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Abstract—Iterative coordinate ascent algorithms have been shown to be
useful for image recovery, but are poorly suited to parallel computing due
to their sequential nature. This paper presents a new fast converging paral-
lelizable algorithm for image recovery that can be applied to a very broad
class of objective functions. This method is based on paraboloidal surrogate
functions and a concavity technique. The paraboloidal surrogates simplify
the optimization problem. The idea of the concavity technique is to parti-
tion pixels into subsets that can be updated in parallel to reduce the com-
putation time. For fast convergence, pixels within each subset are updated
sequentially using a coordinate ascent algorithm. The proposed algorithm
is guaranteed to monotonically increase the objective function and intrinsi-
cally accommodates nonnegativity constraints. A global convergence proof
is summarized. Simulation results show that the proposed algorithm re-
quires less elapsed time for convergence than iterative coordinate ascent
algorithms. With four parallel processors, the proposed algorithm yields a
speedup factor of 3.77 relative to single processor coordinate ascent algo-
rithms for a 3-D confocal image restoration problem.

Keywords—Image restoration, maximum likelihood estimation, coordi-
nate ascent algorithm, confocal microscopy.

I. I NTRODUCTION

Statistical methods such as maximum likelihood (ML), pe-
nalized maximum likelihood (PML), and maximuma posteriori
(MAP) estimation have been widely applied to recover degraded
images. Because closed form solutions are usually unavailable,
iterative maximization algorithms are needed. This paper de-
scribes a new fast monotonic algorithm for image recovery that
is well suited to parallel computing.

Many algorithms for PML/MAP image recovery have been
constructed; however, no existing algorithm has all the proper-
ties of an “ideal” algorithm such as fast convergence rate, quick
computation time, stability, simplicity, parallelizability, etc.
Expectation-maximization (EM) algorithms [1, 2] are widely
used to compute ML estimates. Although EM algorithms are
simple to implement and guaranteed to converge, they converge
slowly since they simultaneously update all parameters. Fast
converging algorithms are particularly desirable when large 3-
D images are used or when time becomes an important issue
such as in medical imaging and microscopy. Several algorithms
have been proposed to improve the convergence rate. One ex-
ample is the space-alternating generalized EM (SAGE) algo-
rithm [3, 4] that converges quickly but is typically nonparal-
lelizable. Similarly, the classical coordinate ascent algorithm,
which updates parameters sequentially each iteration, is non-
parallelizable, and furthermore does not have an explicit form
for the update. To obtain a closed form for the update, one
can use a coordinate ascent algorithm with Newton-Raphson

updates (CA-NR) [5]. However, the CA-NR algorithm is not
guaranteed to converge if the objective function is nonquadratic.
The paraboloidal surrogate coordinate ascent (PSCA) algorithm
[6] solves the convergence problem of the CA-NR algorithm by
maximizing paraboloidal surrogate functions instead of directly
maximizing the original objective function. However, the PSCA
algorithm is still not parallelizable. In summary, existing algo-
rithms are either fast converging, as in the CA-NR or PSCA
algorithms, or fully parallelizable, as in the EM algorithms, but
not both.

This paper presents a new, fast converging, parallelizable al-
gorithm called partitioned-separable paraboloidal surrogate co-
ordinate ascent (PPCA). This new approach overcomes the con-
vergence rate and parallelizability tradeoff of existing algo-
rithms [7]. To provide parallelizability, we partition the set of
pixels into subsets that are updated in parallel, usually by a dif-
ferent processor for each subset to reduce execution time. To
provide fast convergence, each processorsequentiallyupdates
the pixelswithin each subset. This approach captures most of
the rapid convergence of the CA algorithm, but remains paral-
lelizable. A simplistic implementation of this idea would not
ensure convergence; therefore, we derive the algorithm by ap-
plying optimization transfer principles. This approach guaran-
tees that the proposed algorithm will monotonically increase the
objective function. It also intrinsically accommodates the non-
negativity constraints. The PSCA algorithm of [6] is the special
case of the PPCA algorithm when only one subset (and hence
only one processor) is used.

The grouped coordinate ascent (GCA) algorithm derived in
[8–10] represents an alternative approach to parallelization. The
GCA algorithm simultaneously updates pixels within a group of
spatially separated pixels and sequentially updates each group
of pixels. This approach does not fully capture the fast conver-
gence properties of CA, and thus the GCA algorithm converges
slower than the proposed PPCA algorithm1.

The parallel successive overrelaxation (PSOR) method [11]
using domain decomposition techniques was proposed for solv-
ing the five-point and nine-point stencil approximation of Pois-
son’s equations, but it is inapplicable to the more general opti-
mization problem of interest in imaging.

We implemented the proposed algorithm using direct con-

1Matlab m-files for comparison are available athttp://www.eecs.
umich.edu/˜fessler.
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volution rather than fast Fourier transform (FFT) algorithms,
so that it easily extends to problems where the space-invariant
property is inapplicable or invalid such as in positron emission
tomography (PET) and single photon emission computed to-
mography (SPECT) systems. In microscopy, many papers such
as [12, 13] have assumed space-invariance of the microscope,
and thus EM algorithms using FFT techniques have been ap-
plied to reduce the computation time. However, since our long-
term interest is space-varying systems, we derived the proposed
algorithm in image space rather than frequency space.

This paper is organized as follows. Section II describes the
image recovery problem. Section III reviews some existing al-
gorithms. Section IV presents the proposed algorithm in a gen-
eral form suitable for many applications. Section V discusses
convergence of this algorithm. Section VI compares the con-
vergence rate of the proposed algorithm with other algorithms.
In Section VII, the proposed algorithm is specifically applied to
image restoration for confocal microscopy. Since a 3-D image
from a confocal microscope has poor resolution, especially in
the axial direction, due to out-of-focus contributions from other
planes, image restoration techniques have been applied to re-
move the out-of-focus contributions and reduce elongation in
the axial direction. Simulation results are presented in Sec-
tion VIII and conclusions are given in Section IX. Since sev-
eral algorithms are mentioned in this paper, for convenience, we
summarize their acronyms and description in Table I.

