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Edge-Preserving Tomographic Reconstruction
with Nonlocal Regularization
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Abstract—Tomographic image reconstruction using statistical where
methods can provide more accurate system modeling, statistical
models, and physical constraints than the conventional filtered V(f) = / |Vf(a:)|2 dz )
backprojection (FBP) method. Because of the ill posedness of the

reconstruction problem, a roughness penalty is often imposed on is a measure of imade roughnésghe image estimate is ob-
the solution to control noise. To avoid smoothing of edges, which 9 9 g

are important image attributes, various edge-preserving regu- tained by

larization methods have been proposed. Most of these schemes A .

rely on information from local neighborhoods to determine the [ =arg H;}H J(f)

presence of edges. In this paper, we propose a cost function that

incorporates nonlocal boundary information into the regulariza-  where often the minimization with regard tp is restricted
tion method. We use an alternating minimization algorithm with 15 nonnegative values. The cost function in (1) is often un-
deterministic annealing to minimize the proposed cost function, satisfactory, since many images are not globally smooth.

jointly estimating region boundaries and object pixel values. Thev h ion b dari hich the | |
We apply variational techniques implemented using level-sets €y have region boundanes across whic € Image values

methods to update the boundary estimates; then, using the most ¢an vary rapidly. The quadratic regularization in (2) causes
recent boundary estimate, we minimize a space-variant quadratic edges to become blurred. In many images, small differences
cost function to update the image estimate. For the positron between neighboring pixels are often due to noise, while large
emission tomography transmission reconstruction application, we djfferences are due to the presence of edges. This assumption

compare the bias-variance tradeoff of this method with that of a a4 formed the basis for many edge-preserving regularization
“conventional” penalized-likelihood algorithm with local Huber . .
schemes proposed in the literature.

roughness penalty. M p ) \arizati hods. includi
Index Terms—Edge-preserving reconstruction, level sets, OSt. edge-preserving regu arization m(_at 0ds, Inciuding
positron emission tor%o;raphy (PgET), region-based, transmission many Ime_'S'te models, e.g., [5]._[9]' rely on information from
tomography. alocal neighborhood to determine the presence of edges, i.e.,
the penalty assigned to each pixel or clique of pixels depends
solely on pixel values within a smdiked neighborhood. (We
. INTRODUCTION return to this point near the end of this section.) One such
HE PROBLEM of reconstructing an unknown image Scheme is to replace the quadratic penalty function in (2) with
from a measurement vectgris usually ill posed [1], [2]. @ honguadratic functior that increases less rapidly than the
The direct model alone rarely determines a satisfactory sofiHadratic function for sufficiently large arguments, such as the
tion. If we find the maximum-likelihood estimate of the imagdiuber function [10], [11]
by maximizing the log-likelihood functiod( f; %), then the re-
szlting imagegis ver);qnoisy. Thus, it is ne(cess)ary to regularize V()= /T/’(Wf(x)b d
the solution by imposing priori assumptions. One simple reg-or

ularization method supposes that images are globally smooth, n df
and enforces a roughness penalty on the solution by adding a V()= /Z Y <‘ Ao ) d )
quadratic function to the negative log-likelihood. Such a “pe- i=1 ‘
nalized” likelihood cost function has the following form: where
_ . _l7)2 t| <6
I = ~L{fs )+ BV(S) @ 0= {0 e 30
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14 —— Quadratic problems) and assigns costs that prohibit disconnected regions,
-=-= Huber L encourage regularly shaped regions, and discourage having too
— — - Broken Parabola many regions. Some of these costs involve the entire image

and are, therefore, global. The Bayesian formalism permits the
exploration of estimate uncertainty, but using discrete region
labels is challenging for computing point estimates. That
method and our proposed approach share the property that the
number of regions need not be specifeegriori. Our approach

is boundary based rather than region based; boundaries are
continuous-valued, so simple gradient-descent methods are
available for computing point estimates (at local minima of the
cost function).

This paper describes a method for includmznlocalinfor-
mation, specifically, boundary information, into the regulariza-
tion method. The proposed penalty adjusts how much we pe-
nalize differences between pixels based on the distance of the

0

pixels to the nearest boundary curve. This approach involves

t regions only implicitly. However, since both the estimates for
Fig. 1. A comparison of quadratic, Huber, and broken parabola penawe boundary curves and t_he_d|3tance of a pixel t.O the boundary
functions. curves depend on the entire image, our penalty is nonlocal. We

hope to achieve better results than purely local penalties under
ﬁ%tain cases. In the specific case of emission computed tomog-

quadratic penalty, while maintaining the same level of penaIE phy, accurate attenuation correction is usually necessary for

for small differences. This property permits sharper edges in fgluantitative emission reconstruction [24]. Accuratg attenua-
reconstructed image. tion correction requires an accurate map of attenuation coeffi-

The Huber penalty is a convex function of image pixel valuegi.ems' A positron emission tomography (PET) attenuation map

