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Abstract—Iterative coordinate ascent algorithms have been
shown to be useful for image recovery, but are poorly suited to
parallel computing due to their sequential nature. This paper
presents a new fast converging parallelizable algorithm for
image recovery that can be applied to a very broad class of
objective functions. This method is based on paraboloidal sur-
rogate functions and a concavity technique. The paraboloidal
surrogates simplify the optimization problem. The idea of the
concavity technique is to partition pixels into subsets that can
be updated in parallel to reduce the computation time. For fast
convergence, pixels within each subset are updated sequentially
using a coordinate ascent algorithm. The proposed algorithm is
guaranteed to monotonically increase the objective function and
intrinsically accommodates nonnegativity constraints. A global
convergence proof is summarized. Simulation results show that
the proposed algorithm requires less elapsed time for convergence
than iterative coordinate ascent algorithms. With four parallel
processors, the proposed algorithm yields a speedup factor of 3.77
relative to single processor coordinate ascent algorithms for a
three-dimensional (3-D) confocal image restoration problem.

Index Terms—Confocal microscopy, coordinate ascent algo-
rithm, image restoration, maximum likelihood estimation.

I. INTRODUCTION

STATISTICAL methods such as maximum likelihood (ML),
penalized maximum likelihood (PML), and maximuma

posteriori (MAP) estimation have been widely applied to re-
cover degraded images. Because closed form solutions are usu-
ally unavailable, iterative maximization algorithms are needed.
This paper describes a new fast monotonic algorithm for image
recovery that is well suited to parallel computing.

Many algorithms for PML/MAP image recovery have been
constructed; however, no existing algorithm has all the proper-
ties of an “ideal” algorithm such as fast convergence rate, quick
computation time, stability, simplicity, and parallelizability.
Expectation-maximization (EM) algorithms [1], [2] are widely
used to compute ML estimates. Although EM algorithms are
simple to implement and guaranteed to converge, they converge
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slowly since they simultaneously update all parameters. Fast
converging algorithms are particularly desirable when large
three-dimensional (3-D) images are used or when time becomes
an important issue such as in medical imaging and microscopy.
Several algorithms have been proposed to improve the conver-
gence rate. One example is the space-alternating generalized
EM (SAGE) algorithm [3], [4] that converges quickly but is
typically nonparallelizable. Similarly, the classical coordinate
ascent algorithm, which updates parameters sequentially each
iteration, is nonparallelizable, and furthermore does not have
an explicit form for the update. To obtain a closed form for
the update, one can use a coordinate ascent algorithm with
Newton-Raphson updates (CA-NR) [5]. However, the CA-NR
algorithm is not guaranteed to converge if the objective func-
tion is nonquadratic. The paraboloidal surrogate coordinate
ascent (PSCA) algorithm [6] solves the convergence problem
of the CA-NR algorithm by maximizing paraboloidal sur-
rogate functions instead of directly maximizing the original
objective function. However, the PSCA algorithm is still not
parallelizable. In summary, existing algorithms are either fast
converging, as in the CA-NR or PSCA algorithms, or fully
parallelizable, as in the EM algorithms, but not both.

This paper presents a new, fast converging, parallelizable
algorithm called partitioned-separable paraboloidal surrogate
coordinate ascent (PPCA). This new approach overcomes
the convergence rate and parallelizability tradeoff of existing
algorithms [7]. To provide parallelizability, we partition the set
of pixels into subsets that are updated in parallel, usually by a
different processor for each subset to reduce execution time. To
provide fast convergence, each processorsequentiallyupdates
the pixelswithin each subset. This approach captures most
of the rapid convergence of the CA algorithm, but remains
parallelizable. A simplistic implementation of this idea would
not ensure convergence; therefore, we derive the algorithm by
applying optimization transfer principles. This approach guar-
antees that the proposed algorithm will monotonically increase
the objective function. It also intrinsically accommodates the
nonnegativity constraints. The PSCA algorithm of [6] is the
special case of the PPCA algorithm when only one subset (and
hence only one processor) is used.

