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Abstract

This dissertation describes an object-based approach to the problem of reconstructing 

three-dimensional descriptions of arterial trees from a few angiographic projections. 

The method incorporates a priori knowledge of the structure of branching arteries into 

a natural optimality criterion that encompasses the entire arterial tree. This global 

approach enables reconstruction from a  few noisy projection images. We present an 

efficient optimization algorithm for object estimation, and demonstrate its perfor­

mance on simulated, phantom, and in vivo magnetic resonance angiograms, as well 

as an X-ray phantom.

The 3-D reconstruction method is based on new nonparametric smoothing algo­

rithms tha t we present for both linear and nonlinear measurements. These algorithms 

provide nonparametric alternatives to the Kalman filter and the extended Kalman 

filter. In particular, we describe autom atic procedures based on cross-validation for 

determining how much to  smooth; this adaptation allows the data to “speak for itself” 

without imposing a param etric model.
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Chapter 1 

Introduction

1.1 W hy Q uantitative Angiography?

A .  tremendous amount of research on imaging methods for the circulatory system1 

has been motivated by this astounding statistic [23]: “coronary heart disease causes 

one third to one half of all deaths of people between the ages of 35 and 64 years in 

the United States.” The objectives of this research were summarized by Skorton [15]:

the ultim ate goals of clinical cardiac imaging include the complete struc­

tural, functional, and metabolic characterization of the heart, great ves­

sels, and the pulmonary vasculature in a noninvasive manner. To achieve 

these goals will require the depiction of cardiac morphology ... and the 

anatomy of the coronary arteries.

Accurate descriptions of arterial trees would be useful for quantitative diagnosis of 

atherosclerosis, for planning treatm ent of stenotic2 arteries, for monitoring disease 

progress or remission, and for evaluating efficacy of different treatm ents [20]. This dis­

sertation describes a new approach to the problem of reconstructing three-dimensional 

descriptions of arterial trees from a few angiographic projection images.

b r o a d ly  interpreted, the term angiography includes any such m ethods.
2A stenosis is a narrowing of a vessel cross-section.

1
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CHAPTER 1. INTRO D U CTIO N 2

The conventional m ethod for evaluating angiographic images is human interpre­

tation. The inaccuracy of human interpretation of angiograms has been well docu­

mented, in term s of both intra-observer and inter-observer variability [73]. Not only 

is the variability large, bu t also “the standard approach to assessing the severity of 

coronary stenoses—estimation of percent diameter narrowing of the stenotic segment 

compared to a presumably normal segment—may not correlate with the physiolog­

ical significance of the obstruction [15].” This is due in part to the fact that “the 

hemodynamic effect3 of coronary artery narrowing is determined by the absolute (not 

relative) diameter and also by the length of the stenotic segment [73].” Further­

more, “since hemodynamic effects are proportional to the diam eter of the stenosis 

raised to the fourth power, a small uncertainty in border definition may introduce 

a large uncertainty into the hemodynamic effect calculated from X-ray measured di­

mensions [13].” These issues are compounded by the fact that “many [radiologists] 

use [percent stenosis] without specifying whether they are referring to a percentage 

reduction of the diameter or of the area of the lumen4 [19].” These problems have 

motivated the development of autom ated methods for obtaining quantitative mea­

surements of arterial morphology, because, as concluded by Paulin, “measurements 

from angiograms can be performed more objectively with advanced imaging technol­

ogy assisted by computers [19].”

Current X-ray angiography procedures are applied only to patients with a high 

risk of having atherosclerosis. This is insufficient, as a summary of recent studies [24] 

discussed:

a fascinating but disturbing fact: ... asymptomatic subjects with normal 

results on stress tests had a  much lower mortality rate than asymptomatic 

subjects with abnormal results. However, the very large low-risk group 

with normal responses to exercise testing ... contained, in absolute terms, 

the large majority of subjects who subsequently died suddenly.

3T he decrease in fluid pressure across a  stenosis.
4T he lum en is the inner portion o f  an artery through which blood flows.
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CH APTER 1. INTRODUCTION 3

This observation highlights the importance of non-invasive quantitative angiography, 

since asymptomatic patients do not qualify for invasive examinations such as intra- 

arterial angiography. To identify individuals at possible risk due to mild plaque 

build-up, a  non-invasive procedure is needed tha t can quantify lumen size accurately. 

Magnetic resonance angiography (MRA), in conjunction with computed reconstruc­

tions of arterial trees, has potential to serve this need5. The 3-D arterial reconstruc­

tion algorithm presented in this dissertation is particularly suited to MR data, though 

the approach is also applicable to digitally acquired X-ray angiograms.

1.2 Background

Quantitative angiography has been studied for over two decades, and improvements 

in imaging technology and computer speed continue to spur the development of var­

ious reconstruction methods for the many different applications. To the best of 

our knowledge, all previous methods have been applied only to X-ray angiograms, 

and have not addressed the unique aspects of MRA. In this section, we review 

the quantitative angiography literature. For additional reviews and bibliographies, 

see [21, 46, 52, 63, 67, 89, 103].

For completeness, we first mention some alternate methods for improving the util­

ity of angiography. One approach is to combine multiple projection images to form a 

focussed image of a plane or surface containing the arteries of interest, while blurring 

objects in other planes. This procedure is known as tomosynthesis [17, 25]. Another 

approach is to acquire a 3-D data set “directly.” Flow-sensitive MR techniques can 

acquire a complete 3-D data set [33, 35], but they require a large number of exci­

tations. This requirement makes cardiac gating impractical, and ungated sequences 

often suffer from sensitivity to non-uniform flow and vessel motion. Specialized X-ray

5T he detectability  o f  m ild atherosclerosis remains to be seen. In a recent study [16], G lagov ei 
al. “conclude that hum an coronary arteries enlarge in relation to plaque area and that functionally  
significant stenosis may be delayed until the lesion occupies 40 percent of the internal elastic lam ina  
area.”
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CH APTER 1. INTRODUCTION 4

equipment [96, 123] with multiple source-detector pairs can acquire enough projection 

data to reconstruct a 3-D data set with conventional algorithms, but such equipment 

is not widely available. For quantitative diagnosis, one must still apply an algorithm 

to extract the pertinent information from such data sets [120, 121, 122, 123].

A so-called “reconstructed arterial tree” is not an actual arterial tree, but rather 

some symbolic description of the tree. The nature of the description has profound 

implications for the applicability and stability of a reconstruction method. The more 

rigorous of the methods described below are explicitly based on either a parametric or 

a nonparametric description of the arterial tree. Unfortunately, many papers invoke 

only an implicit model, such as those in which “diameter” is computed from a single 

view without mentioning the assumption of a circular lumen cross-section.

The most general representation for an arterial tree is to consider it an unknown 

three-dimensional density function z;t). In general, fj. is also a function of

time due to the motion of blood and of the arteries. In X-ray imaging, fi represents 

the linear attenuation coefficient of iodinated blood, while in subtraction MRA, fj, 

represents the density of inverted spins th a t have flowed into the readout region [28, 

39]. We use “contrast” or “density” throughout to refer to ft, although no contrast 

agent is administered in MRA. Our goal is to  estimate fi from as few views as possible.

Since the time-variation of arteries makes acquisition of only a few (almost) simul­

taneous views possible with practical equipment, the number of views required by a 

reconstruction method affects its clinical feasibility significantly. Thus, our review is 

categorized into single-view methods, stereo and bi-plane methods, and multiple-view 

methods.
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C H APTER 1. INTRODUCTION 5

1.2.1 S ingle-V iew  M ethods

Before the proliferation of digital angiography units, methods for quantitative an­

giography were based primarily on digitized film [47, 48, 50, 51]. Most film-based 

methods considered only a single view, perhaps because multiple-view methods re­

quire calibration of a  3-D reference coordinate system—a cumbersome procedure with 

film.

The earliest methods for processing angiograms were based on applying gradient 

operators, such as the Sobel and Hueckel operators [2], followed by thresholding to 

identify edges. Wiener-like filters for edge estimation were also applied [209]. To avoid 

missing any edges, the thresholds were set fairly low, leading to many false-alarm 

edges. The detected edges were then linked to form objects and to prune spurious 

edges [210, 211]. The difficulty with global image operators is that the intensity of 

an arterial projection can vary with the artery’s diameter, so a single threshold is 

insufficient. Furthermore, gradient operators are sensitive to noise, and fail to exploit 

any properties of the arterial images of interest.

The inadequacy of edge detection methods led to the development of methods 

designed specifically for estimating the projected arterial diameter. A very popu­

lar approach has been to smooth the arterial profile in each scan line, and then use 

the peak of the first derivative or the zero of the second derivative as an estimate 

of the arterial edge [59, 88, 207]. However, these slope-based methods are biased, 

since an arterial profile is a semi-ellipse function rather than a rectangular function. 

(The first-derivative peak underestimates [50] and the second-derivative zero overes­

timates [59] arterial diameter.) Kooijman et al. attem pted to combat this problem 

by using, a weighted average of the two derivates [48], but the weighting must be 

determined empirically. A line-by-line Wiener filter was also proposed for vessel edge 

detection [42].

The above methods are termed “geometric,” while methods that are based on 

the absolute measured pixel values are termed “densitometric.” For example, We­

ber [71] showed that the first zero-crossing of the Fourier transform of a vessel profile

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 1. INTRODUCTION 6

is proportional to arterial diameter and is somewhat insensitive to image blurring. 

Shmueli [45, 46, 49] first proposed fitting the projection of a circle to the measure­

ments as a parametric method for estimating arterial diameter. Kruger [44] showed 

that vessel diameter is proportional to the ratio of the sum of the profile pixel val­

ues to the center pixel value. Such methods rely on a linear relationship between 

the X-ray path length through an iodinated vessel and the measured pixel value. 

The nonlinearity of film-based systems perhaps explains why the geometric methods 

remain popular, despite the fact tha t Pappas has shown that the densitometric ap­

proaches are more accurate [51, 59, 63]. This accuracy is due in part to the ability of 

densitometric methods to estim ate diameter to sub-pixel resolution, while slope-based 

methods are limited by the detector resolution.

The simplest densitometric operation is accumulating the pixel values across an 

arterial profile. The resulting sum is proportional to the cross-sectional area. Unfor­

tunately, the constant of proportionality is unknown and is difficult to determine since 

it depends on the concentration of iodine in X-ray angiography and on the density 

of excited spins in MRA. Furthermore, this density varies along the arterial length in 

MRA. The unknown constant limits the utility of densitometric area to consideration 

of relative values. However, computations of stenosis pressure drop depend on steno­

sis geometry, including entrance and exit angle [82], for which relative area alone is 

insufficient.

Most of the above methods for estimating arterial diameter originally required 

manual tracing of the projected artery’s centerline. Many papers have proposed m eth­

ods for eliminating this interaction. Shmueli [49] developed an optimal estimation 

algorithm for computing the position and diam eter of a single artery. Nishimura [6] 

generalized this to include overlapping arteries. Barth [47] described a single-vessel 

tracking algorithm based on a circular search window, while Hoffmann [55] used a 

pair of rectangular search windows to track an entire arterial tree recursively. Kita- 

mura [89] described another tracking algorithm tha t accounts for bifurcations, but 

not overlapping arterial projections. Sun [69] exploited position, curvature, diameter,
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CH APTER 1. INTRO DU CTION 7

and density continuity to track an artery, but without accommodation of branching 

or overlapping arteries.

Sun [69] observed that there are two classes of methods for arterial segmentation: 

“tracking” methods tha t attem pt to follow the local ridge of an arterial projection, 

and “scanning” methods that are applied more globally. Nguyen [56, 57] proposed 

one scanning method tha t requires several steps for ridge detection and merging. 

Stansfield [58] reported a edge-linking region-growing method controlled by a rule- 

based system, but concluded tha t the rules were inadequate. An expert-system based 

multi-resolution algorithm was also presented by Ergener [61]. Eichel [60] described 

a  completely autom ated edge-tracking algorithm based on a  Markovian edge model. 

After enhancing the edges with a Gaussian-weighted gradient operator, the edges 

are linked with a tree search based on communication theory. Morphological filters 

have recently shown promise for segmentation problems, and Besson [65] combined 

these filters with region growing and a “snake transform” to produce a segmentation 

algorithm tha t is well suited to angiograms. Another matched-filter/thresholding 

scheme was reported by Chaudhuri [66] for retinal reflectance images. Most scanning 

segmentation methods simply produce binary-valued images that distinguish arterial 

pixels from background pixels. To be useful, these methods must be followed by a 

method to compute the param eters of interest, such as arterial diameter.

All single-view methods are limited by the fact tha t the projected diameter can be 

misleading for eccentric cross-sections. This is a significant problem, since, as Brown 

reported [73], “the diseased lumen is commonly eccentric in cross-section.” Another 

limitation is that distinguishing between overlapping, crossing, and bifurcating arter­

ies is very difficult from only one view. These problems are im portant motivations 

for multiple-view methods.
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1.2.2 T w o-V iew  M ethods

There have been two motivations for considering two-view methods over one-view 

methods: 1) a better estimate of the lumen dimensions can be computed from two 

views, and 2) if the corresponding projections of an arterial segment can be identified 

in the two views, then the 3-D location of the artery can be computed. These two 

motivations have had a one-to-one correspondence with the following two paradigms 

for quantification: 1) process each pair of image rows to estim ate arterial lumen, 

possibly accounting for some correlation between adjacent lumens, and 2) first process 

the two views individually to extract arterial segments, and then match corresponding 

segments between views.

In an early paper, Chang [72] discussed reconstruction of a binary m atrix (rep­

resenting lumen cross-section) from two orthogonal projections, and showed tha t the 

reconstruction was unique only for convex objects symmetric about both projection 

directions. Gerbrands [75] and Reiber [79] also used binary matrices to represent a 

single artery’s cross-sections, but they also included a cost function to quantify the 

similarity of adjacent cross-sections, in hopes of overcoming the non-uniqueness for 

asymmetric lumens. Any method based on binary discretizations of cross-sections re­

quires knowing or calibrating the constant of proportionality between the X-ray path 

length and the measured pixel intensity. Reiber [79] used a “normal” segment with 

an elliptical cross-section for this calibration. Fenster [85] used a binary m atrix to 

approximate a crescent-shaped lumen within a circle whose radius is assumed known, 

and demonstrates reconstructions from two orthogonal simulated projections. These 

binary methods have had mixed reviews; Suetens [80] found that it was “next to 

impossible to reconstruct any part of a  blood vessel.”

Brown et al. [73] used the second view to obtain a better estimate of the cross- 

sectional area by using the expression: area =  ^d \d2, where di and d2 were hand- 

traced projected diameters in the two views. This formula is correct for an elliptical 

cross-section with axes of length d\ and d2, but is incorrect if the ellipse axes are 

not aligned with the projection directions. Spears [95] calculated the error due to
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assuming aligned ellipse axes. Despite the potential error, several investigators have 

made this assumption [73, 77, 82, 88]. K itam ura [83] claimed that although the 

densitometric information in two views does not determine an ellipse uniquely, there 

are only two possible ellipses, and proposed arbitrarily choosing the more circular 

one. Furthermore, if the two projections are orthogonal, then Kitamura claimed 

that only the orientation of the two possible ellipses differs, so the area is uniquely 

determined. These statem ents are true only if the contrast density is known, as 

Figure 1.1 demonstrates.

For some neurosurgical applications, estimates of arterial centerlines and relative 

areas may suffice, and algorithms have been published for obtaining those features 

from just two views [87, 89, 90]. These algorithms usually require two steps: tracking 

arteries in each view, and then identifying corresponding arterial segments between 

the two views. Gerbrands [74] used a region growing algorithm to generate an arterial 

skeleton in each view, converts the skeleton to a graph with nodes at the bifurcations, 

and applies a minimum-cost tree-matching procedure to identify corresponding bi­

furcations in the two views. Kim [76] used the iodine bolus edge as the feature 

for matching segments. Suetens [80] exploited a  consistency property motivated by 

consideration of the human stereopsis by matching arterial segments with similar 

orientation, width, and intensity. The correspondence problem is considerably easier 

with stereo angiograms since the difference in projection angle is small. Hoffmann [86] 

correlated image rows to compute the shift that determines arterial depth in stereo 

projections. Parker [87] entered landmarks in each view by hand, and matched seg­

ments between views using a dynamic programming algorithm. Kitamura [89] used 

manually identified segment correspondences. Venaille [117] proposed acquiring a 

third projection to reduce the number of consistent matches between arterial seg­

ments. Each of the detectors in most bi-plane systems can acquire a time sequence of 

N  arterial projections within the duration of the iodine bolus. Wu [90] identified cor­

responding segments in all 2TV ungated projections, and then used a weighted average 

of the 2N  densitometric areas. Nevertheless, Wu [90] concluded that obtaining more
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Figure 1.1: Two ellipses with different eccentricities and densities that have identical 
biplane projections.

reliable measurements will require “developing algorithms which include information 

from more than two projection views.”

1.2.3 M u ltip le-V iew  M ethods

The arterial descriptions tha t have been computed from two views have usually con­

sisted of only arterial position and cross-sectional area. Though adequate for some 

applications, this hardly meets Skorton’s goal of a complete characterization of cardiac 

morphology. For applications where very accurate quantification of stenosis geometry 

is critical, one can justify acquiring a few views. The additional views should allow 

one to overcome the limitations of two-view methods by accommodating overlapping 

arterial projections and bifurcations.

To circumvent the ill-conditioned nature of reconstruction from just a few views, 

virtually all methods attem pt to reduce the dimensionality by considering some spe­

cial class of densities. The least restrictive class of descriptions considers /i to be a 

discretized 3-D voxel set. Jiya [104] described an algebraic reconstruction technique
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(ART) requiring three orthogonal views for reconstructing a 3-D voxel representa­

tion of symmetric objects, but with no consideration of noise. Spears et al. [94] used 

a maximum entropy algorithm for reconstructing a single asymmetric cross-section 

from three to nine projections. Consideration of a single object is unrealistic for 

multiple-view methods, since it is very unlikely that one can acquire more than one 

or two overlap-free views of an artery.

