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Abstract—lterative coordinate ascent algorithms have been shown to be updates (CA-NR) [5]. However, the CA-NR algorithm is not
useful for image fecovery, but are poorly suited to parallel computing due - guaranteed to converge if the objective function is nonquadratic.
to their sequential nature. This paper presents a new fast converging paral- . . .
lelizable algorithm for image recovery that can be applied to a very broad The paraboloidal surrogate coordinate ascent (PSCA) ajlgonthm
class of objective functions. This method is based on paraboloidal surrogate [6] solves the convergence problem of the CA-NR algorithm by
functions and a concavity technique. The paraboloidal surrogates simplify maximizing paraboloidal surrogate functions instead of directly

t_he optimization problem. The idea of the concavity technique is to parti- maximizing the original objective function. However, the PSCA
tion pixels into subsets that can be updated in parallel to reduce the com-

putation time. For fast convergence, pixels within each subset are updated algorithm is still not parallelizable. In summary, existing algo-
sequentially using a coordinate ascent algorithm. The proposed algorithm rithms are either fast converging, as in the CA-NR or PSCA

is guaranteed to monotonically increase the objective function and intrinsi- algorithms, or fully parallelizable, as in the EM algorithms, but
cally accommodates nonnegativity constraints. A global convergence proof not both ' ' '

is summarized. Simulation results show that the proposed algorithm re- ) ) )
quires less elapsed time for convergence than iterative coordinate ascent This paper presents a new, fast converging, parallelizable al-

algorithms. With four paralle] processors, the proposed algorithm yields a gorithm called partitioned-separable paraboloidal surrogate co-
speedup factor of 3.77 relative to single processor coordinate ascent algo- . .
rithms for a 3-D confocal image restoration problem. ordinate ascent (PPCA). Th|.s new approach overcomes the con-
Keywords—Image restoration, maximum likelihood estimation, coordi- vergence rate and_ paraIIellza}blllty_ tradeoff Of _eX'Stmg algo-
nate ascent algorithm, confocal microscopy. rithms [7]. To provide parallelizability, we partition the set of
pixels into subsets that are updated in parallel, usually by a dif-
ferent processor for each subset to reduce execution time. To
provide fast convergence, each processuentiallyupdates
Statistical methods such as maximum likelihood (ML), pehe pixelswithin each subset. This approach captures most of
nalized maximum likelihood (PML), and maximuarposteriori the rapid convergence of the CA algorithm, but remains paral-
(MAP) estimation have been widely applied to recover degradktizable. A simplistic implementation of this idea would not
images. Because closed form solutions are usually unavailalelesure convergence; therefore, we derive the algorithm by ap-
iterative maximization algorithms are needed. This paper ddying optimization transfer principles. This approach guaran-
scribes a new fast monotonic algorithm for image recovery thaes that the proposed algorithm will monotonically increase the
is well suited to parallel computing. objective function. It also intrinsically accommodates the non-
Many algorithms for PML/MAP image recovery have beenegativity constraints. The PSCA algorithm of [6] is the special
constructed; however, no existing algorithm has all the propease of the PPCA algorithm when only one subset (and hence
ties of an “ideal” algorithm such as fast convergence rate, quigkly one processor) is used.
computation time, stability, simplicity, parallelizability, etc. The grouped coordinate ascent (GCA) algorithm derived in
Expectation-maximization (EM) algorithms [1, 2] are widelyj8—10] represents an alternative approach to parallelization. The
used to compute ML estimates. Although EM algorithms a@CA algorithm simultaneously updates pixels within a group of
simple to implement and guaranteed to converge, they convesgatially separated pixels and sequentially updates each group
slowly since they simultaneously update all parameters. Fas$ipixels. This approach does not fully capture the fast conver-
converging algorithms are particularly desirable when large §ence properties of CA, and thus the GCA algorithm converges
D images are used or when time becomes an important issi@ver than the proposed PPCA algorithm
such as in medical imaging and microscopy. Several algorithmsThe parallel successive overrelaxation (PSOR) method [11]
have been proposed to improve the convergence rate. One&%ng domain decomposition techniques was proposed for solv-
ample is the space-alternating generalized EM (SAGE) aldfg the five-point and nine-point stencil approximation of Pois-
rithm [3, 4] that converges quickly but is typically nonparalson’s equations, but it is inapplicable to the more general opti-
lelizable. Similarly, the classical coordinate ascent algorithiization problem of interest in imaging.
which updates parameters sequentially each iteration, is nonwe implemented the proposed algorithm using direct con-
parallelizable, and furthermore does not have an explicit form
for the update. To obtain a closed form for the update, ON€pjatlab m-files for comparison are available lattp://www.eecs.
can use a coordinate ascent algorithm with Newton-Raphsofich.edu/fessler.

