuresp have been proposed

Investigating the advantages and disadvantages of usfBg image registration. Many of these are statistical quan-
alternative robust correlation estimation methods for imagmes such as the correlation Coefﬁcient' joint entropy and
registration in the presence of outliers is deferred to futurgutual information. For such metrics, there is an underly-
research. Such a study should consider the sample distributigii$ assumption that théX;,Y;) pairs are i.i.d. samples of
of representative images in a particular context. jointly distributed random variables with some (unknown)

The paper is organized as follows. Section Il reviewgint probability density function (pdf)xy (z,y). This i.i.d.
the image registration problem and describes the proposgsumption is somewhat artificial, but nevertheless leads to
similarity measure. Section Il compares the image registrgseful similarity measures so we continue in this tradition in
tion accuracies of the proposed robust correlation similarififis paper.
measure, the conventional sample correlation coefficient andNext we review the usual correlation coefficient similarity

the mutual information similarity measure. Three comparisofgeasure and contrast it with our proposed robust correlation

are reported: 1D simulation, 2D fMRI image registration, angbefficient approach.

3D/2D registration of an X-ray CT volume to orthogonal

radiographs of an anthropomorphic chest phantom. A. Correlation coefficient estimates

The appendices present analyses of the statistical propertie . o

of the correlation-based and MI-based image registration met _l§or two ra}ndom V"’?”.ab'ex andif Wlth.Jomt pf f”(x’_y)’

ods by approximating the mean and the variance using firE,:('I-e correlation coefficient(X,Y) is defined as follows:

order Taylor series expansions [17]. Since image registration A C(X,Y)

is hiahl I d L L X - p(X)Y) = ——, (4)
ghly nonlinear and the objective function is an implicit W

function of the images, it is challenging to obtain concise and

- NS where the covariance is
insightful results from such approximations. Nevertheless, we

summarize some theoretical arguments that complement the/(xv) = /(x — E[X])(y — E[Y)) fxy(z,y) dzdy (5)
empirical results.
and whereE[X] and E[Y] denote the means, and ando?2
[l. THEORY: SIMILARITY MEASURES denote the variances of the random variables. Note that (un-
The goal of image registration is to find a geometriger mild regularity conditions orfxy (z,y)), the correlation
transformation (rigid or non-rigid), denoted, that aligns coefficientp is well-defined even if the pdfy, (=, y) is not
two given images, denotes (¢) and s, (), wheret denotes parameterized in terms of it.
the spatial coordinatés Intensity-based image registration Given N i.i.d. sample pair X;,Y;), there are several ways
to estimate the correlation coefficiept For example, one

Iwe focus on image-to-image or volume-to-volume registration, but theould first use the samples to compute an estimated joint pdf
general approach applies equally to volume-to-projection registragig,

[1]. Also, we treats; £ ands, ¢ as continuous-space functions in the/xv (%,), and then substitutg, (z,y) into (4) to estimate
presentation; in practice, sampling and interpolation are essential [9].  p. The following subsections describe two other approaches.
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1) Sample correlation coefficienBerhaps the most popularUnder this parametric modely denotes the mean df and
way to estimate is the sample correlation coefficient, definedhe 2 x 2 covariance matrix o is (V7V)~. In other words,

as follows: A V = (Cov{Z})""/%. For example, if one were to choose
A~ _ Cs(X,Y) 1 2
ps(X,Y) = N (6) folr) = 5o/, )

where the sample means, sample variances, and sample(@gD (8) would become the bivariate normal distribution.
variance are defined in the usual way as follows: Having chosen somg, one may estimate the meanand
the covariance ternV' from the sample pair&; in the spirit

N N N — _ H H .
C(X)Y) & ﬁ SV X=X -Y) (@) of ML estimation as fojl\lfows.

v 2 1N 3 R

X = §2limXi (1, V) = argmax [ [ |det V| fo(IV(Z; — w)l)).  (10)

vo2 Axlv e

2 A 1 N - Usually there is no closed-form expression for the estimates

oy = w1 2im(Xi = X) i and V, so (10) is arimplicit definition.

52 A ﬁ Z{\il(m — V)2 In classical estimation theory, ideallfy would be chosen

so that the pdff, in (8) agrees with the actual distribution of
Relative to alternative methods for estimating the correlatidghe Z;'s. However, since the notion that ti&;’s are i.i.d. is
coefficient, the sample correlation method has the advantsggnewhat artificial in the context of image registration, it is
of simplicity since ps(X,Y’) is an explicit function of the more useful to think off, as a user-selectable function.
data sample$X,Y ). Furthermore, on the surface it appears To help understand the “ML estimates” (10), we differenti-
not to require any specific model for the joint pfif, (z,y). ate (10) with respect tg and V. Zeroing these expressions
A minor drawback is thaip,(X,Y’) is not unbiased, even yields the following two necessary conditions [6, p. 212]:
for normal distributions although it is asymptotically unbiased N N R
in that case [18, p. 90]. More importantlg,(X,Y") is not 2in1 w(HV(Zi — ) )Zi (11)
robust to outliers [6, p. 199], as explained intuitively in the ZiNzlw(HV(Zi _ ﬂ)’)

) (Zi—@)(Zi-@)", (12)

ll:

next sub-section.