Recently, investigators have recognized that ill-conditioned inverse problems such 

as limited-view reconstruction need to be regularized by incorporating a priori knowl­

edge about the structures of interest. Haneishi et al. [115] used two properties for 

regularization: 1) the background pixels and the arterial pixels (at least ideally) have 

different values, and 2) arterial pixels are connected. They incorporated these prop­

erties into a penalized-likelihood optimality criterion, and used a simulated-annealing 

optimization algorithm. They demonstrated reconstructions from five to twenty sim­

ulated projections. Rougee [109] combined the sparseness, non-negativity, and con­

nectedness properties of arterial trees into a detection-estimation scheme based on 

detecting a region of support, and compared it with ART and with the extreme- 

value technique (EVT). She reconstructed an X-ray phantom from fifteen views. 

Trousset [119] reduced the computational cost of this method by introducing a multi­

scale implementation, and demonstrated reconstruction of a  phantom from thirty-two 

views.

Though the voxel-based methods have the ability to  represent any arterial shape, 

accurate reconstruction seems to require several views. To reduce the number of 

views required while maintaining robustness to low SNR, stronger assumptions are 

necessary. As observed by Rossi [102], “the ultimate goal of processing the projec­

tion measurements is typically far more modest than obtaining high resolution cross- 

sectional imagery.” In fact, the goal is typically to obtain quantitative descriptions of 

arterial shape (perhaps as an intermediate step towards the goal of evaluating hemo­

dynamic properties). Therefore, rather than making a  futile attem pt to reconstruct 

an arbitrary cross-section, Rossi [92, 93, 102] proposed using a parametric model for
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objects, and analyzed reconstruction of a circular disk from a few projections. A 

param etric object model reduces the number of unknowns, by exploiting our a pri­

ori knowledge of the structure of arteries, and translates the reconstruction problem 

into an estim ation problem. Pappas [63] later demonstrated the accuracy of using 

elliptical cross-sections to represent arteries, since ellipses can better approximate a 

wider class of cross-sections than can circles. Rossi [116] further evaluated ellipse 

reconstruction accuracy. Bresler [98, 107] and Kitam ura [89] both used generalized 

cylinders to represent a set of ellipses describing an artery.

The elliptical model captures a priori knowledge about the shape of arterial cross- 

sections in a simple param etric form. The equally im portant a priori knowledge that 

arteries are smooth, i.e., that ellipse parameters vary slowly along an arterial segment, 

is more difficult to quantify. Shmueli [49] and Bresler [107] used explicit stochas­

tic Gauss-Markov models to parametrically quantify this smoothness. Using this 

model, Bresler [98, 100, 101, 107] presented an optimal minimum mean-squared er­

ror (MMSE) algorithm for reconstructing a single object with elliptical cross-sections 

from a few projections. Realizing tha t a single-object algorithm is impractical, Bresler 

also presented a suboptimal algorithm for reconstructing several disjoint objects from 

a few views, based on a hierarchical divide-and-conquer approach [99, 103]. In a joint 

effort, Bresler and this author demonstrated the hierarchical algorithm [111] on a 

set of four simulated projections of a few synthetic objects. Despite its suboptimal­

ity, the hierarchical algorithm performed nearly as well as the MMSE algorithm in 

reconstructing a  single synthetic object from four simulated projections [110].
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1.3 The N ew  M ethod

This dissertation presents a new method for object-based reconstruction from a few 

views that overcomes several limitations of the previous work. In particular, the novel 

aspects of the method we present are:

• it is based on a global criterion—to maintain accuracy a t the low SNR typical 

of non-invasive methods,

• bifurcating arteries are explicitly modeled, there are no empirically determined 

thresholds,

• overlapping vessel projections are accommodated,

• and the time-dependence of contrast density is modeled.

The new method is a mixture of parametric and nonparametric methods. We use 

a parametric model (ellipses) for arterial cross-sections, but a nonparametric method 

(splines) for arterial smoothness. Although the previously used param etric smooth­

ness models allowed the derivation of theoretically satisfying MMSE estimators, there 

are two problems with that approach: 1) the parameters of a  Gauss-Markov model 

are unknown and not easily determined, and 2) in general, these models imply that 

the a priori covariances of the cross-sections vary along the length of an artery. This 

implied variation is inconsistent with our intuition: prior to examining an angiogram, 

our uncertainty about cross-sectional shape is uniform along the arteries. We instead 

propose a nonparametric smoothing approach, described in Chapter 6, tha t captures 

our a priori knowledge of arterial smoothness with minimal assumptions. Bresler 

eventually came to agree with this approach [226]:

Parametric methods are useful when parsimony is im portant, as is the 

case when the measurements are few (e.g. limited projection angles), since 

the number of estim ated parameters must- be smaller than the number of 

measurements. However, we typically acquire many measurements along
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the length of an artery, so a nonparametric method for smoothness gives 

the greatest flexibility. Hence, mixed param etric/nonparam etric methods 

make perfect sense when the degrees of freedom in the problem can be 

split into two sets: one which is well observed, and one which is poorly 

observed.

A significant limitation of the hierarchical algorithm [99, 103, 111] is that it was 

based on disjoint objects. Since a single ellipse is inadequate for representing bifur­

cations, where stenoses frequently occur, the hierarchical algorithm was applied only 

to simulated data. This dissertation describes a new extension of the generalized- 

cylinder object model tha t overcomes this limitation, allowing the first application of 

a parametric reconstruction method to in vivo projections of branching arteries.

Several algorithm developers have termed their methods “optimal,” and in some 

cases this may be inadvertently misleading. For example, Fleagel et al. [67] report 

a method for vessel border estimation based on a multi-step process: an artery’s 

projection is resampled perpendicular to its medial axis, a derivative operator is ap­

plied to each row of the resampled data, and a graph-searching technique is used 

to estimate the left and right vessel edges from the derivative values. Although the 

graph searching is performed optimally, this method is suboptimal overall because 

the derivative operation is an irreversible process. Thus, by the data-processing in­

equality [156], the estimated vessel boundaries are less accurate than a method tha t 

uses the original pixel values. The approach presented in this dissertation is based on 

a global optimality criterion that encompasses both the entire arterial tree and all of 

the measured data.
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1.4 Outline

This thesis is organized in two parts. In P art I (Chapters 2 to 7), we describe the 

models and methods for object-based 3-D reconstruction. The methods are based on 

new nonparametric estimation algorithms tha t are detailed in Part II. These algo­

rithms are of independent interest and have other applications, so Chapters 8 and 9 

are self contained.

A reconstruction method is optimal only if the underlying models hold; in Chap­

ter 2, we present a statistical model relating the projection images to the unknown 

arterial tree, and in Chapter 3, we describe a  new object model, tailored for represent­

ing arterial trees. In Chapter 4, we apply the object and measurement models to the 

single-artery/single-view estimation problem. In Chapter 5, we consider algorithms 

for estimating a set of ellipses given their projections, and discuss selection of the 

projection angles. In Chapter 6, we propose a new optimality criterion for the prob­

lem of estimating an arterial tree from noisy projections, and describe the estimation 

algorithm. In Chapter 7, we show the results of applying this algorithm to simulated 

angiograms, to MR phantom data, to  MRA projections of carotid arteries, and to 

X-ray phantom projections. Chapters 8 and 9 describe the nonparametric smoothing 

algorithms that are the theoretical core of this thesis. (The reader may find it useful 

to scan these chapters before reading Part I.) We discuss the results and the future 

directions of this research in Chapter 10.
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O bject-Based Reconstruction  

from Projections
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Chapter 2

M easurem ent M odel

R eco n stru c tio n  from projections belongs to  the m athem atical class called inverse 

problems. Solutions to such problems depend heavily on the assumptions one makes 

about the corresponding forward processes. In this chapter, we present a statisti­

cal model for projection angiography that relates an unknown arterial tree to its 

acquired measurements. This model accounts for overlapping arterial projections, 

space-invariant blurring, and additive noise. In the next chapter we will restrict 

our attention to  a specific class of arterial tree descriptions, but for this chapter we 

represent an arterial tree by an arbitrary three-dimensional density function.

A projection is a mapping of some physical property of a  three-dimensional ob­

ject into a 2-D image, and tha t mapping is determined by the acquisition geometry. 

This dissertation considers the cylindrical geometry shown in Figure 2.1, where the 

projection planes are rotated about a common axis, defined to be the 2  axis. The 

symbols u and v denote the local coordinates in the projection planes (so the 2  and 

v axes are parallel). MR systems can generate projections in arbitrary directions, 

and a more general model could exploit this versatility. However, X-ray systems are 

usually restricted to a  single rotation axis, which motivates the cylindrical geometry 

used here.

17
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Figure 2.1: Projection geometry, showing projections of a bifurcation.

In X-ray imaging the property of interest is the linear X-ray attenuation coefficient. 

The attenuation coefficient of blood does not differ significantly enough from that 

of soft tissue for blood to be visualized, so a bolus of iodine (contrast agent) is 

injected into the arteries immediately prior to imaging. In MR imaging, the pertinent 

property is the density of excited hydrogen spins. The contribution of flowing blood 

is differentiated from static tissue by exciting a region containing blood tha t is about 

to flow into the volume of interest. Note that in both modalities it is only the flowing 

blood that is imaged, so strictly speaking we will be reconstructing descriptions of 

the lumens of arterial trees.

Our goal is to develop a measurement model that is useful for both X-ray and MR 

angiograms. Although it may occasionally seem pedantic, we carefully state all the 

assumptions and approximations used while developing the model; these approxima­

tions are rather different for X-ray and MR imaging, so they are derived separately. 

Virtually all of the assumptions made in this chapter will have consequences for the 

results shown in Chapter 7.

The density function for an arterial tree varies with time, and a reconstruction
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paradigm that requires multiple views must account for this variation. Although 

one can minimize the variation of arterial tree position by using cardiac gating, the 

contrast will still vary from view to view as iodine (or excited spins) flow through 

the arteries. The object-based approach can easily accommodate this variation, as 

we discuss in the next chapter. We pay particular attention to the time sequencing 

of MR and X-ray angiography methods, since these differ considerably. These details 

are necessary since multiple-view methods inherently require more data acquisition 

tim e than single-view methods.

2.1 Parallel X-ray G eom etry

For simplicity, we begin by considering a fictitious X-ray system with a plane wave 

of X-ray energy photons impinging on the object of interest1. X-ray photons are 

absorbed and scattered as they pass through tissue, though for this section we assume 

the scattered photons are eliminated by collimation. The energy from unabsorbed X- 

ray photons is converted into a signal by an imaging chain. In a fluoroscopic system, 

this chain typically includes a scintillating phosphor screen, an image intensifier, 

and a television camera. The curved surface of an image intensifier introduces an 

image warping known as pincushion distortion [73]. Our first assumption is that this 

distortion has been corrected.

Assum ption 2.1 Pincushion distortion eliminated.

Correcting this distortion usually requires acquiring images of a calibration grid, 

since pincushion distortion “cannot be described by a simple analytic function.” [48] 

Once this distortion is corrected, the projection mapping is expressed as parallel line- 

integrals through the density, according to the following form for the mean output of 

an imaging chain on the opposite side of the object from the source [3]:

1 Though fictitious, this parallel geom etry becom es increasingly accurate and useful as the ratio 
o f the object size to  the source-to-object distance decreases.
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I(u, v; t ;0 ) =

I0 J 7/s(E)7/d(£;)exp [~J Viis cos6 +  u sin 0, s sin 0 -  u cos 0, v, t, E) ds dE,

where Iq is the incident source intensity. The functions qa{E)  and r]d{E) are the nor­

malized source spectrum and the detector efficiency at photon energy E  respectively, 

i.e., /  T)s(E )dE  =  1. The term  pi (x ,y , z ' , t ,  E) represents the “to tal” linear X-ray a t­

tenuation coefficient corresponding to the sum of the contribution of the iodinated 

arteries of interest (p) and the background tissue (/i&), i.e.:

y, z ; t ,  E)  =  p(x ,  y,  z ; t, E)  +  p b(x, y, z\ f, E ).

This acquisition is known as the “live” image.

A ssu m p tio n  2.2 Snapshot acquisition.

We assume each projection (or possibly pair of projections in bi-plane systems) is 

acquired very quickly, thereby “freezing” the density momentarily. Assume we acquire 

P  projections, at time instants / j , . . . , t p  and at projection angles 01?. . . ,0 p .  For 

example, with a dual bi-plane DSA system [112] we could have: P  =  4, t\ =  t 2, 

t3 = t4, 0i =  0°, 62 = 90°, 0 3  =  9t , and 04 =  0r +  90°. The snapshot assumption 

allows us to drop the explicit dependence of I  on t, yielding:

I (u , v ,9 p) =

I o J v s ( E M E )  exp | —j p i ( s cos0 +  u sin0, s sin 9 — u cos0, v; tp, E)  dE.  

A ssu m p tio n  2.3 Monoenergetic source:

Vs(E) = 8(E -  E 0).

The consequence of this assumption has been carefully evaluated by Simons [53, 

54], who observed: “if one assumed a linear relationship between logarithmically 

subtracted video density and iodine density, only a  small inaccuracy resulted.” Under 

this assumption, we can drop the dependence on photon energy:

I(u, v;9p) =  io r)d{Eo)exp |—J m ( s c o s 0  +  u sin 0, s sin0 — u cos 0, u; t v) ds
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The contribution of background tissues is significant in general, and cannot be 

ignored. Two methods have been used to circumvent this problem. At least concep­

tually, the simplest method is to acquire additional projection images of the back­

ground only (before the iodine injection or after the bolus has diluted), and to per­

form logarithmic subtractions as discussed below. One potential problem with this 

approach is tha t any patient motion between the acquisitions will produce artifacts 

due to incomplete subtraction. This problem is germane to both single and multiple- 

view procedures, and several “rubber-sheet” algorithms for warping the background 

image to m atch the iodinated image have been proposed [64, 70]. A multiple-view ap­

proach may require moving the X-ray gantry to acquire the additional views, and then 

repositioning the X-ray gantry to acquire the background images. Since many an­

giographic systems are not precisely repositionable, the  background image might not 

quite align with the corresponding iodinated image, which introduces another possible 

error source. The other compensation method is to  just use the unsubtracted images 

and to approximate the background by global [63] or local [62, 89, 112], low-order 

polynomials, whose coefficients are estimated. This approach is also not without its 

problems: the background signal may be poorly approximated by low-order polyno­

mials near bone edges.

Assum ption 2.4 Repositional system.

If the X-ray system can be accurately repositioned, say, after the iodine bolus has 

diluted, then we can acquire another set of projections at angles 9 i , . . . , 0 p  at times 

U,b, ■ ■ ■, tp,b of the background tissues only:

Ib(u, v, Op) = Io Vd{Eo) exp | —J /q,(s cos 6 +  u sin 0, s sin 0 — u cos 0, v\ tPlb) ds .

(Note tha t this implicitly assumes the source intensity Io is repeatable as well.) This 

acquisition is known as the “mask” image.

One could relax this assumption by using a separate smaller iodine injection for 

each view, and acquiring both the live and the mask images before rotating the X-ray
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gantry. However, this may lengthen the imaging procedure, thereby increasing the 

likelihood of patient motion.

A ssu m p tio n  2.5 Background synchronization:

Pbi.'Z, Vi Z,  tp,b) =  f̂c(®> Vi Z\ tp)*

If the acquisitions are cardiac gated, and possibly respiratory gated, then the only 

differences between the background or “mask” image h { u , v; 0P) and the iodinated im­

age I(u, v] 9P) are due to the contribution of the iodinated blood. Thus a logarithmic 

subtraction:

lgp{u,v\n)  =  \oglb(u,v;0p) -  log I(u,v,Op), 

yields the structure of interest:

lgp(u,v,  g)  =  J  n(s cos Op +  u sin 0P, s sin 0P — u cos 0P, v \ t p) ds. (2 .1)

In this final form, lgp{u ,v ,n )  is the ideal projection of fi at angle 0P and at time tp. 

We postpone discussion of blurring and sampling until Section 2.4.

2.2 Parallel M R  G eom etry

The MR images discussed in Chapter 7 are based on the selective inversion-recovery 

(SIR) method [28]. “SIR bears some similarities to X-ray digital subtraction angiog­

raphy (DSA). While DSA involves the subtraction of two images, one with and the 

other without contrast agent, SIR involves the subtraction of two images, one with 

and the other without inversion excitation of blood prior to its entering the region 

of interest.” [30] By using a multiple-readout selective inversion-recovery (MRSIR) 

sequence [39], we can acquire arterial views at a few projection angles without using 

invasive contrast agents or ionizing radiation. For a, four minute MRSIR sequence, 

the signal-to-noise ratio is inversely related to the number of projections acquired, 

which necessitates optimal use of the projection data.
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Most MR imaging takes advantage of the fact that the resonant frequency of 

a hydrogen proton in a  magnetic field is proportional to the strength of the field. 

Spatially varying magnetic fields (gradients) are used to introduce an encoding of 

position into temporal frequency, so that a t any given tim e during the acquisition 

interval, the received signal corresponds to a sample of the spatial-frequency content 

of the object being imaged. If one acquires enough samples of the spatial-frequency 

content, an image can be reconstructed.

Linear gradients are most commonly used to encode position into frequency, and 

any deviation from linearity produces a warping of the image that is somewhat analo­

gous to pincushion distortion in an X-ray image intensifier. The analogy is functional 

in the sense that in both modalities one can image a rectangular-grid phantom to 

measure the geometric distortion and then “unwarp” other images. This was not 

necessary for the system (GE Signa) used to acquire the results of Chapter 7, but it 

may be necessary for other systems. Thus, the following assumption is inherent in 

our derivation:

A ssu m p tio n  2.6 No geometric distortion.

The excited spins em it a radio-frequency (RF) signal that is received by an RF 

coil. An RF coil receives signals from the entire volume (within its sensitive region) 

with no directional selectivity, so there is a volume integral inherent in the system. 

Thus, if gradients are used to encode frequency only along x  and z , then all the spins 

along y  will contribute signal in unison, effecting a line-integral along y. Therefore, 

the line-integrals in an MR projection image are truly parallel. The basic imaging 

equation for a projection MR signal is:

s(i) =

/ / [ /  y(s  cos(0) +  u sin 0, s sin 6 — u cos 9 ,v \ t ) dsj e - j k x ( t ) u e - j k y ( t )v  d u  d v _

where j  = y /—Y and the spin density [i is now weighted by the spatial sensitivity of 

the receiver coil. We assume this sensitivity varies slowly over space. The A--space
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(spatial-frequency space) trajectories kx(t) and ky(t) are determined by the imaging 

sequence.

