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Abstract— Imaging systems that form estimates using a
statistical approach generally yield images with nonuni-
form resolution properties. That is, the reconstructed im-
ages possess resolution properties marked by space-variant
and/or anisotropic responses. We have previously developed
a space-variant penalty for penalized-likelihood reconstruc-
tion that yields nearly uniform resolution properties [1]. In
[1], we demonstrated how to efficiently calculate this penalty
and apply it to an idealized positron emission tomography
(PET) system whose geometric response is space-invariant.
In this paper, we demonstrate the efficient calculation and
application of this penalty to space-variant systems. (The
method is most appropriate when the system matrix has
been precalculated.) We apply the penalty to a large field-
of-view PET system where crystal penetration effects make
the geometric response space-variant, and to a 2D single
photon emission computed tomography (SPECT) system
whose detector responses are modeled by a depth-dependent
Gaussian with linearly varying full-width half-maximum
(FWHM). We perform a simulation study comparing recon-
structions using our proposed penalized-likelihood approach
with other reconstruction methods and demonstrate the rel-
ative resolution uniformity, and discuss trade-offs among es-
timators that yield nearly uniform resolution. We observe
similar noise performance for the penalized-likelihood and
post-smoothed maximum-likelihood approaches with care-
fully matched resolution, so choosing one estimator over
another should be made on other factors like computa-
tional complexity and convergence rates of the iterative
reconstruction. Additionally, because the post-smoothed
maximum-likelihood and the proposed penalized-likelihood
approach can outperform one another in terms of resolution
uniformity depending on the desired reconstruction resolu-
tion, we present and discuss a hybrid approach adopting
both a penalty and post-smoothing.

Index Terms—Tomography, Regularization, PET, SPECT,
Bayesian reconstruction

I. Introduction

Real imaging systems are subject to a number of physi-
cal effects that make the system response space-variant and
image-dependent. For example, in SPECT systems, the de-
tector response is depth-dependent, such that farther from
the detector a larger region of emissions are detected. This
leads to degraded intrinsic resolution in the center of the
field-of-view. In PET, nonuniform sampling and crystal
penetration effects also lead to space-variance [2]. Both
PET and SPECT also have object-dependent attenuation
effects that can affect resolution. Resolution nonunifor-
mities can arise even in simpler imaging problems. For
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example, even in cases involving a simple space-invariant
deblurring operation, nonuniform resolution properties can
arise due to the particular form of the statistical estimator
and the measurement noise model [3].

When these effects are not compensated, the recon-
structed images can suffer from quantitative inaccuracies
and geometric distortions due to the anisotropic responses.
In many applications, such distortions are undesirable. For
example, nonuniform resolution properties can complicate
image registration tasks. Similarly, image-dependent reso-
lution properties make the comparison of different images
or different features in the same image more difficult.

For tomographic applications, there are a number of an-
alytical methods that can compensate for space-variant
physical effects. For SPECT, several methods have been
proposed to correct for attenuation [4–6], for a depth-
dependent response [7, 8], or for both [9]. Similarly, meth-
ods for PET with irregular sampling functions have been
developed [10]. Under proper conditions, these techniques
can yield images free of resolution nonuniformities, however
generally they ignore any noise model.

An alternative is to perform maximum-likelihood (ML)
reconstruction using an accurate system model. When the
system model accurately incorporates the system geometry
and all physical effects, it is often possible to obtain im-
age estimates that have nearly “perfect” resolution when a
pixelated object model is used. This means that the local
impulse response defined in [3] is a Kronecker impulse.

Such estimates require iterating the algorithms used to
maximize the ML objective until convergence. Unfortu-
nately, such images usually appear overly noisy due to
the ill-conditioned nature of inverse problems. A num-
ber of solutions have been proposed to improve the ap-
pearance of such images: (1) The ML images can simply
be post-filtered with a shift-invariant blur. If the ML im-
age has “perfect” resolution, then the blurred image will
have uniform resolution. However this still requires a fully-
converged solution to an unregularized problem, which may
take very many iterations. (2) Iteration can begin with
a uniform image and can be stopped prematurely yield-
ing a smoother result. However such images will have
nonuniform resolution properties [11, 12]. (3) The prob-
lem can be regularized, improving convergence rates and
image quality. While one can use sieves [13] to regularize
the problem, the appropriate kernels may not always exist
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for a desired resolution and system model. Additionally,
a space-invariant sieve cannot provide uniform resolution
for space-variant systems. Another form of regularization
is the penalized-likelihood approach, where a penalty term
is added to the objective function that discourages rough
images.

Standard space-invariant penalties yield nonuniform res-
olution properties even for space-invariant systems due to
the implicit data weighting of the penalized-likelihood ob-
jective [3]. Space-variant penalties have been developed
that yield uniform resolution properties [1, 14]. In princi-
ple, these techniques may be applied to a wide range of
space-variant imaging systems to correct for both the im-
plicit data weighting and to compensate for the various
physical effects that make the system space-variant. Such
methods would provide for easy resolution control, where
one needs only to specify the desired point spread function.

However, these space-variant penalties are data-
dependent, and they must be computed for each data ac-
quisition. Moreover, fast techniques for calculation of the
penalty term have only been developed for space-invariant
systems. [1] The main obstacle to the application of these
techniques to space-variant systems, in general, remains
the efficient calculation of the penalty.

The primary contribution of this paper is a new effi-
cient procedure for the application of these penalties to
space-variant systems. The method is particularly suited
to cases where the system matrix has been precalculated.
We demonstrate the use of this penalty on a 2D SPECT
model, where the detector response is modeled by a depth-
dependent Gaussian response whose width linearly in-
creases with distance from the detector. We also illustrate
the use of our space-variant penalty on a large field-of-view
PET system where crystal penetration effects and nonuni-
form sampling lead to a space-variant geometric response.
Such a large field-of-view model is important with the in-
creased use of small animal PET systems.

Section II reviews the local impulse response of
implicitly-defined estimators like the penalized-likelihood
approach. We present a new form of the local impulse re-
sponse when there is an inherent mismatch between the
true continuous domain object and a discretized recon-
struction model of the object. We review the penalty de-
sign approach of [1] using this formulation of the local im-
pulse response. Section III discusses efficient procedures
for calculating these penalties. We compare the resolu-
tion (Section IV) and noise performance (Section V) of
penalized-likelihood with our space-variant penalty with a
number of other reconstruction techniques, and discuss op-
timality among classes of estimators that provide uniform
resolution. Section VI discusses a hybrid approach that
combines elements of the post-smoothed ML approach and
our proposed penalized-likelihood approach. We present an
analytical comparison of penalized-likelihood and ML ap-
proaches (under a Gaussian noise model) in the appendix.

II. Background

We begin this section with a discussion of the general
class of imaging models under investigation. This discus-
sion includes both the forward measurement model and the
reconstruction model used in a penalized-likelihood recon-
struction. We next derive the local impulse response for
this class of estimators and imaging systems. The local
impulse response quantifies the local resolution properties
and is the basis of our space-variant penalty design (the
last topic of this section) which allows for fine resolution
control.

A. Measurement Model

Let Y ∈ IRN denote the measurement vector recorded by
the imaging system. We treat Y as a random vector whose
unknown mean depends on a true continuous-domain ob-
ject function, f(x), where x ∈ IR2 denotes the continuous
spatial coordinates. We assume these means have the fol-
lowing form:

Ȳ †
i (f) , Ef [Yi] = g†i

(∫
ai(x)f(x)dx

)
= g†i ([Af ]i) , (1)

where ai(x) is the system “sensitivity” function for the
ith measurement and g†i denotes a transformation relating
the weighted integral to the mean measurements. The col-
lection of weighted integrals for all measurements is writ-
ten concisely using the continuous-to-discrete-domain op-
erator, A, which maps a continuous image into N (untrans-
formed) measurements.

B. Reconstruction Model

In practice the ai(x) and g†i (·) functions are rarely known
exactly. Thus, there is an inherent mismatch between the
measurement and the reconstruction models. Additionally,
it is commonplace to use a discrete object model where the
object function is represented as a linear combination of P
basis functions with coefficient vector, θ ∈ IRP. The dis-
crete object model is selected to simplify reconstruction,
display, and storage of reconstructed images (e.g., stan-
dard discretizations are the pixel or voxel bases). Instead
of using the (typically unknown) true relationship in (1),
we adopt a reconstruction model where the mean measure-
ments are modeled to be related to the discretized object
as follows:

Ȳi(θ) = gi ([Aθ]i) , (2)

where A is called the system matrix and gi(·) is a func-
tion that relates weighted sums of image parameters to the
mean measurements. The N×P matrix, A is meant to ap-
proximate the action of the continuous-to-discrete operator
A, and gi(·) is meant to approximate the transformation
g†i (·).

