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The expectation-maximization (EM) algorithm for maximum-likelihood image recovery is guaranteed to con-
verge, but it converges slowly. Its ordered-subset version (OS-EM) is used widely in tomographic image re-
construction because of its order-of-magnitude acceleration compared with the EM algorithm, but it does not
guarantee convergence. Recently the ordered-subset, separable-paraboloidal-surrogate (OS-SPS) algorithm
with relaxation has been shown to converge to the optimal point while providing fast convergence. We adapt
the relaxed OS-SPS algorithm to the problem of image restoration. Because data acquisition in image resto-
ration is different from that in tomography, we employ a different strategy for choosing subsets, using pixel
locations rather than projection angles. Simulation results show that the relaxed OS-SPS algorithm can pro-
vide an order-of-magnitude acceleration over the EM algorithm for image restoration. This new algorithm
now provides the speed and guaranteed convergence necessary for efficient image restoration. © 2003 Optical
Society of America

OCIS codes: 100.0100, 100.1830, 100.2000, 100.3020, 100.3190, 180.1790.
1. INTRODUCTION
Statistical techniques have been shown to improve image
quality in image restoration. They can incorporate
physical models of imaging systems, thus improving res-
toration. Moreover, object constraints, such as nonnega-
tivity, can be enforced easily. Since closed-form solutions
for maximum-likelihood (ML) or penalized-likelihood (PL)
estimates are usually unobtainable, iterative algorithms
are needed.1–5 Fast-converging algorithms are desirable
to quickly recover an approximation of the original image.
However, existing algorithms still lack one or more desir-
able properties of an ideal algorithm, such as the guaran-
tee of convergence, rapid convergence, efficient computa-
tion, and parallelizability.

Expectation-maximization (EM) algorithms6,7 and
their ordered-subset (OS) versions8–10 are among the
most commonly used algorithms; however, they have limi-
tations of either speed or convergence. Although EM al-
gorithms are guaranteed to converge, they converge very
slowly. The OS-EM algorithm8 has become very attrac-
tive for image reconstruction in tomography owing to its
fast convergence rate compared with the EM algorithms.
It converges approximately M times faster than the EM
algorithms, where M is the number of subsets. However,
the OS-EM algorithm is not guaranteed to converge. Af-
ter many iterations, the OS-EM algorithm appears to os-
cillate between solutions rather than converge to an ML
solution. Several approaches have been proposed to
solve the convergence problem of the OS-EM algorithm,
such as the rescaled block-iterative EMML algorithm,9,10

the row-action maximum likelihood algorithm11 and its
regularized version, the block-sequential regularized EM
algorithm.12 However, the rescaled block-iterative-
EMML algorithm converges to a solution only in the con-
sistent case. The same algorithm with a feedback
1084-7529/2003/030439-11$15.00 ©
approach10 seems to be impractical for real applications,
and it does not include the smoothness penalty function.
The convergence proofs for the row-action ML and the
block-sequential regularized EM algorithms invoked a
strong a posteriori assumption that the objective sequence
is convergent.

An alternative to the EM algorithms for image restora-
tion and reconstruction is the separable-paraboloidal-
surrogates (SPS) algorithm.13,14 An OS version of the
SPS algorithm15 was first introduced for transmission to-
mography. Although the OS-SPS algorithm improves the
objective function more rapidly than the SPS algorithm in
the early iterations, convergence is not necessarily
achieved. To overcome the convergence problem of the
OS-SPS algorithm, the relaxed OS-SPS algorithm16,17

was proposed recently by introducing the relaxation pa-
rameter into the algorithm. This algorithm not only re-
tains the fast convergence rate of the OS-SPS algorithm
but also is guaranteed to converge globally. In contrast,
the relaxed version of the OS-EM algorithm is not guar-
anteed to converge to the optimal point.11,16,17 Therefore
in this paper we focus entirely on the relaxed OS-SPS al-
gorithm for image restoration.18

Owing to the ill-posed nature of image restoration, our
algorithm is based on PL estimation. Most existing OS
methods have been applied to image reconstruction in to-
mography only rather than to image restoration. Effec-
tive use of OS methods in image restoration requires one
to choose subsets appropriately to provide fast conver-
gence rates. The global convergence property of relaxed
OS-SPS holds for all choices of subsets. However, the
convergence rates of most OS algorithms depend on the
choice of subsets and scaling functions [the scaling func-
tions are the diagonal entries of the scaling matrix D in
Eq. (20) below]. Since the scaling functions in the ordi-
2003 Optical Society of America
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nary OS-SPS algorithm provide reasonably fast conver-
gence, we focus here on finding subsets that provide fast
initial convergence rates.