The grouped coordinate ascent (GCA) algorithm derived in
[8]–[10] represents an alternative approach to parallelization.
The GCA algorithm simultaneously updates pixels within a
group of spatially separated pixels and sequentially updates
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TABLE I
ACRONYMS AND DESCRIPTION OFDIFFERENT ALGORITHMS. “SPEED” REFERS QUALITATIVELY TO THE

COMBINATION OF NUMBER OF ITERATIONS AND EXECUTION TIME PER ITERATION

each group of pixels. This approach does not fully capture the
fast convergence properties of CA, and thus the GCA algorithm
converges slower than the proposed PPCA algorithm1 .

The parallel successive overrelaxation (PSOR) method [11]
using domain decomposition techniques was proposed for
solving the five-point and nine-point stencil approximation of
Poisson’s equations, but it is inapplicable to the more general
optimization problem of interest in imaging.

We implemented the proposed algorithm using direct con-
volution rather than fast Fourier transform (FFT) algorithms,
so that it easily extends to problems where the space-invariant
property is inapplicable or invalid such as in positron emission
tomography (PET) and single photon emission computed to-
mography (SPECT) systems. In microscopy, many papers such
as [12], [13] have assumed space-invariance of the microscope,
and thus EM algorithms using FFT techniques have been
applied to reduce the computation time. However, since our
long-term interest is space-varying systems, we derived the
proposed algorithm in image space rather than frequency space.

This paper is organized as follows. Section II describes the
image recovery problem. Section III reviews some existing al-
gorithms. Section IV presents the proposed algorithm in a gen-
eral form suitable for many applications. Section V discusses
convergence of this algorithm. Section VI compares the conver-
gence rate of the proposed algorithm with other algorithms. In
Section VII, the proposed algorithm is specifically applied to
image restoration for confocal microscopy. Since a 3-D image
from a confocal microscope has poor resolution, especially in
the axial direction, due to out-of-focus contributions from other
planes, image restoration techniques have been applied to re-
move the out-of-focus contributions and reduce elongation in
the axial direction. Simulation results are presented in Section
VIII and conclusions are given in Section IX. Since several al-
gorithms are mentioned in this paper, for convenience, we sum-
marize their acronyms and description in Table I.

1Matlabm-files for comparison are available at http://www.eecs.umich.edu/
~fessler.

II. THE PROBLEM

In image recovery problems, the measurements are usually
degraded by blur and noise. To recover the original image, one
can use the statistical characteristics of the measurement system
to specify an objective function that is maximized. In this paper,
we consider a very broad class of objective functions having the
following form:

(1)

where represents the true image andis an
matrix that typically includes both an system matrix
and an coefficient matrix of a roughness penalty func-
tion where is the number of measure-
ments, and is roughly the number of neighbors of pixels.
For , each function characterizes the agree-
ment between a noisy measurement and a linear function of
the unknown image, namely . For

, each function corresponds to the roughness
penalty function due to the ill-posed nature of the problem. Sec-
tion VII shows a concrete example where some of thefunc-
tions correspond to a Poisson log-likelihood function, which de-
scribes fluorescent photons detected at a photodetector in a con-
focal microscope system, and the remainingfunctions repre-
sent a nonquadratic penalty function. We assume that the objec-
tive function has a unique global maximum. Thus our goal is to
estimate by finding the maximizer of the objective function as
follows:

(2)

The ML, PML, and MAP estimators are all special cases of
this maximization problem. We focus on the nonnegativity con-
strained problem, but of course all the algorithms are also appli-
cable to the unconstrained case.
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Fig. 1. Illustration of a surrogate function�.

