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We have investigated a fully automatic setup error estimation method that aligns DRRs~digitally
reconstructed radiographs! from a three-dimensional planning computed tomography image onto
two-dimensional radiographs that are acquired in a treatment room. We have chosen a MI~mutual
information!-based image registration method, hoping for robustness to intensity differences be-
tween the DRRs and the radiographs. The MI-based estimator is fully automatic since it is based on
the image intensity values without segmentation. Using 10 repeated scans of an anthropomorphic
chest phantom in one position and two single scans in two different positions, we evaluated the
performance of the proposed method and a correlation-based method against the setup error deter-
mined by fiducial marker-based method. The mean differences between the proposed method and
the fiducial marker-based method were smaller than 1 mm for translational parameters and 0.8
degree for rotational parameters. The standard deviations of estimates from the proposed method
due to detector noise were smaller than 0.3 mm and 0.07 degree for the translational parameters and
rotational parameters, respectively. ©2001 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1420395#
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I. INTRODUCTION

The goal of external beam radiotherapy is to irradiate a
mor to a high x-ray dose while sparing normal tissues
much as possible. To achieve this goal, the x-ray beam
rangement and the dose distribution are carefully plan
based on the target tumor position within an individualiz
patient model. Each three-dimensional~3D! patient model is
constructed using a 3D planning x-ray CT~computed tomog-
raphy! scan or two-dimensional~2D! x-ray scan that is ac
quired several days before treatment.

Accurate radiotherapy requires the patient to be setup
treatment in a coordinate system that is consistent with
treatment plan. In practice, however, patient setup errors
cur despite the use of laser alignment. Such errors cont
to be a concern in radiotherapy not only due to the unne
sary irradiation of normal tissues but also due to the sub
timal irradiation of the target tumor.

Many studies have been conducted to quantify the sta
tics of the patient setup error, to consider the effect of
setup error in planning, to reduce the setup error and/o
compensate for the setup error by adjusting the x-ray be
position or the patient position.1–10 Such considerations re
quire an accurate and automatic setup error estima
method. If the patient setup error can be correctly estima
after a treatment, one can retrospectively calculate the ac
x-ray dose accumulation from the treatment and review
patient setup procedure. Moreover, if the position estim
can be completed quickly, then one can compensate for
setup error by adjusting either the radiotherapy table or
2507 Med. Phys. 28 „12…, December 2001 0094-2405 Õ2001Õ28
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x-ray beam position prior to treatment delivery.
Technically, the patient setup estimation problem is

estimation of patient pose difference in the treatment ro
from the planning CT. Similar application arises in the ar
of image-guided surgery that requires the mapping of po
tions in preoperative data to a coordinate system define
the operating room.10,11

The patient setup is usually estimated by an image re
tration method that registers 2D radiographs after pat
setup to 2D simulated images or 3D planning CT image
the desired position. In most cases, the 2D simulator ima
or the 3D planning CT images are geometrically transform
to achieve the registration, and the patient setup is estim
as the geometrical transformation that accomplishes the
istration.

Although approaches that use 2D simulator images h
the advantage of fast computation time, those are not v
accurate since the 3D transformation is estimated by re
tering 2D images in a 2D plane.5 It has been reported tha
these methods have problems in estimating rotations
planes nonparallel to the 2D radiographs planes.12 Ap-
proaches that register 3D planning CT image onto the
radiographs overcome this limitation at the expense
greater computation.

Several groups have investigated 3D/2D registrat
methods.5,11–16Those methods can be classified into featu
based methods12,13,15 and intensity-based methods usin
DRRs~Digitally Reconstructed Radiographs!.11,14,16Feature-
2507„12…Õ2507Õ11Õ$18.00 © 2001 Am. Assoc. Phys. Med.
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2508 Kim et al. : Mutual information based setup error estimator 2508
based methods use anatomical or artificial landmarks
mented from the images to perform the registration. Beca
of the segmentation, the feature based methods have se
drawbacks. For example, segmentation procedures often
quire skilled human interaction, thereby making the pro
dure difficult to automate. Automatic procedures for segm
tation have been studied.13 Even if one designs an automat
segmentation algorithm, segmentation errors may occur
cause setup estimation errors. However, since feature-b
methods have the advantage of fast computation, those
widely investigated for setup error estimation.12,13,15

