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We have investigated a fully automatic setup error estimation method that aligns @RRally
reconstructed radiographffom a three-dimensional planning computed tomography image onto
two-dimensional radiographs that are acquired in a treatment room. We have chosémativél
information-based image registration method, hoping for robustness to intensity differences be-
tween the DRRs and the radiographs. The MI-based estimator is fully automatic since it is based on
the image intensity values without segmentation. Using 10 repeated scans of an anthropomorphic
chest phantom in one position and two single scans in two different positions, we evaluated the
performance of the proposed method and a correlation-based method against the setup error deter-
mined by fiducial marker-based method. The mean differences between the proposed method and
the fiducial marker-based method were smaller than 1 mm for translational parameters and 0.8
degree for rotational parameters. The standard deviations of estimates from the proposed method
due to detector noise were smaller than 0.3 mm and 0.07 degree for the translational parameters and
rotational parameters, respectively. ZD01 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1420395
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[. INTRODUCTION x-ray beam position prior to treatment delivery.

The goal of external beam radiotherapy is to irradiate a tu- Technically, the patient setup estimation problem is the

mor to a high x-ray dose while sparing normal tissues a§stimation of patient pose difference in the treatment room
much as possible. To achieve this goal, the x-ray beam affom the planning CT. Similar application arises in the area

rangement and the dose distribution are carefully planne@f image-guided surgery that requires the mapping of posi-
based on the target tumor position within an individualizedtions in prgoperatlvoelldata to a coordinate system defined in
patient model. Each three-dimensiof@D) patient model is the operating roon

constructed using a 3D planning x-ray @lomputed tomog- The patient setup is usually estimated by an image regis-
raphy scan or two-dimensiondRD) x-ray scan that is ac- tration method that registers 2D radiographs after patient
quired several days before treatment. setup to 2D simulated images or 3D planning CT image at

Accurate radiotherapy requires the patient to be setup fothe desired position. In most cases, the 2D simulator images
treatment in a coordinate system that is consistent with ther the 3D planning CT images are geometrically transformed
treatment plan. In practice, however, patient setup errors o0gp achieve the registration, and the patient setup is estimated
cur despite the use of laser alignment. Such errors continugs the geometrical transformation that accomplishes the reg-
to be a concern in radiotherapy not only due to the unnecesgiration.
sary irradi_ati_on of normal tissues but also due to the subop- Although approaches that use 2D simulator images have
timal irradiation of the target tumor. the advantage of fast computation time, those are not very

Many studies have been conducted to quantify the Statlseiccurate since the 3D transformation is estimated by regis-

tics of the patient setup error, to consider the effect of the . . :
setup error in planning, to reduce the setup error and/or t&enng 2D images in @ 2D plartelt has been reported that

compensate for the setup error by adjusting the x-ray bearwese methods have problems in .est|mat|ng aggtaﬂons n
position or the patient positioh° Such considerations re- Planes nonparallel to the 2D radiographs plarte#p-

quire an accurate and automatic setup error estimatioRroaches that register 3D planning CT image onto the 2D
method. If the patient setup error can be correctly estimatefdiographs overcome this limitation at the expense of
after a treatment, one can retrospectively calculate the actuglfeater computation.

x-ray dose accumulation from the treatment and review the Several groups have investigated 3D/2D registration
patient setup procedure. Moreover, if the position estimaténethods**~**Those methods can be classified into feature-
can be completed quickly, then one can compensate for theased method$™**® and intensity-based methods using

