
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 2, FEBRUARY 2002 159

Edge-Preserving Tomographic Reconstruction
with Nonlocal Regularization

Daniel F. Yu and Jeffrey A. Fessler*, Senior Member, IEEE

Abstract—Tomographic image reconstruction using statistical
methods can provide more accurate system modeling, statistical
models, and physical constraints than the conventional filtered
backprojection (FBP) method. Because of the ill posedness of the
reconstruction problem, a roughness penalty is often imposed on
the solution to control noise. To avoid smoothing of edges, which
are important image attributes, various edge-preserving regu-
larization methods have been proposed. Most of these schemes
rely on information from local neighborhoods to determine the
presence of edges. In this paper, we propose a cost function that
incorporates nonlocal boundary information into the regulariza-
tion method. We use an alternating minimization algorithm with
deterministic annealing to minimize the proposed cost function,
jointly estimating region boundaries and object pixel values.
We apply variational techniques implemented using level-sets
methods to update the boundary estimates; then, using the most
recent boundary estimate, we minimize a space-variant quadratic
cost function to update the image estimate. For the positron
emission tomography transmission reconstruction application, we
compare the bias-variance tradeoff of this method with that of a
“conventional” penalized-likelihood algorithm with local Huber
roughness penalty.

Index Terms—Edge-preserving reconstruction, level sets,
positron emission tomography (PET), region-based, transmission
tomography.

I. INTRODUCTION

T HE PROBLEM of reconstructing an unknown image
from a measurement vectoris usually ill posed [1], [2].

The direct model alone rarely determines a satisfactory solu-
tion. If we find the maximum-likelihood estimate of the image
by maximizing the log-likelihood function , then the re-
sulting image is very noisy. Thus, it is necessary to regularize
the solution by imposinga priori assumptions. One simple reg-
ularization method supposes that images are globally smooth,
and enforces a roughness penalty on the solution by adding a
quadratic function to the negative log-likelihood. Such a “pe-
nalized” likelihood cost function has the following form:
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where

(2)

is a measure of image roughness.1 The image estimate is ob-
tained by

where often the minimization with regard to is restricted
to nonnegative values. The cost function in (1) is often un-
satisfactory, since many images are not globally smooth.
They have region boundaries across which the image values
can vary rapidly. The quadratic regularization in (2) causes
edges to become blurred. In many images, small differences
between neighboring pixels are often due to noise, while large
differences are due to the presence of edges. This assumption
has formed the basis for many edge-preserving regularization
schemes proposed in the literature.

Most edge-preserving regularization methods, including
many line-site models, e.g., [5]–[9], rely on information from
a local neighborhood to determine the presence of edges, i.e.,
the penalty assigned to each pixel or clique of pixels depends
solely on pixel values within a smallfixedneighborhood. (We
return to this point near the end of this section.) One such
scheme is to replace the quadratic penalty function in (2) with
a nonquadratic function that increases less rapidly than the
quadratic function for sufficiently large arguments, such as the
Huber function [10], [11]

or

(3)

where

.

This function increases linearly, instead of quadratically, for ar-
guments larger than. Thus, the cost function penalizes large

1Following the convention in the literature on partial differential equation
(PDE)-based image analysis, we present a nondiscretized formulation in which
f belongs to the class of differentiable functions with derivative that is abso-
lutely integrable over some domain
 � . In the above integral,dx is a
shorthand fordx � � � dx , wheren is the dimension of the “image;” typically
n = 2.

In practice, one implements a discretized formulation, for exampleV (f) =
w (f � f ) , wherew is nonzero only for neighboring pixels. In

problems with inhomogeneous noise (such as Poisson measurements), one may
need to adjust thew s to control resolution properties [3], [4].
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Fig. 1. A comparison of quadratic, Huber, and broken parabola penalty
functions.

differences between neighboring pixels less severely than the
quadratic penalty, while maintaining the same level of penalty
for small differences. This property permits sharper edges in the
reconstructed image.

The Huber penalty is a convex function of image pixel values.
One could instead use a nonconvex penalty function, such as the
“broken parabola” function (e.g., [12]–[16])

This function is nondifferentiable, thereby precluding gra-
dient-based descent methods. Instead, deterministic annealing
algorithms are usually applied, e.g., [16], where one sequen-
tially minimizes a series of cost functions approaching the
original cost in the limit. This method also uses local informa-
tion only. Fig. 1 compares the quadratic, Huber, and broken
parabola function.