We reconstruct θ using penalized-likelihood estimation.
The penalized-likelihood estimator is written implicitly as
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the maximizer of an objective function:

θ̂ = arg max
θ

Φ(θ, Y ),

Φ(θ, Y ) , L(θ, Y )−R(θ), (3)

where the objective is composed of two terms; the log-
likelihood, L(θ, Y ), and the penalty R(θ), which discour-
ages rough images. Under the usual assumption of inde-
pendent measurements the log-likelihood has the form

L(θ, Y ) =
∑

i

hi(Yi, Ȳi(θ))

=
∑

i

hi(Yi, gi([Aθ]i)), (4)

where hi(·, ·) is a two dimensional function of the ith mea-
surement, Yi, and its mean Ȳi. Each hi(u, v) term rep-
resents a marginal log-likelihood whose form depends on
the chosen noise model. The system model enters into (4)
through the reconstruction model for mean measurements
in (2).

The above general framework covers a range of imaging
systems and noise models. For example, one can model an
emission tomography system with Poisson measurements
by the following choices:

gi(l) = l + ri

hi(u, v) = u log (v)− v − u!, (5)

where ri represents the mean contribution of background
and scatter events. Similarly, a transmission tomography
system with Gaussian measurements can be modeled using

gi(l) = bi exp(−l) + ri

hi(u, v) = − 1
σ2

i

(u− v)2 − log
√

2πσi, (6)

where bi represents detector normalization factors, and σi

represents known standard deviations for the ith measure-
ment.

C. Quadratic Regularization

Penalized-likelihood estimators discourage overly noisy
images by including the penalty term, R(θ), in (3). There
are many possible choices for the penalty term. We will
focus on pairwise quadratic penalties with the following
form,

R(θ) =
1
2

P∑
j=1

P∑
k=1

wjk(θj − θk)2, (7)

where the wjk terms are nonnegative values that the al-
gorithm designer must choose. Quadratic penalties can be
written conveniently as R(θ) = 1

2θ′Rθ, where the penalty
matrix R has elements,

Rjk =
{ ∑P

l=1 wlj , k = j
−wjk, k 6= j.

(8)

The definition of the elements of R represented in (8)
allows for asymmetric R. However, only the symmet-
ric component of R is important for the penalty, since
θ′Rθ = (θ′Rθ)′ = θ′R′θ.

Practical roughness penalties use only a small neighbor-
hood about each pixel, so most wjk are zero. Therefore,
we adopt the following parameterization of the penalty ma-
trix. Letting ej denote the jth unit vector, a column of the
matrix R has the form

Rej =



−w1,j

...
−wj−1,j∑

l 6=j wl,j

−wj+1,j

...
−wP,j


=
∑
l 6=j

wlj(ej − el) (9)

=
B∑

q=1

wljq,jvec {bq(m−mj , n− nj)} (10)

= Bjwj . (11)

In (9), we simply rewrite a column of R as a weighted sum
of the difference of two unit vectors. (The jth unit vector
is written as ej .) These unit vector differences identify
pairs of pixels in the penalty. Since most pixel pairs are
not penalized (i.e.: wjk = 0), one can alternately write the
penalty in terms of a small number of basis functions that
identify pixel pairs. For a 2D imaging problem, these basis
functions are of the form:

bq(m,n) = δ(m,n)− δ(m + mq, n + nq), (12)

where (m,n) are image coordinates and (mq, nq) are coor-
dinate offsets for the qth neighbor (basis). Thus, in (10)
we write the parameterization as a weighted sum over the
B bases, which are lexicographically reordered into vec-
tor form (as denoted by vec{·}). The bases are shifted by
(mj , nj) which represent the coordinates of the jth pixel.
In (10), ljq represents the vector position which corre-
sponds to the pixel identified by position (mj , nj) and the
offset (mq, nq). This sum may also be written succinctly, as
in (11), in a matrix form using a P×B basis matrix Bj and
a vector wj that is composed of the weights {wljq,j}B

q=1.

D. Local Impulse Response

The local impulse response is a useful tool for investigat-
ing the resolution properties of imaging systems and the
reconstruction methods used to form the images. Addi-
tionally, knowing the local impulse response of a penalized-
likelihood estimator prior to reconstruction allows one to
customize a specific penalty function that yields user-
specified resolution properties. In [3] an approximate local
impulse response was derived for discrete object models.
Here, we extend those derivations for a continuous object
model.

The local impulse response is defined in terms of the
mean reconstruction, µ(f) = Ef [θ̂(Y )], and is the limiting
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TABLE I

Derivatives of hi(u, v) under various noise models.

(Additive constants not important for the maximization of the penalized-likelihood objective have been dropped.)

Distribution hi(u, v) h01
i (u, v) −h02

i (u, v) h11
i (u, v)

Gaussian − 1
2σ2

i

(u− v)2
1
σ2

i

(u− v)
1
σ2

i

1
σ2

i

Generalized
Gaussian∗

−
(
|u− v|

βi

)αi

−sgn(u−v)
αi

βi

(
|u− v|

βi

)αi−1 (αi−α2
i )

β2
i

(
|u− v|

βi

)αi−2 (αi−α2
i )

β2
i

(
|u− v|

βi

)αi−2

Poisson u log(v)− v
u

v
− 1

u

v2

1
v

Shifted
Poisson

(u+ai) log(v+ai)−v
u + ai

v + ai
− 1

u + ai

(v + ai)2
1

v + ai

∗For the generalized Gaussian distribution, αi ∈ (1,∞) and βi ∈ (0,∞).

difference between mean reconstructions of an image and
reconstructions of a perturbed image. The local impulse
response at spatial location x0 is defined as

l(x0) , lim
ε→0

µ (f(x) + εδ(x− x0))− µ (f(x))
ε

, (13)

where δx0 , δ(x − x0) is a Dirac impulse at position x0.
As in [3], if we assume that the estimator is locally linear,
then µ(f) ≈ θ̂(Ȳ †(f)), so

l(x0) = lim
ε→0

θ̂
(
Ȳ
†(f + εδx0)

)
− θ̂

(
Ȳ
†(f)

)
ε

= ∇Y θ̂
(
Ȳ
†(f)

)
·

(
lim
ε→0

Ȳ
†(f + εδx0)− Ȳ

†(f)
ε

)
= ∇Y θ̂

(
Ȳ
†(f)

)
· 4Ȳ

†(f ;x0), (14)

where ∇Y = [ ∂
∂Y1

· · · ∂
∂YN

]. We evaluate 4Ȳ
†(f ;x0) using

the mean measurements in (1) and applying the chain rule.
The ith element is[
4Ȳ

†(f ;x0)
]

i
= ġ†i (〈ai, f〉) lim

ε→0

〈ai, f + εδx0〉 − 〈ai, f〉
ε

= ġ†i (〈ai, f〉) ai(x0)

= ġ†i ([Af ]i)Aδx0 . (15)

In [3], an equation for ∇Y θ̂ (Y ) was derived for
implicitly-defined estimators of the form in (3). Assum-
ing that −∇20Φ(θ, Y ) is positive definite and Φ(θ, Y ) is
twice differentiable, we may write

∇Y θ̂ (Y ) =
[
−∇20Φ

(
θ̂(Y ), Y

)]−1

∇11Φ
(
θ̂(Y ), Y

)
, (16)

where∇20 is an operator that yields a matrix whose (j, k)th
element is ∂2

∂θj∂θk
, and ∇11 is an operator that yields a ma-

trix whose (j, i)th element is ∂2

∂θj∂Yi
. Because the objective

function in (3) is simply a difference of the likelihood and

penalty terms, one can evaluate the above partial deriva-
tives separately for the likelihood and penalty terms.