I. INTRODUCTION
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volution rather than fast Fourier transform (FFT) algorithm3he ML, PML, and MAP estimators are all special cases of
so that it easily extends to problems where the space-invarittris maximization problem. We focus on the nonnegativity con-
property is inapplicable or invalid such as in positron emissi@trained problem, but of course all the algorithms are also appli-
tomography (PET) and single photon emission computed table to the unconstrained case.

mography (SPECT) systems. In microscopy, many papers such

as [12, 13] have assumed space-invariance of the microscope, Ill. PREVIOUS ALGORITHMS

and thus EM algorithms using FFT techniques have been appmany existing algorithms have been applied to obtain a max-
plied to reduce the computation time. However, since our longnizer of &(z) in (2). Generally there is a tradeoff between con-
term interest is space-varying systems, we derived the propogeghence rate and parallelizability. Although EM algorithms are
algorithm in image space rather than frequency space. guaranteed to converge to at least a local maximum, they con-
This paper is organized as follows. Section Il describes thgrge very slowly. However, EM algorithms are usually fully
image recovery problem. Section Il reviews some existing glarallelizable. At the other extreme, the CA algorithm, which
gorithms. Section IV presents the proposed algorithm in a gefpdates the unknown parameters sequentially, converges much
eral form suitable for many applications. Section V discussggster than the EM algorithms. However, the CA algorithm is
convergence of this algorithm. Section VI compares the Cofot parallelizable.
vergence rate of the proposed algorithm with other algorithms.pjrectly maximizing the objective function in (2) is difficult
In Section VII, the proposed algorithm is specifically applied t@henqy,’s are nonquadratic, such as for the log-likelihood func-
image restoration for confocal microscopy. Since a 3-D imaggn of Poisson noise. To simplify the optimization problem and
from a confocal microscope has poor resolution, especially t assure monotonic increases in the objective function at each
the axial direction, due to out-of-focus contributions from othgferation, one can apply an optimization transfer approach by

planes, image restoration techniques have been applied tofjfgding a “surrogate” function (Fig. 1) that lies below the ob-
move the out-of-focus contributions and reduce elongation jictive function.

the axial direction. Simulation results are presented in Sec-
tion VIII and conclusions are given in Section IX. Since sev-
eral algorithms are mentioned in this paper, for convenience, we

summarize their acronyms and description in Table I. ()

Il. THE PROBLEM

ction

In image recovery problems, the measurements are usuallﬁ oxx")
degraded by blur and noise. To recover the original image, on&
can use the statistical characteristics of the measurement systegh
to specify an objective function that is maximized. In this paper,'g
we consider a very broad class of objective functions having the
following form:

m
() = > _vi((Bal), (1) ; T x
=1 X X X
wherez € R? represents the true image afdis anm x p Fig. 1. lllustration of a surrogate functigh
matrix that typically includes both am; x p system matrix . o ) o )
and anmp, x p coefficient matrix of a roughness penalty func- As illustrated in Fig. 1, in the optimization transfer function
tion wherem = my + mp, my, is the number of measure-approach, we obtain the next estimate by maximizing the surro-

ments, andmy is roughly the number of neighbors of pix-gate functiof:

els. Fori = 1,...,my, eachy; function characterizes the A

agreement between a noisy measurement and a linear function "t = arg max P(z;2"), )
of the unknown image, namelyBz|; = Z§:1 bijx;. For o=

i =mr +1,...,m, eachy; function corresponds to the rough-wherez™ denotes the estimate at th¢h iteration. Choosing

ness penalty function due to the ill-posed nature of the prok-surrogate functiow that satisfies the following monotonic-
lem. Section VIl shows a concrete example where some of tiigcondition ensures that the iterate will monotonically in-
; functions correspond to a Poisson log-likelihood functiogrease the objective functia@n[6, 9, 10]:

which describes fluorescent photons detected at a photodetector

in a confocal microscope system, and the remainipdunc- O(z) — ®(z") > d(z;2") — d(z™; ™), Ve>0. (4)
tions represent a nonquadratic penalty function. We assume that

the objective function has a unique global maximum. Thus oB@ther than using (4), we choose surrogate functitiasz")
goal is to estimate: by finding the maximizer of the objectivethat satisfy the following sufficient conditions:

function as follows: 1. ¢(a";2") = @(a")

é arg max <I>(x) 2) 2In practice, it usually suffices for the next iteration to simply increase the

z >0 surrogate function rather than requiring a strict maximizatiog.of
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[ Acronym | Algorithm Name | Parallelizability | Speed | Guaranteed to Convergé
EM Expectation-maximization algorithm [1, 2] Yes Slow Yes
SAGE Space-alternating generalized expectation-maximization [3, ¢] No Medium Yes
SPS Separable paraboloidal surrogates [2] Yes Slow Yes
PSCA Paraboloidal surrogate coordinate ascent [6] No Fast Yes
CA-PS Coordinate ascent with parabola surrogates No Slow Yes
GCA Grouped coordinate ascent [8—10] Partially Medium Yes
PPCA Partitioned-separable paraboloidal surrogate coordinate ascent [Almost fully Fast Yes
CA-NR Coordinate ascent with Newton-Raphson updates [5] No Fast No
CA,P Coordinate ascent with precomputed curvature No Fast No
PSCA,P PSCA with precomputed curvature [6] No Fast No
PPCA,P PPCA with precomputed curvature Almost fully Fastest No
TABLE |

ACRONYMS AND DESCRIPTION OF DIFFERENT ALGORITHMS"SPEED’ REFERS QUALITATIVELY TO THE COMBINATION OF NUMBER OF ITERATIONS AND
EXECUTION TIME PER ITERATION

