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Conventional numerical reconstruction for digital holography using a filter applied
in the spatial frequency domain to extract the primary image may yield suboptimal
image quality because of the loss in high-frequency components and interference
from other undesirable terms of a hologram. In this paper, we propose a new
numerical reconstruction approach using a statistical technique. This approach
reconstructs the complex field of the object from the real-valued hologram intensity
data. Because holographic image reconstruction is an ill-posed problem, our
statistical technique is based on penalized-likelihood estimation. We develop a
Poisson statistical model for this problem and derive an optimization transfer
algorithm that monotonically decreases the cost function each iteration. Simulation
results show that our statistical technique has the potential to improve image
quality in digital holography relative to conventional reconstruction techniques.
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1. Introduction

Holography is a technique for recording and reconstructing both the amplitude and phase of
a wave field.1 Analog conventional holography consists of two optical processes: record-
ing and reconstructing. First, the interference pattern between an object wavefront and a
reference beam are recorded using photographic material. The recorded pattern is called
a hologram. Then, one reconstructs the object’s complex wavefront by illuminating the
recording medium with a wave that is similar to the original reference beam. This process
generates the zero-order image and the twin images called the primary (virtual) and conju-
gate (real) images. In in-line holography invented by Gabor,2 the reconstructed holographic
image suffers from an overlap of these three images, degrading resolution and contrast. To
separate the primary image from other terms, Leith and Upatnieks3 invented off-axis holog-
raphy by introducing the reference beam at an angle with respect to the object beam. With
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this technique, the zero-order, primary and conjugate images appear at different locations,
so each image can be observed separately.

Because the processes of optical recording on photographic film and optical recon-
struction preparation in analog conventional holography are time consuming and lack of
real-time imaging ability, digital recording of a hologram on a digital detector (such as a
charged-coupled-device (CCD) camera) and a numerical reconstruction of a complex ob-
ject field on a computer become attractive alternatives and have been very useful in many
applications.4, 5, 6, 7, 8 In digital off-axis holography, the most common approach for extract-
ing the primary image in numerical reconstruction is to perform a digital “spatial filter” that
selects appropriate spatial frequencies in the Fourier domain of a hologram.9 Limitations
of that approach include a loss of high frequency components and interference from other
terms in the hologram, which degrade the reconstructed holographic image quality. Phase-
shifting or phase modulation7, 10, 11 methods were proposed to suppress the zero-order and
conjugate images, but they require at least three holograms to reconstruct one holographic
image. The clever approach proposed in Ref. 12 estimates the complex object beam by
solving a small system of equations; however, no noise model was considered.

To overcome the drawbacks of existing approaches, in this paper we propose a new nu-
merical holographic reconstruction approach based on a statistical model for the measure-
ments and a physical model of the optical system. Statistical image formation techniques
have succeeded in many applications.13, 14, 15, 16 Statistical image reconstruction for digital
holography can be formulated as an inverse problem in which we try to obtain a complex
reconstructed holographic image (primary image) from hologram intensity data that are
real.

Çetin et al.17 proposed a statistical technique for Fourier holography and other coher-
ent imaging applications. Their method was based on a Gaussian noise model and used a
least-squares approach. Considering the digital recording process of a hologram, our sta-
tistical model follows a Poisson distribution having the mean associated with a squared
magnitude of the interference between the object and reference beams. Due to the ill-
posed nature of image reconstruction, our statistical technique uses penalized-likelihood
(PL) estimation.18, 19, 20 This optimization problem is very challenging because its negative
log-likelihood function contains multiple global minima. Therefore, regularization is nec-
essary to improve the problem conditioning and to reduce non-uniqueness. Moreover, we
show that using two measured holograms can improve the results when reconstructing a
complex holographic image with the same number of pixels as the recording device. (The
use of two data sets to help estimate complex quantities has been applied in other optical
problems.21, 22)

In PL estimation, the unknown parameter vector, which represents the complex object
field, is estimated by minimizing a cost function. Since closed-form solutions are unavail-
able, we need an iterative algorithm to solve the problem. However, for the Poisson model,
conventional gradient-based minimization is difficult. To simplify the optimization prob-
lem and to assure monotonic decreases in the cost function at each iteration, our proposed
reconstruction approach is based on the use of optimization transfer and convexity tech-
niques by finding a “surrogate function” that lies above the original cost function at each
iteration.14, 23 Instead of minimizing the original cost function, we minimize the surrogate
function using an iterative algorithm, such as the separable-paraboloidal-surrogate14, 23 or
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conjugate gradient algorithm.
In this study, we demonstrate our holographic reconstruction method in the specific

context of image-plane holography,24, 25 which is a new imaging technique for forming a
3-D image of a “thick,” partially transparent object without dissection. This technique has
the same optical sectioning property as in confocal scanning microscopy but requires no xy
scanning.24, 25 The proposed reconstruction method can also be applied to phase retrieval
problems, and to Fourier holography when the system matrix represents the Fourier trans-
form, and to Fresnel holography when the system matrix represents the Fresnel transform.

This paper is organized as follows. Section 2 describes the measurement model of a
digitally recorded hologram. Section 3 reviews conventional numerical reconstruction us-
ing a spatial filtering technique applied in the frequency domain, and introduces iterative
reconstruction techniques. Section 4 proposes a statistical model for digital holography and
introduces a new statistical holographic reconstruction technique based on PL estimation.
Section 5 applies optimization transfer and convexity techniques to derive the surrogate
functions and the iterative algorithm for holographic image reconstruction. Section 6 com-
pares different holographic reconstructed images using our statistical approach with the
conventional reconstruction approach. Finally, conclusions are given in Section 7.

2. Measurement Model for Digital Holography

For digital holography, a computer performs numerical reconstruction of the object from a
hologram that is recorded by a digital detector. Figure 1 illustrates the recording process in
digital holography.