In tomography, the data are organized by projection
angles, so the subsets used in tomography are unsuitable
for pixel-based image restoration. Bertero and Boccacci
applied the OS-EM method to the restoration of the large
binocular telescope images.19 However, the structure of
that telescope’s imaging is similar to that of computed to-
mography: multiple views of the same object are ob-
served at different angles. Thus this technique cannot be
applied to typical image restoration problems. In this
paper we focus on the more traditional image restoration
problem of recovering a scene from a single blurred, noisy
measured image under the simplifying assumption that
the point-spread function (PSF) is known. Instead of
choosing subsets by downsampling projection angles as in
tomography, for restoration we choose subsets by down-
sampling pixels rather than dividing pixels into sub-
blocks. We show quantitatively that the downsampling
approach satisfies the ‘‘subset-gradient-balance’’
conditions,20 which are less restrictive than the subset-
balance conditions defined in Ref. 8. These gradient-
balance conditions are important for fast convergence.

This paper is organized as follows. Section 2 describes
the measurement model and the objective function based
on PL estimation. The derivation of the relaxed OS-SPS
algorithm for image restoration starting from the basic
idea of OS methods and the OS-SPS algorithm is pre-
sented in Section 3. Subset design for restoration prob-
lems is discussed in Section 4. In Section 5, we develop
some efficient implementation strategies and quantify the
computational complexity for the relaxed OS-SPS algo-
rithm. Simulation results and the performance of subset
designs are presented in Section 6. Conclusions are
given in Section 7.

2. MEASUREMENT MODEL
In image restoration problems, the measurements are
usually degraded by blur and noise. To recover an ap-
proximation of the original image, one can use the statis-
tical characteristics of the measurement system to specify
an objective function that is to be maximized. Since im-
age restoration is an ill-posed problem, we focus on PL es-
timation, using an objective function of the following
form:

F~x ! 5 L~x ! 2 bR~x !, (1)

where x denotes the image parameter vector to be esti-
mated, L denotes the log-likelihood function of the mea-
surement, R denotes a roughness penalty function, and b
denotes a parameter that controls the trade-off between
resolution and noise in the restored image.

For photon-limited imaging (such as confocal micros-
copy), the noisy measurement Y 5 @Y1 ,..., YN# can be
modeled (approximately21,22) as follows:

Yi ; Poission$@Ax# i 1 bi%, i 5 1,..., N, (2)

where A is the system matrix that is assumed to be
known, bi represents the mean number of the background
noise and dark current, and N is the number of measure-
ment pixels. The corresponding log-likelihood function is
given by

L~x ! 5 (
i51

N

c i(li~x !), (3)

where c i(l) 5 yi log(l 1 bi) 2 (l 1 bi), ignoring irrelevant
constants independent of x, li(x) 5 @Ax# i 5 ( j51

P aijxj , P
is the number of pixels to be estimated, and the measured
values yi’s are samples of independent Poisson random
variables Yi’s.

To reduce noise, we penalize the differences between
neighboring pixels using a roughness penalty function of
the form

R~x ! 5 (
i51

r

cR~@Cx# i!, (4)

where cR is the potential function, C is the penalty ma-
trix, and r is the number of pairs of neighboring pixels.
For the first-order neighborhood, the matrix C consists of
horizontal and vertical cliques. For example, with a 2
3 2 image, the matrix C can be written as follows:

Cx 5 F 21 1 0 0

0 0 21 1

21 0 1 0

0 21 0 1
G S x1

x2

x3

x4

D 5 S x2 2 x1

x4 2 x3

x3 2 x1

x4 2 x2

D (5)

We assume that each potential penalty function cR(t) sat-
isfies the following conditions14,23,24:

• cR(t) is symmetric.
• cR(t) is everywhere differentiable (and therefore

continuous).
• ċR(t) 5 d/dtcR(t) is nondecreasing [and hence

cR(t) is convex].

• v(t) ,
ċR(t)

t is nonincreasing for t > 0.

• v(0) 5 limt→0
ċR(t)

t is finite and nonzero.

With proper regularization, the objective function has a
unique global maximum. Thus our goal is to estimate x
by finding the maximizer of the objective function:

x̂ , arg max
x>0

F~x !. (6)

Because closed-form solutions are unavailable for the
maximizer, iterative algorithms are needed.

