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Emission Image Reconstruction for
Randoms-Precorrected PET Allowing Negative
Sinogram Values
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Abstract—Most PET emission scans are corrected for acciden- events by real-time subtraction of the delayed coincidences [1].
tal coincidence (AC) events by real-time subtraction of delayed- The subtraction compensates for the AC events in terms of
window coincidences, leaving only the randoms-precorrected the mean but increases the variance of the data [6]. Ideally
data available for image reconstruction. The real-time randoms o : ’
precorrection compensates in mean for AC events but destroys scanners would ma.mtam both prompt and randoms sinograms.
the Poisson statistics. The exact log-likelihood for randoms- One could then estimate the mean of AC events from the ran-
precorrected data is inconvenient, so practical approximations doms sinogram [6—9] and incorporate these estimates into an
are needed for maximum likelihood or penalized-likelihood im-  appropriate model for the prompt measurement [3], [6], [8] to
age reconstruction. Conventional approximations involve setting estimate unknown parameters (radioactivity for emission scans
negative sinogram values to zero, which can induce positive . . .
systematic biases, particularly for scans with low counts per and attenuation coeff|C|en_ts for_transmlssu_)n s_cans). However,
ray. We propose new likelihood approximations that allow because of data storage limitations and historical momentum,
negative sinogram values without requiring zero-thresholding. most PET centers store the randoms-precorrected data only [5].
With negative sinogram values, the log-likelihood functions can This paper focuses on the problem of reconstructing emission
be non-concave, complicating maximization; nevertheless, we;naqes by considering the measurement statistics based on
develop monotonic algorithms for the new models by modifying .
the separable paraboloidal surrogates (SPS) and the maximum only randoms-precorrepted datwithout access to separate
likelihood expectation maximization (ML-EM) methods. These Prompt and randoms sinograms. We do assume that a rough
algorithms ascend to local maximizers of the objective function. estimate of the randoms contribution is available, such as

Analysis and simulation results show that the new shifted can be computed from the block singles rates that are often
Poisson (SP) model is nearly free of systematic bias yet keepsavailable [6].

low variance. Despite its simpler implementation, the new SP Wh both t and d . I
performs comparably to the saddle-point (SD) model which has ereas both (prompt and randoms) sinograms are we

shown the best performance (as to systematic bias and variance)@Pproximated as being Poisson distributed [10], the randoms-
in randoms-precorrected PET emission reconstruction. precorrected data do not follow Poisson statistics. The ex-
Index Terms— positron emission tomography (PET), randoms- act ]og—likelihood of prgcorrected .data_l is inconvenient to
precorrected PET, accidental coincidences, maximum likelihood Maximize. Several practical approximations to the exact log-
reconstruction likelihood have been investigated [5], [11-14]. A shifted
Poisson (SP) model and a saddle-point (SD) model are such
approximations [5], [11]. Fortransmission scandoth SP
and SD models have been shown to outperform conventional
A CCIDENTAL coincidence (AC) events, also known agrdinary Poisson (OP) and weighted least squares (WLS)
randoms, are a primary source of background noise ffodels in terms of systematic bias and variance [5], [11], [12].
positron emission tomography (PET) [1]. AC events ocCyf transmissionimage reconstruction, the SP model seems
when two photons that arise from separate positron emissiQRgre attractive than the SD model since its implementation
are detected within a coincidence timing window and recordgfsimpler but their performance is comparable.
as having originated from the same emission [2], [3]. Quanti- For emission scanghe SP and SD models again lead
tative PET studies require correction for AC events. to lower variance than the OP model [13]. However, SP
Usually, PET systems detect coincidence events duriggffers from a positive systematic bias for low counts per ray,
“prompt” windows and “delayed” windows [4], [5]. The de-a|peit generally less than OP, while SD seems to be free of
layed coincidences represent AC events (or randoms), and §@h a bias [13]. The systematic bias is caused by zeroing
prompt coincidences represent true coincidences contaminaiggative sinogram values (note randoms-precorrected data can
by AC events (plus Compton scatter events). In most PEk negative) [13]; it can affect contrast and quantitative studies
scans, the prompt data are precorrected for the effects of Agyersely. The zero-thresholding of negative values for SP and

, _ _ , ) OP was a natural choice since those models are based on
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function. By contrast, in dransmissioncase, negative valueswherea;; > 0 is the entry in the system matri4 incor-

do not cause reconstruction algorithms to diverge; in fagiprating scan geometry, attenuation, detector efficienetes,

they help ensure concavity of the log-likelihood that otherwisE™* > 0 is the activity at thgth voxel; and-; > 0 ands; > 0

could be non-concave [14, Sec. 4.6]. are the means of AC events and scatters, respectively. We
To eliminate the positive systematic biaseémission scans assume that = [r; ...rx]' ands = [s; ... sy’ areknowrt

we propose new SP and OP models that allow negativeorder to focus on the problem of estimating the unknown

sinogram values, departing from the conventional tendenagtivity A*u¢ = [Agrue...xgue]' based on thenon-Poisson

to zero-threshold them [13], [15-17]. We will henceforth calllistributed measurement¥” without access tcyiprompt and

our new methods “SP” and “OP~" to differentiate from the y:%®* |n other words, we investigate the “upper bound”

conventional ones with zero-thresholding that will be calleéf performance of each reconstruction method that needs

in this paper, “SP” and “OP*.” In contrast to some previous estimates of and s. In [9], the effects of randoms estimates

methods that allow the pixel values to be negative [18], hesd bias for various reconstruction methods were investigated.

