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A penalized-likelihood image reconstruction method
for emission tomography, compared to

post-smoothed maximum-likelihood with matched
spatial resolution

Johan Nuyts , Jeffrey A. Fessler

Abstract— Regularization is desirable for image reconstruction
in emission tomography. A powerful regularization method is the
penalized-likelihood reconstruction algorithm (or equivalently,
maximum-a-posteriori reconstruction), where the sum of the like-
lihood and a noise suppressing penalty term (or Bayesian prior)
is optimized. Usually, this approach yields position dependent
resolution and bias. However, for some applications in emission
tomography, a shift invariant point spread function would be
advantageous. Recently, a new method has been proposed, in
which the penalty term is tuned in every pixel to impose a uniform
local impulse response. In this paper, an alternative way to tune
the penalty term is presented. We performed PET and SPECT
simulations to compare the performance of the new method to
that of the post-smoothed maximum-likelihood approach, using
the impulse response of the former method as the post-smoothing
filter for the latter. For this experiment, the noise properties of
the penalized-likelihood algorithm were not superior to those of
post-smoothed maximum-likelihood reconstruction.

Index Terms— Tomography, Bayesian reconstruction, Regular-
ization, PET, SPECT.

I. INTRODUCTION

DUE to the low tracer dosage and the limited acquisition
time, clinical emission data (positron emission tomogra-

phy (PET) or single photon emission tomography (SPECT))
are usually strongly affected by Poisson noise. Even with
optimal (according to the maximum-likelihood criterion) use
of the data in statistical reconstruction, the noise propaga-
tion results in unacceptable noise levels in the reconstructed
images. Several regularization methods have been proposed.
A powerful method is to replace the maximum-likelihood
criterion with a maximum-a-posteriori (MAP) criterion, by
combining the likelihood with a Bayesian prior that encour-
ages local smoothness [1–5]. Often, the prior is modeled as a
Gibbs distribution of the form

prior(λ) =
1

Z
exp


−

∑

j

∑

k∈Nj
βΦ(λj , λk)


 , (1)
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where Z is a normalization constant, Nj is the set of neighbors
of pixel j, Φ is a function operating on pairs of neighboring
pixels [6] and β is a constant that specifies the relative strength
of the prior. Usually, Φ is chosen as a shift invariant function
that penalizes differences between neighboring pixels. The
approach is attractive because it allows one to include the
regularization in the reconstruction (so the final reconstructed
image is directly verified against the raw data), and because
the Gibbs-framework accepts a wide range of functions that
can be optimized for particular purposes. However, because the
prior is shift-invariant and the likelihood is not, the maximum-
a-posteriori image has position dependent (and image depen-
dent) bias and resolution. For some applications, this is an
undesirable feature. For example, in tracer kinetic modeling,
the time activity curves should only reflect changes in tracer
concentration, and changes due to varying spatial resolution
will cause errors. Similarly, when applying semi-quantitative
analysis based on standard uptake values [7], it is important
that the bias does not change with position and image contents.

Fessler and Rogers [8] have proposed to use a position
dependent prior: they replace β in (1) with

√
βjβk and tune

these parameters to impose position independent resolution.
This makes the “prior” data dependent, so it can no longer be
regarded as a Bayesian prior; the authors call it a penalty term
and their method penalized-likelihood reconstruction. With the
position dependent penalty, the resolution was more uniform,
but there was still position dependent asymmetry of the local
impulse response function. Stayman and Fessler have proposed
a further sophistication of the method, by replacing β with
βjk in (1) and optimizing the parameters to eliminate the
asymmetry and even obtain an optimal fit of the local impulse
response to a predefined target point spread function [9], [10].
Interestingly, similar work is being done for the “expectation-
maximization-smooth” (EMS) algorithm [11], [12], which
yields position dependent resolution if the smoothing between
iterations is position independent. Mustafovic et al [13] have
shown that with position dependent filters, it is possible to
obtain uniform resolution with EMS as well.

An alternative method to obtain uniform resolution is to
post-smooth the reconstruction obtained after many iterations
of a maximum-likelihood reconstruction algorithm [14], [15].
Applying a sufficiently high number of iterations ensures a
nearly bias-free reconstruction, so after post-smoothing, the
spatial resolution is uniform and the point spread function



is (nearly) identical to the smoothing filter. Note that the
number of iterations needed depends on the application; for
some, several hundreds of iterations may be required. In this
paper, a new penalized-likelihood method is proposed to obtain
a symmetric and shift invariant point spread function. The
performance of this new algorithm is compared to that of post-
smoothed maximum-likelihood reconstruction.

This paper is organized as follows. In the following section,
we first derive an approximate expression for the “natural”
shape of the local impulse response function associated with
a quadratic penalty term. The rest of the section discusses how
the certainty of the likelihood can be estimated and be used to
tune the penalty term. In section III the setup of the simulation
experiments is discussed. The main experiment is a compar-
ison of signal-to-noise ratio at matched resolution, between
post-smoothed maximum-likelihood and the new penalized-
likelihood algorithm. Section IV presents the results, which
are discussed in section V.

