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ABSTRACT I. INTRODUCTION

Tomographic image reconstruction using statistical The problem of reconstructing an unknown image
methods can provide more accurate system modeling, $tam a measurement vectgris usually ill-posed [1, 2].
tistical models, and physical constraints than the converae direct model alone rarely determines a satisfactory so-
tional filtered backprojection (FBP) method. Because hftion. If we find the maximum likelihood estimate (MLE)
the ill-posedness of the reconstruction problem, a roughf-the image by maximizing the log-likelihood function
ness penalty is often imposed on the solution to contrdl f; y), then the resulting image is very noisy. Thus it is
noise. To avoid smoothing of edges, which are imponecessary to regularize the solution by imposingriori
tant image attributes, various edge-preserving regulariz&sumptions. One simple regularization method supposes
tion methods have been proposed. Most of these schenies images are globally smooth, and enforces a roughness
rely on information fromlocal neighborhoods to deter-penalty on the solution by adding a quadratic function to
mine the presence of edges. In this paper, we proposth@negative log-likelihood. Such a “penalized” likelihood
cost function that incorporatesonlocal boundary infor- cost function has the following form:
mation into the regularization method. We use an alternat-
ing minimization algorithm with deterministic annealing J(f)=—L(f;y)+ BV(f), (1)
to minimize the proposed cost function, jointly estimating
region boundaries and object pixel values. We apply varighere
tional techniques implemented using level-sets methods to V(f)= / IV f(z)? dz (2)
update the boundary estimates; then, using the most recent
boundary estimate, we minimize a space-variant quadragc measure of image roughnes$he image estimate is
cost function to update the image estimate. For the Pbbtained by:
transmission reconstruction application, we compare the f = argmin J(f),
bias-variance tradeoff of this method with that of a “con- f
ventional” penalized-likelihood algorithm with local Hu-where often the minimization with regard fds restricted
ber roughness penalty. to nonnegative values. The cost function in (1) is often un-

Keywords: positron emission tomography (PET), transatisfactory, since many images are not globally smooth.
mission tomography, edge preserving reconstruction, lef@ley have region boundaries across which the image val-
sets, region-based. ues can vary rapidly. The quadratic regularization in (2)

causes edges to become blurred. In many images, small

Following the convention in the literature on partial differential
equation (PDE)-based image analysis, we present a non-discretized
formulation in which f belongs to the class of differentiable func-
tions with derivative that is absolutely integrable over some domain
Q C R™. In the above integraldz is a shorthand fotiz; . ..dz,,
wheren is the dimension of the “image;” typically = 2.

*This work was supported in part by NSF grant BES-9982349 In practice, one implements a discretized formulation, for example
and NIH grant CA-60711. D.F. Yu was in the EECS dept. oV (f) =3_,>", wjr(fj — fx)?, wherew,y, is nonzero only for neigh-
UM. He is now with the Institute of Applied Mathematics, Univer-boring pixels. In problems with inhomogeneous noise (such as Poisson
sity 0. British Columbia, Vancouver, BC, Canada. Email addresseseasurements), one may need to adjustdthgs to control resolution
fyz@math.ubc.ca ,fessler@umich.edu . properties [3, 4].
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differences between neighboring pixels are often due to 14

— Quadratic

noise, while large differences are due to the presence of -~ Huber

- - - Broken Parabola /

edges. This assumption has formed the basis for many o
edge-preserving regularization schemes proposed in the .}
literature.
Most edge-preserving regularization methods, includ- _ 8r
ing many line-site modelsg.g, [5-9], rely on informa-
tion from alocal neighborhood to determine the pres-
ence of edges,e., the penalty assigned to each pixel or A
clique of pixels depends solely on pixel values within a
small fixed neighborhood. (We return to this point near 2
the end of this section.) One such scheme is to replace
the quadratic penalty function in (2) with a nonquadratic >
function v that increases less rapidly than the quadratic

function for sufficiently large arguments, such as the Hﬁi’lgure 1: A comparison of quadratic, Huber, and the bro-
ber function [10, 11]: ken parabola penalty functions.

w(y)

V(H) = [ Vi) da
in which a Gauss-Markov prior for pixels is conditioned
or n on a non-interacting line-site model [17—20]. Even when
V(f) = /quj ‘ > dx (3) line-site interactions are ir_1c|ude(_:l in such models to en-
im1 Li courage boundary continuity, typically only small cliques
are used [5,21-23] so such approaches are still inherently
£2/2, it <o Io_cal. In the context of bl_urred image r_estoration, compar-
Y(t) = { St — 62/2, [t > 6. atively large line-site neighborhood sizes that match the
) o ] ] _size of the point-spread function (PSF) of the imaging sys-
This function increases linearly, instead of quat_jratlcal%m have been proposed [7, 8]. (How to apply that princi-
for arguments larger thaf. Thus the cost function pe-pie in the tomography problem of interest here is unclear
nalizes large differences between neighboring pixels l&§fce each measurement sees long strips traversing the en-
severely than the quadratic penglty, while mamtammg thee object.) None of these line-site models addigiebal
same level of penalty for small differences. This properynnectivity or continuity, and thus are inherently local.
permits sharper edges in the reconstructed image.  one of the few previous methods to capture global proper-
The Huber penalty is a convex function of image pixgles js a region-based Bayesian prior that has been applied
values. One could instead use a non-convex penaliyccesstully in tomography [6, 9]. That method uses dis-
function, such as the “broken parabola” functiotd, crete region identifiers (motivated by image segmentation
[12-16]): problems) and assigns costs that prohibit disconnected re-
¥(t) = min {t2,52}. gions, encourage regularly shaped regions, and discour-
This function is non-differentiable, thereby precluding9€ having too many regions. Some of these costs involve
gradient-based descent methods. Instead, determiniSif entire image and are therefore global. The Bayesian
annealing algorithms are usually applied, [16], where formalism permits the exploration of estimate uncertainty,
one sequentially minimizes a series of cost functions dgt using discrete region labels is challenging for com-
proaching the original cost in the limit. This method alsBUting point estimates. That method and our proposed
uses local information only. Fig. 1 compares the quadrat@?Proach share the property that the number of regions
Huber, and the broken parabola function. need not be specme@ priori. Our approa_ch is bound_ary
Both of the above edge-preserving methods modify tR&sed rather_ than region based; boundaries are continuous-
local penalty function) so as to penalize large difference¥@u€d, so simple gradient-descent methods are available

