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Abstract—iterative coordinate ascent algorithms have been slowly since they simultaneously update all parameters. Fast
shown to be useful for image recovery, but are poorly suited to converging algorithms are particularly desirable when large
parallel computing due to their sequential nature. This paper three-dimensional (3-D) images are used or when time becomes

presents a new fast converging parallelizable algorithm for . tant i h . dical i . d mi
image recovery that can be applied to a very broad class of an importantissue such as in medicalimaging and microscopy.

objective functions. This method is based on paraboloidal sur- Several algorithms have been proposed to improve the conver-
rogate functions and a concavity technique. The paraboloidal gence rate. One example is the space-alternating generalized
surrogates simplify the optimization problem. The idea of the EM (SAGE) algorithm [3], [4] that converges quickly but is

concavity technique is to partition pixels into subsets that can ; : s . .
be updated in parallel to reduce the computation time. For fast typically nonparallelizable. Similarly, the classical coordinate

convergence, pixels within each subset are updated sequentially@Scent algorithm, which updates parameters sequentially each
using a coordinate ascent algorithm. The proposed algorithm is iteration, is nonparallelizable, and furthermore does not have
guaranteed to monotonically increase the objective function and an explicit form for the update. To obtain a closed form for
intrinsically accommodates nonnegativity constraints. A global the update, one can use a coordinate ascent algorithm with
convergence proof is summarized. Simulation results show that
the proposed algorithm requires less elapsed time for convergence NeWt_on-Raphson updates (CA-NR) [5]. H_owever,.the_ CA-NR
than iterative coordinate ascent algorithms. With four parallel ~@lgorithm is not guaranteed to converge if the objective func-
processors, the proposed algorithm yields a speedup factor of 3.77tion is nonquadratic. The paraboloidal surrogate coordinate
relative to single processor coordinate ascent algorithms for a ascent (PSCA) algorithm [6] solves the convergence problem
three-dimensional (3-D) confocal image restoration problem. of the CA-NR algorithm by maximizing paraboloidal sur-

Index Terms—Confocal microscopy, coordinate ascent algo- rogate functions instead of directly maximizing the original

rithm, image restoration, maximum likelihood estimation. objective function. However, the PSCA algorithm is still not
parallelizable. In summary, existing algorithms are either fast
I. INTRODUCTION converging, as in the CA-NR or PSCA algorithms, or fully

) o parallelizable, as in the EM algorithms, but not both.

S:;AT'S_“CAL methods such as maximum likelihood (ML), This paper presents a new, fast converging, parallelizable

enalized maximum likelihood (PML), and maximum  gigorithm called partitioned-separable paraboloidal surrogate
posteriori (MAP). estimation have been widely appl_ied 10 régoordinate ascent (PPCA). This new approach overcomes
cover degraded images. Because closed form solutions are y&e-convergence rate and parallelizability tradeoff of existing
ally unavailable, |_terat|ve maximization algorlthm_s are ”e_edeglgorithms [7]. To provide parallelizability, we partition the set
This paper de.scnbes anew fast monotonic al_gonthm forimagepixels into subsets that are updated in parallel, usually by a
recovery that is well suited to parallel computing. different processor for each subset to reduce execution time. To

Many algorithms for PML/MAP image recovery have beeyqyide fast convergence, each processmyuentiallyupdates

constructed; however, no existing algorithm has all the propgfe pixelswithin each subset. This approach captures most
ties of an “ideal” algorithm such as fast convergence rate, quigk the rapid convergence of the CA algorithm, but remains
computation time, stability, simplicity, and parallelizability parajlelizable. A simplistic implementation of this idea would
Expectation-maximization (EM) algorithms [1], [2] are widelynot ensure convergence; therefore, we derive the algorithm by
used to compute ML estimates. Although EM algorithms atgy5\ying optimization transfer principles. This approach guar-
simple to implement and guaranteed to converge, they conveggifees that the proposed algorithm will monotonically increase

the objective function. It also intrinsically accommodates the
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TABLE |
ACRONYMS AND DESCRIPTION OFDIFFERENT ALGORITHMS. “SPEED’ REFERS QUALITATIVELY TO THE
COMBINATION OF NUMBER OF ITERATIONS AND EXECUTION TIME PER ITERATION

Acronym Algorithm Name Parallelizability | Speed | Guarantee of Convergence
EM Expectation-maximization algorithm [1,2] Yes Slow Yes
SAGE Space-alternating generalized expectation-maximization [3,4] No Medium Yes
SPS Separable paraboloidal surrogates [2] Yes Slow Yes
PSCA Paraboloidal surrogate coordinate ascent [6] No Fast Yes
CA-PS Coordinate ascent with parabola surrogates No Slow Yes
GCA Grouped coordinate ascent [8-10] Partially Medium Yes
PPCA Partitioned-separable paraboloidal surrogate coordinate ascent [7] Almost fully Fast Yes
CA-NR Coordinate ascent with Newton-Raphson updates [5] No Fast No
CA,P Coordinate ascent with precomputed curvature No Fast No
PSCAP PSCA with precomputed curvature [6] No Fast No
PPCA,P PPCA with precomputed curvature Almost fully Fastest No

each group of pixels. This approach does not fully capture the Il. THE PROBLEM

fast convergence properties of CA, and thus the GCA algorithm
converges slower than the proposed PPCA algotithm graded by blur and noise. To recover the original image, one