3. THE ALGORITHMS
This section summarizes the general principles of
ordered-subset (also called block-iterative) methods and
reviews the OS-SPS algorithm.

A. Ordered-Subset Technique
One can decompose the objective function in Eq. (1) into
subobjective functions fm as follows:
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F~x ! 5 (
m51

M

fm~x !, (7)

where M is the total number of subsets, chosen by the al-
gorithm designer. Let $Sm%m51

M be a disjoint partition of
$1, . . . ,N % such that ø m51

M Sm 5 $1, . . . ,N %. Then
fm’s are obtained by replacing a sum over all pixel indices
in the likelihood function of Eq. (3) with a sum over a sub-
set of data Sm and scaling the penalty term by M as fol-
lows:

fm~x ! , (
iPSm

c i(li~x !) 2
b

M
R~x !. (8)

Instead of the restrictive subset-balance conditions origi-
nally defined in Ref. 8, we define the following less restric-
tive conditions called the subset-gradient-balance condi-
tions, which use an approximate gradient computed from
only a part of the data:

¹f1~x ! > ¹f2~x ! > ... > ¹fm~x !, (9)

where ¹fm(x) is the gradient of the subobjective function
at the mth subset. When these conditions hold, the gra-
dient of the objective function F(x) can be approximated
as follows:

¹F~x ! > M¹fm~x !, m 5 1, . . . ,M. (10)

Using approximation (10), one can replace ¹F(x) with
M¹fm(x) in any gradient-based algorithm to construct an
OS version of that algorithm. If proper subsets satisfy-
ing the above conditions are combined with suitable scal-
ing functions [e.g., see Eq. (20) below], then the OS algo-
rithms often exhibit acceleration by a factor of M in the
early iterations. These conditions influence the rate of
convergence of OS-SPS but are not required for global
convergence of relaxed OS-SPS.

Figure 1 illustrates how ordinary OS algorithms work.
For this figure we assumed that ¹F(x) 5 ¹f1(x)
1 ¹f2(x). For x far from the solution, the condition
¹f1(x) > ¹f2(x) holds and accelerated convergence speed
is achieved. However, in the later iterations when x is
close to the optimal solution, the subset-gradient-balance
conditions are no longer valid, and a limit-cycle behavior

Fig. 1. Illustration of how the OS algorithms work. Assume
that ¹F(x) 5 ¹f1(x) 1 ¹f2(x). When x is far from the solution,
the subset-gradient-balance conditions hold, and an order-of-
magnitude acceleration can be achieved in the early iterations.
However, for later iterations or when x is near the optimal solu-
tion, those conditions are no longer valid, and a limit-cycle be-
havior is observed.
around the optimal solution appears. Because ordinary
OS algorithms use the same step size at each iteration,
the limit cycle does not vanish. One way to suppress this
limit cycle is to use a diminishing step size at each itera-
tion (relaxation).

As previously discussed, OS-EM is not guaranteed to
converge even in the relaxed version.11,15,16 Therefore we
focus on the convergent relaxed OS-SPS algorithm here-
after.

B. Ordered-Subset, Separable-Paraboloidal-Surrogate
Algorithm
The SPS algorithm is based on paraboloidal surrogate
functions13,14,25 and the concavity technique developed by
De Pierro.7 The pixel update for the SPS algorithm can
be summarized as follows:

xj
n11 5 F xj

n 1
¹jF~xn!

(
i51

N

aijg ici
n 1 bpj

nG
1

, (11)

where the symbol @x#1 represents x if x . 0 and 0 if x
< 0. The gradient of the objective function at the jth
pixel in the SPS algorithm is as follows:

¹jF~x ! 5
]

]xj
F~x ! 5 (

i51

N

aijċ i(li~x !)

2 b(
i51

r

cijċ
R~@Cx# i!, (12)

where cij is the ijth element of the matrix C. In Eq. (11),
g i 5 ( j51

P aij , and ci
n is the following optimal curvature

that guarantees convergence of SPS13,25:

ci
n 5 H H 2

~li
n!2 @ c i~li

n! 2 c i~0 ! 2 li
nċ i~li

n!#J
1

, li
n . 0

@2c̈ i~0 !#1 , li
n 5 0

,

(13)

where li
n 5 ( i51

P aijxj
n . For the penalty function terms,

the curvature pj
n in Eq. (11) is given by

pj
n 5 (

i51

r

cijn iv~@Cxn# i!, (14)

where n i 5 ( j51
p cij and v(t) 5 @ċR(t)#/t.