2. p(x;a™) < O(x) forz > 0 can be expressed as follows:
3. 5o 02|,y = 5 ®(@)], s VI , .
The third condition follows from the other conditions for differ- ., [W (wi(t?) —%i(0) — tl“/’i(t?))} ot >0
entiable surrogate and objective functions. c (8) = [—1'/3-(0)} m—0
The following subsections summarize some existing algo- B ! i
rithms illustrating the convergence rate and parallelizabilig}( ) . (8)
tradeoff. he symbol[g]+ representg if ¢ > 0 and0 if ¢ < 0. These
conditions ony; are onlysufficientconditions. There are many
A. Separable Paraboloidal Surrogates (SPS) Algorithm othery;’s for which ¢; exists such as the broad family potential
To obtain a fully parallelizable algorithm, the surrogate funé&mCtlon discussed above (40) in Section VI."
tion ¢ should be separable so that we can simultaneously upd t-ero constructa separable surrogate function, we apply the ad-
the unknown parameters. Like the EM algorithms, the SPS al tve cqncawty technlqug develqped by De |_3|erro [2] to the
rithm is fully parallelizable. It is derived by using the concavit uadrgnc surrogate f}mctlons. First, we rewrite the argument
technique developed by De Pierro [2]. Bzl in (1) as follows:

To derive the SPS algorithm, we begin by considering the fol- P by

lowing guadratic surrogate function: [Bz];, = Z Tij (ﬁ(mj — )+ [Ba:”]i> , 9)
=1 “
A
O(x) > Q(z;2™) =Y qi([Bali; [Ba"],). (5) where ther;;’s are any nonnegatiVeconstants for which
i=1 >4y mij = 1,Vi. Asimple choice is

The separable paraboloidal surrogate funcpolies below the Ibi;|
objective function and is constructed from the paralgplaav- Tij = ﬁ (10)
ing the following form: j=1 1%

N ] 1 Since eacly; is concave,
Gt 87) S pal?) +DulE) (6 — 1) = St (E 6% (6) , .
X | o amelat) > Yomga (B e i) @D
wheret? = [Bz"]; = Zle bz, 1; denotes the first deriva- j=1 *

tive of 4;, andc,(t;') represents the curvature of the parabolg,, s tom (5), the separable paraboloidal surrogate funetion
ai(t;t7"). According to the sufficient conditions previously meng Ji-inad as follows:

tioned, we choose the parabola in (6) to satisfy the following

e

conditions: N N .
L. q(t25t7) = dilt}) Qlasa") > ¢lw;a") =y Qy(ws;2"),
2. qi(t;t7) < i(t), Vte{[Bz]i:z >0} =t
3. @t tr) = i (t1). where
To obtain the fastest convergence rate while still guaranteeing m b
monotonicity, we choose the optimal curvature [6] as follows:  Q,(z;;2") = Z Tij Qi (%(xj —x) +t t?) .
— ]
opt yn . n i (4n n =1
c, (¢ = min{c > 0:¢Y;(t) > Y (&) + i (t5) (T — ] . . ) ) o
() C{ ;b (B) 2 $ilt) + it ) SinceQ); is quadratic, we implement the maximization (3) by
—5 =17} (7)  using Newton’s method:
. n A
As shown in [6], ifv; is strictly concave ana);(t) is strictly wj“ = argmax Qj(zj;2")

convex fort > 0, then a parabolg; of form (6) exists and satis-
fies the above three conditions. Therefore, the optimal curvaturer,; = 0 only if b;; = 0.
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%J.Qj(ﬂcj;w”)b,:ﬂ C. Coordinate Ascent Algorithm with Parabola Surrogates
= |af — 12 CA-PS
ST~ 1 {CITE) 42 )
I We can overcome the lack of monotonicity of the CA-NR al-
where gorithm by applying the optimization transfer principle using
m parabola surrogates. We call the resulting algorithm CA-PS.
in(xj; ) — Z bijdi(t25 1) The CA-NR algorithm in (16) uses the curvature of the objec-
da; zy=an =1 tive function ®(z). This is equivalent to making a parabolic
9 approximatiorto ® (), which will not satisfy the monotonicity
= £<I>(x) (13) condition in (4) in general. To guarantee monotonicity, we re-
, o p=an placeaa—;cb(x) with the curvature of a parabola surrogate that
n J
_d_QQj(xj; ") = Z bfj c_i, (14) satisfies the conditions discussed above. This approach leads to
d; =1 M the following CA-PS iterative algorithm:
wherec? £ (9Pt (¢7). The explicit form for the SPS algorithm 2 ®(z)|
for the choice (10) is thus as follows: = 2 4 S (19)
. —@Q(ﬂﬁ z) N
b (E
2t =2 + 2iz bigthilt) ] ,i=1,...,p. (15)
JF

! ’ 221 bii (D21 1bal)e}

As shown in Section V, for suitabkg;’s, this SPS algorithm

whereQ(z; z) is a parabola that lies below the objective func-
tion ®(z) as in (5), defined here by

is guaranteed to converge. However, since it simultaneously up- m
dates all the parameters, the convergence rate of this algorithm is Q(z;%) = > qi([Bali; [Bil:),
usually very slow, much like the closely related EM algorithms. i=1

The SPS algorithm is closely related to the “half-quadratic” L . -
optimization methods [14-17]. However, the quadratic suWhereq" is similar to (6) but with the_curvatur@([B_x]i). Thus
rogate (6) applies to a broader family 6f's than the half- the curvature of the surrogate function becomes:
guadratic approach, and the derivation of the paraboloidal sur- 52 m
rogateQ) is somewhat simpler than the corresponding derivation —==Q(z; %) = Z b};ci([Bil;). (20)
of half-quadratic algorithms. i=1