We assume a linear relationship between the object beam uo at the hologram (detector)
plane and the object field f , as described by the following superposition integral:

uo(r) =

∫

h(r; r′)f true(r′) dr
′, (1)

where h(r; r′) denotes the continuous-space point spread function (PSF) of the optical sys-
tem, f true(r) denotes the true object, and r denotes 2-D spatial coordinates on the recording
plane. For a planar object, r′ denotes the 2-D coordinates within the object plane. For a 3-D
object, r′ denotes the 3-D coordinates within the object volume. For 3-D reconstruction in
image-plane holography, one must scan the object (or the focal plane) along the optical
axis and record a set of holograms. For simplicity, in this paper we focus on the 2-D case.
In practice, the recording medium has finite thickness, but we ignore this effect here for
simplicity.

For image-plane holography, the PSF h represents the characteristics of the imaging
optics. For Fourier holography, h includes a Fourier transform, and for Fresnel holography,
h includes a Fresnel transform (an approximation of the diffraction integral).1 In all cases,
the information about the object f of interest is embedded in the object beam uo.

For analog conventional holography, the interference between the object and reference
beams at the recording plane has the following continuous-space intensity:1

I(r) = |uo(r) + uref(r)|2

= |uo(r)|2 + |uref(r)|2 + uo(r)u∗ref(r) + u∗o(r)uref(r), (2)
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where uref denotes the (known) field of the reference beam and ∗ represents the complex
conjugate. The first two terms in Eq. (2) constitute the zero-order image; the third term,
which is proportional to uo, leads to the formation of the primary image; and the fourth
term, which is proportional to u∗

o, leads to the formation of the conjugate image.1 For off-
axis holography, the reference beam is oriented at some angle resulting in a known spatial
carrier frequency denoted by α. An example of such a reference beam is a plane wave that
is tilted by an angle θ = (θx, θy) in the x and y directions with respect to the optical axis,
i.e.,

uref(r) = Uref exp(−ı2πr · α) (3)

and

α =

(

sin θx

λ
,
sin θy

λ

)

, (4)

where Uref denotes the amplitude of the reference wave and λ is the wavelength.
Let Y = (Y1, . . . , YN) denote the (noisy) hologram measurement data recorded by

a digital detector, where N denotes the number of measurement elements. We treat the
measurement recorded by the ith element of the digital detector as a random variable whose
mean is modeled as follows:

E[Yi] = |uo(ri) + uref(ri)|
2 + bi, i = 1, . . . , N, (5)

where bi denotes offsets due to effects such as dark current, and ri denotes the center of the
ith detector element. For simplicity, we treat the CCD camera response as a Dirac impulse
at the center of each element. One could generalize Eq. (5) to include convolution with a
CCD point response function. The reconstruction goal is to estimate the object f from the
measurements Y using the model (5).

3. Numerical Holographic Reconstruction Methods

This section first reviews conventional numerical reconstruction using a filtering method
and then introduces iterative reconstruction techniques.

A. Conventional Filtering Approach

The first step in conventional numerical holographic reconstruction is to apply a “filter” in
the frequency domain to extract either the primary or conjugate image corresponding to
one of the last two terms of Eq. (2). This conventional approach assumes that the reference
beam is planar, as in Eq. (3). By substituting Eq. (3) into Eq. (2) and taking the Fourier
transform, the spatial-frequency spectrum of the recorded interference pattern is converted
into an angular spectrum of diffracted waves:

I(ν) = Io(ν) + |Uref |
2δ(ν) + UrefUo(ν − α) + UrefU

∗
o (−ν − α), (6)

where ν denotes 2-D spatial frequencies, Io denotes the Fourier transform of the intensity
of the object beam, Uo denotes the Fourier transform of the field of the object beam, and α

was defined in Eq. (4). The zero-order spectrum, consisting of the first two terms of Eq. (6),
must be eliminated to avoid having a background bias in the reconstructed image. The two
first-order spectra, the last two terms of Eq. (6), lead to the primary and conjugate images,
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respectively. Figure 2 shows a simulated recorded hologram for a planar reference beam
tilted along the x direction, the magnitude of the Fourier transform of the hologram, and
the reconstructed image using the conventional technique.

Considering the Fourier transform of the hologram in Fig. 2, one can extract either the
primary or conjugate image by using a mask to select only one of the first-order spectra and
then taking the inverse Fourier transform. Because Eq. (6) consists of four terms yet only
one term is extracted, one must consider the appropriate dimensions of the reconstructed
image. The usual choice is to reconstruct a holographic image that is the same size as the
CCD array; this requires zero padding in the high spatial frequency regions surrounding
the extracted frequency components. This conventional approach yields a reconstructed
image with poorer resolution than the intrinsic recorder resolution due to the discarded
high frequency components, and also suffers from degradation by interference from the
residual frequency components of other undesirable terms.

For image-plane holography, no further processing of the extracted image is required
after computing the inverse Fourier transform. However, for digital Fresnel holography, an
additional processing step is required in which the (discretized) Fresnel transform of the
image is computed. (Similarly for Fourier holography.) In contrast, the statistical approach
described next requires no such post processing since the effects of the Fresnel or Fourier
transform are incorporated into the PSF h in Eq. (1), and hence into the system matrix A

defined in Eq. (9) below.

B. Iterative Reconstruction

For iterative holographic reconstruction, one must parameterize the continuous-space ob-
ject in Eq. (1). We approximate the true object f true(r) using a linear combination of basis
functions as follows:26

f true(r) ≈ f(r) =
P
∑

j=1

xjχj(r) (7)

where f(r) is an approximation of the true object in the continuous space, xj is the un-
known complex coefficient of the jth basis function, P is the total number of parameters
(e.g., pixels) to be estimated, and χj(r) is a basis function. For example, χj(r) is usu-
ally chosen to be the indicator function over the jth “pixel” in the object plane, and we
adopt this choice in our numerical experiments. However, the formulation is general to any
choice of basis functions. Combining Eqs. (1) and (7), we write the object beam uo(ri) in
the following discrete form:

uo(ri) =

∫

h(ri; r
′)

P
∑

i=1

xjχj(r
′) dr

′ =
P
∑

j=1

aijxj = [Ax]i, (8)

where aij is the ijth element of the system matrix A, and x = (x1, . . . , xP ). Each aij

denotes the contribution of the jth basis function to the the object beam uo(ri) at the center
of the ith recorder element, and can be expressed in terms of the system PSF and the basis
functions as follows:

aij =

∫

h(ri; r
′)χj(r

′) dr
′. (9)
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Combining these expressions with the definition ui
4
= uref(ri) leads to the following model

for the measurement means:

E[Yi] = |[Ax]i + ui|
2 + bi, i = 1, . . . , N. (10)

We use this model for statistical holographic reconstruction. The goal is to estimate x

from the measured Yi’s, since x parameterizes the unknown object f of interest. In the
special case of space-invariant systems, the system matrix is Toeplitz and Ax corresponds
to convolution between the image represented by x and the discrete-space system PSF.