A ssu m p tio n  2.7 Neglible dephasing in a projection voxel.

The spin density p is in fact a complex quantity for MR angiography, due especially to 

dephasing induced by an inhomogeneous field. The effect can be minimized by using 

short echo-times [30], by selectively projecting only a slab containing the branches 

of interest [40] (rather than the entire volume), and by shimming the main field 

carefully [41]. Thus, we assume the dephasing is negligible, so that p can be considered 

a real quantity. It may be necessary to generalize our results to a complex p for 

systems with poor homogeneity. We also minimize velocity-dependent phase effects 

by using projection-reconstruction selective inversion-recovery (PRSIR) imaging [36,

37] and by using offset-echo acquisitions [30]. These considerations are part of the 

motivation for the PRSIR method, which may become the preferred sequence if the 

imaging time can be reduced by using multiple-readouts.

A ssu m p tio n  2.8 Effective extraction o f real-valued images.

The received signal is nevertheless complex, and we use a homodyning method [31,

38] to  extract the in-phase component of interest. We assume that the necessary 

assumptions for homodyning [38] are met, including the assumption of slowly varying 

image phase. Though the phase in the 3-D volume may vary slowly, the projection 

of an arterial tree may superimpose two arteries of different phase, leading to signal 

loss. An interesting area for future work would be to use the reconstructed arterial 

tree to obtain a better phase reference under the assumption that the phase varies 

slowly along an artery’s length.

Since an MR readout measures only a sample of the spatial-frequency content of 

the selected region at a given time instant, the “snapshot” assumption used in the 

previous section needs careful examination. Full detail would be beyond the scope 

of this thesis, but the basic time sequence for MRSIR is displayed in Figure 2.2. At
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Figure 2.2: MRSIR &-space trajectory and timing diagram.

tim e A, an ECG R-wave triggers an inversion pulse tha t tags blood about to flow 

into the region of interest. To maximize wash-in for the carotid arteries, this tagging 

occurs just before the peak flow rate. A t time B, about 400 ms later (during diastole), 

the first fc-space line of the first projection is read. The duration of this readout is 

limited by the gradient strength and SNR considerations, and takes about 6 ms on 

our system, which brings us to time C. A 21 ms wait brings us to time D, when 

different gradients are used to readout the first- fe-space line of the second projection. 

This is repeated for all P  projection images, so tha t after 400 +  P * 27 ms, we arrive 

at time E. At some later time F, another R-wave triggers an identical sequence of 

readouts—only this time no inversion pulse is used. There are typically 256 samples 

in each row of fc-space, and the above procedure is repeated 128 times to acquire 128 

rows in &-space.

To form projection images, the corresponding projection data (with and without 

inversion) are then subtracted and Fourier transformed. This subtraction should form 

images of the spins that flowed into the readout region. The following assumptions
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are implicit in this subtractive method:

A ssu m p tio n  2.9 No motion o f “static” tissue.

If there is no such motion, then the difference between the inverted and uninverted 

readouts will be due only to the flowing material.

A ssu m p tio n  2.10 Consistent wash-in and periodic gating.

The readout for each row in &-space is triggered by a different heart beat. If the heart 

beats were very irregular and different am ounts of spins were washed-in after each 

inversion pulse, then the acquired rows of fc-space would correspond to the spatial- 

frequency content of different images, and there would be artifacts in the reconstructed 

images. Furthermore, the static tissues would have different 7\ relaxation periods, 

leading to  imperfect subtraction.

A ssu m p tio n  2.11 Negligible wash-in during a readout.

Similarly, if significant wash-in occurred during a readout, then that row of fc-space 

would be inconsistent, also leading to artifacts. These artifacts are minimized by 

using the shortest readouts possible.

Of these assumptions, the last is perhaps the most questionable. We have often 

observed significant differences in contrast between the different projection images. 

There are two potential sources for these differences: more contrast in the later images 

due to additional wash-in, and errors in the tip-angle of the RF excitation, leading 

to different signal strengths. If the differences in contrast between images are due 

in part to  wash-in, then the contrast almost certainly is changing during a readout, 

since the readout interval is a significant fraction of the time between readouts.

Provided all these assumptions hold, then the same basic projection relation­

ship (2.1) holds for MR projections. We consider deviations from these assumptions 

in Section 2.4.
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2.3 Point-source X-ray G eom etry

In this section, we generalize the parallel-projection measurement model (2.1) by 

developing an approximate point-source projection model. Since the rays tha t pass 

from a  point source to an area detector form a solid cone, this geometry is known as 

the cone-beam geometry. In addition to the assumptions of Section 2.1, we add the 

following:

Assum ption 2.12 Ideal point X-ray source.

Real X-ray sources are of finite size and are tilted with respect to the detector plane [3]. 

This introduces additional blurring that we lump into the blur model of the next 

section. From [3], the ideal projection function due to a point source is (cf. (2.1)):

u  -j- V  f  (  a  U  . . U V
 - —  / fj. s cosv -f- sin fl,ssm g -  , , ,  . cos0, ;

d2 J \  M (s) M (s) M(s)

where
AS! \ d d 1M is)  =   --------------=    —   —

d — do +  s d — do 1 +

is the position-dependent magnification, d is the source-to-detector distance, and d0 

is the distance from the center of rotation to the detector. Note that as d —> oo, 

M (s ) —» 1.

A ssu m p tio n  2.13 Small centered object: ( s < d  -  do).

For objects that are close to the center of rotation, the magnification is approximately 

constant: M (s)  «  M {0). Using this approximation, it is easy to see that

r
J  p{s cos 0 +  u sin 9, s sin 0 — u cos 6, v\ tp) ds,

which is just a scaled version of the expression (2.1) for the parallel projection of 

p. The accuracy of this approximation improves with increasing source-to-detector 

separation and with decreasing object breadth. Thus, by simply replacing in (2.2)
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with Ah/M (0),  we can apply our method to cone-beam projections, as we have done 

in Chapter 7. In Section 6.4 we discuss another method that may be useful for more 

accurate modeling and reconstruction from cone-beam projections.

2.4 Blurring, Sampling, and N oise

In the above sections, we derived expressions for ideal continuous projections. Actual 

imaging systems produce noisy, discrete samples of a blurred version of the ideal 

projections, and accurate estimation requires accounting for these distortions.

Angiographic images can contain significant high-frequency information due to 

the fine structure of small arteries. Since MR images are reconstructed from a finite 

number of spatial-frequency samples, they are virtually always undersampled. The 

resulting point-spread function (PSF) is determined by the frequency-space sampling 

and weighting, and is spatially invariant. In addition, any patient motion during 

the acquisition will introduce artifacts that may in part be modeled as blurring. In 

X-ray imaging, sources of blurring include the finite source and detector sizes and 

image-intensifier veiling glare. Although subtracting the mask image from the live 

image will eliminate X-ray scatter from the background tissues, any scatter from the 

iodinated arteries will remain. This object-dependent scatter also blurs the artery 

projection. Thus, in some situations it may be useful to estim ate the PSF as well as 

the arterial tree [63, 89]. However, Pappas [63] has observed tha t even “if we assumed 

that there is no blurring, we would still get good estimates of the parameters.” Here, 

we assume the PSF is known,2 spatially invariant, and denoted by h(u,v).

A ssu m p tio n  2.14 Known, spatially invariant point-spread function.

Digital imaging systems acquire samples of the blurred projections in the form of 

images. Let these images consist of N  rows of W  pixels each. If sgpiTlti(p)  denotes the

2In fact, for the X-ray phantom  exam ple o f  Chapter 7 that has an unknown PSF, we first used 
a local estim ation  algorithm  sim ilar to that o f [63] to estim ate the PSF, which was then held fixed 
for the global arterial tree reconstruction.
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ideal (mean) i th pixel value in the n th row of the projection image a t angle 9P, then 

for i =  1, . . . ,  W; n =  1 and p =  1, . . . ,  P:

seP,n ,i(p) =  [ h ( u , v ) * * l e p{u,v,fi )] \  , _ , (2.2 )t/j — -̂ jLlhfV—Zn

where zn =  (N  — n)A„, the horizontal and vertical pixel dimensions are A^ and 

A„ respectively, ih is the distance (in pixels) from the projection of the rotation axis 

to the left edge of a projection image, and ** denotes the 2-D convolution operator. 

The offset ih may differ from its usual value of W /2  since X-ray detectors are usually 

not perfectly centered on the rotation axis and since any extra linear phase in an MR 

system leads to a shift in the reconstructed images.

Blurring along the length of an artery’s projection is less im portant for recon­

struction than lateral blurring that smooths the artery’s edges. In the next chapter 

we will restrict our attention to arteries whose medial axes are roughly parallel to 

the z axis, so it is reasonable to ignore blurring along this axis. This approximation 

simplifies the estimation algorithm discussed in Chapter 6.

Assum ption 2.15 Ignore vertical blurring: h (u ,v ) =  h(u)S(v).

Assum ption 2.16 Smooth PSF.

If the PSF is smooth, then we can approximate (2.2) by a discrete convolution that 

is more easily implemented. In the appendix we show that:

s9p,n,i{lJ’) ^  hi * hp,i{zni I1), (2-3)

where * now indicates discrete convolution with respect to i, and

A ssu m p tio n  2.17 Independent, Gaussian distributed measurement errors.
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Finally, the actual measured pixel values are corrupted by noise. If yp,n,i denotes the 

measurement corresponding to Sffpitlii, then we assume

Up,n,i = s6p,n,i{^) +  ep,n,»>

where the additive measurement error cPtn,,- has a Gaussian distribution with (pos­

sibly unknown) variance cr2. In MR imaging, the “source of this noise is thermally 

generated, randomly fluctuating noise currents in the body which are picked up by 

the receiving antenna,” [26] so it is correct to assume tha t the measurement errors 

are Gaussian and independent. W ith X-ray imaging, the Gaussian model is an ap­

proximation to the Poisson noise distribution. The approximation improves with 

increasing photon count. One motivation for this assumption is tha t it leads to the 

computationally feasible algorithms of Chapters 8 and 9.

It is convenient to group the ideal projection and measurement samples in the 

different ways defined below. First group the samples by rows:

yp.n =  \yp,n, 1) •••) Vp,n,w] 1 Sflp.n^) =  [s 0p,n,l(/0> •••> sSp>n,w(/i )] !

where denotes m atrix transposition. Next group the corresponding rows of the P  

images:

yn = [yi,„, y ' p j ,  s n { n )  =  [ s 9 l M ' >  s*P,n(/*)T- (2-4)

Finally, let

be the aggregates of all the samples. The vector y  has length N P W .  We similarly 

define £, yielding the final measurement model:

y  =  s(/i) +  e, (2.5)

which simply says that the (known) measurements are equal to the sampled and 

blurred projection of the (unknown) arterial tree density plus noise.
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2.5 Summary

In summary, we have defined a statistical measurement model (2.1) (2.3) (2.5) that 

relates the unknown 3-D arterial tree density to the measured projections. The final 

form of our model is identical for both MR and X-ray angiography, but the assump­

tions involved are quite different.

It is worth noting that none of the assumptions used above are unique to our 

object-based approach. In fact, all paradigms must contend with inaccuracies that 

result from modeling error. Since our reconstruction approach uses global infor­

mation, it clearly has the potential to be more robust to  local deviations from the 

measurement models.
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2.6 Appendix: D iscrete Blur Approxim ation

In this appendix, we derive a simple approximation for discrete implementation of the 

blur convolution. Since we ignore the vertical blurring, we derive the approximation 

only in terms of the horizontal blurring. From (2.2), the expression for the ideal 

discrete sample is:

s,- =  [A(u)*Z(u)]|M i_.k_i)Ah

=  /  KT) K { i  ~  ih ~  ?)Ah ~  r)  dr
J  — oo

=  I.. , f(r )M(* -  ih -  -  r) dr.
j  J ( j - l ) A h

If the PSF h is nearly constant over the interval [(j — l)A h ,jA h],  then:

s*' w H i .  ,A l (T)h(((i ~  ~  k) ~  ( j  ~  ^))^h) dr
j  J 0 - l ) A h

=  E ' j *w .
j

where

hi =  h ( iA h).

Note that if the blur function is the discrete impulse response, i.e. hi =  5 then the 

ideal sample is the average of the signal intensity over the pixel size. This is a sensible 

upper bound on the performance.
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Chapter 3 

Object M odel

A s  discussed in the introduction, the information provided by only a few projections 

is insufficient for reconstructing a general three-dimensional function. Any solution 

therefore hinges on restricting consideration to a smaller class of descriptions. In this 

chapter, we introduce an extension of the generalized cylinder (GC) object model, ta i­

lored to the task of representing arterial trees (the terms ‘object’ and ‘arterial segment’ 

are interchangeable). In particular, our model is designed to represent bifurcations 

accurately. This accuracy is essential since atherosclerotic lesions are prevalent near 

arterial branches [7, 8]. Binford [206, 208] introduced the GC model for computer vi­

sion applications. According to Agin [208], “A generalized cylinder consists of a space 

curve, or axis, and a cross-section function defined on that axis.” For this chapter, 

we take that cross-section function to be an ellipse.

3.1 SGC object m odel

A true GC would have arbitrarily oriented ellipses, as in Figure 3.1. Reconstruction 

of such general objects from projections is still an open problem; to  our knowledge, 

the only work on this problem is a hierarchical algorithm proposed, but never imple­

mented, by Bresler [103]. The comments of Marr [213, pp. 223-224] suggest tha t GC 

reconstruction may be challenging to implement from projections acquired around

33
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n

Figure 3.1: A GC (left) and an approximating SGC (right).

a single rotation axis. We instead adopt the popular approach [89, 107, e.g.] of 

parameterizing objects by their cross-sections parallel to the xy  plane, an approach 

ideally suited to the cylindrical geometry. As argued in [89], a GC with slowly vary­

ing elliptical cross-sections can be approxim ated by a. set of parallel ellipses as shown 

in Figure 3.1. Such a set of ellipses can be parameterized by a, hence we call the 

collection a single-valued generalized cylinder (SGC). Objects tha t wind back upon 

themselves (e.g. U shaped) must be represented by more than one SGC, and are 

called ‘multi-valued.’ The further an object is tilted away from the rotational axis, 

the poorer its SGC representation. Thus, as in most imaging procedures, proper pa­

tient positioning is essential, and the arteries of interest should be aligned as close 

as possible to the rotational axis. The examples of Chapter 7 demonstrate successful 

reconstruction of objects with tilts exceeding 45°. Though we parameterize objects by 

parallel cross-sections, the cross-sections perpendicular to an artery’s medial axis are 

more important for quantitative diagnosis. Hence, we present formulae for converting
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between GC and SGC parameters in Section 3.6.

Each SGC cross-section has three attributes: position, shape, and content. An 

ellipse’s position attribute is parameterized by the xy  coordinates of its center, de­

noted by (c x , C y ) .  We parameterize an ellipse’s shape attribute by its radius (geometric 

mean of long and short axes), eccentricity1 (ratio of long to  short axis2), and orien­

tation, denoted by r, A, and <f> respectively (see Figure 3.5). The content attribute 

parameterizes the density within an artery, and can have a profound, though often 

underestimated, impact on a  reconstruction algorithm’s accuracy and applicability. 

Some methods assume the content is known or is computable from “normal” sections 

of an artery, usually assumed to have a circular cross-section. Having more than two 

views allows us to relax these assumptions. We do not assume the contrast density 

is known, and we allow it to vary along the length of an artery, from artery to artery, 

and possibly even between projection images, as discussed next.

Though the measurement model (2.5) allows a general time-varying density, we 

now consider only SGCs whose position and shape attributes are invariant at times 

but we account for the tim e variation of the content attribute3. This 

approach is necessary since the contrast often varies between MRA projection im ­

ages, and is approximately sufficient since cardiac gating can synchronize position 

and shape. We assume each particular arterial cross-section is uniformly filled with 

contrast agent, so we parameterize an ellipse’s content by a vector denoted by p  = 

[p\i • • • 5 Pp]'i where P  is the number of projections. For some imaging techniques, 

we may be able to equate some of the pp’ s. For example, with bi-plane DSA, the 

contrast is identical for each pair of projection images, so we would assume p\ =  P2  

and P3  = p4. Note that ideal data sets would have p4 =  • • • =  pp, since estimating 

additional parameters often decreases estimation accuracy, but we have found the full 

generality presented here necessary for some MRA data.

JT he radius/eccentricity param eterization is preferable to the long-axis/short-axis param eteriza­
tion for our approach, since independence o f  radius and eccentricity is a more realistic assum ption, 
particularly in stenotic arteries. ________

2 Another definition o f ellipse eccentricity is \ / l  — A- 2 .
3 We could also account for lateral vessel m otion between acquisitions [112].
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x k(z) =

We now define notation for a hierarchy consisting of ellipses, objects, and trees. 

The symbol x  will denote a particular set of 5 +  P  ellipse parameters. In particular,

Cx(z)

r{z)

\{z)

4>{z)

Pi*)

denotes the (unknown) ellipse parameters of the k th object at vertical position z. An 

object is uniquely determined by specifying its starting plane Zb, its ending plane ze, 

and the collection of parameters of its elliptical cross-sections between those planes. 

We use the symbol Ok to denote the kth object, i.e.,

Ok =  {Z k, A kj,

where

Zk = [zb,k-,Ze,k]

denotes the vertical domain of the kth object, and

A*, =  {xjt(z) : z G Z h}

denotes the collection of ellipse parameters. We will say more about Zk later in this 

section.

An arterial tree is a collection of K  objects, or ‘object-set,’ denoted by the symbol

t  {K , 0 1, . . . , 0 K} = {I<, Z u X x, . . . ,  Z K, X K). (3.1)

The notational hierarchy for 'P directly corresponds to a hierarchical data struc­

ture [87] that we used to implement the algorithm described in Chapter 6. Due to 

the simplicity of the ellipse parameterization, this representation for 'P is consider­

ably more compact than a discretized 3-D voxel set. More importantly, the significant
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factors for quantitative diagnosis, such as percent stenosis and stenosis eccentricity, 

are directly computable from

With these definitions, we have translated the problem of reconstructing a density 

fj, from projections into the problem of estimating an object-set from projections. 