Both of the above edge-preserving methods modify the
local penalty function so as to penalize large differences
between neighboring pixels less than the quadratic penalty
does. These methods implicitly use local information to
“detect” the presence of an edge locally. This local view is
formalized by considering a hierarchical Bayesian model in
which a Gauss–Markov prior for pixels is conditioned on a
noninteracting line-site model [17]–[20]. Even when line-site
interactions are included in such models to encourage boundary
continuity, typically only small cliques are used [5], [21]–[23]
so such approaches are still inherently local. In the context
of blurred image restoration, comparatively large line-site
neighborhood sizes that match the size of the point-spread
function (PSF) of the imaging system have been proposed [7],
[8]. (How to apply that principle in the tomography problem
of interest here is unclear since each measurement sees long
strips traversing the entire object.) None of these line-site
models addressglobal connectivity or continuity and, thus, are
inherently local. One of the few previous methods to capture
global properties is a region-based Bayesian prior that has been
applied successfully in tomography [6], [9]. That method uses
discrete region identifiers (motivated by image segmentation

problems) and assigns costs that prohibit disconnected regions,
encourage regularly shaped regions, and discourage having too
many regions. Some of these costs involve the entire image
and are, therefore, global. The Bayesian formalism permits the
exploration of estimate uncertainty, but using discrete region
labels is challenging for computing point estimates. That
method and our proposed approach share the property that the
number of regions need not be specifieda priori. Our approach
is boundary based rather than region based; boundaries are
continuous-valued, so simple gradient-descent methods are
available for computing point estimates (at local minima of the
cost function).

This paper describes a method for includingnonlocalinfor-
mation, specifically, boundary information, into the regulariza-
tion method. The proposed penalty adjusts how much we pe-
nalize differences between pixels based on the distance of the
pixels to the nearest boundary curve. This approach involves
regions only implicitly. However, since both the estimates for
the boundary curves and the distance of a pixel to the boundary
curves depend on the entire image, our penalty is nonlocal. We
hope to achieve better results than purely local penalties under
certain cases. In the specific case of emission computed tomog-
raphy, accurate attenuation correction is usually necessary for
a quantitative emission reconstruction [24]. Accurate attenua-
tion correction requires an accurate map of attenuation coeffi-
cients. A positron emission tomography (PET) attenuation map
consists of a small number of regions, i.e., lungs, spine, body
tissue, etc. The attenuation coefficients within each region are
fairly uniform, but they vary a great deal between neighboring
regions and the transition between regions can be fairly rapid,
e.g., across a few pixels. A regularization method that incorpo-
rates this additional prior information, such as the one we pro-
pose, should be able to outperform a purelylocal regulariza-
tion method. Section II describes our new algorithm; Section III
compares the proposed algorithm to a “conventional” statistical
algorithm and to filtered backprojection (FBP); Section IV sum-
marizes our results and outlines possible future work.

II. M ETHOD

A. New Cost Function

Our development of the new cost function was motivated by
the specific application of PET and SPECT transmission tomog-
raphy, but its use is not restricted to attenuation map reconstruc-
tions. We assume that the actual object to be reconstructed is ev-
erywhere differentiable. We also assume that the object consists
of regions that are piecewise smooth (meaning almost uniform)
everywhere except near the region boundaries where the ob-
ject intensity changes rapidly (but differentiably) to values in its
neighboring region(s). Thus, an edge-preserving penalty func-
tion should penalize local gradients that are within each region
more than local gradients that are very close to the boundary
curves. Furthermore, we assume that the boundary separating
the regions consists of smooth curves. Fig. 2 shows an example
object (representing a thorax attenuation map at 511 KeV) and
one of its profiles. This object is piecewise smooth, but not
piecewise constant, due to variations in lung density.

Like (1), the cost function we propose also consists of a
data-fit term and a penalty term. However, our penalty considers
not only the image values but also the characteristics of region
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Fig. 2. Nonpiecewise-constant phantom and central horizontal profile (row
65).

boundaries within the image. We present our model in two di-
mensions, but extension to three dimensions is straightforward
[25], [26]. Let denote the object, denote a family of regular
closed curves (i.e., no self-intersections, corners, or cusps),

denote the boundary curve(s), anddenote the domain
of the image. We do not require to have a single connected
component, i.e., can have several connected components, one
being the boundary curve between the lung and the soft tissues,
while another one being the boundary curve between the body
and air, etc. The number of boundaries need not be knowna
priori .

We propose the following cost function of the objectand
the boundary curves [27]

(4)

(5)

(6)

The first term is the negative log-likelihood that
measures the “faithfulness” of the reconstructed object to the
measured data. The term penalizes the length of the
boundary curves, encouraging smooth boundary curves, and
discouraging large numbers of boundary curves. The term

penalizes local gradients inside each region more than
local gradients close to the boundary curves;
is the signed distance from to , i.e., we require to have
opposite signs on the opposite sides of a segment of, so is
differentiable across the boundary curve. We also requireto
be continuous inside . There is no intuitive way of defining

“outside” or “inside” when curves enclose other curves, but we
can define the outward normal to be the direction in which
is increasing. The roughness weighting function
maps small arguments to values near zero and larger arguments
to values near unity [see (18)]. For simplicity, we use only

s that belong to , i.e., differentiable arbitrarily many
times on the entire real line.

