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Abstract— Most PET emission scans are corrected for acciden-
tal coincidence (AC) events by real-time subtraction of delayed-
window coincidences, leaving only the randoms-precorrected
data available for image reconstruction. The real-time randoms
precorrection compensates in mean for AC events but destroys
the Poisson statistics. The exact log-likelihood for randoms-
precorrected data is inconvenient, so practical approximations
are needed for maximum likelihood or penalized-likelihood im-
age reconstruction. Conventional approximations involve setting
negative sinogram values to zero, which can induce positive
systematic biases, particularly for scans with low counts per
ray. We propose new likelihood approximations that allow
negative sinogram values without requiring zero-thresholding.
With negative sinogram values, the log-likelihood functions can
be non-concave, complicating maximization; nevertheless, we
develop monotonic algorithms for the new models by modifying
the separable paraboloidal surrogates (SPS) and the maximum
likelihood expectation maximization (ML-EM) methods. These
algorithms ascend to local maximizers of the objective function.
Analysis and simulation results show that the new shifted
Poisson (SP) model is nearly free of systematic bias yet keeps
low variance. Despite its simpler implementation, the new SP
performs comparably to the saddle-point (SD) model which has
shown the best performance (as to systematic bias and variance)
in randoms-precorrected PET emission reconstruction.

Index Terms— positron emission tomography (PET), randoms-
precorrected PET, accidental coincidences, maximum likelihood
reconstruction

I. I NTRODUCTION

A CCIDENTAL coincidence (AC) events, also known as
randoms, are a primary source of background noise in

positron emission tomography (PET) [1]. AC events occur
when two photons that arise from separate positron emissions
are detected within a coincidence timing window and recorded
as having originated from the same emission [2], [3]. Quanti-
tative PET studies require correction for AC events.

Usually, PET systems detect coincidence events during
“prompt” windows and “delayed” windows [4], [5]. The de-
layed coincidences represent AC events (or randoms), and the
prompt coincidences represent true coincidences contaminated
by AC events (plus Compton scatter events). In most PET
scans, the prompt data are precorrected for the effects of AC
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events by real-time subtraction of the delayed coincidences [1].
The subtraction compensates for the AC events in terms of
the mean but increases the variance of the data [6]. Ideally,
scanners would maintain both prompt and randoms sinograms.
One could then estimate the mean of AC events from the ran-
doms sinogram [6–9] and incorporate these estimates into an
appropriate model for the prompt measurement [3], [6], [8] to
estimate unknown parameters (radioactivity for emission scans
and attenuation coefficients for transmission scans). However,
because of data storage limitations and historical momentum,
most PET centers store the randoms-precorrected data only [5].
This paper focuses on the problem of reconstructing emission
images by considering the measurement statistics based on
only randoms-precorrected datawithout access to separate
prompt and randoms sinograms. We do assume that a rough
estimate of the randoms contribution is available, such as
can be computed from the block singles rates that are often
available [6].

Whereas both (prompt and randoms) sinograms are well
approximated as being Poisson distributed [10], the randoms-
precorrected data do not follow Poisson statistics. The ex-
act log-likelihood of precorrected data is inconvenient to
maximize. Several practical approximations to the exact log-
likelihood have been investigated [5], [11–14]. A shifted
Poisson (SP) model and a saddle-point (SD) model are such
approximations [5], [11]. Fortransmission scansboth SP
and SD models have been shown to outperform conventional
ordinary Poisson (OP) and weighted least squares (WLS)
models in terms of systematic bias and variance [5], [11], [12].
In transmissionimage reconstruction, the SP model seems
more attractive than the SD model since its implementation
is simpler but their performance is comparable.

For emission scansthe SP and SD models again lead
to lower variance than the OP model [13]. However, SP
suffers from a positive systematic bias for low counts per ray,
albeit generally less than OP, while SD seems to be free of
such a bias [13]. The systematic bias is caused by zeroing
negative sinogram values (note randoms-precorrected data can
be negative) [13]; it can affect contrast and quantitative studies
adversely. The zero-thresholding of negative values for SP and
OP was a natural choice since those models are based on
Poisson approximations. Moreover, negative sinogram values
can cause reconstruction algorithms like classic ML-EM to
diverge. Negative sinogram values also cause the Poisson log-
likelihood to become non-concave, and it is difficult to develop
algorithms that globally maximize a non-concave objective
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function. By contrast, in atransmissioncase, negative values
do not cause reconstruction algorithms to diverge; in fact,
they help ensure concavity of the log-likelihood that otherwise
could be non-concave [14, Sec. 4.6].

To eliminate the positive systematic bias inemission scans,
we propose new SP and OP models that allow negative
sinogram values, departing from the conventional tendency
to zero-threshold them [13], [15–17]. We will henceforth call
our new methods “SP�” and “OP�” to differentiate from the
conventional ones with zero-thresholding that will be called,
in this paper, “SP+” and “OP+.” In contrast to some previous
methods that allow the pixel values to be negative [18], here
we enforce the usual nonnegativity constraint in theimage
domainbut allow thesinogramvalues to be negative for SP�

and OP�. We show that negative sinogram values in emission
scans neednot cause divergence of appropriate algorithms for
SP� and OP�. Although negative values can cause the likeli-
hood for SP� or OP� to be non-concave, one can achieve at
least a locally optimal reconstruction by employing algorithms
that increase the objective function monotonically. We use the
“optimization transfer principle” [19] to derive two monotonic
algorithms that allow negative values: separable paraboloidal
surrogates (SPS) and a variant of maximum likelihood ex-
pectation maximization (ML-EM). Our practical experience is
that the locally optimal reconstruction obtained by monotonic
algorithms are very good regardless of initializations.