between neighboring pixels less than the quadratic pendR)y cOmMputing point estimates (at local minima of the cost

does. These methods implicitly use local information f&nction).
“detect” the presence of an edge locally. This local view is This paper describes a method for includimgnlocal
formalized by considering a hierarchical Bayesian mod&formation, specifically, boundary information, into the

where
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regularization method. The proposed penalty adjusts how
much we penalize differences between pixels based on the
distance of the pixels to the nearest boundary curve. This
approach involves regions only implicitly. However, since
both the estimates for the boundary curves and the dis-
tance of a pixel to the boundary curves depend on the en-
tire image, our penalty is nonlocal. We hope to achieve
better results than purely local penalties under certain
cases. In the specific case of emission computed tomog-
raphy, accurate attenuation correction is usually necessary
for a quantitative emission reconstruction [24]. Accurate
attenuation correction requires an accurate map of atten-
uation coefficients. A PET attenuation map consists of a
small number of regiond,e., lungs, spine, body tissue,
etc. The attenuation coefficients within each region are
fairly uniform, but they vary a great deal between neigh-
boring regions and the transition between regions can be
fairly rapid, e.g, across a few pixels. A regularization
method that incorporates this additional prior information,
such as the one we propose, should be able to outperforrr
a purelylocal regularization method. Section Il describes
our new algorithm; Section Il compares the proposed al-
gorithm to a “conventional” statistical algorithm and to
FBP; Section IV summarizes our results and outlines pos-
sible future work.

[I. METHOD 01
A. New cost function

Our development of the new cost function was moti-
vated by the specific application of PET and SPECT trans- s
mission tomography, but its use is not restricted to attenu- §
ation map reconstructions. We assume that the actual ob- 5 %[
ject to be reconstructed is everywhere differentiable. We 004
also assume that the object consists of regions that are £o.os}
piecewise smooth (meaning almost uniform) everywhere .02}
except near the region boundaries where the object inten- |
sity changes rapidly (but differentiably) to values in its o , , , , , ,
neighboring region(s). Thus an edge-preserving penalty 0 200 0 e 0 ¥ W0
function should penalize local gradients that are within
each region more than local gradients that are very cldSgure 2: Non-piecewise-constant phantom and central
to the boundary curves. Furthermore, we assume thatizontal profile (row 65).
the boundary separating the regions consists of smooth
curves. Fig. 2 shows an example object (representing a
thorax attenuation map at 511 KeV) and one of its pro-
files. This object is piecewise smooth, but not piecewise
constant, due to variations in lung density.

Like (1), the cost function we propose also consists of
a data-fit term and a penalty term. However, our penalty
considers not only the image values but also the character-
istics of region boundaries within the image. We present
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our model in 2D, but extension to 3D is straightforward (@)
[25, 26]. Let f denote the objectg denote a family of

regular closed curves.€., no self-intersections, corners, z
or cusps),I’ € G denote the boundary curve(s), afid
denote the domain of the image. We do not reqiin®
have a single connected componeérd, I'" can have sev- 1
eral connected components, one being the boundary curve
between the lung and the soft tissues, while another one
being the boundary curve between the body and air, etc.

f(x)

The number of boundaries need not be knanpriori. o 4 2 0 2 4 6
We propose the following cost function of the objgct (b)
and the boundary curvds[27]:
J(f,T) = —L(f;y)+V(f,T) (4)
VIET) = Sa(AT) i [ ds ©)

L(fT) = /Q Wd(x. )|V (@) dz.  (6)

The first term—L(f;y) is the negative log-likelihood
that measures the “faithfulness” of the reconstructed ob- R x
ject to the measured data. The terfpds penalizes (©)
the length of the boundary curves, encouraging smooth
boundary curves, and discouraging large numbers of
boundary curves. The teroh(f,I") penalizes local gra- 08
dients inside each region more than local gradients close
to the boundary curves] : Q2 x G — R is the signed
distance fromx to T, i.e., we required to have opposite o4
signs on the opposite sides of a segmertt,afod is dif-
ferentiable across the boundary curve. We also reqlire
to be continuous insid€. There is no intuitive way of S T e T
defining “outside” or “inside” when curves enclosgz other
curves, but we can define the outward normal vestdo  Figure 3: (a) Example of a 1-D object. (b) Signed distance
be the direction in whichl is increasing. The roughnesso the boundary. (c) One possibiigfunction.
weighting functionk : R — [0, 1] maps small arguments
to values near zero and larger arguments to values near
unity (see (18)). For simplicity, we use onlys that be- decreases near the boundary curves. This approach al-
long to C*®(R), i.e,, differentiable arbitrarily many times lows larger gradients in the reconstructed object close to
on the entire real line. the boundary curves. In two dimensions (or three dimen-