Erdoğan and Fessler17 introduced the OS version of the
SPS algorithm for transmission tomography. With use of
approximation (10), the gradient of the objective function
in Eq. (11) is replaced by the subobjective function multi-
plied by the number of subsets. We define xj

n,xj
(n, 0) and

xj
(n11),xj

(n, M) . The first superscript refers to iterations,
and the second superscript refers to subsets. Then the
pixel update xj for the OS-SPS algorithm becomes

xi
~n, m ! 5 Fxj

~n, m21 ! 1 M
¹jfm~x ~n,m21 !!

dj 1 bpj
G

1

,

m 5 1,..., M, (15)

where
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¹jfm~x ! 5 (
iPSm

aijċ i(li~x !) 2
b

M (
i51

r

cijċ
R~@Cx# i!.

(16)

Since the global convergence is not affected by the curva-
tures as long as they are positive, we precompute the cur-
vatures dj and pj to save computation.15 The curvature
of the likelihood dj in Eq. (15) is precomputed as follows:

dj 5 (
i51

N

aijg ici , (17)

where ci 5 2c̈ i( yi 2 bi). Likewise, the curvature of the
penalty function pj is precomputed as follows:

pj 5 (
i51

r

cijn iv~0 !. (18)

Although the OS-SPS algorithm yields an order-of-
magnitude acceleration over the SPS algorithm in the
early iterations, it is not guaranteed to converge to the op-
timal solution.

C. Relaxed Ordered-Subset Separable-Paraboloidal-
Surrogate Algorithm
To guarantee the convergence of the OS-SPS algorithm,
Ahn and Fessler15,16 modified the OS-SPS algorithm to in-
clude relaxation. Without relaxation, the OS-SPS algo-
rithm has a constant step size, thus exhibiting a limit-
cycle behavior. With modification of Eq. (15), the pixel
update of the relaxed OS-SPS algorithm becomes

xj
~n,m ! 5 Fxj

~n,m21 ! 1 anM
¹jfm~x ~n,m21 !!

dj 1 bpj
G

1

,

m 5 1,..., M. (19)

Equivalently, in the matrix-vector form,

x ~n,m ! 5 $x ~n,m21 ! 1 anD¹fm@x ~n,m21 !#%1 , (20)

where D 5 diag$M/(dj 1 bpj)% is the diagonal scaling ma-
trix. We use the same scaling functions as in the ordi-
nary OS-SPS algorithm because they were shown to pro-
vide fairly fast initial convergence in the ordinary OS-
SPS algorithm.17 Finding optimal scaling functions for
convergence speed is still an open question. A positive
relaxation parameter an is chosen such that (nan 5 `
and (nan

2 , `. We use an 5 j/@(j 2 1) 1 n#, where j is
a positive constant, a tuning parameter that affects the
rate of convergence and is chosen empirically. The opti-
mal choice of the relaxation parameter still remains an
open question. With the diminishing step size, the re-
laxed OS-SPS algorithm is globally convergent.15,16 The
outline for the relaxed OS-SPS algorithm is shown below:

Precompute:

dj 5 2(
i51

N

aijgic̈i~ yi 2 bi!,

pj 5 (
i51

r

cijniv~0!,

for n 5 1,..., Niters
an 5
j

~j 2 1 ! 1 n

for m 5 1,..., M

l̂i 5 (
j51

P

aij xj
~n,m21 ! , ; i P Sm (21)

ċ i 5
yi

l̂ i 1 bi

2 1, ; i P Sm

for j 5 1,..., P

L̇j 5 (
iPSm

aijċ i (22)

Ṙj 5 (
i51

r

cijċ
R~@Cx ~n,m21 !# i!

xj
~n,m ! 5 F xj

~n,m21 ! 1 anM

L̇j 2
b

M
Ṙj

dj 1 bpj

G
1

end
end

end

D. Blind Restoration
Many blind restoration techniques have been applied to
simultaneously restore the image and estimate the
PSF.26–29 The relaxed OS-SPS algorithm is applicable to
blind restoration as well. For a blind restoration tech-
nique, the image can be updated with the relaxed OS-SPS
algorithm, whereas the PSF can be updated with the or-
dinary SPS or EM algorithms because of the small num-
ber of parameters in the PSF.