The parallel successive overrelaxation (PSOR) method [ﬂj - -
: ) o : n use the statistical characteristics of the measurement system
using domain decomposition techniques was proposed Egr

solving the five-point and nine-point stencil approximation o specify an objective function that is maximized. In this paper,

Poisson’s equations, but it is inapplicable to the more gene\%ﬁ consider a very broad class of objective functions having the

optimization problem of interest in imaging. owing form:
We implemented the proposed algorithm using direct con- m
volution rather than fast Fourier transform (FFT) algorithms, O(z) = Zz/)i([Bx]i) (@H)
so that it easily extends to problems where the space-invariant i=1
property is inapplicable or invalid such as in positron emission . .
tomography (PET) and single photon emission computed i§herez & R represents the true image aftlis anm x p
mography (SPECT) systems. In microscopy, many papers sieatrix that typ|cally- mcludes poth amy X p system matrix
as [12], [13] have assumed space-invariance of the microscopdd amnr x p coefficient matrix of a roughness penalty func-
and thus EM algorithms using FFT techniques have belfin wherem = mp + mg,my is the number of measure-
applied to reduce the computation time. However, since oents, andn is roughly the number of neighbors of pixels.
long-term interest is space-varying systems, we derived ther¢ = 1,...,my, eachy; function characterizes the agree-
proposed algorithm in image space rather than frequency spd8ent between a noisy measurement and a linear function of
This paper is organized as follows. Section Il describes tiee unknown image, namelBz]; = >%_, bijz;. Fori =
image recovery problem. Section Ill reviews some existing akr, + 1, ..., m, eachy; function corresponds to the roughness
gorithms. Section IV presents the proposed algorithm in a gg¥enalty function due to the ill-posed nature of the problem. Sec-
eral form suitable for many applications. Section V discuss#ien VIl shows a concrete example where some ofithéunc-
convergence of this algorithm. Section VI compares the convéiens correspond to a Poisson log-likelihood function, which de-
gence rate of the proposed algorithm with other algorithms. seribes fluorescent photons detected at a photodetector in a con-
Section VII, the proposed algorithm is specifically applied tébcal microscope system, and the remainipdunctions repre-
image restoration for confocal microscopy. Since a 3-D imagent a nonquadratic penalty function. We assume that the objec-
from a confocal microscope has poor resolution, especiallyfiie function has a unigue global maximum. Thus our goal is to
the axial direction, due to out-of-focus contributions from othesstimater by finding the maximizer of the objective function as
planes, image restoration techniques have been applied tofefiows:
move the out-of-focus contributions and reduce elongation in
the axial direction. Simulation results are presented in Section &
VIII and conclusions are given in Section IX. Since several al-

gorithms are mentioned in this paper, for convenience, we SUfilje \jL, PML, and MAP estimators are all special cases of
marize their acronyms and description in Table |. this maximization problem. We focus on the nonnegativity con-

1Matlabm-files for comparison are available at http:/fwww.eecs.umich.edgtrained problem, but o_f course all the algorithms are also appli-
~fessler. cable to the unconstrained case.

In image recovery problems, the measurements are usually

arg Ingé( O(x). (2)
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Rather than using (4), we choose surrogate functit{as ™)
that satisfy the following sufficient conditions:

1) ¢(z";2™) = ®(z");

2) ¢(z;z™) < @(x) forz > 0;

3) (8/(0;))p(w; 2™)|wman = (8/(0;))®(2)|wman, V.
The third condition follows from the other conditions for differ-
entiable surrogate and objective functions.

The following subsections summarize some existing algo-
rithms illustrating the convergence rate and parallelizability
tradeoff.

Objective function

A. Separable Paraboloidal Surrogates (SPS) Algorithm

X To obtain a fully parallelizable algorithm, the surrogate func-

n n+1 A
X

X X tion ¢ should be separable so that we can simultaneously update
Fig. 1. lllustration of a surrogate functian the unknown parameters. Like the EM algorithms, the SPS algo-

rithm is fully parallelizable. It is derived by using the concavity
technique developed by De Pierro [2].
To derive the SPS algorithm, we begin by considering the
Many existing algorithms have been applied to obtain a mafe!lowing quadratic surrogate function:
imizer of ®(z) in (2). Generally there is a tradeoff between con- AL
vergence rate and parallelizability. Although EM algorithms are O(z) 2 Q(z;2") = qi([Bali; [Bx"]:). (5)
guaranteed to converge to at least a local maximum, they con- i=1
verge very slowly. However, EM algorithms are usually fullyrhe separable paraboloidal surrogate functigriies below
parallelizable. At the other extreme, the CA algorithm, whicthe objective function and is constructed from the paraipla
updates the unknown parameters sequentially, converges mbating the following form:

Ill. PREVIOUS ALGORITHMS

faster than the EM algorithms. However, the CA algorithm is . 1

Directly maximizing the objective function in (2) is difficult (6)
wheni);’s are nonquadratic, such as for the log-likelihood func- N " » o ) !
tion of Poisson noise. To simplify the optimization problem anffNereti’ = [Ba"l = >_7_, bi;aj, ¢ denotes the first deriva-

to assure monotonic increases in the objective function at edi4s of ¥:, and ¢;(t7) represents the curvature of the parabola

iteration, one can apply an optimization transfer approach % i )- According to the sufficient conditions previously men-
finding a “surrogate” functiorp (Fig. 1) that lies below the ob- U ne_d_, we choose the parabola in (6) to satisfy the following
jective function. conditions:

As illustrated in Fig. 1, in the optimization transfer function 1) @(t7;¢") = ¥:(t7);
approach, we obtain the next estimate by maximizing the surro-2) (t;t;') < ©i(£),Vt € {[Bz]; : z > 0};
gate functioa: 3) ¢:(t7;t7) = u(t}).