That is, we must estim ate the number of objects, the vertical extent of each object, 

and the parameters of the ellipse cross-sections for each object.

3.2 Branching object m odel

In earlier efforts [110, 111], we assumed that the K  objects to be reconstructed 

were disjoint. Although convenient, this assumption precluded accurate modeling 

of branching vessels. Histological sections of bifurcations [7, 8] suggest tha t pairs of 

intersecting ellipses can approximate cross-sections of a bifurcation accurately, even a 

diseased one. Therefore, we discard the disjointedness assumption by allowing SGC 

objects to intersect and by accounting4 for their intersections [114]. The importance 

of this accounting is clear from early GC-based vision algorithms [208] tha t were prone 

to failure near the intersection of GCs. (For simplicity, we consider bifurcations only; 

the extension to trifurcations involves only additional notation.)

When two SGC objects intersect, their position and shape attributes are unaf­

fected, but we must specify their content attributes more carefully. Although it may 

be reasonable to assume that two intersecting ellipses m ust share the same density, 

we can simplify our reconstruction algorithm by not enforcing this constraint. This 

also provides a self-test for the reconstruction: if the estim ated densities differ signif­

icantly for two arterial branches near a bifurcation, then something is clearly amiss. 

For mathematical consistency, we must specify a symmetrical definition for the con­

tent of two intersecting ellipses with different densities. Our convention is described 

pictorially in Figure 3.2, where we define the density of the common area of two el­

lipses to be the average of the two ellipse densities. If the two densities are the same,

4More perspiration than inspiration: compare Sections 3.4 and 3.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. OBJECT MODEL 38

(Pi +  />2)/2

Figure 3.2: Convention defining content attribute of a cross-section formed by two 
intersecting ellipses with different densities.

then the area of overlap will have that same density.

W ith the above definitions, we can now specify the unique 3-D density function 

generated by a given object-set. Let £(x) be the set of points within the ellipse 

parameterized by x, i.e., if x  =  [cx cy r X <j> p']', then

S(x)  = <( z , y ) :
(x — Cr) cos <l> — (y — Cy) sin <j> 

r \ f \
(3.2)

, ( ( x - c x) sin <f> + ( y - c y) cos <f>\ ^

\  r / V X  )  ~  / •

The relationship between an object-set $  and its density fiq is then:
K

/ i i i i ( x , y , z ' , t p) =  Pk,-p{z) 1  £ ( x * ( « ) ) ( a ; ,  2 / )  1  z k{z )
k=i

(3.3)

1 z ( z )  =

where
1, 2 6 2  

0, 2  ^  Z

The first summation would suffice for a set of disjoint objects, and the second sum­

mation accounts for the areas of overlap.
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Figure 3.3: Two equivalent object sets. Note tha t although Z 2 ^  Z 3, ^{ouo2} =
HOxVi}-
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The reverse relationship to (3.3) is not unique because many different object-sets 

generate the same density function. One trivial reason for this non-uniqueness is 

that an ellipse’s shape is the same for orientations <l> and </> +  ir, but the param eter 

vectors differ. Also, if one changed 'P by adding objects with zero density, there 

would be no change in /z*. More significantly, the union of two identical ellipses is 

indistinguishable from, a single ellipse. We will say two object-sets are equivalent if 

the density functions they generate from (3.3) are equal. For example, if the three 

objects shown in Figure 3.3 all have the same density, then the object-set formed by 

combining 0 \ and O 2  is equivalent to the object-set formed by combining 0 \ and O 3 . 

Technically then, we will be reconstructing an equivalence class of object-sets from 

projections.

Since a given object-set \P generates a unique density function /z# by (3.3), we can 

speak of the projection of an object-set, denoted by s(fi^). Although s is linear in 

/z, it is not linear in $  since /z is a  nonlinear function of \P. In fact, since we are not 

assuming disjoint objects, s is not even additive in general, i.e., the projection of an 

object collection differs from the sum of each object’s projection. Nevertheless, we can 

write expressions for s(yiz$) in closed form using the formulae derived in Sections 3.4 

and 3.5.

The non-uniqueness of an object-set actually works to our advantage since we 

need not estim ate Zb or z e exactly for objects near bifurcations, as demonstrated 

by Figure 3.3. W hat defines the endpoints of an arterial segment? There are four 

possibilities for SGC objects:

• an artery may leave the region of interest (ROI),

• an artery may ‘fade-out’ due to incomplete filling by contrast agent,

• an artery may be occluded or taper down to  a size below the effective resolution,

• or an artery may connect to another artery (branching).

These four possibilities are illustrated in Figure 3.4. Of these, only the first possibility 

has a unique value of Zb (or z e),  and this value is easily determined. For the others,
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Figure 3.4: Example demonstrating the four ways arteries can terminate.

we can always conservatively make the object extra long, and let the density or radius 

become vanishingly small. For a multi-valued GC object, the endpoints of its SGC 

approximation are poorly defined, and are determined in practice by the manual-entry 

described in Chapter 6.

3.3 Summary

We have described an extension of the generalized-cylinder object model based on 

elliptical cross-sections. By allowing objects to intersect, the model can represent 

arterial trees accurately. This model defines the class of 3-D density functions con­

sidered, namely those tha t can be expressed in the form (3.3).

The following three sections derive mathematical expressions that are only neces­

sary for implementing the reconstruction method described in Chapter 6.
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Figure 3.5: Projections of an elliptical cross-section. Is: ideal, s#,,-: blurred and 
sampled.

3.4 Appendix: Ellipse Projection

Consider a collection of ellipses in a given plane, some of which may intersect. Since 

we restrict our model to bifurcations, the collection’s projections are the superposition 

of the projections of those ellipses tha t are isolated, plus the sum of the projections of 

the pairs of intersecting ellipses. Thus we need two types of formulae: projections of 

a  single ellipse, and projections of intersecting ellipses (cf. (6.8)). In this section and 

the next, we present expressions for these projections and their partial derivatives. 

These are needed by the nonlinear vector-spline smoothing algorithm described in 

Chapter 9, since it is a gradient-descent optimization method.

Consider a single isolated ellipse with parameters x  =  [cx cy r A (j) p}'. Since we 

consider projections only in the plane of this ellipse, we drop the dependence on 2  

(and hence v and n ). From (2.1), (3.2), and (3.3), the ideal continuous line-integral 

of an ellipse is:
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le(u-,x) = J p  l f ( x)(-s cos# +  u s in #,s  sin# — ucos #) ds

= Zphpy/rl -  (u -  up)2 1| U — U p | < r p ,

where

Up =  cx sin # — Cy cos #, (3.4)

rP =  r • y/a .̂, hp =  a+1,

and

a± =  \  ((A ±  A’ 1) -  ( A t  A"1) cos(2(^ -  #))) .

Then from (2.2) and (2.3),

s«,i(x) =  hi * /fl.i(x),

where

r(i-ih)&h
le, iW  =  / le{u',x) du

= php \u^Jr^ — (u — up)2 +  Tp arcsin

where

a  f  (* -  i h  -  1 ) A a  } a  f ( i - i h ) A h .
u l =  max | -------- - ---------- , — 1J , ur =  mm |    , 1 > ,

for i in the range

{ i : |(i -  ih -  ±)Ah ~  up\ < r p +  i A a} ,

otherwise the values are 0. By the linearity of convolution, the partial derivatives of 

S0,i(x) are the blurred partial derivatives of /0,;(x), which are given below for i in the 

same range:

=  —(sin 0 )(/9(uR;x) -  /5(uL;x)),

d =  (cos #)(/a(ur; x) — le(ui,; x )),

dh,i(x ) o  (  ■ (  ur \  . (y-h

U = U R

u=ul

q — =  2/9 r  ( arcsin ( —  j — arcsin \ —  / / >
Tv )  \ r P
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8 i,g ^  =  P J^T {\tTl ~ ( “ »  -  “ p) 2 “  H  ~ ( “ L "  “ p )2)  •

5 W x )  _  ^ -(A -  A-)^n(2(^ -  0)) ^  _  u>); _  ^  ^  ^  _

^  =  M D / f

s(p<p) could be implemented as a subroutine tha t accepts an object-set as its 

argument and returns a vector of length N P W .  However, we achieve substantial 

memory and computational savings by exploiting the fact tha t projections of ellipses 

are semi-ellipse ‘bum p’ functions whose supports are only small fractions of the size 

of the projection vector.

3.5 Appendix: Projection of Intersecting Ellipses

The projection of two intersecting ellipses is more complicated due to the region of 

overlap. Consider two intersecting ellipses with parameters Xi =  [cXil cy,i r\ \ \  <j)\ pi] 

and X2 =  [cXl2 cv,2 r 2 A2 <£2 P2]? and let £\ and £ 2  denote the corresponding ellipse 

sets (3.2). For reasons tha t will become clear in Chapter 6, we are more interested 

in the signal tha t results from the difference of the projection of the union of the 

two ellipses and the projection of X2 . This signal is denoted by s jit-(xi), where the 

dependence on X2 is suppressed since it will be held fixed. The definition of this signal 

(cf. (6.8)) is:

4 < (x i) =  hi * lh ( x 0 >

where

and

*J,»(x i) =  /  fj(t*;x0 du,

l*g{u;x 1) =  /« (« ;x l ,x 2) - l g ( u ] x 2).

Applying (2.1) and (3.3) and using an overline to represent set complements:
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de(u;x )

Figure 3.6: Line integral through overlapping ellipses.

Ju i ■ e \ [(pl ^£x +p2 ^  ~ ” T ”  ^0j/c o s9 = u }  L \  z  1 1 /  '
dl

dl

=  {Pi) f i {dg(u-,xi), l8(u;xi)/pi ,de(u;x2), le(u;x2)/p2)

+ (£Lf£2-) Mde(u;x1)J9{u;x1)/p1,dB{u-,x2)Je{u',X2)/p2),

where for j  =  1,2:

d9{u; X j )  =  cXJ- cos 0 +  Cyj sin 6 — (u -  upj)(Xj  — Aj1)— —̂ sin(2(<£,- -  6))
* a + , j

is the distance shown in Figure 3.5. The path length functions shown in Figure 3.6 

are:

f i { d i , h ,d 2, l2) =  length([di —/i/2 ,d j  + /x/2] P | [d2 — l2/ 2 ,d2 + l2/2\),

/ 2(c?i, l \ ,d2, l2) =  length([di — /i/2 , d  ̂ +  l\/2] P) [d2 — ^ 2 ,  d2 +  h/2]),
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where

length([a, 6] f ]  [c,d]) =

(b — a) — ( d  — c), a < c, b > d

b — d ,  a > c, b > d ,  a < d

c — a, a < c, b < d ,  b> c

0, otherwise

and
d - - c , a <  c,

Al d

d - - a , a > c, b> d, a < d

b - -c, a <  c,

VI-o d, b >  c

b - -a , a >  c,

VI d

0 , otherwise

length ([a, b] f") [c,d]) =

Our implementation uses the following approximation, obtained by interchanging 

the order of the convolution and the ‘length’ (m in/m ax) operations:

»  ( Pi ) Md8Axi)Je,i{xi)/pudeAx2),lgAx2)/P2)
+ (£lf £2-) f2(dgA^i)ihAx i)/PudeA^2)JeA:x-2)/p2),

where

d5,,(x) =  dg ((i -  ih -  i )A A; x ) .

From these formulae, we see tha t the partial derivatives of s*(x) are combinations 

of those given for I$AX) in the previous section, and those of dgAx ), given below:

d d g ti

dcx
d d g ti

OCy
ddg, i

dr
d d g ti

d \
d d e<i

d<j>
d d e<i

d p

= cos  9 +  (sin0)(A — X 1)—— sin(2(</> — 0)),
2a+

=  sin 9 — (cos 0)(A — A-1)—!— sin(2(0 — 0)),
2a+

= 0,

=  - ( ( *  -  i h  -  -  Up )  sin(2(<£ -  9 ) ) / ( X a + ),

= ( ( i - h -  ? ) & h - u p) ( X -  X *)

=  0 .

a _
o ?rt*
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3.6 Appendix: SGC to GC conversion

Our reconstruction algorithm provides estimates of the parameters of the elliptical 

cross-sections of a SGC, as shown in Figure 3.1. However, it is the variations in 

eccentricity, radius, and area perpendicular to an artery’s axis that are im portant 

diagnostically. In this section, we present equations for converting between the pa­

rameters of a GC and a SGC. These relations are derived by approximating a SGC 

locally by an elliptical cone. The position attribute is identical for the GC and SGC 

models. To first order, the content attribute is also the same, since density usually 

varies quite slowly. Suppose the estimated shape parameters are [rs As </>s], and that 

the local slope of the SGC is f3x and /3y. Let /? =  yjl  +  /3% +  (3̂ , then

rs
r ~ w

and

A +  A-1 =  /?-1As +  /?Ag1 +  (/? -  /?_1)(AS -  As1)sin2(^s -  arctan(/V /3X))- 

Ellipse orientation is not well defined for an arbitrary GC axis [103] in general.
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Chapter 4 

Single Object Estim ation

I n  this chapter, we describe several methods for quantifying a single artery given only 

a single projection image. (The problem of three-dimensional reconstruction of a sin­

gle object from multiple views is just a special case of the algorithm to be presented in 

Chapter 6.) The single-view problem has been considered by numerous investigators, 

and is useful for comparative evaluation of new methods for quantitative angiography. 

Though a single-object algorithm has limited applications, the exposition gives us an 

opportunity to introduce the philosophy behind our 3-D reconstruction method in a 

much simpler setting.

The information provided by a  single view is insufficient for determining the three 

shape parameters of an ellipse, so it is futile to consider an elliptical cross-section. 

Therefore, we restrict our attention in this chapter to arteries with circular cross- 

sections. It is also im portant to emphasize tha t the assumption of a parallel geom­

etry is implicit in this chapter. The distance between an object and the detector is 

unavailable from a single view, so it is impossible to account for any depth-dependent 

magnification. One could use the image of the catheter as a scaling device, but this 

requires making the questionable assumption th a t the catheter and the artery lie in 

the same plane parallel to the detector.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 4. SING LE O BJECT E STIM ATIO N 49

N

n
hp(z)

1

2 r(z)

t { z )
^

Figure 4.1: Single circular artery and single view geometry.

4.1 Problem  Setup

The geometry of this single-view problem is shown in Figure 4.1. This problem 

was first studied from an optimal estimation perspective by Shmueli [45, 49]. This 

perspective is the foundation for our work as well, but part of the purpose of this 

chapter is to relax four assumptions inherent in Shmueli’s method: circular projected 

cross-sections, known fixed density, parametric Gauss-Markov model, and vessel dis­

cretization. Of course, the most restrictive assumption is that of a single artery, which 

precludes overlapping projections and branches.

As shown in Figure 4.1, the measurements of an artery lie on a grid of N  rows, 

each with W  pixels. Each row of this image consists of samples of the projection 

of an arterial cross-section. Shmueli assumed tha t these parallel cross-sections of an 

artery were circles. However, it is clear from Figure 4.1 tha t if an artery w ith a 

circular cross-section is at all tilted, then the projected cross-section is actually an 

ellipse. Fortunately, the relationship between the true radius, denoted by r ( z ) and the
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projected radius rp(z ) depends only on the tilt parallel to the imaging plane, which 

is an observable.

Shmueli also assumed that the density of the artery was known and constant. This 

is unrealistic, particularly for MR images, so we include an additional param eter to 

represent the density, denoted by p(z). The final param eter of interest is the x  position 

of the artery, denoted by t ( z ) .

4.1.1 P rojected  Param eters

It is useful to note some relationships among the parameters, which follow from 

Sections 3.4 and 3.6. Let fix and fiy denote the tilt of the artery with respect to 

the x  and y axes respectively. The intersection of the artery with a plane th a t is 

perpendicular to the image and intersects the image at slice 2  is an ellipse with 

radius, eccentricity, and orientation denoted by re, Ae, and <j>e, respectively, where

re(z) = r{z)^ j l  + fi$(z) + fi*(z),

K{z)  =  yjl + fi£(z) + fi$(z),

(f>e(z) = t&n-l (/3y{z)/l3x(z)).

These param eters are projected to form the semi-ellipse function shown in Figure 4.1, 

whose half-width and height are denoted by rp and hp, respectively, where

rp(z ) =  r e{z)\Ja+{z) = r { z ) ^ l  +  0*(z) (4.1)

hp(z) = p(z)2re(z)/y/a+(z)  =  p(z)2r(z)y/l  +  fi%(z) +  (3*(z)/^/l +  £*(*),

where

«+M  =  ( i +  # M ) / V i +  £ ( * )  +  / ? « •

Note th a t hp depends on f3v, the tilt out of the plane, which is unobservable. However, 

/3X is observable, since
n  ( \  dcx (z) .
P AZ) =  = r(z) .
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If we accumulated the pixel values in a  row of a (noiseless) image, we would get the 

density-weighted area of the semi-ellipse:

Ap(z) =  p{z)irrl{z) =  p{z) [irr2{z)\ y/ l  +  #*(z) +  p*(z). (4.2)

Note that this area consists of the true artery area 7rr2, scaled by the unknown 

density and by a factor that again depends on the unobservable /?y, which renders A p 

essentially useless. This point has been overlooked repeatedly in the literature. For 

example, the percent area stenosis is often computed as follows:

% . ? ■i4 p (^ s te n o s is )stenosis =  —y ---------- -,
A p \ Z  “n o rm al” )

i.e., by dividing the computed area in a stenotic segment by the area in a presumed 

normal segment. If /9y(S te n o s is )  7̂  A/ ( 2 “norm al” )i i-e. the y tilts are different at the two 

segments, then this percent-stenosis estim ate will be incorrect.

Kruger [44] noticed that the true arterial radius is proportional to the semi-ellipse 

area divided by the peak projection value. The ellipse area can be estimated by 

summing a row of pixels, the peak can be estim ated by choosing the maximum pixel 

value, and the slope can be estimated from the estim ated arterial centerline, leading 

to the following simple estimate:

r{z) = 2 A p(z) 

* h p(z)y/l  + fe (z )

The problem with this densitometric approach is tha t hp is very variable a t low SNR. 