2) Maximum likelihood estimates gf : An alternative o N .
approach to estimating is the following: (i) hypothesize a VIv)™ = ZW(HV(Zi - ﬂ)‘
parametric form for the joint distributioffiy (z, y) of X and i=1
Y that depends op, (ii) find the maximum likelihood (ML) wherew(-) denotes the followingveighting function
estimate of the parameters given the d&a= X (¢) and ,

Y, and (iii) determinep = p(#) from the ML parameter w(r) S_ fo(r) ) (13)
estimates. Usually we will have to compute the ML estimates rfo(r)

numerically, so the estimatgi will be an implicit function Huber proposed a simple iterative procedure for solving these
of X andY . To our knowledge, previous similarity measuresvo nonlinear equations to obtain the ML estimates [6, p. 215].
used in image registration have all beexplicit functions of After estimating the covariance terfd, we can extract an
the two images, so the proposed approach departs from testimates of the correlation coefficient as follows:

convention. N 5.
We propose to adapt the spirit of this ML approach for the (VTV)‘1 = {g’“ ’;Y}
purpose of robust image registration. However, since the joint XY Ty
pdf fxv(z,y) is @ somewhat artificial concept in this context, o Oy (14)
we do not expect to model the pdf (z,y) precisely. We po= o262’

consider the model fofx (x,y) to be a function chosen by

/\2 /\2 . .
the algorithm designer to impart desirable properties on tﬂ@greaxda”dﬁv denotedthe Z”_I estimated variances &f
resulting estimates, such as robustness. andY” under the assumed model (8).
Let Z; = (X;,Y;) denote the pairs of corresponding image After finding the estimateg and V', one can compute the

intensity values. As usual, we consider tig's to be iid. Weighting functionw V(z - /l)H to examine the relative
Samp|es of a two-dimensional random vectér= (X, Y) influence of different data values on the estimates. (See
Following Huber [6, p. 211], we construct a model for the pdfig- 3(b) for an example.) The weighting function is plotted in
of Z having elliptical contours as follows. First we chooséhe joint pdf domain for illustrative purposes only. In practice,
a nonnegative functiory, for which the corresponding 2D ©ne estimates the robust correlation coefficient by solving (11)
circularly symmetric densityf,(|l|) integrates to unity over and (12)without estimating the joint pdf explicitly. _

R?, where|j2| = /22 + y2. Then we consider an (unknown) If we were to choose (9) fofo, then the weighting function

non-degenerate transformatian— V(z — ) that leads to in (13) simplifies tow(r) = 1. In this special case, there is an
the following density: explicit solution for the ML estimategi is simply the sample

mean of theZ;’s, and V is the square root of the inverse
fz(z; 1, V) = |det V| fo(V(z — n)||)- (8) of the sample covariance of th#;'s. This corresponds to the
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well-known result that the sample correlation coefficient is the (Vo1 Vi) F =

ML estimator forp under a bivariate normal density. However,

using constant weighting/(r) = 1 means thaall data points (‘V 7 0 ) Z — 0N Z — T 19
are weighted equally, even outliers. As a result, the sample Zw n(Zi = fn))| ) (Zi = fen)(Zi = fn) " (19)

mean, sample covariance, and sample correlation coefficient )
are all sensitive to outliers [6]. We initialize 1y using the sample median akg using the ma-

trix square root of the inverse of the sample covariance of the
B. Robust correlation coefficient Z;’s. We then continue to iterate until two stopping criteria are

The non-robustness of the sample correlation coefficient c&iSfed: ‘ Vn+1_1 Vo — ‘ < dv and a“‘/“l(/“”"ﬂ - “")H_ <

be explained by considering that it is the ML estimator for afu- USer-specified constants, ando,, control the precision
assumed normal distribution, which has “light tails” so outlier8f solutions. _ _

are modeled as being extremely unlikely. Conversely, if an ML Unfortunately, Huber's algorithm for solving (11) and (12)
estimate is based on a model distribution that has “heavy tail§@S been proven to converge only when estimatne of
then data values that are far from the mean have less effétq two parameters.e., p or V', but not necessarily both [6,
on the likelihood function. Thus, to design a robust estimatdt; 237]. However, in practice, the algorithm converged every
we choose a model pdf, that has “heavy tails.” One choicetime in our simulations and experiments.

would be the Laplacian distribution, which would correspond [N summary, our robust registration method works as fol-
to using fo(r) = ce~I"l for some constant. However, that lows. For the similarity measur@ described in (3), we

fo is not differentiable at- = 0, so the expression (13) isPropose to use the robust correlation coefficient:
inapplicable. Instead, we have chosen the following function: B(X(0),Y) = H(X(0),Y), (20)
) (15) wherep was defined in (14) for the weighting function defined

h i

2 R _

folr) = ce”d VItTE/oi-l

wherec is the constant that ensures that (8) integrates to unilk?/. (16) or (17). To maximizel with respect tod, one must

The constan® > 0 is a design parameter. For smallthis US€ some type o_f search algorithm s_uch as the simplex method
model approaches the Laplacian distribution, and for large [19]- FOr €ach trial value of the registration parameteone
it approaches the normal distribution. must computeX (6) by interpolation, and then compugeby

For the choice (15), the weighting functian(r) in (13) applying Huber’s algorithm. So there are “iterations within
becomes the following: iterations” in this approach; fortunately, the inner iteration

converges quite quickly.

w(r) = # (16)

2
Vit C. Mutual Information

Unlike with the normal choice (9), for this model the weight- Another similarity measure that has robust characteristics
ing of a given data point f/(z — )| ) will decrease with is mutual information(MI). Ml is a measure of the statistical
increasing statistical distance from the mganThis has the dependence between two random variables. Thel (I, Y)
desirable effect of reducing the influence of outliers that ars, defined in terms of marginal and joint entropies as follows:
by definition, data points that are far from the mean.
We can make no claim of optimality of the choice (15). hX) = _/fx(x) log fx(z) dx
Indeed the optimal choice would depend on the actual “dis-
tribution” of the Z,’s, which is unknown in practice. The MX)Y) = —/fxy(ﬂ%y) log fxv(z,y) dzdy
fun_ction fo is simply a design parameter for our robust 1(X,Y) h(X) + h(Y) = h(X,Y). 1)
estimator. For example, one could try to increase robustness
relative to (16) by using the following weighting: Usually MI is estimated by first estimating the joint pdf
1 fxy(z,y), and then computing the Ml using (21). Two popular
w(r) = ———. (17)  pdf estimation methods are the kernel density appro§zoj
\/1+ 5 and the histogram approach. Kernel density estimates are

One may use many different weighting functions to compu?é“_oom gnd diﬁerentifible but can require considerable compu-
robust correlation coefficients. Although it may be challengingtion. Histogram estimates are usually faster to compute but
to compare relative robustness among different weightiHbeld pdfs that are d|scqnt|nuous funcpons of the registration
functions, any underlying pdf with heavier tails than a norm&2rameterd. As a practical compromise, we have used the

distribution should improve robustness relative to the conveifierpolated joint histogram method in which the effect of a
tional sample correlation coefficient. sample is distributed to four adjacent histogram bins using