One could instead use a nonconvex penalty function, such as pasists of a small numk_)er of regions, 1.€., I_ungs, Spine, body
“broken parabola” function (e.g., [12]-[16]) tissue, etc. The attenuation coefficients within each region are

fairly uniform, but they vary a great deal between neighboring
(t) = min{t?, 67} regions and the transition between regions can be fairly rapid,
e.g., across a few pixels. A regularization method that incorpo-
This function is nondifferentiable, thereby precluding graates this additional prior information, such as the one we pro-
dient-based descent methods. Instead, deterministic anneaifge, should be able to outperform a purielyal regulariza-
algorithms are usually applied, e.g., [16], where one sequdi®n method. Section Il describes our new algorithm; Section I11
tially minimizes a series of cost functions approaching tHdmpares the proposed algorithm to a “conventional” statistical
original cost in the limit. This method also uses local informaalgorithm and to filtered backprojection (FBP); Section IV sum-
tion only. Fig. 1 compares the quadratic, Huber, and brok&narizes our results and outlines possible future work.
parabola function.
Both of the above edge-preserving methods modify the II. METHOD
local penalty functionyy so as to penalize large differences .
between neighboring pixels less than the quadratic pendity N€W Cost Function
does. These methods implicitly use local information to Our development of the new cost function was motivated by
“detect” the presence of an edge locally. This local view ite specific application of PET and SPECT transmission tomog-
formalized by considering a hierarchical Bayesian model imaphy, butits use is not restricted to attenuation map reconstruc-
which a Gauss—Markov prior for pixels is conditioned on Hons. We assume that the actual object to be reconstructed is ev-
noninteracting line-site model [17]-[20]. Even when line-siterywhere differentiable. We also assume that the object consists
interactions are included in such models to encourage boundafyegions that are piecewise smooth (meaning almost uniform)
continuity, typically only small cliques are used [5], [21]-[23feverywhere except near the region boundaries where the ob-
so such approaches are still inherently local. In the contggtt intensity changes rapidly (but differentiably) to values in its
of blurred image restoration, comparatively large line-siteeighboring region(s). Thus, an edge-preserving penalty func-
neighborhood sizes that match the size of the point-sprei@mh should penalize local gradients that are within each region
function (PSF) of the imaging system have been proposed [i{pre than local gradients that are very close to the boundary
[8]. (How to apply that principle in the tomography problenturves. Furthermore, we assume that the boundary separating
of interest here is unclear since each measurement sees libilegregions consists of smooth curves. Fig. 2 shows an example
strips traversing the entire object.) None of these line-sitdbject (representing a thorax attenuation map at 511 KeV) and
models addresglobal connectivity or continuity and, thus, areone of its profiles. This object is piecewise smooth, but not
inherently local. One of the few previous methods to captupgecewise constant, due to variations in lung density.
global properties is a region-based Bayesian prior that has beehike (1), the cost function we propose also consists of a
applied successfully in tomography [6], [9]. That method usekta-fit term and a penalty term. However, our penalty considers
discrete region identifiers (motivated by image segmentatioot only the image values but also the characteristics of region

differences between neighboring pixels less severely than
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“outside” or “inside” when curves enclose other curves, but we
can define the outward normalf to be the direction in whick
is increasing. The roughness weighting functtorR — [0, 1]
maps small arguments to values near zero and larger arguments
to values near unity [see (18)]. For simplicity, we use only
hs that belong ta”*°(R), i.e., differentiable arbitrarily many
times on the entire real line.

The purpose of thg, term is to penalize image roughness,
like (3). However, in ourJ;, how much the local gradient at
a specific location is penalized is weighted by the distance of

0.1 T y T T T y this location to the boundary curves, and since this distance de-
0.00} | pends on the entire curve, the proposed penalty is “nonlocal.”
0osl Fig. 3 shows an example Fig. 3(a) shows a one-dimensional

’ (1-D) object. Fig. 3(b) shows the signed distance to the boundary

Zo.07f points; in this case, the boundary points are 440, 2, and 4; we
3 0.06} chose the sign of the distance so tt& continuous. Fig. 3(c) il-
2 lustrates the type df function we may want to use; the value of
g 0% h(d(-)) is unity well inside each region, but smoothly decreases
To.04f near the boundary curves. This approach allows larger gradients
%0.03_ in the reconstructed object close to the boundary curves. In two
_ dimensions (or three dimensions), the valuéof(-)) at every
0.02f point is determined by the distance between the point and the
0.01} . boundary curves (or surfaces in three dimensions).
0 , . , , , , As in all edge-preserving regularization methods, one must
0 20 40 60 80 100 120 140 choose carefully the weighting paramete#s;:, and the func-

ixel ind . R . .
phetincex tion & to avoid over-smoothing of the reconstructed image or

Fig. 2. Nonpiecewise-constant phantom and central horizontal profile (rdRie boundary curves. The curve length term in (5), which acts to

65). keep the boundary curves smooth, will favor shorter curves over
longer curves although the region roughness penaltshould

boundaries within the image. We present our model in two dieep this force in check. Nevertheless, the associated param-

mensions, but extension to three dimensions is straightforwaster ;. should always be small to avoid excess shrinking of the

[25], [26]. Let f denote the object; denote a family of regular boundary curves.

closed curves (i.e., no self-intersections, corners, or cusps),

I' € G denote the boundary curve(s), afidlenote the domain B. Alternating Minimization Scheme

of the image. We do not requité to have a single connected \ye yse alternating minimization to jointly minimize the cost

component, i.el’ can have several connected components, Ofiction given in (4) overf andI'. We first hold f constant

being the boundary curve between the lung and the soft tiSSUgsg minimizeJ with regard tol’. Then, using the most recent

while another one being the boundary curve between the baghitimate ofl”, we minimize.J with regard tof. We alternate
and air, etc. The number of boundaries need not be kr@Wrhetween these two steps until convergence.