We prefer to estimate rv and r  using the algorithms given below, and then to convert 

back to the object’s radius using this expression (cf. (4.1)):

r(z) —--- --------------
V 1 +  ^ ( 2 )
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4.1.2 P rojection  M easurem ents

The three parameters are of course continuous, but we observe only discrete, noisy 

samples of their projections (cf. (2.5)):

y n =  s(x(z„)) +  e„, n  =  1 , . . . ,  N,

where

/ \ A Ax (zn) =  x n =
T ( z n)

rr(zn)

P ( z n)

(4.3)

The projection function s has components defined as follows:

s,([r r  p]') =  2 f  p\jr2 -  (s -  r ) 2 l{ |s- T|<r> ds
Ji—l

1 ^ « + \/1 — «+ +  arcsin /c+^ — r2 (k~ \J  1 — /cl +  arcsin

(4.4)

4 |« - r - l / 2 |< r + l / 2 } )

where

k_ =  max*{ - i ,  - } ,  «+ =  m i n | l ,  1” "“  |  •

Our objective is to  estimate the parameters (x n from the measurements {yn}£Li-

4.2 M axim um  Likelihood Criterion

Now that we have defined an object model and a  measurement model, the problem 

becomes one of estimation. The easiest approach would be simply to find the artery 

whose computed projections are the closest to the measurements in some sense. Under 

the AWGN assumption, the least-squares estim ate is also the maximum-likelihood 

(ML) estimate, defined by:

x„,ml =  a rgm in ||yn — s(x )||2, n =  l , . . . , iV . (4.5)

This criterion was studied extensively by Pappas [63], and was shown to be more 

accurate than methods based on finding zero-crossings of a profile’s derivatives.
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Figure 4.2: Simulated projection of a synthetic artery, SNR=1.1 to 2.0.

To evaluate the ML estimator, we created the synthetic projection image shown 

in Figure 4.2. These measurements were generated using (4.4) with added pseudo­

random white Gaussian noise with variance cr2 =  16. The resulting SNR ( =  hp/cr) 

ranges from 1.1 to 2.0. For each row of this image, we computed the estimate 

x n,ML using criterion (4.5). To perform this nonlinear minimization, we used Pow­

ell’s method [223], with the true parameters as the starting point. Despite this ideal 

initialization, the ML results are poor!

Figure 4.3 compares four of the true profiles s(xn), the measured profiles yn, and 

the projected estimates s(x„,ml)) the four were chosen at random. At least in this 

display, the results look reasonable. However, Figure 4.4 shows the projections of 

the estimates in image format, and the results look unacceptable. The difference in 

our interpretation of Figures 4.3 and 4.4 is due to the fact that the former shows 

only local properties, while the la tter reveals global properties of the estimates, and 

the inconsistencies from line to line conflict with our concept of arterial smoothness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. SING LE O BJECT ESTIM ATIO N 54

n = 73

n = 121

n = 9S

n  = 83

Figure 4.3: Four example ML fits, measurements: (•), true: (solid), estimated: 
(dashed).

Figure 4.4: Projections of ML estimates of cross-sections from Figure 4.2.
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This variability is due to noise and the “threshold effect” of ML estimation [144] for 

low SNR.

Many researchers have attem pted to introduce knowledge of smoothness “after 

the fact” by post-processing the ML estimates with various smoothing filters [47, 48, 

52, 67, 75, 82, 86, 89]. The smoothing filter is usually chosen heuristically, with an 

empirically determined bandwidth. Such two-step approaches are suboptimal, and 

are not robust to the heavy tails of the ML estimate error at low SNR. Both the 

Gauss-Markov criterion and the nonparametric optimality criterion presented below 

attem pt to incorporate directly our a priori knowledge of arterial smoothness into 

the estimation.

4.3 Gauss-M arkov Criterion

Shmueli’s approach to  accounting for arterial smoothness was to model the artery as 

a realization of a  first-order discrete-time Gauss-Markov random process, i.e.:

x n+1 =  F x n +  G u „ , '

where u„ is normally distributed system noise with covariance Q. Under this as­

sumption, the maximum a posteriori (MAP) estimate of the states minimizes this 

criterion:

Y  ~ — v " ' - 1'"  +  Y  (X"+1 “  F x n)/(G Q G /)~1(xn+1 -  Fx„).
71=1 ^  71=1

The practical problem with this approach is that the parameters of this model (F, 

G , and Q) are unknown and not easily determined. In addition, this Gauss-Markov 

model is an inherently discrete formulation, whereas an artery is continuous. The 

nonparametric criterion of the next section addresses both of these problems.
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4.4 Nonparam etric Optim ality Criterion

Smoothing always involves a tradeoff between the conflicting goals of fit to the mea­

surements and smoothness of the estimated functions. Nonparametric regression 

offers a solution to this tradeoff, and requires only an assumption of integrability of 

the square of the second derivative of the estimand. Most nonparametric regression 

literature has been concerned with estimating scalar functions from linear, scalar 

measurements. The natural generalization of these “penalized-likelihood” [188] or 

“regularized” [216] methods to our nonlinear, multi-dimensional, object estimation 

problem is the following estimator and optimality criterion1:

x(-) =  “ 8 ™ ^  12  h n  ~  s (x(zn))\\2 + a ' J x 2(z) dz , (4.6)

where x(z)  is the 3-dimensional vector containing the second partial derivatives of the 

components of x(z) with respect to z. The right-hand term  in (4.6) quantifies arterial 

smoothness and prohibits excessive object wiggliness due to noise. The tradeoff is 

controlled by the smoothing factor a  = [«i a 2 o^]'; for small a ,  the  estimate fits 

the data closely, and for large a ,  the estimate becomes very smooth. Intuitively, we 

would use a fairly large value for ax since the arterial position varies relatively slowly, 

a  very large value for as  since density typically varies very slowly, and a  smaller value 

for a 2 to avoid oversmoothing the radius function. These qualitative statements are 

unsatisfying theoretically. Fortunately, nonparametric regression offers a solution: we 

can estimate a  from the data itself using cross-validation [168], as we discuss in detail 

in Chapters 8 and 9. In practice, essentially only a 2 changes with disease, and the 

other elements of a  could be fixed for a given imaging technique.

In Chapters 8 and 9 we present a computationally efficient algorithm for computing 

estimates of the form given by (4.6). Since it is a modified gradient-descent method, 

this algorithm requires that the user provide analytical derivatives of the projection

1T his criterion is nonparametric in the sense that we have avoided using a parametric (e.g. Gauss-
Markov) m odel for the evolution o f  cross-section parameters along an artery. T he cross-sections are 
st ill m odeled parametrically.
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function s, which are given by: 

3s,- ([r r p]')
d r

3s,([r r pY)
dr

ds{ ([r r pY)

=  ~ p 2 r  ( y j l  -  K% -  -  K l J  1{|«—r—1/2 |<r+ l/2}5

=  2(arcsin(/c+) -  arcsin(K_)) l{|,-_T- i / 2 |<r+i/2},

=  2  [  y/r2 — (s —  r)2 l{ |i—r —l / 2 | < r + l / 2}'
J  I — 1dp

Note that we do not apply any derivative operations to the noisy measurements.

To apply the nonparametric algorithm of Chapter 9 to the data shown in Fig­

ure 4.2, the only remaining requirement is to provide an initial estimate. For the case 

of a single artery this is simple to do automatically. We chose the following heuristic: 

a temporary copy of each row of the image was convolved with a “boxcar” kernel: 

[11111], (a crude matched filter), and the index of the pixel with maximum value in 

each row was stored. This set of N  =  128 numbers was then seven-point median 

filtered and the result was the initial position estimate. We arbitrarily initialized the 

radius to be 4 pixels based on visual image inspection; in a typical clinical setting the 

initial radius would be set to the normal size of the particular artery being studied. 

We initialized the density param eter to be 0.9, the sum of all of the image pixel values 

and divided by N tt42 (cf. (4.2)).

Figure 4.5 and Figure 4.6 are plots of the true and the estimated radius and 

position functions, where the smoothing parameters were chosen by using cross- 

validation2. The RMS estimation errors for position and radius were 0.19 and 0.16 

pixels, respectively. Such subpixel estimation accuracy justifies the computational 

effort of this global approach.

When using the cross-validation score to automatically select a ,  there is always 

some risk tha t the selected a 2 will be too large, thereby oversmoothing a stenosis. 

To prevent this occurrence, we can force a 2 to be zero, i.e., no smoothing of the 

radius function. Figure 4.7 shows the estimated radius function from Figure 4.2 

with £*1 and a 3 set to the values chosen by cross-validation, but a 2 set to zero. For 

comparison, Figure 4.8 shows a plot of the radius estim ated by the ML estimator. The

Sp ecifica lly , we used the CVo score o f  Section 9.4.
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Figure 4.5: Nonparametric radius estimates from Figure 4.2, true: (solid), estimated: 
(dashed).
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Figure 4.6: Nonparametric position estimates from Figure 4.2, true: (solid), esti­
mated: (dashed).
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Figure 4.7: Nonparametric radius estimates from Figure 4.2, true: (solid), estimated: 
(dashed), with a<i =  0.
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Figure 4.8: ML radius estimates from Figure 4.2, true: (solid), estimated: (dashed).
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nonparametric approach is clearly superior. Apparently, incorporating our a ■priori 

knowledge of the smoothness of the position and density functions is a significant 

improvement, even without making any assumptions regarding the smoothness of the 

radius function. In some respects, the estimated radius shown in Figure 4.7 may be 

visually preferable to the smooth radius shown in Figure 4.5 since the former gives 

one an impression of the variability of the estimates. If the variations were very large, 

then one might suspect tha t an apparent stenoses was just estimation error, but the 

decrease in radius shown in Figure 4.7 is clearly significant compared to the small 

variations, so we can be confident of the presence of a severe stenosis.

4.5 Sm ooth Background

Consider the simulated angiogram shown in Figure 4.9. This image is identical to 

Figure 4.2, except that an unknown background component has been added to the 

image. The change in intensity shown in Figure 4.9 is typical of image intensifier 

based systems.

As discussed in Section 2.1, one way to accommodate this background is to model 

it locally by a low-order polynomial [62, 63, 89, 112]. In this context, “locally” means 

across the artery’s profile, with perhaps a few pixels on either side. To estimate the 

coefficients of the polynomials, we need only augment the state vector:

t (*»)

rp (^ )  

P i z n )

7o (*)

7i(*)

and redefine the projection function (cf. (4.4)): 

s«([r r  p 7o 7i]') =  (7o +  i l \ )  l{|i-r|<r+ 2} + 2 1 p y / r ^ i s ^ r ) *  l{ |s- T|<r} ds.
J  l  — l

The partial derivatives of this new projection function with respect to 7 0  and 7 1  

are simply 1 and i respectively, so we can again apply the algorithm of Chapter 9.

/ \ A  Ax ( zn) =  x„ =
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Figure 4.9: Simulated projection of a synthetic artery with unknown background 
added.

The smoothness of the background will be reflected in a 4 and as,  as determined by 

cross-validation.

Figures 4.10 and 4.11 compare the true and estimated position and radius param­

eters from Figure 4.9. Again the errors are all below a pixel. However, the RMS 

error for the position and radius were 0.29 and 0.27 respectively, which are slightly 

higher than the RMS errors found in the previous section (without the unknown back­

ground). Naturally, allowing the two extra degrees of freedom for the background has 

increased the estimation variance.
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Figure 4.10: Nonparametric radius estimates from Figure 4.9, true: (solid), estimated: 
(dashed).
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Figure 4.11: Nonparametric position estimates from Figure 4.9, true: (solid), esti­
mated: (dashed).
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4.6 Summary

We have presented three optimality criteria for the problem of quantifying a sin­

gle artery given a single view: maximum likelihood, maximum a posteriori using a 

parametric Gauss-Markov model, and the new nonparametric approach (4.6).

Our formulation has been in terms of the state vector defined in (4.3). The second 

component of this vector is the projected radius. One could argue tha t smoothness 

should be expressed in term s of the true object radius, rather than the projected 

radius. Since the projected radius is related to the true radius and the derivative of 

the object’s position, an alternative to (4.6) would be:

' N

x(-) =  argm in £
Ln=l

where

and

sa([r t  r p\) = s([r r / V  1 +  r 2 p]).

Since the projection function s0 (x) depends on f , one would have generalize the al­

gorithm of Chapter 9 to use this formulation. However, if the position function varies 

smoothly with z,  then the transformation (4.1) that relates the true radius to the 

projected radius function will be smooth, so the projected radius function is approx­

imately as smooth as the true radius function. Thus, the approach of Section 4.4 is 

adequate for SGC objects. An interesting extension of this work would be to consider 

the multi-valued case in a single view.

t { z )

t ( z )

r(z)

Pi2)

||yn -  sa(x(zn ) ) | | 2 +  [ax 0  a 2 a*]' j  x 2 (z) dz  ,
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Chapter 5

Single Slice Estim ation

A 'J.ost automatic methods for 3-D reconstruction first process the individual 2-D

views using algorithms similar to those of Chapter 4, and then attem pt to iden­

tify corresponding structures from view to view. An interesting exception to that 

paradigm is the hierarchical algorithm proposed by Bresler [103]. As proposed, his 

method would have first estimated a collection of short 3-D object segments, and 

then combined them  together using a Bayesian criterion. As we actually imple­

mented it [1 1 0 , 1 1 1 ], our algorithm first estimated a set of ellipses on a slice-by-slice 

basis and then attem pted to  combine ellipses from adjacent slices to form objects. 

Thus, as a complement to Chapter 4, in this chapter we compare two algorithms for 

estimating a collection of ellipses from a few noisy projections. The algorithms apply 

to parallel and cylindrical imaging geometries. These algorithms are presented only 

for completeness; we found the global approach described in Chapter 6  to be more 

effective, and the results in Chapter 7 used that method.

The two methods to be compared are the Estimate-Maximize (EM) algorithm and 

the Alternate-Maximize (AM) algorithm. These two algorithms originated in rather 

different places; the EM algorithm is rooted in statistics [133], while the AM algorithm 

is a  simple method for nonlinear optimization [223, p. 310]. The ellipse estimation 

problem is a special case of the general problem of estimating the parameters of 

superimposed signals observed in additive white Gaussian noise, to which both the

64
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{yi)S(p-i)tv+i

Figure 5.1: Overlapping projections of multiple ellipses.

EM and the AM algorithms have been applied [140, 141]. Many other methods have 

also been considered [132, 135, 136]. The side by side comparison presented in this 

chapter provides insight into both algorithms.

In addition to the estimation algorithms, Section 5.5 discusses how many projec­

tion angles are needed for ellipse reconstruction, and Section 5.6 derives the optimal 

projection angles.

5.1 Superim posed Signals

Consider a vector observation of superimposed signals in i.i.d. Gaussian noise:

K

y = J2 s*(Xfc) + e’ (5>1)
k=l

where the collection of unknowns is defined by:

x =  [x ; , . . . , x y ' .
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Each Sfc(xfc) is a  vector of L samples of a  signal that is a known function of the 

unknown parameters Xjt, which we define to be vectors of length M .  For the ellipse 

estimation problem illustrated in Figure 5.1, each x* corresponds to the unknown 

ellipse parameters (M  =  5 +  P),  and Sfc(xjt) corresponds to  the discrete sampled 

projections (L = P W ) ,  as defined in Chapter 2 .

Our goal is to compute the maximum likelihood (ML) estimate of x  given y:

ii 2
x Ml  =  a rg m a x /Y(y ;x ) =  argm in

K

y - D s*(x *) > (5-2)
k=1 II

where the second equality follows from assuming the measurement error e  is AWGN. 

If the number of signals is large (2 or more), brute force minimization of (5.2) would 

require a global search over many parameters, which is computationally impractical. 

The EM and AM algorithms are iterative methods for estimating the parameters.

Throughout this chapter, we assume the number of signals K  is known. If the 

number is unknown, then it must be estimated as well. However, the ML criterion 

is inappropriate for estimating K , since adding parameters will in general increase 

the “likelihood” (5.2). The MDL and AIC criteria [157, 158, 159, 160, 161] are more 

suitable candidates for the problem of estimating the number of signals.

5.2 Estim ate-M axim ize Algorithm

The difficulty in multiple signal estimation problems lies in the reduction of informa­

tion due to the superposition of the signals. If each signal were observed in isolation, 

then the param eter estimation problem (5.2) would decompose into K  separate mini­

mization problems. For ellipse reconstruction, these minimizations would correspond 

to matched filters (for position estimates, with a bank of matched filters for shape pa­

rameters). The EM algorithm is suited to problems with this characteristic reduction 

in dimension [133].

We begin by presenting the EM algorithm in its most general setting. Suppose 

that the measurements y  are a realization of a random vector Y  which has a known
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distribution fy ( y ]  x). Furthermore, suppose that the measurements can be expressed 

as the following observation:

Y  =  H Z (5.3)

where Z is a random vector representing the “complete data,” whose distribution 

depends on the unknown parameters x. We assume H  has more columns than rows, 

so that the mapping from Z to Y  is many to one. If we define

f /(x ;x 0) =  E,{ log /z (z ;x ) |Y  =  y ;x 0},

then the EM algorithm for param eter estimation can be expressed by the following 

iteration:

E-step:

Compute [ /(x jx ^ ) ,

M-step:

xb+1) =  a rg m a x [/(x ;x ^ ) ,

where x^) denotes the param eter estimate after the i th iteration. The basic idea is to 

compute U, the conditional expectation of the complete data given the most recent 

parameter estimate, and then to maximize the param eter’s likelihood as though the 

complete data were actually observed [133].

Under certain regularity conditions, the EM algorithm is known to be monotone 

in likelihood. Since it is bounded by the maximum likelihood, it will converge [133, 

137]. If the algorithm is initialized sufficiently close (in param eter space) to the ML 

estimates, then:

x ( , )  - >  x m l -

The distinction between the E-step and the M-step is somewhat artificial in this 

general setting, but is more clear in the important Gaussian case. If the complete 

data are normally distributed with mean /x(x) and covariance A:

Z ~  N (fi(x ) ,  A),
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then it follows from the appendix of [140] that:

U(x\ x 0) =

ci -  ^  ( /i(x ) 'A " V (x )  -  2/x(x)'A _ 1  [a*(x 0) +  A H '(H A H ')_1(y -  H /*(x0))]) 

=  c2 -  |  A? (p (x ) -  [/x(x0) +  A H '(H A H ')-1(y -  H > (x 0

where Ci and c2 are independent of x. In this case, the EM iterations can be rewritten: 

E-step:

f t (i) =  A*(xw ) +  A H '(H A H ')-1 (y -  H /*(xw )),

M-step:

x^,+1  ̂ =  arg min
°  X

(5.4)

(5.5)

In this case, the E-step consists of estimating the mean of the complete data, and the 

M-step attem pts to find the parameters tha t agree most closely with tha t estimate.