Unlike feature-based methods, intensity-based meth
using DRRs do not require segmentation. The DRRs, wh
are computed 2D projection images of the planning CT v
ume, are computed at several angles and compared to
radiographs from the same angles. The registration
achieved by maximizing a similarity measure based on
intensity values of such DRRs and the radiographs. Si
intensity-based methods do not require segmentation, th
can be easily automated and avoid the segmentation e
However, these methods require much more computa
than feature-based methods, thus posing significant c
lenges for clinical application. In intensity-based metho
one must design an effective similarity measure for regis
tion. The correlation between images and other applicat
specific similarity measures have been investigated
3D/2D registration.11,14,16

We investigate an approach for estimating the setup e
based on the 3D/2D, intensity-based registration method
ing DRRs. We have chosen a MI~Mutual Information! reg-
istration criterion since it is robust to the intensity differenc
between two images. In image registration for radiothera
the radiographs and the DRRs have different intensities s
the radiographs and the CT are generated by x-ray sou
with different spectra. Moreover, other effects such as diff
ent scalings between two imaging devices, beam harden
scattering and the radiotherapy table also cause intensity
ferences. The MI-based image registration method has b
successful in 3D/3D multimodality image registration.17–19

By adopting the MI-based image registration technique,
have tried to design a fully automatic and accurate estima

Despite the computation time issues, we have chosen
intensity-based method using DRRs since we want to de
an automatic and accurate estimation method. Moreover
believe that the computation time will be eventually reduc
by faster computer hardware, storing precomputed DR
with appropriate interpolation, etc.

To evaluate the performance of the MI-based estima
we conducted an experiment with an anthropomorphic ch
phantom. We placed 11 radiopaque markers on the phan
enabling determination of the ‘‘ground truth’’ setup error b
registering the positions of the markers in the DRRs and
radiographs. We evaluated the performance of the MI-ba
estimator by comparisons with the marker-based met
since we expected the latter to be more accurate in this
periment.

The structure of this paper is as follows. In Sec. II w
formulate the technical problem of the setup error estimat
Medical Physics, Vol. 28, No. 12, December 2001
g-
se
ral

re-
-
-

nd
ed
re

ds
h
l-
the
is
e
e
se
or.
n

al-
,
-

n-
r

or
s-

s
y,
ce
es

r-
g,
if-
en

e
r.

he
n
e

d
s

r,
st
m,

e
ed
d
x-

n.

We also report the materials that were used for the exp
ment. In Sec. III we present experimental results of the p
posed MI-based method in comparison with a well-kno
correlation-based method.16 In Sec. IV we discuss the pro
posed method and suggest future research directions.

II. MATERIALS AND METHODS

A. Experimental methods

We attached eleven 1 mm diameter lead markers to
exterior surface of an anthropomorphic phantom to help
tablish the ‘‘ground truth’’ setup error. By placing markers o
locations that would be imaged around the boundaries of
projection views, we could apply the MI-based method us
just the center portions of the projection images exclud
the markers.

A 51235123398 voxel planning CT image with 0.937
30.937531 mm spacing was acquired on a GE CT/i scan
with a 140 kV x-ray source. Tattoos were drawn on the ph
tom where three alignment laser planes crossed the phan
to facilitate consistent setup in a treatment room.

Next, the phantom was moved to the treatment room
it was set up at the isocenter by manually aligning tattoos
three laser planes in the treatment room. Four radiogra
were obtained from different angles by rotating the x-r
source and Varian Portal Vision amorphous silicon act
matrix flat panel image detector in 30° increments around
Z axis as in Fig. 1. For each of the 0° and 90° views,
acquired 10 repeated radiographs without realignment
evaluating the effect of noise on the estimator. The x-
source voltage was 6 MV and the detector size was 5123384
pixels with 0.78 mm30.78 mm spacing. We used only tw
radiographs from 0°, 90°~i.e., AP and lateral images! for the
MI-based and the correlation-based method. However, to
hance the accuracy of the ‘‘ground truth,’’ we used all fo
radiographs for the fiducial marker-based method.