we enforce the usual nonnegativity constraint in thrage We also assume > 0 for all i for simplicity; the analysis and

domainbut allow thesinogramvalues to be negative for SP algorithms are easily adopted to include rays where 0.

and OP". We show that negative sinogram values in emissionLety = [y; ...y~]' be an observed realization ¥f. Since

scans needot cause divergence of appropriate algorithms fahe measurements are independent, one can obtain the exact

SP~ and OP. Although negative values can cause the likeltog-likelihood, ignoring constants independentxfas in [5],

hood for SP- or OP~ to be non-concave, one can achieve gt 1]:

least a locally optimal reconstruction by employing algorithms N

that increase the objective function monotonically. We use the LIY) =Y WX (L) 4)
“optimization transfer principle” [19] to derive two monotonic =1

algorithms that allow negative values: separable paraboloidiéth »

surrogates (SPS) and a variant of maximum likelihood ex- L) = Zai])\j (5)
pectation maximization (ML-EM). Our practical experience is =

that the locally optimal reconstruction obtained by monotong:n d
algorithms are very good regardless of initializations.

We show analytically that our new SPmodel is nearly = (L4 + syt r
free of systematic bias (as is the new ORodel) and leads i (1) = log Z (i +m)!  m! —(I+2ritsi)
to less variance than other methods including=Cdhd fil- m=[=yil+ ®)

tered backprojection (FBP); this is corroborated by simulati«where ], = max{z,0}. For notational simplicity, we omit

results in Section VII. In other words, the new SkPnodel Lo .
’ ' nt indicating th nden K ony; in (4
our recommended method for randoms-precorrected emlssag argument indicating the dependencehBf on y; in (4)

image reconstruction, is comparable, in spite of its simpler
implementation, to SD which has shown the best performang
in terms of systematic bias and variance.

Section Il reviews the statistical model for precorrected ®(NY) =L(NY) — R(A) (7)

measurements and its exact log-likelihood. Section Il dgyer nonnegativity constraint on thmage A, where R is

scribes conventional approximation models and our new 0ng§eqy|arization term that controls a trade-off of resolution

for emission scans. We analyze the systematic bias dueity noise in the reconstructed image. The exact log-likelihood

zero-thresholding and the asymptotic variances in Sections dY.tion (4) is inconvenient to maximize although it can be

and V. Section VI provides monotonic algorithms for the new, essed without the infinite summations in (6) using Bessel

models and Section VIl gives simulation results. functions [14, Sec. 3.2]. The next section describes practical
approximations to the exact log-likelihood.

For penalized-likelihood (PL) reconstruction, one must find
$naximizer of the objective function

II. MEASUREMENTMODEL AND EXACT LOG-LIKELIHOOD

LetY = [Yi L. YN]I denote thqarecorrected’neasurements I1l. APPROXIMATIONS TOEXACT LOG-LIKELIHOOD
for PET emission scans, whetedenotes vector and matrixA. Ordinary Poisson (OP) Approximation

transpose. The precorrected measurement foitthein is A simple approach that does not need an estimate of AC
Y; :Yiprompt —Yidelay (1) eventsr is to approximate the measurements as Poisson
random variables as follows:
where Y7 and Y, are the number of coincidences op )
detected within the prompt and delayed windows, respect|\{ely. Y; ®P% poisson Z ai A 4 s b (8)
The prompts and delays can be modeled reasonably as inde- i J
pendent Poisson random variables [10] as follows:

1Even in a case where one does not have access to the delayed events
prompt . P true separately, the total number of AC events or the block singles rates are often
Yi ~  Poisson Z Q5 )\j +ri+ 8 (2)  available at the end of the scan and can be used to estimate AC rates [6],
j=1 [20]. Indeed, approximate models like SP and SD are known to be robust to
dela ) errors in estimating AC rates [11]. Regarding scatter estimation and correction,
Y% ~  Poisson{r;} (3) see [6], [21], [22] for example.
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This model matches the first moment &f only. The log- -6~ 100% randoms (OP™) |
likelihood LOF~ corresponding to this “OP’ approximatiort 9 A 0" 50% randoms (OP")
is of the form (4) with 2 O 30% randoms (OP")
op- “21.8- -©- 10% randoms (OP")
hy (1) = yilog(l +5;) — (I + si). 9) 5 —< 100% randoms (SP")
) . ) E16} X 50% randoms (SP™)
We assume; > 0 in (9); otherwise, negative valugs would f‘g S - 30% randoms (SP*)
cause reconstruction algorithms to diverge sinf¥¢ (0) = §14- o9 g v -x- 10% randoms (SP")
+o0o for y; < 0 ands; = 0. To avoid such divergence, past e .
studies of the OP approach [13], [16] for emission scans have § § =~ ®-=2-g__
used zero-thresholded values as follows: slp
+ S ®--®--®--@--g_
WYY (1) = [yi]+ log(l + s5) — (I + s4), 0 = 4]
called the “OP” approximation in this paper. (Note the 102 o 0° o 10
slightly different use of terms from [13].) The zero- Mean 6 of trues

thresholding is natural in view of the nonnegative nature . _ _
of Poisson random variables in (8). Moreover, it guarantefl§; 1. Effective means of trues increased by zero thresholding for a1