In general, there is no guarantee tha t the EM algorithm will be any more tractable 

computationally than a brute force search or an iterative descent algorithm. The 

key lies in the selection of the complete data Z. As mentioned above, the param eter 

estimation would be relatively straightforward if the signals were observed separately. 

Therefore, a natural choice for the complete data is the concatenation of the individual 

signals. Since (5.3) does not contain an additive noise term , we must also distribute 

the measurement error e  within the complete data. Therefore, we define:

z =
Z i Sl(xi) n i

j =  n ( x )  +  n  = + j

. Z K . _ s a t ( x a ' ) n K

where

n fc ~  iV(0 ,/?*<7 2I),
K

£ &  =  1 , f o >  o.
k= 1
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The constants 0k are arbitrary, and are generally set to 1 /K  or to the normalized 

SNR [140]:
IM frQ ip

Pk

Since T,k=i n * is equal (in law) to e, the original measurement model (5.1) can be 

rewritten in terms of the EM measurement model (5.3) by defining:

y = Hz

where

H =  l ' 0 l L,

1  =  j l ^ ,
K  terms

and <g> denotes the Kronecker product. The covariance of the complete data is then 

given by:

A =  D (0)  0  I I ,

where

0  =  [01 I>(P) =  diag(/3).

After substituting these definitions into (5.4), simple m atrix algebra yields:

A(0  =  A*(x(i)) +  (0  ® I i ) ( y  -  Hm(x(,'>)).

Substituting this expression into (5.5) yields the following iterative algorithm for 

estimating the parameters of superimposed signals:

E-step:

K

e (0 =  y  -  £  s*(x£°), (5.6)
k = i

®EMref,fc =  +  Sfc(xj,0), k = l , . . . , K ,

= 0k ( y — E  s ^ )  ] +  (1 -  A ) s * ( i f }), (5-7)
\  j=U*k )
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M-step: for k =  1 , . . . ,  K:

4 ' +1) =  argmmllsjsMref.fc -  sfc(xfc)||2.

The E-step computes SEMreftfc, the reference estimate of the kth signal based on the 

current param eter estimate. The M-step then finds a new set of parameters whose 

signals agree most closely with the reference signals. We now see the potential for 

computational savings, since the minimizations within the M-step can be performed 

independently. In fact, this algorithm is very amenable to a parallel implementation 

since most of the computational cost is in the M-step. Unfortunately, this gain 

may be negated by the fact tha t the EM algorithm may require many iterations for 

convergence [133].

5.3 A lternate-M axim ize Algorithm

A very simple approach to nonlinear minimization is to minimize iteratively the ob­

jective function over each unknown, while holding the other unknowns fixed. For the 

superimposed signals problem, it is more natural to group together the parameters 

corresponding to each signal, i.e., to  estimate each signal’s param eters iteratively 

while holding the other signals fixed. This leads to the following iterative algorithm 

for computing the ML estimates: 

f o r  i =  0  to  convergence 

f o r  k =  1 , . . . ,  K

xl*+1) =  arg min 
k  °  x *

end

end.

Again, since we are increasing the likelihood at each iteration, and since the likeli­

hood is bounded above by the ML estimate, this sequence of param eter estimates is 

guaranteed to converge.
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To compare the EM and the AM algorithms directly, we first express the innermost 

loop of the AM algorithm in a two-step form analogous to the EM algorithm: 

f o r  k =  1 , . . . ,  K:

E stev:

=  y  -  J > ( x f  V  (5.8)
i=l j=k

SAMref.it =  +  s*(x j^)
i t— 1 K

= y - Z sj(xS,+1)) -  £  Sj(x$°), (5.9)
i=i j=k+1

M  step:
A (*+l)x l — argmm ®AMref,fc — s*(x *) I (5.10)

end.

There are two im portant distinctions between the two algorithms. First, the tim ­

ing of the updates is different because the reference signal Sy(2 jref and hence the 

estimate xjj!+1\  depends on Xi*+1\ . . .  ,xjj.'-i^ This is due to the fact tha t the resid­

ual estimate is updated at every param eter update (compare (5.8) and (5.6)). 

Therefore, the AM algorithm is not amenable to a  parallel implementation. However, 

it may converge in fewer iterations in a serial implementation since the most recent 

estimates are used to form the reference signal (5.9). Second, the reference signals 

themselves are formed rather differently (compare (5.7) and (5.9)). Both the EM and 

the AM algorithm compute an estimate of the residual e ^ ,  but the EM algorithm 

adds only a  fraction /3k of tha t residual to the previous signal estimate s*(xj^) to form 

the reference signal. Note that the residual signal is im portant because it contains 

any remaining signal error as well as the measurement noise. Thus, the EM algorithm 

is more cautious about straying away from the initial estimate, which may explain 

why it can be slow to converge. On the other hand, we see from the second equality 

in (5.9) that the AM reference is formed with total disregard for Sjt(xj^), which makes 

it a greedier algorithm.

The importance of caution depends on how much confidence one has in the initial
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estimates. In the next section we discuss one simple method for obtaining the initial 

estimates. Based on our empirical work with ellipse reconstruction, the caution of 

the EM algorithm was unjustified and only delayed the convergence. A theoretical 

illustration of the slow convergence of the EM algorithm is given in Section 5.8.

5.4 Initialization

Both of the above iterative algorithms require an initial estimate for the parameters 

X i,. . .  ,Xtf. We found the following variation on the approach of Kwakernaak [134] 

useful for the multiple ellipse estimation problem [110, 111]. First, estim ate the 

parameters as though there were only one ellipse. Second, subtract the projection of 

the estimated ellipse (i.e. the estimated signal) from the measurements. Then repeat 

those steps until K  signals have been estimated suboptimally. This initialization 

procedure is actually equivalent to the first K  steps of the AM algorithm with all of 

the initial parameters set to zero. We found empirically that this approach worked 

well, provided tha t the projections of each ellipse were overlap free in a t least two 

of the P  projections. When there was overlap in all but one projection, then the 

initial estim ate was often sufficiently far from the ML parameters tha t the subsequent 

iterations by the AM or EM algorithms led only to local extrema.

5.5 Num ber of Views

Any method for reconstruction from projections should be accompanied by a  the­

orem tha t ensures the uniqueness of the reconstruction. In conventional comput­

erized tomography, the projection-slice theorem provides the necessary theoretical 

justification [1]. However, if we have only a small number of projections, then the 

projection-slice theorem is insufficient.

Bresler [103] addressed the problem of determining how many projection angles 

are required to determine a set of ellipses uniquely. The two main results of his
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analysis are as follows:

T h e o re m  5.1 (T h m . 2.12 o f [103]) Any set o f  K  disjoint ellipses can be recon­

structed uniquely from any set o f  its K + 2  distinct continuous projections.

T h e o re m  5.2 (T h m . 2.13 o f [103]) The reconstruction o f any random K-ellipse 

distribution from its projections at any three [different] view-angles is unique with 

probability one.

These theorems guarantee sufficiency provided the projections are sampled at 

an interval smaller than 1/4 the minimum of the lengths of the minor axes of the 

ellipses [103]. In fact, if the sampling interval is greater than 3/8 the minimum minor 

axis, then unique reconstruction cannot be guaranteed [103]. Furthermore, these 

theorems assume tha t the projections are noiseless. In the presence of measurement 

error and blurring, we conjecture that four views is the minimum plausible number.

5.6 O ptim al Projection Angles

Although Theorem 5.2 guarantees the uniqueness of reconstructing from only three 

views, it does not provide any insight for selecting projection angles in the presence 

of noise. In this section, we present an analysis of the error in estimating the ellipse 

position, which suggests an optimal set of view angles. At first this approach may 

seem inappropriate, since an ellipse’s shape parameters are often more im portant 

diagnostically than its position parameters. However, we have found empirically 

that estimates of the shape parameters are rather sensitive to errors in the position 

parameters. Fortunately, the position can usually be estimated quite accurately by 

incorporating arterial smoothness.

For simplicity, we consider only a single ellipse, since the optimal projection angles 

for a set of ellipses would depend on the ellipse locations in general. Thus, consider 

an ellipse with parameters x  =  [cx Cy r  A <j> p]', and with projections

yp =  s9p(x) +  ep,
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for p =  1 , . . . ,  P. The ML estimate of the ellipse parameters is given by:
p

xml =  arg m i n £  ||yP -  s flp(x )||2.
p = i

The most natural approach to finding the optimal projection angles would be to find 

the angles th a t minimize the MSE:

0p =  arg min E  { ||x ML -  x ||2} ,

where the latter expectation should be taken with respect to a random distribution 

for x  to  remove any dependence on <f>. This criterion can be evaluated numerically 

through Monte Carlo simulation, but we gain more insight by considering the following 

approximate analysis.

Recall from Figure 3.5 that the projection s$p of an ellipse is a semi-ellipse function 

whose position depends on the ellipse position. From (3.4), the relationship is given 

by:

v>$p — Cx sin Bp Cy cos 0 p,

where u g p  denotes the position in the projection. If the ellipse radius is known approx­

imately, then a simple matched filter can be used to estimate u g p independently in 

each of the P  projections. Due to noise, there will be some error 6 P in this estimation, 

i.e.:

U g p  =  U g p  +  6 p .

By the symmetry of a semi-ellipse, the estimation error 6 P will be unbiased. The P  

estimates can be aggregated as follows:

u =  A (9)c  +  6,

where

u =  [ti*,,. . . ,

C  =  \ c x  C y \  ,

6 ±  f t , . . . , w

6  =  [0 i , . . . , 0 p]',
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and

A («) =

sin 0 i — cos 0 i

sin 9p — cos dp

We can obtain an estim ate for c from u  by linear least-squares:

c =  (A (0)'A (0 ))- 1A (0)'u .

To find the optimal projection angles, we consider the error covariance of c:

C  q = Cov{c — c}

=  E {(c  — c)(c — c)'; 0}

=  C ov{(A (0)'A (0 ) ) - 1 A (0 )'u  -  c}

=  C ov{(A (0)'A (0 ) ) - 1 A (0)'(A (0)c +  6 ) -  c}

=  Cov{(A(0),A (0 ))" 1A (0)/5}.

Since the projections are processed independently, the components of 6  are indepen­

dent. To make the problem tractable, we assume the components of 6  have equal

variance1:

Therefore:

6  ~  N { 0 , cr$I).

C e  =  (A (0 )'A (0 ))-1A (0),E{50,}A (0)(A (0),A (0 ))-1 

=  <t|(A(0),A (0 ) ) - 1

A
E pP=is in 2 0 p

-  Ep=i sin cos #P EjLi cos2 0P

-  Ep=i sin 0p cos 0P
p
p=

- l

=  A

Ep=l COS2 0p Ep=i sin 0P cos 0P

Ep=i sin 0P cos 0P Ep=i sin2 0P

(Ep=i cos2 0 p) (Ep=i sin2 0 P) -  (e£= i sin #p cos 0 P)

1In X-ray im aging, the noise variance will differ between the projections that pass through the
long and short axes of the body, so the com ponents of S m ay have different variance.
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It is interesting to examine the special case where P  =  2:

C O t0- ~ r  6sin1

cot 9 1

For 9 close to  zero, the x  error variance grows very large. This is a  classic problem 

with 3-D reconstruction from a pair of stereo angiograms, and with triangulation 

methods in general.

To minimize the error variance, we would like the diagonal elements of C q to be 

small. We first introduce two constraints.

C o n s tra in t 5.1 Position-independent error variance.

For symmetry, we would like the x  and y errors to have the same variance, so

J2p=i sin2 =  £p=i c o s 2  Note tha t this constraint implies that:

P p
^ 2  sin2 9P =  ^ 2  c o s 2
p = i  p = i

=  ]C ( 1 - s i n 2 0 p)
p = i

p
=  p  — ^ 2  s ' n 2  ^p

p=i
p p

=> sin2 9P = *22 c o s 2  ^p =  P / 2 .
p = i  p = l

C o n s tra in t 5.2 Uncorrelated position errors.

For rotational invariance, we would like the x  and y  position errors to be uncorrelated, 

which requires 52p=i sin $p cos 9P =  0. Under these two constraints:

Cg  =  of
2. 0P V
0 -2-u p

so there is not much left to minimize! In fact, the problem reduces simply to finding 

sets of angles that satisfy the two constraints. One such set of angles is:

e =
„  7T
°, j .

( P - l ) x
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i.e., an equally spaced set of angles spanning [0 , 7r] is an optimal set.

For P  =  4, another set of projection angles which satisfies the two constraints is 

9 =  {0°, 0r , 90°, 9O°+0r }, which, for small 6 r, may be more practical for bi-plane X-ray 

systems than a full 45° rotation. We can now see the inadequacy of this position-only 

analysis, since, unlike the position error variance C q ,  the shape error variance will 

be dependent on 9r. Furthermore, this result is incomplete for multiple objects, since 

the position error variance for two ellipses would also depend on 0 r.

Although this analysis is incomplete, it is comforting that a simple analysis con­

firms the intuitive choice of an equally spaced set of projection angles. An interesting 

extension of this result would be to examine the shape error variance as a function of 

Or-

5.7 Conclusion

Though interesting theoretically, we abandoned the hierarchical approach of estim at­

ing ellipses on a slice-by-slice basis in favor of the object-based approach of Chapter 6 . 

The hierarchical method was most appropriate for disjoint objects, which limited its 

applicability to simulations [110, 111]. In particular, an object-based approach is more 

appropriate for branching objects, since the information tha t identifies a bifurcation 

is more global than the information that is available in a single slice.
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5.8 Appendix: Slow EM Convergence

As a simple example of how slow the EM convergence can be, we consider the case 

where the signals are a linear function of the parameters, i.e., skfak) =  A^x*, so that:

K

where

y = Y ,  A kx k + s  =  Ax,
fc=i

A =  [A i,...,A /r].

(5.11)

For the ML estim ate to be unique, A must have full column rank.

In this case, the EM iterations can be expressed as the following recursion: 

f o r  k = 1 , . . . ,  K

*i'+1) = (A tA )-1 AJ,[&(y -  A * « ) +  A txi‘>]

end.

These updates can be aggregated as follows:

*(i+U =  x (i) +  BA'(y -  A xw )

=  ( I - B A ' A x ^  +  B A 'y , (5.12)

where
/M A iA j)-1

P k {A.'k A k ) 1

The exact solution for this problem is the standard least-squares estimate:

x  =  (A 'A )_1A ,y-

If we let 6 { denote the error a t the i th iteration, i.e.:

x ^  =  x  + Si,
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then (5.12) can be rewritten:

It follows from this recursive relationship that the rate of convergence is limited 

by the maximum absolute eigenvalue, or spectral radius, of I  — B A 'A , denoted by 

p(I — B A 'A ).

Suppose the columns of A  are orthogonal. In this case, the AM algorithm will 

converge in one iteration (K  evaluations of (5.10)). How slowly will the EM algorithm 

converge? It is easy to  show that:

I  -  B A 'A  =
( i -  f t ) i

( i  -  M i

so that p{I — B A 'A ) =  maxjfc(l — /?*). The diagonal factors (1 — /?*) can be very 

close to 1 , so the EM algorithm can converge very slowly even in the simple case of 

orthogonal, linear measurements.
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Chapter 6 

3-D Object Estim ation

^Equipped with the measurement and object models of Chapters 2 and 3, we can

define criteria for the problem that is the focal point of this dissertation: estimating 

an unknown object-set \P from noisy projection measurements y. After presenting the 

maximum-likelihood criterion and noting its shortcomings, we introduce the proposed 

nonparametric optimality criterion and present a computationally efficient optimiza­

tion algorithms for both the parallel and the cone-beam projection geometries.

6.1 M axim um  Likelihood Criterion

We showed tha t the single-object ML estimator is inadequate in Chapter 4. It has 

even more problems in the multiple-object case. Again, the ML estim ate is the 

object-set whose computed projections are the closest to the measurements in the 

least-squares sense (cf. (3.1)):

$ ml =  arg min min min | |y - s ( / i $ ) | |2.

This estimator is severely under-regularized; one can always add tiny objects whose 

param eters fit some bit of noise, thereby increasing the “likelihood,” but certainly 

not improving the estimate. Even if the number of objects is fixed so that K  cannot

80
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grow without bound, the results will be unsatisfactory at low SNR since arterial 

smoothness is not taken into account, as discussed in Chapter 4.

6.2 Nonparam etric O ptim ality Criterion

The nonparam etric method of Chapter 4 is, at least conceptually, easy to generalize 

to the arterial tree reconstruction problem, leading to the following estimator and 

optimality criterion:

$  =  arg min min min
K  Z \ X i(-) ......x K (.)

= l l y - s { m ) \ \ 2 +  L * l ( z )  d z > (6-1)
fc=l J Z k

where x(z) is the (5 +  P)-dimensional vector containing the second partial derivatives 

of the components of x(z) with respect to z.

Again, the smoothing factor a  =  [0 :1 , . . .  ,as+p]' controls the tradeoff between 

fit to the measurements and smoothness of the estimated objects. Intuitively, we 

would use the same fairly large value for a i and a 2 since ellipse position varies rela­

tively slowly, very large identical values for ae, - ■ ■, <*5 +p, since density typically varies 

slowly, and smaller values for a 3, 0 :4 , and 0:5 to avoid oversmoothing the im portant 

shape features. Again, cross-validation can be used to estimate a  from the data itself.