priori. _ . _ 1) Boundary Update:Whenf is fixed, the second and third
We propose the following cost function of the objgcand  terms of.J depend or". We must minimize the following cost
the boundary curvel [27] function:
JU, D) =—L(f; y) + V(f, T 4
(£, D) =—L(f; 9) + V(}, T) @) JH(0) = BIr(f, 1) + g / ds @
r
V(f,T) =BJa(f, T') + / d 5
(f, D) =BL(f, D)+ s 5) [+l — argmin J. (I) (8)
Jo(f, 1) = / h(d(z, D))V f(x)|? da. (6) whereJ, was defined in (6) and» denotes the cost function
Q

J with f fixed at /™. As in standard PDE-based image analysis,

The first term—L(f; y) is the negative log-likelihood that we perform steepest descent with respedt {28]. Each point
measures the “faithfulness” of the reconstructed object to the= (x;, x2) on the boundary curvE evolves according to the
measured data. The terrfy. ds penalizes the length of thefollowing differential equation:
boundary curves, encouraging smooth boundary curves, and d S§.7.(T
discouraging large numbers of boundary curves. The term @ _ i) 9)
Jo(f, I') penalizes local gradients inside each region more than dt v
local gradients close to the boundary curvés§: x G — R where the right-hand side is the negative functional derivative of
is the signed distance fromto I, i.e., we required to have the cost function. Finding the functional derivativesjgfana-
opposite signs on the opposite sides of a segmeht ebd is Iytically is nontrivial, so the natural starting point is to evaluate
differentiable across the boundary curve. We also reqlib@ the functional derivatives numerically. (We show that this leads
be continuous insid&€. There is no intuitive way of defining to an analytical formula as well.) The functional derivative/gf
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exerted on the curve; this force is nonzero only in the neigh-
borhood ofpy; briefly exerting this force in the outward normal
direction of the curve apg causes a small perturbation of the
curve atpg in the normal direction). Using this idea, we approx-
imate the functional derivative ok, (") atv = po as follows:

%~@é1J2(’Y+z/\7)—J2(’V—z/\7)
v v 2 Ao

(10)

where 2 denotes “defined to be” ands is the area lying
between the curvE and the perturbed curve+ 2N [29].

For the second term ifi;(I"), the direction in which the curve
length decreases most rapidly is when [30]

Oy o

5 = RN (11)
i.e., the speed of the evolution at any point is the curvature of
the boundary curve at that point, and the curve evolves in the
inward normal direction. For implementation, we use the level
sets method [30]-[32] because of its simplicity. In the level sets
method, instead of evolving the curVeitself, we embed” as
the zero level set of a smooth functign R? — R such that
I' = {(z1, z2) € R%: &(z1, z2) = 0}, and evolved so that
I" evolves according to (9). As discussed in [31], this method
has several advantages over directly evoMig.g., periodi-
cally resampling the curve becomes unnecessary, and, more im-
portantly for us, topological changes of the curve occur seam-
lessly. We use the latter advantage to allow merging or splitting
of boundary curves. Combining (9)—(11), the curves evolve ac-
cording to the following:

8(x,T)

-6 -4 -2 0 2 4 6

* dv 572 —
b — = 3—= . 12
! Evolving the curve via (12) yields a curve estimate"! that ap-
proximately minimizes/ ; we call this step the “boundary es-
0.8} timation” step. (See Section |II-D for details about initialization.)
2) Image Update:For the second stage of the minimization,
=05 we holdI" fixed at its previous estimatié™ and minimize with
% ' regard tof. Whenl' is held fixed, the relevant terms in the cost
z function (4) are the following:
0.4}
Jr(f) ==L(f; y) + Bl(f, 1) (13)
02} whereJ; was defined in (6). We minimizér( ) with regard to
f as follows:
. [ = agmin Jeo (). (14)
X
(c) When updating the boundary curves using (8), Aheinction
Fig. 3. (a) Example of a 1-D object. (b) Signed distance to the boundary. {§) /2 pushes the boundary curves toward image locations
One possible: function. where the gradient is large; when updating the objeasing

(14), the 1 function imposes a space-varying weighting of
must point in the normal direction of the curve, since movemetiite penalty on local gradients. This weighting depends on
in the tangential direction would not change the curve. We céime signed distance from each pixel to the nearest estimated
use a scheme similar to the central difference method to evalubteindary curve. Every term in (13) is quadratic finexcept
local derivatives. (Central differences are usually accurate tpassibly the log-likelihood term, which involves logarithms
higher order than one-sided differences.) ketS — R? be a in the case of Poisson measurements. Thus, (14) is a standard
parameterization df, whereS is a subset dR. For a given point penalized-likelihood image reconstruction problem, and we
po on the curved’, we define a function: R — R that is zero can minimizeJ/r over f using methods such as the conjugate
except in the neighborhood g, so thaty + zA differs fromI" gradient method (if quadratic) [33], [34] or the paraboloid
only in the normal direction. (We can imagine some force beirayirrogates/coordinate descent method (if not) [35].
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band

A

Fig. 4. p, is the closest point tp, on the curve.

We iteratively alternate between the two steps (8) and (1
Both these two steps will, under ideal circumstarfcemnoton-
ically decrease the cost as defined in (4). In addition, the cos:
bounded below, so the algorithm will presumably converge t
ward a local minimum.