The purpose of the term is to penalize image roughness,
like (3). However, in our , how much the local gradient at
a specific location is penalized is weighted by the distance of
this location to the boundary curves, and since this distance de-
pends on the entire curve, the proposed penalty is “nonlocal.”
Fig. 3 shows an example. Fig. 3(a) shows a one-dimensional
(1-D) object. Fig. 3(b) shows the signed distance to the boundary
points; in this case, the boundary points are at4, 0, 2, and 4; we
chose the sign of the distance so thatis continuous. Fig. 3(c) il-
lustrates the type of function we may want to use; the value of

is unity well inside each region, but smoothly decreases
near the boundary curves. This approach allows larger gradients
in the reconstructed object close to the boundary curves. In two
dimensions (or three dimensions), the value of at every
point is determined by the distance between the point and the
boundary curves (or surfaces in three dimensions).

As in all edge-preserving regularization methods, one must
choose carefully the weighting parameters,, , and the func-
tion to avoid over-smoothing of the reconstructed image or
the boundary curves. The curve length term in (5), which acts to
keep the boundary curves smooth, will favor shorter curves over
longer curves although the region roughness penaltyshould
keep this force in check. Nevertheless, the associated param-
eter should always be small to avoid excess shrinking of the
boundary curves.

B. Alternating Minimization Scheme

We use alternating minimization to jointly minimize the cost
function given in (4) over and . We first hold constant
and minimize with regard to . Then, using the most recent
estimate of , we minimize with regard to . We alternate
between these two steps until convergence.

1) Boundary Update:When is fixed, the second and third
terms of depend on . We must minimize the following cost
function:

(7)

(8)

where was defined in (6) and denotes the cost function
with fixed at . As in standard PDE-based image analysis,

we perform steepest descent with respect to[28]. Each point
on the boundary curve evolves according to the

following differential equation:

(9)

where the right-hand side is the negative functional derivative of
the cost function. Finding the functional derivatives ofana-
lytically is nontrivial, so the natural starting point is to evaluate
the functional derivatives numerically. (We show that this leads
to an analytical formula as well.) The functional derivative of
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(a)

(b)

(c)

Fig. 3. (a) Example of a 1-D object. (b) Signed distance to the boundary. (c)
One possibleh function.

must point in the normal direction of the curve, since movement
in the tangential direction would not change the curve. We can
use a scheme similar to the central difference method to evaluate
local derivatives. (Central differences are usually accurate to a
higher order than one-sided differences.) Let be a
parameterization of, where is a subset of . For a given point

on the curves , we define a function that is zero
except in the neighborhood of , so that differs from
only in the normal direction. (We can imagine some force being

exerted on the curve; this force is nonzero only in the neigh-
borhood of ; briefly exerting this force in the outward normal
direction of the curve at causes a small perturbation of the
curve at in the normal direction). Using this idea, we approx-
imate the functional derivative of at as follows:

(10)

where denotes “defined to be” and is the area lying
between the curve and the perturbed curve [29].

For the second term in , the direction in which the curve
length decreases most rapidly is when [30]

(11)

i.e., the speed of the evolution at any point is the curvature of
the boundary curve at that point, and the curve evolves in the
inward normal direction. For implementation, we use the level
sets method [30]–[32] because of its simplicity. In the level sets
method, instead of evolving the curveitself, we embed as
the zero level set of a smooth function such that

, and evolve so that
evolves according to (9). As discussed in [31], this method

has several advantages over directly evolving, e.g., periodi-
cally resampling the curve becomes unnecessary, and, more im-
portantly for us, topological changes of the curve occur seam-
lessly. We use the latter advantage to allow merging or splitting
of boundary curves. Combining (9)–(11), the curves evolve ac-
cording to the following:

(12)

Evolving the curve via (12) yields a curve estimate that ap-
proximately minimizes ; we call this step the “boundary es-
timation” step. (See Section II-D for details about initialization.)