Why this criterion? The first term  of (6.1) is the measurement negative-log- 

likelihood, which we would like to be small, but not at the expense of excessive object 

wiggliness. Functions that minimize, subject to specified constraints, the second 

term  turn out to be splines, the smoothest functions (in curvature sense) satisfying 

those constraints. We argue tha t for maximum effectiveness, arteries attem pt to 

be as smooth as possible, subject to anatomic constraints. An example is carotid 

arteries, which make very smooth trajectories from their origins at the aorta to their 

destinations in the head. These arguments are heuristic, and the reader m ay disagree; 

we hope this discussion prompts proposals of other criteria. Our main point here is
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tha t (6 .1 ) is a natural optimality criterion that encompasses the entire arterial tree 

globally, and therefore promises better results than local methods.

At least in theory, the optimality criterion (6.1) could be used to  solve all of the 

unsolved problems discussed in Chapter 10. By using different projection functions for 

arbitrary projection geometries could be considered, by interpreting £ as the 

distance along an artery’s medial axis, multi-valued objects could be considered, and 

by using the outer two minimizations of (6.1), the method could be automated. The 

practical difficulty lies in finding a computationally efficient algorithm for computing 

'5, and perhaps more importantly, ensuring that such an algorithm is numerically 

stable. We restrict our attention here to a semi-automatic method for estimating 

SGC objects from a parallel geometry.

The particular algorithm for minimizing (6.1) we describe here relies heavily on 

the fact that, for a parallel (or.cylindrical) imaging geometry, the projections of an 

elliptical cross-section fall on the same row in each of the projection images. This 

fact is embodied in (2.1) and (2.4), which allows us to rewrite (6.1) as:

$  =  arg min min min
K  z u...,zK^(.)  x K (.)

where (cf. (2.4)) the 2-D projection of an ellipse collection is given by:

s(x i(2 „ ) , . . . ,  x K(zn)) =  sn(//{£(Xl(2n)) f(X/f(2„))})- (6.3)

By standard arguments [162, 164] based on the Euler equations for the func­

tional (6 .2 ), the infimum of $  is achieved, and any object-set tha t achieves that 

infimum is composed of objects whose component functions are cubic-splines with 

knots at some subset of z i , . . . ,  zpj. A cubic-spline function is determined completely 

by its values at the knots (sample points). We use this fact to simplify the con­

tinuous variational problem (6.2) into a tractable discrete problem. Note tha t this 

discretization is a  natural consequence of the form of (6 .2 ).
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Define the sample points for the k th object by:

M k =  {n : zn e  Z k, n =  1 , . . . ,  N } ,  

rib'k =  minJ\4, ne =  maxAfk,

and the samples by:

Xfc =  [xfc(*„6iJ /, . . . , x * ( * B,tlk)/]',

where X* denotes the parameters of the kth object on those planes within its length. 

W ith these definitions, we can rewrite (6.2) as:

$  =  arg min min min 
K M u -N k  X i,...,X tf

D  | | y n  - s ( X i ( 2 n ) , . . . , X / c ( z „ ) ) | | 2  +  ^ X ^ S f c X j t
.n = l  Ar=l

(6.4)

The m atrix S*, defined by (8 .8 ), depends on Afk and a ,  and serves to discretize the 

integral in (6 .2 ).

Though many desirable properties of spline smoothers are known [188, 201], the 

nonlinearity of (6.4) limits how much we can say about its theoretical properties. 

There are probably local minima, and even the global minimum is not unique in 

general, due to the non-uniqueness discussed in Chapter 3. However, regularization 

methods have shown promise in other applications [216], and the empirical results of 

Chapter 7 likewise are encouraging.

We have defined an optimality criterion for the object reconstruction problem. 

This criterion can be used to compare suboptimal algorithms, or can be minimized 

to generate an arterial tree estimate. In the next section, we present an algorithm for 

such minimizations.
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6.3 Parallel-Projection Estim ation Algorithm

Having defined optimality criterion (6.4), the object estimation problem becomes 

simply the problem of designing an algorithm that can compute $  with a reasonable 

computational load. A general nonlinear minimization technique would be completely 

impractical, since there are thousands of parameters to estimate. Fortunately, we can 

exploit the sparseness of arterial trees and the special m atrix structures of vector- 

spline smoothing to tailor an algorithm to this problem.

The outer two minimizations in (6.4) can be thought of as a detection operation: 

estimating the number of arteries and their endpoints. In the remainder of this 

chapter, we focus on the innermost minimization: the problem of estimating the 

objects’ cross-section parameters given the number of objects and an initial estimate.

An initial estim ate could come from the output of any of the sub-optimal 3- 

D reconstruction schemes, but we currently use manual entry. A trained operator 

determines the number of objects, and then enters coarse centerlines using a technique 

similar to  [212]. After tracing a  coarse piecewise-linear approximation of each object’s 

centerline on one view, the operator traces the centerline in the (e.g.) orthogonal view 

using auxiliary lines, observing the other views to confirm object correspondence. 

Since there are multiple views, the correspondence problem that confounds two view 

reconstruction is alleviated. From cubic-spline interpolants of the 2-D centerlines, 

an initial 3-D skeleton is generated automatically by analytical back-projection. A 

typical arterial radius for the anatomy of interest is used as the radius for an initially 

circular cross-section. The result of this procedure is a crude estimate of $  that 

initializes the iterative algorithm presented below.

If the objects were disjoint, and if their projections were overlap free, then the 

minimization of (6.4) would decompose into K  independent minimizations - one for 

each object. This fact, combined with the sparseness of arterial trees, suggests that 

the alternating minimization (AM) algorithm [1 1 1 , 141] is appropriate for this prob­

lem. Here, we use the AM algorithm on an object by object basis: the parameters 

of each object are estimated in turn, while holding the other objects fixed, and the
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procedure is iterated1. If there was no overlap, convergence would occur in one it­

eration, but in general the number of iterations depends on the degree of overlap. 

That describes the “outer loop” of the algorithm; we now focus on the algorithm for 

estimating the parameters of a particular object, holding the other objects fixed.

Suppose we are considering the k tb object, and let X j denote the current param eter 

estimates of the j th object. Then from the inner minimization of (6.4):

Xfc =  arg min 
X*

™e,k
||y« s ( x i ( 2 n ) ,  • .  .  ,  X f c _ i ( z n ) ,  X f c ( z n ) ,  X / - + x ( 2 n ) )  • • • » X / e (Z71)) II 4 "  X j ( . S f c X f c

where

=  arg min £  IlyH-slteMJf + xiSiX*
n=nb,k

(6.5)

X A

y'n

= [x*(2;n6,fcy ,- - - ,X fc(2:neiJ ,]/,

=  Y n  s ( x i ( z n ) ,  .  .  .  ,  X j — i  ( 2 n ) ,  X j - f i ( - Z n ) ,  • • • ,  X / ^ ( z n ) ) , (6 .6)

and

s^(x) =  s(xi(2rB),...,x,-_1(«n),x ,xJ-+i(z„),...,xji:(a:„))

-  s(x1(z„),...,xj_1(z„), X j + i ( z „ ) , .  . .  , x a - ( z „ ) ) . (6.7)

y* is the difference between the measurements and the projections of the fixed objects. 

By our restriction to bifurcations, the k th ellipse on slice n is either isolated, or it 

intersects one other ellipse, with index kn, say. Thus,

s«(x) = (6 .8 )
s(x), Xfc isolated

s(x,xfcn) -  s(x*J, xfc and x*n intersect

where s(x,Xfcn) is defined by (6.3). Formulas for s*(x) are given in Section 3.5. Note 

that if the objects were disjoint then s*(x) and s(x) would be equivalent.

1 In [111], the AM algorithm  was applied on an ellipse by ellipse basis, and the sparseness argum ent 
was weaker.
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We have finally reduced the original optimization problem (6.4) down to the 

form (6.5), which is precisely the problem addressed by the algorithm of Chapters 8  

and 9. T hat algorithm uses the nonlinear pseudo-measurement function s*(x) and its 

derivatives. The computational efficiency of our nonparametric smoothing algorithm, 

combined with arterial sparseness, results in an efficient object estimation method.

The cross-validation method described in Chapter 9 could be used to select the 

smoothing param eter a  automatically in several different ways for this problem. A 

computationally efficient alternative to cross-validating the entire object-set is the fol­

lowing approach. First, estimate the objects using an educated guess for the smooth­

ing param eter. Then, subtract the projections of all of the objects except one (e.g. the 

longest) from the measurements, leaving (approximately) only the selected object’s 

contribution. Next, apply the cross-validation method of [205] to choose a  autom at­

ically for tha t single-object data set. Finally, estim ate the entire object-set using the 

smoothing factor chosen by cross-validation. The examples of Chapter 7, were based 

on this approach. Unfortunately, the cross-validation score may have local minima, 

and a descent from the initial a  may not yield the truly optimal a .  A global search 

for a  on a patient-by-patient basis would be too time consuming; a more practical 

approach would be to search globally for the best a  on a training set of images, and 

then to apply tha t value of a  to subsequent patient studies.

The object reconstruction algorithm is summarized in Table 6.1. The result of 

this estimation algorithm is a set of parametrically described SGC objects that are 

converted to  GC parameters using Section 3.6. One can use these parameters in
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Obtain initial estimates K  and O i , . . . ,  O k - 
re p e a t {

f o r  k =  1 , . . . ,  K
f o r  rc =  r a j , n e,<;

Yn =  Yn ~  s ( X l ( Z n ) ,  . . . , X j t _ i ( z n ) ,  X fe+1( z n ), . . . ,StK {zn)).

s*fx (z =  I  s (x *(*"))’ Xfc(2") isolated
71 \  s(-xk{zn) , x kn) -  s(x*n), x fc(2:n) intersects x kn

Compute Jacobians of s*(x) at Xk{zn).
end
Apply algorithm of Chapter 9 to {y*}
to obtain new estimates for Xk{znb *) , . . .  ,X j t ( ^ n e,fc)-

end
} u n t i l  $(\&) decreases insignificantly.____________________________________

Table 6.1: Iterative object estimation algorithm.

several ways:

• generate 3-D shaded surface displays directly,

• generate synthetic projections at any angle,

• plot cross-sections, and

•  graph parameters (especially radius) versus arterial axis to examine percent 

stenosis.

Each of these uses is demonstrated in Chapter 7. A bonus for this parametric method 

is that shaded surface displays are particularly easy to generate since the estimated 

ellipses are essentially surface descriptions.
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6.4 Cone-Beam  R econstruction Algorithm

The algorithm described in the previous two sections is an exact method for computing 

the optimal arterial tree with respect to criterion (6 .1 ) for parallel or cylindrical 

projections. In Section 2.3 we presented an approximation tha t allows us to apply 

the above algorithm to cone-beam projections of objects close to  the axis of rotation. 

In this section, we generalize the reconstruction algorithm to cone-beam projections.

The exactness of the parallel algorithm is due to the fact th a t the Euler equations 

for (6.1) specify that the optimal solution is a set of cubic splines. Thus, the problem 

of representing a continuous artery by a finite number of ellipses is determined auto­

matically by the mathematics. In fact, the locations of the knots (the ellipse samples) 

are determined by the measurement resolution, with one ellipse per image row. In the 

cone-beam case, any object tha t is away from the axis of rotation will project onto 

different numbers of rows of pixels in different views due to the position-dependent 

magnification (fewer pixels in those views to which it is closer). Therefore, there is 

no mathematically determined discretization. This is a common problem in many 

engineering optimization applications. The obvious solution is simply to impose a 

discretization using common sense. Since an object tha t lies on the axis of rotation 

would project onto the same rows in each view, we propose using one ellipse per image 

row to discretize the object. If the vertical resolution is At,, and the on-axis magnifi­

cation is M (0), then we represent objects by a discrete number of ellipses separated 

by the distance A „/M (0). We denote the sample points by where

A . /  A„ \
*  2 U ( 0 ) j  ‘

We have now made the problem tractable by discretizing it, but the parallel algo­

rithm  is still inapplicable since off-axis objects will project onto different numbers of 

rows. Fortunately, for typical cone-beam geometries, the numbers of rows differ by 

only a small number. For example, Tables 6.2 and 6.3 list the starting and ending 

rows of the objects in the X-ray phantom discussed in Chapter 7. In addition to the 

row indices at four different projection angles, these tables show the row index that
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k M(0) 18° 72° 108° 138°
0 - 6 . 2 - 6 .2 - 6 . 2  - 6 .2 - 6 . 2

1 - 6 . 2 -7 .6 -6 .7  -5 .8 -5 .2
2 -10 .5 - 8 . 0 - 8 . 6  - 1 0 .0 -11 .4
3 -10 .5 -12 .5 -9 .9  -8 .5 -7 .9
4 - 6 . 2 -7 .0 -8 .7  -8 .7 -7 .9
5 - 6 . 2 -6 .7 -4 .7  -4 .0 -4 .1
6 - 6 . 2 -8 .4 -8 .4  -7 .3 - 6 .1

7 - 6 . 2 -5 .3 -5 .9  -6 .5 -6 .9

Table 6 .2 : Starting rows (n^k) of objects in CGR phantom (see Figure 7.20).

k M(0) 18° 72° 108° 138°
0 220.7 220.7 220.7 220.7 220.7
1 90.9 90.9 90.9 90.9 90.9
2 108.7 108.7 108.7 108.7 108.7
3 41.0 41.0 41.0 41.0 41.0
4 146.7 146.7 146.7 146.7 146.7
5 80.5 80.1 80.1 80.3 80.6
6 52.6 52.8 52.9 52.9 52.8
7 38.5 38.6 38.6 38.5 38.4

Table 6.3: Ending rows (ne,fc) of objects in CGR phantom (see Figure 7.20).

results from using a fixed magnification M (0) as discussed in Section 2.3. This is the 

‘ideal’ row index that would result from an on-axis object. Many of the objects end 

on the rotation axis (see Figure 7.20), so their ending rows {ne,*}jtLi are identical. 

However, even the starting rows for these objects (that begin up to 5cm off axis) agree 

to  within a few pixels. Thus, simple interpolation should be effective, as we describe 

below.

Consider the reconstruction algorithm of Table 6.1. This algorithm has two key 

steps: 1 ) subtract the contributions of all objects but one from the projection mea­

surements (6 .6 ), and 2) estimate the parameters of the remaining object (6.5) (6.7). 

These two steps must both be modified for cone-beam projections since there is not
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a  one-to-one relationship between object samples and measurement samples.

6.4.1 C one-B eam  P rojections o f a SGC

We first consider the problem of subtracting the contributions of an object from 

the measurements. By “contribution” we mean the object’s projections, which for a 

cone-beam geometry were given in Section 2.3 by:

/"(
I2 (v, v; n) = s ll + U + V

d2
XL XL X) \

5 cosfl+  - sinfl,.ssinfl— . . cosfl, ds, (6.9)
M (s) M (s ) M (s ) )  v '

where
M( \ — d _  d 1

d — do -{- s d — do 1 + d-d0

The density for a SGC object is given by:

f i {x, y, z ) =  p(z)  l £(X(,))(*,y),

where x(z)  = \cx{z) Cy(z) r (z ) X(z) <f>(z) p'(z)]'. The coordinates of the medial axis 

of the object are given by (cx(z),Cy(z), z). Consider a particular projection angle 6 , 

then for a given z, let (uz,v z) denote the coordinates of the projection of the medial 

axis. Then it is easy to see from (6.9) tha t sz , uz, and vz are given by the solutions 

to  the following system of equations:

cx(z) = sz cos 0  +  ™.z , sin 9,
M (sz)

C y { z )  =  sz sinfl -  cos 0 ,

=  Vz 
M (sz) '
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The solution to the system is:

where

sz = cx(z) cos 9 +  C y ( z )  sin 9,

uz =  Me,z(cx(z) sin 9 — C y ( z ) cos 9)

vz =  z M e<z,

Me,z = M (cx (z) cos 6  +  Cy(z) sin9).

These formulae are for computing the projection of the medial axis; the key step 

for computing the projection of the object is recognizing that the position-dependent 

magnification changes insignificantly over an elliptical cross-section. Therefore, for 

u «  uz:

lg{u,vz-, u) «

u 2 + v2z I  ( u u vz
 —— / u s cos 9 +  —— sin 9, s s m 9  — —— cos 9, —

d2  J V M e,z M g,z M 9y2

so that:

lg(MgyZu, MglZvz] fi) «  J  fi (s cos 9 u sin 9, s sin 9 — u cos 9, t>2) ds,

=  lg(u,Vz]fJ.).

Therefore, to compute the cone-beam projection of an ellipse x(z,) at angle 9, we 

must compute the position-dependent magnification factor Mg<z, and then apply a 

scaled version of the formulae for lg(u, v; x ( z {)) tha t we derived in Chapter 3.

There is one tricky m atter here though. We have decided above to discretize /i by 

a set of equally spaced ellipses at sample points {z,-}. The projections of the ellipses 

will lie on image rows vZi that will be unequally spaced in general. Since we want 

to subtract the object’s projections from the equally spaced measurement samples, 

we must generate equally spaced samples of its projections. To do this, we once 

again exploit the arterial smoothness. Given equally spaced image row coordinates 

K } " =1, we can find the corresponding points along the medial axis by finding the
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2 (n )’s that satisfy z{n)MgtZ(n) =  vn. The set { ^ ( n ) } ^  will be unequally spaced for 

objects that are away from the rotation axis. If z(n) lies between ellipse samples 

a t Z{ and z,-+1, then simple interpolation of x(zj) and x(z,+i) will produce an ellipse 

param eter vector tha t we can then project onto row vn. Note tha t the mapping from 

vn to z(n)  depends on the projection angle 9.

6.4.2 Param eter E stim ate U pdates

The second step of the algorithm tha t must be modified for cone-beam projections 

is the param eter estimation. Given measurements y*_n and a previous estim ate 

[x(z,•,,*),... ,x(z,- eJ ] ,  compute new estimates. The complicating factor is tha t we 

have (ietk — h,k +  1 ) sets of ellipse parameters to estimate, but a  slightly different 

number of measurements y*n in each view. For this step, since the ellipse parameters 

are the most im portant, it is more convenient to interpolate the measurements from 

their original equally-spaced samples to (unequally spaced) samples centered at the 

points where the ellipses project (vZi). This is in contrast to the discussion in the 

previous section, where we interpolated the parameters, since the projections needed 

to be equally spaced.

The image rows were sampled originally at values vn, where vn — n A v. By 

resampling each column of the images at sample points {vZi k, we will create 

a new set of measurements with the same number of samples a t each projection 

angle. The estimation algorithm of Chapter 9 can then be applied to these resampled 

measurements. A potential problem with this approach is that the interpolation 

used to resample the measurements will introduce some measurement correlation. 