. . . Fig. 5. White dots denote image points; black dots denote boundary points;

C. Discretization and Implementation J» is evaluated on points represented by shaded dots.
We discretize the imagg using the usual square grid.
For simplicity, we discretize the level sets, which embed thya Wwill not cause any image point that was not closespto
boundary curves, using the same square sampling grid as previously to become closest tq after the movement of the
image. However, the sample spacings of the boundary cursgindary curve. Hence we only need to evaluate the change in
(when extracted from the zero contours of the level set) may Be on those points that are already closesptoFor an x n
finer than the image pixel spacing. The boundary curves evolWeage containing a boundary curve withsamples, evaluating
according to (12). The first term causes image-independéhe functional derivative ofl; is anO(mn) operation.
curve smoothing; its level-sets implementation is described inThe above ideas suggest the following functional derivative
[31]. In addition to the smoothing term, the evolution of thef J- (see the Appendix for an explanation):
boundary curves is influenced by the functional derivative of PA ) ) .
b 2 ([ oN P a ) £ as)
To implement (12), we observe that for a pojnt on the t

boundary curve to be the closest to a pgigin the image, the wherel(r) denotes the line perpendicular to the boundary curve
line connectingsy andp; must be perpendicular to the tangent’ at the pointy, parameterized by which increases in the di-
line of the boundary curve ak (see Fig. 4). Thus, if we make rection ofA/, i’ denotes the derivative éfwith regard to, and
a small enough perturbation of the boundary curve in a neighz(, ) is an indicator function
borhood Ofpl,' the only points in the image thgt are possibly' 1, wis the closest point iif to /()
affected by this change of the boundary curve (in terms of theirl .y, ry(r) = { 0. otherwise
distances to the curve) will lie in a narrow band perpendicular ’ ’
to the boundary curve (see Fig. 5). Since this band can be made
arbitrarily narrow by making the boundary curve perturbatioR- Initialization
small enough, we can make the approximation that the imageTo form an initial image estimate®, we perform con-
values remain constant in the lateral direction of the band angntional penalized-likelihood image reconstruction using a
evaluate the functional derivative ok using equally spaced local penalty such as the space-invariant quadratic penalty as
points on the line perpendicular to the boundary curve;at described in (1) and (2). Initialization of the boundary estimate
we use bi-cubic interpolation from the neighboring points [33]° requires greater care. Performing steepest descent with
whereV f is not available. At every time step of the evolutiorespect to (7) may not push the estimated curve toward the true
of the boundary curve, we also keep a record of which point @dundary if the initial curve is too far away from that boundary.
the boundary curve is closest to each image point. When evalThe force exerted by/, in (7) is nearly zero in smooth
uating the functional derivative of, at a pointp;, we make regions, and is significant only close to the actual boundary
the approximation that a very small movement in the curve negirves where local gradients are large. Fig. 6 illustrates this

2Under realistic circumstances, wheieis taken to be finite, the minimiza- property in one dimension. Lg”l’ denote the derivative qf In

tion of (7) according to a discretized version of (9) may not be exactly monil€ z direction; letl’, denote the “old” _boundary point at 0.3
tonic. Such effects are inevitable when continuous formulations are discretizahdI",, denote the “new” boundary point at 0.35. Moving the

(16)
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Fig. 6. lllustration that/> only changes slightly when the “curve” is far from 1
the true boundary point.
boundary point” from 0.3 to 0.35 would changa(d(-, I)) o8y
from h(d(-, T';)) to h(d(-, T';,)), i.e., the “valley” of h(d(-, ")) _
is moved from 0.3 to 0.35, but the change in the roughness £06f
penalty, i.e.,[(h(d(x, I'y)) — h(d(x, T',)))|f'| dz, would be
very small. Thus, evolution via (12) alone would require a 0.4}
fairly close initialization to the actual boundary curves. We
circumvent this problem by using an initialization procedure .|
for the boundary curves employing another force (from a
global measure) that ensures that the boundary curves move 0
even when the initial boundary curves are far from the actual -5 0 5
boundary. During the early iterations, we add a third penéjty )
(within-region homogeneity) td; as follows:
M) Fig.7. (a) Implicith function used in local regularization. (b) Edge-preserving

h function as a function of signed distance to the boundary curves.

T =BTy [ st Y @l R (D)
m= tomographic reconstruction using a standard space-invariant
Jr [z dz'? penalty. There is né function as given in (6) in such a recon-
J3(f, Rm) = /7? - W struction, but we can think df as simply being a constant, say
"“ R unity [Fig. 7(a)], i.e.,h is independent of the boundary curves.
whereR,,,(I') C Q denotes thenth region defined by’, and But for the reconstructed image to have sharp boundaries, we
M (T") denotes the number of regions definedlbyThis J; pe- must assign small weights to differences in pixel pairs close to
nalizes the difference between each pixel value and the aver#dgeboundary curves, e.g., as shown in Fig. 7(b). To avoid get-
value of its region. This global measure exerts a force on thiag stuck in a poor local minimum, we must change the shape
curve no matter how far the boundary estimate is from the imageh function gradually from the initial constant function to the
gradients. The evolution of the curve, as determinedys es- desiredh function, i.e., we employ deterministic annealing.
sentially a competition between bordering regions. Each pixel|nstead of going from the implicit constant function to the de-
on the curve borders two regions; each of these two regions gied/, function in one step, we take several steps. Suppose that
erts a force trying to pull the pixel inside; the boundary curvegom empirical experience with a given category of images with
will evolve toward whichever region exerts a stronger force, @gmjlar noise levels (e.g., 3-min PET transmission scans of the
determined by (17). We gradually reduceo zero. Eventually, thorax), we have found that the boundary curves we obtain from
we rely on.J, alone to move the curve to a local minim@of oy injtial image are within, say, five pixels. Then we assign
Jy (D). small weights (via thé function) to all pixel pairs within a dis-
tance of five or six pixels to the detected boundary curves, and
assign large weights (unity) to all other pixel pairs; thus, neigh-
To form an initial estimate of the imagg prior to applying boring pixels that are more than five or six pixels away from the
boundary estimation step, we perform penalized likelihoagktected boundary curves will be coupled, while the boundary
3 . , I . . curves are allowed to evolve within those pixels between which
n practice, we run a fixed number of iterations determined sufficient for t . .
boundary curves to converge to a local minimum. One could also stop the cu%@ weights are very small. We gradually evolve thieinction
evolution when the maximum force exerted.byfalls below a preset threshold. from the constant function toward the final desifeflnction,