The purpose of the, term is to penalize image rough-Sions), the value dfi(d(-)) at every point is determined by
ness, like (3). However, in ouf,, how much the local the distance between the point and the boundary curves
gradient at a specific location is penalized is weighted §§r surfaces in 3D).
the distance of this location to the boundary curves, andAs in all edge-preserving regularization methods, one
since this distance depends on the entire curve, the pmuist choose carefully the weighting parametess,u,
posed penalty is “nonlocal.” Fig. 3 shows an examijle and the functionh to avoid over-smoothing of the re-
Fig. 3a shows a one-dimensional object. Fig. 3b showsnstructed image or the boundary curves. The curve
the signed distance to the boundary points; in this casength term in (5), which acts to keep the boundary curves
the boundary points are at -4, 0, 2, and 4; we chose smooth, will favor shorter curves over longer curves al-
sign of the distance so thdtis continuous. Fig. 3c illus- though the region roughness penaltyshould keep this
trates the type af function we may want to use; the valudorce in check. Nevertheless, the associated parameter
of h(d(+)) is unity well inside each region, but smoothlyshould always be small to avoid excess shrinking of the

o
o

h(3(x,M))
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boundary curves. where2 denotes “defined to be” anflo is the area lying
' o between the curvE and the perturbed curve+ zN [29].
B. Alternating minimization scheme For the second term i ("), the direction in which the

We use alternating minimization to jointly minimize thesurve length decreases most rapidly is when [30]:
cost function given in (4) ovef andI". We first hold f B ~
constant and minimizé with regard ta". Then, using the i —kN, (11)
most recent estimate of we minimizeJ with regard tof .

We alternate between these two steps until convergencé€. the speed of the evolution at any point is the curvature
of the boundary curve at that point, and the curve evolves

B.1 Boundary update in the inward normal direction. For implementation, we
use the level sets method [30-32] because of its simplicity.
In the level sets method, instead of evolving the cuhike
self, we embed' as the zero level set of a smooth function

® : R? — Rsuch thal’ = {(z1,72) € R? : ®(xq,22) =
Jy) = BR(fI)+ “/Fds (7) 0}, and evolved so thatl' evolves according to (9). As
®) discussed in [31], this method has several advantages over
directly evolvinglI', e.g, periodically resampling the curve
whereJ; was defined in (6) and» denotes the cost func- EZ?S;TiE::;;SiﬁﬁgyéjR/de’ g;?:fr ggﬁ:}gggg/ f(\)/(/:z’stg?ﬁé
tion J with f fixed at f™. As in standard PDE-based im- .

: . latter advantage to allow merging or splitting of boundar
age analysis, we perform steepest descent with respecfgl {o g ding PIting y

T [28]. Each pointy — (z1,2) on the boundary curve curves. Combining (9), (10), and (11), the curves evolve

. . . . . rdin he following:
evolves according to the following differential equation: according to the following

dv  0J4(T) dv </m + 5%) N. (12)

Whenf is fixed, the second and third terms.bélepend
onI'. We must minimize the following cost function:

= arg min Jn (T),

e 9 . =
o S0 ) dt

where the right-hand side is the negative functional derivevolving the curve via (12) yields a curve estimatet!
tive of the cost function. Finding the functional derivathat approximately minimizeg«; we call this step the

tives of J; analytically is nontrivial, so the natural startingboundary estimation” step. (See Section 1I-D below for
point is to evaluate the functional derivatives numericallgetails about initialization.)

(We show below that this leads to an analytical formula
as well.) The functional derivative of, must point in B.2 Image update
the normal direction of the curve, since movement in the o the second stage of the minimization, we hbld

tangential direction would not change the curve. We c&Re( at its previous estimaf&® and minimize with regard

use a scheme similar to the central difference methodtg)f_ WhenT is held fixed, the relevant terms in the cost
evaluate local derivatives. (Central differences are usuafyction (4) are the following:

accurate to a higher order than one-sided differences.) Let

v : 8§ — R? be a parameterization d@f, whereS is a Jr(f) = —L(f;y) + BJ2(f, 1), (13)
subset ofR. For a given pointpy on the curved”, we

define a functionz : R — R that is zero except in theWhere J; was defined in (6). We minimizér(f) with
neighborhood oy, so thaty + 2\ differs fromT only regard tof as follows:

in the normal direction. (We can imagine some force be- n .

ing exerted on the curve; this force is nonzero only in the [ = arg m}n Jon (f)- (14)

neighborhood opy; briefly exerting this force in the out- _ _
ward normal direction of the curve at causes a small YWhen updating the boundary curves using (8),fiffanc-

perturbation of the curve af, in the normal direction). tion in J2 pushes the boundary curves toward image loca-

Using this idea, we approximate the functional derivatiiP"s where the gradient is large; when updating the ob-
of J,(T) atv = py as follows: ject f using (14), theh function imposes a space-varying

weighting of the penalty on local gradients. This weight-
LA a Lo(y + 2N) — Jo(y — 2N ing depends on the signed distance from each pixel to the
S0 ~ S0 9 Ao (10) nearest estimated boundary curve. Every term in (13) is
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guadratic inf, except possibly the log-likelihood term,
which involves logarithms in the case of Poisson measure-
ments. Thus, (14) is a standard penalized-likelihood im-
age reconstruction problem, and we can minimizever

f using methods such as the conjugate gradient method (if
guadratic) [33,34] or the paraboloid surrogates/coordinate
descent method (if not) [35].