To obtain the fastest convergence rate while still guaranteeing

3) monotonicity, we choose the optimal curvature [6] as follows:
cSPt (t7) = min {c >0:(t) = (E)

T

:L,n-l—l

A n
= argmax P(z; ")
wherez™ denotes the estimate at théh iteration. Choosing a Cn € a2 7
surrogate functionp that satisfies the following monotonicity + o (87) (E = 8) — 2 (t—1) } -
condition ensures that the iterate® will monotonically in-

oo _ As shown in [6], if¢; is strictly concave and);(¢) is strictly
crease the objective functiah [6], [9], [10]:

convex fort > 0, then a parabolg; of form (6) exists and satis-
" e n fies the above three conditions. Therefore, the optimal curvature
(@) = @(2") 2 a;27") — P(a"2"), Ve 20 (4 canpe expressed as shown in (8) at the bottom of the page. The

2In practice, it usually suffices for the next iteration to simply increase th%lymbOI[g]+ representg '_f 920 and 0 Ifg < 0. These condi-
surrogate function rather than requiring a strict maximization.of tions ony; are onlysufficientconditions. There are many other

vt (4m) [(ts)Q (1/’71 (') —:(0) — t?%(t?))] .t >0 o
G i) = i N
o) £ =0.
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1h;'s for which ¢; exists such as the broad family potential func- The SPS algorithm is closely related to the “half-quadratic”
tion discussed above (40) in Section VII. optimization methods [14]-[17]. However, the quadratic sur-

To construct a separable surrogate function, we apply the adgate (6) applies to a broader family ¢f's than the half-
ditive concavity technique developed by De Pierro [2] to thguadratic approach, and the derivation of the paraboloidal sur-
quadratic surrogate functions. First, we rewrite the argumeawigate? is somewhat simpler than the corresponding derivation
[Bz]; in (1) as follows: of half-quadratic algorithms.

p
bij B. Coordinate Ascent Algorithm With 1-D Newton—Raphson
Bz]; = i | =2 (25 — 27 Bz"; 9
[Ba] ZW’<M (25 =) + [Be ]> ®) " Step (CA-NR)

The CA algorithm updates one pixel at a time using the most
recent values of all other pixels as follows:

j=1

where ther;;’s are any nonnegati¥e constants for which

>4y mij = 1,Vi. Asimple choice is
|04

P p|”

=t sl In practice, it is usually impractical to perform an exact max-
Since eachy; is concave imization. Using the one-dimensional (1-D) Newton-Raphson
algorithm, we obtain a closed-form approximate solution as fol-

p
bi;
gi ([Bzl;;17) > > mijas <—J (zj — z¥) —i—t?;t?) . (11) lows:

n+1 é R n+1 n+1 n n
x; —arg;r_l(?é@(a:l ,...,a:jfl,a:j,a:j_i_l,...,a:p).
7=

(10)

Tij =

Ny g
T - | 2o 2(@)ms
Thus, from (5), the separable paraboloidal surrogate fungtion et = e+ ————— (16)
is obtained as follows: ~ 507 2(@)lo=z
b
Qla;z™) > la; ™) & Z Q;(z;2™) wherez denotes the current estimate, i2is a shorthand for
= [a:;’""l,...,a:;’ff,a:?,x?_i_l,...,a:;‘],and
where 9 i . B
m b 52| =D bii([Bal) (17)
Qulassa) = 3w (2 2y =) 415587 ) o
i=1 v .
Sa®@)| =) Wi([Bzl) (18)
SinceQ); is quadratic, we implement the maximization (3) by 3%2' o ; !

using Newton's method Being sequential, the CA-NR algorithm [5] converges rapidly if

s A argmax Q;(z,; ") it converges. However, the curvature of the objective function
’ z;>0 in (18) does not ensure monotonic increases in the objective
%Q]’ (55 2™) | function, thus divergence is possible. The CA-NR algorithm is
= |z} — : (12) also poorly suited to parallel processing.
— 47 Qi(wj527)
’ C. Coordinate Ascent Algorithm With Parabola Surrogates
where (CA-PS)
d . NSy gy O We can overcome the lack of monotonicity of the CA-NR
dx; Qs ) g 2 bigdi (t'517') = 835]»@(37) +—.»  algorithm by applying the optimization transfer principle using
S (13) parabola surrogates. We call the resulting algorithm CA-PS. The
P2 m N CA-NR algorithm in (16) uses the curvature of the objective
— 5 Q (xj;a") = Z bfj S (14) function®(x). This is equivalent to making a parabodipprox-
dxy o1 g imationto ®(z), which will not satisfy the monotonicity con-