II. THEORY

A. The local impulse response with the quadratic prior and
uniform likelihood

Consider a one dimensional image, and assume that for ev-
ery pixel exactly one measured value is available. Assume that
the measurements are independent, and subject to Gaussian
noise with constant and known variance, equal to 1. Then the
logarithm of the likelihood L(y, λ) equals

L(y, λ) =
∑

j

Lj = −1

2

∑

j

(λj − yj)2, (2)

where yj and λj are the measurement and the image values for
pixel j. We also introduce an a-priori probability distribution.
The logarithm of this Bayesian prior equals:

P1(λ) = −1

4

∑

j

(
w(λj − λj−1)2 + w(λj − λj+1)2

)
. (3)

Here w is the weight assigned to the difference between a
pixel and its neighbor. This prior favors smooth images and
reaches its maximum when the image is perfectly uniform.
As in image reconstruction from projections, the maximum-
a-posteriori (MAP) image is obtained by maximizing L+P1.
To study the local impulse response of the MAP-image, we
assume that the measured values for all pixels are zero, except
for a single pixel j = 0, for which it equals A > 0. For a pixel
with j 6= 0, the MAP-image satisfies the following relation:

0 =
∂(L+ P1)

∂λj
= −(1 + 2w)λj + yj + wλj−1 + wλj+1. (4)

Because yj = 0 for j 6= 0 we obtain:

λj =
w

1 + 2w
(λj−1 + λj+1). (5)

Substituting λj = abj produces a quadratic equation in b:

wb2 − (1 + 2w)b+ w = 0, (6)

with the following solution:

b =
1 + 2w ±

√
1 + 4w

2w
. (7)

Note that the product of the two solutions for b equals 1.
It follows that λj = a exp(−| ln(b)j|) is a solution. The
local impulse response has an exponential shape for this 1D
problem. The value of a can be determined by requiring that
the sum (over all pixels) of the impulse response equals the
sum of the impulse. The same result has been derived earlier
by Unser et al [16] using the z-transform representation.

A simple approximate expression for the 2D case can be
obtained, under the assumption that the local impulse response
is circularly symmetric, and that effects of the pixel grid
can be ignored. For many applications, circular symmetry
is desirable, and experience shows that it can be achieved
with good approximation using a 4 or 8 pixel neighborhood.
Assume that the local impulse is centered at pixel j = 0, and
that λj represents the pixel value at a distance of j pixels from
the center. For simplicity, we also assume that the neighbors
of a pixel at distance j are all located on the circles with radii
j−1, j and j+1. The neighbors at distance j all have the same
value and contribute a zero term to the quadratic prior for λj .
The circle with radius j+1 contains more pixels than the circle
with radius j − 1, so pixel j has more neighbors at distance
j+1 than at distance j−1 from the center. We will assume that
the number of neighbors at distance j is proportional to j+ ε,
where ε is a small positive constant, reflecting the finite size of
the pixels (there is a finite pixel at distance zero (j = 0) from
the center). With these approximations, the two-dimensional
problem can be described by modifying the weights in (3):

P2(λ) = −1

4

∑

j

{wj − 1 + ε

j + ε
(λj − λj−1)2

+w
j + 1 + ε

j + ε
(λj − λj+1)2}. (8)

As before, the prior is combined with the likelihood (2), where
we assume that yj = 0, and the maximum of L + P2 is
computed by setting the first derivative to zero:

0 =
∂(L+ P2)

∂λj

= −wj − 1 + ε

j + ε
(λj − λj−1)

−wj + 1 + ε

j + ε
(λj − λj+1)− λj (9)

Rearranging yields:

(2w + 1)(j + ε)λj − w(j − 1 + ε)λj−1

−w(j + 1 + ε)λj+1 = 0 (10)

Substitution of λj = abj/(j+ε) produces a quadratic equation
in b, which is identical to (6). Consequently, we find that a
maximum of L+ P2 is obtained for

λj '
a

(j + ε)
e−| ln(b)|j . (11)

The main conclusion is that the local impulse response of
the quadratic prior has an exponential shape which is rather
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different from that of typical low pass filters used in nuclear
medicine. This is important when comparing the performance
of penalized-likelihood methods to that of filter-based meth-
ods. Unless the filter is matched to the local impulse re-
sponse of the penalized-likelihood method, it will be unclear
if performance differences are due to intrinsic properties of
the algorithms, or only to the different characteristics of the
impulse responses.

B. Emission tomography

In emission tomography, the log-likelihood function can be
written as [14]:

L(y, λ) =
∑

i

{yi ln(ri)− ri} (12)

ri =
∑

j

cijλj + qi (13)

where yi is the measured photon count in detector i, λj is
the estimated radioactivity in pixel j, cij is the probability
that a photon emitted in j is detected in i, qi is the expected
number of counts contributed by such processes as scatter and
randoms, and terms independent of λ have been dropped.

In the analysis above, the certainty provided by the likeli-
hood was the same for every pixel. In contrast, the certainty
provided by emission tomography is different for every pixel.
When the non-uniform likelihood is combined with a uniform
penalty term, position dependent smoothing results. In [8],
an algorithm is presented to impose approximately uniform
spatial resolution by tuning the weights wjk of a quadratic
penalty of the form:

P (λ) =
1

4

∑

j

∑

k

wjk(λj − λk)2, (14)

where the weights wjk are zero except when pixels j and k
are neighbors, and wjk = wkj . Based on the analysis of an
explicit expression for the local impulse response function, the
authors propose to choose the weights as follows:

wjk ∼

√√√√
(∑

i

c2ij
ȳi

)(∑

i

c2ik
ȳi

)
, (15)

where ȳi is the measurement mean for detector i. The factors
between parentheses are the j-th and k-th diagonal elements
of the Fisher information matrix [17], which can be regarded
as a measure for the certainty provided by the likelihood. So
(15) prescribes that the weight used to penalize the difference
between two pixels should be proportional to the geometric
mean of the certainties of the two pixels. The measurement
mean ȳi is not available, but the measurements yi or the calcu-
lated projections ŷi are useful approximations. We will denote
this algorithm as CPL, which stands for “Certainty based
Penalized-Likelihood reconstruction”. Although this algorithm
makes the resolution more uniform, the resulting local impulse
response is asymmetric, and the asymmetry is still position
dependent. Stayman and Fessler [9], [10] have extended the
algorithm to reduce the asymmetry as well. Their approach is
based on an explicit expression for the local impulse response

function, and they optimize the weights wjk to obtain a
best fit between this computed local impulse response and a
predefined target impulse response.