We acquired additional radiographs in the treatment ro
after manually moving the phantom to each of two oth
positions for testing the robustness of the proposed met
to different setup errors. The experiments for the three
ferent phantom positions are called Experiment A, B, and
respectively, in subsequent sections.

We applied three methods for estimating the setup er
the MI-based method, the correlation-based method, and
marker-based method. For the MI-based method and
correlation-based method, the planning CT image was do
sampled by four along each axis to reduce computation t
and memory usage. Since our planning CT had finer a
sampling than typical CTs in clinical use, the down sampli
yields more representative CT quality in axial samplin
However, it also caused slightly coarser in-plane samplin

The down-sampling was implemented by averaging
nearest 43434 voxel values. As a result, the planning C
that was used to compute DRRs had 3.75033.75034 mm
spatial spacing. However, to preserve the accuracy of
‘‘ground truth,’’ we did not down-sample the CT for th
marker based method.
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FIG. 1. Radiographs.~Only angles 0 and 90 were use
for the MI-based registration.!
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For the MI-based method and the correlation-ba
method, we used only the central 4003300 subimage of each
of the DRRs and the radiographs to avoid the effect of
markers which are not usually used in clinical practice.

We have established the geometry of the EPID imag
systems by determining radiation field edges using sim
thresholding method.20 We assumed that the distance fro
source to detector known during calibration is correct.

For numerical search, we used the Nelder–Mead simp
Medical Physics, Vol. 28, No. 12, December 2001
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method for all three methods.21 We started the search from
nominal unrotated and untranslated position. Termination
teria for the simplex method were that both the sum of
six parameter changes was less than 0.1, 0.1, 10212 and the
maximum difference of the objective function within th
simplex was less than 0.0001, 0.0001, 10212 for the MI-
based, the correlation-based, and the marker-based me
respectively. Units for the rotation parameters were degr
and the translational parameters were mm.
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2510 Kim et al. : Mutual information based setup error estimator 2510
B. Technical problem formulation

For the phantom experiments, we assume that the s
errors are generated by rigid body motion and there is
change in the attenuation coefficients from the time of
planning CT scan. With those assumptions, we can mo
each voxel intensity valueUk of the planning CT with a
monoenergetic source approximation as follows:

Uk5am~xW ,«kV!, k51,2, . . . ,M , ~2.1!

where,m(xW ,«) is 3D attenuation coefficients distribution,xW
is 3D spatial index,« is the photon energy,«kV is the effec-
tive energy of the x-ray source for the planning CT,a is the
constant scaling of the x-ray CT, andM is the number of CT
voxels.

The radiographs acquired in the treatment room co
spond to the projection images of the rotated and transl
attenuation coefficients based on MV spectrum source s
the MV treatment beam is also used for the imaging. Mak
a monoenergetic source approximation and neglecting s
tered radiation, we model the measured pixel intensity val
of the radiographs as follows:

Ỹk5I 0e2*Lk
m~Tũ~xW !,«MV !dlW1Nk , k51,2, . . . ,N, ~2.2!

ũ5@fxfyfztxtytz#, ~2.3!

Tũ~xW !5R~fx!R~fy!R~fz!xW1@ txtytz#8, ~2.4!

where Ỹk is the measured intensity value ofkth detector
pixel, I 0 is the MV x-ray source intensity,Lk is the x-ray
path from source tokth detector pixel,Tũ is the translate-
rotation transform with parametersũ, «MV is the effective
source energy for the radiographs,Nk is measurement noise
N is the number of detector pixels,R(•) is a 333 rotation
matrix,fx , fy , fz are the unknown rotations aroundX, Y, Z
axes, andtx , ty , tz are the unknown translations alongX, Y,
Z axes from the planning CT scan to treatment.

To estimateũ, we compute the DRRs of the planning C
transformed according to any given guess for the parameu
using the following formula:

Xk~u!5E
Lk

m~Tu~xW !,«kV!dlW, k51,2, . . . ,N, ~2.5!

whereXk is the value ofkth pixel in DRR.
In practice, the DRRs are computed by approximate su

mations for the line integral using the valuesUk . We have
implemented the line integral by computing the ray cross
lengths within each voxel and summing over the leng
multiplied by voxel values.22 The performance of the MI-
based method and the correlation-based method are u
fected by global constant scaling differences.