A oot N _ dition in (4) in general. To guarantee monotonicity, we replace
wherec}! = ¢;*"(#). The explicit form for the SPS algorithm (92 /(922))®(=) with the curvature of a parabola surrogate that
for the choice (10) is thus as follows: satisfies the conditions discussed above. This approach leads to

m s the following CA-PS iterative algorithm:
27 = e+ iy big¥i (1) j=1,...,p. ’ ’
’ P by (e | T . ()]s
(15) J J & Qx; F)

dx2
J

+

As shown in Section V, for suitabig;’s, this SPS algorithm whereQ(z; &) is a parabola that lies below the objective func-
is guaranteed to converge. However, since it simultaneously l{%-n () a{s in (5) pdefined here by )
x ’

dates all the parameters, the convergence rate of this algorithmis
usually very slow, much like the closely related EM algorithms.

Qz; 1) = Z ¢i([Bx]i; [BZ);)

S7:; = 0 only if b;; = 0.
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wherey; is similar to (6) but with the curvature([Bz];). Thus, Subsetl ~ Subset2

the curvature of the surrogate function becomes

Partitioned-Separable 6‘ a
82 ) m ) \ j
T 022 (w;2) = Z bin ci([Bx];). (20) Paraboloidal Surrogates >~
J i=1

Subset 3 Subset 4

The CA-PS algorithm is guaranteed to monotonically increase

®. Furthermore, CA-PS is applicable t@'s like the Huber

function [18], which is only once differentiable, whereas

CA-NR requires twice differentiable’;’s. However, CA-PS IV. PARTITIONED-SEPARABLE PARABOLOIDAL SURROGATE

is still not parallelizable, and it is computationally expensive COORDINATE ASCENTALGORITHM (PPCA)

since the curvature;([Bz];) must be recomputed aftewvery  This section describes a new algorithm that not only con-

pixel update. verges quickly, but is also well-suited to coarse-grain parallel
processing. The partitioned-separable paraboloidal surrogate

D. Paraboloidal Surrogates Coordinate Ascent (PSCA)  coordinate ascent (PPCA) algorithm is based on a concavity

Algorithm technique developed by De Pierro [2] and uses tangent

) ) arabolas. The idea is to sequentially update pixels within each
In contrast to the CA-PS algorithm, the PSCA algorithm [ﬁubset while simultaneously updating all subsets.
is derived by first finding a paraboloidal surrogate function at

each iteration and then using the CA algorithm to maximizg overview
that surrogate iteratively. Thus, the next estimate is obtained a
follows:

Fig. 2. Schematic of the PPCA algorithm.

ﬁ'o derive the PPCA algorithm, we first find a paraboloidal
surrogate function for the original objective function, and then
) s i partition pixels intok subsets. Since the parabola is concave,
R S ) BT@Q(x’x o= (21) Wwe can derive a partitioned-separable surrogate function using
/ / —%Q(x;x") a concavity technique. Finally, the CA algorithm is applied in
’ + parallel to each set of pixels. Here is an overview of the surro-

where)(z; z") is the same as in (5) and (6). The derivatives gates derived in this section

Q(z; x™) are as follows:

K
B(z) > Qa;2") 2 plaia™) 2 Qi (wg52")  (24)
] ™ k=1
o Qsa™)| = bijgi (Bl t]) (22)
24 =1

D o= where@ denotes the paraboloidal surrogate functibdenotes
92 m the subset-separated paraboloidal surrogate function{gnd
— 52 Qsa”) = > vier (23) denotes the surrogate function for théh subset. We let/;,
J i=1 denote thekth subset of pixels, and;, denote the vector of

N ) i _length|.Jy| consisting of the elements afindexed by./;. The
wherec;' was defined below (14). Like the CA-PS algorithm¢qngition (24) ensures monotonicity in the objective function:
this algorithm will monotonically increase the objective fuan)(xn—l—l) > &(z™). To implement the update (3), we must ob-

tion and is guaranteed to convergeifs strictly concave (Sec- iin the next estimate in each set by maximizin@.(z, ; ")
tion V). Furthermore, the PSCA algorithm requires much lesg tqjiows:

computation per iteration than the CA-PS algorithm, since we

can precompute the curvature in (23) prior to cycling through  z7+1 2 arg max Q (zy;2"), k=1,....,K. (25)
>0

k

the pixels, unlike the curvature in (20) which changes with every =
pixel update. However, the PSCA algorithm remains ill-suited fqr the example illustrated in Fig. 2, after obtaining the par-
to parallel processing since it sequentially updates each pix&jtioned-separable paraboloidal surrogates, we divide the image

into four subsets and then assign four parallel processors to per-
E. “Naive” Parallel Coordinate Ascent Algorithm form the PPCA algorithm.