II. T HE PROBLEM

In image recovery problems, the measurements are usually
degraded by blur and noise. To recover the original image, one
can use the statistical characteristics of the measurement system
to specify an objective function that is maximized. In this paper,
we consider a very broad class of objective functions having the
following form:

Φ(x) =

m∑
i=1

ψi([Bx]i), (1)

wherex ∈ <p represents the true image andB is anm × p
matrix that typically includes both anmL × p system matrix
and anmR × p coefficient matrix of a roughness penalty func-
tion wherem = mL + mR, mL is the number of measure-
ments, andmR is roughly the number of neighbors of pix-
els. For i = 1, . . . ,mL, eachψi function characterizes the
agreement between a noisy measurement and a linear function
of the unknown image, namely[Bx]i =

∑p
j=1 bijxj . For

i = mL +1, . . . ,m, eachψi function corresponds to the rough-
ness penalty function due to the ill-posed nature of the prob-
lem. Section VII shows a concrete example where some of the
ψi functions correspond to a Poisson log-likelihood function,
which describes fluorescent photons detected at a photodetector
in a confocal microscope system, and the remainingψi func-
tions represent a nonquadratic penalty function. We assume that
the objective function has a unique global maximum. Thus our
goal is to estimatex by finding the maximizer of the objective
function as follows:

x̂
4
= argmax

x≥0
Φ(x). (2)

The ML, PML, and MAP estimators are all special cases of
this maximization problem. We focus on the nonnegativity con-
strained problem, but of course all the algorithms are also appli-
cable to the unconstrained case.

III. PREVIOUS ALGORITHMS

Many existing algorithms have been applied to obtain a max-
imizer ofΦ(x) in (2). Generally there is a tradeoff between con-
vergence rate and parallelizability. Although EM algorithms are
guaranteed to converge to at least a local maximum, they con-
verge very slowly. However, EM algorithms are usually fully
parallelizable. At the other extreme, the CA algorithm, which
updates the unknown parameters sequentially, converges much
faster than the EM algorithms. However, the CA algorithm is
not parallelizable.

Directly maximizing the objective function in (2) is difficult
whenψi’s are nonquadratic, such as for the log-likelihood func-
tion of Poisson noise. To simplify the optimization problem and
to assure monotonic increases in the objective function at each
iteration, one can apply an optimization transfer approach by
finding a “surrogate” functionφ (Fig. 1) that lies below the ob-
jective function.
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Fig. 1. Illustration of a surrogate functionφ

As illustrated in Fig. 1, in the optimization transfer function
approach, we obtain the next estimate by maximizing the surro-
gate function2:

xn+1
4
= argmax

x≥0
φ(x;xn), (3)

wherexn denotes the estimate at thenth iteration. Choosing
a surrogate functionφ that satisfies the following monotonic-
ity condition ensures that the iteratesxn will monotonically in-
crease the objective functionΦ [6,9,10]:

Φ(x)− Φ(xn) ≥ φ(x;xn)− φ(xn;xn), ∀x ≥ 0. (4)

Rather than using (4), we choose surrogate functionsφ(x;xn)
that satisfy the following sufficient conditions:
1. φ(xn;xn) = Φ(xn)

2In practice, it usually suffices for the next iteration to simply increase the
surrogate function rather than requiring a strict maximization ofφ.
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Acronym Algorithm Name Parallelizability Speed Guaranteed to Converge

EM Expectation-maximization algorithm [1, 2] Yes Slow Yes
SAGE Space-alternating generalized expectation-maximization [3, 4] No Medium Yes
SPS Separable paraboloidal surrogates [2] Yes Slow Yes

PSCA Paraboloidal surrogate coordinate ascent [6] No Fast Yes
CA-PS Coordinate ascent with parabola surrogates No Slow Yes
GCA Grouped coordinate ascent [8–10] Partially Medium Yes
PPCA Partitioned-separable paraboloidal surrogate coordinate ascent [7]Almost fully Fast Yes

CA-NR Coordinate ascent with Newton-Raphson updates [5] No Fast No
CA,P Coordinate ascent with precomputed curvature No Fast No

PSCA,P PSCA with precomputed curvature [6] No Fast No
PPCA,P PPCA with precomputed curvature Almost fully Fastest No

TABLE I

ACRONYMS AND DESCRIPTION OF DIFFERENT ALGORITHMS. “SPEED” REFERS QUALITATIVELY TO THE COMBINATION OF NUMBER OF ITERATIONS AND

EXECUTION TIME PER ITERATION.

2. φ(x;xn) ≤ Φ(x) for x ≥ 0
3. ∂

∂xj
φ(x;xn)

∣∣
x=xn

= ∂
∂xj
Φ(x)

∣∣
x=xn

, ∀j.
The third condition follows from the other conditions for differ-
entiable surrogate and objective functions.

The following subsections summarize some existing algo-
rithms illustrating the convergence rate and parallelizability
tradeoff.

A. Separable Paraboloidal Surrogates (SPS) Algorithm

To obtain a fully parallelizable algorithm, the surrogate func-
tionφ should be separable so that we can simultaneously update
the unknown parameters. Like the EM algorithms, the SPS algo-
rithm is fully parallelizable. It is derived by using the concavity
technique developed by De Pierro [2].

To derive the SPS algorithm, we begin by considering the fol-
lowing quadratic surrogate function:

Φ(x) ≥ Q(x;xn)
4
=

m∑
i=1

qi([Bx]i; [Bx
n]i). (5)

The separable paraboloidal surrogate functionQ lies below the
objective function and is constructed from the parabolaqi hav-
ing the following form:

qi(t; t
n
i )
4
= ψi(t

n
i ) + ψ̇i(t

n
i )(t− t

n
i )−

1

2
ci(t

n
i )(t− t

n
i )
2, (6)

wheretni
4
= [Bxn]i =

∑p
j=1 bijx

n
j , ψ̇i denotes the first deriva-

tive of ψi, andci(tni ) represents the curvature of the parabola
qi(t; t

n
i ). According to the sufficient conditions previously men-

tioned, we choose the parabola in (6) to satisfy the following
conditions:
1. qi(tni ; t

n
i ) = ψi(t

n
i )

2. qi(t; tni ) ≤ ψi(t), ∀t ∈ {[Bx]i : x ≥ 0}
3. q̇i(tni ; t

n
i ) = ψ̇i(t

n
i ).

To obtain the fastest convergence rate while still guaranteeing
monotonicity, we choose the optimal curvature [6] as follows:

copti (t
n
i ) = min{c ≥ 0 : ψi(t) ≥ ψi(t

n
i ) + ψ̇i(t

n
i )(t− t

n
i )

−
c

2
(t− tni )

2}. (7)

As shown in [6], ifψi is strictly concave anḋψi(t) is strictly
convex fort ≥ 0, then a parabolaqi of form (6) exists and satis-
fies the above three conditions. Therefore, the optimal curvature

can be expressed as follows:

copti (t
n
i ) =



[
2
(tn
i
)2

(
ψi(t

n
i )− ψi(0)− t

n
i ψ̇i(t

n
i )
)]
+
, tni > 0[

−ψ̈i(0)
]
+
, tni = 0.