Here we follow a slightly different approach. The analysis
presented above suggests that the shape of the local impulse
response may be an intrinsic property of the quadratic penalty.
For that reason, and also in an attempt to obtain a simpler
algorithm, we do not use a target impulse response: we will
accept any shape, as long as the impulse response is symmetric
and position independent.

The objective function that must be maximized is Q =
L + P , where L is given by (12) and P by (14). Assuming
unconstrained maximization (and therefore ignoring the usual
non-negativity constraint), the reconstruction λ maximizing Q
must satisfy ∂L/∂λj = −∂P/∂λj or

∑

i

(
cij
yi
ri
− cij

)
=
∑

k

wjk(λj − λk). (16)

To compute the local impulse response, the value in a single
pixel p is changed by adding a small impulse up. As a result,
the new measurement y′ and reconstruction λ′ become:

y′i = yi + cipup

λ′k = λk + ∆λk

r′i = ri + ∆ri

∆ri =
∑

k

cik∆λk, (17)

where up is the impulse and ∆λk is the impulse response.
The posterior is now maximized when

∑

i

(
cij
yi + cipup
ri + ∆ri

− cij
)

=
∑

k

wjk(λj+∆λj−λk−∆λk).

(18)
Subtracting (16) from (18) yields:

∑

i

cij
cipupri − yi∆ri

(ri + ∆ri)ri
=
∑

k

wjk(∆λj −∆λk). (19)

Since up is very small, ∆ri is also very small and we have
that ri + ∆ri ' ri (we are only interested in the impulse
response within an active object, so it is reasonable to assume
that ri > 0). In addition, we assume that the penalty is not
too strong, such that the calculated and measured projections
are very similar, and as a result

∑

i

cij
yi∆ri
r2
i

'
∑

i

cij
∆ri
ri

. (20)

With these assumptions, (19) can be simplified to
∑

i

cij
cipup −∆ri

ri
= ∆λj

∑

k

wjk −
∑

k

(wjk∆λk). (21)

This result is equivalent to the expression for the local
impulse response (equations (18) and (19)) obtained by Fessler
and Rogers [8] 2.

2To clarify the equivalence, equation (21) can be rewritten as (A′D( 1
r

)A+

R)V = A′D( 1
r

)AU , where A is the system matrix, D( 1
r

) is a diagonal
matrix with elements Dii = 1/ri, U is the impulse, V is the impulse
response, and R is a matrix defining the penalty as P (Λ) = 1

4
Λ′RΛ.
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Since the penalty penalizes only differences, it is expected
that the mean count is preserved so up =

∑
k ∆λk . Inserting

this in (21) and using (17) yields:

∑

i

cij

∑
k(cip − cik)∆λk

ri
= ∆λj

∑

k

wjk −
∑

k

(wjk∆λk).

(22)
Switching the order of summations and rearranging a bit we
obtain:

∑

k

(∑

i

cij(cip − cik)

ri
+ wjk

)
∆λk = ∆λj

∑

k

wjk , (23)

which can be rewritten as:

∆λj =

∑
k(Gjkp + wjk)∆λk∑

k wjk
(24)

Gjkp =
∑

i

cij(cip − cik)

ri
(25)

If the parameters wjk are large compared to the contribution of
the likelihood Gjkp, then (24) states that the response in pixel
j is a weighted average of the responses in the neighboring
pixels, as can be expected from a smoothing penalty. The
contribution of the likelihood Gjkp changes the weights in a
position dependent way. Moreover, it also changes the total
sum of the weights, as there is no contribution from the
likelihood to the denominator. As a result, it is clear that
with position independent parameters wjk , the local impulse
response strongly depends on position.

To reduce the position dependence, we will try to tune the
parameters wjk such that at least the sum of the weights in (24)
becomes independent of the position. A somewhat simplistic
way to obtain this would be to set

wjk = αGjkp , (26)

which would ensure that the sum of the weights in (24) would
be equal to 1 + 1/α. This approach has two problems. First,
Gjkp is a function of the position of the impulse up, while
wjk is not. It seems not trivial to optimize the response in j
for all possible positions p of the impulse simultaneously. To
avoid this problem, we concentrate on the response in j for
a perturbation in j, i.e., we set p = j in (24) and (26). The
second problem is that for practical reasons, wjk should be
zero except for the pixels k that are close neighbors of pixel
j, while the support of Gjkp is much larger. We hope that
this problem can be ignored, because Gjkp is a (modified)
backprojection, which decays rapidly with increasing distance
to p. All these approximations yield the following recipe:

wjk = α
∑

i

cij(cij − cik)

ri
, (27)

where parameter α defines the global strength of the penalty.
According to [9], only the symmetric component of the
design matrix determines the smoothing characteristics. This
component is

wjk + wkj
2

=
α

2

∑

i

(cij − cik)2

ri
. (28)