We will identify these partial derivative terms in the fol-
lowing paragraphs; however, it is helpful to first adopt some
shorthand notation for the derivatives of various model
components. Specifically, the derivatives of hi(u, v), gi(l),
and g†i (l) are denoted as follows

h01
i (u, v) = ∂

∂v hi(u, v)
h02

i (u, v) = ∂2

∂v2 hi(u, v)
h11

i (u, v) = ∂2

∂u∂v hi(u, v)

ġ†i (l) = ∂
∂lg

†
i (l)

ġi(l) = ∂
∂lgi(l)

g̈i(l) = ∂2

∂l2 gi(l).
(17)

For penalties that are not a function of Y , ∇11R(θ) is
zero. Even though we will eventually design a penalty that
is dependent on the projection data, we have found that ig-
noring the dependence of R on Y nevertheless leads to good
estimates of the local impulse response. In other words, the
derivatives of the penalty with respect to Y are sufficiently
small as to be disregarded when evaluating (16). For a
quadratic penalty, the Hessian of the penalty is the sym-
metric portion of the penalty matrix. Thus,

∇20R(θ) =
1
2
(R + R′) , Rsym (18)

∇11R(θ) = 0. (19)

Returning to (4), we may write the associated expres-
sions for the likelihood term. Specifically, using the chain
rule and adopting a matrix notation form, we find that

∇20L(θ, Y ) =

A′diag
{

h02
i (Yi, gi([Aθ]i)) [ġi([Aθ]i)]

2 +
h01

i (Yi, gi([Aθ]i)) [g̈i([Aθ]i)]

}
A (20)

∇11L(θ, Y ) =
A′diag

{
h11

i (Yi, gi([Aθ]i)) [ġi([Aθ]i)]
}

. (21)

We may now use (18)-(21) to find a more specific ex-
pression for (16). Moreover, performing this substitution
and plugging (15) and (16) back into (14), yields following
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expression for the local impulse response for a penalized-
likelihood estimator with a quadratic penalty:

l(x0) = [A′D1A + Rsym]−1A′D2Aδx0 (22)

where D1 and D2 are the following N × N diagonal ma-
trices:

[D1]ii = −h02
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [

ġi([Aθ̆]i)
]2

−h01
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [

g̈i([Aθ̆]i)
]

(23)

[D2]ii = h11
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [

ġi([Aθ̆]i)
]

·
[
ġ†i ([Af ]i)

]
, (24)

where θ̆ , θ̂(Ȳ †(f)) denotes the estimate of θ using the
mean data. In the typical cases where g(·) and g†(·) are in-
vertible functions, we can write the diagonal matrices (23)
and (24) as functions of the mean measurements. Specifi-
cally,

[D1]ii = −h02
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [

ġi

(
g−1

(
Ȳi(θ̆)

))]2
−h01

i

(
Ȳ †

i (f), Ȳi(θ̆)
) [

g̈i

(
g−1

(
Ȳi(θ̆)

))]
(25)

[D2]ii = h11
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [

ġi

(
g−1

(
Ȳi(θ̆)

))]
·
[
ġ†i

(
g†i
−1
(
Ȳ
†
i (f)

))]
. (26)

The seasoned observer will note that (22) has a general
form very similar to a linear penalized least-squares estima-
tor. In fact, if the transformation function gi(l) is linear, it
is straightforward to derive a very similar expression for the
local impulse response without relying on the linearization
discussed immediately before (14). Thus, in some ways this
linearization is similar to making a Gaussian assumption
on individual measurements, and we would expect the lin-
earized response approximation in (22) to be very accurate
for “high count” data where the central limit theorem is
at work. While this is intuitively the case for “high count”
data we find that (22) provides very accurate results for
“low count” data as well.

Strictly speaking, to calculate the local impulse response,
one must substitute (25) and (26) into (22). However, when
the system model, A and gi(x), closely approximates the
actual system, A and g†i (x), the means, Ȳ †

i (f) and Ȳi(θ̆)
are often very similar to each other. That is, the mean
measurements from the actual system model and object
are nearly the same as the mean measurements from the
modeled system and the mean object reconstruction. Typ-
ically the mean reconstruction is a slightly blurred version
of the true object, whereas the mean measurements are
more heavily blurred (in tomography this “blur” includes
the projection operation). Thus, as long as the estimator
smoothing parameter is relatively small, the measurement
“blur” will dominate making Ȳ †

i (f) and Ȳi(θ̆) appear very
similar. Thus, the same estimate of Ȳi can be used for
both arguments of the derivatives of hi in (25) and (26).

For very large smoothing parameters, one would need to
form different approximations for the heavily blurred θ̆ and
the unblurred f , to estimate each measurement mean sep-
arately.

In cases where the mean measurements are unknown, a
simple plug-in technique where we replace Ȳi by Yi often
yields very good approximations [3]. This technique tends
to produce good estimates, since the Yi terms are found
only “sandwiched” between blur operators that effectively
average out much the noise.

Because we will generally be evaluating derivatives of
hi(u, v) with u = v, it is interesting to note a few properties
of hi under this condition. First, h01

i (v, v) often equals zero.
Such is the case when hi(v, u) ≤ hi(v, v),∀u. Recall that
the second term of hi represents the mean measurements,
and hi is the log-likelihood for the ith measurement. Thus,
this case is satisfied when the log-likelihood attains a peak
at its mean. For such noise models, the second term of
(25) disappears. Similarly, for many practical noise models
like those in Table I, h11

i (v, v) = −h02
i (v, v). Thus, when

gi(l) = g†i (l),∀i, the diagonal matrices, D1 and D2, are
equal, and the local impulse response simplifies to

l(x0) = [A′DA + Rsym]−1A′DAδx0

Dii = h11
i (Ȳi, Ȳi)

[
ġi

(
g−1(Ȳi)

)]2
, (27)

where D , D1 = D2. For simplicity in the following
sections, we will focus on the case where D , D1 = D2,
although the ideas generalize readily. The efficient methods
for calculating the penalty apply in the case where D1 6=
D2; however, the computation time will be roughly double
due to the need to calculate terms for both D1 and D2.

Using (27), one can estimate local impulse responses for
many imaging systems. For example, returning to the emis-
sion and transmission models in (5) and (6), it is straight-
forward to calculate the diagonal matrix in (27). Specifi-
cally, we find that

Demis = diag
{

1
Yi

}
, Dtrans = diag

{
(Yi − ri)2

σ2
i

}
, (28)

where we have used the simple plug-in technique for un-
known means. In practice, for the emission tomography
case, one must be careful in using Yi terms that approach
zero (this is common for rays that traverse the edges of the
object). In these cases, we typically substitute max{Yi, tc}
for Yi, where tc is a relatively small number that discour-
ages overly large weightings. In our experience, this tech-
nique provides very good results; however, one might adopt
more sophisticated techniques for estimating 1/Yi for low-
count cases as Qi has done in [15].

E. Penalty Design

Because our local impulse response approximation (27)
is a function of the measurements Y , but not of the object
θ, we can find approximate local impulse responses prior
to image reconstruction. Thus, we can use the impulse
response estimates to generate a penalty matrix, R, that
yields user-specified resolution properties.
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Although one can evaluate local impulse responses in
(22) or (27) for any spatial coordinates denoted by the
continuous variable x0, for penalty design, we would like
to implement a design over a finite set of positions. For
example, for a pixel basis representation of the object, we
can consider a single local impulse response for each pixel.
Selecting the position, xj , the center of the jth pixel, is
sufficient for penalty design.

Similarly, although (22) or (27) could be evaluated us-
ing iterative techniques [3], we would like to evaluate local
responses over many locations and would prefer a faster
approximate technique for the purpose of penalty design.
Because A′DA is generally locally space-invariant, we use
the following circulant approximation (as in [1] and [15])
to the local impulse response at the jth pixel:

ljcirc = F−1

{ F{ej} � F{A′DAδxj}
F{A′DAej}+ F{Rsymej}

}
(29)

where � denotes element-by-element multiplication and
the division is an element-by-element division, and δxj

de-
notes a Dirac impulse centered at the center of the jth
pixel. The function F{·} takes the 2D Fourier transform
of its argument. One can calculate (29) quickly for any j
using fast Fourier transforms (FFTs). This circulant ap-
proximation includes the term, F{ej}, which includes the
appropriate complex exponentials such that the response
is centered at the jth position, and ljcirc ≈ lj .