setup error by adjusting either the radiotherapy table or th®RRs (Digitally Reconstructed Radiograph's'*1®Feature-
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based methods use anatomical or artificial landmarks sedAe also report the materials that were used for the experi-
mented from the images to perform the registration. Becausment. In Sec. Il we present experimental results of the pro-
of the segmentation, the feature based methods have sevepgised MI-based method in comparison with a well-known
drawbacks. For example, segmentation procedures often reorrelation-based methdfl.In Sec. IV we discuss the pro-
quire skilled human interaction, thereby making the proce{posed method and suggest future research directions.
dure difficult to automate. Automatic procedures for segmen-
tation have been studi¢d Even if one designs an automatic
segmentation algorithm, segmentation errors may occur and. MATERIALS AND METHODS
cause setup estimation errors. However, since feature-bas%d
methods have the advantage of fast computation, those arée
widely investigated for setup error estimatitin->1° We attached eleven 1 mm diameter lead markers to the
Unlike feature-based methods, intensity-based methodsxterior surface of an anthropomorphic phantom to help es-
using DRRs do not require segmentation. The DRRs, whicltablish the “ground truth” setup error. By placing markers on
are computed 2D projection images of the planning CT voldocations that would be imaged around the boundaries of the
ume, are computed at several angles and compared to tlpeojection views, we could apply the MI-based method using
radiographs from the same angles. The registration igust the center portions of the projection images excluding
achieved by maximizing a similarity measure based on th¢he markers.
intensity values of such DRRs and the radiographs. Since A 512x512x398 voxel planning CT image with 0.9375
intensity-based methods do not require segmentation, those0.9375<1 mm spacing was acquired on a GE CT/i scanner
can be easily automated and avoid the segmentation errorith a 140 kV x-ray source. Tattoos were drawn on the phan-
However, these methods require much more computatiotom where three alignment laser planes crossed the phantom
than feature-based methods, thus posing significant chate facilitate consistent setup in a treatment room.
lenges for clinical application. In intensity-based methods, Next, the phantom was moved to the treatment room and
one must design an effective similarity measure for registrait was set up at the isocenter by manually aligning tattoos to
tion. The correlation between images and other applicationthree laser planes in the treatment room. Four radiographs
specific similarity measures have been investigated fowere obtained from different angles by rotating the x-ray
3D/2D registrationtl 1416 source and Varian Portal Vision amorphous silicon active
We investigate an approach for estimating the setup erramatrix flat panel image detector in 30° increments around the
based on the 3D/2D, intensity-based registration method usz axis as in Fig. 1. For each of the 0° and 90° views, we
ing DRRs. We have chosen a NMutual Informatior) reg-  acquired 10 repeated radiographs without realignment for
istration criterion since it is robust to the intensity differencesevaluating the effect of noise on the estimator. The x-ray
between two images. In image registration for radiotherapysource voltage was 6 MV and the detector size was<3B84
the radiographs and the DRRs have different intensities sincgixels with 0.78 mnx0.78 mm spacing. We used only two
the radiographs and the CT are generated by x-ray sourceadiographs from 0°, 90G.e., AP and lateral imagg$or the
with different spectra. Moreover, other effects such as differMlI-based and the correlation-based method. However, to en-
ent scalings between two imaging devices, beam hardeningance the accuracy of the “ground truth,” we used all four
scattering and the radiotherapy table also cause intensity difadiographs for the fiducial marker-based method.
ferences. The Ml-based image registration method has been We acquired additional radiographs in the treatment room
successful in 3D/3D multimodality image registrattdn®  after manually moving the phantom to each of two other
By adopting the Ml-based image registration technique, weositions for testing the robustness of the proposed method
have tried to design a fully automatic and accurate estimatoto different setup errors. The experiments for the three dif-
Despite the computation time issues, we have chosen tHerent phantom positions are called Experiment A, B, and C,
intensity-based method using DRRs since we want to desigrespectively, in subsequent sections.
an automatic and accurate estimation method. Moreover, we We applied three methods for estimating the setup error:
believe that the computation time will be eventually reducedthe MI-based method, the correlation-based method, and the
by faster computer hardware, storing precomputed DRRsarker-based method. For the Ml-based method and the
with appropriate interpolation, etc. correlation-based method, the planning CT image was down-
To evaluate the performance of the Ml-based estimatorsampled by four along each axis to reduce computation time
we conducted an experiment with an anthropomorphic chesind memory usage. Since our planning CT had finer axial
phantom. We placed 11 radiopaque markers on the phantoraampling than typical CTs in clinical use, the down sampling
enabling determination of the “ground truth” setup error by yields more representative CT quality in axial sampling.
registering the positions of the markers in the DRRs and thélowever, it also caused slightly coarser in-plane sampling.
radiographs. We evaluated the performance of the Ml-based The down-sampling was implemented by averaging the
estimator by comparisons with the marker-based methodearest 4(4Xx4 voxel values. As a result, the planning CT
since we expected the latter to be more accurate in this extbat was used to compute DRRs had 3.X80750<4 mm
periment. spatial spacing. However, to preserve the accuracy of the
The structure of this paper is as follows. In Sec. Il we“ground truth,” we did not down-sample the CT for the
formulate the technical problem of the setup error estimationmarker based method.