Equation (28) can be derived in a different way as well.
The conclusion in [8] was that approximate uniform spatial
resolution could be imposed by requiring that the weights wjk
were proportional to the Fisher information for estimating the
pixel values in j and k. The Fisher information estimates the
“resistance” of the likelihood against smoothing, and more
smoothing is required if the resistance is higher. However, the
Fisher information measures the certainty about the absolute
pixel values, whereas the smoothing only penalizes differences
between pixel values. So it seems meaningful to estimate the
resistance against smoothing by computing the certainty about
pixel differences provided by the likelihood. To do this for a
particular pixel pair (j, k), we rewrite the likelihood (12) as a
function of the difference and sum of these pixels:

ri =
∑

ξ 6=j,ξ 6=k
ciξλξ + cij

sjk + djk
2

+ cik
sjk − djk

2
+ qi

djk = λj − λk
sjk = λj + λk.

Now, the diagonal element of the Fisher information matrix
corresponding to djk can be computed as

−E
(
∂2L(y, λ)

∂d2
jk

)
= E

(∑

i

(
cij − cik

2

)2
yi
r2
i

)

=
1

4

∑

i

(cij − cik)2

ȳi
, (29)

where E is the expectation, and ȳi is the expectation of yi.
Equation (29) reproduces (28) if we can assume that ȳi ' ri.

Equations (28) or (29) have an interesting intuitive interpre-
tation. For a projection line i intersecting both pixels j and k,
we have cij ' cik, so this projection i does not contribute any
certainty. In contrast, a projection line perpendicular to the line
connecting j and k cannot intersect both pixels. Consequently,
projection lines with this orientation and intersecting one of
the pixels contribute a maximum amount of certainty. For
example, the projection line i intersecting pixel j but not k
has cik = 0, and its contribution is proportional to

(cij − cik)2

ȳi
=
c2ij
ȳi
. (30)

The diagonal element (j, j) of the Fisher information matrix
for estimating λ from the likelihood equals

Fjj =
∑

i

c2ij
ȳi
. (31)

Expression (30) is the i-th term of (31). So (28) or (29) suggest
to compute the Fisher information not from all projections,
but only from a subset containing projection lines which are
approximately perpendicular to the line through j and k.

C. Imposing uniform resolution

A strong reduction of the complexity and the computation
burden is obtained by introducing the approximation suggested
in the previous section:

∑

i

(cij − cik)2

ri
'

∑

i∈Sj−k

c2ij
ri
, (32)
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where Sj−k is the subset of projections with projection line
approximately perpendicular to the line connecting the centers
of pixels j and k. We investigated a modified penalty for 2D
reconstruction by inserting approximation (32) directly in (28).
This approach only somewhat improved the resolution unifor-
mity if the weights wjk were computed using 8 neighbors in
a 3x3 neighborhood. However, if only horizontal and vertical
neighbors were used, good resolution performance in vertical
and horizontal direction was observed. It seems that there is
some interference between diagonal and vertical directions in
the 8-neighborhood system, which is not captured by (28).
Therefore, we redistributed the penalty weight values using
the following heuristic modifications.

For 2D reconstruction and with a penalty term defined in
a 3x3 neighborhood, eight weights wjk per pixel j must be
defined. Requiring that wjk = wkj reduces the number to
four. Therefore, we assume that there are only four smoothing
directions: horizontal, vertical and the two diagonal ones. In
addition, we assume that the smoothing can be considered as
consisting of two components, a uniform component and a
component in one of the four directions. Finally, we assume
that the uniform component can be implemented using only
the weights in the horizontal and vertical neighbors, and that
the directional component can be tuned independently by
adjusting the two weights corresponding to that direction.

These heuristics yielded the following recipe: For each of
the four axes, an image is generated that estimates the Fisher
information along that axis. These four images are computed
as:

F θj = αθ′
∑

i∈Sθ′

c2ij
ŷi
, (33)

where θ equals 0, 45, 90 or 135 degrees, θ′ = θ + 90o, Sθ
is the subset of projections with projection lines between θ−
22.5o and θ + 22.5o, α0 = α90 = 1 and α45 = α135 =
1/
√

2. Note that θ is used to define an axis, not a direction,
so operations on θ are modulo 180o. Then, for every pixel
j, we define θmax as the axis with the largest value F θj =
Fmax. The likelihood provides the strongest certainty along
this axis θmax, so a stronger penalty weight along this axis is
needed to impose uniform resolution. The uniform smoothing
component is estimated by taking the minimum of F θj over
the four angles, denoted as Fmin. The four images are then
modified to implement the two components, by applying the
following steps

F 45
j = F 135

j = 0

F 0
j = F 90

j = Fmin

F
θmax
j = F

θmax
j + Fmax - Fmin

The resulting images F θ are convolved with a 2D Gaussian,
to avoid possible artifacts near abrupt changes of Fmax, and
normalized to ensure that total strength of the penalty in each
pixel (as estimated by summing (33) over the four images θ)
is not changed by the heuristic manipulation and Gaussian
convolution. Finally, inspired by equation (15), we compute
the weights wjk as follows:

wjk =

√
F
θ(j,k)
j F

θ(j,k)
k , (34)

where the axis θ(j, k) is parallel to the line connecting pixels
j and k. The additional computational burden of this method
is small compared to that of traditional penalized-likelihood
reconstruction with a quadratic penalty. Computation of the
four images F θ involves backprojection for four subsets, so
the work is equivalent to a single backprojection. The rest
are simple pixel operations, and (34) is computed every time
wjk is needed. Of course, the method increases the memory
load, because the images F θ must be precomputed and kept
in memory.