Huber’s algorithm for solving (11) and (12) is the followingb”i”ear interpolat.ion; this ap_proach remedies the.discontinuity
iteration: problem of the histogram with modest computation. Methods
N . R R for estimating MI directly from the samples without first
X o Xia “’( Vo(Zi — pin) ) (Zi — fin) estimating a pdf are also under development [21], [22].
Hn+1 = Hn + N (\ (18)

Zi:l w Vn(Zz - ﬂn)

)
) 2This is often called théarzen windowmethod.
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D. Analytical comparisons estimated joint pdf is the most clustered along Yhe- X line

Most previous studies of image registration methods halfsthe joint pdf domain, thereby making the values of the joint
focused on empirical comparisons. The appendices of tfdf around thel” = X' line maxima and values elsewhere
paper describe approximate analyses of the statistical prog@f?ima. Therefore, the gradient of the estimated joint pdf
ties of image registration methods using mean and variarlgeZ€r0 @most everywhere, which implies that the M is
approximations presented in Appendix A. We used theZgaximized since the gradient of the Ml is zer.o..Ne\./efrtheIess,
approximations because exact analytical expressions are fi€ t0 the smoothing effect of kernel functfort is difficult
available since the estimator for image registration is defindProve the unbiasedness analytically except for some special
implicitly as the maximizer of an objective function. Even if arfFaS€s [25]. o _
analytical expression were available, finding exact expressiondVe also argue qualitatively that the Ml based estimator has
for the mean and variance would still remain difficult since th@ Certain degree of robustness. Suppose that the portion of
estimatord is a nonlinear function of the images. the estimated pdf from inliers is the most clustered at the

Our approximation method uses a first-order Taylor serilile registered position but that from outliers is not the most

expansion of the estimator about the mean data, an approﬁ'&ﬁterea' In that case, the estimated Ml is maximized at a

that has been used successfully for image reconstructidpsition where the entire pdf is the most clustered in average

problems [17]. By comparison, the estimators used for ima%@”se' Since the portion of the pdf from inliers is usually much

registration are more nonlinear, but we proceed with lineariZ&/9€" than that from outliers, the entire pdf is likely to be the
tion nevertheless, hoping for insights. most clustered around the true position. Nevertheless, since

For simplicity we focus on the asymptotic case as thth robustness of the MI method is due to the behavior of the

number of image samples increases to infiriiy, the images joint pdf rather than explicit reducing the influence of outliers,
are continuous-space functions. In addition, if there are HaE robustness can depend greatly on images being registered.

outliers, we assume that two images being registered are th&:NOther interesting perspective is to express Ml as a gen-
same images except for the geometric transformation afghized weighted correlation coefficient as follows:
additive white Gaussian noise. N
The main points of the analyses can be summarized L(X,Y) = /(w_E[X])(Z/—E[Y])wI(%y)fXY(ffay) dz dy,
follows. First, if there are no outliers, the sample correlation R (22)
based estimator is unbiased and is the most efficiemt the wherew;(z,y) = % is a kind of generalized
estimator that has the smallest variance) among unbiased eséighting. The robustness characteristics and statistical effi-
mators. We argued that the sample correlation based estimaiency of MI can depend on the images being registered since
is unbiased since the sample correlation coefficient withotlte weighting depends on the estimated joint pdf. For example,
noise is maximized atrue registered positich Regarding if the estimated pdf is normally distributed, the weighting is
efficiency, the sample correlation based estimator is the madéinost constant and the Ml method is almost the same as
efficient one among unbiased estimators since it is the Mltke sample correlation method. In that case, the Ml method
[23], if there are no outliers. The variance approximation afan be very efficient, like the sample correlation method.
the sample correlation based estimator matchesCitaener- In fact, joint entropy and the correlation coefficient have a
Raobound (See Appendix C). However, the sample correlatiame-to-one relationship for bivariate normal distributions [26].
based estimator can be significantly biased due to outliersfe® most intra-modality images with non-constant(x, y),
argued in Appendix B. In summary, the sample correlatiche MI method is less efficient than the sample correlation
based estimator has good properties such as unbiasednessaefficient for Gaussian noise.
efficiency, but poor robustness to outliers. In summary, both the robust correlation method and the
For the robust correlation based estimator, if there are Mi method have improved robustness but larger variance
outliers, we argue that it is also unbiased using the similaompared to the sample correlation method, when noise is
approximation as for the sample correlation based estimatdaussian. Direct analytical comparisons of the statistical prop-
(See Appendix B). Moreover, even in the presence of outlierties of the robust correlation method and the MI method
samples, the robust correlation based estimator is more robarst difficult since the properties depend not only on design
than the sample correlation based estimator since the effggasameters (such as the underlying pdf for robust correlation
of the outlier samples are reduced by smaller weighting (Seethod and the pdf estimation method for Ml method), but
Appendix B). However, for data without outliers, the variancelso on the images being registered.
of the robust correlation based estimator is larger than the
sample correlation based estimator as argued using Cauchy- I1l. EXPERIMENTAL RESULTS
Shwarz inequality [24] (See App(_and|x ©). . To evaluate the statistical properties of the proposed image
For the MI-based estimator, it is not easy to argue analyti- . : S .
; . ) : . registration method, we performed three studies: simulations
cally that the estimator is unbiased even if there are no outliers