4. SUBSET DESIGN
Since most OS algorithms have been used for image re-
construction to date, a different strategy for choosing sub-
sets in image restoration needs to be considered because
of differences in data acquisition. A good choice of sub-
sets should satisfy the subset-gradient-balance conditions
stated in Eqs. (9) and (10) to provide rapid convergence.
In tomography, the subsets are chosen from downsam-
pling projection angles. Since data in image restoration
are based on pixel locations instead of projection angles as
in tomography, one possible approach for choosing the
subsets in the restoration problem is to downsample pix-
els in the image. Figure 2 shows possible choices of four
subsets for a two-dimensional image. We define ‘‘431’’
OS-SPS for a downsampling approach with four subsets
in each column and one subset in each row, as shown in
Fig. 2(a). The downsampling approaches seem to satisfy
the subset-gradient-balance conditions. To verify this,
we compared the gradients of the original objective func-
tion and the subobjective functions using four subsets
with a 2 3 2 configuration (Fig. 3). Specifically, we com-
puted the gradients of the subobjective functions belong-
ing to subsets 1 and 4 and then compared them with the
gradient of the original objective function, as shown in the
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Fig. 2. Possible choices for four subsets with a downsampling approach. These subsets tend to satisfy the subset-gradient-balance
conditions. The first number in quotation marks is the number of subsets in each column, and the second number is the number of
subsets in each row. The total number of subsets is the product of these two numbers. The pixel label m belongs to the respective set
Sm .

Fig. 3. Investigation of the subset-gradient-balance conditions in the OS-SPS algorithm. Four subsets with a 232 configuration were
used. The second and third columns show the gradients of the subobjective functions from the downsampling approach with use of
subset 1 and subset 4, respectively, and their differences compared with the gradient of the objective function. Similarly, the last two
columns are from the subblock approach. The gradients of the subobjective functions in the downsampling approach were multiplied by
4 to compensate for the downsampled data. However, this scaling factor is not needed in the subblock approach, because a block of
contiguous pixels is used.
second and third columns of Fig. 3. These differences are
very small: the normalized rms error between the actual
gradient ¹f and the subgradient 4¹fm is less than 0.5%.

Another choice for choosing subsets is to divide the im-
age into large contiguous blocks, called the subblock ap-
proach (Fig. 4). We define ‘‘431B’’ OS-SPS for a subblock
approach with four subblocks in each column and one
subblock in each row, as shown in Fig. 4(a). This ap-
proach tends to be a poor choice of subsets because it fails
to satisfy the subset-gradient-balance conditions, as illus-
trated in the last two columns of Fig. 3. The differences
between the gradients of the various subobjective func-
tions using different subsets are large: the normalized
rms is more than 65%. Section 6 reports empirical com-
parisons of how these possible choices of subsets affect the
convergence speed.
5. IMPLEMENTATION TECHNIQUES AND
COMPLEXITY
Most of the computation time in the OS-SPS algorithm
takes place in Eqs. (21) and (22). In this section we dis-
cuss how to efficiently implement these two expressions
for both space-variant and space-invariant systems.

A. Space-Variant Systems
A literal implementation of Eqs. (21) and (22) in the algo-
rithm outline would be appropriate for a shift-variant im-
aging system whose collection of PSFs is tabulated as a
sparse set of aij values. With this technique, the compu-
tational complexity of the OS-SPS algorithm is essen-
tially the same as in the nonordered-subsets (non-OS) al-
gorithm, except that the penalty-function gradient must
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be evaluated m times per iteration. However, usually the
likelihood-gradient computation dominates.

B. Space-Invariant Systems with Convolution
For shift-invariant systems, however, one would typically
implement Eqs. (21) and (22) using convolution or fast
Fourier transform(FFT)-based convolution in the conven-
tional single-subset type of the gradient-based iteration.
Since these operations dominate the algorithm, it is es-
sential to formulate efficient implementations of these
two expressions. Computing all values of l̂ by using or-
dinary convolution would be inefficient when only some
values of l̂ will be used in a given subiteration. Therefore
in this section we introduce the following technique for
computing Eqs. (21) and (22) efficiently with convolution.

For a space-invariant system, we rewrite Eq. (21) in the
convolution form as follows:

l̂ i 5 (
j51

P

hi2j xj , ;i P Sm , (23)

where h is the PSF. For illustration, we describe one-
dimensional convolution. Extension to two and three di-
mensions is straightforward. To compute some values of
l̂ efficiently, we rewrite Eq. (23) using two summations:

l̂ i 5 (
m51

M

(
jPSm

hi2j xj , ;i P Sm . (24)
Using this expression, we can compute l̂ i for i P Sm by
convolving the downsampled image and the PSF belong-
ing to subset Sm and then summing all the subsets (Fig.
5).