III. PREVIOUS ALGORITHMS

Many existing algorithms have been applied to obtain a max-
imizer of in (2). Generally there is a tradeoff between con-
vergence rate and parallelizability. Although EM algorithms are
guaranteed to converge to at least a local maximum, they con-
verge very slowly. However, EM algorithms are usually fully
parallelizable. At the other extreme, the CA algorithm, which
updates the unknown parameters sequentially, converges much
faster than the EM algorithms. However, the CA algorithm is
not parallelizable.

Directly maximizing the objective function in (2) is difficult
when ’s are nonquadratic, such as for the log-likelihood func-
tion of Poisson noise. To simplify the optimization problem and
to assure monotonic increases in the objective function at each
iteration, one can apply an optimization transfer approach by
finding a “surrogate” function (Fig. 1) that lies below the ob-
jective function.

As illustrated in Fig. 1, in the optimization transfer function
approach, we obtain the next estimate by maximizing the surro-
gate function2 :

(3)

where denotes the estimate at theth iteration. Choosing a
surrogate function that satisfies the following monotonicity
condition ensures that the iterates will monotonically in-
crease the objective function [6], [9], [10]:

(4)

2In practice, it usually suffices for the next iteration to simply increase the
surrogate function rather than requiring a strict maximization of�.

Rather than using (4), we choose surrogate functions
that satisfy the following sufficient conditions:

1) ;
2) for ;
3) .

The third condition follows from the other conditions for differ-
entiable surrogate and objective functions.

The following subsections summarize some existing algo-
rithms illustrating the convergence rate and parallelizability
tradeoff.

A. Separable Paraboloidal Surrogates (SPS) Algorithm

To obtain a fully parallelizable algorithm, the surrogate func-
tion should be separable so that we can simultaneously update
the unknown parameters. Like the EM algorithms, the SPS algo-
rithm is fully parallelizable. It is derived by using the concavity
technique developed by De Pierro [2].

To derive the SPS algorithm, we begin by considering the
following quadratic surrogate function:

(5)

The separable paraboloidal surrogate functionlies below
the objective function and is constructed from the parabola
having the following form:

(6)

where denotes the first deriva-
tive of , and represents the curvature of the parabola

. According to the sufficient conditions previously men-
tioned, we choose the parabola in (6) to satisfy the following
conditions:

1) ;
2) ;
3) .
To obtain the fastest convergence rate while still guaranteeing

monotonicity, we choose the optimal curvature [6] as follows:

(7)

As shown in [6], if is strictly concave and is strictly
convex for , then a parabola of form (6) exists and satis-
fies the above three conditions. Therefore, the optimal curvature
can be expressed as shown in (8) at the bottom of the page. The
symbol represents if and 0 if . These condi-
tions on are onlysufficientconditions. There are many other

(8)
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’s for which exists such as the broad family potential func-
tion discussed above (40) in Section VII.

To construct a separable surrogate function, we apply the ad-
ditive concavity technique developed by De Pierro [2] to the
quadratic surrogate functions. First, we rewrite the argument

in (1) as follows:

(9)

where the ’s are any nonnegative3 constants for which
. A simple choice is

(10)

Since each is concave

(11)

Thus, from (5), the separable paraboloidal surrogate function
is obtained as follows:

where

Since is quadratic, we implement the maximization (3) by
using Newton’s method

(12)

where

(13)

(14)

where . The explicit form for the SPS algorithm
for the choice (10) is thus as follows:

(15)

As shown in Section V, for suitable ’s, this SPS algorithm
is guaranteed to converge. However, since it simultaneously up-
dates all the parameters, the convergence rate of this algorithm is
usually very slow, much like the closely related EM algorithms.

3� = 0 only if b = 0.

The SPS algorithm is closely related to the “half-quadratic”
optimization methods [14]–[17]. However, the quadratic sur-
rogate (6) applies to a broader family of ’s than the half-
quadratic approach, and the derivation of the paraboloidal sur-
rogate is somewhat simpler than the corresponding derivation
of half-quadratic algorithms.