The naive approach to parallelizing the CA algorithm woulg Derivation
be to directly separate pixels into subsets and then assign one
parallel processor to each subset to perform the CA algorithm First, we construct a paraboloidal surrogate functirior
However, this technique is not guaranteed to increase the objt& original objective function as in (5)—(7). After obtaining the
tive function at each iteration, and thus can diverge. To enst@raboloidal surrogate function, we apply a form of the con-
convergence, we must somehow account for the “coupling” peavity technique to separate pixels into partitioned sets. Simi-
tween pixels at the boundaries between subsets. The next $3¢Y to (9), we can rewrit¢Bz]; as follows:
tion shows that the optimization transfer approach provides a K .
suitable framework for deriving a monotonic parallelizable al- [Bx]i = Z pin <Szk (zg,) + t?)

k=1

gorithm. Pik
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where

2 [Bs, (x4, —

xjk Z bw

J€Jk

S?k (xJk)

and the matrixB,, is formed by selecting the columns &f

that are indexed by elements.§f. To satisfy the constraint that
Zk L pir = L andp;, > 0, which guarantees monotonicity of

the algorithm, we choose

A ZJEJA |bU|

Pik =
' 1 1Bl

Similar to (11), sincey; is concave, the following inequality is

satisfied:

i ([Balis t} me( )

Z

+ 1 t?) (26)

where, from (6):

; 1
@i (t+85t0) = (07) + 4 (87) t — 5c£‘t2- (27)
For simplicity, we define the following notation:
n A n n

311

wherew?, 2 ¢ /pix- Thus, we obtain the update in each
partitioned set by applying one or more CA cycles to maximize
the surrogate functio;, in (30). Sequentially, for eache .J,,

we perform the following update:

new __ . . .
i = argmax @y, (z;)

(1)

To minimize computation, we first differentiatg;, in (28)
with respect tas and evaluate at = £;;, — t%y as follows:

i (fan — ) = ¥ (¢7) — wih, (Far — )

wheref;;, = (Brzs]i=> b;;%;. Then rearranging (32)
yields

(32)

JCJk

tir =ty + anik,
Wik
This is a faster way to updatg,. Table Il shows the PPCA
algorithm outline.

This algorithm generalizes the SPS and PSCA algorithms de-
scribed in Section Ill. Whed = p and.J;, = {k}, the PPCA
algorithm is equivalent to the SPS algorithm. Wher= 1 and
Ji ={1,...,p}, the PPCA algorithmis equivalent to the PSCA
algorithm. The most useful cases are whed K < p.

Vi S.t. b“ #0, VjeJg.

Thus, from (26), we obtain the following partitioned-separable An alternate approach to deriving a parallelizable algorithm

paraboloidal surrogate function

m K
P(z;2") = Z Z G (Six (22)) (29)
=1 k=1
where from (24), thé&th subset surrogate function is
me Zqzk zk x-]k (30)

Now we update all the subsets simultaneously,
pixels in each set are sequentially updated for fast co

recent values of other pixels ef; in that set. Lettingé denote

the current estimates, we define the 1-D quadratic function f‘?

each pixel as follows:

2 Qu(l -,
—ij(

Quj(z;) Tjo1,%5,%541,---,) € Jx]iz™)

i)+ QkJ (@) (@ — £j)?

N 1.,
L) — §dkj(xj )

where the first derivative of)x;(x;) evaluated ak; = &; is

(1>

d
——Quj(x))

Quy (@) az;

=3 byl (5 (00,))
=1

Tj=Tj

and the curvature of the parabdla,; (z,) is given by
2
é d Z w,; kb

ki = T2 QQkJ z;)

is to first separate pixels into subsets using De Pierro’s con-
cavity technique and then to fit the paraboloidal surrogates in-
side the resulting surrogates. However, this approach only ap-
plies to concave objective functions, unlike the approach in (24).

V. CONVERGENCEANALYSIS

Based on the general sufficient conditions for convergence
stated in [4], we prove convergence of the algorithm (25) by
first stating some sufficient conditions for convergence and then
verifying that the algorithm satisfies all the required conditions

while ”f rconvergence We assume that the objective functigm,),

. ted forfast convergenge strictly concave, continuous, and differentiable for> 0.
One approach to implement the maximization in (25) is

apply the CA algorithm over each pixel of by using the most b

oreover, the se{x > 0 : ®(x) > ®(z')} is assumed to
e bounded for any’. We assume that each iteration is asso-
ciated with disjoint index set§.J, ..., Jx} st. Ub_, Jx =
...,p}, and functional€y(x s, ,2"),k = 1,..., K. The
following conditions pertain to the functionadg; in (30).
Condition 1: Fork =1, ..., K, the functionalg);, satisfy

@ (wu,a% ) = ") 2 Quwsia") = Qu (o 50")

Ve, 20,Yz} > 0,V2"™ >0, and\%x’}k >0, Wherea:" is the

elements ofr" that are not in sef,.
Condition 2: Each functionalQy (z s, ; ™) i

cave and twice differentiable on;, > 0,z"

is strictly con-
> 0, and each

Qr(z s, ;x™) is jointly continuous onx;, > 0,2™ > 0.
Condition 3: The following derivatives matcbln
0 0
o(2™) = Qr (azgk;x")

foranyz" > 0,27 > 0, andj € J.
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TABLE I
PPCA ALGORITHM OUTLINE