. + . . . In this figure, randoms fractions in % denote (mean of randoms)/(mean
the concavity ofb?F", and hence the existence and uniquey trues).
ness of the penalized-likelihood reconstruction under mild
conditions [23]. However, zero-thresholding destroys the first
moment matching in (8), and the increase of the precorrecigeherating function and then carry out the inverse trans-
data by zero-thresholding causes the estimators to havéoam [24], [25]. The log-likelihoodZSP corresponding to this
positive systematic bias since emission data is linearly relat8® approximation [13] is of the form (4) with
to activity in the mean. Section IV shows that the seemingly 4 st
unnatural use of negative sinogram values in the Poisscm?D(l) = y;log (M
framework can alleviate the systematic bias problem of OP zi + ui(l)

where

) —l+u(l) - % logu;(l) (14)

_ yz_'_]-, foryzZO
B. Shifted Poisson (SP) Approximation Fi = yi—1, fory; <0
An improved approximation is to match both the first ang,

second moments as follows:

u;i(l) = \/zf +4(l+r; + si)ri.

Y + 2 apif’ox. Poisson zp:aij)\qme Fsi42m S, (1) The SD _mod_el for emission image recgnstruction is free of
= I systematic bias and leads to lower variance thar™ QB3].
Indeed, in all cases studied to date, the SD model has shown
where in practice one must use an estimgteThis “SP~"  the best performance for randoms-precorrected PET emission
approximation leads to a log-likelihood functiod®"  of the reconstruction. We observe those properties empirically in
form (4) with Section VII. However, the new SPB despite its simpler

B implementation, performs comparably to SD.
BT (1) = (y; +2r;) log(l + si + 2r;) — (I +s; +2r;). (12)

Similarly, its conventional zero-thresholded versid#?" D. Log-likelihood for Prompt Data

uses [13] If one has access to the prompt dEt& ™, then one can
use the log-likelihood for the prompt data in the form (4) with

SPY (1) = [ys + 2ri]s log(L + 5 + 2rs) — (I + 5: + 2r7). (13) g promp @)

hPR (1 :y?romptlog l+s;+r;)—(+s;+71;).

The zero-thresholding again ensures the concavity'ﬁﬁ”L i ( )~ )

but also causes positive systematic bias, albeit generally |&¥8 include this PR model for comparing the bias and variance

than that of OP since it is more likely thaty; < 0 than of the methods for randoms-precorrected data in Section VII.

y; + 2r; < 0. Section 1V describes the details. Since YP™™Pt has lower variance thal’, it serves as a
baseline for comparing algorithms.

C. Saddle-Point (SD) Approximation

Another approach is to make a second order Taylor serie
approximation in thez-transform domain to the probabilityth

IV. EFFECTS OFZERO-THRESHOLDING ONBIAS

The sinogram zero-thresholding in (10) and (13) increases

e mean values of the data. This section analyzes the effects
2The minus sign signifies that this approximation allows negative precocr)-f thIS shift. . . . .

rected datay; < 0. First, we focus on a single ray to investigate the properties of

3The minus sign signifies that this approximation allows+ 2r; < 0. OP" and SP". LetY be a precorrected measurement modeled
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as the difference of two independent Poisson random variab@®8~ model reduces significantly the positive bias in 1OP
as follows: This example suggests that when the rays passing through
A . a particular voxel have low counts but high AC rates,TOP
Y = Poisson{f + 7} — Poisson{r} (15) Wil yield a higher positive systematic bias than QPThe
wheref andr denote the mean number of trues (possibly irfomparison of SP and SP- would be similar although there
cluding scatters) and AC events, respectively. The normalizae no closed-form estimators for SRnd SP like (17) and
effective mean of trues are given by (18).
For high countsper ray cases, sinogram zero-thresholding
=—7- is not problematic since the probability of negative values is
0 greatly reduced. The next section investigates the asymptotic
and i E{[Y + 2]} — 2 behavior of the estimators for high counts.
= 2 for SPH,

as a function ofd. Note m°F" and mSF" would be unity
without zero-thresholding. We calculated these expectatio
using the Bessel function expression for the probability m
function forY [14, Sec. 3.2] as follows:

vt BLY o opr

V. ASYMPTOTIC ANALYSIS

This section analyzes thesymptotichias and covariance of
?—’—, SP~, and SD estimators fdrigh countyper ray) cases.
T?le purpose of the analysis is to compare the estimator prop-
erties rather than to accurately predict estimator behavior. (The

PO = g:0) = i (0 + ryytme=(O+r) pme=r prediction of the mean and covariance of PL or ML estimators
=% a (y +m)! m! could be conducted following [27]; see [12] for such analysis
m=lvl+ for randoms-precorrected PEfansmissionscans.) We focus

ilvl and SP since OP and SP should behave quite similarly

to OP~ and SP, respectively, for high counts per ray.
wherei = /-1 and J,(+) is the Bessel function of the first
kind of ordern [26, p. 575]. Fig. 1 shows the results, from . . . .
which we infer that 1) for counts per ray higher than 16\. Asymptotic Unbiasedness and As;T/metotlc Covarlclsmce
(or 1), there is little effect of zero-thresholding for ORor ~ Let the precorrectedmeasuremeny™ = [Y/"... Y] be
SPF) as long as randoms amount to less than% of trues, Such that
and 2) OP generally leads to a higher bias than*SHror yn & Poisson{n(l;(\™) + r; + 5;)} — Poisson{nr;}