B. Coordinate Ascent Algorithm With 1-D Newton–Raphson
Step (CA-NR)

The CA algorithm updates one pixel at a time using the most
recent values of all other pixels as follows:

In practice, it is usually impractical to perform an exact max-
imization. Using the one-dimensional (1-D) Newton-Raphson
algorithm, we obtain a closed-form approximate solution as fol-
lows:

(16)

where denotes the current estimate, i.e.,is a shorthand for
, and

(17)

(18)

Being sequential, the CA-NR algorithm [5] converges rapidly if
it converges. However, the curvature of the objective function
in (18) does not ensure monotonic increases in the objective
function, thus divergence is possible. The CA-NR algorithm is
also poorly suited to parallel processing.

C. Coordinate Ascent Algorithm With Parabola Surrogates
(CA-PS)

We can overcome the lack of monotonicity of the CA-NR
algorithm by applying the optimization transfer principle using
parabola surrogates. We call the resulting algorithm CA-PS. The
CA-NR algorithm in (16) uses the curvature of the objective
function . This is equivalent to making a parabolicapprox-
imation to , which will not satisfy the monotonicity con-
dition in (4) in general. To guarantee monotonicity, we replace

with the curvature of a parabola surrogate that
satisfies the conditions discussed above. This approach leads to
the following CA-PS iterative algorithm:

(19)

where is a parabola that lies below the objective func-
tion as in (5), defined here by
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where is similar to (6) but with the curvature . Thus,
the curvature of the surrogate function becomes

(20)

The CA-PS algorithm is guaranteed to monotonically increase
. Furthermore, CA-PS is applicable to ’s like the Huber

function [18], which is only once differentiable, whereas
CA-NR requires twice differentiable ’s. However, CA-PS
is still not parallelizable, and it is computationally expensive
since the curvature must be recomputed afterevery
pixel update.

D. Paraboloidal Surrogates Coordinate Ascent (PSCA)
Algorithm

In contrast to the CA-PS algorithm, the PSCA algorithm [6]
is derived by first finding a paraboloidal surrogate function at
each iteration and then using the CA algorithm to maximize
that surrogate iteratively. Thus, the next estimate is obtained as
follows:

(21)

where is the same as in (5) and (6). The derivatives of
are as follows:

(22)

(23)

where was defined below (14). Like the CA-PS algorithm,
this algorithm will monotonically increase the objective func-
tion and is guaranteed to converge ifis strictly concave (Sec-
tion V). Furthermore, the PSCA algorithm requires much less
computation per iteration than the CA-PS algorithm, since we
can precompute the curvature in (23) prior to cycling through
the pixels, unlike the curvature in (20) which changes with every
pixel update. However, the PSCA algorithm remains ill-suited
to parallel processing since it sequentially updates each pixel.

E. “Naive” Parallel Coordinate Ascent Algorithm

The naive approach to parallelizing the CA algorithm would
be to directly separate pixels into subsets and then assign one
parallel processor to each subset to perform the CA algorithm.
However, this technique is not guaranteed to increase the objec-
tive function at each iteration, and thus can diverge. To ensure
convergence, we must somehow account for the “coupling” be-
tween pixels at the boundaries between subsets. The next sec-
tion shows that the optimization transfer approach provides a
suitable framework for deriving a monotonic parallelizable al-
gorithm.

Fig. 2. Schematic of the PPCA algorithm.

IV. PARTITIONED-SEPARABLE PARABOLOIDAL SURROGATE

COORDINATE ASCENTALGORITHM (PPCA)

This section describes a new algorithm that not only con-
verges quickly, but is also well-suited to coarse-grain parallel
processing. The partitioned-separable paraboloidal surrogate
coordinate ascent (PPCA) algorithm is based on a concavity
technique developed by De Pierro [2] and uses tangent
parabolas. The idea is to sequentially update pixels within each
subset while simultaneously updating all subsets.