(8)
The symbol[g]+ representsg if g ≥ 0 and0 if g ≤ 0. These
conditions onψi are onlysufficientconditions. There are many
otherψi’s for whichqi exists such as the broad family potential
function discussed above (40) in Section VII.

To construct a separable surrogate function, we apply the ad-
ditive concavity technique developed by De Pierro [2] to the
quadratic surrogate functions. First, we rewrite the argument
[Bx]i in (1) as follows:

[Bx]i =

p∑
j=1

πij

(
bij

πij
(xj − x

n
j ) + [Bx

n]i

)
, (9)

where theπij ’s are any nonnegative3 constants for which∑p
j=1 πij = 1, ∀i. A simple choice is

πij =
|bij |∑p
j=1 |bij |

. (10)

Since eachqi is concave,

qi([Bx]i; t
n
i ) ≥

p∑
j=1

πijqi

(
bij

πij
(xj − x

n
j ) + t

n
i ; t

n
i

)
. (11)

Thus from (5), the separable paraboloidal surrogate functionφ
is obtained as follows:

Q(x;xn) ≥ φ(x;xn)
4
=

p∑
j=1

Qj(xj ;x
n),

where

Qj(xj ;x
n) =

m∑
i=1

πijqi

(
bij

πij
(xj − x

n
j ) + t

n
i ; t

n
i

)
.

SinceQj is quadratic, we implement the maximization (3) by
using Newton’s method:

xn+1j

4
= argmax

xj≥0
Qj(xj ;x

n)

3πij = 0 only if bij = 0.
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=


xnj +

d
dxj

Qj(xj ;x
n)
∣∣
xj=xnj

− d2

dx2
j

Qj(xj ;xn)



+

(12)

where

d

dxj
Qj(xj ;x

n)

∣∣∣∣
xj=xnj

=
m∑
i=1

bij q̇i(t
n
i ; t

n
i )

=
∂

∂xj
Φ(x)

∣∣∣∣
x=xn

(13)

−
d2

dx2j
Qj(xj ;x

n) =

m∑
i=1

b2ij
cni
πij

, (14)

wherecni
4
= copti (t

n
i ). The explicit form for the SPS algorithm

for the choice (10) is thus as follows:

xn+1j =

[
xnj +

∑m
i=1 bijψ̇i(t

n
i )∑m

i=1 bij(
∑

l |bil|)c
n
i

]
+

, j = 1, . . . , p. (15)

As shown in Section V, for suitableψi’s, this SPS algorithm
is guaranteed to converge. However, since it simultaneously up-
dates all the parameters, the convergence rate of this algorithm is
usually very slow, much like the closely related EM algorithms.

The SPS algorithm is closely related to the “half-quadratic”
optimization methods [14–17]. However, the quadratic sur-
rogate (6) applies to a broader family ofψi’s than the half-
quadratic approach, and the derivation of the paraboloidal sur-
rogateQ is somewhat simpler than the corresponding derivation
of half-quadratic algorithms.

B. Coordinate Ascent Algorithm with 1-D Newton-Raphson
Step (CA-NR)

The CA algorithm updates one pixel at a time using the most
recent values of all other pixels as follows:

xn+1j

4
= argmax

xj≥0
Φ(xn+11 , . . . , xn+1j−1 , xj , x

n
j+1, . . . , x

n
p ).

In practice, it is usually impractical to perform an exact max-
imization. Using the one-dimensional Newton-Raphson algo-
rithm, we obtain a closed-form approximate solution as follows:

xn+1j =


xnj +

∂
∂xj
Φ(x)|x=x̃

− ∂2

∂x2
j

Φ(x)|x=x̃



+

, (16)

wherex̃ denotes the current estimate, i.e.,x̃ is a shorthand for
[xn+11 , . . . , xn+1j−1 , x

n
j , x

n
j+1, . . . , x

n
p ], and

∂

∂xj
Φ(x)

∣∣∣∣
x=x̃

=

m∑
i=1

bijψ̇i([Bx̃]i) (17)

∂2

∂x2j
Φ(x)

∣∣∣∣
x=x̃

=
m∑
i=1

b2ijψ̈i([Bx̃]i). (18)

Being sequential, the CA-NR algorithm [5] converges rapidly if
it converges. However, the curvature of the objective function in
(18) does not ensure monotonic increases in the objective func-
tion, thus divergence is possible. The CA-NR algorithm is also
poorly suited to parallel processing.

C. Coordinate Ascent Algorithm with Parabola Surrogates
(CA-PS)

We can overcome the lack of monotonicity of the CA-NR al-
gorithm by applying the optimization transfer principle using
parabola surrogates. We call the resulting algorithm CA-PS.
The CA-NR algorithm in (16) uses the curvature of the objec-
tive functionΦ(x). This is equivalent to making a parabolic
approximationtoΦ(x), which will not satisfy the monotonicity
condition in (4) in general. To guarantee monotonicity, we re-
place ∂2

∂x2
j

Φ(x) with the curvature of a parabola surrogate that

satisfies the conditions discussed above. This approach leads to
the following CA-PS iterative algorithm:

xn+1j =


xnj +

∂
∂xj
Φ(x)

∣∣
x=x̃

− ∂2

∂x2
j

Q(x; x̃)



+

, (19)

whereQ(x; x̃) is a parabola that lies below the objective func-
tionΦ(x) as in (5), defined here by

Q(x; x̃) =

m∑
i=1

qi([Bx]i; [Bx̃]i),

whereqi is similar to (6) but with the curvatureci([Bx̃]i). Thus
the curvature of the surrogate function becomes:

−
∂2

∂x2j
Q(x; x̃) =

m∑
i=1

b2ijci([Bx̃]i). (20)

The CA-PS algorithm is guaranteed to monotonically increase
Φ. Furthermore, CA-PS is applicable toψi’s like the Huber
function [18], which is only once differentiable, whereas CA-
NR requires twice differentiableψi’s. However, CA-PS is still
not parallelizable, and it is computationally expensive since the
curvatureci([Bx̃]i) must be recomputed aftereverypixel up-
date.