Using Eq. (10), iterative techniques can estimate the complex object field from the
measurement data (recorded holograms). Unlike the conventional filtering method, iterative
techniques can use all of the information in the model (2), rather than discarding all but one
of the four terms. Furthermore, iterative methods need not assume that the reference beam is
a planar. Therefore, iterative methods could work for both in-line and off-axis holography.
Since the recorded hologram is real, whereas the unknown object field is complex, if one
attempts to estimate a complex holographic image having the same number of pixels as
CCD elements, i.e., P = N , then the problem will be under-determined since each xj in
Eq. (7) is complex valued, so consists of two unknown numbers. Regularization may help
reduce this problem. Alternatively, one should choose the number of parameters P (and/or
the number of recorded hologram samples N ) such that N ≥ P so that the problem is not
intrinsically under-determined.

Digital hologram measurements are degraded by noise, so before describing an itera-
tive algorithm for holographic reconstruction in Section 5, we first formulate a statistical
model for the noise.

4. Statistical Model

Statistical techniques for inverse problems require a model for the measurement statistics.
In digital holography, the two major noise sources are light quanta statistics characterized
by a Poisson distribution, and electronic readout noise characterized by a Gaussian distribu-
tion. Since Poisson distributed photon noise is inherent to optical imaging, whereas readout
noise depends on detector design, we focus on the a Poisson component.27 (Readout noise
variance can be included in the bi term below if needed.27) In particular, we model the noisy
hologram measurements as having independent Poisson distributions with means described
in Eq. (10):

Yi ∼ Poisson{|[Ax]i + ui|
2 + bi}, i = 1, . . . , N. (11)

All terms in this expression are assumed known except for the unknown image vector x.
Because x is complex, the problem will be under-determined if the size of the data vector
Y is less than twice the number of elements of x, i.e., if N < 2P .

Since the system matrix A is usually ill-conditioned in imaging problems, we use
penalized-likelihood estimation to reconstruct the holographic image by finding the mini-
mizer x̂ of a cost function of the following form:

Φ(x) = L(x) + V (x), (12)

whereL denotes the negative log-likelihood function corresponding to the statistical model,
and V denotes a roughness penalty function. Our focus is image-plane holography, which
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uses incoherent illumination. For imaging with highly coherent illumination, one may need
to consider the effects of speckle when designing the roughness penalty.28, 29

Ignoring irrelevant constants independent of x, the negative log-likelihood function
corresponding to the statistical model (11) is given by:

L(x) =
N
∑

i=1

hi([Ax]i), (13)

where hi is a real function of a complex scalar argument defined as follows:

hi(l)
4
= −yi log(|l + ui|

2 + bi) + (|l + ui|
2 + bi), (14)

where l denotes a general complex argument. It will be convenient to also write hi as
an explicit function of the real and imaginary components of its argument, i.e., hi(l) =
hi(l

R, lI), where l = lR + ılI , and where the superscripts R and I denote the real and
imaginary parts, respectively. Each yi denotes a (real-valued) realization of the Poisson
random variable Yi.

We consider penalty functions that discourage differences between neighboring object
pixels having the following form:23

V (x) = β
r
∑

i=1

ψ([Cx]i), (15)

where ψ is a potential function that determines the behavior of the penalty function, C

is a penalty matrix that defines adjacent neighboring pairs of pixels, β is a regularization
parameter that controls the degree of smoothness in the reconstructed image, and r is the
number of pairs of neighboring object pixels. Examples of potential functions include the
quadratic potential function ψ(t) = t2/2, and nonquadratic potential functions, such as:30

ψ(t) = δ2

[∣

∣

∣

∣

t

δ

∣

∣

∣

∣

− log

(

1 +

∣

∣

∣

∣

t

δ

∣

∣

∣

∣

)]

, (16)

where δ is a parameter that controls the degree of edge preservation.30, 31, 32 The smaller δ,
the stronger the degree of edge preservation. For simplicity, the penalty matrix we used in
this paper consists of horizontal and vertical adjacent neighbors, which is called a first-order
neighborhood. An example of the matrix C for a 2 × 2 image is:

Cx =









−1 1 0 0
0 0 −1 1

−1 0 1 0
0 −1 0 1

















x1

x2

x3

x4









=









x2 − x1

x4 − x3

x3 − x1

x4 − x2









.

Our goal is to estimate x by finding the minimizer of the cost function:

x̂
4
= arg min

x

Φ(x).

Since closed-form solutions for the minimizer are unavailable, iterative algorithms are
needed.
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5. The Algorithm

In this section, we approach the minimization problem by using optimization transfer and
convexity techniques. These lead to an iterative algorithm that monotonically decreases the
cost function.

A. Optimization Transfer

Directly minimizing the cost function in Eq. (12) is difficult for nonquadratic hi’s. To sim-
plify the optimization problem and to assure monotonic decreases in the cost function at
each iteration, one can apply an optimization transfer approach by finding a “surrogate”
function φ that lies above the cost function.14, 23, 31, 33 Each iteration, we obtain the next
estimate by finding the minimizer of the surrogate function:

x
n+1 4

= arg min
x

φ(x; xn) (17)

where xn denotes the estimate at the nth iteration.
Choosing a surrogate function φ that satisfies the following monotonicity condition

ensures that the iterates xn will monotonically decrease the cost function Φ:14, 31, 33

Φ(xn) − Φ(x) ≥ φ(xn; xn) − φ(x; xn), ∀x ≥ 0. (18)

Instead of using the condition above, we choose a surrogate function φ(x; xn) that satisfies
the following sufficient conditions:

1. φ(xn; xn) = Φ(xn)

2. φ(x; xn) ≥ Φ(x), ∀x ∈ C
P

3.
∂

∂xj

φ(x; xn)

∣

∣

∣

∣

x=xn

=
∂

∂xj

Φ(x)

∣

∣

∣

∣

x=xn

, ∀j, (19)

where C
P defines a P -dimensional complex space.