B. Coordinate Ascent Algorithm with 1-D Newton-Raphsorhe CA-PS algorithm is guaranteed to monotonically increase
Step (CA-NR) ®. Furthermore, CA-PS is applicable t3's like the Huber
The CA algorithm updates one pixel at a time using the md&{ction [18], which is only once differentiable, whereas CA-
recent values of all other pixels as follows: NR requires twice differentiable;’s. However, CA-PS is still
not parallelizable, and it is computationally expensive since the
$§z+1 A argmax ® (7, ... 7m?j_117xj7x?+17 ). ggi\éaturGCi([Bj]i) must be recomputed aftewery pixel up-

EjZO

In practice, it is usually impractical to perform an exact max- . .
imization. Using the one-dimensional Newton-Raphson algo- Paraboloidal Surragates Caordinate Ascent (PSCA) Algo-

rithm, we obtain a closed-form approximate solution as follows: rithm
5 In contrast to the CA-PS algorithm, the PSCA algorithm [6]
it o 90 2(@)]e=z is derived by first finding a paraboloidal surrogate function at
Ti =% — 2 B(2)|oes | (16)  each iteration and then using the CA algorithm to maximize that
O o surrogate iteratively. Thus the next estimate is obtained as fol-

wherez denotes the current estimate, i.s a shorthand for 'OWS:

[m’erl,.,.,x?fll,m?,m?H,...,xg],and 5 (s 2 )
mn-i—l = |7 + E Lz )|w=:c (21)
i . i T | T T Ay |
iq)(x) = Y bydi([Bi;) (17) ~ 5 Qw2
8'1:] T=T i=1
2 m .. ~ whereQ(z; 2™) is the same as in (5) and (6). The derivatives of
520@) = > " b3i((BE]). (18)  Q(xz;z") are as follows:
J T=z =1
Being sequential, the CA-NR algorithm [5] converges rapidly if i n . . . tpal . en
it converges. However, the curvature of the objective function in oz ; (w52) i ; biji([Ba]i; t7) (22)
(18) does not ensure monotonic increases in the objective func- o2 l;
tion, thus_dlvergence is p053|blg. The CA-NR algorithm is also — S Q(z;z") = Z bij?, (23)
poorly suited to parallel processing. Oz} =
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wherec]* was defined below (14). Like the CA-PS algorithm, For the example illustrated in Fig. 2, after obtaining the
this algorithm will monotonically increase the objective funcpartitioned-separable paraboloidal surrogates, we divide the im-
tion and is guaranteed to converg@ifs strictly concave (Sec- age into 4 subsets and then assign 4 parallel processors to per-
tion V). Furthermore, the PSCA algorithm requires much leggrm the PPCA algorithm.

computation per iteration than the CA-PS algorithm, since we

can precompute the curvature in (23) prior to cycling through Subset1 Subset 2

the pixels, unlike the curvature in (20) which changes with ever
pixel update. However, the PSCA algorithm remains ill-suited Partitioned-Separable
to parallel processing since it sequentially updates each pixel.

fo][o\
N[22

Paraboloidal Surrogates

E. “Naive” Parallel Coordinate Ascent Algorithm

The naive approach to parallelizing the CA algorithm would SubseB  Subset4

be to directly separate pixels into subsets and then assign one Fig. 2. Schematic of the PPCA algorithm
parallel processor to each subset to perform the CA algorithm.
However, this technique is not guaranteed to increase the objgc-Derivation

tive function at each iteration, and thus can diverge. To ensureist we construct a paraboloidal surrogate funciirior
convergentl:e, WethéSt s%me_hovg account fot: the “corl:pllng” B original objective function as in (5)-(7). After obtaining the
tween pixels at the boundaries between subsets. The next $8¢=,idal surrogate function, we apply a form of the concav-

tion shows that the optimization transfer approach provideg@ e chnique to separate pixels into partitioned sets. Similarly
suitable framework for deriving a monotonic parallelizable a{-o (9), we can rewritéBz]; as follows:
1 3 .

gorithm.

K n

S 1.\ T

IV. PARTITIONED-SEPARABLE PARABOLOIDAL [Bx]; = E Dik (M +t?> ,
SURROGATE COORDINATE ASCENTALGORITHM k=1 Pik

(PPCA)
where

This section describes a new algorithm that not only con-
verges qwckly, but is {a!so well-suited to coarse-grain parallel sp(zs,) = [By, (g, — 2% )i = Z bij(x; — a7,
processing. The partitioned-separable paraboloidal surrogate JeT
coordinate ascent (PPCA) algorithm is based on a concavity
technique developed by De Pierro [2] and uses tangent paradad the matrixB;, is formed by selecting the columns &
las. The idea is to sequentially update pixels within each sub##at are indexed by elements.&f. To satisfy the constraint that

21

while simultaneously updating all subsets. Zszl pir = 1 andp;; > 0, which guarantees monotonicity of
the algorithm, we choose
A. Overview 5 |
) b, s
To derive the PPCA algorithm, we first find a paraboloidal Pik 2 Zged W]