Experimental methods
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x-ray source for radiograph 1
T ]

x-ray source for radiograph 2

x-ray source for radiograph 3

x-ray source for radiograph 4

detector for radiograph 1

detector for radiograph 4

(a) Radiographs and coordinate system

Fic. 1. Radiographs(Only angles 0 and 90 were used
for the Ml-based registration.

(b) Radiograph 1: angle 0 (c) Radiograph 2: angle 30

(d) Radiograph 3: angle 60 (e) Radiograph 4: angle 90

For the Mil-based method and the correlation-basednethod for all three method3.We started the search from
method, we used only the central 40800 subimage of each nominal unrotated and untranslated position. Termination cri-
of the DRRs and the radiographs to avoid the effect of thderia for the simplex method were that both the sum of the
markers which are not usually used in clinical practice. six parameter changes was less than 0.1, 0.1128nd the

We have established the geometry of the EPID imagingnaximum difference of the objective function within the
systems by determining radiation field edges using simplsimplex was less than 0.0001, 0.0001, ¥for the MI-
thresholding metho&’ We assumed that the distance from based, the correlation-based, and the marker-based method,
source to detector known during calibration is correct. respectively. Units for the rotation parameters were degrees

For numerical search, we used the Nelder—Mead simple&nd the translational parameters were mm.
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B. Technical problem formulation which is the computed line integrals of the attenuation coef-
ients with kilo-voltage source spectra, as defined2irb)

For the phantom experiments, we assume that the setJ .
nd the following:

errors are generated by rigid body motion and there is n
change in the attenuation coefficients from the time of the . -

planning CT scan. With those assumptions, we can model Yi= fl_ w(Ty(x),emy)dl, - k=1,2,... N. (2.6
each voxel intensity valu&J, of the planning CT with a «

monoenergetic source approximation as follows: If there were a functional I’elationship betweéllﬂ and
Xy, we could use the MLEMaximum Likelihood Estima-

U=au(Xew), k=12,... M, (2.2 tor) which has many desirable propertfelloreover, if there

where, u(X,¢) is 3D attenuation coefficients distribution, ~Were a linear relationship, we could use successfully the
is 3D spatial indexe is the photon energy;,, is the effec- well-known correlation-based methd8However, since the

tive energy of the x-ray source for the planning GTis the DRRs and the radiographs do not have a exact functional

constant scaling of the x-ray CT, aiiis the number of CT relationship, we would like to use a similarity measure that is
voxels. robust to the intensity differences between the two images.

The radiographs acquired in the treatment room corre-
spond to the projection images of the rotated and translateg pi-pased method
attenuation coefficients based on MV spectrum source since ) ) ) ] )
the MV treatment beam is also used for the imaging. Making L1k& many other intensity-based image registration meth-
a monoenergetic source approximation and neglecting scafds using statistical analysis, the MI-based method concep-

tered radiation, we model the measured pixel intensity value&ally considers the values of pixels in an image as samples
of the radiographs as follows: of some random variable. Likewise, we can define a joint pdf

(probability density functionof two random variables based

?k:|oe—kaM(T”e(%,smv)dT+ N., k=1,2,...N, (2.2 on the corresponding pixel values in two images.