D. Paraboloidal Surrogates Coordinate Ascent (PSCA) Algo-
rithm

In contrast to the CA-PS algorithm, the PSCA algorithm [6]
is derived by first finding a paraboloidal surrogate function at
each iteration and then using the CA algorithm to maximize that
surrogate iteratively. Thus the next estimate is obtained as fol-
lows:

xn+1j =


xnj +

∂
∂xj

Q(x;xn)|x=x̃

− ∂2

∂x2
j

Q(x;xn)



+

, (21)

whereQ(x;xn) is the same as in (5) and (6). The derivatives of
Q(x;xn) are as follows:

∂

∂xj
Q(x;xn)

∣∣∣∣
x=x̃

=

m∑
i=1

bij q̇i([Bx̃]i; t
n
i ) (22)

−
∂2

∂x2j
Q(x;xn) =

m∑
i=1

b2ijc
n
i , (23)
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wherecni was defined below (14). Like the CA-PS algorithm,
this algorithm will monotonically increase the objective func-
tion and is guaranteed to converge ifΦ is strictly concave (Sec-
tion V). Furthermore, the PSCA algorithm requires much less
computation per iteration than the CA-PS algorithm, since we
can precompute the curvature in (23) prior to cycling through
the pixels, unlike the curvature in (20) which changes with every
pixel update. However, the PSCA algorithm remains ill-suited
to parallel processing since it sequentially updates each pixel.

E. “Naive” Parallel Coordinate Ascent Algorithm

The naive approach to parallelizing the CA algorithm would
be to directly separate pixels into subsets and then assign one
parallel processor to each subset to perform the CA algorithm.
However, this technique is not guaranteed to increase the objec-
tive function at each iteration, and thus can diverge. To ensure
convergence, we must somehow account for the “coupling” be-
tween pixels at the boundaries between subsets. The next sec-
tion shows that the optimization transfer approach provides a
suitable framework for deriving a monotonic parallelizable al-
gorithm.

IV. PARTITIONED-SEPARABLE PARABOLOIDAL

SURROGATE COORDINATE ASCENT ALGORITHM

(PPCA)

This section describes a new algorithm that not only con-
verges quickly, but is also well-suited to coarse-grain parallel
processing. The partitioned-separable paraboloidal surrogate
coordinate ascent (PPCA) algorithm is based on a concavity
technique developed by De Pierro [2] and uses tangent parabo-
las. The idea is to sequentially update pixels within each subset
while simultaneously updating all subsets.

A. Overview

To derive the PPCA algorithm, we first find a paraboloidal
surrogate function for the original objective function, and then
partition pixels intoK subsets. Since the parabola is concave,
we can derive a partitioned-separable surrogate function using a
concavity technique. Finally, the CA algorithm is applied in par-
allel to each set of pixels. Here is an overview of the surrogates
derived in this section:

Φ(x) ≥ Q(x;xn) ≥ φ(x;xn)
4
=

K∑
k=1

Qk(xJk ;x
n), (24)

whereQ denotes the paraboloidal surrogate function,φ denotes
the subset-separated paraboloidal surrogate function, andQk
denotes the surrogate function for thekth subset. We letJk
denote thekth subset of pixels, andxJk denote the vector of
length|Jk| consisting of the elements ofx indexed byJk. The
condition (24) ensures monotonicity in the objective function:
Φ(xn+1) ≥ Φ(xn). To implement the update (3), we must ob-
tain the next estimatex in each set by maximizingQk(xJk ;x

n)
as follows:

xn+1Jk

4
= arg max

xJk≥0
Qk(xJk ;x

n), k = 1, . . . ,K. (25)

For the example illustrated in Fig. 2, after obtaining the
partitioned-separable paraboloidal surrogates, we divide the im-
age into 4 subsets and then assign 4 parallel processors to per-
form the PPCA algorithm.

Paraboloidal Surrogates

Partitioned-Separable

3Subset Subset 4

Subset 1 2Subset

Fig. 2. Schematic of the PPCA algorithm

B. Derivation

First, we construct a paraboloidal surrogate functionQ for
the original objective function as in (5)-(7). After obtaining the
paraboloidal surrogate function, we apply a form of the concav-
ity technique to separate pixels into partitioned sets. Similarly
to (9), we can rewrite[Bx]i as follows:

[Bx]i =
K∑
k=1

ρik

(
snik(xJk)

ρik
+ tni

)
,

where

snik(xJk)
4
= [BJk(xJk − x

n
Jk
)]i =

∑
j∈Jk

bij(xj − x
n
j ),

and the matrixBJk is formed by selecting the columns ofB
that are indexed by elements ofJk. To satisfy the constraint that∑K

k=1 ρik = 1 andρik ≥ 0, which guarantees monotonicity of
the algorithm, we choose

ρik
4
=

∑
j∈Jk

|bij |∑p
j=1 |bij |

.

Similar to (11), sinceqi is concave, the following inequality is
satisfied:

qi([Bx]i; t
n
i ) ≥

K∑
k=1

ρikqi

(
snik(xJk)

ρik
+ tni ; t

n
i

)
, (26)

where from (6),

qi(t+ t
n
i ; t

n
i ) = ψi(t

n
i ) + ψ̇i(t

n
i )t−

1

2
cni t
2. (27)

For simplicity, we define the following notation:

qnik(s)
4
= ρikqi

(
s

ρik
+ tni ; t

n
i

)
. (28)

Thus from (26), we obtain the following partitioned-separable
paraboloidal surrogate function:

φ(x;xn) =

m∑
i=1

K∑
k=1

qnik(s
n
ik(xJk)), (29)
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where from (24), thekth subset surrogate function is

Qk(xJk ;x
n)
4
=

m∑
i=1

qnik(s
n
ik(xJk)). (30)

Now we update all the subsets simultaneously, while the pix-
els in each set are sequentially updated for fast convergence.
One approach to implement the maximization in (25) is to ap-
ply the CA algorithm over each pixel ofxj by using the most
recent values of other pixels ofxj in that set. Letting̃x denote
the current estimates, we define the 1-D quadratic function for
each pixel as follows:

Qkj(xj)
4
= Qk([. . . , x̃j−1, xj , x̃j+1, . . . , j ∈ JK ];x

n)

= Qkj(x̃j) + Q̇kj(x̃j)(xj − x̃j)−
1

2
dnkj(xj − x̃j)

2,

where the first derivative ofQkj(xj) evaluated atxj = x̃j is

Q̇kj(x̃j)
4
=

d

dxj
Qkj(xj)