P ]
surrogate function for the original objective function, and then Jj=1 [bis]

partition p|>_<els mtoK _subsets. Since the parabola is CONCaVEyijar to (11), sincey; is concave, the following inequality is
we can derive a partitioned-separable surrogate function usin,

. . . . : L isfied:
concavity technigue. Finally, the CA algorithm is applied in par- sfied
allel to each set of pixels. Here is an overview of the surrogates K sn(z7,)
derived in this section: i([Blist?) =Y pindi (““pik + 4 t?) ;. (26)
— ik
. X k=1
B(x) > Q(;a") = $(z;2") =Y Qulwy;a™),  (24) where from (6),
k=1
. 1
Gi(t +t75t0) = i () + (¢t — = ct2. (27)

where@ denotes the paraboloidal surrogate functibdenotes 27
the subset-separated paraboloidal surrogate function,(and
denotes the surrogate function for thth subset. We let/,
denote thekth subset of pixels, and;, denote the vector of A s
length|.J;| consisting of the elements afindexed by.J;,. The % (8) = pingi (— + 85 t?) : (28)
condition (24) ensures monotonicity in the objective function: Pik

P(z" 1) > ®(z™). To implement the update (3), we must obThus from (26), we obtain the following partitioned-separable
tain the next estimate in each set by maximizin@y (fl:]k X Ll,‘n) parabo|oida| surrogate function:

as follows:

For simplicity, we define the following notation:

m K
x?jl = arg max Qr(zy;z™), k=1,..., K. (25) P(z;2") = Z Z Gk (sik(21,)), (29)

z.g;, 20 i=1 k=1
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where from (24), théth subset surrogate function is the resulting surrogates. However, this approach only applies to
concave objective functions, unlike the approach in (24).

xJk’ Zqzk Sik xJk (30)

Now we update all the subsets simultaneously, while the p 5 b
els in each set are sequentially updated for fast converger}g es k=1,....K
One approach to implement the maximization in (25) is to aP 2y lbus]
ply the CA algorithm over each pixel af; by using the most rn=1,...Niters

recent values of other pixels af; in that set. Lettingc denote ti = Zk jff ~(|nt¢r—pr?cessor communication)
the current estimates, we define the 1-D quadratic function for computec; rom t; using (7)
each pixel as follows: computey; att;
for each processdr
A ~ - . . n /sz VZSth#O Vi e Jy
Qri(z;) = Qk(...,x'_l,x',m‘_l,_l,...,jGJK ) Wik = ’ J ’
() o B30 3 lie R Vistbij;éO,VjeJk
Qi (%) + ij (%) (x; — ;) — ko( - ;)% dy; = ins bfj ik» J€Jk
forj € Ji

where the first derivative af; (z;) evaluated at; = 7, is 2 = F;

ij = Z,L 1 sz‘jzk

. - AN 5 Q J
Qr; (T5) = ij = anqzk sie(@2,)) xj = [ac] + d’]: }+
’ Gir = qix — wiibij (T — a9Y), Vis.t.bi; #0
and the curvature of the parabdpa,; (z;) is given by: end o
tik = tix + —wi;fzik, Vis.t.by; #0, Vi € Jy
N end '
kT T 2Q’“J 2) Zw“ﬂblﬂ’ combinez from all processors
end

wherew?, £ c'/pix- Thus we obtain the update in each
partitioned set by applying one or more CA cycles to maximize TABLE II
the surrogate functio@y, in (30). Sequentially, for eache Jg, PPCA ALGORITHM OUTLINE.

we perform the following update:

new —_ . .
T arg;‘}%’éQkJ(%) V. CONVERGENCEANALYSIS
I Qi (%) (31) Based on the general sufficient conditions for convergence
- J . : stated in [4], we prove convergence of the algorithm (25) by
J +

first stating some sufficient conditions for convergence and then
To minimize computation, we first differentiatg, in (28) verifying that the algorithm satisfies all the required conditions

with respect tos and evaluate at = #;;, — t7, as follows: for convergence. We assume that the objective functiqm),
is strictly concave, continuous, and differentiable for> 0.
qr (tag — ) = @(tlﬂ) —wh (g, — 1), (32) Moreover, the se{z > 0 : ®(z) > ®(z')} is assumed to
be bounded for any’. We assume that each iteration is as-
wheretyy, £ [By, %7 ]; = 3,c, bisij. Then rearranging (32) Sociated with disjoint index setg/y, ..., Jic} sit. U, Ji =
yields {1,...,p}, and functional€Q(z,,z"),k = 1,...,K. The
) following conditions pertain to the functionalg, in (30).
- i — 4 . . Condition 1:Fork = 1,..., K, the functional€);, satis
ti =t + winqm, Vi s.t. by #+0,Vj € Jg, L fy

ik

B CI)(.'ZZJk,{ZZT}k) - q)(xn) > Qk(xJka xn) - Qk(x?pxn)v
This is a faster way to updatg,. Table Il shows the PPCA
algorithm outline. Vrg, >0, V2 >0, Vz" > 0, ande’i >0, wherem’k is
This algorithm generalizes the SPS and PSCA algorithms die elements af” that are not in sefy.. ’
scribed in Section Ill. Whed = p and.J,, = {k}, the PPCA  Condition 2: Each functionalQy(z,;z") is strictly con-
algorithm is equivalent to the SPS algorithm. WHen= 1 and cave and twice differentiable an;, > 0, z" > 0, and each
Jr = {1,...,p}, the PPCA algorithm is equivalent to the PSCAQ]C(J;J,C;J;”) is jointly continuous onx;, > 0, z™ > 0.