2) Image Update:For the second stage of the minimization,
we hold fixed at its previous estimate and minimize with
regard to . When is held fixed, the relevant terms in the cost
function (4) are the following:

(13)

where was defined in (6). We minimize with regard to
as follows:

(14)

When updating the boundary curves using (8), thefunction
in pushes the boundary curves toward image locations
where the gradient is large; when updating the objectusing
(14), the function imposes a space-varying weighting of
the penalty on local gradients. This weighting depends on
the signed distance from each pixel to the nearest estimated
boundary curve. Every term in (13) is quadratic in, except
possibly the log-likelihood term, which involves logarithms
in the case of Poisson measurements. Thus, (14) is a standard
penalized-likelihood image reconstruction problem, and we
can minimize over using methods such as the conjugate
gradient method (if quadratic) [33], [34] or the paraboloid
surrogates/coordinate descent method (if not) [35].
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Fig. 4. p is the closest point top on the curve.

We iteratively alternate between the two steps (8) and (14).
Both these two steps will, under ideal circumstances,2 monoton-
ically decrease the cost as defined in (4). In addition, the cost is
bounded below, so the algorithm will presumably converge to-
ward a local minimum.

C. Discretization and Implementation

We discretize the image using the usual square grid.
For simplicity, we discretize the level sets, which embed the
boundary curves, using the same square sampling grid as the
image. However, the sample spacings of the boundary curves
(when extracted from the zero contours of the level set) may be
finer than the image pixel spacing. The boundary curves evolve
according to (12). The first term causes image-independent
curve smoothing; its level-sets implementation is described in
[31]. In addition to the smoothing term, the evolution of the
boundary curves is influenced by the functional derivative of

.
To implement (12), we observe that for a point on the

boundary curve to be the closest to a pointin the image, the
line connecting and must be perpendicular to the tangent
line of the boundary curve at (see Fig. 4). Thus, if we make
a small enough perturbation of the boundary curve in a neigh-
borhood of , the only points in the image that are possibly
affected by this change of the boundary curve (in terms of their
distances to the curve) will lie in a narrow band perpendicular
to the boundary curve (see Fig. 5). Since this band can be made
arbitrarily narrow by making the boundary curve perturbation
small enough, we can make the approximation that the image
values remain constant in the lateral direction of the band and
evaluate the functional derivative of using equally spaced
points on the line perpendicular to the boundary curve at;
we use bi-cubic interpolation from the neighboring points [33]
where is not available. At every time step of the evolution
of the boundary curve, we also keep a record of which point on
the boundary curve is closest to each image point. When eval-
uating the functional derivative of at a point , we make
the approximation that a very small movement in the curve near

2Under realistic circumstances, wheredt is taken to be finite, the minimiza-
tion of (7) according to a discretized version of (9) may not be exactly mono-
tonic. Such effects are inevitable when continuous formulations are discretized.

Fig. 5. White dots denote image points; black dots denote boundary points;
J is evaluated on points represented by shaded dots.

will not cause any image point that was not closest to
previously to become closest to after the movement of the
boundary curve. Hence we only need to evaluate the change in

on those points that are already closest to. For a
image containing a boundary curve withsamples, evaluating
the functional derivative of is an operation.

The above ideas suggest the following functional derivative
of (see the Appendix for an explanation):

(15)

where denotes the line perpendicular to the boundary curve
at the point , parameterized by which increases in the di-

rection of , denotes the derivative ofwith regard to , and
is an indicator function

is the closest point in to
otherwise.

(16)

D. Initialization

To form an initial image estimate , we perform con-
ventional penalized-likelihood image reconstruction using a
local penalty such as the space-invariant quadratic penalty as
described in (1) and (2). Initialization of the boundary estimate

requires greater care. Performing steepest descent with
respect to (7) may not push the estimated curve toward the true
boundary if the initial curve is too far away from that boundary.

The force exerted by in (7) is nearly zero in smooth
regions, and is significant only close to the actual boundary
curves where local gradients are large. Fig. 6 illustrates this
property in one dimension. Let denote the derivative of in
the direction; let denote the “old” boundary point at 0.3
and denote the “new” boundary point at 0.35. Moving the
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Fig. 6. Illustration thatJ only changes slightly when the “curve” is far from
the true boundary point.

boundary point from 0.3 to 0.35 would change
from to , i.e., the “valley” of
is moved from 0.3 to 0.35, but the change in the roughness
penalty, i.e., , would be
very small. Thus, evolution via (12) alone would require a
fairly close initialization to the actual boundary curves. We
circumvent this problem by using an initialization procedure
for the boundary curves employing another force (from a
global measure) that ensures that the boundary curves move
even when the initial boundary curves are far from the actual
boundary. During the early iterations, we add a third penalty
(within-region homogeneity) to as follows:

(17)

where denotes the th region defined by , and
denotes the number of regions defined by. This pe-

nalizes the difference between each pixel value and the average
value of its region. This global measure exerts a force on the
curve no matter how far the boundary estimate is from the image
gradients. The evolution of the curve, as determined by, is es-
sentially a competition between bordering regions. Each pixel
on the curve borders two regions; each of these two regions ex-
erts a force trying to pull the pixel inside; the boundary curves
will evolve toward whichever region exerts a stronger force, as
determined by (17). We gradually reduceto zero. Eventually,
we rely on alone to move the curve to a local minimum3 of

.