A. Overview

To derive the PPCA algorithm, we first find a paraboloidal
surrogate function for the original objective function, and then
partition pixels into subsets. Since the parabola is concave,
we can derive a partitioned-separable surrogate function using
a concavity technique. Finally, the CA algorithm is applied in
parallel to each set of pixels. Here is an overview of the surro-
gates derived in this section

(24)

where denotes the paraboloidal surrogate function,denotes
the subset-separated paraboloidal surrogate function, and
denotes the surrogate function for theth subset. We let
denote the th subset of pixels, and denote the vector of
length consisting of the elements ofindexed by . The
condition (24) ensures monotonicity in the objective function:

. To implement the update (3), we must ob-
tain the next estimate in each set by maximizing
as follows:

(25)

For the example illustrated in Fig. 2, after obtaining the par-
titioned-separable paraboloidal surrogates, we divide the image
into four subsets and then assign four parallel processors to per-
form the PPCA algorithm.

B. Derivation

First, we construct a paraboloidal surrogate functionfor
the original objective function as in (5)–(7). After obtaining the
paraboloidal surrogate function, we apply a form of the con-
cavity technique to separate pixels into partitioned sets. Simi-
larly to (9), we can rewrite as follows:
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where

and the matrix is formed by selecting the columns of
that are indexed by elements of. To satisfy the constraint that

and , which guarantees monotonicity of
the algorithm, we choose

Similar to (11), since is concave, the following inequality is
satisfied:

(26)

where, from (6):

(27)

For simplicity, we define the following notation:

(28)

Thus, from (26), we obtain the following partitioned-separable
paraboloidal surrogate function

(29)

where from (24), the th subset surrogate function is

(30)

Now we update all the subsets simultaneously, while the
pixels in each set are sequentially updated for fast convergence.
One approach to implement the maximization in (25) is to
apply the CA algorithm over each pixel of by using the most
recent values of other pixels of in that set. Letting denote
the current estimates, we define the 1-D quadratic function for
each pixel as follows:

where the first derivative of evaluated at is

and the curvature of the parabola is given by

where . Thus, we obtain the update in each
partitioned set by applying one or more CA cycles to maximize
the surrogate function in (30). Sequentially, for each ,
we perform the following update:

(31)

To minimize computation, we first differentiate in (28)
with respect to and evaluate at as follows:

(32)

where . Then rearranging (32)
yields

s.t.

This is a faster way to update . Table II shows the PPCA
algorithm outline.

This algorithm generalizes the SPS and PSCA algorithms de-
scribed in Section III. When and , the PPCA
algorithm is equivalent to the SPS algorithm. When and

, the PPCA algorithm is equivalent to the PSCA
algorithm. The most useful cases are when .

An alternate approach to deriving a parallelizable algorithm
is to first separate pixels into subsets using De Pierro’s con-
cavity technique and then to fit the paraboloidal surrogates in-
side the resulting surrogates. However, this approach only ap-
plies to concave objective functions, unlike the approach in (24).

V. CONVERGENCEANALYSIS

Based on the general sufficient conditions for convergence
stated in [4], we prove convergence of the algorithm (25) by
first stating some sufficient conditions for convergence and then
verifying that the algorithm satisfies all the required conditions
for convergence. We assume that the objective function, ,
is strictly concave, continuous, and differentiable for .
Moreover, the set is assumed to
be bounded for any . We assume that each iteration is asso-
ciated with disjoint index sets s.t.

, and functionals . The
following conditions pertain to the functionals in (30).

Condition 1: For , the functionals satisfy

, and , where is the
elements of that are not in set .