The next section presents the surrogate functions for the cost function given in Eq. (12).

B. Paraboloidal-Surrogate Functions

We first focus on the likelihood part. Since quadratic choices for the surrogate φ are par-
ticularly easy to minimize, our goal now is to find a parabola that lies above the negative
log-likelihood function. Figure 3 illustrates the one-dimensional plot of the marginal cost
function hi(l

R, 0). In this plot the marginal cost function has two optimal minima. How-
ever, a 2-D plot of hi(l

R, lI) consists of multiple solutions that lie on a circle in the complex
plane. Therefore, it is a challenging problem to find the correct optimal solution.

Since l and ui are complex, we adapt De Pierro’s multiplicative trick34 to rewrite hi(l)
in Eq. (14) as follows:

hi(l
R, lI) = −yi log

(

αR,n
i

[

(lR + uR
i )2 + bi/2

αR,n
i

]

+ αI,n
i

[

(lI + uI
i )

2 + bi/2

αI,n
i

])

+[(lR + uR
i )2 + bi/2] + [(lI + uI

i )
2 + bi/2], (20)
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where we define

αR,n
i =

(lR,n + uR
i )2 + bi/2

kn
i

αI,n
i =

(lI,n + uI
i )

2 + bi/2

kn
i

kn
i = |lni + ui|

2 + bi

lni = [Ax
n]i.

Combining the fact that αR,n
i + αI,n

i = 1 with the convexity of the negative log function in
Eq. (20) leads to our first surrogate function in which we separate the real and imaginary
parts:

hi(l) = hi(l
R, lI) ≤ hR,n

i (lR) + hI,n
i (lI), (21)

where

hR,n
i (lR)

4
= −yiα

R,n
i log

(

(lR + uR
i )2 + bi/2

αR,n
i

)

+ (lR + uR
i )2 + bi/2 (22)

hI,n
i (lI)

4
= −yiα

I,n
i log

(

(lI + uI
i )

2 + bi/2

αI,n
i

)

+ (lI + uI
i )

2 + bi/2. (23)

In 1-D, the surrogates hR,n
i and hI,n

i each have two minima (see Fig. 3) and are symmetric
about the line l = −ui. To facilitate the minimization in Eq. (17), we want to find parabolic
surrogates that lie above these curves. A parabolic surrogate function for the real part has
the following form:

qR,n
i (lR) = hR,n

i (lR,n
i ) + ḣR,n

i (lR,n
i )(lR − lR,n

i ) +
1

2
cR,n
i (lR − lR,n

i )2 (24)

where ḣR,n
i is the first derivative of hR,n

i and cR,n
i is the curvature of the parabola qR,n

i . This
parabola has the same value as hR,n

i at the current estimate lR = lR,n
i , and the same first

derivatives at that point. A parabolic surrogate function for the imaginary part is denoted
by qI,n

i (lI) and has an analogous form.
According to the sufficient conditions in Eq. (19), we must choose the parabola qR,n

i to
satisfy the following conditions:

1. qR,n
i (lR,n

i ) = hR,n
i (lR,n

i )

2. qR,n
i (lR) ≥ hR,n

i (lRn), ∀lR

3. q̇R,n
i (lR,n

i ) = ḣR,n
i (lR,n

i ).

Similar conditions apply to qI,n
i . The first and third conditions are satisfied by the construc-

tion of qR,n
i and qI,n

i . The only remaining problem is to find curvatures cR,n
i and cI,n

i that
satisfy the second conditions. For the fastest convergence rate,14 ideally we would choose
the smallest curvature for which the second condition is satisfied. However, a closed-form
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solution for this optimal choice has proven elusive. Instead, we have chosen the curvatures
using the following general expression:

cR,n
i = max

lR∈R

ḣR,n
i (lR) − ḣR,n

i (lR,n
i )

lR − lR,n
i

, (25)

and likewise for cI,n
i . Although this curvature is not optimal, Appendix A shows that this

choice leads to a parabolic surrogate that is guaranteed to lie above the cost function. For
the specific model in Eq. (11), the curvatures in Eq. (25) have the following closed-form
solution:

cR,n
i =

2yi[b
2
i + 2bi(l

R,n
i + uR

i )2]1/2(lR,n
i + uR

i )2

kn
i

[

b2i + bi

(

2(lR,n
i + uR

i )2 + [b2i + 2bi(l
R,n
i + uR

i )2]1/2
)] + 2. (26)

Appendix B derives this expression. Computation time per iteration could be reduced by
using precomputed curvatures.35

The following inequalities summarize the construction of the surrogate functions:

L(x) =
N
∑

i=1

hi([Ax]i)

≤
N
∑

i=1

hR,n
i ([Ax]Ri ) + hI,n

i ([Ax]Ii )

≤

N
∑

i=1

qR,n
i ([Ax]Ri ) + qI,n

i ([Ax]Ii )

4
= Q(x; xn). (27)

Since the likelihood surrogate functionQ is quadratic, many algorithms could find its mini-
mizer. Minimizing Q is simpler than minimizing the original cost function Φ. In this paper,
we apply the separable-paraboloidal-surrogate (SPS) algorithm14, 23 for this problem. The
conjugate gradient (CG) method could also be applied easily because nonnegativity con-
straints are not required.