algorithm. The most useful cases are wlen K < p. Condition 3: The following derivatives matctin:
An alternate approach to deriving a parallelizable algorithm
is to first separate pixels into subsets using De Pierro’s concav- 0 0

ity technique and then to fit the paraboloidal surrogates inside oz (") = @Q’“(%k;x )
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foranyz™ > 0,27 >0, andj € J. PPCA ib'-c” (b, P ba g
Condition 4: Forz/;** > 0 andz™ > 0, the iterates satisfy J =D D STk
the Karush-Kuhn-Tucker conditiong; € Jj: m
0 +1 =0, z2"1>0 d?SCA = Zbijc? - (bij)
v n+1l, n ) j —
8:zszk(ka e ){ <0, 2f" =0 T

d7ATNR = zm: bij i ([BE;) - (bij)-

Conditiorf5*: For any bounded se, there exists a constant J

Cs > 0 such that'v # 0, x5, > 0, andvz™ € S, ) o
By comparing the arguments within parentheses of the above

V' Gz, 2w > Csllv|?, equations for the curvatures, we obtain the following inequali-

whereG(z s, ; 2™) is the|Jy| x |Ji| matrix with the(, j)th ele- S PPOA - PSCA - CA_NE
ment representing%Qk(xJk;m”), V(i,j) € J. d;"” > d; > d; >d; T >0,

Theorem:lf the curygtureszi(-) of the surrogates are Conti”'assuming thaﬂ}i([Biz]i) < ¢, As expected, the SPS algorithm
uous and have a positive lower bound, then any sequerite 5 the largest curvature, hence generally smallest step sizes

genergted by the algorithm (25) for penalized-maximum likeid slowest convergence. On the other hand, the CA-NR algo-
lihood image recovery converges globally to the unique M3ffthm has the smallest curvature, thus it has the biggest step sizes

imizer of & s'trictly concave opjective functiah(z) satisfying which yield the fastest convergence rate (when it converges).
the assumptions given in the first paragraph above.

Proof:
« Condition 1 follows the second property of the surrogate func-  v||. A PPLICATION TO IMAGE RESTORATION FOR
tion given in Section IlI-A or (24). CONFOCAL MICROSCOPY

« Condition 2 is satisfied sinc&);(z,,;z™) is a concave

guadratic function and thus differentiable and jointly continu- Confpcal fluor_esce_nce MICIoSCopy 1S widely qsed n cell biol-
ous ogy to image thick biological tissues in three dimensions. Un-

« Condition 3 follows the third property of the surrogate funcfprtunately, most obtainable images contain OUthf'fOCUS SIg-
tion in Section I1I-A nals frpm qther plangs anq have poor resolution dug to a

o o resolution/signal-to-noise ratio tradeoff as the detector pinhole
« Condition 4 is inherent to the update (25). o : . .

. ; . ] size is increased. Therefore, image restoration techniques have
» Condition 5 is satisfied due to the following proof. been applied to improve the resolution and SNR of the images
Letw}, > e,Vi,k,n, wheree is the positive lower bound of the pp . P ; ges.
curvature. then In confocal microscopy, the noisy measuremgrtan be mod-

eled as follows:

v'G(z g ;2" v v' By, D(wj},) B, v
> ’U/Bf,k(EI)BJ,C’U L
- , 5 where them;, x p system matrix4 is assumed to be known

2 Amin{ By, B vl x denotes the mean number of fluorescent photons per second,
whereD (w?, ) is the diagonal matrix with diagonal elements bg21 denotes a known measurement scaling fagtodenotes the

longing tow™., andAmin{ B, By, } is the minimum eigenvalue product of the scan time and the detector efficiency, igrake-
of the matri;Bj] B, Thus;’G(mJ .2")u > Cs|lv||? is satis- notes the background noise and the dark current [19]. The cor-
k k* k> =

Y; ~ a;Poisson{ f;[Az]; + b; }, i=1,...,mg,

fied, whereC's = eAmin{B'; By responding log-likelihood function is given by:
’ - min Jr ke
Thus, all the conditions needed for the convergence proof in DLy
[4] are satisfied. O L(z) =) o log(filAz]i +bi) — (filAzli +b:)  (33)
Theorem 1 shows that (25) converges to the global maximizer =1

of a strictly concave objective function. In practice, we use Ofigjnoring irrelevant constants independent:df which is con-
or more cycles of the CA update (31) rather than the exact ma#ve. Due to the ill-posed nature of image restoration problems,
imization (25). However, we believe the proof in [4] can bge modify the likelihood function by including a penalty func-
generalized even to include the case (31). tion (z) to form the following penalized-fikelihood objective
VI. CONVERGENCERATE function:
. ®(z) = L(z) - BR(=), (34)

The curvature of the surrogate function strongly influenc%ereﬂ controls the degree of smoothness in the restored im-

the convergence rate. Smaller curvatures generally yield fa L our goal is to estimateby maximizing the objective func-
convergence. The surrogate function curvatures for each ofE