Using the substitution Rsymej ≈ Bjwj in (29), one can
consider (29) to be a function of the local weightings wj

and use this in a design objective. Strictly speaking this
substitution does not yield a symmetric R. However, one
may calculate a symmetric R after the design, or simply
apply an asymmetric R, since only the symmetric portion
is important for penalties of the form 1

2θ
′Rθ. Applying

this substitution to (29), one would like to choose weights
to approximate some desired response lj0 such that

ljcirc(w
j) = F−1

{ F{ej} � F{A′DAδxj
}

F{A′DAej}+ F{Bjwj}

}
≈ lj0, (30)

where lj0 represents the desired response centered at pixel
j. As described in [1], one can perform a linearized de-
sign by Fourier transforming both sides of (30) and cross-
multiplying to obtain:

Lj
0 �F{Bjwj} ≈ F{ej} � F{A′DAδxj} −

Lj
0 �F{A′DAej}, (31)

where Lj
0 represents the 2D Fourier transform of the shifted

desired response. The form of (31) suggested that we could
design the local penalty weights, wj , using the following
constrained least-squares approach [1]:

ŵj = arg min
wj≥0

∣∣∣∣Φjwj − dj
∣∣∣∣2 , (32)

with

Φj , V jD
[
Lj

0

]
F{Bj} (33)

dj , V jD
[
F{ej}

]
F{A′DAδxj

}

−V jD
[
Lj

0

]
F{A′DAej}, (34)

where V j represents a user-selected least-squares weighting
that could possibly be space-variant. The above penalty
design is a constrained because we would like to ensure a
positive definite penalty matrix R, so that the objective
has a unique maximizer. Simply constraining the weights
to be nonnegative is a straightforward way of ensuring this
condition; however, alternate approaches have also been
investigated in [16]. By systematically evaluating (32) for
all pixel positions j, one can design a penalty that leads to
increased resolution uniformity.

However, for typical applications, straightforward evalu-
ation of (32) for every pixel generally requires significantly
more computation time than it takes to solve the actual
image reconstruction problem represented in (3). There-
fore, for practical use, it is desirable to find an efficient
procedure for computing the penalty.

III. Efficient Penalty Design

In [1], we developed a technique appropriate for effi-
ciently evaluating (32) when the system matrix is fac-
torable such that A′A ≈ G′WG and G′G is approxi-
mately space-invariant. Unfortunately, such approximate
factorizations are not applicable to many systems including
SPECT systems and wide field-of-view PET systems. This
section describes approximations and observations that re-
duce the computational burden in evaluating (32) to a
practical level even for space-variant systems. One of the
key developments that makes this new approach different
from the one discussed in [1] is the realization that the the
penalty design can be performed in an image domain. This
new approach does not rely on any particular factorization
of A, but does require fast access to the elements of A.

Of the factors in (33) and (34) that contribute to the
high computational effort, perhaps the most important are
the A′DAej and A′DAδxj

terms. In tomography, this
involves a projection and backprojection for every pixel
position. Other factors include the need for 2D Fourier
transforms for every pixel position and the necessary shift-
ing operations on Lj

0 and Bj . Another subtle complica-
tion is that for asymmetric bases, such as those in (12),
the Fourier transforms in (33) and (34) will yield complex
numbers, making (32) a complex design problem. The
following modifications to the penalty design will allevi-
ate these problems and yield a practical implementation.
Specifically, we identify three techniques including particu-
lar choice of the weighting matrix, V j , use of a local back-
projection, and image subsampling.

However, before we investigate these speed-ups, recall
that the formulation in (34) requires knowledge of the ac-
tual continuous-to-discrete operator, A. While one could
obtain Aδxj

by placing point sources in the imaging system
with careful registration, for approximate penalty design,
we simply approximate these projections using Aej . Us-
ing this substitution in (34) yields the following simplified
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Fig. 1. An example calculation of Φ and dj . The top row shows the convolution operation for one column of Φ, and the bottom row shows a
typical convolution operation for calculation of the dj term. While the image size for this example is 170× 170 pixels, the above images
are presented zoomed-in for clarity. All images have a linear colormap except for δ(m, n) − l0(m, n) which has been windowed to show
details.

form:

dj = V jD
[
F{ej} − Lj

0

]
F{A′DAej}. (35)

Generally, this form also represents a computational speed-
up over (34). Thus, hereafter we will focus on (35) for
practical penalty design implementations.

A. Appropriate Weighting Matrix

To speed up the penalty design, we first note that we
have allowed for an arbitrary least-squares scaling V j . In
[1], we considered one choice for V j for shift-invariant sys-
tems that leads to a scalable penalty for a class of desired
responses. However, there are many other choices for V j .

Consider the case where the weighting V j is a matrix
representation of the inverse 2D Fourier operator F{·}.
(We note that this “weighting” is actually a unitary trans-
formation that does not affect the penalty design solution;
however, we will continue to describe V j as a weighting
so that a user might conduct a weighted least-squares de-
sign.) In this case the convolution property of the Fourier
transform simplifies (33) as follows:

Φj = F−1
{

D[Lj
0]F{Bj}

}
=
[
φj

1
· · ·φj

B

]
, (36)

where

φj

q
, vec{bq(m−mj , n− nj) ∗∗ l0(m−mj , n− nj)}, (37)

and l0(m,n) is the 2D function denoting the desired im-
pulse response, ∗∗ represents a 2D convolution. Similarly,

(35) becomes

dj = F−1
{

D
[
F{ej} − Lj

0

]
F{A′DAej}

}
= vec


(

δ(m−mj , n− nj)−
l0(m−mj , n− nj)

)
∗∗ image{A′DAej}

 , (38)

where image{·} is the opposite of vec{·} operator, reor-
ganizing a lexicographically ordered vector back into an
image. We can simplify (36) and (38) by spatially shifting
each by (−mj ,−nj), which we refer to as “centering,” to
obtain

Φ =

 vec

 b1(m,n)
∗∗

l0(m,n)

 · · · vec

 bB(m,n)
∗∗

l0(m,n)




(39)

and

dj = vec
{

(δ(m,n)− l0(m,n)) ∗ ∗
shift

{
image{A′DAej}

} } ,

(40)

where the shift{·} operator shifts an image by (−mj ,−nj).
In terms of the weighting matrix, V j can be represented
by multiplying a permutation matrix by the Fourier ma-
trix. Using (39) and (40) in (32) solves a few issues. First,
the only shifts necessary appear in (40). Therefore we can
precalculate (39) entirely for a given target response l0(·, ·).
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Second, since (39) and (40) are formed by convolution op-
erations, the design is real. Additionally, the application of
the inverse Fourier transform means that the design takes
place in an image domain where one can make an approx-
imation (discussed next) that reduces computation. Al-
though the work presented in [1] allowed for this kind of
least-squares weighting, it was only later that we realized
that this could allow for significant speedups by performing
an image domain design. This capability is central to the
speedups discussed in the following sections.

B. Local Backprojections

Figure 1 illustrates (39) and (40) for a tomography sys-
tem. The calculation of a single column of Φ is represented
in the upper row of images, and a typical dj evaluation is
shown in the bottom row. Because each basis in (12) only
uses a small neighborhood, the columns of Φ (of which the
rightmost upper image is an example), generally will be
concentrated in a region similar in size to the desired re-
sponse, l0(m,n). Similarly, even though A′DAej can have
quite a large support region, dj is often quite concentrated.
This is because δ(m,n)− l0(m,n) typically takes the form
of a high pass filter (for standard choices of l0(·, ·)) and
A′DAej is generally smoothly varying.

Because columns of Φ and dj are highly localized about
the origin, we can perform an approximate design using
only the central portion. Similarly, even though there may
be some structure in dj far away from the origin, these re-
gions are arguably less important for the design. As shown
in the top right image in Figure 1, far away from the ori-
gin, (small neighborhood) penalties have little influence.
Similarly, we expect the approximation in (29) to be less
accurate far from position j, which is equivalent to being
far from the origin in Φ and dj . Therefore only a small
region near the origin need be evaluated. Moreover, one
can interpret such a truncation as a specific least-squares
weighting V j that disregards many image positions. This
reduction is easily accomplished for columns of Φ. However
to decrease computation time for dj , one must have fast ac-
cess to the columns of A. Direct access to the columns of
A allows one to obtain Aej easily, as is needed for evaluat-
ing dj , and to compute backprojections to a region. Such
is the case when the system matrix has been precomputed
and stored. In contrast, system models that are imple-
mented in a procedural form and have only row access will
not be able to fully exploit these speed-ups.