We show analytically that our new SP� model is nearly
free of systematic bias (as is the new OP� model) and leads
to less variance than other methods including OP� and fil-
tered backprojection (FBP); this is corroborated by simulation
results in Section VII. In other words, the new SP� model,
our recommended method for randoms-precorrected emission
image reconstruction, is comparable, in spite of its simpler
implementation, to SD which has shown the best performance
in terms of systematic bias and variance.

Section II reviews the statistical model for precorrected
measurements and its exact log-likelihood. Section III de-
scribes conventional approximation models and our new ones
for emission scans. We analyze the systematic bias due to
zero-thresholding and the asymptotic variances in Sections IV
and V. Section VI provides monotonic algorithms for the new
models and Section VII gives simulation results.

II. M EASUREMENTMODEL AND EXACT LOG-LIKELIHOOD

LetY = [Y1 : : : YN ]0 denote theprecorrectedmeasurements
for PET emission scans, where0 denotes vector and matrix
transpose. The precorrected measurement for theith bin is

Yi = Y prompt
i � Y delay

i (1)

whereY prompt
i and Y delay

i are the number of coincidences
detected within the prompt and delayed windows, respectively.
The prompts and delays can be modeled reasonably as inde-
pendent Poisson random variables [10] as follows:

Y prompt
i � Poisson

8<
:

pX
j=1

aij�
true
j + ri + si

9=
; (2)

Y delay
i � Poissonfrig (3)

where aij � 0 is the entry in the system matrixA incor-
porating scan geometry, attenuation, detector efficiencies,etc.;
�truej � 0 is the activity at thejth voxel; andri � 0 andsi � 0
are the means of AC events and scatters, respectively. We
assume thatr = [r1 : : : rN ]0 ands = [s1 : : : sN ]0 areknown1

in order to focus on the problem of estimating the unknown
activity �true = [�true1 : : : �truep ]0 based on thenon-Poisson
distributedmeasurementsY without access toY prompt

i and
Y delay
i . In other words, we investigate the “upper bound”

of performance of each reconstruction method that needs
estimates ofr ands. In [9], the effects of randoms estimates
on bias for various reconstruction methods were investigated.
We also assumeri > 0 for all i for simplicity; the analysis and
algorithms are easily adopted to include rays whereri = 0.

Let y = [y1 : : : yN ]0 be an observed realization ofY . Since
the measurements are independent, one can obtain the exact
log-likelihood, ignoring constants independent of�, as in [5],
[11]:

L(�;Y ) =

NX
i=1

hEXi (li(�)) (4)

with

li(�) =

pX
j=1

aij�j (5)

and

hEXi (l) = log

0
@ 1X
m=[�yi]+

(l + ri + si)
yi+m

(yi +m)!

rmi
m!

1
A�(l+2ri+si)

(6)
where [x]+ = maxfx; 0g. For notational simplicity, we omit
an argument indicating the dependence ofhEXi on yi in (4)
and (6).

For penalized-likelihood (PL) reconstruction, one must find
a maximizer of the objective function

�(�;Y ) = L(�;Y )�R(�) (7)

over a nonnegativity constraint on theimage�, whereR is
a regularization term that controls a trade-off of resolution
and noise in the reconstructed image. The exact log-likelihood
function (4) is inconvenient to maximize although it can be
expressed without the infinite summations in (6) using Bessel
functions [14, Sec. 3.2]. The next section describes practical
approximations to the exact log-likelihood.

III. A PPROXIMATIONS TOEXACT LOG-LIKELIHOOD

A. Ordinary Poisson (OP) Approximation

A simple approach that does not need an estimate of AC
events r is to approximate the measurements as Poisson
random variables as follows:

Yi
OP

approx.� Poisson

8<
:

pX
j=1

aij�
true
j + si

9=
; : (8)

1Even in a case where one does not have access to the delayed events
separately, the total number of AC events or the block singles rates are often
available at the end of the scan and can be used to estimate AC rates [6],
[20]. Indeed, approximate models like SP and SD are known to be robust to
errors in estimating AC rates [11]. Regarding scatter estimation and correction,
see [6], [21], [22] for example.
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This model matches the first moment ofYi only. The log-
likelihoodLOP

�

corresponding to this “OP�” approximation2

is of the form (4) with

hOP
�

i (l) = yi log(l + si)� (l + si): (9)

We assumesi > 0 in (9); otherwise, negative valuesyi would
cause reconstruction algorithms to diverge sincehOP

�

i (0) =
+1 for yi < 0 and si = 0. To avoid such divergence, past
studies of the OP approach [13], [16] for emission scans have
used zero-thresholded values as follows:

hOP
+

i (l) = [yi]+ log(l + si)� (l + si); (10)

called the “OP+” approximation in this paper. (Note the
slightly different use of terms from [13].) The zero-
thresholding is natural in view of the nonnegative nature
of Poisson random variables in (8). Moreover, it guarantees
the concavity ofhOP

+

i , and hence the existence and unique-
ness of the penalized-likelihood reconstruction under mild
conditions [23]. However, zero-thresholding destroys the first
moment matching in (8), and the increase of the precorrected
data by zero-thresholding causes the estimators to have a
positive systematic bias since emission data is linearly related
to activity in the mean. Section IV shows that the seemingly
unnatural use of negative sinogram values in the Poisson
framework can alleviate the systematic bias problem of OP+.