Z = initial image

tik = D e, biss, k=1,... K
Sieq, bijl
et Ak T —
Pik = T, il k=1,.. , K
for n = 1,... ,Niters
b=tk (inter-processor communication)

compute ¢! from #; using (8)
compute 1,2% at fi
for each processor k

wh, = ¢}/ Piks Vist. bi; #0, Vi€ Ji

Gik = %, Vi s.b. by #£ 0, Vj € Jy
ZFZZ"lbn ik J€
for j € Ji
old

23 = ;

Qrj = Yoiey bigdin

~ Qk

Ti= [xj + Eﬂlj]+
wibii(T; —

dix = Gix — 29), Vist. by #0

end
fo= T+ B2l Vist by #£0, Vi€ Jy
end

combine Z# from all processors

end

Condition 4: Fora:’”rl > 0 andz™ > 0, the iterates satisfy

the Karush— Kuhn—Tucker conditiongj € Jy,
_ n+1
K2 ( n+1 ) =0, ;77 >0
I <o, it =0.
Conditlon‘5*:
Cs > 0 such thatvv # 0,z > 0, andvz" € §

VG (zg,;2™) v > Csllv])?

where G(xj,;z™) is the |.Ji| x |Ji| matrix with the (¢, j)th
a™),v(i,9) €

element representing (9% /(9z;0x;))Qw(x, ;
Tk

Theorem: Ifthe curvatures;( - ) of the surrogates are contin-
uous and have a positive lower bound, then any sequgsrice
generated by the algorithm (25) for penalized-maximum like
lihood image recovery converges globally to the uniqgue m

4A sufficient condition for Condition 5 in [4].

For any bounded sét, there exists a constant
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imizer of a strictly concave objective functiab(z) satisfying
the assumptions given in the first paragraph.
Proof:

» Condition 1 follows the second property of the surrogate
function given in Section IlI-A or (24).
 Condition 2 is satisfied sinc&;(x,, ;z™) is a concave
quadratic function and thus differentiable and jointly con-
tinuous.
» Condition 3 follows the third property of the surrogate
function in Section IlI-A.
» Condition 4 is inherent to the update (25).
 Condition 5 is satisfied due to the following proof.
Letw} > €,Vi, k,n, wheres is the positive lower bound of the
curvature, then

VG (x,;2")v =By D (wj,) By
> ' B (el)Byv
> 5)\111111 {B,/]kBJk} ||U||2

whereD(w,) is the diagonal matrix with diagonal elements be-
longing towy,, andAnmin{ B}, By, } is the minimum eigenvalue
of the matrixB/, By, . Thus,v'G(z 5, ;2™)v > Cs||v||? is sat-
isfied, whereCs = 6A1111H{Bf]k By }.
Thus, all the conditions needed for the convergence proof in
[4] are satisfied. O
Theorem 1 shows that (25) converges to the global maximizer
of a strictly concave objective function. In practice, we use one
or more cycles of the CA update (31) rather than the exact max-
imization (25). However, we believe the proof in [4] can be gen-
eralized even to include the case (31).

VI. CONVERGENCERATE

The curvature of the surrogate function strongly influences
the convergence rate. Smaller curvatures generally yield faster
convergence. The surrogate function curvatures for each of the
algorithms described above are given as follows:

m P
d]S,PS _ Zb”’c? . <Z bu)
; P
dEPA =N bl | by Zimb ) ey
Z ! ! El’eJk biv )
dPSCA Z b“C 3 (b“)
dy AR Zb71¢7 [B]:) - (bij)-

By comparing the arguments within parentheses of the above
equations for the curvatures, we obtain the following inequali-
ties:

SPS PIPCA PSCA CA-NR
AP > diTCN > dSCA > S >0
assuming tha;([Bi];) < ¢. As expected, the SPS algorithm

has the largest curvature hence generally smallest step sizes
&nd slowest convergence. On the other hand, the CA-NR algo-

aX-

rithm has the smallest curvature, thus it has the biggest step sizes

which yield the fastest convergence rate (when it converges).
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VIl. APPLICATION TO IMAGE RESTORATION FOR Sinceb; > 0, we can choose! to be the optimal curvature as
CONFOCAL MICROSCOPY derived in (8), [6], [20]

Confocal fluorescence microscopy is widely used in cell bi- s b I
ology to image thick biological tissues in three dimensions. Un- [ %2 {10g< Z) — H , 1>0
fortunately, most obtainable images contain out-of-focus sigeS™ (1) = 2‘?1 bi L+ )14
nals from other planes and have poor resolution due to a reso- %,
lution/signal-to-noise ratio tradeoff as the detector pinhole size ab;
is increased. Therefore, image restoration techniques have been
applied to improve the resolution and SNR of the images. In

confocal microscopy, the noisy measuremgrtan be modeled
as follows: B. The Penalty Part

1=
(38)

The general form of the penalty function is given by
Y; ~ aiPoisson{ f;[Az]; + b;}, i=1,...,mp