We iteratively alternate between the two steps (8)
and (14). Both these two steps will, under ideal circum-
stance$, monotonically decrease the cost as defined in (4).
In addition, the cost is bounded below, so the algorithm
will presumably converge toward a local minimum.

C. Discretization and implementation Figure 4:p; is the closest point tpy on the curve.

We discretize the imag¢ using the usual square grid.
For simplicity, we discretize the level sets, which embe¢ery small movement in the curve near will not cause
the boundary curves, using the same square sampling @ity image point that was not closesttp previously to
as the image. However, the sample spacings of the bouR8come closest tp; after the movement of the boundary
ary curves (when extracted from the zero contours of tRfve. Hence we only need to evaluate the changg in
level set) may be finer than the image pixel spacing. TR8 those points that are already closest;toFor an x n
boundary curves evolve according to (12). The first tertff@age containing a boundary curve withsamples, eval-
causes image-independent curve smoothing; its level-sé@&ing the functional derivative af; is anO(mn) opera-
implementation is described in [31]. In addition to th&0N.
smoothing term, the evolution of the boundary curves is The above ideas suggest the following functional

influenced by the functional derivative ds. derivative of.J; (see the Appendix for an explanation):
To implement (12), we observe that for a pginton the 5., ~
boundary curve to be the closest to a pgintn the image, — = (/h’(r)|Vf(l(r))\21(l(r)’p) (r) dr) N, (15)
!

the line connecting, andp; must be perpendicular to the

tangent line of the boundary curverat(see Fig. 4). Thus wherel(r) denotes the line perpendicular to the boundary
if we make a small enough perturbation of the boundagyirver at the point, parameterized by which increases
curve in a neighborhood of, the only points in the imagen the direction of\/, &’ denotes the derivative df with

that are possibly affected by this change of the bounda@gard tor, andI(, ) is an indicator function:
curve (in terms of their distances to the curve) will lie in

a narrow band perpendicular to the boundary curve (se 1, wis the closest point if to I(r)
Fig. 5). Since this band can be made arbitrarily narrow ¢(");') (r) = { 0, otherwise.

by making the boundary curve perturbation small enough, (16)
we can make the approximation that the image values re-
main constant in the lateral direction of the band and ev&:
uate the functional derivative of, using equally spaced To form an initial image estimatg®, we perform con-
points on the line perpendicular to the boundary curwentional penalized-likelihood image reconstruction us-
at p1; we use bi-cubic interpolation from the neighboring a local penalty such as the space-invariant quadratic
ing points [33] whereV f is not available. At every time penalty as described in (1) and (2). Initialization of the
step of the evolution of the boundary curve, we also kebpundary estimat&® requires greater care. Performing

a record of which point on the boundary curve is closest $teepest descent with respect to (7) may not push the esti-
each image point. When evaluating the functional derivarated curve toward the true boundary if the initial curve
tive of J, at a pointp;, we make the approximation that ds too far away from that boundary.

The force exerted bys in (7) is nearly zero in smooth

2 o . -
ken to be finite, th . i

_Under realistic circumstances, whefeis taken to be finite, the .o i anq s significant only close to the actual bound-

minimization of (7) according to a discretized version of (9) may not

be exactly monotonic. Such effects are inevitable when continuc@&y curves where local gradients are large. Fig. 6 illus-
formulations are discretized. trates this property in one dimension. Lgtdenote the

Initialization
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exerts a force on the curve no matter how far the boundary
estimate is from the image gradients. The evolution of the
curve, as determined hys, is essentially a competition
between bordering regions. Each pixel on the curve bor-
ders two regions; each of these two regions exerts a force
trying to pull the pixel inside; the boundary curves will
evolve towards whichever region exerts a stronger force,
as determined by (17). We gradually redugdo zero.
Eventually, we rely onJ, alone to move the curve to a
local minimun? of J;(T).