~ The idea of the MI-based method is that the two random

0= dxdyPatxtytz], (2.3 variables are less jointly random if two images are more
e . , registered. When registered, pixels that have the same inten-
#(X) =R(Dx)R(¢y)R()xF[1:dy1,]", 24 sity value in one image will correspond to a more clustered

pixel, I, is the MV x-ray source intensity,, is the x-ray Observation need not be limited to the case that the intensi-

path from source tkth detector pixel.T; is the translate- ties of the corresponding pixels are clustered around single
rotation transform with parameters &, is the effective value. There can be two or more clusters around different

source energy for the radiograpih, is measurement noise, valu.es. If we estimate the joip_t pdf from corresponding pix-
N is the number of detector pixel&(-) is a 33 rotation els in two images, the conditional pdf becqmes more clus-
Matrix, ¢y, ¢y, ¢, are the unknown rotations aroudlY, Z tered as the two images become better registered.

axes, and,, t,, t, are the unknown translations alokgY, Based upon this observation, the Mi-based method
Z axes from the planning CT scan to treatment. achieves registration by minimizing the estimated condi-

To estimated, we compute the DRRs of the planning CT tional entropy given the random variable which represents

transformed according to any given guess for the paranﬂeterthe tr(;ansformle_d f|mage_ or ;’ quivalently '?"axgglszlg”g the esti-
using the following formula: mated mutual information between two images.

We treat the pixel intensity values of the DRRg(#) in

B - > B (2.5 from AP image as samples of a random variaKjg
Xi(0) = ka“(TG(X)'SkV)dl’ k=12,... N, (29 and those from lateral image as samples of random variable
. o X.a - We also consider the pixel values of the radiographs
whereXy is the value ofkth pixel in DRR. from AP and lateral images as samples of a random variable
In practice, the DRRs are computed by approximate sumy ,, andY,, .
mations for the line integral using the valueg. We have To estimate the mutual information, we first estimate the

implemented the line integral by computing the ray crossingoint pdf of (Xap, Yap) and (Xia, Y.a) by using the

lengths within each voxel and summing over the lengthssamplesx, andY,. We used a 128128 bin joint histogram

multiplied by voxel value$? The performance of the MI- (g estimate the joint pdf. The estimated mutual information is

based method and the correlation-based method are unafien computed from the estimated joint pdf by the definitions

fected by global constant scaling differences. of the entropy and the mutual informatidh!®?*The setup
The technical problem of setup error estimation is to eSerror is estimated by seekinywhich maximizes the sum of

timate the six elements of the registration parameteby  the two estimated mutual information as follows:

using the intensity values of the radiographs and the planning . - -

CT image. By definingY, = —log(l,/Y,) and ignoring the O =arg max 4(Xap, Yap) +1o(XLa, Yia)

measurement noise, the problem becomes estimatiby 0

usingY,, which is the measured line integrals of the attenu- =arg minH, (Y ap|Xap) + Hg (YLalX(A), 2.7

ation coefficient based on mega-voltage spectra, ¥pd 0
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Fic. 2. Slices with markers.

(a) 86th slice (b) 251th slice
wherel o(Xap, Yap),l o(Xias Yia) are the estimated mutual fgcoz arg maxp s(Xap, Yap) +po(Xias Yia), (2.9
information  between random variable X{p, Yap), 0

(Xeas Yia), andHy(Yap|Xap), Ho(YialX1a) are the esti-
mated conditional entropy o¥ap given Xap, Y o given
XLA .

To solve this nonlinear optimization problem numerically,
we applied the Nelder—Mead simplex method.

wherep4(Xap, Yap) is the estimated correlation between a
DRR and a radiograph from the AP direction and
po(Xia, YLa) is that from lateral images.

We also applied the Nelder—Mead simplex method to
solve this optimization problem.

D. Correlation-based method E. Marker-based method

For comparison purposes, we also applied a correlation- 14 egtaplish the “ground truth,” we estimated the setup

based method. Although the intensity scales of the MV andyor ysing the positions of the radiopaque markers. The re-
the kV x-ray images are not exactly Ilnearly rela}ted in theory.q its from the marker-based method were assumed to be the
we may expect this method to work well since if MV attenu- e phantom position. As a result, the performance of the

ation is large, so is kV attenuation. Ml-based estimator and the correlation-based method were

Moreover, one may try to improve the performance of theg, g yated by referencing the position estimated by the
correlation-based method by computing more MV-like DRR. 5 rker based method.