Instead, we explain qualitatively why the MI is maximized at> 9 & synthetic 1D signal, affine 2D-to-2D registration of

thetrue reg'Stered position. At theeue reg'Stered position, the 4We consider the kernel density approach since the histogram approach is
not differentiable.
3In our approximation, if the gradient of an objective function without noise SApparently, if pdf from outliers is also the most clustered at true position,
is zero attrue registered position, it is unbiased estimator (See Appendix Ajhere should be no bias due to outliers.
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fMRI images, and rigid 3D-to-2D registration of a torsahe sample correlation coefficient is maximized at an incorrect

phantom. translation & —4.8 pixel). This type of systematic offset is

observed for most noise realizations. In contrast, the robust

correlation coefficient is maximized near the true translation

_ _ ) ) (=~ —0.1 pixel), illustrating the robustness of this similarity
We first consider a 1D ‘registration” problem where the,easyre. This robustness can be understood by considering the

only unknown parameter is the translation of the signal. (Tfﬁléint histogram shown in Fig. 3(a) and the weighting function

is called delay estimationin communications.) This study HV(Z — )| shown in Fig. 3(b) (at the registered position
illustrates the statistical properties of the registration method ® ) . .
ered = 0). Although most of the histogram mass lies

in the simplest ibl tting. Fig. 1 h the ref . . .
in the simplest possible setting. Fig. 1(a) shows the referen ong theY' =X line, there is a group of outliers (ne&r=\)

signal s; (¢) that must be translated for registration with thﬁ] . . L ’
g Slo g at degrade the conventional correlation coefficient estimate.

signal .32({) ghown in Fig. 1(b) that inglude_s both additiVeFig 3(b) shows that the weighting function decreases the
Gaussian noise and a segment of “outlier” signal values. . > . 7

influence of those outliers, particularly those that are far from
the primary linear ridge, thereby providing robustness.

A. 1D simulation

8
1
6 5
0.99;
9]
<
Q
4t )
+0.98f
o
o
&
ok Fo97t — Robust correlati_on coeffi_cignt \\
9] - - - Sample correlation coefficient .
5 \\
(@) N
0.96f AN
0 I I I I \
0 200 400 600 800 1000
t
~ 0.9 : : : : :
@s1t —%O -20 -10 0 10 20 30

translation [pixel]

12
Fig. 2. Sample and robust correlation coefficients vs 1D translation.

Fig. 4 shows that the estimated MI is maximized at more
correct translations —0.8 pixel) than the sample correlation
coefficient. This robustness of MI based method is expected
as argued in the preceding section.

The preceding results were for a single noise realization,
so they do not fully characterize the bias and variance of the
translation estimates. We performed 1000 noise realizations
at each of several noise levels and computed translation
estimatesd using each of the three similarity measures for
each realization.

25 o5 T 5 T 500 Fig. 5(a) shows the empirical translation estimation biases

t caused by the presence of the outliers for all three methods.

As expected, the sample correlation coefficient method based

registration technique was the most sensitive to outliers, as
Fig. 1. Reference signal # (signal being translated to achieve registrationpfgued in Appendix B.

and observed signal, ¢ with outliers and Gaussian noise (STD = 0.3). The robust correlation based method showed almost zero

biases for low noise levels but increased biases for high noise

Using these signals, we computed three similarity measutegels. The Ml based method had the similar characteristics
as a function of the translation parametér the sample to the robust correlation based method. However, the bias of
correlation coefficient, the robust correlation coefficient usiripe Ml method was larger than the robust correlation based
weighting (17) withd = 2 and the estimated Ml using a 832 method for all noise levels.
interpolated joint histogram. Fig. 5(b) shows the standard deviations of the three estima-

Fig. 2 shows the two correlation coefficients verguahere tors. As expected, the sample correlation coefficient method
the true value i¥) = 0. Due to the presence of the outliershad the smallest variance as argued in Appendix C. Also,

(0) so @
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shown for reference is th€ramer-Raobound computed
for a “no outlier” model. In general, one would not expect
the sample correlation method to match this bound for data
containing outliers. However, for the particular signals in
Fig. 1(a), Fig. 1(b), the standard deviation of the sample
correlation method happened to match @ramer-Radound.
The standard deviation of the robust correlation method was
almost the same as that of the MI method.
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(b) Standard deviations

Fig. 5. Biases and standard deviations of the translation estimators vs
Gaussian noise levels.

Since one may trade off robustness and efficiency by
changing design parametere(, § for the robust correlation
coefficient method and the number of bins for the Ml method),
we investigated bias-variance trade-off of the estimators to
evaluate the performance of each method.

Fig. 6 shows bias-variance plots of low noise case (lower
part) with noise STD=0.2 and high noise case (upper part) with
noise STD=0.4. Design parameters for the robust correlation
method wered = 2,3,4,5,6,8,10 and for the Ml method

Fig. 4. Ml similarity measure (3232 interpolated joint histogram) vs 1D were bin size8 x 8,10 x 10,12 x 12,16 x 16,20 x 20,24 x

translation.

24,28 x 28.
For the robust correlation method, smablleyielded smaller
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Fig. 6. Standard deviations vs bias of the translation estimators (upper part _20 260 460 660 860 1000
for noise STD=0.4, lower part for noise STD=0.2). t

Fig. 7. Reference signal and measured signal with outliers and additive noise.

bias but larger variance. This is consistent with our analytical

results, since smaller values fércorrespond to a pdf model

with “heavier tails.” The robust correlation coefficient was 1

almost the same as the sample correlation coefficient when

d was very large, as expected. For the Ml method, there was a (¢l

trend that larger number of bing€d., less smoothing) yielded

smaller bias but larger variance. However, for low noise signal,

the bias-variance characteristic of the Ml method was very

irregular. The performance of the robust correlation method

was better than the MI method in the sense that the bias was £ oab

smaller at the same variance or the variance was smaller aig

the same bias. 2
The better performance of the robust correlation method 0.2}

was achieved at the expense of computation time. Table |

summarizes computation time requirement for evaluating each 0 . . . . .

similarity measure one time on 3GHz Intel Pentium 4 machine -30 -20 -10 0 10 20 30

and the average number of iterations required for computing translation [pixel]

robust correlation coefﬂ_uent on_e _tlme' The computation tm]gg. 8. Changes of the three similarity measures vs 1D translation.