B. Shifted Poisson (SP) Approximation

An improved approximation is to match both the first and
second moments as follows:

Yi + 2ri
SP

approx.� Poisson

8<
:

pX
j=1

aij�
true
j + si + 2ri

9=
; ; (11)

where in practice one must use an estimater̂i. This “SP�”
approximation3 leads to a log-likelihood functionLSP

�

of the
form (4) with

hSP
�

i (l) = (yi +2ri) log(l+ si +2ri)� (l+ si +2ri): (12)

Similarly, its conventional zero-thresholded versionLSP
+

uses [13]

hSP
+

i (l) = [yi+2ri]+ log(l+ si+2ri)� (l+ si+2ri): (13)

The zero-thresholding again ensures the concavity ofLSP
+

but also causes positive systematic bias, albeit generally less
than that of OP+ since it is more likely thatyi < 0 than
yi + 2ri < 0. Section IV describes the details.

C. Saddle-Point (SD) Approximation

Another approach is to make a second order Taylor series
approximation in thez-transform domain to the probability

2The minus sign signifies that this approximation allows negative precor-
rected datayi < 0.

3The minus sign signifies that this approximation allowsyi + 2ri < 0.
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Fig. 1. Effective means of trues increased by zero-thresholding for OP+ and
SP+. In this figure, randoms fractions in % denote (mean of randoms)/(mean
of trues).

generating function and then carry out the inverse trans-
form [24], [25]. The log-likelihoodLSD corresponding to this
SD approximation [13] is of the form (4) with

hSDi (l) = yi log

�
l + si + ri
zi + ui(l)

�
� l+ui(l)� 1

2
logui(l) (14)

where

zi =

�
yi + 1; for yi � 0
yi � 1; for yi < 0

and

ui(l) =
q
z2i + 4(l+ ri + si)ri:

The SD model for emission image reconstruction is free of
systematic bias and leads to lower variance than OP+ [13].
Indeed, in all cases studied to date, the SD model has shown
the best performance for randoms-precorrected PET emission
reconstruction. We observe those properties empirically in
Section VII. However, the new SP�, despite its simpler
implementation, performs comparably to SD.

D. Log-likelihood for Prompt Data

If one has access to the prompt dataY prompt, then one can
use the log-likelihood for the prompt data in the form (4) with

hPRi (l) = yprompt
i log(l + si + ri)� (l + si + ri):

We include this PR model for comparing the bias and variance
of the methods for randoms-precorrected data in Section VII.
Since Y prompt has lower variance thanY , it serves as a
baseline for comparing algorithms.

IV. EFFECTS OFZERO-THRESHOLDING ONBIAS

The sinogram zero-thresholding in (10) and (13) increases
the mean values of the data. This section analyzes the effects
of this shift.

First, we focus on a single ray to investigate the properties of
OP+ and SP+. Let Y be a precorrected measurement modeled
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as the difference of two independent Poisson random variables
as follows:

Y
4
= Poissonf� + rg � Poissonfrg (15)

where� andr denote the mean number of trues (possibly in-
cluding scatters) and AC events, respectively. The normalized
effective mean of trues are given by

mOP+

=
Ef[Y ]+g

�
for OP+,

and

mSP+

=
Ef[Y + 2r]+g � 2r

�
for SP+,

as a function of�. Note mOP+ and mSP+ would be unity
without zero-thresholding. We calculated these expectations
using the Bessel function expression for the probability mass
function forY [14, Sec. 3.2] as follows:

P (Y = y; �) =

1X
m=[�y]+

(� + r)y+me�(�+r)

(y +m)!

rme�r

m!

=
e�(�+2r)

ijyj

 r
� + r

r

!y

Jjyj

�
2i
p
(� + r)r

�

where i =
p�1 andJn(�) is the Bessel function of the first

kind of ordern [26, p. 575]. Fig. 1 shows the results, from
which we infer that 1) for counts per ray higher than 10
(or 1), there is little effect of zero-thresholding for OP+ (or
SP+) as long as randoms amount to less than100% of trues,
and 2) OP+ generally leads to a higher bias than SP+. For
extremely low counts or low AC rates, OP+ and SP+ yield
similar results.

Next, we consider a one-parameter example for the OP
approach to illustrate how allowing negative values can be
helpful for reducing systematic positive bias. Let the measure-
ments be the difference of two independent Poisson random
variables as follows:

Zi
4
= Poisson

�
ai�

true + si + ri
	� Poissonfrig (16)

for i = 1; : : : ; N . Setting si = 0, ML estimates based on
OP� and OP+ models [see (4) with (9) and (10)] with an
image nonnegativity constraint have the following analytical
solutions:

�̂OP
�

=

hPN

i=1 zi

i
+PN

i=1 ai
(17)

and

�̂OP
+

=

PN

i=1[zi]+PN

i=1 ai
: (18)

Note the zero-thresholding in (17) is due to theimage-
domain nonnegativity constraint and not a primary source
of the positive bias, whereas the zero-thresholding[zi]+ in
(18) is in thesinogram domainfrom (10). In view of Fig. 1,
�̂OP

+

is more biased than̂�OP
�

. For instance, if�true = 1,
ai = 1, ri = 0:5, and N = 10, then the estimator biases
can be computed using Fig. 1 with (17) and (18) as follows:
bOP

�

= Ef�̂OP�g � �true = 1:014 � 1 = 0:014 and
bOP

+

= Ef�̂OP+g � �true = 1:152 � 1 = 0:152. So the

OP� model reduces significantly the positive bias in OP+.
This example suggests that when the rays passing through
a particular voxel have low counts but high AC rates, OP+

will yield a higher positive systematic bias than OP�. The
comparison of SP� and SP+ would be similar although there
are no closed-form estimators for SP� and SP+ like (17) and
(18).