Condition 2: Each functional is strictly con-
cave and twice differentiable on , and each

is jointly continuous on .
Condition 3: The following derivatives match

for any , and .
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TABLE II
PPCA ALGORITHM OUTLINE

Condition 4: For and , the iterates satisfy
the Karush–Kuhn–Tucker conditions,

Condition45*: For any bounded set, there exists a constant
such that , and

where is the matrix with the th
element representing

.
Theorem: If the curvatures of the surrogates are contin-

uous and have a positive lower bound, then any sequence
generated by the algorithm (25) for penalized-maximum like-
lihood image recovery converges globally to the unique max-

4A sufficient condition for Condition 5 in [4].

imizer of a strictly concave objective function satisfying
the assumptions given in the first paragraph.

Proof:

• Condition 1 follows the second property of the surrogate
function given in Section III-A or (24).

• Condition 2 is satisfied since is a concave
quadratic function and thus differentiable and jointly con-
tinuous.

• Condition 3 follows the third property of the surrogate
function in Section III-A.

• Condition 4 is inherent to the update (25).
• Condition 5 is satisfied due to the following proof.

Let , where is the positive lower bound of the
curvature, then

where is the diagonal matrix with diagonal elements be-
longing to , and is the minimum eigenvalue
of the matrix . Thus, is sat-
isfied, where .

Thus, all the conditions needed for the convergence proof in
[4] are satisfied.

Theorem 1 shows that (25) converges to the global maximizer
of a strictly concave objective function. In practice, we use one
or more cycles of the CA update (31) rather than the exact max-
imization (25). However, we believe the proof in [4] can be gen-
eralized even to include the case (31).

VI. CONVERGENCERATE

The curvature of the surrogate function strongly influences
the convergence rate. Smaller curvatures generally yield faster
convergence. The surrogate function curvatures for each of the
algorithms described above are given as follows:

-

By comparing the arguments within parentheses of the above
equations for the curvatures, we obtain the following inequali-
ties:

-

assuming that . As expected, the SPS algorithm
has the largest curvature, hence generally smallest step sizes
and slowest convergence. On the other hand, the CA-NR algo-
rithm has the smallest curvature, thus it has the biggest step sizes
which yield the fastest convergence rate (when it converges).
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VII. A PPLICATION TO IMAGE RESTORATION FOR

CONFOCAL MICROSCOPY

Confocal fluorescence microscopy is widely used in cell bi-
ology to image thick biological tissues in three dimensions. Un-
fortunately, most obtainable images contain out-of-focus sig-
nals from other planes and have poor resolution due to a reso-
lution/signal-to-noise ratio tradeoff as the detector pinhole size
is increased. Therefore, image restoration techniques have been
applied to improve the resolution and SNR of the images. In
confocal microscopy, the noisy measurementcan be modeled
as follows:

where the system matrix is assumed to be known5 ,
denotes the mean number of fluorescent photons per second,
denotes a known measurement scaling factor,denotes the

product of the scan time and the detector efficiency, andde-
notes the background noise and the dark current [19]. The cor-
responding log-likelihood function is given by:

(33)

(ignoring irrelevant constants independent of), which is con-
cave. Due to the ill-posed nature of image restoration problems,
we modify the likelihood function by including a penalty func-
tion to form the following penalized-likelihood objective
function:

(34)

where controls the degree of smoothness in the restored
image. Our goal is to estimateby maximizing the objective
function

(35)

For the penalty function of interest here, the objective
function in (34) is a special case of the general form (1);
therefore, the algorithms of Sections III and IV are applicable.
For clarification, we separately derive the surrogate functions
for the likelihood part and the penalty part.

A. The Likelihood Part

The likelihood function in (33) can be expressed in the fol-
lowing form:

(36)

with , which is the th element of the matrix ,
and

(37)

5In practice, the point spread function (PSF) of a confocal microscope is not
exactly known; however, one can measure the PSF by using very small micro-
sphere beads.

Since , we can choose to be the optimal curvature as
derived in (8), [6], [20]

(38)

B. The Penalty Part

The general form of the penalty function is given by

(39)

where is the potential function, and is the weighting ma-
trix. For the first-order neighborhood, the matrixconsists of
horizontal and vertical cliques. For example, with a 22 image,
the matrix can be written as follows:

We assume that each potential penalty function satisfies
the following conditions [6], [10], [18]:

• is symmetric;
• is everywhere differentiable (and, therefore, contin-

uous);
• is convex;
• is nondecreasing for ;
• is finite and nonzero.