f(z) dz a7

E. Deterministic Annealing



YU AND FESSLER: EDGE-PRESERVING TOMOGRAPHIC RECONSTRUCTION WITH NONLOCAL REGULARIZATION 165

12 .
BEGIN
1 - 7
Raw Data ¥
osh Setn =0 l
£o0s Reconstruct an
initial image f° using
0.4} a local penalty
0.2 e R LR L T .
One annealing cycle
% 0 5
5 Increment n

!

Fig. 8. The evolution of function, where> has units of pixels.

Choose h
as shown in Fig. 8. Hopefully, the final boundary curves will via (18)
eventually be a very good local minimum. The functions used {
in Fig. 8 are [16] Evolve boundaries
—bAt? —b
h(t) = —log & 2+ ¢ (18) obtaining "™
i

with (b, A) = (2.5, 1/6), (5, 1/4), (15, 2/5), (25, 1), and (50,
3). Evolving himitial tg pdesired ygyally involves four to five
“cycles”; one cycle consists of two stages, i.e., the “image re-
construction” stage, and the “boundary estimate” staiigy. 9
shows a flow chart of the proposed algorithm.

This deterministic annealing procedure is somewhat related
to graduated nonconvexity methods, e.g., [16]. However, there
are also significant differences between how the “broken
parabolas” are used here versus in line-site models. Here, the
argument ofh is thedistancebetween a pixel and the nearest
boundary curve point; through, this distance controls the
strength of the (quadratic) penalty between neighboring pixels
[see (6)]. In contrast, in (noninteracting) line-site models, the
broken parabola function is itself the penalty assigned to the
difference between pixgjrayscale value§l8], [20], and there
is no explicit concept of “distance” or “boundary curve.”

Calculate penalties h(d(-,I'"))
between pixels according to
boundary estimates via (6)

{

Reconstruct a new image f"

Reconstruction

using these penalties via (14)

via (12)

Image Boundary
i Estimation

Continue-
annealing?

Final I'®, f™
Il. STATISTICAL RESULTS

In this section, we compare the proposed algorithm fo
the edge-preserving reconstruction method described in [3
which is based on local regularization, hereafter referred to
as the “Huber method,” in terms of bias-variance tradeoffECAT921 PET scanner. For simplicity we simulated rays with
We simulated PET transmission scans of a digital phantg#iual spacing of 0.3375 cm. Random coincidences account for
that resembles the human thorax (at 511 keV). The body Hfout 5% of the recorded counts. We performed two studies,
attenuation coefficient 0.096/cm. Within the body are tw@ne with 1 M counts, the other with 300 K counts (comparable
“lungs™; the left lung has nonuniform attenuation coefficientd¥ith 10- and 3-min scans, respectively). Our initial image was
the right lung has uniform attenuation coefficients; both lunggconstructed using conventional space-invariant quadratic
have average attenuation coefficient 0.022/cm. The “spingenalty over first-order neighbors for the proposed method.
has uniform attenuation coefficient 0.14/cm. Fig. 2 shows thide boundaries were initialized manualgs shown in Fig. 10.
phantom and a central profile. The image has £2B28 square ~ We analyzed three regions of interest (ROIs) in the recon-
pixels, each of width 0.42 cm. The sinogram consisted of 18fructed attenuation maps: the (true) left lung (region 1), the
radial samples and 160 angular samples, similar to the c{fiue) right lung (region 2), and a 5 region (region 3) near

4The h™s need not be different for every cycle; one niajixed for a few 5An automatic procedure could be easily developed to obtain better initial
cycles. boundaries, which would reduce computation time.

. 9. Algorithm flowchart.



166 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 2, FEBRUARY 2002

i - . i
-".-l-- 1\.
ﬂi II tl"
f ln I|
R \ /
, o .‘__..-";
e -

e
= -

e -

Fig. 10. Initial contours for simulation study.