∣∣∣
xj=x̃j

=

m∑
i=1

bij q̇
n
ik (s

n
ik(x̃Jk)) ,

and the curvature of the parabolaQkj(xj) is given by:

dnkj
4
= −

d2

dx2j
Qkj(xj) =

m∑
i=1

wnikb
2
ij ,

wherewnik
4
= cni /ρik. Thus we obtain the updatexj in each

partitioned set by applying one or more CA cycles to maximize
the surrogate functionQk in (30). Sequentially, for eachj ∈ Jk,
we perform the following update:

xnewj = argmax
xj≥0

Qkj(xj)

=

[
x̃j +

Q̇kj(x̃j)

dnkj

]
+

. (31)

To minimize computation, we first differentiateqnik in (28)
with respect tos and evaluate ats = t̃ik − tnik as follows:

q̇nik(t̃ik − t
n
ik) = ψ̇i(t

n
i )− w

n
ik(t̃ik − t

n
ik), (32)

wheret̃ik
4
= [BJk x̃Jk ]i =

∑
j∈Jk

bij x̃j . Then rearranging (32)
yields

t̃ik = t
n
ik +

ψ̇i − q̇nik
wnik

, ∀i s.t. bij 6= 0, ∀j ∈ Jk,

This is a faster way to updatẽtik. Table II shows the PPCA
algorithm outline.

This algorithm generalizes the SPS and PSCA algorithms de-
scribed in Section III. WhenK = p andJk = {k}, the PPCA
algorithm is equivalent to the SPS algorithm. WhenK = 1 and
Jk = {1, . . . , p}, the PPCA algorithm is equivalent to the PSCA
algorithm. The most useful cases are when2 ≤ K � p.

An alternate approach to deriving a parallelizable algorithm
is to first separate pixels into subsets using De Pierro’s concav-
ity technique and then to fit the paraboloidal surrogates inside

the resulting surrogates. However, this approach only applies to
concave objective functions, unlike the approach in (24).

x̃ = initial image
t̃ik =

∑
j∈Jk

bij x̃j , k = 1, . . . ,K

ρik =

∑
j∈Jk

|bij |∑
p

j=1
|bij |

, k = 1, . . . ,K

for n = 1, . . . ,Niters
t̃i =

∑
k t̃ik (inter-processor communication)

computecni from t̃i using (7)
computeψ̇i at t̃i
for each processork

wnik = c
n
i /ρik, ∀i s.t. bij 6= 0, ∀j ∈ Jk

q̇ik = ψ̇i, ∀i s.t. bij 6= 0, ∀j ∈ Jk
dnkj =

∑m
i=1 b

2
ijw

n
ik, j ∈ Jk

for j ∈ Jk
xold
j = x̃j

Q̇kj =
∑m
i=1 bij q̇ik

x̃j =
[
x̃j +

Q̇kj
dn
kj

]
+

q̇ik = q̇ik − wnikbij(x̃j − x
old
j ), ∀i s.t. bij 6= 0

end
t̃ik = t̃ik +

ψ̇i−q̇ik
wn
ik

, ∀i s.t. bij 6= 0, ∀j ∈ Jk
end
combinex̃ from all processors

end

TABLE II

PPCA ALGORITHM OUTLINE.

V. CONVERGENCEANALYSIS

Based on the general sufficient conditions for convergence
stated in [4], we prove convergence of the algorithm (25) by
first stating some sufficient conditions for convergence and then
verifying that the algorithm satisfies all the required conditions
for convergence. We assume that the objective function,Φ(x),
is strictly concave, continuous, and differentiable forx ≥ 0.
Moreover, the set{x ≥ 0 : Φ(x) ≥ Φ(x′)} is assumed to
be bounded for anyx′. We assume that each iteration is as-
sociated with disjoint index sets{J1, . . . , JK} s.t.

⋃K
k=1 Jk =

{1, . . . , p}, and functionalsQk(xJk , x
n), k = 1, . . . ,K. The

following conditions pertain to the functionalsQk in (30).
Condition 1:Fork = 1, . . . ,K, the functionalsQk satisfy

Φ(xJk , x
n
J̃k
)− Φ(xn) ≥ Qk(xJk ;x

n)−Qk(x
n
Jk
;xn),

∀xJk ≥ 0, ∀x
n
Jk
≥ 0, ∀xn ≥ 0, and∀xn

J̃k
≥ 0, wherexn

J̃k
is

the elements ofxn that are not in setJk.
Condition 2: Each functionalQk(xJk ;x

n) is strictly con-
cave and twice differentiable onxJk ≥ 0, x

n ≥ 0, and each
Qk(xJk ;x

n) is jointly continuous onxJk ≥ 0, x
n ≥ 0.

Condition 3:The following derivatives match∀n:

∂

∂xj
Φ(xn) =

∂

∂xj
Qk(x

n
Jk
;xn)
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for anyxn ≥ 0, xnJk ≥ 0, andj ∈ Jk.
Condition 4: For xn+1Jk

≥ 0 andxn ≥ 0, the iterates satisfy
the Karush-Kuhn-Tucker conditions,∀j ∈ Jk:

∂

∂xj
Qk(x

n+1
Jk
;xn)

{
= 0, xn+1j > 0

≤ 0, xn+1j = 0.

Condition45∗: For any bounded setS, there exists a constant
CS > 0 such that∀v 6= 0, xJk ≥ 0, and∀xn ∈ S,

v′G(xJk ;x
n)v ≥ CS‖v‖

2,

whereG(xJk ;x
n) is the|Jk| × |Jk|matrix with the(i, j)th ele-

ment representing− ∂2

∂xi∂xj
Qk(xJk ;x

n), ∀(i, j) ∈ Jk.

Theorem:If the curvaturesci(·) of the surrogates are contin-
uous and have a positive lower bound, then any sequence{xn}
generated by the algorithm (25) for penalized-maximum like-
lihood image recovery converges globally to the unique max-
imizer of a strictly concave objective functionΦ(x) satisfying
the assumptions given in the first paragraph above.

Proof:
• Condition 1 follows the second property of the surrogate func-
tion given in Section III-A or (24).
• Condition 2 is satisfied sinceQk(xJk ;x

n) is a concave
quadratic function and thus differentiable and jointly continu-
ous.
• Condition 3 follows the third property of the surrogate func-
tion in Section III-A.
• Condition 4 is inherent to the update (25).
• Condition 5∗ is satisfied due to the following proof.
Letwnik ≥ ε, ∀i, k, n, whereε is the positive lower bound of the
curvature, then

v′G(xJk ;x
n)v = v′B′JkD(w

n
ik)BJkv

≥ v′B′Jk(εI)BJkv

≥ ελmin{B
′
Jk
BJk}‖v‖

2,

whereD(wnik) is the diagonal matrix with diagonal elements be-
longing townik, andλmin{B′JkBJk} is the minimum eigenvalue
of the matrixB′JkBJk . Thusv′G(xJk ;x

n)v ≥ CS‖v‖2 is satis-
fied, whereCS = ελmin{B′JkBJk}.