E. Deterministic annealing

To form an initial estimate of the imageéprior to apply-
ing boundary estimation step, we perform penalized likeli-
hood tomographic reconstruction using a standard space-
& / invariant penalty. There is nb function as given in (6)
in such a reconstruction, but we can thinkioas simply
being a constant, say unity (Fig. 7ag., h is independent
) ) ) ] of the boundary curves. But for the reconstructed image
Figure 5 White dOFS denote Image pomts;- black do{é have sharp boundaries, we must assign small weights
denote boundary points/; is evaluated on points '®Pr®%o differences in pixel pairs close to the boundary curves,
sented by shaded dots. e.g, as shown in Fig. 7b. To avoid getting stuck in a poor
local minimum, we must change the shapehdfinction
derivative of f in the z direction; letl’, denote the “old” gradually from the initial constant function to the desired
boundary point at 0.3 anfl, denote the “new” bound- h function,i.e., we employ deterministic annealing.
ary point at 0.35. Moving the boundary poiht from Instead of going from the implicit constant function to
0.3 to 0.35 would chang&(d(-,I")) from h(d(-,T,)) to the desiredh function in one step, we take several steps.
h(d(-,Ty)), i.e, the “valley” of h(d(-,T)) is moved from Suppose that from empirical experience with a given cat-
0.3 to 0.35, but the change in the roughness penadty, €gory of images with similar noise levels.g, 3-minute
f(h(d(m, I'h))—h(d(z,T,)))|f'|dz, would be very small. PET transmission scans of the thorax), we have found that
Thus evolution via (12) alone would require a fairly closthe boundary curves we obtain from our initial image are
initialization to the actual boundary curves. We circunwithin, say, five pixels. Then we assign small weights (via
vent this problem by using an initialization proceduréhe h function) to all pixel pairs within a distance of five
for the boundary curves employing another force (fro@r Six pixels to the detected boundary curves, and assign
a global measure) that ensures that the boundary curl@ge weights (unity) to all other pixel pairs; thus neigh-
move even when the initial boundary curves are far froRoring pixels that are more than five or six pixels away
the actual boundary. During the early iterations we adigom the detected boundary curves will be coupled, while
a third penaltyJ; (within-region homogeneity) to/; as the boundary curves are allowed to evolve within those
follows: pixels between which the weights are very small. We
gradually evolve thé function from the constant function
- toward the final desire@ function, as shown in Fig. 8.
Jy (L) = B(f,T) + “/Fds + Z aJ3(f,Rm(T))  Hopefully, the final boundary curves will eventually be a
m=1 very good local minimum. The functions used in Fig. 8

N gt |2 are [16]:
- W dz, (17) oM | o—b
Iz, d= h(t) = —log (7) , (18)

2
whereR,,,(I') C Q denotes thenth region defined by, 3| _ o ed ber of iterations d o od suffi
and M(T) denotes the number of regions definedIhy n practice, we run a fixed number of iterations determined suffi-
cient for the boundary curves to converge to a local minimum. One

This J; penalizes the difference between each pixel valdgyig also stop the curve evolution when the maximum force exerted
and the average value of its region. This global measuser, falls below a preset threshold.

M(T)

To(f, Ron) = / f(z)

m
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Figure 6: Illustration that/; only changes slightly when the “curve” is far from the true boundary point.
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Figure 8: The evolution ok function, whered has units
o6l l of pixels.
o4r 1 with (b,\) = (2.5,1/6), (5,1/4), (15,2/5), (25,1), and
(50,3). Evolvinghiritial tg pdesired ysyally involves 4-5
o “cycles”; one cycle consists of two stagés,, the “image
reconstruction” stage, and the “boundary estimate” $tage

-5 0 5 Fig. 9 shows a flow chart of the proposed algorithm.
(b) This deterministic annealing procedure is somewhat
: related to graduated non-convexity methodsy, [16].

" However, there are also significant differences between
1 how the “broken parabolas” are used here versus in
line-site models. Here, the argument kfis the dis-
o8k 1 tance between a pixel and the nearest boundary curve
point; throughh, this distance controls the strength of the
So.6} ) (quadratic) penalty between neighboring pixels (see (6)).
In contrast, in (noninteracting) line-site models, the bro-
0.4} ] ken parabola function is itself the penalty assigned to the
difference between pixejrayscale value$l8, 20], and
0.2} ; there is no explicit concept of “distance” or “boundary
curve.”
95 0 5
5 [1l. STATISTICAL RESULTS

Figure 7: (a) Implicith function used in local regular- N this section, we compare the proposed algorithm to

ization. (b) Edge-preserving function as a function of the edge-preserving reconstruction method described in
signed distance to the boundary curves. [35] which is based on local regularization, hereafter re-

ferred to as the “Huber method”, in terms of bias-variance
tradeoffs. We simulated PET transmission scans of a digi-
tal phantom that resembles the human thorax (at 511 keV).
The body has attenuation coefficient 0.096/cm. Within the
body are two “lungs”; the left lung has nonuniform at-
tenuation coefficients; the right lung has uniform atten-
uation coefficients; both lungs have average attenuation

“The h™’s need not be different for every cycle; one mayixed
for a few cycles.
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* ‘ Figure 10: Initial contours for simulation study.
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via (18) coefficient 0.022/cm. The “spine” has uniform attenua-
¢ tlon coefficient 0.14/cm. Fig. 2 shows the phantom and
%’ Oa oentral profile. The image hd&8 x 128 square pix-
2 els, each of width 0.42cm. The sinogram consisted of
a" 192 radial samples and 160 angular samples, similar to
m LIJthe CTI ECAT921 PET scanner. For simplicity we simu-
¢ Iated rays with equal spacing of 0.3375cm. Random co-
. n incidences account for about 5% of the recorded counts.
b;i\';i':t;f;z22?:53&;0)) Wq performed two studies, one with 1M counts, the other
boundary estimates via (6) ~with 300K counts (comparable to 10 and 3-minute scans,
.Orespectlvely) Our initial image was reconstructed using
¢ 3comventlonal space-invariant quadratic penalty over first-
fAorder neighbors for the proposed method. The boundaries
% gwere initialized manuallas shown in Fig. 10.
using these penalties via (14) | 2 @ We analyzed three regions of interest (ROIs) in the re-
- D:comstructed attenuation maps: the (true) left lung (region