E. Deterministic Annealing

To form an initial estimate of the imageprior to applying
boundary estimation step, we perform penalized likelihood

3In practice, we run a fixed number of iterations determined sufficient for the
boundary curves to converge to a local minimum. One could also stop the curve
evolution when the maximum force exerted byJ falls below a preset threshold.

(a)

(b)

Fig. 7. (a) Implicith function used in local regularization. (b) Edge-preserving
h function as a function of signed distance to the boundary curves.

tomographic reconstruction using a standard space-invariant
penalty. There is no function as given in (6) in such a recon-
struction, but we can think of as simply being a constant, say
unity [Fig. 7(a)], i.e., is independent of the boundary curves.
But for the reconstructed image to have sharp boundaries, we
must assign small weights to differences in pixel pairs close to
the boundary curves, e.g., as shown in Fig. 7(b). To avoid get-
ting stuck in a poor local minimum, we must change the shape
of function gradually from the initial constant function to the
desired function, i.e., we employ deterministic annealing.

Instead of going from the implicit constant function to the de-
sired function in one step, we take several steps. Suppose that
from empirical experience with a given category of images with
similar noise levels (e.g., 3-min PET transmission scans of the
thorax), we have found that the boundary curves we obtain from
our initial image are within, say, five pixels. Then we assign
small weights (via the function) to all pixel pairs within a dis-
tance of five or six pixels to the detected boundary curves, and
assign large weights (unity) to all other pixel pairs; thus, neigh-
boring pixels that are more than five or six pixels away from the
detected boundary curves will be coupled, while the boundary
curves are allowed to evolve within those pixels between which
the weights are very small. We gradually evolve thefunction
from the constant function toward the final desiredfunction,
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Fig. 8. The evolution ofh function, where� has units of pixels.

as shown in Fig. 8. Hopefully, the final boundary curves will
eventually be a very good local minimum. The functions used
in Fig. 8 are [16]

(18)

with (2.5, 1/6), (5, 1/4), (15, 2/5), (25, 1), and (50,
3). Evolving to usually involves four to five
“cycles”; one cycle consists of two stages, i.e., the “image re-
construction” stage, and the “boundary estimate” stage.4 Fig. 9
shows a flow chart of the proposed algorithm.

This deterministic annealing procedure is somewhat related
to graduated nonconvexity methods, e.g., [16]. However, there
are also significant differences between how the “broken
parabolas” are used here versus in line-site models. Here, the
argument of is thedistancebetween a pixel and the nearest
boundary curve point; through, this distance controls the
strength of the (quadratic) penalty between neighboring pixels
[see (6)]. In contrast, in (noninteracting) line-site models, the
broken parabola function is itself the penalty assigned to the
difference between pixelgrayscale values[18], [20], and there
is no explicit concept of “distance” or “boundary curve.”

III. STATISTICAL RESULTS

In this section, we compare the proposed algorithm to
the edge-preserving reconstruction method described in [35]
which is based on local regularization, hereafter referred to
as the “Huber method,” in terms of bias-variance tradeoffs.
We simulated PET transmission scans of a digital phantom
that resembles the human thorax (at 511 keV). The body has
attenuation coefficient 0.096/cm. Within the body are two
“lungs”; the left lung has nonuniform attenuation coefficients;
the right lung has uniform attenuation coefficients; both lungs
have average attenuation coefficient 0.022/cm. The “spine”
has uniform attenuation coefficient 0.14/cm. Fig. 2 shows the
phantom and a central profile. The image has 128128 square
pixels, each of width 0.42 cm. The sinogram consisted of 192
radial samples and 160 angular samples, similar to the CTI

4Theh s need not be different for every cycle; one mayh fixed for a few
cycles.

Fig. 9. Algorithm flowchart.

ECAT921 PET scanner. For simplicity we simulated rays with
equal spacing of 0.3375 cm. Random coincidences account for
about 5% of the recorded counts. We performed two studies,
one with 1 M counts, the other with 300 K counts (comparable
with 10- and 3-min scans, respectively). Our initial image was
reconstructed using conventional space-invariant quadratic
penalty over first-order neighbors for the proposed method.
The boundaries were initialized manually5 as shown in Fig. 10.