Mg
where themy, x p system matrix4 is assumed to be known R(zx) = Zz/;f([Ca:]i) (39)
x denotes the mean number of fluorescent photons per second, i=1
a1 denotes a known measurement scaling fagtadenotes the
product of the scan time and the detector efficiency, larde- whereyX is the potential function, an€' is the weighting ma-
notes the background noise and the dark current [19]. The ctiix. For the first-order neighborhood, the mattikxconsists of

responding log-likelihood function is given by: horizontal and vertical cliques. For example, with:a 2 image,
s the matrixC can be written as follows:
L(x) =3 = los(fildali + b)) — (hlAali+b)  (33) 110 01 red (oo
=t e |00 =1 1) s | _ |as—as
(ignoring irrelevant constants independent:pfwhich is con- -1 0 1 0] =3 r3 — 1
cave. Due to the ill-posed nature of image restoration problems, 0 -1 0 1 T4 T4 — T2

we modify the likelihood function by including a penalty func-

tion R(x) to form the following penalized-likelihood objectiveWe assume that each potential penalty functig(¢) satisfies

function: the following conditions [6], [10], [18]:

* 9 is symmetric;

« ' is everywhere differentiable (and, therefore, contin-
uous);

 PL(t) = (d/(de))Pf(t) is convex;
wi(t) = ((£(¢))/t) is nondecreasing far > 0;

* wi(0) = limy_o((»2(¢))/t) is finite and nonzero.

@(x) = L(z) - BR(x) (34)

where 3 controls the degree of smoothness in the restored
image. Our goal is to estimateby maximizing the objective
function ®(x)

- o _ According to [18], the optimal curvature for such a symmetric

= algl.?gé(@(x) T as e L(z) — BR(z). (35) nonguadratic penalty function is given by
For the penalty functiomR(z) of interest here, the objective A PR (o)
function ® in (34) is a special case of the general form (1); P () = s = R () (40)
therefore, the algorithms of Sections Il and IV are applicable. i
For clarification, we separately derive the surrogate functions . . o . .
for the likelihood part and the penalty part. wherey is the first derivative of the potential penalty function

- at theith element, and? 2 [Cz™];.
A. The Likelihood Part Combining all the likelihood and penalty surrogate functions,
The likelihood function in (33) can be expressed in the fowe obtain the following update for eaghe J;, by maximizing
lowing form: these surrogate functions as in (31)
L(z) = S 4/([Ba)y) (36) zy = argmax Q4 (w;) — FQi; (@)
=1 . .
. QL) - BOR ()

with bi; = f;a;;, which is the(i)th element of the matris, = |an 4 SR TR (41)

j J dy. + Bdy
and J J

¥i(l) = o log(l 4 b;) — (I +bi). (37)  whereQ/; andd}; are the first derivative and the curvature of

, _ _ _ _ the surrogate function for the likelihood part, a@¢f; andd},
5In practice, the point spread function (PSF) of a confocal microscope is not he first derivati dth fth J f Jo
exactly known; however, one can measure the PSF by using very small mic € the firstderivative and the curvature of the surrogate function

sphere beads. for the penalty part.
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©

Fig. 3. Two-dimensional simulation and restoration using a 4-PPCA algorithmgvith 0.01 andé = 1.5. (a) Original image, (b) degraded image, and
(c) restored image.

TABLE Il
COMPARISON OF WALL TIMES AND NUMBER OF ITERATIONS TO CONVERGE USING
MONOTONIC AND NONMONOTONIC ALGORITHMS FOR A512x 512 REPPERIMAGE

Monotonic Algorithms Nonmonotonic algorithms
Convergence PSCA | 2-PPCA | 4PPCA | 8-PPCA || cA-NR | cAP | PSCAP | 2PPCAP | 4PPCAP | 8-PPCAP
Number of Iterations 38 39 39 41 28 29 27 28 28 28
Wall time (s) 318.20 213.85 156.20 132.34 612.5 517.91 195.89 123.48 89.33 80.55
Wall time/iter (s) 8.37 5.48 4.01s 3.23 21.87 17.86 7.26 4.41 3.19 2.88
Speedup factor 1 1.52 2.09 2.59 0.33 0.41 1 1.64 2.28 2.52

VIIl. RESULTS
A. Two-Dimensional Simulation Results

A 512x 512 pepper image was degraded by ax1
Gaussian point spread function (PSF) with FWHM of 11.
pixels (standard deviation= 5.0) and Poisson noise with
PSNR of 25 dB as shown in Fig. 3(b). Since our long-tern
interest is space-varying PSFs, we used convolution rather than
FFT techniques for these algorithms. We used the following Fig. 4. Partitioned set patterns of a 2-D image.
nonguadratic penalty function [21]:

2 subsets 4 subsets 8 subsets

where we replace™"(-) with &™(.) = —gF(r=)7
" " and I*** = (y;/a1) — b;. The algorithms above were
R 2
Pi(t) =6 HE‘ —log <1+‘5D} (42) performed on the IBM SP2 parallel processors. Conver-

gence in this table is defined as the smallessuch that
_ _ () — &(2%) > 0.999(®(z*) — &(x?)), whered(z?) is the
where 6 controls the degree of edge preservation. Fig. 3( jective value of the initial image, an#i(z*) is the largest

shows the restoration using the 4-PPCA algorithm (with fOlﬂ)rbjective value among all methods obtained in 50 iterations.

paralkl;lal processors). It ‘ . | Fig. 4 shows the subset partitions. Since the PSF is fairly small,
Table Il compares wall times of monotonic algoynierhracessor communication time becomes significant as

rithms (PSCA and PPCA), and nonmonc?‘to“n!c algorithmge 1 ymper of processors increases; therefore, speedup is less
(CA_'NR’CA_’P’PSCA'P’PPCA'P)' The letter *P" in NONMONY a1 the ideal inverse relationship, as predicted by Amdahl’s
tonic algorithms represents the precomputed curvature [Rly; 2] Nevertheless, these results confirm that the PPCA
algorithm is well suited for parallel processing.
®The peak signal-to-noise ratio is defined as follows Fig. 5 shows that the PPCA algorithms increase the objec-
tive function essentially as much per iteration as the PSCA al-
gorithm. This effect implies that subset-separation technique

max; (y; — a1b;)?