C. The Separable-Paraboloidal-Surrogate Algorithm

In this section, we derive the SPS algorithm for Eq. (27). To apply the SPS approach, we
separate pixels using the additive convexity technique developed by De Pierro,34 permitting
simultaneous updates. Using the convexity of qR,n

i , we have:

qR,n
i ([Ax]Ri ) = qR,n

i

(

P
∑

j=1

pij

[

[aij(xj − xn
j )]R

pij

+ lR,n
i

])

≤
P
∑

j=1

pijq
R,n
i

(

[aij(xj − xn
j )]R

pij

+ lR,n
i

)

, (28)
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where we choose pij’s that satisfy pij ≥ 0 and
∑P

j=1 pij = 1. As in previous work,23

we use pij =
|aij |

∑P
j′=1

|aij′ |
in our simulation study. An analogous inequality applies to qI,n

i .

Combining the real and imaginary components leads to the following surrogate function:

Q(x; xn) ≤

P
∑

j=1

Qn
j (xj) (29)

Qn
j (xj)

4
= QR,n

j (xj) +QI,n
j (xj)

QR,n
j (xj)

4
=

N
∑

i=1

pijq
R,n
i

(

[aij(xj − xn
j )]R

pij

+ lR,n
i

)

, (30)

and we define QI,n
j similarly.

To obtain the update at each iteration, we minimize Qn
j (xj). When no penalty is used,

we obtain the maximum-likelihood estimate as is derived in the next section.

D. Maximum-Likelihood Estimation

Since Qn
j (xj) = Qn

j (xR
j + ıxI

j) is a quadratic function of two real variables, xR
j and xI

j ,
we minimize Qn

j using one step of Newton’s method, which involves a 2× 2 matrix-vector
multiplication for each pixel as follows:

xn+1
j

4
= arg min

xj

Qn
j (xj)

= xn
j − H

−1
j ∇Qn

j (xn
j ), j = 1, . . . , P, (31)

where the gradient of Qn
j is defined by

∇Qn
j (xn

j )
4
=

[ ∂
∂xR

j

Qn
j (xj)

∂
∂xI

j

Qn
j (xj)

]∣

∣

∣

∣

∣

xj=xn
j

=

[

∑N
i=1 a

R
ijḣ

R,n
i (lR,n

i ) + aI
ijḣ

I,n
i (lI,n

i )
∑N

i=1 −a
I
ijḣ

R,n
i (lR,n

i ) + aR
ijḣ

I,n
i (lI,n

i )

]

=

[

∂
∂xR

j

L(x)
∂

∂xI
j

L(x)

]∣

∣

∣

∣

∣

x=xn

4
=

[

L̇R,n
j

L̇I,n
j

]

, (32)

and the jth 2 × 2 Hessian matrix, Hj , is

Hj
4
=

[

dRR
j dRI

j

dIR
j dII

j

]

=

[

∂2

∂(xR
j

)2
Qn

j (xj)
∂2

∂xR
j

∂xI
j

Qn
j (xj)

∂2

∂xI
j ∂xR

j

Qn
j (xj)

∂2

∂(xI
j )2
Qn

j (xj)

]∣

∣

∣

∣

∣

xj=xn
j

=





∑N
i=1

1
pij

[(aR
ij)

2cR,n
i + (aI

ij)
2cI,n

i ]
∑N

i=1

aR
ijaI

ij

pij
(−cR,n

i + cI,n
i )

∑N
i=1

aR
ijaI

ij

pij
(−cR,n

i + cI,n
i )

∑N
i=1

1
pij

[(aI
ij)

2cR,n
i + (aR

ij)
2cI,n

i ]



 .(33)
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After matrix multiplication, the explicit form for the SPS algorithm becomes simply:

[

xR,n+1
j

xI,n+1
j

]

=





xR,n
j − 1

det Hj

(

dII
j L̇

R,n
j − dRI

j L̇I,n
j

)

xI,n
j − 1

det Hj

(

−dRI
j L̇R,n

j + dRR
j L̇I,n

j

)



 (34)

where the determinant of the Hessian matrix, Hj , is

det Hj = dRR
j dII

j − (dRI
j )2. (35)

The surrogate functions derived in this section do not include the penalty function.
Without regularization, a noisy image might be obtained after several iterations. Therefore,
in the next section we derive the surrogate function for the penalty term in PL estimation.
The derivation extends our previous work14, 23 to the case of complex images.

E. Penalty Surrogate Function and Penalized-Likelihood Estimation

Lacking any prior information that would relate the real and imaginary parts of the un-
known image x, we employ separate penalty functions for the two parts. Since we sepa-
rately penalize the real and imaginary parts, using different regularization parameters for
the real and imaginary parts provides more flexibility than having only one regularization
parameter for both. Thus, we use a penalty function of the following form:

V (x) = βR

r
∑

i=1

ψ([CR
x

R]i) + βI

r
∑

i=1

ψ([CI
x

I ]i), (36)

where CR and CI are penalty matrices for the real and imaginary parts of the estimates,
and βR and βI are the corresponding regularization parameters. To preserve edges, we used
the nonquadratic potential function ψ in Eq. (16) in our simulations.

Similar to the nonquadratic likelihood function, we derive the following surrogate
functions:

V (x) ≤ V ′(x; xn) ≤
P
∑

j=1

Sn
j (xj), (37)

where V ′ is called the paraboloidal-surrogate function for the penalty function and Sn
j is

called the separable-paraboloidal surrogate function for the penalty function. The first in-
equality is derived by forming a parabola that lies above the original penalty function and
the second inequality is derived using the convexity of ψ. If a quadratic potential func-
tion is used instead, then the first parabola step is unnecessary. The paraboloidal-surrogate
function V ′(x; xn) has the following form:

V ′(x; xn) = βR

r
∑

i=1

ϕ([CR
x

R]i; [C
R
x

R,n]i) + βI

r
∑

i=1

ϕ([CI
x

I ]i; [C
I
x

I,n]i), (38)

where the function ϕ(t; s) is a parabola in t for fixed s, where t and s denote real scalar
arguments, and ϕ is defined by

ϕ(t; s) = ψ(s) + ψ̇(s)(t− s) +
1

2
ω(s)(t− s)2, (39)
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and the curvature ω of the parabola surrogate32 is given by

ω(s) =
ψ̇(s)

s
.

