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Exact Distribution of Edge-Preserving MAP
Estimators for Linear Signal Models with Gaussian

Measurement Noise
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Abstract—We derive the exact statistical distribution of max-
imum a posteriori(MAP) estimators having edge-preserving non-
Gaussian priors. Such estimators have been widely advocated for
image restoration and reconstruction problems. Previous investi-
gations of these image recovery methods have been primarily em-
pirical; the distribution we derive enables theoretical analysis. The
signal model is linear with Gaussian measurement noise. We as-
sume that the energy function of the prior distribution is chosen
to ensure a unimodal posterior distribution (for which convexity of
the energy function is sufficient), and that the energy function sat-
isfies a uniform Lipschitz regularity condition. The regularity con-
ditions are sufficiently general to encompass popular priors such
as the generalized Gaussian Markov random field prior and the
Huber prior, even though those priors are not everywhere twice
continuously differentiable.

Index Terms—Bayesian methods, image reconstruction, image
restoration.

I. INTRODUCTION

M ANY papers have described edge-preserving methods
for image reconstruction and image restoration based on

the Bayesian formalism with non-Gaussian priors. Recent ex-
amples in this journal include [1]–[4]. Maximum a posteriori
(MAP) estimators for non-Gaussian priors are nonlinear and
defined implicitly (lacking an explicit expression). Therefore,
in virtually all such papers, the evaluation of the performance
of such methods has been investigated only empirically. This
paper contributes a step toward an analyticalunderstanding of
edge-preserving MAP estimators by deriving their probability
distribution functions (pdf’s).
We attempted to analyze the mean and covariance of such im-

plicitly defined estimators in [5] using linear approximations to
the gradient of the objective function. However, non-Gaussian
priors have nonquadratic energy functions that induce signifi-
cant nonlinearities, rendering inaccurate the approximations in
[5]. The mean and covariance analysis in [5] accommodates
general measurement models. In this paper, we focus on linear
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Gaussian measurements. Remarkably, this simple restriction al-
lows us to derive the exact(conditional) pdf for MAP estimators
having a broad class of non-Gaussian priors. This explicit form
for the pdf may be useful in analyzing the statistical properties
of MAP estimation methods. The pdf may also be useful for
Bayesian techniques such as Gibbs sampling and Markov chain
Monte Carlo, e.g., [6] and [7].
This paper complements the work of Abbey et al. [8], [9],

who developed an approximatepdf for maximum likelihood and
MAP estimates under a general nonlinear signal model. (See
also [10].) By considering linear signal models, we obtain the
exactpdf, even for non-Gaussian priors.

II. PROBLEM

Let denote the unknown image vector, and let
denote the observed measurement vector (e.g. a noisy

blurry image in image restoration, or a sinogram in image recon-
struction). We assume a linear Gaussian measurement model,
i.e., the conditional distribution of given is normal

(1)
where is a known system matrix and denotes the
determinant of a known measurement noise covariance matrix

assumed to be symmetric positive definite. Assume that the
prior distribution for has the usual Gibbs form

(2)

where is a constant independent of and is an energy
function that discourages image roughness. For edge-pre-
serving image recovery, typically is a nonquadratic
function [1]–[4], usually composed of functions that increase
less rapidly than quadratic functions [see (23)]. If were
quadratic, then both the prior (2) for and the measurement
model (1) would be Gaussian, so the posterior distribution

would also be Gaussian. We focus on the non-Gaussian
case here, for which no explicit form for has been
previously found to our knowledge.
Suppose we observe Under the above assumptions,

the MAP estimator for i.e., the maximizer of the pos-
terior distribution is equivalent, by Bayes rule, to the
maximizer of or equivalently to the minimizer of

Thus, the MAP estimator
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for (1), (2) minimizes the following regularized weighted least
squares objective function:

(3)

ignoring constants independent of where “ ” denotes matrix
or vector transpose.
Our goal is to characterize statistically the implicitly defined

estimator defined in (3), even though there is no
explicit expression for There are two reasonable choices
at this point. We could try to find the unconditional distribution

or find the conditional distribution for some true
image of interest. One can find the former (in principle)
from the latter by applying total probability

A devout Bayesian might focus on the unconditional distribu-
tion but such a Bayesian would need to have faith that the
prior distribution properly reflects the globalprior charac-
teristics of the unknown image. The fairly simple energy func-
tions that are typically used in practice generally only cap-
ture local properties of natural images.1 Such priors are useful
for MAP estimation, but may be ill-suited for global ensemble
statistics.2 Thus, we focus on the conditional pdf By
studying this distribution for various true images of in-
terest, one could examine analytically howMAP estimates vary
relative to as a function of hyperparameters, system models,
noise levels, etc.

III. SOLUTION

Our main result is the expression for the pdf given in
(12) below. Our derivation is complicated by our goal of im-
posing minimal restrictions on the nature of the energy function

so that the result is as widely applicable as possible to
the cornucopia of priors that have been proposed. If we were
to assume that is strictly convex and twice continuously
differentiable, then the proof of the main result (12) would be
fairly straightforward. However, there are many energy func-
tions of interest for edge-preserving image recovery that do not
satisfy those regularity conditions [1]–[4], so such a simpler
proof would be of less interest. For example, one popular prior
uses an energy function formed from Huber potential functions
(see, e.g., [1] and (23)) defined by

for some user-selected parameter that controls the degree
of edge preservation. This function is convex but not strictly
convex (see Fig. 1). The derivative of the potential

1See [11] for an interesting exception.
2If the priors used in imaging were truly global priors, then conditional mean

estimation should be more appropriate than MAP estimation under a squared
error loss function.

Fig. 1. Huber and Generalized Gaussian potential functions  (t); and
derivatives _ (t):

function is called the influence function, and plays a key role in
its edge-preserving properties and in our pdf formula. As illus-
trated in Fig. 1, is not differentiable at the two points

i.e., is not globally twice differentiable.
Similarly, the generalized Gaussian prior [1] has a potential
function defined by for As illustrated
in Fig. 1, this function is not twice differentiable at for

Remarkably, despite these “irregularities” in the Huber po-
tential function and generalized Gaussian potential function, the
pdf result (12) is indeed applicable to MAP estimators having
priors based on these types of potential functions. However, rig-
orously proving that generality requires a more technical treat-
ment than would be needed if only globally twice continuously
differentiable energy functions were of interest.

A. The Basic Idea

Before delving into technicalities, we first present the gen-
eral idea behind the derivation. Under regularity assumptions
A2 and A3 below, the (unconstrained) MAP estimate is a sta-
tionary point of the gradient of the objective function where
the column gradient of is given by

Thus, is related implicitly to the measurement via

(4)

Rearranging (4) leads to the following transformation:

(5)

where and

(6)
(7)
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It follows from (6) and (1) that, conditioned on the
random vector also has a Gaussian distribution, with the fol-
lowing mean and covariance:

(8)

(9)

where is the conditional mean of given
Equation (5) describes a functional relationship between the

MAP estimate and the random vector having a known
Gaussian pdf The problem of finding thus be-
comes a “transformation of random variables” problem. The re-
mainder of this section deals primarilywith the technical aspects
of showing that the transformation (5) leads to the pdf
in (12).

B. General Transformations

To prove (12) under the general conditions of interest, we
need the following theorem, which generalizes the usual such
formulas found in engineering probability texts.

Theorem 1: (See [12] and [13] for proofs.)
Let be one-to-one and assume that

is continuous. Assume that, on an open set
is continuously differentiable with Jacobian3

det
Suppose random vector has pdf and

(10)

where denotes the set complement (in of and
Then, the pdf of is

given by

(11)

and is zero otherwise.