For high countsper ray cases, sinogram zero-thresholding
is not problematic since the probability of negative values is
greatly reduced. The next section investigates the asymptotic
behavior of the estimators for high counts.

V. A SYMPTOTIC ANALYSIS

This section analyzes theasymptoticbias and covariance of
OP�, SP�, and SD estimators forhigh counts(per ray) cases.
The purpose of the analysis is to compare the estimator prop-
erties rather than to accurately predict estimator behavior. (The
prediction of the mean and covariance of PL or ML estimators
could be conducted following [27]; see [12] for such analysis
for randoms-precorrected PETtransmissionscans.) We focus
on ML estimators for simplicity. We do not consider OP+

and SP+ since OP+ and SP+ should behave quite similarly
to OP� and SP�, respectively, for high counts per ray.

A. Asymptotic Unbiasedness and Asymptotic Covariance

Let the precorrectedmeasurementY n = [Y n
1 : : : Y n

N ]0 be
such that

Y n
i

4
= Poisson

�
n(li(�

true) + ri + si)
	� Poissonfnrig

(19)
for i = 1; : : : ; N where li is defined in (5) andn 2 N

represents a factor proportional to the number of total counts

or the scan time. DefineY
n 4
= Y n=n, then4

Y
n p�! Y (20)

as n ! 1 by the weak law of large numbers [28, p. 112]
where Y = EfY 1g = A�true + s and “

p�!” denotes
convergence in probability. Also,

p
n(Y

n � Y )
L�! N (0;CovfY 1g) (21)

as n ! 1 by the central limit theorem [29, p. 61] where
CovfY 1g = diagfli(�true) + si + 2rig and “

L�!” denotes
convergence in law (or distribution). BecausehOP

�

i in (9) is
affine inY , we can write the OP� estimate based onY n as
follows:

argmax
��0

LOP
�

(�;Y n) = argmax
��0

n
LOP

�

(�;Y n)=n
o

= argmax
��0

LOP
�

(�;Y
n
) (22)

4
= �̂OP

�

(Y
n
) (23)

where LOP
�

is of the form (4) with (9). One can show
LOP

�

(�true;Y ) � LOP
�

(�;Y ) for all � � 0 sincehOP
�

i (l)
attains a maximum overl � 0 at l = [yi � si]+. We assume

4Note Y n is identical to the sum ofn iid random vectors each of which
is identical toY 1.
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that theN�p system matrixA has full column rank, ensuring
uniqueness of the noiseless reconstruction�̂OP

�

(Y ) = �true.
One can easily show thatr10LOP

�

(�true;Y ) = 0 and that

r20LOP
�

(�true;Y ) = A0diag

(
1Pp

j=1 aij�
true
j + si

)
A

is positive definite sinceA has full column rank where
r10 = [ @

@�1
: : : @

@�p
]0 and r20 denote the column gradient

operator and the Hessian operator, respectively. Then�̂OP
�

(�)
is continuously differentiable atY by the implicit function
theorem [30, p. 668].

Since �̂OP
�

(�) is continuous atY , one can show [28,
p. 124]

�̂OP
�

(Y
n
)

p�! �̂OP
�

(Y ) = �true

asn!1, in view of (20). In other words, the OP� estimator
(and OP+ as well) isasymptotically unbiased.

Next, we investigate the asymptotic variance for OP�. Since
�̂OP

�

(�) is continuously differentiable in a neighborhood of
Y , it can be shown by the Delta method [29, p. 61], in view
of (21), that

p
n
�
�̂OP

�

(Y
n
)� �true

�
L�! N

�
0;�OP�

�
with

�
OP� = r�̂OP�(Y )CovfY 1g[r�̂OP�(Y )]0

wherer = [ @
@Y1

: : : @
@YN

] denotes the row gradient operator.

The gradientr�̂OP�(Y ) of the implicitly defined func-
tion (23) can be computed as in [27]. Some manipulation
yields the asymptotic covariance as follows:

�
OP� = F�1

OP�
A0diag

�
li(�

true) + si + 2ri
(li(�true) + si)2

�
AF�1

OP�

(24)
where

FOP� = A0diag

�
1

li(�true) + si

�
A:

Similarly, one can show that the SP� method (and SP+ as
well) is alsoasymptotically unbiasedand that its asymptotic
covariance is

�
SP� =

�
A0diag

�
1

li(�true) + si + 2ri

�
A

��1
: (25)

To analyze the SD case, one needs the following approxi-
mation that, from (14), is valid for largen:

LSD(�;Y n)=n � LSD
0

(�;Y
n
) (26)

with LSD
0

(�;Y ) =
PN

i=1 h
SD0

i (li(�)) where

hSD
0

i (l) = yi log

�
l + si + ri
yi + ~ui(l)