Since the paraboloidal-surrogate function V ′ is convex, we apply the additive convexity
technique developed by De Pierro34 to obtain the separable-paraboloidal-surrogate function
that lies above V ′ as follows:

SR,n
j (xR

j )
4
= βR

r
∑

i=1

γR
ijϕ

(

cRij(xj − xn
j )R

γR
ij

+ [CR
x

R,n]i; [C
R
x

R,n]i

)

SI,n
j (xR

j )
4
= βI

r
∑

i=1

γI
ijϕ

(

cIij(xj − xn
j )I

γI
ij

+ [CI
x

I,n]i; [C
I
x

I,n]i

)

Sn
j (xj) = SR,n

j (xR
j ) + SI,n

j (xI
j), (40)

and we define γo
ij =

|co
ij |

∑P
j′=1

|co
ij′

|
,where o representsR or I . From Eq. (39), the first derivative

of ϕ(t; s) evaluated at t = s is ψ̇(s), thus the gradient of Sn
j is

∇Sn
j (xn

j ) =





∂
∂xR

j

SR,n
j (xR

j )

∂
∂xI

j

SI,n
j (xI

j)





∣

∣

∣

∣

∣

∣

xj=xn
j

=

[

βR
∑r

i=1 c
R
ijψ̇([CRxR,n]i)

βI
∑r

i=1 c
I
ijψ̇([CIxI,n]i)

]

=

[ ∂
∂xR

j

V (x)

∂
∂xI

j

V (x)

]∣

∣

∣

∣

∣

x=xn

4
=

[

V̇ R,n
j

V̇ I,n
j

]

. (41)

Because there is no coupling between xR
j and xI

j in the penalty or its surrogate functions,
the Hessian matrix for Sn

j is diagonal:

∇2Sn
j (xn

j ) =

[

pR,n
j 0

0 pI,n
j

]

, (42)

where

po,n
j =

∂2So,n
j

∂(xo
j)

2

∣

∣

∣

∣

xj=xn
j

= βo

r
∑

i=1

(coij)
2

γo
ij

ω([Co
x

o,n]i). (43)

To obtain the update of the SPS algorithm in PL estimation, we combine the surro-
gates for the likelihood and penalty. Thus, the overall surrogate function to be minimized
becomes

φn
j (xj) = Qn

j (xj) + Sn
j (xj). (44)

So the update xj is obtained by:

xn+1
j = arg min

xj

φn
j (xj). (45)
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Similar to Eq. (34), the update of the SPS algorithm with regularization becomes
[

xR,n+1
j

xI,n+1
j

]

=

[

xR,n
j

xI,n
j

]

−
1

det H̃j

[

(dII
j + pR,n

j )(L̇R,n
j + V̇ R,n

j ) − dRI
j (L̇I,n

j + V̇ I,n
j )

−dRI
j (L̇R,n

j + V̇ R,n
j ) + (dRR

j + pR,n
j )(L̇I,n

j + V̇ I,n
j )

]

,

(46)
where the new Hessian matrix H̃j is

H̃j = Hj +

[

pR,n
j 0

0 pI,n
j

]

, (47)

and its determinant is

det H̃j = (dRR
j + pR,n

j )(dII
j + pI,n

j ) − (dRI
j )2. (48)

The SPS algorithm outline for holographic image reconstruction is shown below. For
simplicity, we supress the “n” superscript.

x̂ = initial image
ai =

∑P
j=1 |aij|, i = 1, . . . , N

for n = 1, . . . ,Niters
l̂ =

∑P
j=1 aijx̂j, i = 1, . . . , N

kn
i = |l̂ + ui|

2 + bi, i = 1, . . . , N

ḣi = −2yi(l̂+ui)
kn

i

+ 2(l̂ + ui), i = 1, . . . , N

Compute cRi and cIi using Eq. (26).
for j = 1, . . . , P

L̇j =
∑N

i=1 a
∗
ijḣi

L̇R
j = Re{L̇j}, L̇I

j = Im{L̇j}

dRR
j =

∑N
i=1

ai

|aij |
[(aR

ij)
2cRi + (aI

ij)
2cIi ]

dII
j =

∑N
i=1

ai

|aij |
[(aI

ij)
2cRi + (aR

ij)
2cIi ]

dRI
j = dIR

j =
∑N

i=1

aia
R
ijaI

ij

|aij |
(−cRi + cIi )

V̇ R
j = βR

∑r
i=1 c

R
ijψ̇([CRx̂R]i)

V̇ I
j = βI

∑r
i=1 c

I
ijψ̇([CIx̂I ]i)

pR
j = βR

∑r
i=1

(cR
ij)

2

γR
ij

ω([CRx̂R]i)

pI
j = βI

∑r
i=1

(cI
ij)

2

γI
ij

ω([CIx̂I ]i)

det Hj = (dRR
j + pR

j )(dII
j + pI

j) − (dRI
j )2

x̂R
j = x̂R

j − 1
det Hj

[(dII
j + pR

j )(L̇R
j + V̇ R

j ) − dRI
j (L̇I

j + V̇ I
j )]

x̂I
j = x̂I

j −
1

det Hj
[−dRI

j (L̇R
j + V̇ R

j ) + (dII
j + pR

j )(L̇I
j + V̇ I

j )]

end
end
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F. Number of Holograms Used

In principle, our statistical technique can be applied to data with any number of measure-
ment elements N and to a model with any number of image pixels P . Whereas N is fixed
by the choice of the measurement device (e.g., CCD camera pixels), the value of P can be
selected by the algorithm designer. A natural choice for P would be the number of CCD
elements, which is the size of a single hologram. However, when N < 2P the problem is
under-determined, so the regularization term will be particularly important. An alternative
is to estimate half as many pixels as there are the CCD elements, i.e., (P = N/2), from a
single hologram. However, this option requires interpolation and downsampling processes
that might introduce some artifacts in the reconstructed image. To study the effect of the
sizes of the reconstructed image relative to the amount of data, we considered the following
three different cases in our simulations.

Case 1: Use one hologram to reconstruct a holographic image whose size is half the num-
ber of CCD elements (half-size reconstruction), i.e., P = N/2.