C. General Case for MAP pdf

Nowwe apply Theorem 1 to find So that the problem
is well defined and the analysis is tractable, we make the fol-
lowing assumptions.

A1) has full column rank.
A2) The energy function is chosen such that, for any

the negative log posterior has a unique
stationary point that globally minimizes

A3) is continuously differentiable4 on
A4) is twice continuously differentiable on an open

set
A5) The Lebesgue measure of is zero, where is

defined in (7).
Assumptions A2)–A5) are trivially satisfied by all globally

twice continuously differentiable convex energy functions
such as the large family described in [14]. The additional

3We use jFFF j to denote the absolute value of the determinant of a matrix FFF :
4This condition precludes the absolute value potential function (Laplacian

prior).

generality afforded by these assumptions will be used in the
corollaries following the next theorem to address energy func-
tions that are not globally twice continuously differentiable,
such as those illustrated in Fig. 1.

Theorem 2:Under assumptions A1–A5 above, the condi-
tional pdf of the (unconstrained) MAP estimator defined by (3)
is

(12)

for and is 0 elsewhere, where

(13)

is the Hessian5 of the objective function (defined on

(14)

is the Fisher information matrix for estimating under the
model (1), and

(15)

where is the column gradient of
Proof: By A2 and A3, the MAP estimate (3) satisfies the

transformation relationship given in (5). To apply (11) to (5) we
must verify the conditions of Theorem 1.
Ignoring constants, we can write the objective function (3) in

terms of the random vector defined in (6)

(16)

By A2, for each there is a single that minimizes Thus
there is an (implicit) function for which

(17)

We show that is one-to-one by contradiction. Suppose there
exists such that Then, by (5)

contradicting Furthermore, since
and is one-to-one with inverse

Although there is no explicit expression for
in general, we can nevertheless find using Theorem 1.
By A3, is continuous over By A4, is continuously

differentiable over the open set Since the Lebesgue measure
of is zero by A5, and since has a Gaussian distribution,

is zero. Thus, all the conditions of Theorem 1 are
satisfied, and we can apply (11) to (5) to conclude

(18)

for and is zero elsewhere. Everything on the right hand
side of (18) has an explicit expression, i.e., the dependence of
(17) on has disappeared in (18). In particular, since
from (7)

(19)
5[r �(x)] = (@ =@x @x )�(x) for x 2 V:
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for we arrive at the pdf expression

(20)

for where is defined in (9) [cf. (14))], is
defined in (13), and

Thus, (12) is the conditional pdf of the MAP estimator.
As a sanity check, one can consider the case of a

Gaussian prior, for which the energy function is quadratic:
In this case, is linear in so it has a

Gaussian distribution with easily computed moments. Substi-
tuting into (12) yields the expected Gaussian distribution for

D. Practical Special Cases

In principle, we could leave it to the reader to verify con-
ditions A2)–A5) for his or her own favorite energy functions.
However, establishing condition A5 is nontrivial in general for
energy functions of interest such as those based on the Huber
prior or Generalized Gaussian prior. In this section, we pro-
vide corollaries that show that the conditions of Theorem 2 hold
under most cases of interest.
We first lay some groundwork that helps cover the case of in-

fluence functions such as that of the Huber potential function
shown in Fig. 1. The Huber influence function is continuous,
but not differentiable. However, does satisfy a Lipschitz
condition, a property that is stronger than continuity, but weaker
than differentiability. Fortunately, this weaker condition is ade-
quate to establish conditions A4)–A5).

Definition 1: A function is said to satisfy
a uniform Lipschitz condition (of order one) on a compact set

if there exists a real number such that

(21)

Define to be the open ball in of radius centered
at It follows from the Lipschitz condition (21) on
that

(22)

The following Lemma will help establish A4. (See [15, Prop.
2.2] for a closely related argument for Hausdorff measures.)