(3

extremely low counts or low AC rates, OPand SP yield (19)

similar results. for i = 1,...,N wherel; is defined in (5) andn € N

Next, we consider a one-parameter example for the QEnresents a factor proportional to the number of total counts
approach to illustrate how allowing negative values can b

e . A T A
helpful for reducing systematic positive bias. Let the measure- the scan time. Defin¥ = Y™ /n, therf

ments be the difference of two independent Poisson random Yy' 2y (20)
variables as follows:

e~ (6+2r) ( 6 +r>yJ (21 @ +T)T) on ML estimators for simplicity. We do not consider ©P
lyl
V

A asn — oo by the weak law of large numbers [28, p. 112]
Z; = Poisson{a;0"™ + s; + r;} — Poisson{r;}  (16) whereY = E{Y'} = AA"" 4+ g and “" denotes
convergence in probability. Also,

fori = 1,...,N. Settings; = 0, ML estimates based on
OP~ and OF models [see (4) with (9) and (10)] with an \/ﬁ(yn -Y) i”\/(o Cov{Yl}) (21)
image nonnegativity constraint have the following analytical ’
solutions: asn — oo by the central limit theorem [29, p. 61] where
o [Ef;l 27,] Cov{Y'} = diag{l;(At"®) + s; + 2r;} and “£y" denotes
o = —Fx—F (17)  convergence in law (or distribution). Becausg®™ in (9) is
2l i affine inY’, we can write the OP estimate based oK " as
and ZN ] follows:
A + = Zil+ - -
0OP — m (18) arg I}I\lg’é( LOP (A, Yn) = arg I}I\lgé( {LOP (A, Yn)/n}
Note the zero-thresholding in (17) is due to tiveage- = argr)I\l;l(})(Lopi()\;Yn) (22)

domain nonnegativity constraint and not a primary source
of the positive bias, whereas the zero-thresholding, in

18) is in thesinogram domairfrom (10). In view of Fig. 1, - .
gop)+ i more bias';sed thafioP~ For(ing,tance ifgtrue :g 1 where LOF™ is of the form (4) with (9). One can show

a; = 1, r; = 0.5, and N = 10, then the estimator biasesLCt)P__()‘tme5?_) > LO:Z(i;()?) tf?f_a” A>0 Si”\‘;\?h?P_(l)
can be computed using Fig. 1 with (17) and (18) as follow&aiNS & maximum over> 0 atl = [y; — s;]+. We assume

orP~ _ NOP~ rue __ —
b s E{ﬂ + b - g'me = 1.014 — 1 = 0.014 and “Note Y™ is identical to the sum of iid random vectors each of which
bOPT = E{A°P"} — gtve = 1.152 — 1 = 0.152. So the is identical toY’.

1>

AP (YT (23)
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that theV x p system matrixA has full column rank, ensuring The SD estimate can be written as follows:
uniqueness of the noiseless reconstruch®f (Y') = Atrue,

SD . n _ SD .vn
One can easily show th&t'°LOF " (Atrue; ') = 0 and that argrf%L XY™ = AERES L2y /n}

~ argr}r\lgécLSDl(A;?n)
vZOLOP_ (}\true;?) — Aldlag A . I e
o1 QA+ i =AY,
is positive definite sinceA has full column rank where Since 1) L5"'(A;Y) has the unique maximizer (ovex >
V'O = [5%; -+ 5x;]' and V*° denote the column gradiento), 2) ASP'(Y) = At"¢ (note LS can be shown to be

operator and the Hessian operator, respectively. Tigh (-)  strictly concave) and 3) the approximation (26) becomes more
is continuously differentiable a¥” by the implicit function accurate as increases, it can be shown that the SD method

theorem [30, p. 668]. is alsoasymptotically unbiasedy similar manipulations, one
Since AP (1) is continuous atY’, one can show [28, Can obtain the asymptotic covariance for SD as follows:

p. 124]

1 —1

R e ~ $SD
)\OP (Yn) i} AOP (Y) — )\true 2 b [A'dlag{ (Atrue) ¥ st o } A:| s

(27)
asn — oo, in view of (20). In other words, the OPestimator \yhich is equal to (25).
(and OF as well) isasymptotically unbiased _ Both SP~ and SD areasymptotically efficientn the fol-
. |\1|D§Xt we investigate the asymptotic variance forOBince |owing sense. Notind” " is asymptotically normal with mean
A®P"(-) is continuously differentiable in a neighborhood o and covarianc€ov{Y'}/n from (21), one can obtain the

Y, it can be shown by the Delta method [29, p. 61], in viewtramér-Rao bound from the asymptotic normal likelihood as
of (21), that follows:

Jn (5\013— (?n) _ )\true) £, N(O,EOP_) BAM)

[A'Cov{Y'}~tA] ™"

1 -1
A'di Al .
[ |ag{ Li(Abrue) + s; + 2r; } ]
Now one can see SPand SD asymptotically achieve this

whereV = [8%1_ ] denotes the row gradient operatorbound from (25) and (27). Note that the exact CR bound