�
� l + ~ui(l)

and

~ui(l) =
q
y2i + 4(l+ ri + si)ri:

The SD estimate can be written as follows:

argmax
��0

LSD(�;Y n) = argmax
��0

�
LSD(�;Y n)=n

	
� argmax

��0
LSD

0

(�;Y
n
)

4
= �̂SD

0

(Y
n
):

Since 1)LSD
0

(�;Y ) has the unique maximizer (over� �
0), 2) �̂SD

0

(Y ) = �true (note LSD
0

can be shown to be
strictly concave) and 3) the approximation (26) becomes more
accurate asn increases, it can be shown that the SD method
is alsoasymptotically unbiased. By similar manipulations, one
can obtain the asymptotic covariance for SD as follows:

�
SD � �SD0

=

�
A0diag

�
1

li(�true) + si + 2ri

�
A

��1
;

(27)
which is equal to (25).

Both SP� and SD areasymptotically efficientin the fol-
lowing sense. NotingY

n
is asymptotically normal with mean

Y and covarianceCovfY 1g=n from (21), one can obtain the
Cramér-Rao bound from the asymptotic normal likelihood as
follows:

B(�true) � 1

n

�
A0CovfY 1g�1A��1

=
1

n

�
A0diag

�
1

li(�true) + si + 2ri

�
A

��1
:

Now one can see SP� and SD asymptotically achieve this
bound from (25) and (27). Note that the exact CR bound
appears intractable due to form of (6).

The reasons that SP� and SD are asymptotically efficient
are the following. First, for SP�, the precorrected data are
modeled as the Poisson approximation in (11) that matches
the first and second moments, so the SP model approaches the
asymptotic normal distribution in (21) of the precorrected data
in (19) for largen. Intuitively, this suggests that SP estimators
approach ML estimators for largen, and consequently, they
are asymptotically efficient. Next, noting the saddle-point ap-
proximation of a normal variate is exact, one could also expect
SD estimators to approach ML estimators asymptotically; so,
they should also be asymptotically efficient.

To summarize, we have shown that all OP�, SP� and
SD are asymptotically unbiased, and we have derived their
asymptotic covariances (24), (25) and (27). We have also
shown that SP� and SD are asymptotically efficient.

B. Comparison of Covariances

We compare the asymptotic variances of OP� and SP�

(equivalently, SD) estimators for a simple one-parameter ex-
ample introduced in (16) (see [5], [11] for a similar com-
parison in atransmissioncase). Using (24) and (25), one
obtains asymptotic variances (or approximate variances for
high counts) for OP� and SP�:

Var
n
�̂OP

�

o
=

PN
i=1 a

2
i
ai�

true+si+2ri
(ai�true+si)2�PN

i=1
a2
i

ai�true+si

�2



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 5, MAY 2004

and

Var
n
�̂SP

�

o
=

 
NX
i=1

a2i
ai�true + si + 2ri

!�1
:

Using the Schwartz inequality [31, p. 107], one can show

Var
n
�̂OP

�

o
� Var

n
�̂SP

�

o
(28)

where equality holds if and only if the(ai�true+si)=(ai�true+
si+2ri) ratios are equal, which is impossible as long asri > 0
andsi > 0. Therefore, the inequality (28) is strict; the variance
of OP� is higher than that of SP� (or SD). This is corroborated
by empirical results for a multi-parameter case in Section VII.

VI. RECONSTRUCTIONALGORITHMS

After choosing a suitable likelihood approximation, one
needs an algorithm to maximize the corresponding objective
function for ML or PL estimation. It is straightforward to
use globally convergent (and monotonic) algorithms5 such as
SPS [32] and ML-EM [34], [35] for PR, OP+, SP+ and SD,
all of which have concave log-likelihoods. However, the new
OP� and SP� models can have non-concave log-likelihood
functions when negative sinogram values are present. The
algorithms need some modifications to ensure monotonicity
for the non-concave case as well. Monotonicity is one of the
most desirable properties to enable at least a locally optimal
reconstruction.

A large class of monotonic iterative algorithms (including
SPS and ML-EM) are based on the “optimization transfer
principle”: at each iteration we choose a surrogate function
that is easier to maximize than the original objective function,
and then maximize that surrogate. To ensure monotonicity, the
surrogate function is chosen so that increasing the surrogate
guarantees the increase of the original objective function (for
sufficient conditions for such surrogates, see [19], [36], [37]).

The idea for extending the algorithms to allow negativeyi’s
is to choose a linear surrogate when a marginal log-likelihood
is convex. That is, for OP�, if yi < 0, a tangent line tohOP

�

i

at a current iteratelni in projection domain

qOP
�

i (l; lni ) =
_hOP

�

i (lni )(l � lni ) + hOP
�

i (lni ) (29)

is a proper surrogate forhOP
�

i in light of [36, Eq. 7] since
qOP

�

i lies below for all l � 0 due to convexity ofhOP
�

i , as
illustrated in Fig. 2.

The same principle applies to SP� whenyi + 2ri < 0. We
derive modified SPS and ML-EM applicable to OP� and SP�,
using a linear surrogate (29) when needed.