According to [18], the optimal curvature for such a symmetric
nonquadratic penalty function is given by

(40)

where is the first derivative of the potential penalty function

at the th element, and .
Combining all the likelihood and penalty surrogate functions,

we obtain the following update for each by maximizing
these surrogate functions as in (31)

(41)

where and are the first derivative and the curvature of
the surrogate function for the likelihood part, and and
are the first derivative and the curvature of the surrogate function
for the penalty part.
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(a) (b) (c)

Fig. 3. Two-dimensional simulation and restoration using a 4-PPCA algorithm with� = 0:01 and� = 1:5. (a) Original image, (b) degraded image, and
(c) restored image.

TABLE III
COMPARISON OF WALL TIMES AND NUMBER OF ITERATIONS TO CONVERGE USING

MONOTONIC AND NONMONOTONIC ALGORITHMS FOR A512� 512 PEPPERIMAGE

VIII. R ESULTS

A. Two-Dimensional Simulation Results

A 512 512 pepper image was degraded by a 1515
Gaussian point spread function (PSF) with FWHM of 11.7
pixels (standard deviation ) and Poisson noise with
PSNR6 of 25 dB as shown in Fig. 3(b). Since our long-term
interest is space-varying PSFs, we used convolution rather than
FFT techniques for these algorithms. We used the following
nonquadratic penalty function [21]:

(42)

where controls the degree of edge preservation. Fig. 3(c)
shows the restoration using the 4-PPCA algorithm (with four
parallel processors).

Table III compares wall times of monotonic algo-
rithms (PSCA and PPCA), and nonmonotonic algorithms
(CA-NR,CA,P,PSCA,P,PPCA,P). The letter “P” in nonmono-
tonic algorithms represents the precomputed curvature [6],

6The peak signal-to-noise ratio is defined as follows

PSNR = 10 log
max (y � � b )

(y �E[y ])

whereN = pixel size.

Fig. 4. Partitioned set patterns of a 2-D image.

where we replace with ,7

and . The algorithms above were
performed on the IBM SP2 parallel processors. Conver-
gence in this table is defined as the smallestsuch that

, where is the
objective value of the initial image, and is the largest
objective value among all methods obtained in 50 iterations.
Fig. 4 shows the subset partitions. Since the PSF is fairly small,
interprocessor communication time becomes significant as
the number of processors increases; therefore, speedup is less
than the ideal inverse relationship, as predicted by Amdahl’s
law [22]. Nevertheless, these results confirm that the PPCA
algorithm is well suited for parallel processing.

Fig. 5 shows that the PPCA algorithms increase the objec-
tive function essentially as much per iteration as the PSCA al-
gorithm. This effect implies that subset-separation technique

7This ad hoc modification loses the guarantee of monotonicity, but reduces
computation andusuallyseems to converge.
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Fig. 5. Comparison of objective function increase versus number of iterations
using monotonic algorithms on a 2-D image.

Fig. 6. Comparison of objective function increase versus elapsed time using
monotonic algorithms on a 2-D image.

barely slows the convergence rate of the PPCA algorithm com-
pared with the PSCA algorithm, which is a one subset version
of the PPCA algorithm. Fig. 6 shows that the PPCA algorithms
converge in less elapsed time than the PSCA algorithm. Using
the precomputed curvatures, Fig. 7 illustrates that the CA-NR,
CA, P, PSCA, P, and PPCA, P algorithms increase the objective
function nearly at the same rate; however, Fig. 8 confirms that
the PPCA, P algorithm converges in less time than other non-
monotonic algorithms.