Thus, all the conditions needed for the convergence proof in
[4] are satisfied. 2

Theorem 1 shows that (25) converges to the global maximizer
of a strictly concave objective function. In practice, we use one
or more cycles of the CA update (31) rather than the exact max-
imization (25). However, we believe the proof in [4] can be
generalized even to include the case (31).

VI. CONVERGENCERATE

The curvature of the surrogate function strongly influences
the convergence rate. Smaller curvatures generally yield faster
convergence. The surrogate function curvatures for each of the
algorithms described above are given as follows:

dSPSj =

m∑
i=1

bijc
n
i · (

p∑
l=1

bil)

4A sufficient condition for Condition 5 in [4]

dPPCAj =

m∑
i=1

bijc
n
i · (bij

∑p
l=1 bil∑
l′∈Jk

bil′
), j ∈ Jk

dPSCAj =

m∑
i=1

bijc
n
i · (bij)

dCA−NRj =

m∑
i=1

bijψ̈i([Bx̃]i) · (bij).

By comparing the arguments within parentheses of the above
equations for the curvatures, we obtain the following inequali-
ties:

dSPSj ≥ dPPCAj ≥ dPSCAj ≥ dCA−NRj ≥ 0,

assuming thaẗψi([Bx̃]i) < cni . As expected, the SPS algorithm
has the largest curvature, hence generally smallest step sizes
and slowest convergence. On the other hand, the CA-NR algo-
rithm has the smallest curvature, thus it has the biggest step sizes
which yield the fastest convergence rate (when it converges).

VII. A PPLICATION TO IMAGE RESTORATION FOR

CONFOCAL MICROSCOPY

Confocal fluorescence microscopy is widely used in cell biol-
ogy to image thick biological tissues in three dimensions. Un-
fortunately, most obtainable images contain out-of-focus sig-
nals from other planes and have poor resolution due to a
resolution/signal-to-noise ratio tradeoff as the detector pinhole
size is increased. Therefore, image restoration techniques have
been applied to improve the resolution and SNR of the images.
In confocal microscopy, the noisy measurementY can be mod-
eled as follows:

Yi ∼ α1Poisson{fi[Ax]i + bi}, i = 1, . . . ,mL,

where themL × p system matrixA is assumed to be known5,
x denotes the mean number of fluorescent photons per second,
α1 denotes a known measurement scaling factor,fi denotes the
product of the scan time and the detector efficiency, andbi de-
notes the background noise and the dark current [19]. The cor-
responding log-likelihood function is given by:

L(x) =

mL∑
i=1

yi

α1
log(fi[Ax]i + bi)− (fi[Ax]i + bi) (33)

(ignoring irrelevant constants independent ofx), which is con-
cave. Due to the ill-posed nature of image restoration problems,
we modify the likelihood function by including a penalty func-
tion R(x) to form the following penalized-likelihood objective
function:

Φ(x) = L(x)− βR(x), (34)

whereβ controls the degree of smoothness in the restored im-
age. Our goal is to estimatex by maximizing the objective func-
tionΦ(x):

x̂
4
= argmax

x≥0
Φ(x) = argmax

x≥0
L(x)− βR(x). (35)

5In practice, the point spread function (PSF) of a confocal microscope is not
exactly known; however, one can measure the PSF by using very small micro-
sphere beads.
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For the penalty functionR(x) of interest here, the objective
function Φ in (34) is a special case of the general form (1);
therefore, the algorithms of sections III and IV are applicable.
For clarification, we separately derive the surrogate functions
for the likelihood part and the penalty part.

A. The Likelihood Part

The likelihood function in (33) can be expressed in the fol-
lowing form:

L(x) =

mL∑
i=1

ψLi ([Bx]i) (36)

with bij = fiaij , which is the(ij)th element of the matrixB,
and

ψLi (l) =
yi

α1
log(l + bi)− (l + bi). (37)

Sincebi > 0, we can choosecni to be the optimal curvature as
derived in (8) [6,20]:

copti (l) =



[
2yi
α1l2

{
log
(
l+bi
bi

)
− l

l+bi

}]
+
, l > 0

yi
α1b2i

, l = 0.
(38)

B. The Penalty Part

The general form of the penalty function is given by:

R(x) =

mR∑
i=1

ψRi ([Cx]i), (39)

whereψRi is the potential function, andC is the weighting ma-
trix. For the first-order neighborhood, the matrixC consists of
horizontal and vertical cliques. For example, with a2×2 image,
the matrixC can be written as follows:

Cx =



−1 1 0 0
0 0 −1 1
−1 0 1 0
0 −1 0 1





x1
x2
x3
x4


 =


x2 − x1
x4 − x3
x3 − x1
x4 − x2




We assume that each potential penalty functionψRi (t) satisfies
the following conditions [6,10,18]:
• ψRi is symmetric.
• ψRi is everywhere differentiable (and therefore continuous).
• ψ̇Ri (t) = d/dtψ

R
i (t) is convex.

• ωRi (t) =
ψ̇Ri (t)
t is non-decreasing fort ≥ 0.

• ωRi (0) = limt→0
ψ̇Ri (t)
t

is finite and nonzero.
According to [18], the optimal curvature for such a symmetric

nonquadratic penalty function is given by:

copti (v
n
i )

4
=

ψ̇Ri (v
n
i )

vni
= ωRi (v

n
i ), (40)

whereψ̇Ri is the first derivative of the potential penalty function

at theith element, andvni
4
= [Cxn]i.

Combining all the likelihood and penalty surrogate functions,
we obtain the following update for eachj ∈ Jk by maximizing
these surrogate functions as in (31):

xn+1j = argmax
xj≥0

QLkj(xj)− βQ
R
kj(xj)

=

[
xnj +

Q̇Lkj(x̃j)− βQ̇
R
kj(x̃j)

dLkj + βd
R
kj

]
+

, (41)

whereQ̇Lkj anddLkj are the first derivative and the curvature of

the surrogate function for the likelihood part, andQ̇Rkj anddRkj
are the first derivative and the curvature of the surrogate function
for the penalty part.