Case 2: Use one hologram to reconstruct a holographic image whose size is the same as
the number of CCD elements (full-size reconstruction), i.e., P = N .

Case 3: Use two holograms to reconstruct a holographic image whose size is the same as
the number of CCD elements (full-size reconstruction), i.e., N = 2P .

6. Simulation Results

In this section, we compare the conventional numerical reconstruction technique with our
statistical reconstruction for the three cases described above. Moreover, we examined the
effect of possible a priori knowledge that the object f is real. We implemented this con-
straint by zeroing the imaginary part of xn after each iteration.

A. Effect of Numbers of Data Sets

A 128×128 original image (Fig. 4a) that is complex was degraded by the PSF, interference
pattern, and Poisson noise (Fig. 4b) as in Eq. (11). We assumed a space-invariant optical
system with a PSF that is a 7× 7 jinc function, J1(2πr)

πr
, where J1 is a Bessel function of the

first kind and r is a polar-coordinate parameter, with full width at half maximum (FWHM)
of 3.5 pixels. We used the following two 2D reference beams:

ur1(n1, n2) = 200 exp

(

−ı
2π

3
n1

)

ur2(n1, n2) = 150 exp

(

−ı
2π

4
n1

)

, (49)

where the pixel indices n1 and n2 range from 0 to 127. For experiments with only one
hologram, we used the first reference beam. The offset bi is assigned to be 5 and 10 for
the first and second hologram, respectively. The Poisson noise has the peak signal-to-noise
ratio (PSNR) of 29 dB and 24 dB in the first and second hologram (Fig. 4b), respectively.
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The PSNR in the data is defined as follows:

PSNR
4
= 10 log10

(

maxi(yi − bi)
2

1
N

∑N
i=1(yi − E[yi])2

)

. (50)

Each simulated real-valued hologram has the same size (128 × 128 pixels) as the original
complex-valued image.

Figure 4c shows the conventional reconstruction using an apodizing Gaussian mask.
We applied a 41×41 Gaussian mask with FWHM of 27.2 pixels to the selected region in the
frequency domain of the hologram. The magnitude and phase of the reconstructed image
appear to be blurry while noise still remains. Owing to the effect of the filtering method,
noise cannot be removed completely without oversmoothing edges. Figures 4d-f show our
statistical holographic reconstruction based on PL estimation for the three different cases.
Because of non-convextity of the cost function Φ, the reconstructed image can be quite
sensitive to the initial image. We used the image from the conventional approach as the
initial image for the iterations. We used the nonquadratic penalty function in Eq. (16) with
regularization parameters βR = βI = 10 and edge-preserving parameters δR = δI = 1.
As in most Baysian image reconstruction methods, these parameters are determined by trial
and error. The SPS algorithm was run for 200 iterations and its most expensive computation
at each iteration includes five 2-D convolutions or five FFT’s. Although SPS might not
be the fastest existing algorithm for this problem, the focus of the paper is to illustrate
the potential of the penalized-likelihood reconstruction technique to digital holography.
Unlike the conventional technique, the penalized-likelihood reconstruction technique with
a nonquadratic penalty can reduce noise significantly while still preserving edges.

Figure 4d shows the half-size reconstruction using one hologram (Case 1). For dis-
play, the reconstructed image was linearly interpolated to match the size of the original
image. Figures 4e-f show full-size reconstructions using one and two holograms, respec-
tively (Cases 2 and 3). The half-size reconstruction has less noise but a little more artifacts
than the full-size reconstruction using one hologram, perhaps as a result of interpolation and
downsampling processes. Figures 5 and 6 show profiles of the magnitude and phase of the
reconstructed images. As expected, full-size reconstruction with two holograms yields the
best reconstructed image with the smallest normalized root mean-squared error (NRMSE).
The NRMSE in percentage is defined as follows:

NRMSE =
‖x̂ − xtrue‖

‖xtrue‖
× 100%, (51)

where x̂ is the reconstructed image, xtrue is the true image, and ‖ · ‖ denotes the Euclidean
norm.

Figure 7 shows the contours of the marginal objective functions at one particular pixel
for the cases of one and two holograms. For this illustration, we examined the noiseless
and blurless case without regularization to clearly demonstrate how the statistical technique
using two holograms can help reduce non-uniqueness. As shown in Fig. 7a, since there are
multiple minimizers, the algorithm converges to an estimate that depends strongly on the
initial guess. When two holograms are used, the solutions become more distinct, and thus
the algorithm often converges to the desired solution as in Fig. 7b. However, even with two
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holograms the algorithm can converge to a limit that depends on the initial estimate because
the cost function is non-convex and not have local minima. In all cases, our statistical
technique decreases the cost function monotonically, although this alone does not ensure
convergence to a global minimizer for non-convex cost functions.

B. Real Object Constraint

If the object is known a priori to be real, then we can constrain the estimate x̂ to be real by
zeroing its imaginary part at each iteration. In this case, we may not need to have N ≥ 2P
since effectively the number of unknowns is reduced by a factor of two. Thus we expect
the statistical method to yield similar results for the three cases, except possibly for some
artifacts caused by interpolation for the case of half-size reconstruction. A 128 × 128 real
image (Fig. 8a) was degraded using the same parameters as in the previous section. The
conventional numerical reconstruction in Fig. 8d is blurry as a result of the Gaussian fil-
ter. Figures 8e-g show 200 iterations of penalized-likelihood reconstruction with the non-
quadratic penalty function (βR = βI = 5, δR = δI = 5). Although the NRMSEs for all
three cases differ slightly, they all provide similar reconstructed holographic images with
less blur than the conventional reconstruction. Because of the real object constraint, using
one hologram appears to be adequate for reconstructing a good holographic image.