We analyzed three regions of interest (ROIs) in the recon-
structed attenuation maps: the (true) left lung (region 1), the
(true) right lung (region 2), and a 5 5 region (region 3) near

5An automatic procedure could be easily developed to obtain better initial
boundaries, which would reduce computation time.
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Fig. 10. Initial contours for simulation study.

Fig. 11. The three ROIs; region 1: left lung; region 2: right lung; and region
3: the 5� 5 square region.

the heart, as shown in Fig. 11. We performed 50 realizations
with pseudo-random Poisson noise. For theth realization, we
computed three ROI means, , , and , via

(19)

where is the set of pixels in the th region and de-
notes the estimated attenuation coefficient of theth pixel in
the th realization. Then we computed the sample means

and the sample standard deviations

of the three ROI averages,
. For the Huber penalty, we plotted the bias versus the

standard deviation of the ROI values as a function of the regular-
ization parameter , for four /cm, 0.004/cm, 0.008/cm,
and 0.02/cm. (Results for /cm were nearly identical
to those for /cm, so are not shown.) The difference in
attenuation values between the lung region and the soft tissue
region is about 0.08/cm, while the difference between the spine
and the soft tissue region is about 0.04/cm, which is also the
minimum contrast between neighboring regions; equatingto
one-tenth of this minimum is often effective [36]. For the pro-
posed penalty, we manually selectedand to cover a range
of bias-variance tradeoffs.

For the high count case, Fig. 12 shows one realization from
the FBP, Huber (with 0.004/cm), and proposed recon-

Fig. 12. 1M-count transmission reconstruction.

struction methods. Fig. 13 compares profiles (row 65) from the
Huber and proposed reconstruction methods, shown at similar
bias levels. The proposed method yields less variance than the
Huber method at this bias level. Fig. 14 confirms this initial ob-
servation quantitatively by plotting6 the bias against the vari-
ance of the ROIs defined above. Among Huber penalties,
0.02/cm produced the best bias-variance curve for regions one
and two, while for region three, 0.002/cm produced the
best bias-variance curve. For an image with multiple contrasts
like the one used here, it is very difficult to optimize, since

6Error bars in the bias direction are too small to be shown, and the “bounce
back” in the bias-variance curves for the Huber penalty is due to the nonneg-
ativity constraint we place on our estimates; heuristically, when the smoothing
parameter is small, the reconstructed image is noisy and many pixels have neg-
ative values, but the nonnegativity constraint makes them 0 causing a large pos-
itive bias.
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Fig. 13. 1M-count transmission reconstruction profiles: comparison of Huber
penalty and proposed penalty.

no single can produce the best bias-variance curves for all the
ROIs. This is a drawback of Huber-like penalty functions.

To investigate how the proposed nonlocal regularization per-
forms when the transmission map is used for attenuation cor-
rection of emission reconstructions (for details, see [37]), we
simulated noiseless PET emission scans of the digital phantom
shown in Fig. 15. The relative radioactivity concentration of the
lungs, spine, heart, and body were 12, 9, 40, and 22, respec-
tively. The emission projections included the effects of nonuni-
form attenuation corresponding to the attenuation map in Fig. 2.
We reconstructed emission images using FBP with attenuation
correction based on two sets of transmission maps: one set reg-
ularized by the proposed nonlocal penalty, and the other set by
the Huber penalty.

Fig. 16 shows emission reconstructions using transmission
maps reconstructed with the Huber penalty and the proposed
penalty. To compare the effect of the two different penalties on
the emission reconstruction, we selected two groups of recon-
structed transmission maps, one using the Huber penalty, and
the other using the proposed penalty. Then [38] we smoothed
the projection of the emission phantom (applied with ideal atten-
uation, i.e., the attenuation of each line of response is obtained
from the true attenuation coefficients) and the transmission map,
so that the resolution of the final emission reconstructions using
Huber penalty and the proposed penalty matched each other. We
use the following simple method to determine the resolution of
a set of reconstructions. Given the ideal image and the av-
erage reconstructed image, the resolution of is

(20)

where represents a Gaussian smoothing filter with FWHM
, and denotes a mask used during reconstruction. Table I

(a)

(b)

(c)

Fig. 14. ROI bias-variance plots for 1M-count transmission reconstruction.
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Fig. 15. Emission phantom.

shows the normalized7 standard deviation (in units of % for the
mean of the six regions of 3 3 pixels as defined in Fig. 15,
with a fixed spatial resolution of 4.2 pixels FWHM. The noise
is significantly reduced in the interior ROIs, and is statistically
comparable for the boundary ROIs.