Similarly, to compute Eq. (22) efficiently by convolu-
tion, we can rewrite that expression as follows:

L̇j 5 (
iPSm

hi2jċ i . (25)

For each j, L̇j can be computed by using ċ i and a down-
sampled PSF. Different j ’s require a different downsam-
pling of the PSF but use the same ċ i’s (Fig. 6). In this
figure, the PSF is assumed to be symmetric. Otherwise,
the indices of the PSF must be inverted before convolving.

If implemented carefully, computational complexity for
this convolution technique does not increase as the num-
ber of subsets increases.

C. Space-Invariant Systems with Use of Fast Fourier
Transforms
For simultaneous update methods, such as the EM algo-
rithms for image restoration, one can use FFTs to reduce
computation, especially for large 3D problems. Similarly,
a strategy for using FFTs in the OS-SPS algorithm would
be desirable to compute L̇j and l̂ i efficiently. One pos-
sible solution is to implement the partial FFT
algorithm,30 where only a small number of frequencies
are evaluated. Since there is a specific pattern for com-
Fig. 4. Possible choices for four subsets with a subblock approach. These subsets tend to violate the subset-gradient-balance condi-
tions. The first number in quotation marks is the number of subblocks in each column, and the second number is the number of sub-
blocks in each row.

Fig. 5. Illustration of computing l̂ i , ;i P Sm (M 5 2), using all the information of x and h. The asterisk represents convolution. The
white blocks denote elements of x belonging to subset m 5 1, and the striped blocks denote elements of x belonging to subset m 5 2.
The patterns in h indicate the symmetry of the PSF that has the center in the middle.
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Fig. 6. Illustration of computing L̇j , ; j (M 5 2), using some information of ċ i but all the information of h.
puting l̂ i and L̇j in each subset, rather than adapting and
implementing this partial FFT technique into our algo-
rithm we develop the following technique based on the or-
dinary FFT algorithm, which should yield the same com-
plexity but avoids implementing new FFT code.

To describe our technique, we consider 1D data and two
subsets (M 5 2). Let spatial indices be replaced by h to
avoid confusion, H(k) be an N-point FFT of h, and X(k)
be an N-point FFT of x. We assume that P 5 N in this
case. To compute l̂ for 2 subsets using FFTs, we reformu-
late Eq. (23) into the following expression:

l̂~h! 5
1

N (
k50

N21

H~k !X~k ! expS j
2phk

N D , ;h P Sm .

(26)

Let h 5 0,..., N/2 2 1. Then the even indices of l̂ be-
longing to subset 1 and the odd indices belonging to sub-
set 2 are computed as follows:

m 5 1:

l̂~2h! 5
1

N (
k50

N/221

@H~k !X~k ! 1 H~k 1 N/2!X~k 1 N/2!#

3 expS j
2phk

N/2 D .

m 5 2:

l̂~2h 1 1 ! 5
1

N (
k50

N/221

@H~k !X~k ! 2 H~k 1 N/2!X~k

1 N/2!# expS j
2pk

N D expS j
2phk

N/2 D .

In this technique, a full N-point FFT is performed for h
and x, but an N/M-point inverse FFT (IFFT) is performed
on l̂ for each subset. Given that the FFT of H is precom-
puted, the total number of complex multiplications re-
quired for computing l̂ i in one iteration of the OS-SPS al-
gorithm with M subsets with use of FFT is given as fol-
lows:

MN

2
log2 N 1 MN 1

N~M 2 1 !

M
1

N

2
log2S N

M D . (27)

The first term is for computing the FFT of x; the second
term is for multiplying X and H; the third term is for mul-
tiplication by exp@ j(2pk/N)#; the fourth term is for the
IFFT that yields l̂ i , i P Sm . For comparison, the num-
ber of complex multiplications for computing l̂ i in the
non-OS algorithm is N log2(2N). Table 1 compares the
complexity of computing l̂ i in one iteration for the OS al-
gorithm relative to the non-OS algorithm when FFTs are
used. Although the number of complex multiplications
increases as the number of subsets increases, it increases
less rapidly than the number of subsets. Since the con-
vergence rate increases roughly by a factor of number of
subsets,8,15,16,18 there is still an advantage in using FFTs
in the OS-SPS algorithm, especially when N is large.

As in the case of l̂, to compute L̇j efficiently using FFT,
we rewrite Eq. (25) in the following FFT form (assuming
that h is symmetric):

L̇~h! 5
1

N (
k50

N21

H~k !C~k ! expS j
2phk

N D , ;h.