Lemma 1: Let satisfy where
denotes Lebesgue measure, and is a compact set. If

satisfies a uniform Lipschitz condition on then
Thus, functions satisfying uniform Lipschitz conditions map

zero measure sets into zero measure sets.
Proof: Since has measure zero by assumption, for any

there exists a countable covering of open balls with
centers and radii such that and

Thus by (22) and by the subad-
ditivity of Lebesgue measure

Since was arbitrary, this shows that
The Lipschitz condition (21) applies to many energy func-

tions of interest, i.e., is often uniform Lipschitz over
The following Corollary, proven in Appendix A, special-

izes Theorem 2 to a fairly general form for the energy function
that covers many cases of interest.

Corollary 1: Suppose A1) holds and that the energy function
has the following form:

(23)

where

and where the potential functions satisfy the following
conditions.

• Each is convex and differentiable on (and hence
continuously differentiable).

• Each is twice continuously differentiable everywhere
on exceptpossibly for a finite number of points,
say where the second derivative of
is undefined.

• Each influence function satisfies a uniform Lipschitz
condition on any bounded interval for any

Then all the conditions of Theorem 2 hold, and (12) is the con-
ditional distribution of the MAP estimator.
The preceding Corollary covers cases such as the Huber po-

tential function, since the Huber influence function is differen-
tiable everywhere except at and satisfies a uniform
Lipschitz condition over
However, the proof of Corollary 1 is inapplicable to the Gen-

eralized Gaussian prior. As illustrated in Fig. 1, the Generalized
Gaussian influence function is not uniform Lipschitz over any in-
terval of the form since its derivative is unbounded near

for However, the Generalized Gaussian influence
function is uniform Lipschitz over intervals of the form
and for This turns out to be adequate regu-
larity to establish the conditions of Theorem 2, as shown by the
following Corollary, proven in Appendix B.

Corollary 2: Suppose A1 holds and that the energy function
has the form (23), where the potential functions satisfy the
following conditions.

• Each is convex and continuously differentiable on
• Each is twice continuously differentiable every-
where on exceptpossibly at

fessler
Highlight
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• Each influence function satisfies a uniform Lipschitz
condition on any bounded interval of the form and

for any for any
Then all the conditions of Theorem 2 hold, and (12) is the con-
ditional distribution of the MAP estimator.
We note without proof that one can combine the general ap-

proach to the Proofs of Corollary 1 and 2 to formulate sufficient
conditions for the ’s that encompass an even wider class of
priors. For an energy function that has the form (23), it is suffi-
cient that the potential functions be convex and continuously
differentiable over twice continuously differentiable every-
where except at a finite number of “problem” points, and that the
influence functions be Lipschitz on closed intervals that do
not contain those points. We are unaware of any differentiable
convex potential functions that fail to satisfy these conditions.
The Proofs of Corollary 1 and 2 do not use the fact that

is one-to-one, and only weakly use the fact that is a collec-
tion of hyperplanes. We conjecture that if these properties were
used fully, then one could eliminate the Lipschitz conditions on
the ’s and simply assume that each is convex and continu-
ously differentiable and twice differentiable almost everywhere.

IV. NON-GAUSSIAN MEASUREMENTS

The above development relies fairly heavily on the assump-
tion that has a Gaussian distribution, since in the Gaussian
case we can easily find the pdf of for use in (18).
When is non-Gaussian, (3) defines a penalized weighted

least-squares (PWLS) estimator, rather than a MAP estimator.
We can determine the pdf of this PWLS estimator even
for non-Gaussian measurement noise if is invertible (and
hence square). When is invertible, we can rewrite (4) as

where

so similar arguments as above lead to

(24)

Again all terms on the right hand side have explicit expressions.

V. SIMPLE 2-D EXAMPLE

The simplest nontrivial example of (12) is when
where is the identity matrix,

and where

for some symmetric, convex potential function One can con-
sider this case as representing an image consisting of two neigh-
boring pixels. If then the pixels are estimated indepen-
dently by Including a prior with energy func-
tion yields MAP estimates for the two pixel values that are
encouraged to be similar. By choosing we can study the
case where the two pixels straddle an “edge,” since their mean
values differ, thereby investigating the edge-preserving proper-
ties of the prior.