This new algorithm is actually a straightforward extension
of the CPL-algorithm (15). The essential difference is that in
the new algorithm, the Fisher information is split in different
components, which represent the information about pixel dif-
ferences along different orientations. It is convenient to give
it a name, so we will denote the new algorithm as OCPL,
“Orientation dependent Certainty Penalized Likelihood”.

After designing the penalty function using (34), we are
ready to maximize the penalized-likelihood objective function:
the sum of (12) and (14). One could apply any of the
many iterative algorithms in the literature to this optimization
problem. For the results given in the following section, we
have applied a gradient ascent algorithm. The algorithm is
obtained as a simple modification of the classical maximum-
likelihood expectation-maximization algorithm, and has been
described elsewhere [5].

III. EXPERIMENTS

A. The shape of the local impulse response

To assess the accuracy of the approximate equation (11),
the two-dimensional uniform likelihood problem has been
simulated, using an 8-pixel neighborhood, a weight of 1 for
direct neighbors and of 1/

√
2 for diagonal neighbors and

a strong global weight for the penalty term. Two hundred
iterations of a gradient ascent algorithm were applied. The
horizontal row containing the center of the impulse response
was extracted to obtain a one dimensional profile, and the three
parameters of (11) were computed with least squares fitting.

B. Evaluation of the new method

Two simulation experiments were performed to assess
the performance of the new method. The first experiment
was designed to evaluate the resolution uniformity obtained
with OCPL, comparing with a quadratic penalty, with the
CPL-method and with post-smoothed maximum-likelihood
expectation-maximization (MLEM). The main purpose was to
verify that extending CPL to OCPL leads to more uniform
resolution. In the second experiment, the noise characteristics
of OCPL and post-smoothed MLEM were compared by com-
puting the signal-to-noise ratio in a few points.

The simulations were carried out starting from a digital
description of the object (an activity image and an attenuation
map). We only considered a single slice. PET and SPECT
projections were computed taking into account the dominating
physical effects: attenuation for both, and for SPECT also col-
limator blurring (implemented with Gaussian diffusion [18]).
We performed multiple Poisson noise realizations to estimate
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the variance for computing the SNR. The reconstructions were
computed using the same system matrix that was used for
computing the projections. It is clear that the simulation is a
simplification compared to true life. However, the results are
useful because the dominating effects have been taken into
account and the algorithms were evaluated using exactly the
same data.

For the second experiment, it was essential to ensure that
the two methods had a (virtually) identical impulse response.
Otherwise, differences in the signal-to-noise ratio could be
attributed to the impulse response rather than to the recon-
struction algorithm. The following procedure was applied to
ensure a close match of the impulse responses. First, a second
digital phantom was produced by increasing the activity value
of a single pixel. This is the impulse. Then, two sets of
projections were computed, one for the original phantom, and
another one for the phantom with the impulse. Both were
reconstructed with OCPL, subtraction yields the local impulse
response. This local impulse response was then used as the
post-smoothing filter in post-smoothed MLEM. This ensures a
close resolution match at the position of the impulse, if MLEM
was iterated close to convergence. Assuming that OCPL is
successful in imposing uniform resolution, there should also
be a good resolution match in the other pixels. We verified
this by measuring the OCPL impulse response at a few other
pixels as well. In the following paragraphs, the experiments
are described in more detail.

1) Resolution uniformity with the new method: The OCPL
method was implemented and evaluated with two-dimensional
PET and SPECT simulations. Figure 1 shows the activity
distribution of the 2D software phantom. The object consisted
of a uniform low activity background disk containing circles of
higher activity. The disk and circles had identical and uniform
attenuation. The background activity was 2, the activity of the
circles was 10. The diameter of the attenuating disk was 28 cm
for SPECT and 36 cm for PET. In both cases, the attenuation
was set to 0.095 per cm. For the SPECT simulation, the
collimator had a full width at half maximum of 2 cm at 30 cm
distance and the camera had an intrinsic resolution of 4 mm.
A circle is useful to evaluate orientation dependent smoothing,
since recovery of the circular activity is sensitive to smoothing
in any direction. The asymmetric position of the circles ensures
strong position and orientation dependence of the certainties
provided by the likelihood.

For PET, attenuated projections with 100 detector bins were
computed for 80 angles, assuming perfect resolution (except
for the blurring due to interpolation in the projection software).
For SPECT, 60 attenuated projections of 66 bins per projection
were computed, simulating an orbit of 180 degrees with a
parallel hole collimator. The gamma camera started at the top
and rotated in clockwise direction. No noise was added.

In both cases, reconstructions were computed with a uni-
form quadratic penalty, with the CPL-algorithm (15), with the
new OCPL-method (34) and with post-smoothed maximum-
likelihood expectation-maximization (MLEM). The recon-
structed image size was 100 × 100 for PET and 66 ×
66 for SPECT. For the smoothing kernel in post-smoothed
MLEM, we used the impulse response of the OCPL method

Fig. 1. Simulation object to evaluate the new uniform resolution penalized-
likelihood with PET and SPECT.

as described above (the impulse response was measured in
the center of the image). With the quadratic penalty and the
CPL-method, the impulse response is not symmetrical and
a close match with the other methods cannot be imposed.
An approximate match was achieved by tuning the penalty
aiming at similar mean signal recovery along the circle. A
high number of iterations was applied: 200 for PET and 450
for SPECT. We used a higher number for SPECT, because the
inclusion of collimator blurring slows down convergence.