7. Conclusions

We have demonstrated the potential for reconstructing a digital holographic image using the
proposed statistical technique. Because the method uses all the information in the recorded
hologram rather than just one term, this approach can improve the quality of the image rela-
tive to the conventional numerical reconstruction technique that uses a spatial filter applied
in the spatial frequency domain. Moreover, unlike the conventional approach, our statistical
technique is not limited by the assumption of a planar reference beam. Because of the ill
conditioning and non-uniqueness of the problem, our statistical holographic reconstruction
is based on PL estimation. We constructed a statistical model for this system and developed
a monotonic algorithm. Although the unique global minimum is not guaranteed due to the
non-convexity of the negative log-likelihood function in this problem, one can partially
overcome the problem of multiple minima by using regularization and multiple recorded
holograms. For a real object, the realness constraint can be enforced at each iteration so
that the algorithm can converge faster and one hologram should be sufficient to yield a
good reconstructed image.

Appendix A

For simplicity, we consider only the real or imaginary part and ignore the subscript i in the
following proofs.

Lemma 1: If h(l) and q(l) are differentiable and the following three conditions are
satisfied:
(C1) h(m) = q(m) for some m
(C2) q̇(l) ≥ ḣ(l), ∀l ≥ m
(C3) q̇(l) ≤ ḣ(l), ∀l ≤ m,
then it follows that q(l) ≥ h(l),∀l and thus q(l) is a surrogate for h(l), i.e., q(l) ≥ h(l),∀l.
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Proof: For l ≥ m, then

q(l) = q(m) +

∫ l

m

q̇(t)dt

≥ h(m) +

∫ l

m

ḣ(t)dt = h(l) (A1)

For l ≤ m, then

q(l) = h(m) +

∫ m

l

[−q̇(t)]dt

≥ h(m) +

∫ m

l

[−ḣ(t)]dt = h(l) (A2)

Thus, q(l) ≥ h(l),∀l under the above conditions. 2

Lemma 2: If h(l) is differentiable and the following maximum is finite and nonnega-
tive,

c(m) = max
l 6=m

ḣ(l) − ḣ(m)

l −m
,

then
q(l) = h(m) + ḣ(m)(l −m) +

1

2
c(m)(l −m)2 (A3)

is a parabolic surrogate for h, i.e., q(l) ≥ h(l), ∀l.
Proof: Condition (C1) of Lemma 1 is clearly satisfied by q when l = m. To prove

Condition (C2), for l ≥ m, we differentiate Eq. (A3) with respect to l and substitute c(m)
with the proposed curvature as follows:

q̇(l) = ḣ(m) + c(m)(l −m)

≥ ḣ(m) +
ḣ(l) − ḣ(m)

l −m
(l −m) = ḣ(l). (A4)

Similarly, q̇(l) ≤ ḣ(l), for l ≤ m, so Condition (C3) is satisfied. Because all three condi-
tions of Lemma 1 are satisfied, q(l) is a parabolic surrogate for h(l). 2

Appendix B

The first derivative of ho in Eq. (22) or (23) is

ḣo(l; ln) =
−2y(l + uo)[(lo,n + uo)2 + b/2]

kn[(l + uo)2 + b/2]
+ 2(l + uo). (B1)

Thus we define

f(l)
4
=
ḣo(l; ln) − ḣo(lo,n; ln)

l − lo,n
=

2y

kn

[

(l + uo)(lo,n + uo) − b/2

(l + uo)2 + b/2

]

+ 2. (B2)
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To obtain the maximum of the above continuous function, we equate the first derivative to
zero:

ḟ(l) =
2y

kn

[

−(lo,n + uo)(l + uo)2 + b(l + uo) + b
2
(lo,n + uo)

[(l + uo)2 + b/2]2

]

= 0. (B3)

Then the optimal l∗ that yields the maximum is

l∗ =
b+ [b2 + 2b(lo,n + uo)2]1/2

2(lo,n + uo)
− uo (B4)

and

f(l∗) =
2y[b2 + 2b(lo,n + uo)2]1/2(lo,n + uo)2

kn [b2 + b (2(lo,n + uo)2 + [b2 + 2b(lo,n + uo)2]1/2)]
+ 2 (B5)

is the curvature of the parabolic surrogate function.
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List of Figure Captions

Fig. 1. Diagram of digital holography.

Fig. 2. Holographic reconstruction using a filtering method.

Fig. 3. Illustration of the marginal cost, hi(l
R, 0), and surrogate functions as a function of

lR. The solid line is the original marginal cost function. The other two lines lying above
the cost function are the surrogate functions. The function with the dashed line is called the
paraboloidal surrogate function which has the same first derivative and the same point as
the original cost function at l = ln.

Fig. 4. Holographic reconstruction of a complex object. The top image of each pair rep-
resents the magnitude of the image and the bottom image represents the phase of the im-
age, except for the hologram data in (b). (a) Original image. (b) Two different holograms.
(c) Conventional reconstruction using an apodizing Gaussian filter (NRMSE=40.0%). (d)
Half-size penalized-likelihood reconstruction using one hologram (NRMSE=17.5%). Lin-
ear interpolation in the vertical direction to the same size as the original image is per-
formed for display. (e) Full-size penalized-likelihood reconstruction using one hologram
(NRMSE=17.3%). (f) Full-size penalized-likelihood reconstruction using two holograms
(NRMSE=14.1%).

Fig. 5. Profiles of the magnitude of the numerical reconstructed images across the second
row of circles.

Fig. 6. Profiles of the phase of the numerical reconstructed images across the second row
of circles.

Fig. 7. Contours of the marginal objective functions at one pixel when (a) using one holo-
gram and (b) using two holograms for full-size reconstruction. The “x” mark indicates the
optimal solution at 20 + ı110 and the “o” marks indicate the updates of the estimates start-
ing at 150 + ı150.

Fig. 8. Penalized-likelihood reconstruction of a real object using the real object constraint.
(a) Original image. (b) and (c) Hologram data. (d) Conventional reconstruction using an
apodizing Gaussian filter (NRMSE=43.8%). (e) Half-size penalized-likelihood reconstruc-
tion using one hologram (NRMSE=22.8%). (f) Full-size penalized-likelihood reconstruc-
tion using one hologram (NRMSE=21.1%). (g) Full-size penalized-likelihood reconstruc-
tion using two holograms (NRMSE=17.2%).
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