Huber penalty

Fig. 11. The three ROIls; region 1: left lung; region 2: right lung; and region
3: the 5x 5 square region.

the heart, as shown in Fig. 11. We performed 50 realizations
with pseudo-random Poisson noise. For itierealization, we
computed three ROl means;;, mb, andmj, via

Pl
mﬁ;z%, i=1,...,50 (19)
JERE
where R, is the set of pixels in théth region andﬂj. de- Proposed penalty

notes the estimated attenuation coefficient of ftte pixel in
theith reqlizatiqn. Then we computed the sample méans= Fig. 12. 1M-count transmission reconstruction.
(1/50) 2‘;21 m},) and the sample standard deviatigas,, =

(1/49) 3°72, (mi, —71)2) of the three ROl averagek, =  struction methods. Fig. 13 compares profiles (row 65) from the
1---3. For the Huber penalty, we plotted the bias versus thuber and proposed reconstruction methods, shown at similar
standard deviation of the ROl values as a function of the regulaias levels. The proposed method yields less variance than the
ization parametef, for four 6: 0.002/cm, 0.004/cm, 0.008/cm, Huber method at this bias level. Fig. 14 confirms this initial ob-
and 0.02/cm. (Results fat = 0.04/cm were nearly identical servation quantitatively by plottingthe bias against the vari-
to those foré = 0.02/cm, so are not shown.) The difference irance of the ROIs defined above. Among Huber penalties,
attenuation values between the lung region and the soft tis§Li@2/cm produced the best bias-variance curve for regions one
region is about 0.08/cm, while the difference between the spiaad two, while for region threej = 0.002/cm produced the
and the soft tissue region is about 0.04/cm, which is also thest bias-variance curve. For an image with multiple contrasts
minimum contrast between neighboring regions; equatitg like the one used here, it is very difficult to optimize since
one-tenth of this minimum is often effective [36]‘ For the pro- SError bars in the bias direction are too small to be shown, and the “bounce

posed penalty, we manually selecigdndh to cover a range back” in the bias-variance curves for the Huber penalty is due to the nonneg-
of bias-variance tradeoffs. ativity constraint we place on our estimates; heuristically, when the smoothing

. . o arameter is small, the reconstructed image is noisy and many pixels have neg-
For the high count case, Fig. 12 shows one realization fralf\,e vaiues, but the nonnegativity constraint makes them 0 causing a large pos-

the FBP, Huber (with = 0.004/cm), and proposed recon-itve bias.
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Fig. 13. 1M-count transmission reconstruction profiles: comparison of Huber
penalty and proposed penalty. 5 T T T T I I
+ Huber: 3=0.002
45k o Huber: §=0.004
no singles can produce the best bias-variance curves for all tl_ X Huber: 8=0.008
. . . X : 8=0.
ROIls. This is a drawback of Huber-like penalty functions. & 4] ® Huber: 5002 )
) . o s o Proposed method
To investigate how the proposed nonlocal regularization pé¢g
forms when the transmission map is used for attenuation cg3-5f
rection of emission reconstructions (for details, see [37]), Vg
simulated noiseless PET emission scans of the digital phant2
shown in Fig. 15. The relative radioactivity concentration of th® o5t
lungs, spine, heart, and body were 12, 9, 40, and 22, respg
tively. The emission projections included the effects of nonurg ol
form attenuation corresponding to the attenuation map in Fig.2
We reconstructed emission images using FBP with attenuat 1.5}
correction based on two sets of transmission maps: one set |
ularized by the proposed nonlocal penalty, and the other set 15 10 20 30 40 50 60 70 80
the Huber penalty. normalized bias (%)
Fig. 16 shows emission reconstructions using transmission (b)
maps reconstructed with the Huber penalty and the proposeg . .
penalty. To compare the effect of the two different penalties « + Huber: §=0.002
the emission reconstruction, we selected two groups of recc 7} © Huber: 3-0.004
structed transmission maps, one using the Huber penalty, i | T, A :EEZ:: g=8'828
. o - . =U.
the oth.er using the prqpo§ed penalty. Then [38].W'e smoothgs- W o Proposed method
the projection of the emission phantom (applied with ideal atteg
uation, i.e., the attenuation of each line of response is obtair§5'
from the true attenuation coefficients) and the transmission ma
so that the resolution of the final emission reconstructions usi2 4[
3]
Huber penalty and the proposed penalty matched each other.®
. . . . T3P
use the following simple method to determine the resolution §
a set of reconstructions. Given the ideal imagje and the av- Ei of
erage reconstructed imagethe resolution of: is s
1 3
. .12
argmin Y [[Gop'™; — (200 . . . . . .
7 jem 0 2 4 10 12 14

whereG,, represents a Gaussian smoothing filter with FWHM

6 8
normalized bias (%)

©

o, and M denotes a mask used during reconstruction. Tabl&i. 14. ROI bias-variance plots for 1M-count transmission reconstruction.
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(a)

Fig. 15. Emission phantom.

shows the normalizédstandard deviation (in units of % for the
mean of the six regions of 8 3 pixels as defined in Fig. 15,
with a fixed spatial resolution of 4.2 pixels FWHM. The noise
is significantly reduced in the interior ROIs, and is statistically (b)
comparable for the boundary ROIs.
We also calculated the empirical standard deviation of each
pixel for both the proposed method and the Huber method, at a
fixed spatial resolution of 4.2 pixels FWHM. For each pixel
in the image we computed