The gradientVXOP (Y) of the implicitly defined func- @PPears intractable due to form of (6). _ o
tion (23) can be computed as in [27]. Some manipulation The reasons that SPand SD are asymptotically efficient
yields the asymptotic covariance as follows: are the following. First, for SP, the precorrected data are

modeled as the Poisson approximation in (11) that matches
I;(AbUe) 4 g, + 27, }

with

Sl= 3=

$OP™ = VACP™ (¥)Cov{¥ }[VACP™ (7))

the first and second moments, so the SP model approaches the

»OF _FO;A’dlag{ AF_}

(I;(Atrue) 4 5;)2 OoP~ asymptotic normal distribution in (21) of the precorrected data
(24) in (19) for largen. Intuitively, this suggests that SP estimators
where approach ML estimators for large, and consequently, they
Fop — A’diag{ 1 } ) are asymptotically efficient. Next, noting the saddle-point ap-
li(Atrue) + s, proximation of a normal variate is exact, one could also expect

SD estimators to approach ML estimators asymptotically; so,
they should also be asymptotically efficient.
To summarize, we have shown that all QPSP and
SD are asymptotically unbiased, and we have derived their
P~ . 1 -1 asymptotic covariances (24), (25) and (27). We have also
»SPT = [A dlag{ T T T 2”} ] (25)  shown that SP and SD are asymptotically efficient.

To analyze the SD case, one needs the following approy

mation that, from (14), is valid for large: g Comparison of Covanance-s )
We compare the asymptotic variances of OBnd SP

Similarly, one can show that the SAnethod (and SP as
well) is alsoasymptotically unbiasednd that its asymptotic
covariance is

L\ Y")/n~ L' (A Y") (26) (equivalently, SD) estimators for a simple one-parameter ex-
. , N . ample introduced in (16) (see [5], [11] for a similar com-
with L3 (X Y) = 3,0, 13" (1i(X)) where parison in atransmissioncase). Using (24) and (25), one
I+ s 41 obtains asymptotic variances (or approximate variances for
h3P' (1) = y; log <m> — 1+ a;(l) high counts) for OP and SP:
¢ 3 N true
Ez 1 G, W

and Var{éop_} _
= \/y? + 4+ r; + s;)ri.

D
i=1 a;0tue+s;
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and 1 — - .
o —— original objective function
e N a2 - - - linear surrogate function
V. {9 } = i of.
ar ; a;0tre + g; + 2r; S
Using the Schwartz inequality [31, p. 107], one can show  _1}
Var{éop_ } > Var{ésp_} (28)
_2 L
where equality holds if and only if th:;0°™¢+s;) / (a;6*"¢ +
s;+2r;) ratios are equal, which is impossible as longas 0 3l

ands; > 0. Therefore, the inequality (28) is strict; the variance
of OP~ is higher than that of SP(or SD). This is corroborated
by empirical results for a multi-parameter case in Section VII. -4}

VI. RECONSTRUCTIONALGORITHMS -5 . . .

After choosing a suitable likelihood approximation, one 0 0.5 } 15 2

needs an algorithm to maximize the corresponding objective

function for ML or PL estimation. It is straightforward toFig. 2. lllustration of a linear surrogatg®P” [see (29)] ati™ = 1 for

use globally convergent (and monotonic) algorithrasch as an OP log-likelihood K0P for a negative valuey; < 0. The concave

SPS [32] and ML-EM [34], [35] for PR, OP, SP+ and SD surrogateg©P " lies below the objectiveh©F  that is convex. One can see
’ ’ ’ ’ OP~ (7.n OP~ (jn.ny\ i i OP~ OP~ (jn

all of which have concave log-likelihoods. However, the neWi‘tg_ (507%) 2 g (I751) implies thath™= (1) > ™5 (i) for

OP~ and SP models can have non-concave log-likelihood™

functions when negative sinogram values are present. The
algorithms need some modifications to ensure monotonicifhere 3 > 0 is a regularization parameter that controls
for the non-concave case as well. Monotonicity is one of thge smoothness of the reconstructed imayye, denotes the
most desirable properties to enable at least a locally optim@lighborhood of theth pixel, andw;y, is a weighting factor.
reconstruction. A monotonic SPS method for OPand SP is readily derived

A Iarge class of monotonic iterative algorithms (inClUdin%Howing [32] with (29) The resumng a|gorithm differs 0n|y

SPS and ML-EM) are based on the “optimization transfefightly from the ordinary SPS algorithm in [32], and uses the
principle™ at each iteration we choose a surrogate functiggjiowing iteration:

that is easier to maximize than the original objective function,
and then maximize that surrogate. To ensure monotonicity, the 1 OP(A"™)
surrogate function is chosen so that increasing the surrogate djS,PS()\n) O\
guarantees the increase of the original objective function (for +
sufficient conditions for such surrogates, see [19], [36], [37ith

The idea for extending the algorithms to allow negatjye N
is to choose a linear surrogate when a marginal log-likelihood P3N =S aaie (L 2 Wi 32
is convex. That is, for OP, if y; < 0, a tangent line t&PF i ; i) + ﬂ,%;j 7 (32)
at a current iteraté!” in projection domain

g7 (1) = RETT A=) + RO (29)

(31)

+1 _
A DU

Whereai = Z?:l Qjj and

- 2 i — Iy - -i 27 s Lg
is a proper surrogate fai®"" in light of [36, Eq. 7] since ci(l) = _[ZEQ) ha(0) = i (D]/1 ;ig i ig