2) Signal-to-noise comparison with post-smoothed MLEM:
The aim of this experiment was to compare the signal-to-noise
ratio obtained with the OCPL algorithm to that obtained with
post-smoothed MLEM. The elliptical object, shown in figure
2 was used. It has uniform activity and uniform attenuation.
First, a single hot pixel was inserted in the image (see figure
2) and noise-free attenuated PET-projections were computed
(128 projections with 80 bins per projection). An OCPL-
reconstruction was computed using 200 iterations. The very
same procedure was applied again, but this time without the
hot pixel. The difference between the two images is the local
impulse response. This local impulse response was captured
in a filter mask (15 x 15 pixels), for later use as the smoothing
filter in post-smoothed MLEM.

Subsequently, two more hot pixels were inserted as shown
in figure 2, and attenuated PET-projections were computed.
These were used as the mean of a Poisson distribution, and
400 noise realizations were generated. In addition, 400 noise
realizations in absence of the hot pixels were produced. From
all these simulated projections, images were reconstructed with
three different algorithms:

1) 200 iterations of the new OCPL-algorithm;
2) 200 iterations of the MLEM algorithm, followed by

post-smoothing with the local impulse response function
determined in the first step

3) 6 iterations of iterative filtered backprojection (IFBP),
followed by post-smoothing with the same impulse
response.

We used IFBP, because with regular (non-iterative) filtered
backprojection, a small amount of smoothing due to interpo-
lation is hard to avoid. This smoothing is eliminated after a
few iterations of IFBP, resulting in a sharper impulse response.
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Fig. 2. Simulation objects to compare uniform resolution penalized-
likelihood reconstruction to post-smoothed MLEM. Left: the object used to
determine the local impulse response. Right: two more points were added for
the signal-to-noise ratio measurement.

The iterative FBP-algorithm applies the following scheme:

λnew = λold + FBP(y′ − proj(λold)), (35)

where y′ is the measurement precorrected for attenuation,
λ is the reconstruction, and “proj” denotes non-attenuated
projection. We used 200 iterations of MLEM and 6 iterations
of IFBP to ensure that the impulse response of the unsmoothed
reconstructions was very close to an ideal impulse. Conse-
quently, after post-filtering, both reconstructions should have
nearly exactly the same impulse response as the penalized-
likelihood algorithm.

From the 400 noise realizations with and 400 realizations
without signal, the signal-to-noise ratio is computed as fol-
lows:

SNRj =
mean(λ1

j − λ0
j )√

(var(λ1
j ) + var(λ0

j ))/2
, (36)

where j is the position of one of the three hot pixels, λ1

represents the reconstruction with the hot pixels and λ0 the
reconstruction without the hot pixels.

For visual inspection, also the mean and variance images
were computed for each of the reconstruction algorithms.

The results were verified using a second, very different
simulation object, shown in figure 3. It is a simplified sim-
ulation of a PET-study of the thorax. Three hot pixels were
inserted, two in the lungs and one in the tissue. The point in
the tissue was used to define the post-smoothing filter. The
image has 100× 100 pixels, 128 projections were computed,
assuming a contribution of randoms and scatter (qi in (12))
of 28%. Due to the asymmetry of the attenuation, the local
impulse response function is very asymmetric if a uniform
penalty is used [9]. For this image, 200 MLEM iterations
did not yet produce a sufficiently sharp impulse response
function. Therefore, the equivalent of about 500 iterations were
computed using ordered subsets acceleration (OSEM) [19].
We used a decreasing number of subsets (16, 8, 4, 2, 1) and
applied 16 iterations for each of those. The same was done for
the OCPL algorithm, and 10 iterations of IFBP were applied.
For the rest, the processing was identical as for the elliptical
phantom.

IV. RESULTS

A. The shape of the local impulse response

Applying 200 iterations of a simple gradient ascent algo-
rithm seemed sufficient to reach convergence (more iterations
did not produce visible changes). Figure 4 shows the horizontal

Fig. 3. Attenuation map (left) and activity distribution (right) for the
simulated thorax phantom. The points are numbered from bottom to top, the
first point (in tissue) is used the determine the local impulse response.

Fig. 4. Horizontal profile through the impulse response (+) for a two-
dimensional image with uniform likelihood, with the fitted function (solid
line) using expression (11).

profile extracted from the image, together with the curve
produced by fitting (11) to the profile. The impulse had a value
of 100, the fitted parameters were a = 3.24, ln(b) = 0.11 per
pixel and ε = 1.06 pixels.