Disregarding portions of dj that may be precomputed,
one can evaluate (40) using radix-2 FFTs in approximately
3p[ 23αN + log2(P )] floating point operations, where α rep-
resents a factor indicating the sparsity of A. For the
PET system investigated in Figure 1, where α = 3.4%,
P = 1702, and N = 120 · 240, each calculation of dj would
take approximately 60 Mflops. In contrast, consider the
technique where only a subset of pixels are backprojected
and blurred. When a subset of [32 × 32] pixels is used,
P = 322 and calculating dj takes 2 Mflops, a factor of 30
speed-up. The small support method also has the advan-
tage of reducing the dimensions of Φ and dj , so that the

constrained design in (32) may be computed more quickly.
However, calculations remain dominated by the evaluation
of the dj terms.

C. Image Subsampling

Because A′DAej often varies smoothly with posi-
tion, the designed penalty weights, ŵj also tend to vary
smoothly with position. Therefore another potential speed-
up can be made by simply evaluating the penalty design
of (32) over a subset of image positions and using interpo-
lation to find the weights for the remaining positions. For
example, since computation time is dominated by the com-
putation of dj , finding ŵj for every third pixel (in both hori-
zontal and vertical directions) and interpolating remaining
weights yields a factor of 32 speed-up. Selection of the
coarseness of this sampling depends on the system char-
acteristics and the desired trade-off between computation
time and quality of resolution control.

D. Summary

For fast computation of the penalty, we propose using all
of the computational improvements discussed in the previ-
ous three subsections. Although each may be applied in
varying degrees (i.e.: support size and coarseness of sub-
sampling), together they may be used to make shift-variant
penalty design practical. The overall procedure for gener-
ating the shift-variant penalty (for shift-variant systems)
is shown in detail in Table II. These same methods might
also be applied to the shift-invariant procedures discussed
in [1] to achieve additional speedups; however, in this paper
we continue to focus only on systems that are intrinsically
shift-variant.

IV. Resolution Results

This section examines the resolution uniformity of our
proposed penalized-likelihood technique and of other re-
construction techniques for both a space-variant SPECT
system and a space-variant PET system. Both investiga-
tions adopt a Poisson noise model and a linear measure-
ment model as in (5). We also describe the practical com-
putational burden for the penalty design.

A. Application to 2D SPECT

We first investigate the resolution properties of a space-
variant SPECT system. We adopt a SPECT (reconstruc-
tion) system model whose circular orbit contains a field-of-
view of [128×128] 2 mm pixels. The detector head rotates
at a radius of 12.8 cm, and collects data for 110 projection
angles over 360◦ with 128 evenly spaced 2 mm radial bins.
The system response is modeled after a high resolution col-
limator with a linearly varying depth-dependent Gaussian
response that has a 1.75 mm FWHM at face of the col-
limator and a slope of 0.044, which corresponds to about
7.4 mm FWHM at the center of the field-of-view. We model
the true projections (i.e., the A operator) using a discrete
system model that is upsampled by a factor of three. That
is, the image-domain support contains [384 × 384] pixels
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TABLE II

Overall procedure for generating the shift-variant penalty

Calculate φq = bq(m,n) ∗ ∗ l0(m,n) for q = 1...B by convolving the desired response with each basis over a small
[M ×M ] support centered at (0,0).

Construct columns of Φ in (39) from vectors formed from lexicographically-ordered elements of φq.
Precompute Φ′Φ.
For each pixel, j, on a coarse grid:

Extract the jth column of A to obtain Aej .
Calculate the elements of D, using the measurements and (27): Dii ≈ h11

i (Yi, Yi)
[
ġi

(
g−1(Yi)

)]2
Multiply Aej element-by-element with Dii to find DAej .
Perform a local backprojection to obtain a subset of A′DAej , using only the columns of A that represent

pixels within an [M ×M ] region of support about the pixel j.
Convolve this locally backprojected image with the high-pass filter δ(m,n)− l0(m,n).
Reshape this small support filtered backprojection into the vector dj .
Use Φ′Φ and Φ′dj in an algorithm like NNLS [17] to estimate the local penalty weights, ŵj .

end
For each pixel, k, not on the coarse grid:

Use neighboring samples of ŵj from above to estimate ŵk using bilinear interpolation.
end

for the true projector. The projections and reconstruction
models are matched in all other respects.

We simulated a 23 cm diameter cold rod phantom with
uniform attenuation coefficient of 0.015 mm−1 (the approx-
imate attenuation coefficient of water at 140 keV) and rod
diameters of 6.4, 9, 10.25, 12.8, 17.9, and 25.6 mm. The
emission image for this object is shown in Figure 2A. To
represent scatter, the model includes 5% uniformly dis-
tributed background events and 500 thousand counts total.

Before discussing the resolution properties of various re-
construction techniques, we first demonstrate the feasibil-
ity of the proposed space-variant design in terms of com-
putation time. Table III lists computation times for the
space-variant penalty for this SPECT system using a gcc-
compiled ANSI C implementation of the design algorithm
discussed in Section III. For comparison, the time to com-
plete a single projection-backprojection, (i.e., A′Aθ), is
approximately 1.5 seconds. We present results for two dif-
ferent support sizes about the origin and four different spa-
tial subsamplings (i.e., evaluating at every nth pixel and
filling in gaps by interpolation). Due to zero padding and
the use of radix-2 FFTs, the [20 × 20] support size uses
[32 × 32] FFTs and the [12 × 12] support uses [16 × 16]
FFTs. (Technically the zero padding applied these cases
is insufficient to completely eliminate wrap-around effects
from periodic convolution. However, because the A′DAej

responses are fairly smooth and the blur operation uses a
high pass filter, we accept small amount of wrap-around in
the penalty design to reduce computation.) All methods
used a second-order penalty, incorporating the eight near-
est pixels. The computation times are very reasonable,
particularly for the larger subsampling values.

Figure 2 shows images reconstructed from noiseless pro-
jections of the cold rod phantom using a variety of tech-
niques. Since the different methods have different resolu-

TABLE III

Calculation times for the proposed penalty on an 800 MHz

Pentium-III processor.

Spatial Subsampling P = [20× 20] P = [12× 12]
1 128 s 60 s
2 33 s 16 s
3 15 s 8 s
5 6 s 4 s

tion properties, we have attempted to match resolution as
closely as possible for the center pixel in the image. We
have chosen the following target impulse response,

l0 = [A′A + R0]−1A′Aej0 , (41)

where we have selected a conventional space-invariant
penalty and j0 denotes the center pixel in the image. Equa-
tion (41) represents the local impulse response for a con-
ventional penalized unweighted least-squares reconstruc-
tion. We evaluate the target response (41) using itera-
tive techniques as described in [3]. This response is es-
sentially radially-symmetric since the response lies at the
center pixel for a SPECT model that incorporates a cir-
cular orbit, and since the object is a centered, uniformly
attenuating, disc-shaped object. For R0 in (41), we chose
a standard penalty matrix that uses a first-order neigh-
borhood of four equally-weighted pixels with a weighting
chosen to yield a FWHM resolution of 10 mm.

Choosing the target response (41) allows one to match
exactly the reconstruction resolution for many methods
since it represents a form achievable by many penalized-
likelihood and filtering methods. Figure 2E shows the true
image downsampled to [128 × 128] and blurred with the
target response (41).
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A) B) C) D)

E) F) G) H)

Fig. 2. Noiseless 2D SPECT reconstructions: A) True emission image, B) FBP with uniformity correction using the frequency-distance
principle and attenuation correction, C) Truncated OSEM, D) PL with standard space-invariant penalty, E) (Subsampled) true image
smoothed with desired blur, F) Post-smoothed ML, G) PL with modified penalty, and H) the hybrid post-smoothed PL approach of
Section VI.

Figure 2B shows a filtered-backprojection (FBP) recon-
struction using the frequency-distance principle to correct
for nonuniform resolution [7] and Chang-type attenuation
correction. Because the frequency-distance principle does
not completely correct for the nonuniform detector re-
sponse, we use the following approach to match the res-
olution properties with the target response in (41).

When the response of an estimator, such as FBP, is
known, and does not match (41) perfectly, one can force
a match by applying post-filtering. The overall response
is then a combination of the estimator response and the
post-filter. Specifically,

loverall(m,n) = lest(m,n) ∗ ∗ lpost(m,n), (42)

where loverall(m,n), lest(m,n), and lpost(m,n) represent the
overall response, the response due to the estimator, and the
post-smoothing filter, respectively. Thus, given an overall
desired target response and the estimator response, one can
find the appropriate post-smoothing filter by

lpost(m,n) = F−1

{
F {loverall(m,n)}
F {lest(m,n)}

}
. (43)

Depending on the form of lest(m,n), it may not be possible
to obtain any overall desired response because of zeros in
the frequency domain. However, one can find approximate
post-filters for a wide range of overall desired responses.