50 50 2
2 11 2: §i _ 1 Z Nk
=1 k=1

WhereS\j denotes the estimated emission intensity of ftte
pixel in thesth realization. Fig. 17 shows a histogram of the ra-
tios of these standard deviatior{sr,}“"posed Joiuber 5 e M},
For 85.8% of the pixels, the proposed method produced lower
standard deviations than the Huber method. The median reduc-
tion in the standard deviations was 47.1%.
We performed similar studies for the low count case.
Fig. 18 shows one realization from the FBP, Huber (with
6 = 0.004/cm), and proposed transmission reconstruction
methods. (The streaks in the FBP reconstruction in this case are
caused by the fact that some rays recorded zero counts). Fig. 19
compares two profiles (row 65) from the Huber and proposed
reconstruction methods; these profiles came from images of
similar bias. Fig. 20 shows the bias-variance tradeoffs for the
three regions as illustrated in Fig. 11. Fig. 16. Emission FBP reconstruction using attenuation correction based on
Fig. 21 shows the emission reconstructions from noisel %ﬁ:3ggfger?g;;r:ﬁgn(it)rgfé%%g’g’pﬁéﬁym transmission scans by (a) FBP,
emission data corrected using transmission maps regularized by
the proposed penalty and the Huber penalty. The heart region
is much more uniform in reconstructed images using the pritie boundary curve initialization. Fig. 23(d) and (e) show the
posed penalty than using the Huber penalty. Fig. 22 shows firel boundary curveb and final imagef estimated by the pro-
histogram oforoposed /oHuber fOr all pixels within the image. posed algorithm, respectively. Fig. 23(b) shows the reconstruc-
For 81.7% of pixels, the proposed penalty produced lower staion using the Huber penalty. Even though the initial curve for
dard deviations than the Huber penalty. The median reductithre right lung had only one connected component, the algorithm
in the standard deviations was 34.6%. Table Il shows the n@-capable of topological changes and automatically separated
malized standard deviation (in units of %) for the mean of thato two connected components, one forming the boundary be-
six regions of 3x 3 pixels as defined in Fig. 15, with a fixedtween the mass inside the right lung and the right lung, the other

(e)

spatial resolution of 6.4 pixels FWHM. forming the boundary between the right lung and soft tissue.
Finally, we present an anecdotal example of reconstruction
of a more complex transmission phantom, shown in Fig. 23(a). IV. DISCUSSION ANDCONCLUSION

There are two masses inside the right lung. Fig. 23(c) ShOWS\Ne have presented a new regularization method for tomo-

"Normalized by the mean of each region. graphic image reconstruction based on a nonlocal penalty func-
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TABLE |
NORMALIZED STANDARD DEVIATION (%) FOR THE SIX EMISSION ROIS USING 1M-COUNT TRANSMISSION RECONSTRUCTIONS

| e m.:.; . T .f:lmwu'n-'.'.lr
H-:::_qinn_ ; [ 1 ik 2 ;] 4 5 ¥
Fluberpenalty | 48 +05 | 110+ 11 | 67207 | 4E£15| 164+ 1.6 | 159+ 1.6
Proposed penabty | 112001 | B1£08 [1.8£02 [ 144204 [ IT1£ LT[ 181 £ 1.8
800 T T r FEBP
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Fig. 17. Histogram ob ,;oposed/THuber fOr €Mission reconstruction using
1M-count transmission scans.

tion. In conventional local regularization methods, including
most line-site models, the roughness penalty assigned to dif-
ferences between neighboring pairs of pixels (or to cliques of
pixels) depends solely on pixel values within a srfiadlocal
neighborhood.

Like line-site models, our regularization method is
shift-variant: the roughness penalty strength is reduced Huber penalty
near object edges. Unlike line-site models, however, in the pro-
posed approach the penalty function for any pair of neighboring

pixels depends on the nearest point to the entire boundary
curve, which makes our penalty nonlocal. The region-based
Bayesian prior of [6], [9] is also nonlocal. Since we only use
closedboundary curves, our penalty is implicitly region based;
in fact, we use a region-based penaltyduring the early stages
of our reconstruction.

Since our algorithm is a descent method, the iterates approach
alocal minimum that depends on the initialization. For example,
in the reconstruction of the phantom in Fig. 23, if the initial

curve for the right lung lies completelyutsidethat lung, then

our algorithm will not “find” the tumor inside. Unless additional Proposed penalty

curves were introduced somehow during later annealing stages,

the boundary curve between the tumor and the right lung woufit§: 18- 300 K-count transmission reconstruction.

not be “found,” losing the benefit of nonlocal penalty near the

tumor. Our algorithm was able to split the initial curve shown As described above, a weakness of our algorithm is its in-
in Fig. 23(c) for the right lung into the two curves shown irability to move past existing boundaries. Fundamentally, this
Fig. 23(d), one separating the lung and the soft tissue, the otharakness is due to the fact that the curves move in the direc-
separating the tumor and the lung, because the initial curve inteéon along which the cost function decreases the fastest, i.e., a
sected both boundaries. Both boundary curves would also haveedy strategy. This is a traditional difficulty with PDE formu-
been “found” if the initial curve for the right lung were com-lations. On the other hand, the PDE formulation (with level sets)
pletely inside that lung. allows the curves to merge or split without direct intervention.




170

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 2, FEBRUARY 2002

012l * Proposed penalty | 6 + Huber: §=0.002
- i El;g?r penalty 5.5 & O  Huber: $=0.004
_ *  Huber: 8=0.008
0.1}t & 5r -~ A Huber: $=0.02
c 7 o Proposed method
S45
= -
= > ‘/
go.os 3 4
b} 'e )
© 5]
£0.06} B35
@ 8
¥ [} s
2 3
0.04f 8.8
E
o L
0.02} € 2
1.5}
0 OC) L ' L L L
0 20 40 80 ndex 0 100 120 0 10 20 30 40 50 60 70 80
P normalized bias (%)
Fig. 19. 300 K-count transmission reconstruction profiles: comparison of
Huber penalty and proposed penalty. ()
6 —
o . 7 + Huber: 8=0.002
Hence, we do not need to initialize with the “correct” numbe 5.5} ©  Huber: $=0.004
of curves, provided the initial curves are suitably placed as c__ 5 *  Huber: 3=0.008
. 0 o 7 .
scribed above. & : 2 ;'uber- 8d=0-0t2;1 g
One could partially overcome this limitation by initializingg45. roposec metho