B. Evaluation of the new method

Figure 5 shows the PET-images obtained with the four
reconstruction programs. In figure 6 profiles along the circles
are shown. They are computed by scanning the pixel positions
on the circles in the true image (figure 1) and extracting the
corresponding reconstructed pixel values. The profiles along
the two circles are shown in the same plot. Ideally, the con-
catenated profiles should form a single flat curve, because the
two circles have identical and constant intensity. Figure 7 and
8 show the corresponding results for the SPECT simulation.
The uniform quadratic penalty produces a very non-uniform
reconstruction, and the two profiles have a different mean
value. With the CPL-algorithm, the non-uniformity is reduced
and the mean values of the two profiles are now much closer,
indicating that some sources of position dependent resolution
have been removed. With the OCPL-algorithm, the profiles are
more uniform, although still not as uniform as those produced
by post-smoothed MLEM. Also some oriented artifacts near
the object boundary are visible, in particular in figure 5 (one of
them indicated with an arrow). They are most likely caused by
imperfect transition from one of the four smoothing directions
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Fig. 5. The reconstructions of the PET simulations: the MAP-reconstruction
with quadratic penalty, CPL-reconstruction, OCPL-reconstruction and post-
smoothed MLEM-reconstruction. The arrow points at an artifact (see text)

Fig. 6. Profiles along the circles in the PET-images of figure 5. The x-axis
corresponds to the position on the perimeter of the circles, the y-axis is the
reconstructed value at that position. Solid line: MLEM. Long dashes: uniform
quadratic penalty. Short dashes: CPL method. Dotted line: OCPL method.

to the other.

C. Comparison to post-smoothed MLEM

Figure 9 and figure 11 show the variance and mean images
computed from the 400 noise realizations, for each of the re-
construction algorithms. Because there was no non-negativity
constraint in IFBP, this algorithm produces noticeable variance
in the background. In the mean images, a small overshoot near
the boundary of the object is seen for the OCPL-algorithm.

The mean image in absence of hot pixels was subtracted
from the mean image with hot pixels, to generate the local
impulse responses at the three hot pixel positions. For each
local impulse response, four profiles (horizontal, vertical, and
the two diagonal ones) were extracted by sampling along ori-
ented straight line intervals through the center of the impulse
response. The profiles are plotted in figures 10 and 12. The

Fig. 7. The reconstructions of the SPECT simulations: the MAP-
reconstruction with quadratic penalty, CPL-reconstruction, OCPL-
reconstruction and post-smoothed MLEM-reconstruction.

Fig. 8. Profiles along the circles in the SPECT-images of figure 7. The x-axis
corresponds to the position on the perimeter of the circles, the y-axis is the
reconstructed value at that position.

profiles for the three algorithms are nearly identical in all four
directions, confirming that a close match of spatial resolution
was achieved.

Table I shows the signal-to-noise ratios for each of the
points. With 400 simulations, the relative error on the standard
deviation should be about

√
1/(2 ∗ 400) = 3.5%. The error on

the signal is smaller than that, so the signal-to-noise ratio has
a relative error of about 3.5%. In each case, point 1 was the
hot pixel that was used to define the local impulse response
function. The signal-to-noise ratio was best for post-smoothed
MLEM, but the performance differences are relatively small
and position dependent.

Finally, figure 13 compares the coefficients of variation
in every pixel, for the three algorithms and for the thorax
phantom. Images are produced by setting a pixel to 1 if the
ratio of standard deviation and mean in that pixel is lower
with one algorithm than with the other. Of course, this figure
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Fig. 9. The variance (top) and mean (bottom) images, computed from the 400
Poisson noise realizations of the elliptical object. Left: OCPL-reconstruction,
center: post-smoothed MLEM, right: iterative filtered backprojection. The
images on the same row are displayed with the same gray scale

Fig. 10. Profiles along straight lines through the three impulse responses
in the elliptical object. For each of the three points, the profile along the
horizontal, vertical and the two diagonal axis was computed. Symbols: + for
OCPL, x for post-smoothed MLEM and diamonds for IFBP.

Fig. 11. The variance (top) and mean (bottom) images, computed from
the 400 Poisson noise realizations for the thorax phantom. Left: OCPL-
reconstruction, center: post-smoothed MLEM, right: iterative filtered back-
projection. The images on the same row are displayed with the same gray
scale

Fig. 12. Profiles along straight lines through the three impulse responses
in the thorax phantom. For each of the three points, the profile along the
horizontal, vertical and the two diagonal axis was computed. Symbols: + for
OCPL, x for post-smoothed MLEM and diamonds for IFBP.
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TABLE I

THE SIGNAL-TO-NOISE RATIO’S FOR THE THREE POINTS IN THE MONTE

CARLO SIMULATION FOR THE THREE RECONSTRUCTION ALGORITHMS

(OCPL, POST-SMOOTHED MLEM AND IFBP, AND FOR THE TWO

SOFTWARE PHANTOMS.

Elliptic object
point OCPL pMLEM IFBP

1 17.2 18.4 15.8
2 14.1 15.4 13.7
3 16.9 18.0 17.1

Thorax phantom
point OCPL pMLEM IFBP

1 4.35 4.37 4.18
2 4.34 4.63 4.35
3 4.55 4.74 4.39

Fig. 13. Comparison of the coefficient-of-variation (cov) images. Left: pixels
are set to white where OCPL-cov was lower than post-smoothed MLEM-cov.
Center: OCPL-cov lower than post-smoothed IFBP-cov. Right: post-smoothed
MLEM-cov lower than post-smoothed IFBP-cov.

provides no information about signal recovery or signal-to-
noise ratios.