Therefore, even though ramp-filtered FBP with the
frequency-distance-based uniformity correction yields an
imperfect response, we match the overall target response,

(41), by using a post-filter calculated from (43). Because
the ramp-filtered FBP estimator generally yields space-
variant results, we match the target response only at the
center pixel. That is, we find lest(m,n) for the center pixel
by propagating an impulse through the ramp-filtered FBP
estimator, and find a single shift-invariant post-filter using
(43) to match the target response. The resulting recon-
struction, shown in Figure 2B, has relatively good reso-
lution uniformity, but suffers from ringing artifacts, most
noticeable at the edges of the object.

Figure 2C shows a reconstruction using an ordered sub-
sets expectation maximization (OSEM) algorithm with
10 subsets. We initialize the algorithm with a uniform
image and perform nine iterations. Starting with a flat
image and using only a few iterations is sometimes used as
a noise-control technique, since higher spatial frequencies
generally take more iterations to appear in the image es-
timate. The resolution properties are highly nonuniform,
and only roughly matched even at the center due to the
poor (object-dependent) resolution control available with
this method.

Figure 2D shows a standard penalized-likelihood (PL)
reconstruction using a space-invariant penalty. We may
write the local impulse response response for this estimator
at the center pixel as

lj0PL = [A′DA + βR0]−1A′DAej . (44)

However, for the center pixel the diagonal weighting de-
noted by D is very uniform and can be approximated us-
ing a single scalar value d. Therefore, we may rewrite the
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response in (44) as

lj0PL ≈ [dA′A + βR0]−1dA′Aej

= [A′A +
β

d
R0]−1A′Aej . (45)

Thus, using the same penalty as in (41) with an appropri-
ate scaling β, we have matched the center pixel’s response
nearly exactly. We estimate the solution with 200 iterations
of an ordered subsets version of De Pierro’s algorithm [18]
with 10 subsets, initialized with an FBP reconstruction, fol-
lowed by 20 iterations with one subset. For typical image
reconstruction problems, this represents many more iter-
ations than are generally necessary to form a good image
estimate. However, we would like a solution that is well-
converged so that we may guarantee that any resolution
mismatches (or, noise mismatches in Section V) are due
entirely to the objective function, not to insufficient con-
vergence of the algorithm used to find the estimate. While
the resolution properties for the PL estimate in Figure 2D
are nearly exactly matched at the center, the nonuniform
resolution properties away from the center are clearly evi-
dent.

Figure 2F is a reconstruction using a post-smoothed ML
technique, using 200 OSEM iterations (10 subsets) initial-
ized with an FBP image, followed by 20 EM iterations to
ensure a nearly converged solution. Since we have post-
smoothed with the desired target response in (41), the res-
olution properties are essentially exactly matched, as seen
by comparing Figure 2E and Figure 2F.

Lastly, we applied our proposed space-variant penalty,
using 200 iterations of the ordered-subsets De Pierro’s al-
gorithm (10 subsets), initialized with an FBP image and
followed by 20 iterations using one subset. Figure 2G shows
the reconstruction resulting from our penalty design using
the [20 × 20] support with no spatial subsampling. The
resolution properties are virtually exactly matched at the
center since the target response is easily achieved using the
space-variant design. That is, because a space-invariant
penalty achieves this response, the space-variant design
easily achieves the same response. The global resolution
properties are mostly very uniform, with some mild nonuni-
formities at the object edges, where approximation (27) is
less accurate.

Using the other choices of support size and spatial sub-
sampling shown in Table III yielded nearly identical re-
sults in the interior of the object. Significant nonunifor-
mity was noticeable only at the edges of the object when
using coarser spatial subsampling. One could use a region-
dependent subsampling of positions in (32) to sample more
finely at the object edges to provide nearly the same results
with fast computation.

Another way to investigate the resolution properties of a
technique is to evaluate the local impulse response at a va-
riety of locations and compare them to the target response.
For most statistical methods we evaluate (22) using iter-
ative techniques (we choose 100 iterations of a coordinate
ascent algorithm initialized with the target response). For
ML techniques where the invertibility conditions for (22)

A) B)

C) D)

Fig. 3. SPECT local impulse responses for a 10.0 mm FWHM tar-
get using A) Uniformity and attenuation-corrected FBP, B) PL
with space-invariant penalty, C) PL with proposed penalty, and
D) post-smoothed ML. All responses are superimposed on the
upper left quadrant of the phantom to illustrate the sample lo-
cations for these impulse response.

may not hold, we use the techniques described in [3] and
[19], where the emission image is perturbed with an im-
pulse, and differences in reconstructions with and without
the perturbation are obtained. For linear techniques like
FBP, we simply propagate an impulse response through
the system to find the local response. A sampling of local
impulse responses is shown in Figure 3. The local impulse
responses are contoured at four levels indicating the 25%,
50%, 75%, and 99% levels of the target response.

The relatively narrow responses of conventional PL are
evident away from the center of the object in Figure 3B.
In contrast, the uniformity-corrected FBP, PL with the
space-variant penalty, and post-smoothed ML, shown in
Figures 3A, 3C, and 3D, respectively, yield very uniform
responses. That is, the responses show a high degree of
symmetry and spatial uniformity, and the response peaks
and contours are closely matched to the target in (41). The
response of the center pixel (shown in the lower right cor-
ner of each subfigure) is indistinguishable from the target
response for all these methods. (We do not present lo-
cal impulse responses for OSEM with truncated iterations,
however we would expect very nonuniform responses that
have mismatch even at the center pixel.) Post-smoothed
ML appears to have the best uniformity, whereas our pro-
posed PL method shows very slight asymmetries at the
edges of the object.

While post-smoothed ML appears to yield more uniform
resolution properties than the proposed PL technique, we
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A) B)

Fig. 4. SPECT local impulse responses for a 7 mm FWHM target
using A) PL with proposed penalty and B) post-smoothed ML.

find that there are still resolution nonuniformities for the
post-smoothed ML techniques. When we investigate the
resolution properties of conventional ML with no filtering
through a systematic evaluation of local impulse responses,
we find that the FWHM resolution of the responses varies
from about 3 mm at the edges of the phantom to about
6.5 mm at the center. This is an indication that the sys-
tem matrix, A, is rank-deficient, and the ML estimator
cannot resolve single pixels. Thus, the post-smoothed es-
timates must also have nonuniform resolution properties.
For relatively large target responses, the post-smoothing
blur dominates and these nonuniformities are very small
(as we have seen for the 10.0 mm target). However, for
smaller desired responses, simple post-smoothing will not
yield the desired target. However, we can adopt a post-
filter approach that compensates for the intrinsic blur of
the ML estimator by applying (43).

We use (43) to find an post-smoothing filter for ML for
a target response of the form in (41) with a FWHM res-
olution of 7 mm. Figure 3 shows local impulse responses
for the 7 mm target for the proposed PL estimator and for
the post-smoothed ML approach. Despite matching the
target response at the center pixel (lower right corners in
each subfigure in Figure 4), the ML approach clearly yields
nonuniform resolution properties with narrower responses
toward the edges. In comparison, the PL approach yields
more uniform results.

In summary, the only 2D SPECT reconstruction meth-
ods presented here that yield nearly uniform resolution
properties are post-smoothed ML (for larger FWHM tar-
gets) the proposed PL approach, and FBP with frequency-
distance corrections. We compare the noise properties of
these methods in Section V.

B. Application to PET

We have also applied our penalty design technique to a
space-variant small animal PET system. Specifically, we
have modeled a MicroPET rodent scanner. [20] This sys-
tem has 2 mm (square) by 10 mm crystals in 30 [8 × 8]
blocks. The full field-of-view of [170 × 170], 1 mm pixels,
is modeled using finite integration of over all angles and
pixels, and includes crystal penetration effects. Figure 5
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Fig. 5. A space-variant PET system. The above PET system model
has physical characteristics chosen to simulate the MicroPET ro-
dent scanner. In the above image, rays connecting every 10th
detector are shown. Both nonuniform sampling and varying de-
tector response due to crystal penetration are incorporated in this
model.

shows responses for detectors pairs over regular intervals.
Both the nonuniform sampling and the space-variant de-
tector responses are evident in this figure.