VIII. R ESULTS

A. 2-D Simulation Results

A 512× 512 pepper image was degraded by a15× 15 Gaus-
sian point spread function (PSF) with FWHM of 11.7 pixels
(standard deviation = 5.0) and Poisson noise with PSNR6 of
25 dB as shown in Fig. 3b. Since our long-term interest is
space-varying PSFs, we used convolution rather than FFT tech-
niques for these algorithms. We used the following nonquadratic
penalty function [21]:

ψRi (t) = δ
2

[∣∣∣∣ tδ
∣∣∣∣− log

(
1 +

∣∣∣∣ tδ
∣∣∣∣
)]

, (42)

whereδ controls the degree of edge preservation. Fig. 3c shows
the restoration using the 4-PPCA algorithm (with four parallel
processors).

Table III compares wall times of monotonic algorithms
(PSCA and PPCA), and nonmonotonic algorithms (CA-NR,
CA,P, PSCA,P, PPCA,P). The letter “P” in nonmonotonic algo-
rithms represents the precomputed curvature [6], where we re-
placecopti (·) with cprei (·) = −ψ̈

L
i (l
max
i )7, andlmaxi = yi

α1
− bi.

The algorithms above were performed on the IBM SP2 parallel
processors. Convergence in this table is defined as the smallest
n such thatΦ(xn) − Φ(x0) > 0.999(Φ(x∗) − Φ(x0)), where
Φ(x0) is the objective value of the initial image, andΦ(x∗) is the
largest objective value among all methods obtained in 50 itera-
tions. Fig. 4 shows the subset partitions. Since the PSF is fairly
small, interprocessor communication time becomes significant
as the number of processors increases; therefore, speedup is less
than the ideal inverse relationship, as predicted by Amdahl’s law
[22]. Nevertheless, these results confirm that the PPCA algo-
rithm is well suited for parallel processing.

Fig. 5 shows that the PPCA algorithms increase the objec-
tive function essentially as much per iteration as the PSCA al-
gorithm. This effect implies that subset-separation technique
barely slows the convergence rate of the PPCA algorithm com-
pared with the PSCA algorithm, which is a one subset version

6The peak signal-to-noise ratio is defined as follows:

PSNR = 10 log10
maxi(yi − α1bi)2

1
N2

∑
i
(yi − E[yi])2

,

whereN2 = pixel size.
7This ad hoc modification loses the guarantee of monotonicity, but reduces

computation andusuallyseems to converge.
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(a) Original Image

(b) Degraded Image

(c) Restored Image

Fig. 3. 2-D simulation and restoration using a 4-PPCA algorithm withβ = 0.01
andδ = 1.5.

of the PPCA algorithm. Fig. 6 shows that the PPCA algorithms
converge in less elapsed time than the PSCA algorithm. Using
the precomputed curvatures, Fig. 7 illustrates that the CA-NR,
CA,P, PSCA,P, and PPCA,P algorithms increase the objective
function nearly at the same rate; however, Fig. 8 confirms that
the PPCA,P algorithm converges in less time than other non-
monotonic algorithms.

2 subsets 4 subsets 8 subsets

Fig. 4. Partitioned set patterns of a 2-D image.
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Fig. 5. Comparison of objective function increase versus number of iterations
using monotonic algorithms on a 2-D image.

10 20 30 40 50 60 70 80 90

1.5

2

2.5

3

3.5

x 10
5

Elapsed time (secs)

O
bj

ec
tiv

e 
in

cr
ea

se PSCA
2−PPCA
4−PPCA
8−PPCA

Fig. 6. Comparison of objective function increase versus elapsed time using
monotonic algorithms on a 2-D image.
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Fig. 7. Comparison of objective function increase versus number of iterations
using nonmonotonic algorithms on a 2-D image.
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Monotonic Algorithms Nonmonotonic algorithms
Convergence PSCA 2-PPCA 4-PPCA 8-PPCA CA-NR CA,P PSCA,P 2-PPCA,P 4-PPCA,P 8-PPCA,P

#iters 38 39 39 41 28 29 27 28 28 28
Wall time (s) 318.20 213.85 156.20 132.34 612.5 517.91 195.89 123.48 89.33 80.55
Wall time/iter (s) 8.37 5.48 4.01s 3.23 21.87 17.86 7.26 4.41 3.19 2.88
Speedup factor 1 1.52 2.09 2.59 0.33 0.41 1 1.64 2.28 2.52

TABLE III

COMPARISON OF WALL TIMES AND NUMBER OF ITERATIONS TO CONVERGE USING MONOTONIC AND NONMONOTONIC ALGORITHMS FOR A512×512

PEPPER IMAGE.
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Fig. 8. Comparison of objective function increase versus elapsed time using
nonmonotonic algorithms on a 2-D image.

B. 3-D Simulation Results for Confocal Microscopy

Following [13], a spherical shell test specimen was generated
on a256×256×64pixel grid and was degraded by a15×15×15
PSF created from the XCOSM package [23] having pixel sizes
4x = 4y = 4z = 0.15µm, 40× /1.0 NA oil-immersion ob-
jective, and a fluorescent wavelength of 0.63µm, and the Pois-
son noise with PSNR of 40 dB. This PSF is circularly symmet-
ric in the x − y plane but it has elongation in thez direction
which causes a very poor resolution in the axial direction. Fig. 9
shows the lateral and axial medial sections through the original,
degraded and restored images performed for 20 iterations. The
images on thex− z plane have been scaled up to the same scale
as those in thex−y plane for display purpose. As seen from the
center slice of thex − z plane of the restored image (Fig. 9c),
the elongation in thez direction of the restored image have been
dramatically reduced.

Fig. 10 shows that the total wall times for 3-D results are
nearly inversely proportional to the number of processors. This
is because a larger amount of work in 3-D data has been as-
signed to each processor which means less communication time
relative to the total computation time.

Table IV shows the performance of the wall times of the
PSCA, and PPCA algorithms for 20 iterations. Since we used
convolution rather than the FFT algorithm, the total time re-
quirement is quite large. Similarly to 2-D simulation results,
Figs. 11-12 verify that the PPCA algorithm increases the objec-
tive function almost at the same rate as the PSCA algorithm but
it requires much less total wall time for computation.