Fig. 2. Contours of conditional pdf (12) of MAP estimator with generalized
Gaussian prior. There is one mode near the true parameter ~x = [0 1] ; and a
second mode near the average parameter x̂ = [0:5 0:5] :

To compute the pdf of the MAP estimator, note that

Thus, from (13), the Hessian of is

where and the determinant of that Hessian is

Also, and Substituting into
(12) and simplifying

As a numerical example, we computed for the case
We used a generalized Gaussian

energy function [1]: so the above pdf is zero
on Fig. 2 shows contours of the pdf

There is one mode of the pdf near the true value
indicated by the asterisk. Estimates that lie near this mode

correspond to “preserved edges,” since the pixel estimates are
closer to the truth than to each other. However, there is another
mode near because for measurement realizations
for which the energy function of the prior encourages
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Fig. 3. Marginal conditional pdfs of the components of the MAP estimator,
computed numerically from the joint pdf shown in Fig. 2. These marginal pdfs
are surprisingly Gaussian, despite the highly non-Gaussian joint pdf.

and to be approximately equal. In fact, there is a ridge of
higher relative probability near the line indicated by the
dotted line in Fig. 2. This ridge is induced by the non-Gaussian
prior; for a Gaussian prior the contours would be elliptical and
centered at the conditional mean.
From the contours of the exact pdf shown in Fig. 2, it would

appear that simple characterizations (i.e., Gaussian approxima-
tions) of the joint pdf are nontrivial. Whether the covariance
matrix of can be approximated analytically via extensions
of [5] remains an open question. Fig. 3 shows the marginal dis-
tributions of computed by numerical integration of the
joint pdf. Despite the complicated structure of the joint pdf, the
marginal pdfs are remarkably similar to Gaussian pdfs. Thus it
may be possible to find simple approximations for the marginal
means and variances.

VI. CONCLUSION

Our main result is (12), an explicit exact expression for the
conditional pdf of MAP estimators for edge-preserving priors.
The expression is surprisingly simple given that edge-pre-
serving MAP estimators are defined implicitly and can be
highly nonlinear. Limitations of the result include the restric-
tion to Gaussian measurements, and the regularity assumptions
for the energy function. Nevertheless, the explicit expression
may prove useful in better understanding the properties of
edge-preserving image recovery methods.

APPENDIX A
PROOF OF COROLLARY 1

A2) holds by the assumption that the potential functions are
convex, so is strictly convex. A3 holds by the assumption that
the potential functions are continuously differentiable. For A4),
consider defined by

The set is a finite union of hyperplanes and thus is a closed
set. Therefore is an open set on which is twice continu-
ously differentiable, so A4) holds.
To complete the proof, we must establish A5) by showing

that where was defined in (7). Because
is a finite union of hyperplanes, so we can apply
Lemma 1. Define for Since

by subadditivity of Lebesgue measure
so it suffices to show that

For the energy function given in (23) above, the func-
tion has the form

where denotes the transpose of the th row of i.e.
Since each is uniform Lipschitz over bounded intervals,

the function is uniform Lipschitz over since for
Thus by Lemma 1,

APPENDIX B
PROOF OF COROLLARY 2

Conditions A2)–A4) hold as shown in the Proof of Corollary
1 with the set in this case defined by

where

To show A5, again define so that again it
suffices to show that noting that
For any denote and

define

and6

Then for clearly
The function is uniform Lipschitz on the compact set

Thus, by Lemma 1, for all
since But and on

so Defining

then by subadditivity of Lebesgue measure

6By convention, if I = �; then H = IR :
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which is zero. Finally, since

one can easily show that

Thus, again by subadditivity,

Thus, A5 holds under the conditions of the Corollary.
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