LY (v — Blyi))?

PSNR = 101og,,,

“This ad hoc modification loses the guarantee of monotonicity, but reduces
whereN? = pixel size. computation andisuallyseems to converge.
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Fig. 5. Comparison of objective function increase versus number of iteratiofig). 7. Comparison of objective function increase versus number of iterations
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Fig. 6. Comparison of objective function increase versus elapsed time usfig. 8. Comparison of objective function increase versus elapsed time using
monotonic algorithms on a 2-D image. nonmonotonic algorithms on a 2-D image.

barely slows the convergence rate of the PPCA algorithm com63,:m, and the Poisson noise with PSNR of 40 dB. This PSF
pared with the PSCA algorithm, which is a one subset versi@circularly symmetric in the: — y plane but it has elongation
of the PPCA algorithm. Fig. 6 shows that the PPCA algorithmis the » direction which causes a very poor resolution in
converge in less elapsed time than the PSCA algorithm. Usitt@ axial direction. Fig. 9 shows the lateral and axial medial
the precomputed curvatures, Fig. 7 illustrates that the CA-N&ections through the original, degraded and restored images
CA, P, PSCA, P, and PPCA, P algorithms increase the objectjyerformed for 20 iterations. The images on the- z plane
function nearly at the same rate; however, Fig. 8 confirms tha@ve been scaled up to the same scale as those in the
the PPCA, P algorithm converges in less time than other ngslane for display purpose. As seen from the center slice of the
monotonic algorithms. « — = plane of the restored image [Fig. 9(c)], the elongation in
) ] ) the » direction of the restored image have been dramatically
B. 3-D Simulation Results for Confocal Microscopy reduced.

Following [13], a spherical shell test specimen was gen-Fig. 10 shows that the total wall times for 3-D results are
erated on a 256 256x 64 pixel grid and was degraded bynearly inversely proportional to the number of processors. This
a 15x 15x 15 PSF created from the XCOSM package [23F because a larger amount of work in 3-D data has been assigned
having pixel sizesAr = Ay = Az = 0.15 um, 40x /1.0 to each processor which means less communication time rela-
NA oil-immersion objective, and a fluorescent wavelength dive to the total computation time.
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= Semel TABLE IV
- "\"434;_\3 ) COMPARISON OF WALL TIMES OF PSCA, AND
5t e PPCA ALGORITHMS FOR A3-D IMAGE
0 . ‘ . . ‘ . 20 iterations PSCA | 2-PPCA | 4-PPCA | 8-PPCA
2 3 4 5 6 7 8 Wall time (hrs) 11.54 5.93 3.06 1.64
Number of parallel processors Wall time/iter (mins) | 34.62 | 17.79 9.18 492
Speedup factor 1 1.95 3.77 7.04

Fig. 10. Performance on parallel processors in elapsed time for the PPCA
algorithms using a 25& 256 x 64 image and a 1% 15 x 15 PSF.

IX. CONCLUSION

Table IV shows the performance of the wall times of the We have presented a new fast converging parallelizable al-
PSCA, and PPCA algorithms for 20 iterations. Since we usgdrithm called the partitioned-separable paraboloidal surrogate
convolution rather than the FFT algorithm, the total time resoordinate ascent algorithm. This approach overcomes the
quirement is quite large. Similarly to 2-D simulation resultgjrawback of the ordinary coordinate ascent algorithm which
Figs. 11 and 12 verify that the PPCA algorithm increases tie a nonparallelizable algorithm. Compared to completely
objective function almost at the same rate as the PSCA algimultaneous updates like EM and SPS algorithms, this pro-
rithm but it requires much less total wall time for computationposed algorithm has a faster convergence rate due to larger
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updating step sizes. Unlike the PSCA [6] algorithm, the surrof13]
gate functions in the PPCA algorithm are separable between
subsets to allow simultaneous update across pixel subsefsy;
Thus the parallel processors can be assigned to each subset to
reduce the total time requirement. Since the PPCA algorithm

. S . 15]
increases the objective function nearly at the same rate as t}L|e
PSCA algorithm, parallelizability in the PPCA algorithm only
slightly reduces the convergence rate. The PPCA algorithri6]
using the precomputed curvature, which is a nonmonotonic
algorithm, converges much faster than the CA-NR and CA,R17]
algorithms. Thus, the PPCA algorithm yields the fastest con-
vergence among the monotonic and nonmonotonic algorithm[§8]
tested. The PPCA algorithm seems mostly naturally suiteL9]
to shift-variant system models where FFTs are inapplicable.
It is an interesting open question whether the parallelization,
associated with a subset-separable surrogate function could be
combined with FFT’s for faster computation in shift-invariant

problems. [21]
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