(28)

L̇ is obtained by performing an N-point IFFT of the prod-
uct of H(k) and C(k); however, H(k) and C(k) are com-
puted from the reduced data given in each subset, i.e.,
even and odd sets of data for a two-subset case. Thus for
k 5 0,..., N/2 2 1, we compute N-point H(k) and
N-point C(k) for both subsets as follows:

m 5 1:

H~k ! 5 (
h50

N/221

h~2h! expS 2j
2phk

N/2 D 5 H~k 1 N/2!,

C~k ! 5 (
h50

N/221

ċ~2h! expS 2j
2phk

N/2 D 5 C~k 1 N/2!.
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m 5 2:

H~k ! 5 expS 2j
2pk

N D (
h50

N/221

h~2h 1 1 ! expS 2j
2phk

N/2 D
5 2H~k 1 N/2!,

C~k ! 5 expS 2j
2pk

N D (
h50

N/221

ċ~2h 1 1 ! expS 2j
2phk

N/2 D
5 2C~k 1 N/2!.

Thus N/2-point FFTs are performed to obtain the first
halves of H(k) and C(k). In this case, the multiplication
complexity for computing L̇ is the same as the complexity
for computing l̂.

In the FFT technique described above, we illustrate the
techniques only for radix-2 FFT. If the data sizes are not
powers of 2, then zero padding should be applied to avoid
large prime factors.31 Our technique can yield either cir-
cular or linear convolution depending on the amount of
zero padding. However, we usually perform zero padding
to obtain a linear convolution.

6. SIMULATION RESULTS
In this section we illustrate the proposed algorithm with
2D simulated data in comparison with existing algo-

Table 1. Multiplication Complexity Ratio for Com-
puting l̂ i (with Use of FFTs) of OS-SPS and non-OS

Algorithms with Different Numbers of Subsets

Number of
Data Points

Number
of Subsets

Complexity Ratio
of OS and non-OS Algorithms

64 2 1.57
4 2.68
8 4.91

512 2 1.55
4 2.62
8 4.79
rithms. We also report the characteristics of various sub-
set choices as discussed in Section 4.

A. Two-Dimensional Results
A 256 3 256 cell image [Fig. 7(a)] was degraded by a 15
3 15 PSF, created from the XCOSM package,32 and Pois-
son noise with peak signal-to-noise ratio (PSNR) of 40 dB,
as shown in Fig. 7(b). The following parameters were
used to create the confocal PSF from the XCOSM
package32: pixel sizes of 0.15 mm (in all directions), 40
3 /1.0 NA oil-immersion objective, and a fluorescent
wavelength of 0.63 mm. However, we used only the cen-
tral xz plane for the 2D simulation to clearly illustrate
how elongation of the PSF in the z direction has been re-
duced after restoration. The PSNR for the data is de-
fined as follows:

PSNR 5 10 log10F maxi~ yi 2 bi!
2

1
N (

i51

N

~ yi 2 E@ yi# !2G . (29)

For the OS-SPS algorithm we used the relaxation param-
eter an 5 11/(10 1 n), and for edge preservation we used
the nonquadratic roughness penalty function33 cR(t)
5 d 2@ ut/du 2 log(1 1 ut/du)#, where d controls the degree of
edge preservation. Figure 7(c) shows the restoration
from 50 iterations of the relaxed OS-SPS algorithm (eight
subsets). The elongation in the z direction, very appar-
ent in the degraded image, is greatly reduced in the re-
stored image, thus improving the (axial) resolution.

Table 2 compares the elapsed time per iteration of dif-
ferent algorithms: De Pierro’s modified EM (DPEM),7

SPS (with optimal curvature), and relaxed OS-SPS (with
precomputed curvature) algorithms. Theoretically, dif-
ferent subsets of the relaxed OS-SPS algorithm (with use
of the convolution technique described in Subsection 5.B)
should yield approximately the same computation time
per iteration as the non-OS version. We were unable to
Fig. 7. Simulated images and restoration using the relaxed OS-SPS algorithm with b 5 1026 and d 5 100. The PSF in the noisy
blurry image was simulated from the 2D PSF of the confocal microscope only in the xz direction, where x is along the horizontal axis and
z is along the vertical axis, to show elongation in the z direction. This elongation disappears in the restored image.
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achieve that invariance, owing to MATLAB overhead, but
nevertheless the computation time per iteration increases
less rapidly than the number of subsets. Another way to
compare the complexity of the OS-SPS algorithm with the
non-OS version is by calculating the number of floating-
point operations (FLOPs). Table 2 shows that the num-
ber of FLOPs required in the OS-SPS algorithms differs
only slightly from the number of FLOPs required in the
SPS algorithm. This agrees with our discussion given in
Subsection 5.B.