We also calculated the empirical standard deviation of each
pixel for both the proposed method and the Huber method, at a
fixed spatial resolution of 4.2 pixels FWHM. For each pixel
in the image we computed

(21)

where denotes the estimated emission intensity of theth
pixel in the th realization. Fig. 17 shows a histogram of the ra-
tios of these standard deviations, .
For 85.8% of the pixels, the proposed method produced lower
standard deviations than the Huber method. The median reduc-
tion in the standard deviations was 47.1%.

We performed similar studies for the low count case.
Fig. 18 shows one realization from the FBP, Huber (with

/cm), and proposed transmission reconstruction
methods. (The streaks in the FBP reconstruction in this case are
caused by the fact that some rays recorded zero counts). Fig. 19
compares two profiles (row 65) from the Huber and proposed
reconstruction methods; these profiles came from images of
similar bias. Fig. 20 shows the bias-variance tradeoffs for the
three regions as illustrated in Fig. 11.

Fig. 21 shows the emission reconstructions from noiseless
emission data corrected using transmission maps regularized by
the proposed penalty and the Huber penalty. The heart region
is much more uniform in reconstructed images using the pro-
posed penalty than using the Huber penalty. Fig. 22 shows the
histogram of for all pixels within the image.
For 81.7% of pixels, the proposed penalty produced lower stan-
dard deviations than the Huber penalty. The median reduction
in the standard deviations was 34.6%. Table II shows the nor-
malized standard deviation (in units of %) for the mean of the
six regions of 3 3 pixels as defined in Fig. 15, with a fixed
spatial resolution of 6.4 pixels FWHM.

Finally, we present an anecdotal example of reconstruction
of a more complex transmission phantom, shown in Fig. 23(a).
There are two masses inside the right lung. Fig. 23(c) shows

7Normalized by the mean of each region.

Fig. 16. Emission FBP reconstruction using attenuation correction based on
attenuation maps reconstructed from 1M-count transmission scans by (a) FBP,
(b) Huber penalty, and (c) proposed penalty.

the boundary curve initialization. Fig. 23(d) and (e) show the
final boundary curves and final image estimated by the pro-
posed algorithm, respectively. Fig. 23(b) shows the reconstruc-
tion using the Huber penalty. Even though the initial curve for
the right lung had only one connected component, the algorithm
is capable of topological changes and automatically separated
into two connected components, one forming the boundary be-
tween the mass inside the right lung and the right lung, the other
forming the boundary between the right lung and soft tissue.

IV. DISCUSSION ANDCONCLUSION

We have presented a new regularization method for tomo-
graphic image reconstruction based on a nonlocal penalty func-
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TABLE I
NORMALIZED STANDARD DEVIATION (%) FOR THESIX EMISSION ROIS USING 1M-COUNT TRANSMISSIONRECONSTRUCTIONS

Fig. 17. Histogram of� =� for emission reconstruction using
1M-count transmission scans.

tion. In conventional local regularization methods, including
most line-site models, the roughness penalty assigned to dif-
ferences between neighboring pairs of pixels (or to cliques of
pixels) depends solely on pixel values within a smallfixedlocal
neighborhood.

Like line-site models, our regularization method is
shift-variant: the roughness penalty strength is reduced
near object edges. Unlike line-site models, however, in the pro-
posed approach the penalty function for any pair of neighboring
pixels depends on the nearest point to the entire boundary
curve, which makes our penalty nonlocal. The region-based
Bayesian prior of [6], [9] is also nonlocal. Since we only use
closedboundary curves, our penalty is implicitly region based;
in fact, we use a region-based penaltyduring the early stages
of our reconstruction.

Since our algorithm is a descent method, the iterates approach
a local minimum that depends on the initialization. For example,
in the reconstruction of the phantom in Fig. 23, if the initial
curve for the right lung lies completelyoutsidethat lung, then
our algorithm will not “find” the tumor inside. Unless additional
curves were introduced somehow during later annealing stages,
the boundary curve between the tumor and the right lung would
not be “found,” losing the benefit of nonlocal penalty near the
tumor. Our algorithm was able to split the initial curve shown
in Fig. 23(c) for the right lung into the two curves shown in
Fig. 23(d), one separating the lung and the soft tissue, the other
separating the tumor and the lung, because the initial curve inter-
sected both boundaries. Both boundary curves would also have
been “found” if the initial curve for the right lung were com-
pletely inside that lung.

Fig. 18. 300 K-count transmission reconstruction.

As described above, a weakness of our algorithm is its in-
ability to move past existing boundaries. Fundamentally, this
weakness is due to the fact that the curves move in the direc-
tion along which the cost function decreases the fastest, i.e., a
greedy strategy. This is a traditional difficulty with PDE formu-
lations. On the other hand, the PDE formulation (with level sets)
allows the curves to merge or split without direct intervention.
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Fig. 19. 300 K-count transmission reconstruction profiles: comparison of
Huber penalty and proposed penalty.