The MV attenuation coefficients may be computed from kV o procedures for estimating the setup error by the

attenuation coefficient by classifying voxels into different o rker-hased method were as follows. First, we identified
compounds and referencing typical MV attenuation coeffine gjices of the CT which contain the markers. Figure 2
cients of those compoundSHowever, these efforts require gnqys example two slices among slices that contain markers.
additional procedure and periodic calibration since the calcuy manually identified 88x4 voxel region around each
lations depend on the characteristics of the CT scanneprer and estimated each center position using the centroid
Moreover, the performance improvement may be limited bymethod?> we also manually identified 577 pixels around
other factors such as beam hardening effects, scattering &fach marker in the four different radiographs and identified
fects, presence of the unmodeled radiotherapy table, etc. o5cn center position gg using the centroid method. Next,

We compute the correlation between a DRR and a radioghile transforming the coordinates of the center position of
graph of an AP image as follows: each marker in 3D space, we projected marker center posi-

po(Xap, Yap) tions onto 2D planes that are the same planes as the radio-
_ _ graph planes, and identified the 2D indices of the projected
B SRo 1 (Xi(0) = Xi(0)) (Y= Yy) center positions ag;(6).
TTEN X0 =X D (SN (Y. —Y,)2) V2] We estimated the setup error by minimizing the mean
[Z=a O =Xl D)) (Zieea (Vi Vi) square Euclidean distance between pheand d;(6) as fol-
(2.8 lows:
whereX, () is theky, pixel value of AP DRRX,(6) is the . _ )
mean ofX,(6), Y(6) is the value ok, pixel in AP radio- ¢=arg man [pi—di(0)]*. (210
4

graph,Y, is the mean ofY,, andN is the number of pixels.

Similarly, we can compute the correlation between a DRR There were 22, 10, and 21 clearly identifiable markers in
and a radiograph from lateral images. The setup error is eshe four radiographs for Experiment A, B, and C, respec-
timated by maximizing the sum of the estimated correlatiortively. Although the projection of 11 markers on the phantom
coefficients from AP and lateral images as follows: to four different projection views resulted in 44 markers in
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Fic. 3. Estimated mutual information
with respect to the translation errors.
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(a) Radiograph/DRR 1 v (b) Radiograph/DRR 1, 4

the radiographic planes, some markers were not visible sinogenerated by translating the planning CT 12.5 mm along the
those markers projected beyond the bounds of the detectoZ direction from the registered position. For nonregistered
images, the bottom rows of DRR 1 contain bright pixels,

. RESULTS unlike the corresponding pixels in radiograph 1. Also the top
_ left parts of radiograph 4 are imaged dark, since those areas
A. Radiographs are air, while some of the corresponding pixels in DRR 4

Figure 3a) shows the estimated MI from radiograph/DRR have bright pixels. These p_henomena diffL_lse the jpint histo-
1 and Fig. 8b) shows the average of two estimated Ml from 9ram and decrease the estimated mutual information.
radiograph/DRR 1,4 as the planning CT is translated along Figure 5 shows the joint histograms that are estimated
the X, Y, and Z axes from the registered position, respec-i"om the reg|§tereq and the nonreg|ster§d DRR/Radlograph 1
tively, while the other five parameters were kept at the reg@nd 4. The joint histogram from the registered images shows
istered position. The registered position was defined as th@teresting characteristics. It was expected that the joint his-
mean of the marker-based estimated positions from 10 radido9ram from the registered images would show more clus-
graphs. tered shape along increasing functional curve, since the MV