Figure 6 shows a sample digital phantom placed in the
scanner. This image shows the attenuation map for a dig-
ital rat phantom in a slice at the bottom of the pelvis,
where the rat takes up a very large portion of the field-
of-view. This data was obtained by manually segmenting
MRI data obtained from [21]. The attenuation values are
0.0096, 0.013, and 0.010 mm−1 for the soft tissue, bone, and
the table, respectively. The emission image has a uniform
background with emission rate of 1.0, and a single circular
lesion in the right half of the phantom with an emission
rate of 2.0 (indicated in Figure 6 by the white circle). Pro-
jections contain 10 million counts with 5% percent random
coincidences.

Figure 7 presents local impulse response contours for
four different reconstruction methods. Again, contours are
made at the 25%, 50%, 75%, and 99% levels of the target
response. The target response was generated by angularly
averaging (41) for the PET model to obtain a symmetric
response with a FWHM resolution of 4.0 mm. The lo-
cal impulse response contours are superimposed on the rat
slice emission image so that the position of the responses
are obvious. We performed FBP reconstruction by radi-
ally resampling the cylindrical projections (arc correction).
As in the SPECT case, we used the least-squares filter of
[19] in an attempt to match resolution properties. Fig-
ure 7A shows responses for FBP, which while relatively
well-matched at the center, have reduced peaks toward the
edges, indicating coarser resolution properties as expected.

In contrast, the responses arising from conventional PL
(first-order penalty) shown in Figure 7B are narrower at
the edges. There are competing effects in PL reconstruc-
tion. While the system model suggests decreased resolu-
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Fig. 6. The above image shows the PET system with a simulated
rat phantom inside. This figure shows the attenuation map for
a transverse slice of a rat’s lower pelvis and thighs, where the
animal takes up a very wide field-of-view. The emission image is
uniform, except for a hot lesion in the location indicated by the
white circle.

tion at the edges due to the detector responses, there is
actually finer sampling at the edges (in effect better condi-
tioning the reconstruction than if uniformly sampled data
were acquired). However, for emission tomography the
FWHM resolution of conventional PL varies inversely with
ray certainty. Thus at the edges, where ones obtains lower
count measurements and thus increased certainty (under
the Poisson model), one expects decreased (finer) resolu-
tion. While these competing effects actually appear to yield
more uniform resolution than if the system model were ide-
alized to have uniformly sampled projections, the effects of
attenuation are clear in the responses, resulting in greater
vertical smoothing.

Figure 7C shows contours for PL with the proposed
space-variant (second-order) penalty. The responses are
very uniform in the interior of the object, but degrade near
the edges and outside the object. In general, the proposed
technique yields more uniform results than conventional
PL. If more uniform results are desired, a larger order
penalty neighborhood may be required, or relaxed design
constraints (as in [16]) may need to be applied.

Lastly, we present the contours for the case of post-
smoothed ML in Figure 7D. These responses are very uni-
form throughout the image and are very well matched
to the target response. We find the greatest uniformity
and the ability to match a target response with the post-
smoothed ML and proposed PL techniques.

V. Estimator Performance

Given different methods that provide uniform resolu-
tion properties, we would like to be able to choose the
“best” method for reconstruction. Of course, “best” is a
highly subjective term until a particular figure of merit is
selected. Computation time, degree of resolution unifor-
mity, and the variance and autocorrelation functions for

A)

B)

C)

D)

Fig. 7. Contours of the local impulse responses for A) filtered-
backprojection, B) PL with space-invariant penalty, C) PL with
proposed penalty, and D) post-smoothed ML. Contours are su-
perimposed on the emission image to show position.

the reconstructed pixels are a few categories that might
be important. While pixel variances are often maligned
as being only obliquely related to performance for certain
tasks, they are a simple place to start, and we would like to
ask the question, “Among estimators with exactly matched
resolutions, which one yields the lowest variance in the re-
construction?”

We first must identify estimators with nearly exactly
matched resolution properties. We have found that simply
matching FWHM resolution is insufficient for comparison,
as the sidelobe behavior and overall shape of the response
can greatly affect the noise performance. Recalling the in-
vestigations in the previous sections, the only uniform reso-
lution methods we have investigated with well matched re-
sponses are uniformity-corrected FBP, post-smoothed ML,
and our proposed PL technique. Additionally, we know
that these methods are not globally exactly matched. In
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Fig. 8. Standard deviations for the uniformity-corrected FBP (+),
the penalized-likelihood (◦), and the post-smoothed maximum-
likelihood (×) techniques for the center pixel where the local
impulse responses are exactly matched over a range of target
FWHM resolutions.

practice we can match these methods at (at least) one pixel
by choosing to post-smooth the ML and FBP approaches
using (43) and a target response equal to the estimated
PL response. Other pixel positions will generally be only
approximately matched.

A. Noise Study

Returning to the SPECT model, we performed 400
noisy reconstructions for the uniformity-corrected FBP
techniques, our PL approach, and the post-smoothed ML
method. This was performed over a range of target reso-
lutions with FWHM from 7.5 mm to 16.5 mm, using the
target response of (41). No targets below 7 mm were cal-
culated because even unpenalized ML yields a response of
about 6.5 mm at the center pixel. This minimum resolution
represents a barrier for both methods since the PL method
approaches the ML estimate for small target resolutions.
We chose the post-filters for the FBP and ML techniques
using (43) over the entire range of targets. Thus the res-
olution properties are essentially exactly matched for all
methods at the center even for the smaller target responses.

Figure 8 shows standard deviations for the center pixel
for these methods. One standard deviation error bars are
shown for each estimate. The plots for the proposed PL
approach and the post-smoothed ML estimates are nearly
identical with small differences well within the error bars.
(The one exception is the mismatch at the finest resolution
point. This is most likely due to a residual resolution mis-
match which stems from a difficulty in matching resolutions
exactly for small responses.) Thus, in terms of variance the
methods appear to have the same noise performance when
the spatial resolutions are carefully matched. In contrast,
the FBP approach suffers from increased noise in the re-

constructions.
One can also study the covariances in the reconstruc-

tions. Covariance functions are arguably a more impor-
tant feature than variances for evaluating different meth-
ods with specific tasks in mind. We calculated the sam-
ple covariance function for the center pixel for the uniform
resolutions methods using the 400 reconstructions. The co-
variance for the post-smoothed ML and our proposed PL
approaches were indistinguishable. Thus, for this system
and target, the post-smoothed ML and PL approaches have
essentially the same noise performance. Neither method
appears to have an advantage over a wide range of prac-
tical reconstruction resolutions. This result is not entirely
unexpected. In the Appendix we present an analysis for
a linear measurement model and a Gaussian noise model,
and argue that the post-smoothed ML and exactly matched
PL methods should yield identical covariance properties.
Thus for cases where the Poisson statistics are modeled
well by a Gaussian approximation, it is not surprising that
the same conclusions hold. In contrast, the uniformity-
corrected FBP yields different covariance functions. How-
ever, whether or not FBP’s covariance is desirable will de-
pend on the task for which the images are made and if the
associated reconstruction artifacts are tolerable.

We also explored the noise performance at other pixel
locations found similar equivalence of post-smoothed ML
and PL for the target in (41). However, for other pixel po-
sitions and other targets at finer matched resolutions some-
times one or the other algorithm would have lower standard
deviation depending on the particular location and target
response. Rather than attempting to draw general con-
clusions about the relative merits of the two approaches
it seems advisable for algorithm designers to compare the
two for the given system model and target resolutions of
interest.

B. Convergence Rates

Since the noise performance for PL and post-smoothed
ML are indistinguishable for the investigations in the previ-
ous section, other considerations such as computation time
may be more important. It is popularly held that unreg-
ularized methods converge more slowly than regularized
methods due to the conditioning of the problems. How-
ever, unregularized algorithms converge to different limits
than the regularized algorithms making analytical compar-
isons difficult.

We performed a simple investigation of the convergence
rates of matched post-smoothed ML and PL approaches.
We compared the normalized mean squared difference be-
tween the image estimate at the nth iteration, θ̂n, and the
fully-converged solution, θ̂∞. For the PL approach, θ̂n is
simply the estimate at the nth iteration. For the post-
smoothed ML technique, θ̂n is the ML estimate at the nth
iteration, with a post-smoothing filter applied. Thus, θ̂n

represents the post-smoothed ML estimate at the nth it-
eration. In this way, θ̂∞ for each method is nearly the
same; however, there will be marginal differences from the
residual resolution mismatch of the PL approach.
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Fig. 9. Convergence rates of PL (◦) and post-smoothed ML (×)
approach for a 10 mm target FWHM resolution.