A. SPS for OP� and SP� (and SD)

We consider the PL objective function� in (7) with a
quadratic penalty for simplicity:

R(�) =
�

2

pX
j=1

X
k2Nj

!jk
(�j � �k)

2

2
(30)

5Ordered subsets algorithms [32], [33] can also be used with the aim of
accelerating convergence speeds at the expense of monotonicity or global
convergence.
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−
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−
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Fig. 2. Illustration of a linear surrogateqOP
�

[see (29)] atln = 1 for
an OP� log-likelihood hOP

�

for a negative valueyi < 0. The concave
surrogateqOP

�

lies below the objectivehOP
�

that is convex. One can see
that qOP

�

(l; ln) � qOP
�

(ln; ln) implies thathOP
�

(l) � hOP
�

(ln) for
l � 0.

where � � 0 is a regularization parameter that controls
the smoothness of the reconstructed image,Nj denotes the
neighborhood of thejth pixel, and!jk is a weighting factor.
A monotonic SPS method for OP� and SP� is readily derived
following [32] with (29). The resulting algorithm differs only
slightly from the ordinary SPS algorithm in [32], and uses the
following iteration:

�n+1j =

"
�nj +

1

dSPSj (�n)

@�(�n)

@�j

#
+

(31)

with

dSPSj (�) =

NX
i=1

aijaici(li(�)) + 2�
X
k2Nj

!jk (32)

whereai =
Pp

j=1 aij and

ci(l) =

8<
:

2[hi(l)� hi(0)� l _hi(l)]=l
2; l > 0; xi > 0

��hi(0); l = 0; xi > 0
0; xi � 0;

(33)
in whichhi representshOP

�

i for OP� andhSP
�

i for SP�, and
we define

xi
4
=

�
yi; for OP�

yi + 2ri; for SP�.
(34)

The only difference from the ordinary SPS method (using
optimum curvatures) in [32] is that here we setci to zero
for xi < 0 in (33) (note thatxi < 0 never occurs for previous
zero-thresholding or prompt models). So one can easily modify
existing codes to apply OP� or SP�. Nonquadratic penalties
are included as in [32].

Being constructed by the optimization transfer principle, the
iteration (31) increases the objective function� every iteration.
Since the step (32) requires an “extra” backprojection, we
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often forego strict monotonicity by replacing the curvatures
ci with the following precomputed values,

ci(l) =

� ��hi(l̂i); xi > 0
0; xi � 0

where l̂i = argmaxl�0 hi(l) = [yi � si]+. This allowsdSPSj

to be computed prior to iterating.
Paraboloidal surrogates algorithms for SD were developed

in [14, Sec. 5.6]. A monotonic SPS version has the form of
(31) and (32) with the following curvatures,

ci(l) =

8<
:
��hSDi (l�i ); yi = 0; l�i > 0

��hSDi (l��i ); yi = �1; l��i > 0
ti(l); otherwise

and

ti(l) =

�
2[hSDi (l)� hSDi (0)� l _hSDi (l)]=l2; l > 0

��hSDi (0); l = 0

with l�i = 7=9�4ri(ri+si) andl��i = x20�1�ri(ri+si) where
x0 � �1:1193219 is a root of a polynomial [14, Appendix E].
In this case for SD, the following precomputed curvatures can
be used for saving computation at the expense of monotonicity,

ci(l) = ��hSDi (l̂i);

where l̂i = argmaxl�0 h
SD
i (l), or one could use a simple

estimatêli � [yi � si]+.

B. Variation of ML-EM for OP� and SP�

Following the derivation of ML-EM in a surrogates frame-
work in [38], using (29), leads to a variation of ML-EM for
OP� and SP�. Although we used SPS rather than ML-EM
variants for the results in Section VII, we provide the ML-
EM variants for completeness as follows (see Appendix for
derivation):

�n+1j =
�nj

dEMj (�n)

NX
i=1

aij [xi]+
xi(�n)

(35)

or

�n+1j = �nj +
�nj

dEMj (�n)

@L(�n)

@�j

with

dEMj (�) =

NX
i=1

aij

�
1 +

[�xi]+
xi(�)

�
; (36)

wherexi is defined in (34), and

xi(�)
4
= li(�) + bi (37)

where

bi
4
=

�
si; for OP
si + 2ri; for SP:

(38)

This variation of ML-EM reverts to classic ML-EM [35], [39]
as a special case for nonnegative sinogram values. Regulariza-
tion can also be incorporated as in [38]. The steps (36) require
an extra backprojection each iteration compared to classic ML-
EM [35], [39].

VII. SIMULATIONS

A. Methods

To compare the bias and variance properties of the esti-
mators (OP�, OP+, SP�, SP+ and SD), we simulated 2D
PET emission scans. The PR model was also included for
comparison purposes since in this simulation we had access
to Y prompt

i andY delay
i separately.

The synthetic emission phantom shown in Fig. 3 was used;
its warm background, left cold disc, and right hot disc had
relative emission activities of 2, 0.5, and 4, respectively. The
sinograms had 192 radial bins and 120 angles uniformly sam-
pled over 180 degrees. The system matrix was generated using
ASPIRE [40]; the system geometry was approximated with 3
mm wide strip integrals and 3 mm ray spacing. We simulated
nonuniform detector efficiencies using pseudo-random log-
normal variates with standard deviation of0:3. Attenuation
was not considered in this simulation. The reconstructed
images were 64 by 32 with 9 mm pixels. Theknownri andsi
factors corresponded to a uniform field of 60% randoms and
10% scatters, respectively.6

The specific aim of the simulation was to compare biases
for low counts and to compare variances for high counts.
We performed two studies with 2K and 2M total counts.
We generated 500 realizations of pseudo-random emission
measurements according to (1) with (2) and (3). For each
realization, images were reconstructed using 100 iterations of
the SPS method for 2K counts, and using 40 iterations of the
SPS method after 10 iterations of ordered subsets SPS (with 8
subsets) [32] for 2M counts. The FBP reconstruction for each
realization served as an initial image for the iterations. The
number of iterations was determined by looking at objective
function values over iteration for a few realizations to ensure
that convergence was reasonably achieved. For initial FBP
reconstructions, a Hanning filter was used with such a cut-
off frequency that their impulse responses were of 3 pixels
full-width half-maximum (FWHM).