For the radiograph/DRR 1 case, the estimated MI changed{ténuation coefficients tend to be high if the kV attenuation
only slightly with respect to the translation along tiexis, ~ Coefficients are high. However, a range of DRR intensity
and the point of the maximal estimated Ml is far from the Values corresponded to high radiograph intensity values in
registered point. This large error could be due to the fact thalfid- 3(b), the estimated joint histogram from lateral images.
the movement along theé axis does not cause much change This can be explained as the.effect qf .the r.adlothefapy table.
in DRR 1. Thus 3D/2D registration based on a single-view!n€ radiotherapy table is slightly visible in the rightmost
similarity measure would be sensitive to noise. The insensiParts of radiograph 4 in Fig.(&). Although most of the ra-
tivity of the single-view estimated Ml with respect to diotherapy table parts were not used for the Mi-based and the
changes irt, is clear from Fig. 1, because theaxis trans- correlation-based method, it still made the upper right parts
lation causes only a small change of magnification in the?f the radiograph 4 brighter than the DRR 4 since the corre-
projection image. sponding pixels in the DRR 4 only represents air as we can

Similar phenomena occur if only radiograph/DRR 4 is S€€ in Fig. 4. For increased intensity yalu_es in the upper right
used. Thus, using only one projection view may cause a sige@'ts due to the radiotherapy table in Figb}} even if the
nificant error in estimating the translation that is orthogonalPRR and the radiographs are registered, corresponding pix-
to the detector plane. els of DRR in Fig. 4f) are darker than radiograph 4.

This problem is alleviated by using two radiograph/DRR
images. Figure ®) shows the 'estimated MI usin_g C. Position estimation results
radiograph/DRR 1 and 4. The maximal mutual information ) )
position is close to the true position for all six parameters. [N Experiment A, we used laser alignment to set up the
Based on this observation, we used radiograph/DRR 1,4 fophantom without error, while in Experiments B and C, we

evaluating the proposed Mi-based estimator and th&enerated setup errors deliberately to test the robustness of
correlation-based estimator. the proposed method to different setup errors.

In Experiment A, radiographs 1 and 4 were acquired 10
times. Table | summarizes the empirical means and the stan-
dard deviations of each method in Experiment A. The esti-

Figure 4 shows an example of nonregistered and regismated setup errors by the proposed Ml-based method were
tered radiograph/DRR 1 and 4. The nonregistered DRR waslose to the setup errors determined by the marker-based

B. Estimated joint pdf
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(a) Radiograph 1 (b) Radiograph 4

Fic. 4. Nonregistered and registered
radiographs and DRRs.

(c) Non-registered DRR 1 (d) Non-registered DRR 4

(e) Registered DRR 1 (f) Registered DRR 4

method. The differences between the means of the MI-basddirly good. This indicates that the relationship between DRR
method and the marker-based method did not exceed 1.0 mand radiograph is approximately linear. Compared with the
for translation parameters and 0.8° for rotational parameterqroposed method, the result of the correlation-based method
Considering that the voxel spacing of the subsampled plarshows relatively larger variance to noise. However, since the
ning CT that was used for computing DRR was 3.75noise level was quite low, the noise-induced variability was
X 3.75<4 mm, estimation errors for every parameter wereinsignificant compared to the mean errors.
subvoxel. Table Il shows the results from Experiment B. In this
The sample STD(Standard Deviationof the proposed experiment, we tried to generate patient setup errot,of
estimator was very small. This was because the EPID has 12 mm, t,=—8 mm, t,=—7 mm, and ¢,=¢,=¢,
very low noise and we used an automatic method without=0°. Compared with the results from Experiment A, the
human interaction. correlation-based method performed worse while the MI-
The results of the correlation-based method were alsdbased method still worked well.

Medical Physics, Vol. 28, No. 12, December 2001



2514 Kim et al.: Mutual information based setup error estimator 2514

High High

(from (from

""'°h-) radio-
grap graph)
F 4
£
Low 'ti o |
Law X (from DRR) Hon Low X(from DRR) High
(a) Registered (DRR/radiograph 1) (b) Registered (DRR/radiograph 4)
High High
Y Y
(from m
;":';"h‘) graph) -
o . di o |,
Low X (from DRR) High Low X (from DRR) High
(c) Non-registered (DRR/radiograph 1) (d) Non-registered (DRR/radiograph 4)

Fic. 5. Joint histograms from registered and nonregistered images.