We initialized both methods using the same FBP im-
age and used the same ordered-subsets techniques and the
same 10.0 mm target response mentioned in Section IV.
Estimates of θ̂∞, were calculated using 500 ordered-subsets
iterations, followed by 100 single subset iterations.

Figure 9 shows that the PL approach converges more
quickly than the ML approach. For a similar level of con-
vergence, it appears that the ML technique takes roughly
three times the number of iterations. Such speed-ups de-
pend on the target resolution, since increased regulariza-
tion leads to better conditioning. For example, smaller
target resolutions require more iterations, and as the target
is made arbitrarily small we will approach the unregular-
ized ML problem both in terms of solution and in terms of
convergence rate. However, we expect similar rank perfor-
mance for the two methods for different target resolutions,
as long as the same iterative algorithms are applied to each
method.

VI. A Hybrid Technique

An interesting alternative to choosing between post-
smoothed ML and the space-variant PL approaches is to
use both! One can use a hybrid method that includes a
degree of regularization that keeps responses fairly uni-
form and increases convergence rates for iterative algo-
rithms, and then apply a post-smoothing filter to set the
overall target resolution. This approach is attractive for
a number of reasons. Using the PL approach keeps the
responses uniform even for fairly small target responses.
Post-smoothing will generally reduce any of the remaining
resolution nonuniformities, and can be applied quickly for
a number of desired FWHM resolutions or responses with-
out additional iterative reconstructions. And, convergence
rates are increased over the unregularized ML approach,
reducing computation.

This hybrid post-smoothed PL approach can imple-
mented easily, using (43) to find the appropriate post-

smoothing filter for a desired overall response. In this case,
the lest term represents the “first-pass” resolution induced
by the penalized-likelihood objective. For our proposed
space-variant penalty, lest is equal to the “first-pass” tar-
get response. Figure 2H shows a sample reconstruction
using this technique for the SPECT problem. For this hy-
brid estimator, we apply our PL approach with a target
of the form in (41) with a 7.5 mm FWHM, followed post-
filtering via (43) using same overall target as the other
methods shown in that figure. One can see the increased
uniformity as compared with the non-hybrid PL approach
in Figure 2G.

We expect this method to yield similar noise performance
as the individual PL or post-smoothed ML approaches.
However, other trade-offs remain. Specifically, the optimal
choice of the “first-pass” response must be determined by
balancing overall resolution uniformity against computa-
tion time (both for the obtaining the space-variant penalty
and for the convergence rates of the iterative algorithm
used to solve the reconstruction objective).

VII. Discussion

We have presented a general penalized-likelihood frame-
work for reconstructing images with uniform resolution
for space-variant imaging systems. Additionally, we have
demonstrated computationally feasible techniques for cal-
culating the space-variant penalty when the system ma-
trix has been precomputed. In an investigation of emission
tomographic systems, we found uniformity-corrected FBP,
post-smoothed ML, and PL with our space-variant penalty
to yield nearly uniform resolution properties. For small tar-
get responses, the post-smoothed ML approach can have
significant nonuniformities, if the system model is rank de-
ficient. However, the PL approach still possesses residual
nonuniformities most notably at the edges of the object.
One solution that can eliminate these nonuniformities is to
adopt the hybrid approach discussed in Section VI. This
hybrid approach is also attractive since different resolutions
can be quickly applied without further applications of the
iterative estimation procedure.

Because this penalty design approach neglects nonnega-
tivity constraints on the object, it may be difficult to exert
fine control of the resolution properties of the reconstructed
object in regions where the reconstructed object values are
nearly zero. For example, nonnegativity constraints would
obviously affect the negative sidelobes of a target response
at edges near a zero-valued region. However, coarse resolu-
tion control can still be made using the techniques outlined
in this paper. We should note that while some target re-
sponses (such as those with negative sidelobes) may incom-
patible with certain objects and nonnegativity constraints,
there are many other targets (e.g.: nonnegative responses)
that might benefit from a future penalty design that has
been derived with these constraints in mind.

In a noise investigation of these uniform resolution ap-
proaches we found that the post-smoothed ML and PL
methods have essentially identical noise performance over
a wide range of target responses when spatial resolution
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properties are very carefully matched. These empirical re-
sults are not unexpected, since under certain system and
noise models, one can show theoretically the equivalence
of the methods in terms of noise (see Appendix). Because
these methods yield the same noise performance, selection
of one technique over another may depend on other trade-
offs like computation time and overall resolution unifor-
mity. These trade-offs may be explored further using the
hybrid post-smoothed PL technique. In contrast, the FBP
approach has different noise properties with a significant
increase in reconstructed pixel variance.

Because our investigations really only apply to the sys-
tems we have investigated, other imaging systems, noise
models, and target resolutions may yield different trade-
offs or conclusions about which techniques are preferred.
We have presented a class of uniform resolution methods
from which one may select a specific estimator according to
the desired features of the estimator. Future work should
include investigations of other systems and noise models,
to determine whether the conclusions presented here apply
more generally.

Appendix

Following [22], this appendix describes conditions un-
der which a post-filtered weighted least-squares recon-
struction is identical to a penalized weighted least-squares
(PWLS) reconstruction. This mathematical equivalence
corroborates our empirical findings for post-filtered ML and
penalized-likelihood reconstructions in Section V. For a lin-
ear measurement model, a PWLS estimate maximizes an
objective function of the following form:

Φ(θ, Y ) = − (Y −Aθ)′ K−1 (Y −Aθ)− θ′Rθ, (46)

where K = cov{Y }. Assuming appropriate invertibility
conditions hold, the minimizer has the following closed-
form solution

θ̂ = [A′K−1A + Rsym]−1A′K−1Y , (47)

where Rsym was defined in (18). We will also assume that
the actual system model is exactly matched to the recon-
struction model with measurements related to the object
through the system matrix, A. Since the estimator is a
linear function of the measurements, the local impulse re-
sponses can be expressed as [3]

lj = P ej = [F + Rsym]−1F ej , (48)

where lj represents the response centered at the jth pixel,
and F = A′K−1A is the Fisher information matrix. The
matrix, P , represents the collection of local impulse re-
sponses for all image positions. Thus, if the estimator
yields space-invariant resolution properties, then P is a
Toeplitz matrix. For a given desired response matrix, P0,
in theory one can solve (48) for R. Specifically, if P0 is
invertible then the required regularization matrix is

R?
sym = F [P−1

0 − I], (49)

where I is the identity matrix. For the solution in (49)
to exist, the right-hand side of the equation must yield a
symmetric matrix. Rearranging terms, one finds that if
P ′

0F = FP0, then a solution exists. In general, one may
not be able to exactly match arbitrary responses for specific
systems. Moreover, equation (49) may not be a practical
design for finding the penalty matrix; however, this ex-
pression provides a convenient analytical form relating the
desired responses P0 to the penalty matrix.

From (47), it is straightforward to write the covariance
matrix for θ̂ as

[F + Rsym]−1F [F + Rsym]−1. (50)

Thus, for a specific set of desired responses, we may plug
(49) into (50) to obtain the covariance matrix for penalized-
likelihood reconstruction:

Cov{θ̂PL} = [FP−1
0 ]−1F [FP−1

0 ]−1

= P0F
−1P0. (51)

Similarly, because post-smoothing is a linear operation:
θ̂PSML = P0θ̂ML, we may find the covariance for post-
smoothed ML reconstruction by first finding the covariance
for the ML approach by setting Rsym = 0 in (50). That is,

Cov{θ̂PSML} = P0Cov{θ̂ML}P0

= P0F
−1P0. (52)

Thus, (51) and (52) are identical. Therefore, when
resolution properties are exactly matched under this sys-
tem model, the penalized weighted least-squares and post-
smoothed weighted least-squares approaches will yield the
exact same noise performance. Section V describes similar
results under a Poisson model.

It is plausible that under other noise models, where the
noise cannot be well approximated by a Gaussian model, or
when (49) cannot be solved, the noise performance will be
significantly difference in the post-smoothed ML and PL
cases.
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