For regularization, we used a second-order quadratic penalty
(30) where!jk is 1 for horizontal or vertical neighborhoods,
1=
p
2 for diagonal neighborhoods, and0 otherwise. It is

important to match the spatial resolution in reconstructed
images for a fair comparison of different estimators. Penalty
functions can be designed to achieve spatially uniform resolu-
tion [41–43]. However, in this simulation, we used a simpler
hybrid technique [43] consisting of two steps: 1) for each
method, we adjusted a global regularization parameter� so
that the local impulse response7 at the center pixel was of

6The fractions in % denote (mean of randoms)/(mean of trues) and (mean
of scatters)/(mean of trues), respectively.

7The approximate expression for the local impulse response, which could
be interpreted as thepoint spread function, of an implicitly defined estimator
was given in [41, Eq. 14]. It can be computed efficiently using 2D fast
Fourier Transforms by assuming local shift-invariance as in [42, Eq. 9]. All
resolutions in this paper (except those of simple linear FBP reconstruction)
were computed as FWHM of the local impulse response (at a specific pixel)
obtained using the methods in [41], [42]. One might doubt the feasibility of
the approximate expressions in a low-counts-per-ray case where nonnegativity
constraints are often active; however, in Section VII, (the sample means
of) reconstructed images seem to have reasonably matched resolutions for
different methods even for extremely low counts per ray.
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Fig. 3. Digital phantom used in simulations. The background, left cold disc,
and right hot disc have relative emission activities of 2, 0.5, and 4, respectively.

1.5 pixels FWHM, and then performed PL reconstructions;
2) we applied a 2D Gaussian post-smoothing filter to the
PL reconstructions so that the overall local impulse response
(at the center pixel), which is the convolution of the post-
smoothing filter and the original local impulse response (of
1.5 pixels FWHM), achieved a target resolution of 3 pixels
FWHM.

This technique enables us to obtain reconstructions with var-
ious target resolutions by simply changing the post-smoothing
filter. As the post-smoothing filter becomes wider (higher
FWHM), the overall resolution becomes more uniform spa-
tially since post-smoothing dominates the overall response. To
check the spatial uniformity, the overall resolutions at every
third pixel were investigated and it was found that, except the
2 pixel wide strip along the phantom boundary, each pixel
achieved the target resolution (3 pixels FWHM) within5%
errors for all estimators—reasonably uniform resolution.

B. Results

Fig. 4(a) shows the profiles through the sample mean
images of different estimators for 2K counts—very low counts.
Both OP+ and SP+ showed large positive systematic biases
particularly in the cold spot (pixels 12–25) and near the ends
(phantom boundary). Zero-thresholding in sinogram domain
contributes to the positive bias since the rays passing through
those regions (cold spot and boundary) have low counts, as
discussed in Section IV. Overall the systematic bias of OP+

was slightly larger than that of SP+, as predicted in Section IV.
On the other hand, other methods (OP�, SP�, SD, and

PR) seem reasonably free of such a bias. However, some
positive biases are present in the cold spot (pixels 12–25)
for OP�, SP�, SD and PR. The positive bias in the cold
spot is mainly due to the interaction of the image-domain
nonnegativity constraints and the large variances, which causes
the nonnegativity constraints to be active frequently and,
consequently, increases image mean values. Note the bias is
not due to zero-thresholding in sinogram domain since PR
does not require any such thresholding. The coefficients of
variation for those methods are larger than 100% in the cold
spot in Fig. 4(b). In fact, the positive biases in the cold
spot for OP+ and SP+ are caused by both sinogram-domain
zero-thresholding and image-domain nonnegativity combined
with large variances. Also, note small negative biases in
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Fig. 4. (a) Horizontal profile through sample mean of estimators for 2K
counts. (b) Horizontal profile through sample standard deviation of estimators
for 2K counts.

background and hot regions for OP�, SP�, SD, and PR in
Fig. 4(a). Our hypothesis is that the positive bias in the cold
spot tends to decrease image values in other regions since
the reconstruction methods try to make projections of image
values close to given sinogram data. However, it is hard to
analyze the effects of image-domain nonnegativity constraints
or to study them even experimentally since we would need,
for comparison purposes, new models and algorithms (like
NEG-ML in [18]) allowing negative image values. Further
investigation is needed, and it would be interesting future
work. To summarize, the results showed that both SP� and
SD were comparable to PR, the baseline reconstruction, and
that they were free of systematic biascaused by sinogram-
domain zero-thresholdingwhich appeared in SP+ and OP+.

As shown in Fig. 4(a), FBP was nearly unbiased since
image-domain nonnegativity constraints are not imposed on
the FBP reconstruction. However, it showed significantly large
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variances in Fig. 4(b). Although not shown here, we found
that even if FBP is constrained by image nonnegativity, it still
shows larger bias and variance than other methods [44].