Evolve boundaries
via (12)
obtainingI™

Reconstruct a new imagé®

77777777777777777777 & ------1);the (true) right lung (region 2), andsax 5 region (re-

gion 3) near the heart, as shown in Fig. 11. We performed
50 realizations with pseudo-random Poisson noise. For
the ith realization, we computed three ROI means,,

Yes Continue

annealing? mb, andmj, via

i _ ZJGRk ﬂ;
T R
JER

Final ™, " where Ry, is the set of pixels in théth region andj’
denotes the estimated attenuation coefficient of jife
pixel in theith realization. Then we computed the sam-
ple means (ny = & 3°7°, mi ) and the sample standard

i=1,...,50, (19)

Figure 9: Algorithm fiowchart. 5An automatic procedure could be easily developed to obtain better

initial boundaries, which would reduce computation time.
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above. Among Huber penalties= 0.02/cm produced the
best bias-variance curve for regions one and two, while for
region threed = 0.002/cm produced the best bias-variance
curve. For an image with multiple contrasts like the one
used here, it is very difficult to optimiz& since no sin-
gle 6 can produce the best bias-variance curves for all the
ROIs. This is a drawback of Huber-like penalty functions.
To investigate how the proposed non-local regulariza-
tion performs when the transmission map is used for atten-
uation correction of emission reconstructions (for details,
see [37]), we simulated noiseless PET emission scans of
the digital phantom shown in Fig. 15. The relative ra-
dioactivity concentration of the lungs, spine, heart, and
body were 12, 9, 40, and 22, respectively. The emission
projections included the effects of nonuniform attenuation
corresponding to the attenuation map in Fig. 2. We re-
constructed emission images using FBP with attenuation
correction based on two sets of transmission maps: one
Figure 11: The three regions of interest; region 1: left regularized by the proposed non-local penalty, and the
lung; region 2: right lung; and region 3: tliex 5 square giher set by the Huber penalty.
region. Fig. 17 shows emission reconstructions using transmis-
sion maps reconstructed with the Huber penalty and the
g _ [1 50 /i = a2 proposed penalty. To compare the effect of the two differ-
deviations (o, = \/4_9 2i=1(mj, —my)?) of the three penalties on the emission reconstruction, we selected
ROl averagesk = 1...3. For the Huber penalty, Wey groups of reconstructed transmission maps, one us-
plotted the bias versus the standard deviation of the Rﬁ?ﬂ; the Huber penalty, and the other using the proposed
values as a function of the regularization paramgteor penalty. Then [38] we smoothed the projection of the
four §: 0.002/cm, 0.004/cm, 0.00.8/cm_, and 0.02/cm. (Rgmission phantom (applied with ideal attenuatios, the
sults forg = 0.04/cm were nearly identical to those #F  4ttenuation of each line of response is obtained from the
0.02/cm, so are not shown.) The difference in attenuatigfye attenuation coefficients) and the transmission map, so
values between the lung region and the soft tissue regioygt the resolution of the final emission reconstructions us-
about O.QS/cm, Wh_lle the difference between thg spine ai'ﬁﬁ Huber penalty and the proposed penalty matched each
the soft tissue region is about 0.04/cm, which is also tBgner. We use the following simple method to determine
minimum contrast between neighboring regions; equatifigs resolution of a set of reconstructions. Given the ideal

0 to one-tenth of this minimum is often effective [36]. Fofmage e and the average reconstructed imagethe
the proposed penalty, we manually selecttdnd 10 a50)ution of is:

cover a range of bias-variance tradeoffs.

For the high count case, Fig. 12 shows one realization arg min Z [Gopt™ ) — i
from the FBP, Huber (withh = 0.004/cm), and proposed 7 jem

reconstruction methods. Fig. 13 compares profiles (ro . . . )
g P P ( v\\ll\ﬁere G, represents a Gaussian smoothing filter with

65) from the Huber and proposed reconstruction methoﬁNHM =, andM denotes a mask used during reconstruc-
shown at similar bias levels. The proposed method yielgs '

less variance than the Huber method at this bias Ievé?n' Table 1 shows the normalizestandard deviation (in

. : C . o units of %) for the mean of the six regions ®fx 3 pix-
Fig. 14 confirms this initial observation quantitatively b)é . o . . ) .
lotting® the bias against the variance of the ROIs defineI as defined in Fig. 15, with a fixed spatial resolution of
P 4.2 pixels FWHM. The noise is significantly reduced in

SError bars in the bias direction are too small to be shown, af€ interior ROIs, and is statistically comparable for the
the “bounce back” in the bias-variance curves for the Huber penalthloundary ROIs.
due to the nonnegativity constraint we place on our estimates; heuristi\Ne also calculated the empirical standard deviation of

cally, when the smoothing parameter is small, the reconstructed im%qfch pixel for both the proposed method and the Huber
is noisy and many pixels have negative values, but the nonnegativity

constraint makes them O causing a large positive bias. "Normalized by the mean of each region.