¢°F" lies below for alll > 0 due to convexity ofi®T ", as 0 2 <0
illustrated in Fig. 2. ’ e (33)

The same principle applies to SRvheny; +2r; <0. We i, \yhich p, represent&®?” for OP~ andhSP~ for SP-, and
derive modified SPS and ML-EM applicable to OBnd SP", .0 define ’ '
using a linear surrogate (29) when needed. A { Vi, for OP~

Ti = y; + 2r;, for SP~. (34)

A. SPS for_OP and SP (a_nd _SD) o ) The only difference from the ordinary SPS method (using
We consider the PL ot)_J(a_ct!ve functiod in (7) with @  oniimum curvatures) in [32] is that here we setto zero
quadratic penalty for simplicity: for z; < 0 in (33) (note thatr; < 0 never occurs for previous

3 (A = A)? zero-thresholding or prompt models). So one can easily modify
R(A) = 5 SN Wik~ (30) existing codes to apply OPor SP~. Nonquadratic penalties
J=1keN; are included as in [32].

Being constructed by the optimization transfer principle, the
50Ordered subsets algorithms [32], [33] can also be used with the aim 9 y P P P

accelerating convergence speeds at the expense of monotonicity or gldfﬁrat'on (31) Increases the_ObJecnve funCUb'every 't_erat_'on-
convergence. Since the step (32) requires an “extra” backprojection, we
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often forego strict monotonicity by replacing the curvatures VII. SIMULATIONS
¢; with the following precomputed values, A. Methods
ci(l) = { —hi(li), @ >0 To compare the bias and variance properties of the esti-
0, z; <0 mators (OP, OP", SP-, SP" and SD), we simulated 2D

PET emission scans. The PR model was also included for
to be computed prior to iterating. comparison purposes since in this simulation we had access

prompt delay
Paraboloidal surrogates algorithms for SD were develop%o_?% zani . ;eparr?tely. h in Fig. 3 d:
in [14, Sec. 5.6]. A monotonic SPS version has the form of e synthetic emission phantom shown in Fig. 3 was used;

(31) and (32) with the following curvatures its warm background, left cold disc, and right hot disc had
’ relative emission activities of 2, 0.5, and 4, respectively. The

wherel; = argmax;>o hi(l) = [y; — si]+. This allowsd5"s

—EZSD(I;*), yi =0,17 >0 sinograms had 192 radial bins and 120 angles uniformly sam-
ci(l) = —ﬁ?D(l;*), yi=-L1011*>0 pled over 180 degrees. The system matrix was generated using
ti(1), otherwise ASPIRE [40]; the system geometry was approximated with 3

mm wide strip integrals and 3 mm ray spacing. We simulated

and ) nonuniform detector efficiencies using pseudo-random log-
H(l) = 2[h3°(1) — KFP(0) = IRZP(D]/1?, 1>0 normal variates with standard deviation @f. Attenuation
T =AFR(0), =0 was not considered in this simulation. The reconstructed

images were 64 by 32 with 9 mm pixels. Tkeownr; ands;

. * kk .2
with IF = 7/9—4r;(ri+s;) andli™ = wg—1—ri(ri+s;) Where ¢ 015 corresponded to a uniform field of%@andoms and
o ~ —1.1193219 is a root of a polynomial [14, Appendix E]. 10% scatters, respectivey.

Ln this gafse for SD, the following prhecomputed C;Jrvatures CaNTne specific aim of the simulation was to compare biases
€ used for saving computation at the expense of monotonicly, 1o, counts and to compare variances for high counts.
ci(l) = =hSP (1)), We performed two studies with 2K and 2M total counts.

. _ We generated 500 realizations of pseudo-random emission
wherel; = argmax;>o h;P(l), or one could use a simplemeasurements according to (1) with (2) and (3). For each

estimatel; ~ [yi — Si]+- realization, images were reconstructed using 100 iterations of
the SPS method for 2K counts, and using 40 iterations of the
B. Variation of ML-EM for OP and SP- SPS method after 10 iterations of ordered subsets SPS (with 8

. o . subsets) [32] for 2M counts. The FBP reconstruction for each
Following the derivation of ML-EM in a surrogates frameyqqjization served as an initial image for the iterations. The
work in [38], using (29), leads to a variation of ML-EM for,, yher of iterations was determined by looking at objective
OP™ and SP. Although we used SPS rather than ML-EMyction values over iteration for a few realizations to ensure
variants for the results in Section VII, we provide the MLy, o convergence was reasonably achieved. For initial FBP
EM variants for completeness as follows (see Appendix foLqqnstructions, a Hanning filter was used with such a cut-
derivation): off frequency that their impulse responses were of 3 pixels
N N aiji+ full-width half-maximum (FWHM).
/\;’Jr1 = dEME)\") Z _’f(AZTL) (35) For regularization, we used a second-order quadratic penalty
J im1 i (30) wherew;y, is 1 for horizontal or vertical neighborhoods,
or . 1/+/2 for diagonal neighborhoods, an@ otherwise. It is
AL \n AT 9L important to match the spatial resolution in reconstructed
/ o dEM(An) 0N images for a fair comparison of different estimators. Penalty
functions can be designed to achieve spatially uniform resolu-
> tion [41-43]. However, in this simulation, we used a simpler

with

(36) hybrid technique [43] consisting of two steps: 1) for each
method, we adjusted a global regularization paramgteo
that the local impulse resporisat the center pixel was of