The technical problem of setup error estimation is to
timate the six elements of the registration parametersũ by
using the intensity values of the radiographs and the plann
CT image. By definingYk52 log(I0 /Ỹk) and ignoring the
measurement noise, the problem becomes estimatingũ by
usingYk , which is the measured line integrals of the atten
ation coefficient based on mega-voltage spectra, andXk ,
Medical Physics, Vol. 28, No. 12, December 2001
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which is the computed line integrals of the attenuation co
ficients with kilo-voltage source spectra, as defined in~2.5!
and the following:

Yk5E
Lk

m~Tũ~xW !,«MV !dlW, k51,2, . . . ,N. ~2.6!

If there were a functional relationship betweenYk and
Xk , we could use the MLE~Maximum Likelihood Estima-
tor! which has many desirable properties.2 Moreover, if there
were a linear relationship, we could use successfully
well-known correlation-based method.16 However, since the
DRRs and the radiographs do not have a exact functio
relationship, we would like to use a similarity measure tha
robust to the intensity differences between the two image

C. MI-based method

Like many other intensity-based image registration me
ods using statistical analysis, the MI-based method conc
tually considers the values of pixels in an image as sam
of some random variable. Likewise, we can define a joint
~probability density function! of two random variables base
on the corresponding pixel values in two images.

The idea of the MI-based method is that the two rand
variables are less jointly random if two images are mo
registered. When registered, pixels that have the same in
sity value in one image will correspond to a more cluste
distribution of the intensity values in the other image. Th
observation need not be limited to the case that the inte
ties of the corresponding pixels are clustered around sin
value. There can be two or more clusters around differ
values. If we estimate the joint pdf from corresponding p
els in two images, the conditional pdf becomes more cl
tered as the two images become better registered.

Based upon this observation, the MI-based meth
achieves registration by minimizing the estimated con
tional entropy given the random variable which represe
the transformed image or equivalently maximizing the e
mated mutual information between two images.17–19

We treat the pixel intensity values of the DRRsXk(u) in
~2.5! from AP image as samples of a random variableXAP

and those from lateral image as samples of random vari
XLA . We also consider the pixel values of the radiographsYk

from AP and lateral images as samples of a random varia
YAP andYLA .

To estimate the mutual information, we first estimate t
joint pdf of (XAP, YAP) and (XLA , YLA) by using the
samplesXk andYk . We used a 1283128 bin joint histogram
to estimate the joint pdf. The estimated mutual information
then computed from the estimated joint pdf by the definitio
of the entropy and the mutual information.18,19,24The setup
error is estimated by seekingu which maximizes the sum o
the two estimated mutual information as follows:

ûMI5arg max
u

Î u~XAP, YAP!1 Î u~XLA , YLA !

5arg min
u

Ĥu ~YAPuXAP!1Ĥu ~YLAuXLA !, ~2.7!
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FIG. 2. Slices with markers.
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whereÎ u(XAP, YAP), Î u(XLA , YLA) are the estimated mutua
information between random variable (XAP, YAP),
(XLA , YLA), and Ĥu(YAPuXAP), Ĥu(YLAuXLA) are the esti-
mated conditional entropy ofYAP given XAP, YLA given
XLA .

To solve this nonlinear optimization problem numerical
we applied the Nelder–Mead simplex method.

D. Correlation-based method

For comparison purposes, we also applied a correlat
based method. Although the intensity scales of the MV a
the kV x-ray images are not exactly linearly related in theo
we may expect this method to work well since if MV atten
ation is large, so is kV attenuation.

Moreover, one may try to improve the performance of t
correlation-based method by computing more MV-like DR
The MV attenuation coefficients may be computed from
attenuation coefficient by classifying voxels into differe
compounds and referencing typical MV attenuation coe
cients of those compounds.16 However, these efforts requir
additional procedure and periodic calibration since the ca
lations depend on the characteristics of the CT scan
Moreover, the performance improvement may be limited
other factors such as beam hardening effects, scattering
fects, presence of the unmodeled radiotherapy table, etc

We compute the correlation between a DRR and a ra
graph of an AP image as follows:

r̂u~XAP, YAP!