Table 11l shows the results from Experiment C. For thisthat were tested because the higher resolution CT was used
experiment, we tried to generate rotational setup error. Théo identify the marker position in the CT and four
planned set-up error wag,=0°, ¢,=2.2°, ¢,=1.2°,t, radiographs/DRRs were used in the marker-based method
=ty=t,=0 mm. while only two radiographs/DRRs were used for the other

In summary, for three different phantom positions, we esmethods. Although this method also contains error due to

timated the setup error 12 times including 10 repeated estsegmentation errors and noise, we used the marker-based
mates using 10 different acquisitions. The means of the esti,ethod as “ground truth” since it is expected to be more
mated setup error differences between the marker-baseg.. rate than the other methods.

method_ and the Ml-based estllmator did not exceed 1 mm for There was approximately 3 mm setup variation from the
translation parameters and did not exceed 0.8°

parameters for rOtatIOIBositioning of the phantom at its proper reference location.

Factors that contribute to this value include the limits of
human operators in positioning relative to laser marks, as
IV. DISCUSSION well as differences in laser calibration between the CT scan-
By using two orthogonal radiograph/DRR pairs, we Ner and the treatment room. A retrospective review indicated
achieved average accuracies of better than 1 mm for transl& 1 mm offset of the CT lasers from the center of the image
tional movement parameters and better than 0.8° for rotahatrix. Such errors in transferring a phantom or patient from
tional movement parameters in estimating the setup error. one system to another have been previously reported, and are
We established the “ground truth” positions using the unlikely to be dramatically reduced in routine radiotherapy
marker-based method. The accuracy of the marker-basegliality assurance.
method was expected to be the best among the three methodsFor rigid body setup error estimation using the chest
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TaBLE |. Estimated setup error for Experiment A. In Tables I-Ill, the units TasLE Ill. Estimated setup error for Experiment C.
for rotational parameters are degrees and for translational parameters are
mm. d’x ¢y ‘bz tx ty tz
Marker 0.755 1864 —0.698 —1.515 -—3.201 —2.947
d’x d’y ¢z tx ty tz
Ml error 0.067 -0.121 -0.667 —1.043 0.992 —0.453
Marker (mear) 0.601 —0.114 —1.892 —1.968 —3.568 —2.995 Corr. error  0.72 0.069 —1.172 —-1.050 -0.391 -0.010

Ml error (meann  —0.064 0.035 —0.729 —0.635 —0.692 —0.151
Corr. error(mean  0.336  0.143 —1.308 —0.939 —0.597 0.102

Marker STD 0004 0002 0002 0012 0009 0.004
MI STD 0.045 0.008 ~ 0.071 0.088 0.060 0071 egtimator show good performance. This robustness of the
Corr. STD 0318 0080 0.158 0254 0114 0.248

MI-based estimator to nonmodeled effects partly supports
the advantages of the method owarpriori model-based
methods such as MLE Therefore, the Mi-based method
phantom, two radiographs/DDRs were adequate for subvoxehay be useful in applications in which nonmodeled objects
accuracy. We suspect that the performance of the estimatonay present, such as in image-guided surgery.

would be improved only modestly if more DRRs and radio- For estimating patient setup error, around 225 evaluations
graphs from different angles were added. Practically, usingf the estimated mutual information were required. Each
fewer radiographs/DRRs is strongly preferable because dfvaluation of the estimated mutual information requires com-
acquisition time and computation time. putation of two DRRs. The joint histogram and the mutual

The correlation-based method also achieved subvoxel agaformation also must to be computed for each mutual infor-
curacy. Even though many factors could cause the intensitgnation evaluation. The most time consuming part was gen-
relation between DRR and radiograph to be nonlinear, weerating DRRS; it took around 16 s to compute one X800
found the relationship is approximately linear so theDRR from the 12&128x85 planning CT on Pentium Il 600
correlation-based method worked fairly well. MHz machine. As a result, estimating one patient setup error