. . . d(x):
algorithms described above are given as follows: (z)
LA
m & = argmax ®(z) = argmax L(z) — BR(z).  (35)
dSPS _ b b x>0 >0
;= igci - () ba)
i=1 =1 51n practice, the point spread function (PSF) of a confocal microscope is not

exactly known; however, one can measure the PSF by using very small micro-
4 A sufficient condition for Condition 5 in [4] sphere beads.
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For the penalty functiorR(z) of interest here, the objective Combining all the likelihood and penalty surrogate functions,
function ® in (34) is a special case of the general form (1)yve obtain the following update for eaghe J; by maximizing
therefore, the algorithms of sections Il and IV are applicablthese surrogate functions as in (31):

For clarification, we separately derive the surrogate functions

n+1 L R
for the likelihood part and the penalty part. Z o= arg E?%ij (zj) — BQy;(x5)
A. The Likelihood Part N P QF; (%) — BQE(Z;) (1)
- J L R ’
The likelihood function in (33) can be expressed in the fol- dij + Bely;
lowing form: . i o
whereQy; anddy; are the first derivative and the curvature of
I the surrogate function for the likelihood part, a@@ anddy;
Z i ([Bals) (36) are the first derivative and the curvature of the surrogate function
for the penalty part.
\;vri]tg bi; = fiai;, which is the(ij)th element of the matris3, VIII. RESULTS

A. 2-D Simulation Results

"
i) = a—zl log(l + bi) — (I + b;). (37)  A512 x 512 pepper image was degraded bysax 15 Gaus-

sian point spread function (PSF) with FWHM of 11.7 pixels
Sinceb; > 0, we can choose! to be the optimal curvature as(standard deviation = 5.0) and Poisson noise with PSNR

derived in (8) [6, 20]: 25 dB as shown in Fig. 3b. Since our long-term interest is
space-varying PSFs, we used convolution rather than FFT tech-
{ 2y, {log (l+b ) _ LH >0 niques for these algorithms. We used the following nonquadratic
Pl = Z:l b J 1y (38) penalty function [21]:
b}’ =0 t t
R 2
F(t)=0°|=| —1 1+ < , 42
B. The Penalty Part v () H5‘ Og( " Mﬂ (42)
The general form of the penalty function is given by: whered controls the degree of edge preservation. Fig. 3¢ shows
the restoration using the 4-PPCA algorithm (with four parallel
processors).

Z P ([Cals), (39)

Table Il compares wall times of monotonic algorithms
(PSCA and PPCA), and nonmonotonic algorithms (CA-NR,
whereyF is the potential function, an€ is the weighting ma- CA.P, PSCA,P, PPCA,P). The letter “P” in nonmonotonic algo-
trix. For the first-order neighborhood, the matéixconsists of rlthmsorSpresents;rile precomLputed curvature [6], where we re-
horizontal and vertical cliques. For example, witha2 image, Placec;” (-) with ¢;™*(-) = —¢; ()7, andipex = 28 — b,

the matrixC' can be written as follows: The algorithms above were performed on the IBM SP2 parallel
processors. Convergence in this table is defined as the smallest
-1 1 00 1 Ty — T n such thatd(z") — ®(z°) > 0.999(®(z*) — ®(z°)), where
O — 0 0 -1 1 x| _ | ma— w3 ®(2°) is the objective value of the initial image, a®dz*) is the
-1 0 1 0 T3 T3 — T largest objective value among all methods obtained in 50 itera-
0 -1 0 1 T4 Ty — X tions. Fig. 4 shows the subset partitions. Since the PSF is fairly

small, interprocessor communication time becomes significant
We assume that each potential penalty functigi{¢) satisfies as the number of processors increases; therefore, speedup is less

the following conditions [6, 10, 18]: than the ideal inverse relationship, as predicted by Amdahl’s law
o 7 is symmetric. [22]. Nevertheless, these results confirm that the PPCA algo-
« F is everywhere differentiable (and therefore continuous)rithm is well suited for parallel processing.

o ¢f( t) = d/dtwR( ) is convex. Fig. 5 shows that the PPCA algorithms increase the objec-

tive function essentially as much per iteration as the PSCA al-
n GR (t gorithm. This effect implies that subset-separation technique
e w;'(0) = hmHO is finite and nonzero. barely slows the convergence rate of the PPCA algorithm com-

Accordingto [18], the optimal curvature for such a symmetrigared with the PSCA algorithm, which is a one subset version
nonquadratic penalty function is given by:

o wR(t) = (t) is non-decreasing far> 0.

%The peak signal-to-noise ratio is defined as follows:
R ()
t A Pit(ol) R 2
() = S = wit (), (40) PSNR = 10log;, inag(?(/l O‘};[l)])y
~z 2.\ — By

wherey)? is the first derlvatlve of the potential penalty functiornereN ? = pixel size.
This ad hoc modification loses the guarantee of monotonicity, but reduces

at theith element, ana* 2 [Cz™);. computation andisuallyseems to converge.
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(b) Degraded Image
-

(c) Restored Image

Fig. 3. 2-D simulation and restoration using a 4-PPCA algorithm @ith 0.01
ando = 1.5.

of the PPCA algorithm. Fig. 6 shows that the PPCA algorithms

2 subsets

4 subsets

Fig. 4. Partitioned set patterns of a 2-D image.

8 subsets
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Fig. 5. Comparison of objective function increase versus number of iterations
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monotonic algorithms on a 2-D image.