for the sample correlation coefficient was the smallest while

the computation time requirement for the robust correlation

coefficient was the most intensive. The computation time for

the robust correlation coefficient depends greatly on the design 2D MRI image registration

parameters and the stopping criteria. Note that the robust we investigated the three similarity measures for the prob-

correlation coefficient for largef was computed more quickly. |lem of registering two functional MRI images acquired with a
For the signals in Fig. 1(a) and Fig. 1(b), the MI methodpiral k-space trajectory. Both images were reconstructed from

showed a certain degree of robustness to outliers. Howew@e same raw data but one image was reconstructed with field

in that example, the “outliers” in the observed signal had iahomogeneity correction [27] while the other was without

constant intensity value. To investigate the behavior of eagbrrection, so the true registered geometric transformation is

similarity measure for a different outlier distribution, we alsidentity.

generated the reference and observed signal shown in Fig. 7. IBecause of field inhomogeneity, there are signal voids in

this case, the outliers corresponded to shifting a small portiportions of the uncorrected images. We chose these images to

of the reference signal. test the registration methods since the true registered position
Fig. 8 shows the three similarity measures as a function @fe., identity transformation) is known, yet the voids act as

the translation parameter. The sample correlation coefficiemitliers. The robustness of the MI method for occluded images

as well as the MI were maximized at incorrect positions ddes been investigated previously [9].

to outliers. However, the robust correlation coefficient was Fig. 9(a) and Fig. 9(b) show the reference image and the

maximized at correct translation. This example partly suppoterget image. The anterior of the brain shows signal void in

the argument that the robustness of the Ml based methagget image that is corrected in the reference image.

Y measures
o
[e2)
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TABLE |
COMPUTATION TIME FOR EVALUATING EACH SIMILARITY MEASURE ONE TIME.

(The unit for computation time is second.)

similarity measure Computation time| Iterations Note

sample correlation 3.5010~4

MI(16x16 interpolated histogram 11073

robust ¢ = 2) 1.7610~2 21.5 Sy =1-1073,6,=1-10"3
robust ¢ = 4) 6.91073 7.6 Sy =1-1073,6,=1-10"3

method was biased due to the outliers.

Fig. 10(b) and Fig. 10(c) show that the registration errors
of both MI and robust correlation based estimators are smaller
than the sample correlation based estimator.

We tested the bias and variance of each estimator using
100 noise realizations. We added Rician noise since noise
in reconstructed magnitude images is Rician [28], whereas
noise in MRI raw data is complex Gaussian. Table Il shows
the empirical means and standard deviations based on 100
registration trials of the three cost functions, for the case case
of a horizontal {,) and vertical {,) translation and vertical
scaling &,). The sample correlation method had the smallest
variance but the largest bias due to the outliers. The robust
correlation method had the best robustness, the smallest
bias due to the outliers) and had smaller variance than the Ml
(a) Reference image method. The MI method was more robust than the sample
correlation method. The robustness of the Ml method was
improved as the number of histogram bins increased while
the statistical efficiency was degraded. These trade-offs are
consistent with the 1D simulations.

C. 3D/2D Phantom Study

Previously we conducted an anthropomorphic phantom ex-
periment to evaluate the performance of the set-up estimators
using 3D/2D image registration [1]. We estimated six param-
eters, rotations and translations along the X,Y,Z axes, from
two orthogonal cone-beam projection views. For this study we
used only one lateral view to estimate one rotation parameter
and two translation parameters that are associated with in-
plane motion. We chose this approach to better illustrate the
effects of outliers since only the lateral image had noticeable
outliers caused by the radiotherapy table. For this study, we
Fig. 9. Reference fMRI image with field inhomogeneity correction and targbeld the other three parameters fixed at the “ground truth”
fMRI image without field inhomogeneity correction. values that were established by the most accurate marker-based

method using eleven 1mm diameter lead markers attached to
the phantom’s surface [1].

We plotted the change of each similarity measure as aOne could estimate the three parameters using 2D/2D
function of vertical translation and scale. Fig. 10(a) shows thaggistration of DRR (Digitally Reconstructed Radiograph) and
the sample correlation coefficient is maximized at incorrect pthe radiograph that geometrically transforms the DRR in 2D
sition since if we translate the reference image down, brighfglane to achieve registration. We did not follow this approach.
pixels in the reference image correspond to brighter pixdisstead, we chose 3D/2D registration that computes DRR at
in target image better. Moreover, if we shrink the referenaach optimization step from transformed 3D CT image. We
image, the correlation coefficient increases more since tbieose this approach to demonstrate that general principles
brighter pixel region in Fig. 9(a) is larger than Fig. 9(b)explained in this investigation are also applicable for volume-
As a result, the sample correlation coefficient is maximized- projection registration.
at around 5% scaling down and -0.9 pixel translation. As A 512x512x398 voxel CT image with 0.93360.9375<1
expected from the analysis, the sample correlation basedh spacing was acquired on a GE CT/i scanner with a 140

(b) Target image
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TABLE I

MEAN (AND STD) OF ESTIMATED REGISTRATION PARAMETERS FORD-2D MRI REGISTRATION.

(The unit for translation parameter is pixel and for scaling parameter is unitless.)

similarity measure te ty ky Computation time| lterations SNR
sample 0.41 (0.07) | -2.82 (0.10) | 0.05 (0.01) 5.9910~%

MI (16x 16 interpolated histogram)| 0.14 (0.14) | -1.10 (0.17) | 0.01 (0.01) 2.31073 27.7 dB
MI (24 x 24 interpolated histogram)| 0.07 (0.21) | -0.10 (0.24) | 0.01 (0.01) 2.41073

robust § = 2) 0.03 (0.10) | 0.03 (0.12) | 0.01 (0.01) 1.48101 35.9

sample 0.12 (0.05) | -2.89 (0.28) | 0.05 (0.01) 5.9910~%

MI (16x 16 interpolated histogram)| 0.41 (0.21)| -1.90 (0.69) | 0.02 (0.01) 2.310°3 13.8 dB
MI (24 x24 interpolated histogram)| 0.07 (0.34) | -1.41 (0.90) | 0.02 (0.02) 2.410-3