IX. CONCLUSIONS

We have presented a new fast converging parallelizable algo-
rithm called the partitioned-separable paraboloidal surrogate co-

xx

y z

(a) Original Images

(b) Degraded Images

(c) Restored Images

Fig. 9. Results for a 3-D simulated spherical shell using a 4-PPCA algorithm for
20 iterations withβ = 0.1 andδ = 10. Lateral and axial medial sections
through the image are in the left and right, respectively. For display purpose,
the axial sections were scaled in z to obtain a 1:1 aspect ratio.

20 iterations PSCA 2-PPCA 4-PPCA 8-PPCA

Wall time (hrs) 11.54 5.93 3.06 1.64
Wall time/iter (mins) 34.62 17.79 9.18 4.92

Speedup factor 1 1.95 3.77 7.04

TABLE IV

COMPARISON OF WALL TIMES OFPSCA,AND PPCAALGORITHMS FOR A

3-D IMAGE.

ordinate ascent algorithm. This approach overcomes the draw-
back of the ordinary coordinate ascent algorithm which is a non-
parallelizable algorithm. Compared to completely simultaneous
updates like EM and SPS algorithms, this proposed algorithm
has a faster convergence rate due to larger updating step sizes.
Unlike the PSCA [6] algorithm, the surrogate functions in the
PPCA algorithm are separable between subsets to allow simul-
taneous update across pixel subsets. Thus the parallel processors
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Fig. 10. Performance on parallel processors in elapsed time for the PPCA algo-
rithms using a 256×256×64 image and a 15×15×15 PSF.
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Fig. 11. Comparison of objective function increase versus number of iterations
using PSCA and PPCA algorithms on a 3-D image.
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Fig. 12. Comparison of objective function increase versus elapsed time of
PSCA and PPCA algorithms on a 3-D image.

can be assigned to each subset to reduce the total time require-
ment. Since the PPCA algorithm increases the objective func-
tion nearly at the same rate as the PSCA algorithm, paralleliz-
ability in the PPCA algorithm only slightly reduces the conver-
gence rate. The PPCA algorithm using the precomputed curva-
ture, which is a nonmonotonic algorithm, converges much faster
than the CA-NR and CA,P algorithms. Thus the PPCA algo-
rithm yields the fastest convergence among the monotonic and
nonmonotonic algorithms tested. The PPCA algorithm seems
mostly naturally suited to shift-variant system models where
FFTs are inapplicable. It is an interesting open question whether

the parallelization associated with a subset-separable surrogate
function could be combined with FFTs for faster computation in
shift-invariant problems.
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[6] H. Erdoğan and J. A. Fessler, “Monotonic Algorithms for Transmission
Tomography,” IEEE Trans. Med. Imaging, vol. 18, no. 9, pp. 801–814,
September 1999.

[7] S. Sotthivirat and J. A. Fessler, “Partitioned Separable Paraboloidal Surro-
gate Coordinate Ascent Algorithm for Image Restoration,” inProc. IEEE
Int’l Conf. on Image Processing, 2000, vol. 1, pp. 109–112.

[8] S. Saquib, J. Zheng, C. A. Bouman, and K. D. Sauer, “Parallel Compu-
tation of Sequential Pixel Updates in Statistical Tomographic Reconstruc-
tion,” in Proc. IEEE Int’l Conf. on Image Processing, 1995, vol. 2, pp.
93–96.

[9] J. A. Fessler, “Grouped Coordinate Ascent Algorithms for Penalized-
Likelihood Transmission Image Reconstruction,”IEEE Trans. Med. Imag-
ing, vol. 16, no. 2, pp. 166–75, April 1997.

[10] J. A. Fessler, “Grouped Coordinate Descent Algorithms for Robust Edge-
Preserving Image Restoration,”SPIE 97, vol. 3170, pp. 184–194, July
1997.

[11] D. Xie and L. Adams, “New parallel SOR method by domain partitioning,”
Siam J. Sci. Comput., vol. 20, no. 6, pp. 2261–2281, 1999.

[12] J. A. Conchello and J. G. McNally, “Fast regularization technique for ex-
pectation maximization algorithm for computational optical sectioning mi-
croscopy,” inThree-dimensional and multidimensional microscopy: Im-
age Acquisition and Processing, C. J. Cogswell, G. S. Kino, and T. Wilson,
Eds. Proc. SPIE 2655, 1996, pp. 199–208.

[13] J. Markham and J. A. Conchello, “Parametric blind deconvolution: a ro-
bust method for the simultaneous estimation of image and blur,”J. Opt.
Soc. Am. A, vol. 16, no. 10, pp. 2377–2391, October 1999.

[14] D. Geman and G. Reynolds, “Constrained restoration and the recovery of
discontinuities,” IEEE Trans. Patt. Anal. Mach. Int., vol. 14, no. 3, pp.
367–383, Mar. 1992.

[15] D. Geman and C. Yang, “Nonlinear Image Recovery with Half-Quadratic
Regularization,”IEEE Trans. Image Processing, vol. 4, no. 7, pp. 932–46,
July 1995.

[16] P. Charbonnier, L. Blanc-F´eraud, G. Aubert, and M. Barlaud, “Determin-
istic Edge-Preserving Regularization in Computed Imaging,”IEEE Trans.
Image Processing, vol. 6, no. 2, February 1997.

[17] A. H. Delaney and Y. Bresler, “Globally convergent edge-preserving regu-
larized reconstruction: an application to limited-angle tomography,”IEEE
Trans. Image Processing, vol. 7, no. 2, pp. 204–221, February 1998.

[18] P. J. Huber,Robust Statistics, Wiley, New York, 1981.
[19] D. L. Snyder, A. M. Hammoud, and R. L. White, “Image recovery from

data acquired with a charge-coupled-device camera,”J. Opt. Soc. Am. A,
vol. 10, no. 5, pp. 1014–1023, May 1993.

[20] J. A. Fessler and H. Erdo˘gan, “A Paraboloidal Surrogates Algorithm for
Convergent Penalized-Likelihood Emission Image Reconstruction,”IEEE
Nuc. Sci. Symp. and Med. Im. Conf., vol. 2, pp. 1132–1135, 1998.

[21] K. Lange, “Convergence of EM Image Reconstruction Algorithms with
Gibbs Smoothing,”IEEE Trans. Med. Imaging, vol. 9, no. 4, pp. 439–446,
December 1990.

[22] G. M. Amdahl, “Validity of the single-processor approach to achieving
large scale computing capabilities,” inAFIPS Conference Proceedings.
1967, vol. 30, pp. 483–485, AFIPS Press.



12 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 200?

[23] The XCOSM deconvolution package is available from URL
http://www.ibs.wustl.edu/bcl/xcosm/xcosm.html.