Fig. 6. Comparison of objective function increase versus elapsed time using
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converge in less elapsed time than the PSCA algorithm. Using

the precomputed curvatures, Fig. 7 illustrates that the CA-NRg. 7. Comparison of objective function increase versus number of iterations

6 8
Number of iterations

CA,P, PSCA,P, and PPCA,P algorithms increase the objectiveusing nonmonotonic algorithms on a 2-D image.

function nearly at the same rate; however, Fig. 8 confirms that

the PPCA,P algorithm converges in less time than other non
monotonic algorithms.
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Monotonic Algorithms Nonmonotonic algorithms
Convergence PSCA [ 2-PPCA ] 4-PPCA] 8-PPCA|[ CA-NR | CAP [ PSCAP] 2-PPCAP| 4-PPCAP] 8-PPCAP
#iters 38 39 39 41 28 29 27 28 28 28
Wall time (s) 318.20| 213.85 | 156.20 | 132.34 612.5 | 517.91| 195.89 123.48 89.33 80.55
Wall timefiter (s) 8.37 5.48 4.01s 3.23 21.87 17.86 7.26 4.41 3.19 2.88
Speedup factor 1 1.52 2.09 2.59 0.33 0.41 1 1.64 2.28 2.52
TABLE Il

COMPARISON OF WALL TIMES AND NUMBER OF ITERATIONS TO CONVERGE USING MONOTONIC AND NONMONOTONIC ALGORITHMS FOR®12x 512
PEPPER IMAGE

x 10°
o B R e S O S JOR S e S o) o
3 awmtRSTETE ey y z
£ o oo AT
o 3r ,’/// 4
a /:/’ - CA—-NR
g *0 ?/’r -=- CA,P
= ;! o PSCA,P
L 2.5+ ! *- 4-PPCA,P 4
= !
3 I !
‘_g}—) o
<} o
2r ,’ / B
) L
;o (a) Original Images
/
I //
1.5r /, 4
J

10 2b 3;0 40 50 60 7‘0 éO éO

Elapsed time (secs)

Fig. 8. Comparison of objective function increase versus elapsed time using
nonmonotonic algorithms on a 2-D image.

B. 3-D Simulation Results for Confocal Microscopy b ded
. . . Degraded Images
Following [13], a spherical shell test specimen was generated (b) Deg g

on a256 x 256 x 64 pixel grid and was degraded byt ax 15x 15

PSF created from the XCOSM package [23] having pixel sizes
Ax = Ay = Az = 0.15um, 40x /1.0 NA oil-immersion ob-
jective, and a fluorescent wavelength of 0,68, and the Pois-
son noise with PSNR of 40 dB. This PSF is circularly symmet-
ric in thez — y plane but it has elongation in thedirection
which causes a very poor resolution in the axial direction. Fig. 9
shows the lateral and axial medial sections through the original, (c) Restored Images

degraded and restored images performed for 20 iterations. The

images on the — z plane have been scaled up to the same sc&lg. 9. Results for a 3-D simulated spherical shell using a 4-PPCA algorithm for

as those in the —y p|ane for d|sp|ay purpose. As seen from the 20 iterations with3 = 0.1 andd = 10. Lateral and axial medial sections
. . . through the image are in the left and right, respectively. For display purpose,
center slice of the: — = plane of the restored image (Fig. 9¢), the axial sections were scaled in z to obtain a 1:1 aspect ratio.

the elongation in the direction of the restored image have been
dramatically reduced.

Fig. 10 shows that the total wall times for 3-D results are |
nearly inversely proportional to the number of processors. This

20 iterations | PSCA | 2-PPCA | 4-PPCA | 8-PPCA |

Wall time (hrs) 11.54 5.93 3.06 1.64
Wall time/iter (mins) | 34.62 17.79 9.18 4.92

is because a larger amount of work in 3-D data has been ast—speedup factor T 105 377 =04
signed to each processor which means less communication tim TABLE IV
relative to the total computation time. c bSCA bPCA
Table IV shows the performance of the wall times of the ©MPARISONOF WALL T'MESS?FD AND ALGORITHMS FOR A
-D IMAGE.

PSCA, and PPCA algorithms for 20 iterations. Since we used
convolution rather than the FFT algorithm, the total time re-
quirement is quite large. Similarly to 2-D simulation resultsrdinate ascent algorithm. This approach overcomes the draw-
Figs. 11-12 verify that the PPCA algorithm increases the objasack of the ordinary coordinate ascent algorithm which is a non-
tive function almost at the same rate as the PSCA algorithm lygrallelizable algorithm. Compared to completely simultaneous

it requires much less total wall time for computation. updates like EM and SPS algorithms, this proposed algorithm
has a faster convergence rate due to larger updating step sizes.
IX. CONCLUSIONS Unlike the PSCA [6] algorithm, the surrogate functions in the

We have presented a new fast converging parallelizable alRRCA algorithm are separable between subsets to allow simul-
rithm called the partitioned-separable paraboloidal surrogate t@reous update across pixel subsets. Thus the parallel processors
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35 ‘ ‘ ‘ ‘ ‘ ‘ the parallelization associated with a subset-separable surrogate
a0\, | function could be combined with FFTs for faster computation in
£ N shift-invariant problems.
=25- -
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