robust § = 2) 0.10 (0.21) | -0.10 (0.52) | 0.01 (0.01) 1.0510¢ 49.9

10

kv x-ray source. Tattoos were drawn on the phantom whegeror depending on the location of the rotation center, we
three alignment laser planes crossed the phantom to facilitat@luated TRE (Target Registration Error) values [30] in
consistent set-up in a treatment room. Next, the phantom waddition to parameter estimation error values. We computed
moved to the treatment room and it was set up at the isocent&E values at the spatial locations along the bottom row of
by manually aligning tattoos to three laser planes in the Fig. 11(a), locations that are far from the rotation center.
treatment room. Four radiographs were obtained from differéfihe average TRE values are shown in Table Ill for each
angles by rotating the x-ray source and Varian Portal Visianethod. The experimental results were consistent with the
amorphous silicon active matrix flat panel image detectprevious simulation results. The robust correlation coefficient
in 30° increments. For 90 view, we acquired 10 repeatedusing (17) withd = 2 had the smallest bias due to outliers
radiographs without realignment for evaluating the effect df.e., the most robust to outliers). The sample correlation based
noise on the estimator. The x-ray source voltage was 6 MV antkthod was the worst in terms of the robustness but the best
the detector size was 5%384 pixels with 0.78mm0.78mm in terms of the variance. Interestingly, the Ml method showed
spacing. We used only the 9Qadiograph i(e., the lateral small variance and small bias as well. We think that this was
image) for the correlation-based methods and the Ml-baskecause the shape of the estimated joint pdf was close to a
method. However, to enhance the accuracy of the “groundrmal distribution and the number of samples from outliers
truth”, we used all four radiographs for the fiducial markemwas small.
based method. For all other methods except for the marker-
based method, the planning CT image was down-sampled by
four along each axis to reduce computation time and memory
usage. Statistical properties such as bias, robustness, efficiency
For image registration, while geometrically transforming th@'® Very important in designing image registration methods.
CT image, we computed DRR of the transformed CT from tHB previous .|nvest|gat|o.ns,.the bias qf thg sample correlation
same angle as the radiograph. The registration is achievedgthod for intra-modality image registration and that of the
maximizing the similarity measure between such DRR ald me;hod for mqlﬂ—modahty registration have been studied
radiograph. We used only the central 4BD0 sub-image €xtensively empirically [1], [4], [5], [8], [9]. Some authors
of the DRR and the radiograph to avoid the effect of thalso reported that the MI methoql is more robust to outliers
markers which are not usually used in clinical practice. wan the sample correlation coefficient method [1], [31].
have established the geometry of the EPID imaging systemsThe sample correlation is a natural similarity measure for

by determining radiation field edges using simple thresholdifgfra-modality image registration [4], [5], [31] and the MI
method [29]. method performs well for both intra-modality [28], [31] and

Fig. 11(a) shows the radiograph and Fig. 11(b) shows tHgJIti—moda!ity .image reglistrat.ions [8]—[1_0]. Considering only
DRR at the registered position. The radiotherapy table caué'éga'mOda"ty image registration, we point out that those two

pixels along the rightmost part of the radiograph to be brightg}oSt well known simila'rity measures have drawbagks such as
than the corresponding DRR pixels. non-robustness to outliers of the sample correlation method

and statistical inefficiency of the MI method. Moreover, even

F_|g. 12(a) shows the_ estimated 10|_nt histogram from t ht%c%ugh the MI method has a certain degree of robustness for
registered DRR and radiograph. The histogram has a domln‘Flnnany cases, it may not be very robust for some cases since the
distribution along the¥'=X line and an outlier distribution .

caused by the radiotherapy table. Fig. 12(b) shows the weig I:_erztel;hod does not reject nor reduce the influence of outliers
ing function the results from the robust correlation estlma'te.We have proposed a robust correlation coefficient based

This weighting clearly reduces the influence of the outliers.. ) . .
L . - hmage registration method to improve the robustness of the
We repeated 10 estimations using 10 acquisitions of the

ra_-d'()graph' Table IIH summarizes the _eXpe”mental ) resu_ltSBSince many previous studies ignored the effect of noise, bias was called
Since a small rotation error may result in a large registratiogyistration error

IV. DISCUSSION



FOR SUBMISSION TO IEEE TRANSACTIONS ON MEDICAL IMAGING 11

TABLE IlI
MEAN (AND STD) OF ESTIMATED SEFP PARAMETERS FOR3D-2D REGISTRATION.

(The unit for rotation parameter is degree, for translation parameter and for TRE is mm.)

Similarity measure Do ty t, average TRE|| Computation time| Iterations
sample 1.39 (0.02) | -2.06 (0.03) | 2.11 (0.03) 5.61 0.014

robust ¢ = 2) 0.95 (0.08) | -0.09 (0.09) | 0.58 (0.23) 2.54 1.36 15.1
robust § = 4) 1.19 (0.10) | -1.52 (0.07) | 1.74 (0.13) 4.65 0.43 4.12
MI (32x 32 interpolated histogram) 0.98 (0.08) | -0.55 (0.09) | 0.81 (0.14) 3.05 0.043

MI (64 x64 interpolated histogram) 0.86 (0.07) | -0.44 (0.07)| 0.73 (0.13) 2.65 0.045

MI (64x64 histogram w/o interpolation) 0.90 (0.36) | -0.37 (0.16) | 0.63 (0.38) 2.66 0.024