5
(k51

N ~Xk~u!2X̄k~u!!~Yk2Ȳk!

@~(k51
N ~Xk~u!2X̄k~u!!2!~(k51

N ~Yk2Ȳk!
2!#1/2

,

~2.8!

whereXk(u) is thekth pixel value of AP DRR,X̄k(u) is the
mean ofXk(u), Yk(u) is the value ofkth pixel in AP radio-
graph,Ȳk is the mean ofYk , andN is the number of pixels.

Similarly, we can compute the correlation between a D
and a radiograph from lateral images. The setup error is
timated by maximizing the sum of the estimated correlat
coefficients from AP and lateral images as follows:
Medical Physics, Vol. 28, No. 12, December 2001
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ûco5arg max
u

r̂u~XAP, YAP!1 r̂u~XLA , YLA !, ~2.9!

where r̂u(XAP, YAP) is the estimated correlation between
DRR and a radiograph from the AP direction an
r̂u(XLA , YLA) is that from lateral images.

We also applied the Nelder–Mead simplex method
solve this optimization problem.

E. Marker-based method

To establish the ‘‘ground truth,’’ we estimated the set
error using the positions of the radiopaque markers. The
sults from the marker-based method were assumed to be
true phantom position. As a result, the performance of
MI-based estimator and the correlation-based method w
evaluated by referencing the position estimated by
marker based method.

The procedures for estimating the setup error by
marker-based method were as follows. First, we identifi
the slices of the CT which contain the markers. Figure
shows example two slices among slices that contain mark
We manually identified 83834 voxel region around each
marker and estimated each center position using the cen
method.25 We also manually identified 737 pixels around
each marker in the four different radiographs and identifi
each center position aspi using the centroid method. Nex
while transforming the coordinates of the center position
each marker in 3D space, we projected marker center p
tions onto 2D planes that are the same planes as the ra
graph planes, and identified the 2D indices of the projec
center positions asdi(u).

We estimated the setup error by minimizing the me
square Euclidean distance between thepi and di(u) as fol-
lows:

û5arg min
u

(
i

ipi2di~u!i2. ~2.10!

There were 22, 10, and 21 clearly identifiable markers
the four radiographs for Experiment A, B, and C, respe
tively. Although the projection of 11 markers on the phanto
to four different projection views resulted in 44 markers
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FIG. 3. Estimated mutual information
with respect to the translation errors.
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the radiographic planes, some markers were not visible s
those markers projected beyond the bounds of the detec

III. RESULTS

A. Radiographs

Figure 3~a! shows the estimated MI from radiograph/DR
1 and Fig. 3~b! shows the average of two estimated MI fro
radiograph/DRR 1,4 as the planning CT is translated al
the X, Y, and Z axes from the registered position, respe
tively, while the other five parameters were kept at the r
istered position. The registered position was defined as
mean of the marker-based estimated positions from 10 ra
graphs.

For the radiograph/DRR 1 case, the estimated MI chan
only slightly with respect to the translation along theY axis,
and the point of the maximal estimated MI is far from t
registered point. This large error could be due to the fact
the movement along theY axis does not cause much chan
in DRR 1. Thus 3D/2D registration based on a single-vi
similarity measure would be sensitive to noise. The inse
tivity of the single-view estimated MI with respect t
changes inty is clear from Fig. 1, because theY-axis trans-
lation causes only a small change of magnification in
projection image.

Similar phenomena occur if only radiograph/DRR 4
used. Thus, using only one projection view may cause a
nificant error in estimating the translation that is orthogo
to the detector plane.

This problem is alleviated by using two radiograph/DR
images. Figure 3~b! shows the estimated MI usin
radiograph/DRR 1 and 4. The maximal mutual informati
position is close to the true position for all six paramete
Based on this observation, we used radiograph/DRR 1,4
evaluating the proposed MI-based estimator and
correlation-based estimator.