We have found that the standard deviation of theusing two orthogonal radiographs/DRRs required about 2
correlation-based method was larger than that of the Mlhours.
based method in Experiment A. This implies that the This long computation time is not due to the MI criteria
correlation-based method may be more sensitive to the noisbut because of DRR computation. Compared with other
although the effects of noise were not significant in the exdintensity-based method using DRR, our computation time
periment since the noise level was very low. We are not sur&as longer since we implemented a more accurate line inte-
if this phenomena is just for our experiments or general. Ongral instead of a trilinear interpolation approximatiérOne
may investigate this problem by theoretically approximatingmight use trilinear interpolation approximations for comput-
the variances of the estimafbias well as experimentally. ing DRR with proposed Ml criteria for faster estimation.

We also tried to compute the MV DRRs for the Due to long computation time, it is difficult to estimate
correlation-based method. However, results were no bettghe patient setup error in real time with the proposed method.
but more complicated. We think that was because we did noAs a result, adjusting the position of the x-ray source or the
have CT data from test phantoms for voxel classificdfion position of the radiotherapy table to compensate for the pa-
nor information about scattering, etc. Since we were unabléient setup error is presently impractical. Instead, as a first
to implement the algorithm thoroughly, we have excludedapplication, we expect our method to be applied to review
the results. the patient setup procedure. However, in near future, we ex-

One may try to compute better MV DRRs by following pect that the proposed method can be used for estimating the
thorough procedures, however we suspect that the resulgetup error in real time using precomputed DRRs stored in
will not be improved dramatically since unmodeled effectslarge memory with appropriate interpolation and perhaps
such as the presence of the radiotherapy table, difficulty oparallel processing. Furthermore, methods such as multireso-
correctly compensating for scatter and beam hardening maytion optimization technique may further reduce computing
limit the performance. time?’

Compared with methods that requiepriori models we Our investigation can be discussed in comparison to other
think that the Ml-based method may perform better in theinvestigations. Lemieuwset al. applied the correlation-based
presence of unexpected objects. As presented in the expesimilarity measure to skull phantom experimettsThey
mental results section, even though there were nonmodelagsed kV x-ray source for both CT and radiographs so that the
effects of the radiotherapy table, the results of the Ml-basedorrelation measure may work better.

Donget al. also investigated the correlation-based method
_ _ by testing the method using a head phant8wilthough they

TasLE Il. Estimated setup error for Experiment B. used MV radiographs and kV CT, they generated MV DRRs

b, oy b, t, t, t, SO tr_]at th_e DRRs and the radiographs have Iir)egr intensity
Nrker 0519 0005 —1879 9703 1132 958 _relatlonsh|p. MV DRRS were generated by classifying voxels
Miemor  —0453 —0.044 —0594 —0.597 1030 oeeg 'Nto several categories such as bone, muscle_s, etc., t_)a_sed on
Corr. error 0286 —0001 —2534 —0924 -3.092 1451 CT numbers and seeking typical MV attenuation coefficients
of those.
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There also have been many studies of setugrue setup error was established by the fiducial marker-based
estimatior'11® Most investigations reported setup estima-method. Based upon theoretical background and the experi-
tion methods of less than a few mm estimation error formental results, we believe that MI has significant potential as
translation parameters and less than a few degree for rotatian effective similarity measure for 3D/2D intensity-based
parameters. It is hard to compare the performance of eadgistration.
method directly since different types of CT images and ra-
diographs were used. We believe that the performance of an
estimator can depend greatly on the image CharaCteriSt,iCﬁ;CKNOWLEDGMENTS
For example, the presence of high contrast objects can im-
prove performance. Moreover, different image resolution and This work was supported by NIH Grants Nos. CA60711,
different optimization stopping criteria may also affect the PO1-CA59827, and RO1-CA81161. Dr Balter is supported
performance of the estimators. as a Kimmer scholar.
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