sample correlation method without compromising statistical We believe that there exist several advantages of the robust
efficiency very much. We showed analytically and expercorrelation method over the MI method. First of all, the robust
mentally that the robust correlation method has improvembrrelation method always has robustness to outliers since it
robustness but larger variance compared with the sampégluces or rejects the effects of the outlier samples based
correlation method. on the statistical distances. In contrast, the robustness of the
The statistical properties of the robust correlation methddl method depends on the behavior of estimated pdf without
are controlled by underlying pdf model. More specifically, onexplicitly excluding the effects of outlier samples. Therefore,
may improve the robustness by using “heavier tail” underlyings robustness can be very image dependent. We suspect that
pdf model f, in (10) at the expense of the efficiency. the Ml method may not be very robust for some images,
For the MI based method, it is difficult to relate theé®S illustrated in Fig. 7. Another advantage is that the design
design parameters.€. joint pdf estimation method) to its parame'Fer_s of the rob_ust correlation methO(_j reIaFe directly to
statistical properties analytically. Instead, if we summariZB€ statistical properties, whereas the relationship of the Ml
empirical observations in our simulations and experiments, tiggthod is less clear analytically.
MI method become more robust but less efficient when moreThe disadvantage of the robust correlation method is in-
bins were used. Roughly speaking, increasing the numbercé¢ased computation time. In our simulations and experi-
bins is equivalent to the narrowing the Parzen windiogy, to ments, computation time for the robust correlation coeffi-
less smoothing. We also observed that using joint histogragignt increased when “heavier tail” underlying pdfs were
without interpolation increased variance, and increasing tagsumed. Since the robust correlation coefficient by M-
number of bins excessively led to many local maxima. Mo@stimation method requires numerical optimization, the com-
analysis is needed to relate the statistical properties of the RHtation time depends not only the images being registered and
based method to the joint pdf estimation method. One methth@ underlying pdf but also on the stopping criteria. However,
for designing kernel functions was proposed in a differefi@r nonrigid registration problems, computing the warping
point of view [8]. interpolations is likely to outweigh the cost of evaluating the
Even when qualitative relationships between design pelmilarity measure.
rameters and statistical properties are available, automatiéconceivably the performance of the Ml method could be
determination of the design parameters remains challengiffgproved by designing different MI estimation methods and/or
In our simulations and experiments, we determideidr the Using more generalized&Ryi entropy [9], [26]. Similarly, one
robust correlation based method and the number of bins for théght improve the robust correlation method using different
MI based method empirically. More investigations are requirg@bust techniques for estimating the correlation coefficient
to automate this selection. Such studies should consider im&g&l-[13].
sample distributions and noise characteristics in a particularThe sample correlation based estimator is the most efficient
context. estimator among unbiased estimators when noise is i.i.d.
It is challenging to compare the performance of one imageaussian and there are no outliers (See Appendix C). Even
registration method with another since the performances dgough the noise was not Gaussian in practice (Rician for MRI
pend both on design parameters and on the images being ﬁi@ulation, Poisson for 3D/2D experiment) and outliers were
istered. Despite the difficulty, if we compare the performand@esent, the sample correlation method was the most efficient
of the robust correlation method with the MI method based dn all of our simulations and experiments. We suspect that
our simulations and experiments, the robust correlation methds is because Rician and Poisson noise are approximately
performed better than the MI method in our 1D simulatiofaussian, although the variance at each pixel is not the same.
and 2D MRI simulation in the sense that the variance of the Analysis using mean and variance approximations provided
robust correlation method was smaller at the same bias or thealitative arguments about the statistical properties of the
bias was smaller at the same variance. Interestingly, the Mtensity based image registration methods. By choosing the
method was very efficient in the 3D/2D phantom experimentll-estimation method for robust correlation estimation, we
We suspect that this was because the estimated pdf shapewe® able to analyze the robust correlation and the sample
close to the normal distribution as argued in Section II-D. correlation within the same framework. In addition, we were
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Fig. 10. Contour plots of the three similarity measures vs vertical scali
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(a) Measured lateral radiograph
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(b) Lateral DRR computed from 3D CT volume

Fig. 11. Measured lateral radiograph and computed DRR from 3D CT image
for 3D/2D registration.

able to analyze the Ml based method by representing estimated
Ml as a type of weighted correlation. Beyond the analysis
carried out in this investigation, it would be desirable if the
statistical properties of estimators can be related analytically to
design parameters. For example, if one can approximate the
bias and variance of the MI based estimator as a function
of Parzen window width, that approximation can be very
useful. Since the statistical properties of the image registration
methods have not been analyzed much, we expect that our
analysis can be a first step for further investigations.

V. CONCLUSION

We have introduced a novel intensity based similarity mea-
sure, a robust correlation coefficient, to design an image reg-
istration method that is robust to outliers. Using the proposed
image registration technique, we achieved improved robustness
relative to the sample correlation coefficient based method
without compromising statistical efficiency much. Moreover,
ri]n 1D simulation, 2D and 3D experiments, the proposed
method performed better than the well-known MI based image
registration method. We believe that the robust correlation
coefficient is an effective similarity measure for intra-modality
image registration task where the presence of the outliers is
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/
DRR 0~ 0+ [-VXd(0,2) w0, 2). (26)

(a) Estimated joint pdf at the registered position

DRR

X107 Define the column gradient of the objective function as
14 follows:

. (0, 2) 2 V189, Z), (24)

where thejth element opx 1 operatorivV'? is a%-- Linearizing

\If(é, Z) around thetrue parameted by the first-order Taylor
series expansion yields:

W(0,2)~W(0,2)+V'd(0,2)(0 —0), (25)

10

radiograph

where the(j, k)th element ofy x p operatorv?’ is ﬁ;ek. We
assume thaf—V2°® (¢, Z)] is a positive definite symmetric
matrix so that its inverse is well defined. Sin¢g6,Z) = 0
by (23), the estimatof can be approximated as follows:

Rearranging (26) yields the following bias approximation:

El6] -6

Q

E[[-VX®(0, 7)1 v (4, 2)
~ H'U(4,E2), (27)

where possible approximations féf matrix include:

H=-V*%(9,E[2)). (28)

radiograph

The covariance of the estimator is approximated as follows:
cov{é} ~ Cov{[—VQOtb(é,Z)}_llll(é,Z)}
~ H Cov{\IJ(é, Z)} H (29)

One may approximate the mean and covariance further by
linearizing ¥ (0, Z) with respect to the measuremerifsas

(b) Weighting function at the registered position developed previously [17].
Fig. 12. Estimated joint pdf using4x64 interpolated joint histogram
and weighting function corresponding to the proposed robust correlation APPENDIXB
coefficient, displayed over the domain of the histogram shown in Fig. 12(a). BIAS AND ROBUSTNESS OF CORRELATION BASED
METHODS