B. Estimated joint pdf

Figure 4 shows an example of nonregistered and re
tered radiograph/DRR 1 and 4. The nonregistered DRR
Medical Physics, Vol. 28, No. 12, December 2001
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generated by translating the planning CT 12.5 mm along
Z direction from the registered position. For nonregister
images, the bottom rows of DRR 1 contain bright pixe
unlike the corresponding pixels in radiograph 1. Also the t
left parts of radiograph 4 are imaged dark, since those a
are air, while some of the corresponding pixels in DRR
have bright pixels. These phenomena diffuse the joint his
gram and decrease the estimated mutual information.

Figure 5 shows the joint histograms that are estima
from the registered and the nonregistered DRR/Radiograp
and 4. The joint histogram from the registered images sho
interesting characteristics. It was expected that the joint
togram from the registered images would show more cl
tered shape along increasing functional curve, since the
attenuation coefficients tend to be high if the kV attenuat
coefficients are high. However, a range of DRR intens
values corresponded to high radiograph intensity values
Fig. 5~b!, the estimated joint histogram from lateral image
This can be explained as the effect of the radiotherapy ta
The radiotherapy table is slightly visible in the rightmo
parts of radiograph 4 in Fig. 1~e!. Although most of the ra-
diotherapy table parts were not used for the MI-based and
correlation-based method, it still made the upper right pa
of the radiograph 4 brighter than the DRR 4 since the co
sponding pixels in the DRR 4 only represents air as we
see in Fig. 4. For increased intensity values in the upper r
parts due to the radiotherapy table in Fig. 4~b!, even if the
DRR and the radiographs are registered, corresponding
els of DRR in Fig. 4~f! are darker than radiograph 4.

C. Position estimation results

In Experiment A, we used laser alignment to set up
phantom without error, while in Experiments B and C, w
generated setup errors deliberately to test the robustnes
the proposed method to different setup errors.

In Experiment A, radiographs 1 and 4 were acquired
times. Table I summarizes the empirical means and the s
dard deviations of each method in Experiment A. The e
mated setup errors by the proposed MI-based method w
close to the setup errors determined by the marker-ba
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FIG. 4. Nonregistered and registere
radiographs and DRRs.
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method. The differences between the means of the MI-ba
method and the marker-based method did not exceed 1.0
for translation parameters and 0.8° for rotational paramet
Considering that the voxel spacing of the subsampled p
ning CT that was used for computing DRR was 3.
33.7534 mm, estimation errors for every parameter we
subvoxel.

The sample STD~Standard Deviation! of the proposed
estimator was very small. This was because the EPID
very low noise and we used an automatic method with
human interaction.

The results of the correlation-based method were a
Medical Physics, Vol. 28, No. 12, December 2001
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fairly good. This indicates that the relationship between DR
and radiograph is approximately linear. Compared with
proposed method, the result of the correlation-based me
shows relatively larger variance to noise. However, since
noise level was quite low, the noise-induced variability w
insignificant compared to the mean errors.

Table II shows the results from Experiment B. In th
experiment, we tried to generate patient setup error otx

512 mm, ty528 mm, tz527 mm, and fx5fy5fz

50°. Compared with the results from Experiment A, t
correlation-based method performed worse while the M
based method still worked well.
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FIG. 5. Joint histograms from registered and nonregistered images.
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Table III shows the results from Experiment C. For th
experiment, we tried to generate rotational setup error.
planned set-up error wasfx50°, fy52.2°, fz51.2°, tx

5ty5tz50 mm.
In summary, for three different phantom positions, we

timated the setup error 12 times including 10 repeated e
mates using 10 different acquisitions. The means of the e
mated setup error differences between the marker-ba
method and the MI-based estimator did not exceed 1 mm
translation parameters and did not exceed 0.8° for rota
parameters.

IV. DISCUSSION

By using two orthogonal radiograph/DRR pairs, w
achieved average accuracies of better than 1 mm for tran
tional movement parameters and better than 0.8° for r
tional movement parameters in estimating the setup erro

We established the ‘‘ground truth’’ positions using th
marker-based method. The accuracy of the marker-ba
method was expected to be the best among the three me
Medical Physics, Vol. 28, No. 12, December 2001
e

-
ti-
ti-
ed
or
n

la-
a-

ed
ods

that were tested because the higher resolution CT was
to identify the marker position in the CT and fou
radiographs/DRRs were used in the marker-based me
while only two radiographs/DRRs were used for the oth
methods. Although this method also contains error due
segmentation errors and noise, we used the marker-b
method as ‘‘ground truth’’ since it is expected to be mo
accurate than the other methods.