2

(20)
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Interior Boundary
Region 1] 2 | 3 4 \ 5 \ 6
Huber penalty || 48 £+0.5 | 11.0+1.1 | 6.7+£0.7 | 148 +1.5 | 16.4+1.6 | 159+ 1.6
Proposed penalty 1.1+0.1 | 814+08 | 19+0.2 || 1444+14|171+1.7 | 181 +1.8

Table 1: Normalized standard deviation (%) for the six emission ROIs using 1M-count transmission reconstructions.

method, at a fixed spatial resolution of 4.2 pixels FWHMenalty. Even though the initial curve for the right lung
For each pixe} in the image we computed had only one connected component, the algorithm is ca-
pable of topological changes and automatically separated
i (5\2. 1 into two connected components, one forming the bound-
i=1 780

50

2
ZX;?) , (21)

k=1

A |1
95 = \| 29 ary between the mass inside the right lung and the right
lung, the other forming the boundary between the right
where )\g denotes the estimated emission intensity &iing and soft tissue.
the jth pixel in the ith realization. Fig. 16 shows
a histogram of the ratios of these standard deviations,
{a?mposed/a;{“ber, j € M}. For 85.8% of the pixels, the We have presented a new regularization method for
proposed method produced lower standard deviations ttt@amographic image reconstruction based on a nonlocal
the Huber method. The median reduction in the standgrenalty function. In conventional local regularization
deviations was 47.1%. methods, including most line-site models, the roughness
We performed similar studies for the low count caspenalty assigned to differences between neighboring pairs
Fig. 18 shows one realization from the FBP, Huber (withf pixels (or to cliques of pixels) depends solely on pixel
6 = 0.004/cm), and proposed transmission reconstructiealues within a smaliixedlocal neighborhood.
methods. (The streaks in the FBP reconstruction in thisLike line-site models, our regularization method is
case are caused by the fact that some rays recorded ahifi-variant: the roughness penalty strength is reduced
counts). Fig. 19 compares two profiles (row 65) from theear object edges. Unlike line-site models, however, in
Huber and proposed reconstruction methods; these piee proposed approach the penalty function for any pair
files came from images of similar bias. Fig. 20 shows ttwé neighboring pixels depends on the nearest point to the
bias-variance tradeoffs for the three regions as illustratedtire boundary curve, which makes our penalty nonlocal.
in Fig. 11. The region-based Bayesian prior of [6, 9] is also nonlocal.
Fig. 22 shows the emission reconstructions from noisgince we only uselosedboundary curves, our penalty
less emission data corrected using transmission maps liegmplicitly region based; in fact, we use a region-based
ularized by the proposed penalty and the Huber penaipgnalty.Js during the early stages of our reconstruction.
The heart region is much more uniform in reconstructed Since our algorithm is a descent method, the iterates
images using the proposed penalty than using the Hula@proach a local minimum that depends on the initializa-
penalty. Fig. 21 shows the histogramaQf.oposed/THuber ~ tion. For example, in the reconstruction of the phantom
for all pixels within the image. For 81.7% of pixels, theén Fig. 23, if the initial curve for the right lung lies com-
proposed penalty produced lower standard deviations th#etelyoutsidethat lung, then our algorithm will not “find”
the Huber penalty. The median reduction in the standaree tumor inside. Unless additional curves were intro-
deviations was 34.6%. Table 2 shows the normalized staluced somehow during later annealing stages, the bound-
dard deviation (in units of %) for the mean of the six reary curve between the tumor and the right lung would not
gions of3 x 3 pixels as defined in Fig. 15, with a fixedbe “found”, losing the benefit of non-local penalty near
spatial resolution of 6.4 pixels FWHM. the tumor. Our algorithm was able to split the initial curve
Finally we present an anecdotal example of reconstrugizown in Fig. 23c for the right lung into the two curves
tion of a more complex transmission phantom, shown glhown in Fig. 23d, one separating the lung and the soft
Fig. 23a. There are two masses inside the right lunigsue, the other separating the tumor and the lung, be-
Fig. 23c shows the boundary curve initialization. Fig. 23chuse the initial curve intersected both boundaries. Both
and Fig. 23e show the final boundary cundésand fi- boundary curves would also have been “found” if the ini-
nal imagef estimated by the proposed algorithm, respetial curve for the right lung were completely inside that
tively. Fig. 23b shows the reconstruction using the Hubkmg.

IV. DISCUSSION ANDCONCLUSION



13

IEEE T-MI, Yu & Fessler, Edge-preserving tomographic reconstruction.

Interior Boundary
Region 1 2 3 4 5 6
Huber penalty | 5.0 +£0.5 | 14.1+14 | 9.0+0.9 || 140+14 | 15.7+1.6 | 153+ 1.5
Proposed penalty 1.7+0.2 | 854+09 | 39+04 || 134+13|180+1.8 | 14.9+15

Table 2: Normalized standard deviation (%) for the six emission ROIs using 300K-count transmission reconstructions
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Figure 23: (a) Phantom with lung masses. (b) Huber-penalty reconstruction. (c) Initial curves. (d) Final estimated
curves. (e) Final reconstructed image using the proposed algorithm.
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Figure 13: 1M-count transmission reconstruction profiles:
comparison of Huber penalty and proposed penalty.
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Figure 12: 1M-count transmission reconstruction. _ _ )
Figure 14: ROI bias-variance plots for 1M-count transmis-

sion reconstruction.
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(@)

Figure 15: Emission phantom.
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Figure 16: Histogram Obproposed/THuber fOr €mission

reconstruction using 1M-count transmission scans. _ o ) )
Figure 17: Emission FBP reconstruction using attenua-

tion correction based on attenuation maps reconstructed
from 1M-count transmission scans by (a) FBP, (b) Huber
penalty, and (c) proposed penalty.
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Figure 19: 300K-count transmission reconstruction pro-
"I files: comparison of Huber penalty and proposed penalty.
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Figure 18: 300K-count transmission reconstruction. _ ) ) )
Figure 20: Bias-variance plots for 300K-count transmis-

sion reconstructions.
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Figure 21: Histogram Obpyoposed/CHuber TOr €mission
reconstruction using 300K-count transmission scans.