V. DISCUSSION

The first experiment confirms the derivation of the expres-
sion for the local impulse response function of a quadratic
prior in combination with a shift-invariant likelihood func-
tion. In this simple denoising problem, the prior produces
an exponential impulse response, with a narrow peak and
relatively large extent. In [20], the impulse response function
was studied for an idealized tomograph, where the sinogram
has position independent noise properties. For a tomograph
with ideal resolution, similar shapes were observed as reported
here, but the shapes change if more realistic detector blurring
is taken into account. These findings indicate that the penalized
likelihood approach offers little control over the shape of the
impulse response, which can be very different from that of the
low-pass filters that are commonly used in nuclear medicine
applications. For some applications, the freedom to choose
any shape for the impulse response may be an advantage
for post-smoothed MLEM over penalized-likelihood methods.
Consequently, in studies comparing penalized-likelihood with
traditional filtering, care must be taken to eliminate the influ-
ence of the different impulse responses of the methods.

The penalized-likelihood method (OCPL) can be applied to
both PET and SPECT, and marked improvements were ob-
tained on simulation studies for both modalities. The profiles
show that the uniformity of signal recovery was similar, though
still inferior to that obtained with post-smoothed MLEM
after 200 iterations. This may be partly due to incomplete
convergence: even at 200 iterations the MLEM algorithm

was not fully converged, which is why the corresponding
profiles are not flat. Convergence is slow, in particular for
SPECT, where both attenuation and collimator blurring must
be compensated. As noted in [8], the penalty improves the
conditioning of the problem, which could be exploited to
design faster optimization algorithms. Our algorithm [5] is a
straightforward extension of MLEM and may not converge
faster than MLEM. Moreover, because the OCPL method
focuses on only four different smoothing axes, it is expected
that some non-uniformity will persist at any iteration number.
This is probably also the cause of the oriented artifacts near
the object boundary in figure 5.

The performance of the OCPL-method degrades near the
object boundaries. A small overshoot phenomenon is visible
in the reconstruction, e.g. in the mean image of figure 9 and
in figure 7. The corresponding variance image reveals a lower
variance near the boundaries than for the other algorithms,
suggesting that the boundaries are being oversmoothed. A
similar decrease of performance was observed with the method
of Stayman et al. [9], [21].

For the Monte Carlo simulation at matched resolution, post-
smoothed MLEM achieved a better signal-to-noise ratio than
post-smoothed IFBP and OCPL. The performance difference
is different for each point, and seems to be higher when
the asymmetry in detection probabilities is more pronounced.
Figure 13 compares the coefficients of variation in every
pixel. This is only meaningful if we can assume that the
local impulse response function is uniform as intended, which
can only be verified in the three hot pixels. This figure sug-
gests that post-smoothed MLEM outperforms OCPL, which
in turn outperforms IFBP, but as indicated by table I, the
performance differences are relatively small. With their more
sophisticated method, Stayman et al. [21] obtained identical
noise performance for post-smoothed MLEM and their new
method. Probably, the approximations made in the derivation
of OCPL have resulted in somewhat degraded noise perfor-
mance. However, comparison of the results is difficult because
they were obtained for different configurations (SPECT in [21]
and PET in our study). In any case, these studies suggest
that post-smoothed MLEM has excellent noise characteristics,
which are not improved by including the smoothing as a
penalty in our penalized-likelihood methods. Moreover, the
impulse response in MLEM tends to be more uniform than
with penalized-likelihood methods, because the latter have a
suboptimal performance near the object boundaries.

For application in clinical practice, several options exist.
Post-smoothed MLEM has a very low implementation cost,
since MLEM is now available in the system software of most
emission tomography systems. Moreover, it allows free selec-
tion of the shape of the impulse response, in contrast to the
penalized-likelihood method. So straightforward application of
post-smoothed MLEM seems the obvious choice. However, as
illustrated by our simulation experiments, a very high number
of iterations is required to ensure that the MLEM impulse
response is small compared to that of the target resolution. It
is currently common practice to apply a few tens of MLEM-
iterations (or OSEM-subiterations). This number should be
raised to a few hundreds to ensure uniform resolution, in
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particular when the aim is to (partially) compensate for the
loss of resolution due to the system response (e.g. collimator
blurring in SPECT). In this work, we have used either pure
MLEM-iterations, or OSEM-schemes in which the number
of subsets gradually decreases to unity (pure MLEM). When
a fixed and high number of subsets is used for stronger
acceleration, OSEM converges to a limit cycle with inferior
noise characteristics [22], so the conclusions of our paper
cannot be extrapolated to such OSEM schemes.

As suggested by Stayman et al. [21], convergence speed
may be a reason to use a penalized-likelihood approach as
a kind of acceleration technique: the penalty improves the
condition number, which can be exploited to obtain faster
convergence than with unregularized MLEM. In order to
avoid possible suboptimal response of the penalized-likelihood
method, or to allow more freedom in selecting the shape of the
impulse response, it could be combined with post-smoothing,
or even with post-smoothed MLEM as a finishing touch.

Finally, it should be noted that we have only studied a
quadratic penalty, applied to emission tomography. No conclu-
sions can be drawn about the relation between non-quadratic
penalties and linear or non-linear post-filtering. Similarly, the
results cannot be extrapolated to transmission tomography,
because there, in contrast to emission tomography, the mea-
surements are a highly non-linear function of the parameters
to be estimated.

VI. CONCLUSION

The impulse response typically produced by penalized-
likelihood methods with a quadratic penalty tends to have a
relatively sharp peak and wide extent.

Our simulation experiments confirm that the new penalized-
likelihood method (OCPL) achieves nearly uniform resolution.
However, its noise characteristics are not superior to that of
post-smoothed MLEM. This finding calls for further study of
the performance differences between post-smoothed MLEM
and penalized-likelihood methods.
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