There was approximately 3 mm setup variation from t
positioning of the phantom at its proper reference locati
Factors that contribute to this value include the limits
human operators in positioning relative to laser marks,
well as differences in laser calibration between the CT sc
ner and the treatment room. A retrospective review indica
a 1 mm offset of the CT lasers from the center of the ima
matrix. Such errors in transferring a phantom or patient fr
one system to another have been previously reported, an
unlikely to be dramatically reduced in routine radiothera
quality assurance.

For rigid body setup error estimation using the ch
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phantom, two radiographs/DDRs were adequate for subv
accuracy. We suspect that the performance of the estim
would be improved only modestly if more DRRs and rad
graphs from different angles were added. Practically, us
fewer radiographs/DRRs is strongly preferable because
acquisition time and computation time.

The correlation-based method also achieved subvoxe
curacy. Even though many factors could cause the inten
relation between DRR and radiograph to be nonlinear,
found the relationship is approximately linear so t
correlation-based method worked fairly well.

We have found that the standard deviation of t
correlation-based method was larger than that of the
based method in Experiment A. This implies that t
correlation-based method may be more sensitive to the no
although the effects of noise were not significant in the
periment since the noise level was very low. We are not s
if this phenomena is just for our experiments or general. O
may investigate this problem by theoretically approximat
the variances of the estimator26 as well as experimentally.

We also tried to compute the MV DRRs for th
correlation-based method. However, results were no be
but more complicated. We think that was because we did
have CT data from test phantoms for voxel classificatio16

nor information about scattering, etc. Since we were una
to implement the algorithm thoroughly, we have exclud
the results.

One may try to compute better MV DRRs by followin
thorough procedures, however we suspect that the re
will not be improved dramatically since unmodeled effe
such as the presence of the radiotherapy table, difficulty
correctly compensating for scatter and beam hardening
limit the performance.

Compared with methods that requirea priori models we
think that the MI-based method may perform better in
presence of unexpected objects. As presented in the ex
mental results section, even though there were nonmod
effects of the radiotherapy table, the results of the MI-ba

TABLE I. Estimated setup error for Experiment A. In Tables I–III, the un
for rotational parameters are degrees and for translational parameter
mm.

fx fy fz tx ty tz

Marker ~mean! 0.601 20.114 21.892 21.968 23.568 22.995
MI error ~mean! 20.064 0.035 20.729 20.635 20.692 20.151
Corr. error~mean! 0.336 0.143 21.308 20.939 20.597 0.102
Marker STD 0.004 0.002 0.002 0.012 0.009 0.0
MI STD 0.045 0.008 0.071 0.088 0.060 0.07
Corr. STD 0.318 0.080 0.158 0.254 0.114 0.2

TABLE II. Estimated setup error for Experiment B.

fx fy fz tx ty tz

Marker 0.519 0.005 21.879 9.703 211.32 29.58
MI error 20.153 20.044 20.594 20.597 1.030 0.668
Corr. error 0.286 20.001 22.534 20.924 23.092 1.451
Medical Physics, Vol. 28, No. 12, December 2001
el
tor
-
g
of

c-
ity
e

I-

e,
-
re
e

er
ot

le
d

lts

of
ay

e
ri-

ed
d

estimator show good performance. This robustness of
MI-based estimator to nonmodeled effects partly suppo
the advantages of the method overa priori model-based
methods such as MLE.23 Therefore, the MI-based metho
may be useful in applications in which nonmodeled obje
may present, such as in image-guided surgery.

For estimating patient setup error, around 225 evaluati
of the estimated mutual information were required. Ea
evaluation of the estimated mutual information requires co
putation of two DRRs. The joint histogram and the mutu
information also must to be computed for each mutual inf
mation evaluation. The most time consuming part was g
erating DRRs; it took around 16 s to compute one 4003300
DRR from the 1283128385 planning CT on Pentium II 600
MHz machine. As a result, estimating one patient setup e
using two orthogonal radiographs/DRRs required abou
hours.