) o ) This appendix uses the general results from Appendix A
unavoidable such as set-up estimation for radiotherapy apd analyze the bias and robustness of correlation-based
image-guided surgery. registration methods. Define the noisy measuremént=
[s1(-),s2(-)]. We represent; (Ty(t)) = s1(6,t) for notational
APPENDIX A convenience andy(t) = [s1(0,1),s2(2)]7. Without loss of
MEAN AND COVARIANCE APPROXIMATION ge_nerallty, we assume thqt the volume of the field oj view is
unity, and the image empirical means are zgkq{(0, ¢)dt = 0
This appendix presents approximations for the mean afdd [s: (f)dfz 0.
variance of implicitly defined estimators such as (1). Let The empirical variances are thuso% (6) =
®(0,7) be an objective function depending on unknowrw(|Vaza(t)||)s3(0,t) dt and o (0) = [w(|[Voza(t)||)s3(t)dt.
parameterd and noisy measuremetrf. We assume that the We analyze the robust correlation method having fixed zero
objective function has a unique maximum for adyand that mean and the following objective function:

one can find the maximum by zeroing the partial derivatives Cxy ()
of (-, Z) to determine the estimatds (0,2) = — (30)
Ux(g)dy(e)
0 . where Cxy (0) = [ w(|[Vazo(£)||)s1(0,t)s2(t) dt. The gradi-
0= aigjq)(e’ D, J=1p (23) " ant of the objective function is evaluated as follows:
1 /
Since 6 is an implicit function of Z, it is difficult to (0.2) 703((9)0%(0) [ny(e)UX(G)UY(G)

determine its exact mean and variance. To approximate its , ,
mean and variance, we linearize the gradientof —Cxy (0)(ox(0)oy (0) + Ux(9)UY(9))} ,(31)
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where C'xy () = VoCxy(0), ox(d) = Veox(0) and
O’Y(e) :~v€0'y(9). ~
If s1(0,7) = kso(f) with a constantk, (i.e, the two COV{‘I’(&Z)}

images are linearly related at true registered posmon) then 1 o o (é) o (5)
¥(0,E[Z]) = 0 sinceax (O)oy (0) = Cxy (0) andCy (0) = S COV{CXY(9)< A >}

o (0)oy (0)+ox(0)oy (). Therefore, the bias approximation o*(6) ox(6)  oy(0)

using (27) is zero. This holds not only for the constant 1 o A

weighting function but also for any weighting function. “02(5) /w(||1/§z§(f)||)n(f) [V1%51(0, 1)) dif
Next, we consider bias due to outliers. Suppose that there

are additive outlier componentsgt) and noisen(t) such that . / Vs (PI)n(A) [V 0518, 7)]T d7

82(t) = ks1(0,1) + o(f) + n(f). In this case¥ (0, E[Z]) does 6%6\7

not equal zero due to the outliers, in general. For simplicity, o2 ~ ~ B

we assuméthat oy () = oy () = 0 for all 4. With this =7 / (Va2 @) [V %1(6, £)] [V %1(6, £)] " dt,

assumption, we approximate the Hessian matrix at the true 6)

registered position as follows: (34)

whereo?(§) £ ox (0)ay (6). We approximate thél matrix

~ V205p(h — 1 "0 ) ) without outliers using (32):
H~V=70(0,E[Z]) 2002 (0) [ny(G)ox(G)w(g-Z)
Plugging (32) and¥ (4, E[Z]) into (27) yields the following  p ~ _ /w(||‘/5zg(f)||)[vl%1(§,i)][Vl%l(é,z?)]T
bias approximation: o2(6)

(35)
Finally, the covariance is approximated by plugging (34),

E|6] — 0~ [Cxy (0)) ' Cey (0) = [/w(HVéZé@H) (35) into (29):

-1 N a
. (vl%l(é,mvl%l(é,i)? B V2051(§,f)0(f)) d’“?] cov{e} ~ 0207 CL07, (36)
i where Cy = [w(|[Vzz5(H|)[V'%1(6,1)][V % (6, O df and
. Uw(||véz§(£)|\)[vlosl(9,f)]o(F) d{] : (33) Co= [w¥( HVeze ONIV'%1(0, ][V S (0, D) dE.

By the vector Cauchy -Schwarz inequality [24], one can
For constant weighting, such as in the sample correlprove the following inequality:
tion method, the estimator can be biased by outliers since

[V, (8,1)]o(f) di"is nonzero in general. For the robust COV{é} all (37)
correlation method, the bias can be reduced significantly by
the weighting in the final bracketed term in (33). where A = B means the positive semi-definiteness of

matrix A — B, and equality holds iffw(-)[V's;(0,7)] =
a[V'%s,(4,t)] for a constanta. Thus, any non-constant
weighting function will yield larger covariance than the ordi-
nary sample correlation based estimator, whereas the sample

The sample correlation coefficient based method is tierrelation coefficient method achieves (asymptotically) the
MLE if the two images have constant backgrounds and agamer-Rao bound (the inverse of the Fisher information
identical except for geometric transformation and additiveatrix). However, this analysis assumed?) = ks (0,1) +
i.i.d. Gaussian noise [32]. Thus, the covariance of the samm(f) which is unrealistic in the presence of outliers. When
correlation based estimator asymptotically equals the inveetliers occur, the noise variance is not uniform. One may
of the following Fisher information matrix [23]: also approximate the covariance matrix of each estimator in
the presence of outliers. However, it is challenging to find an
inequality such as (37) for this case.

APPENDIXC
EFFICIENCY

R

= %/ [Vlosl(é,f}] [Vlosl(é,fﬂT dt
g The authors are very grateful to James Balter, Kwok Lam
whereo? is the noise power. and Randall Ten Haken from the Radiation Oncology Depart-

For robust correlation based estimators, we use the ¢BENtin the University of Michigan, Ann Arbor for providing

variance approximation developed in Appendix A. First, ?e experimental data and bringing image registration problem
0

approximate the covariance matrix ¥f(0, Z) as follows: r radiation therapy to us. The athors _also tha_nk B_rad
Sutton and Douglas Noll from the Biomedical Engineering

7If the backgrounds of the images have constant values, then this assupﬁ-pfir_tment in_ the UniVEerity of Michigan, Ann Arbor for
tion holds for constant weighting.¢., the sample correlation coefficient).  providing functional MRI images.
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