Figure 8 shows the objective increase, F(xn) 2 F(x0),
at each iteration of DPEM, SPS, ordinary OS-SPS (eight
subsets), and relaxed OS-SPS (eight subsets) algorithms.
In this figure both ordinary OS-SPS and relaxed OS-SPS
algorithms increase the objective function faster than the
DPEM algorithm by roughly the number of subsets.
However, the relaxed OS-SPS algorithm is guaranteed to
eventually converge to the optimal point, unlike the ordi-
nary OS-SPS algorithm. Figure 9 compares the conver-
gence rates for different numbers of subsets. The relaxed
OS-SPS-16 yields the fastest convergence rate, as ex-
pected.

Table 2. Comparison of Elapsed Times
per Iteration and Number of FLOPs

for DPEM, SPS, and OS-SPS Algorithms

Algorithm Time/iter (s) Time
Number of

FLOPs
FLOPs

Comparison

DPEM 1.03 0.92 84,937,142 0.92
SPS 1.12 1 92,406,026 1

OS-SPS-2 1.23 1.10 92,522,010 1.00
OS-SPS-4 1.86 1.66 95,944,812 1.04
OS-SPS-8 3.65 3.26 102,919,258 1.11
OS-SPS-16 6.83 6.10 116,976,572 1.27
B. Subset Design Analysis
Because one’s choice of subsets can affect the convergence
rate of the algorithm, we investigated the choices of sub-
sets discussed in Section 4. Figure 10 shows the objec-
tive increase versus iteration for different choices of sub-
sets (Figs. 2 and 4) with use of relaxed OS-SPS. The
subsets with the subblock approach show a poor unpre-
dictable behavior in the early iterations; however, owing
to relaxation, the relaxed OS-SPS algorithm with use of
these subsets will eventually converge to the optimal
point. However, the subblock approach does not yield an
order-of-magnitude acceleration in the early iterations.
This unpredictable behavior is due to the violation of the
subset-gradient-balance conditions.

Unlike the subblock approach, the downsampling ap-
proach provides an order-of-magnitude acceleration in the
early iterations. Therefore the downsampling approach
is preferable. With the downsampling approach, differ-
ent designs of subsets provided almost the same conver-
gence rate and a similar number of FLOPs. Thus the
subset configuration does not affect the convergence rate
much as long as the downsampling approach is used.

7. CONCLUSIONS
In this paper we demonstrated that the relaxed OS-SPS
algorithm, conventionally used for tomography, can be
adapted for use in image restoration by choosing appro-
priate subsets of (measured) pixels. As long as the sub-
sets are chosen by downsampling the pixels, different
choices of subsets hardly affect the convergence rate of
the algorithm. Similar to tomography, our method is
able to achieve an order-of-magnitude acceleration over
the non-OS algorithm by combining subsets that approxi-
mately satisfy our subset-gradient-balance conditions
Fig. 8. Comparison of objective function increases of DPEM, SPS, OS-SPS, and relaxed OS-SPS algorithms. OS-SPS-8 stands for the
OS-SPS algorithm with eight subsets. Both nonrelaxed and relaxed OS-SPS algorithms have order-of-magnitude acceleration over the
DPEM and SPS algorithms.
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Fig. 9. Comparison of objective function increase versus elapsed time of relaxed OS-SPS with different numbers of subsets. The 16-
subset relaxed OS-SPS algorithm yielded the fastest convergence rate.

Fig. 10. Comparison of different choices of subsets with use of the relaxed OS-SPS algorithm. The subset unbalance of relaxed OS-SPS
with the subblock approach causes an unpredictable behavior of the objective function increase at the beginning of iterations, but the
algorithm eventually converges as a result of relaxation. The relaxed OS-SPS algorithms with the downsampling approach converge at
almost the same rate for different choices of subsets.
with appropriate scaling functions in the iterative update,
as shown in Eq. (20). The computational complexity of the
OS-SPS algorithm with the convolution approach de-
scribed in Subsection 5.B is theoretically the same for any
number of subsets. Although the FFT approach de-
scribed in Subsection 5.C increases the computational
complexity of the algorithm when the number of subsets
increases, the overall convergence rate is still faster than
that of the non-OS algorithm.

The authors can be reached by e-mail at ssotthiv
@umich.edu and fessler@umich.edu.
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