This long computation time is not due to the MI criter
but because of DRR computation. Compared with ot
intensity-based method using DRR, our computation ti
was longer since we implemented a more accurate line i
gral instead of a trilinear interpolation approximation.14 One
might use trilinear interpolation approximations for compu
ing DRR with proposed MI criteria for faster estimation.

Due to long computation time, it is difficult to estimat
the patient setup error in real time with the proposed meth
As a result, adjusting the position of the x-ray source or
position of the radiotherapy table to compensate for the
tient setup error is presently impractical. Instead, as a
application, we expect our method to be applied to revi
the patient setup procedure. However, in near future, we
pect that the proposed method can be used for estimating
setup error in real time using precomputed DRRs stored
large memory with appropriate interpolation and perha
parallel processing. Furthermore, methods such as multir
lution optimization technique may further reduce computi
time.27

Our investigation can be discussed in comparison to o
investigations. Lemieuxet al. applied the correlation-base
similarity measure to skull phantom experiments.14 They
used kV x-ray source for both CT and radiographs so that
correlation measure may work better.

Donget al.also investigated the correlation-based meth
by testing the method using a head phantom.16 Although they
used MV radiographs and kV CT, they generated MV DR
so that the DRRs and the radiographs have linear inten
relationship. MV DRRs were generated by classifying vox
into several categories such as bone, muscles, etc., base
CT numbers and seeking typical MV attenuation coefficie
of those.

are
TABLE III. Estimated setup error for Experiment C.

fx fy fz tx ty tz

Marker 0.755 1.864 20.698 21.515 23.201 22.947
MI error 0.067 20.121 20.667 21.043 0.992 20.453
Corr. error 0.72 0.069 21.172 21.050 20.391 20.010
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There also have been many studies of se
estimation.5,11–16Most investigations reported setup estim
tion methods of less than a few mm estimation error
translation parameters and less than a few degree for rota
parameters. It is hard to compare the performance of e
method directly since different types of CT images and
diographs were used. We believe that the performance o
estimator can depend greatly on the image characteris
For example, the presence of high contrast objects can
prove performance. Moreover, different image resolution a
different optimization stopping criteria may also affect t
performance of the estimators.

Penney et al. investigated the performance of seve
similarity measures by applying those similarity measures
the image registration of a 3D CT to a fluoroscopy image28

However, since only one fluoroscopy image was used
estimating six parameters, the results may not be dire
applicable to our study that used two radiographs for re
tration.

The MI-based method was investigated for the setup e
estimation problem by Hadleyet al.29 In their investigation,
the MI-based method worked well for simulated images
did not show good performance for clinical images. Sin
the investigation was for 2D/2D image registration and th
was no comparison to other similarity measures for clini
images, it does not necessarily imply that the MI-bas
method perform worse in 3D/2D registration problems th
other similarity measures.

Our future work on setup error estimation includes t
application of the MI-based estimator to clinical data. A
though we have achieved good registration results in a ph
tom experiment, we believe that much more verification w
clinical data is crucial for potential application of the M
based method to the clinical practice.

We plan to investigate nonrigid body motion setup err
Since the human body is not rigid and radiotherapy m
change the size and shape of the tumor, an accurate non
body motion setup error estimation is required for practi
application.

We also plan to investigate other intensity-based simi
ity measures. For example, Re´nyi entropy may be a more
flexible and computationally efficient similarity measure
accomplish image registration30,31 since it is more general
ized definition of entropy. Investigating better similari
measures such as Re´nyi entropy may improve both spee
and performance.

V. CONCLUSION

We have investigated a setup error estimation method
ing 3D/2D, intensity-based method. To achieve 3D to
image registration, the radiographs and the DRRs of
planning CT were registered by maximizing the MI betwe
the DRRs and the radiographs. In the experiment with
anthropomorphic chest phantom, we achieved accura
better than 1 mm for estimating the translational parame
and 0.8 degree for estimating the rotational parameters u
two orthogonal pairs of the MV radiographs and DRRs. T
Medical Physics, Vol. 28, No. 12, December 2001
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true setup error was established by the fiducial marker-ba
method. Based upon theoretical background and the exp
mental results, we believe that MI has significant potentia
an effective similarity measure for 3D/2D intensity-bas
registration.
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