As described above, a weakness of our algorithm is its
inability to move past existing boundaries. Fundamen-
tally, this weakness is due to the fact that the curves move
in the direction along which the cost function decreases
the fastesti.e., a greedy strategy. This is a traditional diffi-
culty with PDE formulations. On the other hand, the PDE
formulation (with level sets) allows the curves to merge or
split without direct intervention. Hence we do not need
to initialize with the “correct” number of curves, provided
the initial curves are suitably placed as described above.

One could patrtially overcome this limitation by initial-
izing with many small curvese(g, circles) that would
likely intersect most object edges. This strategy could lead
to better local minima, although it would require more
computation in the early iterations.

The proposed nonlocal penalty produces transmission
reconstructions with better ROI bias-variance tradeoffs
than a local Huber penalty. When these transmission re-
constructions are applied to noiseless emission data, the
nonlocal penalty used for transmission reconstruction pro-
duces emission images with smaller variances (for a fixed
spatial resolution) for most (80-85%) pixels in the image;
the median standard deviation in the image is reduced by
35% to 50% relative to the Huber method.

However, reconstruction using the proposed penalty is
more time consuming than using conventional local penal-
ties. Each cycle of the annealing process requires one  Proposed penalty
“stage” of image reconstruction. If one runs 5 anneal-
ing cycles, the time devoted to updating the image is up

to 5 times that of the local penalties, although for “rejq e 22: Emission FBP reconstruction using attenuation

construction” stage of the second to fifth annealing Cyyrection based on attenuation maps reconstructed from
cles, we can use fewer iterations than in the first annealiggow _count transmission scans

cycle. The “boundary estimate” stage is also most time-

Huber penalty
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consuming during the first cycle of the annealing process. APPENDIX.

Since we deliberately used initial boundaries that wererpa signed distance functiatas defined below (6) may
far away from the true boundary (to demonstrate the rge; e gifferentiable (in the functional sense)lirior the
bustness Qf our boundary estimation algorithm), it too%.S that are closest to two or more points on the curye
about 60 time steps for the. two lung boundary curves I2d herein lies the main difficulty in proving (15) rigor-
converge (the body and spine boundary curves convea%ly_ But we can modifyl slightly to produce a func-

much faster). Each time step of curve evolution for €agjy ) that is differentiable iff" for all z. One way is to
of the two lungs takes about 60% of the time needed fBéfined . (Q-T)x G — Rby
g

a single iteration of Huber reconstruction. The total time
needed by the “boundary estimate” stages in all anneal- 1 -1/q
ing cycles greatly depends on initialization of curves, size dg(z,T) = £ (/ Tl — g d8> )
of the time steps, etc. In the present implementation, the s In(s) —zl
boundary estimate stage of the first annealing cycle takeserey parametrizes the curdé by arc lengths € S C
about twice the time of an “image reconstruction” stag®, the integerg is even, andi, takes the+ or — sign
Subsequent boundary estimations were much faster sidepending on whether is “inside” or “outside”I". Note
we evolved from the curve estimated by the previous cydleat
in the annealing process. In total, computing the boundary 1/q i
estimates takes about the time of three to four reconstruc- / 1 ds) = [max 1 }
tions?. s llv(s) — | pel’ [lp — ||

A related but fundamentally different approach to the
problem of reconstructing attenuation maps using region
information has also been proposed [39] based on the fgg-q
lowing functional of the boundary curves:

= 1 — :d F
min [[p — x| = d(z,T')

— o0. Unlike d, the abovel, has the nice property
of being smooth ic and~y on its domain. Replacing by

A d, in our definition ofJ; in (6), i.e., defining
1) = [ Wew)ewd.

0 B(FD) = [ hldy(w ) V5 ) o
where p parameterizes” and W is a data consistency Q-r
term. This functional was minimized by evolving a PDEga(s to the following functional derivative:
to obtain a “segmentation” of the attenuation map without
actually “reconstructing” the attenuation map [39]. That 6.J> B
approach assumed that the attenuation coefficient insidejy / _
each region is constant, whereas our approach allows for , )
nonuniform regions as may arise in clinical situations. = /QF h(dy(, F))gdq(mv DIV () de.

We have performed a preliminary investigation apply-

ing the proposed nonlocal penalty to three dimensioralthe first equality, the interchange of differentiation and
image reconstruction [25, 26]. We have not systematicalljtegration is legitimate because and d, are smooth,
investigated the bias-variance properties for the 3-D r@ad we use the chain rule in the second equality. Since
constructions, but the interslice information should givé dy(z,T) approacheso ) ry(r)N asq — oo, where
our penalty a further advantage over conventional lochl),r)(r) is defined in (16) and, denotes the Dirac

2 h(dy(a, D)V F (@)
I

regularization methods. delta, the functional derivative ofy given in (15) is, in
some sense, a “weak limit” 2.
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