with many small curves (e.g., circles) that would likely |nter>
sect most object edges. This strategy could lead to better Iog ar
minima, although it would require more computation in ths s s}
early iterations.
The proposed nonlocal penalty produces transm|SS|15 3r
reconstructions with better ROI bias-variance tradeoffs thar No
local Huber penalty. When these transmission reconstructlcs
are applied to noiseless emission data, the nonlocal pen:i2 2f
used for transmission reconstruction produces emission ima
with smaller variances (for a fixed spatial resolution) for mos

stan

(80%—85%) pixels in the image; the median standard deviati 1
in the image is reduced by 35% to 50% relative to the Hub
method.

However, reconstruction using the proposed penalty is more
time consuming than using conventional local penalties. Ea~h

10 20 30 40

50

normalized bias (%)

(b)

60

70 80

cycle of the annealing process requires one “stage” of ima ,[*
reconstruction. If one runs five annealing cycles, the time d
voted to updating the image is up to five times that of the Ioc
penalties, although for “reconstruction” stage of the second T = 10F
fifth annealing cycles, we can use fewer iterations than in th—
firstannealing cycle. The “boundary estimate” stage is also m(<D
time-consuming during the first cycle of the annealing procecc 8
Since we deliberately used initial boundaries that were far awE
from the true boundary (to demonstrate the robustness of & g
boundary estimation algorithm), it took about 60 time steps g
the two lung boundary curves to converge (the body and spi5
boundary curves converge much faster). Each time step of cuE ar
evolution for each of the two lungs takes about 60% of the tin<
needed for a single iteration of Huber reconstruction. The to
time needed by the “boundary estimate” stages in all anneal

ap x O +

Huber:
Huber:
Huber:
Huber:

Proposed method |

6=0.002
6=0.004
6=0.008
6=0.02

cycles greatly depends on initialization of curves, size of tt
time steps, etc. In the present implementation, the boundary
timate stage of the first annealing cycle takes about twice the
time of an “image reconstruction” stage. Subsequent boundary

o

0
normalized bias (%)

©

estimations were much faster since we evolved from the cunryg. 20. Bias-variance plots for 300 K-count transmission reconstructions.
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Fig. 22. Histogram ob p,oposed/omuber fOr €mission reconstruction using
300 K-count transmission scans.

wherep parameterize€” and W is a data consistency term.
This functional was minimized by evolving a PDE to obtain
a “segmentation” of the attenuation map without actually “re-
constructing” the attenuation map [39]. That approach assumed
that the attenuation coefficient inside each region is constant,
whereas our approach allows for nonuniform regions as may
arise in clinical situations.

We have performed a preliminary investigation applying the
proposed nonlocal penalty to three-dimensional (3-D) image re-
construction [25], [26]. We have not systematically investigated
the bias-variance properties for the 3-D reconstructions, but the
interslice information should give our penalty a further advan-
tage over conventional local regularization methods.

Huber penalty

APPENDIX

The signed distance functieh as defined following (6), may
not be differentiable (in the functional sense)lirfor the zs
that are closest to two or more points on the cdfyand herein
lies the main difficulty in proving (15) rigorously. But we can

Proposed penalty modify d slightly to produce a functional that is differentiable
in I for all z. One way is to definé,: (2 —I') x G — R by
Fig. 21. Emission FBP reconstruction using attenuation correction based on 1 —1/q
attenuation maps reconstructed from 300 K-count transmission scans. d(z,T) ==+ < / ds)
s llv(s) — ||

estimated by the previous cycle in the annealing process.Wherey parameterizes the cunieby arc lengths € S C R,
total, computing the boundary estimates takes about the tithe intege is even, and,, takes thet or — sign depending on

of three to four reconstructiors. whetherz is “inside” or “outside”I". Note that
A related but fundamentally different approach to the —1/q 1
problem of reconstructing attenuation maps using region </ 1 ds) N [max #}
information has also been proposed [39] based on the following \./s [|7(s) — [ pel [lp — ||
functional of the boundary curves: = min [[p — || = d(z, I')
P
A
_ y asqg — oo. Unlike d, the aboved, has the nice property of
) = /0 WCDIC )] dp being smooth in: and~ on its domain. Replacing by d, in

8In the present implementation, the “boundary estimate” stage is written FHT definition of./5 in (6)' I.e., deflnlng

Matlab code, as compared to relatively optimized C code for the image recon-

struction stage; hence significant improvement can be made by converting the 7 = hid r 24
code for “boundary estimate” to C. 2(f, 1) QT ( (I(x’ NIV (@) de
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TABLE I
NORMALIZED STANDARD DEVIATION (%) FOR THESIX EMISSION ROIS USING 300 K-COUNT TRANSMISSION RECONSTRUCTIONS

Interior Boundary
Region 1| 2 3 4 | 5 6
Huber penalty 50£05]141+14]90+0.9 || 140+1.4|15.7+16 | 153+1.5
Proposed penalty || 1.7+0.2 | 85+09 | 39404 | 134+13[18.0+18|149+15

(a) (b)

O

(€ (d) (e)

Fig. 23. (a) Phantom with lung masses. (b) Huber-penalty reconstruction. (c) Initial curves. (d) Final estimated curves. (e) Final reconagectsithinthe
proposed algorithm.
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