’ i=1 ’ 7i(A)

wherez; is defined in (34), and

Ti(A) 2 Ii(A) + b; (37) 6The fractions in % denote (mean of randoms)/(mean of trues) and (mean
of scatters)/(mean of trues), respectively.
where "The approximate expression for the local impulse response, which could
A si, for OP be inte_rpret(_ad as theoint spread functionof an implicitly_defined _estimator
b; = f (38) was given in [41, Eq. 14]. It can be computed efficiently using 2D fast
5i + 2ri, or SP. Fourier Transforms by assuming local shift-invariance as in [42, Eq. 9]. All

. L. . resolutions in this paper (except those of simple linear FBP reconstruction)
This variation of ML-EM reverts to classic ML-EM [35], [39] \yere computed as FWHM of the local impulse response (at a specific pixel)

as a special case for nonnegative sinogram values. Regularid@ined using the methods in [41], [42]. One might doubt the feasibility of

tion can also be incorporated as in [38]. The steps (36) requqrp@ approximate expressions in a low-counts-per-ray case where nonnegativity
straints are often active; however, in Section VII, (the sample means

. . . . on
an extra baCkprOJeCt'on each iteration compared to classic N@ff reconstructed images seem to have reasonably matched resolutions for
EM [35], [39]. different methods even for extremely low counts per ray.
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horizontal profile 17 through sample mean for 2K counts

— true object
5[ -v- FBP
* OP+
-o- SP+ &=~
4f -o- PR e
4 SP-
S || = SD
g3 x oP-
Ko]
X
Q2_ ‘
Fig. 3. Digital phantom used in simulations. The background, left cold disc,
and right hot disc have relative emission activities of 2, 0.5, and 4, respectively. 1H 1
o . . . . . .
1.5 pixels FWHM, and then performed PL reconstructions; 0 10 20 o _30t | _4c|J 50 60
2) we applied a 2D Gaussian post-smoothing filter to the orizontal pixe
PL reconstructions so that the overall local impulse response
(at the center pixel), which is the convolution of the post- @
smoothing filter and the original local impulse response (of
1.5 pixels FWHM), achieved a target resolution of 3 pixels horizontal profile 17 through sample o for 2K counts
FWHM. ; ; ; - ;
This technique enables us to obtain reconstructions with var- ot
ious target resolutions by simply changing the post-smoothing
filter. As the post-smoothing filter becomes wider (higher S
FWHM), the overall resolution becomes more uniform spa- % 1.5¢
tially since post-smoothing dominates the overall response. To ;
check the spatial uniformity, the overall resolutions at every 3 Al
third pixel were investigated and it was found that, except the &
2 pixel wide strip along the phantom boundary, each pixel g
achieved the target resolution (3 pixels FWHM) withift “o.s}
errors for all estimators—reasonably uniform resolution.
0 . . . .
10 20 30 40 50 60
B. Results horizontal pixel

Fig. 4(a) shows the profiles through the sample mean
images of different estimators for 2K counts—very low counts. ®)

Both OP" and SP showed large positive systematic biases . _ .
Fig. 4. (a) Horizontal profile through sample mean of estimators for 2K

particularly in the cold spot (pixels 12__25) ar_]d near the engémts. (b) Horizontal profile through sample standard deviation of estimators
(phantom boundary). Zero-thresholding in sinogram domaiist 2K counts.

contributes to the positive bias since the rays passing through
those regions (cold spot and boundary) have low counts, as
discussed in Section IV. Overall the systematic bias of-OPbackground and hot regions for OPSP~, SD, and PR in
was slightly larger than that of SR as predicted in Section IV. Fig. 4(a). Our hypothesis is that the positive bias in the cold
On the other hand, other methods (QPSP-, SD, and spot tends to decrease image values in other regions since
PR) seem reasonably free of such a bias. However, sothe reconstruction methods try to make projections of image
positive biases are present in the cold spot (pixels 12—-28)lues close to given sinogram data. However, it is hard to
for OP~, SP-, SD and PR. The positive bias in the coldanalyze the effects of image-domain nonnegativity constraints
spot is mainly due to the interaction of the image-domair to study them even experimentally since we would need,
nonnegativity constraints and the large variances, which cau$efs comparison purposes, new models and algorithms (like
the nonnegativity constraints to be active frequently antlEG-ML in [18]) allowing negative image values. Further
consequently, increases image mean values. Note the biagwestigation is needed, and it would be interesting future
not due to zero-thresholding in sinogram domain since P®rk. To summarize, the results showed that bothr $id
does not require any such thresholding. The coefficients B3P were comparable to PR, the baseline reconstruction, and
variation for those methods are larger than 100% in the cdluat they were free of systematic biaaused by sinogram-
spot in Fig. 4(b). In fact, the positive biases in the coldomain zero-thresholding/hich appeared in SPand OF .
spot for OF and SP are caused by both sinogram-domain As shown in Fig. 4(a), FBP was nearly unbiased since
zero-thresholding and image-domain nonnegativity combing@dage-domain nonnegativity constraints are not imposed on
with large variances. Also, note small negative biases the FBP reconstruction. However, it showed significantly large
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variances in Fig. 4(b). Although not shown here, we found
that even if FBP is constrained by image nonnegativity, it still