B. 3-D Simulation Results for Confocal Microscopy

Following [13], a spherical shell test specimen was gen-
erated on a 256 256 64 pixel grid and was degraded by
a 15 15 15 PSF created from the XCOSM package [23]
having pixel sizes m, 40 /1.0
NA oil-immersion objective, and a fluorescent wavelength of

Fig. 7. Comparison of objective function increase versus number of iterations
using nonmonotonic algorithms on a 2-D image.

Fig. 8. Comparison of objective function increase versus elapsed time using
nonmonotonic algorithms on a 2-D image.

0.63 m, and the Poisson noise with PSNR of 40 dB. This PSF
is circularly symmetric in the plane but it has elongation
in the direction which causes a very poor resolution in
the axial direction. Fig. 9 shows the lateral and axial medial
sections through the original, degraded and restored images
performed for 20 iterations. The images on the plane
have been scaled up to the same scale as those in the
plane for display purpose. As seen from the center slice of the

plane of the restored image [Fig. 9(c)], the elongation in
the direction of the restored image have been dramatically
reduced.

Fig. 10 shows that the total wall times for 3-D results are
nearly inversely proportional to the number of processors. This
is because a larger amount of work in 3-D data has been assigned
to each processor which means less communication time rela-
tive to the total computation time.
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(a)

(b)

(c)

Fig. 9. Results for a 3-D simulated spherical shell using a 4-PPCA algorithm
for 20 iterations with� = 0:1 and� = 10. Lateral and axial medial sections
through the image are in the left and right, respectively. For display purpose, the
axial sections were scaled inz to obtain a 1 : 1 aspect ratio. (a) Original images,
(b) degraded images, and (c) restored images.

Fig. 10. Performance on parallel processors in elapsed time for the PPCA
algorithms using a 256� 256� 64 image and a 15� 15� 15 PSF.

Table IV shows the performance of the wall times of the
PSCA, and PPCA algorithms for 20 iterations. Since we used
convolution rather than the FFT algorithm, the total time re-
quirement is quite large. Similarly to 2-D simulation results,
Figs. 11 and 12 verify that the PPCA algorithm increases the
objective function almost at the same rate as the PSCA algo-
rithm but it requires much less total wall time for computation.

Fig. 11. Comparison of objective function increase versus number of iterations
using PSCA and PPCA algorithms on a 3-D image.

Fig. 12. Comparison of objective function increase versus elapsed time of
PSCA and PPCA algorithms on a 3-D image.

TABLE IV
COMPARISON OF WALL TIMES OF PSCA, AND

PPCA ALGORITHMS FOR A3-D IMAGE

IX. CONCLUSION

We have presented a new fast converging parallelizable al-
gorithm called the partitioned-separable paraboloidal surrogate
coordinate ascent algorithm. This approach overcomes the
drawback of the ordinary coordinate ascent algorithm which
is a nonparallelizable algorithm. Compared to completely
simultaneous updates like EM and SPS algorithms, this pro-
posed algorithm has a faster convergence rate due to larger
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updating step sizes. Unlike the PSCA [6] algorithm, the surro-
gate functions in the PPCA algorithm are separable between
subsets to allow simultaneous update across pixel subsets.
Thus the parallel processors can be assigned to each subset to
reduce the total time requirement. Since the PPCA algorithm
increases the objective function nearly at the same rate as the
PSCA algorithm, parallelizability in the PPCA algorithm only
slightly reduces the convergence rate. The PPCA algorithm
using the precomputed curvature, which is a nonmonotonic
algorithm, converges much faster than the CA-NR and CA,P
algorithms. Thus, the PPCA algorithm yields the fastest con-
vergence among the monotonic and nonmonotonic algorithms
tested. The PPCA algorithm seems mostly naturally suited
to shift-variant system models where FFTs are inapplicable.
It is an interesting open question whether the parallelization
associated with a subset-separable surrogate function could be
combined with FFT’s for faster computation in shift-invariant
problems.
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