Fig. 5(a) shows the profiles through the sample mean images
of different estimators for 2M counts—high counts. All of the
methods are seen to be unbiased, as predicted from the analysis
in Section V. Fig. 5(b) shows profiles through the sample
standard deviation images. FBP again showed the highest
standard deviation and PR showed the lowest as expected. SP�

and SD showed similar performance, and OP� led to higher
standard deviation than both of them. These empirical results
corroborate the analysis of asymptotic variance in Section V.
For each pixel, we computed the ratios of the sample standard
deviation of different methods to the sample standard deviation
of PR (see [44] for histograms of the ratios), and the means
(over the entire image) of the ratios were 1.20 for FBP, 1.16
for OP�, 1.11 for OP�, and 1.12 for SD. This also supports
the claim that both SP� and SD lead to less variance than
OP� (and FBP).

Whereas SP� performed comparably to SD, the computa-
tion time for SP� reconstruction was shorter than SD by 3–
20% (depending on curvature type and counts) for the image
and sinogram size here in our C and MATLAB implemen-
tation. However, as the image and sinogram size increases,
the difference in computation would become smaller since
projection and backprojection operations will contribute more
significantly to the computational cost.

VIII. C ONCLUSIONS

We proposed new log-likelihood approximations (SP� and
OP�) for randoms-precorrected PET emission image recon-
struction by allowing negative sinogram values and also de-
veloped algorithms (SPS and ML-EM variants) for the new
models. The new methods are free of the positive systematic
bias that degrades SP+ and OP+ images. The positive biases
appearing in SP+ and OP+ are more distinguishable in low
counts per ray regions such as cold spots, the boundary of an
object, or high attenuation regions rather than depending solely
on total counts. Our new models seem particularly promising
for fully 3D PET emission scans where AC rates are high
and photon counts per ray can be low, essentially for newer
scanners with small crystals.

The new SP� model yields less variance (than OP� and
FBP). Its performance is comparable to SD in terms of
systematic bias and variance; yet its implementation is simpler.
Indeed, when implemented with the usual ordered-subsets
approach [23], the modified OS-SPS algorithm presented in
this paper for the new SP� model has essentially the same
compute complexity as the popular OS-EM method for PET.

We recommend the PR method if the prompt and the
randoms data are accessible separately; however, if only
randoms-precorrected data are available, the new SP� is our
recommended method.
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Fig. 5. (a) Horizontal profile through sample mean of estimators for 2M
counts. (b) Horizontal profile through sample standard deviation of estimators
for 2M counts.

APPENDIX. DERIVATION OF A VARIATION OF ML-EM FOR

OP� AND SP�

Define L+(�;Y )
4
=
P

i:xi�0
hi(li(�)) and L�(�;Y )

4
=P

i:xi<0
hi(li(�)) with hi(l) = xi log(l+ bi)� (l+ bi) where

li, xi, and bi are defined in (5), (34), and (38), respectively.
Then, by concavity of log [38],

L+(�;Y ) =
X
i:xi�0

xi log

0
@ pX

j=1

aij�
n
j

xi(�n)

�j
�nj

xi(�
n)+

bi
xi(�n)

xi(�
n)

�
� xi(�)

�
X
i:xi�0

pX
j=1

xiaij�
n
j

xi(�n)
log�j � aij�j + C+

4
= Q+(�;�n)
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wherexi is defined in (37) andC+ is a constant with respect
to �. On the other hand, sincehi(�) is convex forxi < 0,

L�(�;Y ) �
X
i:xi<0

_hi(li(�
n))(li(�)� li(�

n)) + hi(li(�
n))

=
X
i:xi<0

pX
j=1

�
xi

xi(�n)
� 1

�
aij�j + C�

4
= Q�(�;�n)

whereC� is a constant with respect to�. Since

Q(�;�n)
4
= Q+(�;�n) +Q�(�;�n)

� L+(�;Y ) + L�(�;Y ) = L(�;Y )

and Q(�n;�n) = L(�n;Y ), one can showQ(�;�n) is a
proper surrogate [36] forL(�;Y ). The surrogateQ(�;�n)
can be maximized by setting its derivative to zero, and as
a result, its maximizer�n+1 is calculated as (35). Because
of the optimization transfer principle, this derivation ensures
monotonicity.

The following is an alternative “intuitive” but not rigorous
derivation. The partial derivatives of the log-likelihood func-
tion LSP

�

or LOP
�

at a nonnegative maximizer̂� are, by the
Karush-Kuhn-Tucker conditions [30, p. 310],

@

@�j
L(�̂) =

NX
i=1

aij

 
xi

xi(�̂)
� 1

!�
= 0; �̂j > 0

� 0; �̂j = 0

wherexi andxi are defined in (34) and (37), respectively. So,
for �̂j > 0,

NX
i=1

aij =

NX
i=1

aij

xi(�̂)
xi =

NX
i=1

aij

xi(�̂)
([xi]+ � [�xi]+):

Moving the subtracted term to the other side (cf. [45], [46])
leads to the following:

NX
i=1

aij

 
1 +

[�xi]+
xi(�̂)

!
=

NX
i=1

aij [xi]+

xi(�̂)
:

The ratio of these terms yields the multiplicative update (35).
In other words,̂� is a fixed point of the iteration (35), and so
is it for �̂j = 0.
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