Hence, we do not need to initialize with the “correct” number
of curves, provided the initial curves are suitably placed as de-
scribed above.

One could partially overcome this limitation by initializing
with many small curves (e.g., circles) that would likely inter-
sect most object edges. This strategy could lead to better local
minima, although it would require more computation in the
early iterations.

The proposed nonlocal penalty produces transmission
reconstructions with better ROI bias-variance tradeoffs than a
local Huber penalty. When these transmission reconstructions
are applied to noiseless emission data, the nonlocal penalty
used for transmission reconstruction produces emission images
with smaller variances (for a fixed spatial resolution) for most
(80%–85%) pixels in the image; the median standard deviation
in the image is reduced by 35% to 50% relative to the Huber
method.

However, reconstruction using the proposed penalty is more
time consuming than using conventional local penalties. Each
cycle of the annealing process requires one “stage” of image
reconstruction. If one runs five annealing cycles, the time de-
voted to updating the image is up to five times that of the local
penalties, although for “reconstruction” stage of the second to
fifth annealing cycles, we can use fewer iterations than in the
first annealing cycle. The “boundary estimate” stage is also most
time-consuming during the first cycle of the annealing process.
Since we deliberately used initial boundaries that were far away
from the true boundary (to demonstrate the robustness of our
boundary estimation algorithm), it took about 60 time steps for
the two lung boundary curves to converge (the body and spine
boundary curves converge much faster). Each time step of curve
evolution for each of the two lungs takes about 60% of the time
needed for a single iteration of Huber reconstruction. The total
time needed by the “boundary estimate” stages in all annealing
cycles greatly depends on initialization of curves, size of the
time steps, etc. In the present implementation, the boundary es-
timate stage of the first annealing cycle takes about twice the
time of an “image reconstruction” stage. Subsequent boundary
estimations were much faster since we evolved from the curve

(a)

(b)

(c)

Fig. 20. Bias-variance plots for 300 K-count transmission reconstructions.
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Fig. 21. Emission FBP reconstruction using attenuation correction based on
attenuation maps reconstructed from 300 K-count transmission scans.

estimated by the previous cycle in the annealing process. In
total, computing the boundary estimates takes about the time
of three to four reconstructions.8

A related but fundamentally different approach to the
problem of reconstructing attenuation maps using region
information has also been proposed [39] based on the following
functional of the boundary curves:

8In the present implementation, the “boundary estimate” stage is written in
Matlab code, as compared to relatively optimized C code for the image recon-
struction stage; hence significant improvement can be made by converting the
code for “boundary estimate” to C.

Fig. 22. Histogram of� =� for emission reconstruction using
300 K-count transmission scans.

where parameterizes and is a data consistency term.
This functional was minimized by evolving a PDE to obtain
a “segmentation” of the attenuation map without actually “re-
constructing” the attenuation map [39]. That approach assumed
that the attenuation coefficient inside each region is constant,
whereas our approach allows for nonuniform regions as may
arise in clinical situations.

We have performed a preliminary investigation applying the
proposed nonlocal penalty to three-dimensional (3-D) image re-
construction [25], [26]. We have not systematically investigated
the bias-variance properties for the 3-D reconstructions, but the
interslice information should give our penalty a further advan-
tage over conventional local regularization methods.

APPENDIX

The signed distance function, as defined following (6), may
not be differentiable (in the functional sense) infor the s
that are closest to two or more points on the curve, and herein
lies the main difficulty in proving (15) rigorously. But we can
modify slightly to produce a functional that is differentiable
in for all . One way is to define by

where parameterizes the curveby arc length ,
the integer is even, and takes the or sign depending on
whether is “inside” or “outside” . Note that

as . Unlike , the above has the nice property of
being smooth in and on its domain. Replacing by in
our definition of in (6), i.e., defining
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TABLE II
NORMALIZED STANDARD DEVIATION (%) FOR THESIX EMISSION ROIS USING 300 K-COUNT TRANSMISSIONRECONSTRUCTIONS

Fig. 23. (a) Phantom with lung masses. (b) Huber-penalty reconstruction. (c) Initial curves. (d) Final estimated curves. (e) Final reconstructed image using the
proposed algorithm.

leads to the following functional derivative:

In the first equality, the interchange of differentiation and in-
tegration is legitimate becauseand are smooth, and we
use the chain rule in the second equality. Since
approaches as , where is
defined in (16) and denotes the Dirac delta, the functional
derivative of given in (15) is, in some sense, a “weak limit”
of .

Implementation-wise, there is no difference betweenand
provided is large enough that the difference betweenand
is below machine precision.
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