horizontal profile 17 through sample mean for 2M counts

shows larger bias and variance than other methods [44]. — tFrgi object
. . . -v-
F|'g. 5(a) shqws the profiles through thg sample mean images & PR
of different estimators for 2M counts—high counts. All of the 4 SP-
methods are seen to be unbiased, as predicted from the analysis |l 75~ gg_

in Section V. Fig. 5(b) shows profiles through the sample
standard deviation images. FBP again showed the highest
standard deviation and PR showed the lowest as expected. SP
and SD showed similar performance, and Oled to higher
standard deviation than both of them. These empirical results
corroborate the analysis of asymptotic variance in Section V. r
For each pixel, we computed the ratios of the sample standard
deviation of different methods to the sample standard deviation ) ) ) ) ) )
of PR (see [44] for histograms of the ratios), and the means 0 10 20 horifgmal o ;g? 50 60
(over the entire image) of the ratios were 1.20 for FBP, 1.16

for OP—, 1.11 for OP, and 1.12 for SD. This also supports
the claim that both SP and SD lead to less variance than
OP~ (and FBP).

N

pixel mean

@)

Whereas SP performed comparably to SD, the computa- horizontal profile 17 through sample o for 2M counts
tion time for SP~ reconstruction was shorter than SD by 3- —~-fBp | ' Ty '
20% (depending on curvature type and counts) for the image -~ PR R v
and sinogram size here in our C and MATLAB implemen- 007 &SP AR
tation. However, as the image and sinogram size increases, x OP- Y [

the difference in computation would become smaller since
projection and backprojection operations will contribute more
significantly to the computational cost.

pixel standard deviation
o
o
(2]

VIIl. CONCLUSIONS

We proposed new log-likelihood approximations (Sénd 0.05f
OP") for randoms-precorrected PET emission image recon-
struction by allowing negative sinogram values and also de- o 10 20 30 0
veloped algorithms (SPS and ML-EM variants) for the new horizontal pixel
models. The new methods are free of the positive systematic
bias that degrades $Pand OF images. The positive biases (b)
appearing in SP and OF are more distinguishable in low
counts per ray regions such as cold spots, the boundary offgh 5 @ H_orizontal pr_ofile through sample mean of gst_imators f_or 2M

. . . . . counts. (b) Horizontal profile through sample standard deviation of estimators
object, or high attenuation regions rather than depending solgcfryZM counts.
on total counts. Our new models seem particularly promising
for fully 3D PET emission scans where AC rates are high
and photon counts per ray can be low, essentially for NewalppeNDIX. DERIVATION OF A VARIATION OF ML-EM FOR
scanners with small crystals. OP~ AND SP-

The new SP model yields less variance (than ORnd
FBP). Its performance is comparable to SD in terms of Define L*(A\;Y) 2 Y iwi>0 Ni(li(A)) and L™ (A;Y) 2
systematic bias and variance; yet its implementation is simpI®r,;. . . hi(l:(X)) with h; (1) = z;log(l +b;) — (I 4 b;) where
Indeed, when implemented with the usual ordered-subsgtsz;, andb; are defined in (5), (34), and (38), respectively.
approach [23], the modified OS-SPS algorithm presented Then, by concavity of log [38],
this paper for the new SPmodel has essentially the same

compute complexity as the popular OS-EM method for PET. Poag i\ A
We recommend the PR method if the prompt and theL"(A;Y) = > @;log Zf ()‘fl)A—sz(A”)ﬂL
randoms data are accessible separately; however, if only i3 >0 j=1"" J
randoms-precorrected data are available, the new iSPur bi _ . _
recommended method. fi()‘n)mio‘ )> —Ti(A)
Ld .Z’Za”/\7 +
IX. ACKNOWLEDGMENTS > Z;(}; T log A\j —aijA; +C
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wherez; is defined in (37) and’* is a constant with respect [7]
to A. On the other hand, sinde () is convex forz; < 0,

L™ (\Y) > Z R (LA™ (LA = L) + b (L(A™) .
i:x; <0
) sz;o; (@(An) B 1> aijAj +C~ 5
2 Q= (A A

whereC~ is a constant with respect tv. Since (10]
QX A™) QT (X A™) + Q7 (A A")
LT\ Y)+ L~ (NY) =L(\Y)

and Q(A"; A") = L(A™Y), one can showQ(-;A\") is a
proper surrogate [36] folL(-;Y). The surrogateQ(-; A")
can be maximized by setting its derivative to zero, and as
a result, its maximizeA™*! is calculated as (35). Becausdl3l
of the optimization transfer principle, this derivation ensures
monotonicity.

The following is an alternative “intuitive” but not rigorous[14]
derivation. The partial derivatives of the log-likelihood func-
tion LSP or LOP" at a nonnegative maximizex are, by the [15]
Karush-Kuhn-Tucker conditions [30, p. 310],

Ty {
(

9 oo :
=Y ay (==
o, M) Z;% 7\

wherez; andz; are defined in (34) and (37), respectively. So,

(11]

IN

(12]

T; [16]

=0, A\j>0
<0, A =0

for A; > 0, (171

N N N

aij = = (il = [-2ils)

R LM PEToY "
Moving the subtracted term to the other sidé. (45], [46])
leads to the following:

y ol ) o= gyl el
Z Qjj 1+ _—ZA - Z 371

The ratio of these terms yields the multiplicative update (35).
In other words A is a fixed point of the iteration (35), and SOp1j
is it for A; = 0.
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