Fortunately, as Tables 6.2 and 6.3 demonstrate, very little interpolation is needed, so 

the induced correlation should be small.
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6.5 Summary

We have described a nonparametric optimality criterion for reconstructing an arterial 

tree from a few projections. We presented an iterative algorithm for optimizing 

the criterion given an initial estimate th a t is currently obtained by manual entry. 

We proposed a generalization of the algorithm for reconstructing from cone-beam 

projections, based on resampling of the measurements. It is worth emphasizing that 

this resampling is object dependent, and is made possible by the fact tha t we estimate 

one object at a  time iteratively. This type of resampling would be inapplicable to 

voxel-based cone-beam reconstruction methods, since the different voxels would have 

conflicting resampling requirements. This is another example of the flexibility of 

object-based reconstruction.
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Chapter 7 

Experim ental Results

I n  this chapter, we report the results of applying the algorithm of Chapter 6  to four 

d a ta  sets: simulated projection images, MR projections of a branching flow phantom, 

M R angiograms of a healthy volunteer’s carotid arteries, and X-ray projections of 

an aluminum phantom. The SNR per view, defined by 2phprp/<T, and the im portant 

imaging parameters for these case studies are summarized in Table 7.1.

7.1 Sim ulation

Figure 7.1 shows four noisy projection images of a simulated arterial tree. These 

images were generated using the projection model of Chapter 2. Table 7.2 displays the 

convergence of the algorithm for the smoothing parameter chosen by cross-validating 

the longest object. Each iteration through all five objects required about 35 seconds 

on a  SUN Sparcserver. As expected, the first few iterations improve the estimates 

considerably, with little further improvement after the fourth iteration. The RMS 

errors for ellipse orientation (f> are misleadingly large; many of the cross-sections are 

very close to circular, in which case the orientation is irrelevant.

A more meaningful evaluation of the shape estimates can be made from Figure 7.2, 

Figures 7.3 and 7.4. (The estimates are taken from the fourth iteration hereafter.) 

Figure 7.2 compares the true and the estimated cross-sections of the main branch

94
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Simulation MR phantom MR carotid X-ray phantom
K 5 2 4 7
W 256 160 128 256
N 256 128 160 145
A h [mm] 1 0.478 0.7 0.83
A„ [mm] 1 0.478 0.35 0.83
P 4 4 4 4
a 2 3 0.0025 0.015 5.7
SNR 2.8-6.7 6.3-40.6 2 .8 - 2 0 . 2 11.2-179.7
&i , . . . , 0 p 0,45,90,135 22,67,112,157 0,45,108,143 0,45,90,135

Table 7.1: Imaging parameters for the data sets used to evaluate the reconstruction 
method.

RMS error
Iteration cx C y r A <f> P

0 1.188 0.9704 1.528 0.06325 23.05 0.2044
1 0.2884 0.2345 0.1943 0.1352 38.25 0.03376
2 0.1859 0.1568 0.136 0.07881 34.66 0.01879
3 0.1783 0.1386 0.1133 0.06639 34.95 0.0145
4 0.1606 0.1174 0.1048 0.07071 34.94 0.01396
5 0.1573 0.1312 0.104 0.06435 34.61 0.01451
6 0.1456 0.1365 0.1081 0.06774 35.2 0.0138
7 0.1556 0.1363 0.1055 0.067 35.05 0.01354
8 0.1507 0.1376 0.1031 0.06741 36.76 0.01365

Table 7.2: RMS param eter estimation errors for eight iterations.
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over the stenotic portion. The reconstruction has estim ated this eccentric stenosis 

accurately. Similarly, Figures 7.3 and 7.4 compare the true and the estimated cross- 

sections of two bifurcations. The overlapping ellipses with very different shapes are 

estimated accurately.

For a more quantitative comparison, Figure 7.5 compares the true and the esti­

mated radii (both in SGC parameters) for this example, and shows the presence of a 

stenosis quite clearly. These parameters are translated into GC parameters using the 

formulae of Section 3.6. Figure 7.6 displays the resulting radius estimation errors for 

the five objects. The larger radius “errors” a t the endpoints of some of the objects are 

artifacts that are explained by object-set ambiguity discussed in Section 3.2: when 

one ellipse is almost completely inside another ellipse, it contributes very little to  the 

cross-section. Figures 7.3 and 7.4 show th a t the cross-sections were in fact estimated 

accurately.

Graphs such as Figure 7.5 are useful for computing percent stenosis, but morphol­

ogy is best viewed through an interactive 3-D display with cut-planes. Figures 7.7 

and 7.8 show two shaded surface displays of the reconstruction, generated using the 

simplest aspects of the shading method presented in [215].

The results from this data  set dem onstrate the potential performance of object- 

based reconstruction, and highlight an im portant advantage of the parametric ap­

proach: despite the low SNR, the estimates are of sub-pixel accuracy. Discrete voxel 

representations of /i, on the other hand, are typically limited by the measurement 

resolution.
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Figure 7.1: Simulated angiograms; 9 =  0°, 45°, 90°, 135'
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Figure 7.2: True (above) versus estimated (below) stenosis cross-sections; n =
1 6 0 ,...,  180.
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Figure 7.3: True (above) versus estimated (below) bifurcation cross-sections; n =

... ,1 4 1 .
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Figure 7.4: True (above) versus estimated (below) bifurcation cross-sections; n =
8 0 ,...,9 4 .
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Figure 7.5: True (solid) versus estimated (dashed) object radii.
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Figure 7.6: Radius estimation errors for the simulated objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 7. E X P E R IM E N TA L RESULTS

Figure 7.7: 3-D surface display of reconstructed simulated arteries; 6  =  0°.
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Figure 7.8: 3-D surface display of reconstructed simulated arteries; 6  =  45'
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7.2 Crescent Cross-Section Simulation

One of the most common criticisms of an approach based on a elliptical model is tha t 

“these param etric approaches usually suffer from a  high sensitivity to the exactness 

of the assumptions used for modelling. This can be redhibitory [sic] when actual 

objects, such as physiological ones, offer a geometry too complex and variable to be 

easily modelled with few param eters” [109]. In this section, we show a simple example 

of the versatility of the elliptical model that suggests the param etric approach is less 

sensitive than might be imagined.

Consider Figure 7.9, these simulated projections are identical to those of Fig­

ure 7.1, except tha t a crescent-shaped stenosis has been added to one of the branches. 

Obviously, a crescent shape is a severe violation of the elliptical assumption. How 

“sensitive” are the estimates to this crescent shape? Figure 7.10 displays a compar­

ison between the actual crescent-shaped cross-sections and the estimated elliptical 

cross-sections. The area of the best-fit ellipses shows remarkable agreement to the 

area of the crescent lumens. The estimated ellipse shape also seems reasonably robust, 

considering the non-ellipticity of a crescent.

If a physician wished to test whether a particular arterial segment was crescent 

shaped, then we can augment the ellipse model by using two ellipses, one for the 

normal lumen and one for the plaque, and then repeat the estimation. Just as the 

projection of two overlapping ellipses was computed by considering the set union, 

here we consider the set difference of the two ellipses: £(xiume„) f | £ (xPiaque)- A simple 

algorithm for estimating the parameters of the two sets of ellipses is as follows. 1 ) 

Identify (by hand) the artery containing a potentially crescent-shaped stenosis, and 

indicate the extent of the stenosis. 2) Estimate the remainder of the arterial tree using 

the algorithm of Chapter 6  and interpolate the normal section of the identified artery. 

3) Subtract the projections of the estimated arterial tree from the measurements, 

leaving (the negative of) the projection of the plaque ellipses. 4) Estimate the plaque 

ellipses from the residual measurements using the algorithm of Chapter 4.

This method was applied to the images in Figure 7.9, and the resulting ellipse
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estimates are displayed in Figure 7.11. The crescent shape is clearly displayed by 

the estimates. Note tha t we have not enforced the constraint tha t the plaque ellipse 

should touch the lumen ellipse. Enforcing this constraint would significantly improve 

the accuracy since the number of degrees of freedom would be reduced.
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mmmMm

Figure 7.9: Simulated angiograms measurements, 6  =  0°,45o,90°, 135'
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Figure 7.10: True cross-sections (top) versus one-ellipse estimates (bottom).
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Figure 7.11: True cross-sections (top) versus two-ellipse estimates (bottom).
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7.3 M R  Phantom  D ata

The images in Figure 7.12 are MR projections of a MnCl solution flowing through 

a plastic Y-shaped connector attached to Tygon tubing. We used the projection- 

reconstruction selective inversion-recovery (PRSIR) [36, 37] method to collect the 

data. The inner diameter of the Y connector was 3.75mm. Figure 7.13 displays a 

histogram of the radius estimation error over the Y section. The RMS error in radius 

was only 0.04 mm. As a  verification of the geometric consistency of the estimates, 

Figure 7.14 displays the outline of the projection of the estimates superimposed on 

another view th a t was also acquired, but was not used for the reconstruction. The 

overall correspondence is quite good, though the sharp transitions between the small 

branch and the larger tubes would be better modeled by a GC than a SGC, since 

some of the image rows intersect both the small tube and a corner of the larger tube. 

The shaded-surface displays of the estimated objects shown in Figures 7.15 and 7.16 

are remarkably similar to the physical phantom.
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Figure 7.12: MR tube-phantom projections; 9 = 22°, 67°, 112°, 157°
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millimeters

Figure 7.13: Histogram of radius estimation error.

Figure 7.14: Reprojection of estimates (solid line) on an unused view; 9 = O'
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Figure 7.15: 3-D surface display of reconstructed tube phantom; 6  =  45°.
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Figure 7.16: 3-D surface display of reconstructed tube phantom; 9 =  —45'
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7.4 M R Carotid Arteries

Figure 7.17 shows four MRSIR projections of a slab containing a healthy volunteer’s 

right carotid artery. A surface coil was placed on the right side of the subject’s neck, 

to maximize SNR. We have no means of making a  quantitative evaluation of the 

results, but Figures 7.18 and 7.19 show 3-D displays of the estimated arteries. This 

example clearly motivates extending this work beyond single-valued objects, since 

this facial artery is clearly a multi-valued function of z.

Figure 7.17: MR in vivo carotid angiograms; 0 =  0°, 45°, 108°, 143°.
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Figure 7.18: 3-D surface display of reconstructed carotid arteries; 0 =  143'
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Figure 7.19: 3-D surface display of reconstructed carotid arteries; 9 =  —50°.
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7.5 X-ray Phantom  D ata

Figure 7.20 shows four X-ray projections of an aluminum phantom built by GE- 

CGR, acquired on a  digital fluoroscopic system. Rougee et al. have demonstrated 

their ART-based reconstruction method on this phantom [109]. These projections 

have been corrected for the image intensifier’s pincushion distortion. The phantom 

was placed on a rotating turnable for the acquisitions, so the axis of rotation is parallel 

to the image columns, as we assume.

This data set consists of cone-beam projections, but the objects were close enough 

to the axis of rotation th a t we felt it would be worth attem pting to use the parallel 

reconstruction algorithm. As mentioned in Chapter 2, we first applied a  local estima­

tion algorithm similar to tha t of [63] to estimate the PSF on a few of the overlap-free 

objects, assuming a Gaussian PSF. The estimated a  for the Gaussian PSF was near 

0.5 consistently, which corresponds to the following impulse response: [0.15 0.7 0.15]. 

This PSF was held fixed for the 3-D reconstruction.

One of the objects in this phantom is completely horizontal. Since our method 

does not accommodate multi-valued objects, the image rows containing the horizontal 

portion were ignored. Figure 7.21 displays a histogram of the radius estimation error. 

Although most of the errors are below a pixel, there are a few significant errors. These 

should be corrected by applying the cone-beam reconstruction algorithm. Figures 7.22 

and 7.23 show the outline of the reprojections of the estimates superimposed on views 

tha t were not used for the estimation.

Figures 7.24 and 7.25 display 3-D shaded displays of the reconstructed objects.
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Figure 7.20: GE-CGR X-ray phantom projections; 0 =  18°, 72°, 108°, 138'
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Figure 7.21: Radius estimation errors for the GE-CGR X-ray phantom.
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Figure 7.22: Reprojection of estimates (solid line) on an unused view; 6  =  0°.

Figure 7.23: Reprojection of estimates (solid line) on an unused view; 6  = 48°.
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Figure 7.24: Shaded surface of estimate; 9 =  72°.
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Figure 7.25: Shaded surface of estimate; 9 =  238'
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Chapter 8 

Linear Nonparam etric Sm oothing

T h i s  chapter presents a novel nonparametric algorithm for smoothing linear vector­

valued measurements1. This algorithm is the core of the nonlinear smoothing algo­

rithm  presented in the next chapter, which in turn  is the basis of the object-based 

reconstruction approach described in the previous chapters. However, the develop­

ment of this algorithm is independent of the preceding chapters, and the algorithm 

itself is of independent interest, as it provides a nonparametric alternative to the 

classical Kalman filter.

Spline smoothing has become a  popular m ethod for nonparametric exploration 

and estimation of scalar-valued functions, but its generalizations to vector-valued 

functions have been underutilized. This chapter presents a computationally efficient 

algorithm for nonparametric smoothing of vector signals with general measurement 

covariances. This new algorithm provides an alternative to the prevalent “optimal” 

smoothing algorithms that hinge on (possibly inaccurate) param etric state-space 

models. We develop and compare automatic procedures tha t use the measurements 

to determine how much to smooth; this adaptation allows the data to “speak for 

itself” without imposing a Gauss-Markov model structure. We present a nonpara­

metric approach to  covariance estimation for the case of i.i.d. measurement errors, 

^ h i s  chapter is derived largely from [204].

121
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Monte Carlo simulations dem onstrate the performance of the algorithm.

8.1 Linear Sm oothing

The goal of fixed-interval smoothing is to estimate a smooth function from a finite 

number of noisy measurements. We consider here the linear measurement model:

y n =  H nx n -(- ft — 1) • • • > N] (8.1)

where

e„,yn € £ L, x„ G 3fcM, and H n e  $tLxM.

We assume that the additive measurement error en is normally distributed with mean 

zero and (positive definite) covariance m atrix E n, and tha t the errors are independent 

between samples. The states {x„} are (possibly unequally spaced) samples of a 

process g (tn):

=  [<7i(tn)> • • • ){7m (^ti)] == § (^n)j <  tn+i Vn,

where denotes matrix transposition. The goal of smoothing is to estimate g 

(and/or its derivatives) from the measurements {yn}£Li-
One justifies smoothing by a priori knowledge that the component functions of 

g(i) vary slowly in some sense. The smoothness of g is frequently quantified by 

assuming that the states {x„} adhere to a parametric Gauss-Markov discrete-time 

state-space model:

x n + 1  =  A „xn +  B„un, un ~  W(0,Qn), x 0 ~  N ( f i 0 , U 0). (8 .2 )

Using such models, one can derive optimal smoothing algorithms [125] that pro­

vide minimum mean-square error estimates of the states. However, in many applica­

tions the parameters (state evolution matrices and covariances) of the state evolution 

model (8 .2 ) are unknown, and they must be estimated from the measurements or 

from a  training set [221]. This estimation may- result in an inaccurate parametric 

model.
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Rather than impose a possibly inaccurate parametric model, we would sometimes 

prefer to “let the data speak for itself,” particularly for off-line data exploration. This 

motivates nonparametric approaches to smoothing [2 0 1 ].

Nonparametric spline smoothing has proven to be successful a t estimating scalar­

valued functions from noisy data. Therefore, it is not surprising that the nonparamet­

ric approach has also been applied in some situations similar to the vector measure­

ment model (8.1). In this chapter, we derive a computationally efficient algorithm 

for nonparametric smoothing of vector measurements, allowing for general measure­

ment covariances 53n. This has also been considered by Miller and Wegman [197], 

but their algorithm requires that the covariance matrices be simultaneously diago- 

nalizable. For independent, identically distributed (i.i.d.) measurement errors, we 

recommend the transformation approach of [197], as it requires fewer computations 

than the algorithm presented below. Wegman [176], Woltring [193, 194], and Sidhu 

and Weinert [182] all discuss approaches that assume effectively that the covariance 

matrices are diagonal. Note that the approach of Sidhu and Weinert [182] does allow 

for a more general measurement model than (8.1). In the special case of diagonal 

covariance matrices, the vector-spline smoothing algorithm reduces to repeated ap­

plications of the scalar algorithm. However, one can take advantage of any known 

similarity between the component functions when choosing the smoothing param ­

eters [193, 194]. Non-diagonal, non-i.i.d. measurement covariances arise in several 

problems, including in the nonlinear smoothing algorithm of the next chapter.

Although, as observed by Silverman [188], “non-parametric regression is not as 

widely known or adopted as perhaps it should be,” spline smoothing concepts have 

previously had several other generalizations that we list for didactic reasons: estim at­

ing a function’s derivatives [188, 190], estimating branching curves [198], smoothing 

multivariate functions (scalar valued functions of several variables) [175, 201], and 

estimating curves with discontinuities [202]. Source code for spline smoothing is 

available2 from the gcv and toms directories of n e t l i b  [2 2 2 ].

2An e-m ail message to n e t l ib iD r e s e a r c l i .a t t . com containing the request ‘send  in d e x ’ or ‘sen d  
in d ex  from  g c v ’ w ill generate a reply containing instructions.
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This chapter is organized as follows. In Section 8 .2 , we review the derivation of 

the cubic-spline based algorithm for smoothing scalar measurements, following the 

approach and notation of Reinsch [164, 166]. In Section 8.3, we present the new algo­

rithm  for smoothing vector measurements. In Section 8.4, we consider methods that 

use the measurements to choose automatically the parameters that control the degree 

of smoothing. In Section 8.5, we describe a nonparametric method for measurement 

error covariance estimation. In Section 8 .6 , we outline the algorithm implementation 

and discuss computational requirements. In Section 8.7, we compare these methods 

using simulated measurements.

8.2 Spline Sm oothing o f Scalar M easurem ents

The Problem

Assume that the scalar measurements yn satisfy the model

Vn =  " b  ^ n ^ n ?  ^  —  ! > • • • >  A I ,

e„~AT(0, cr2), E{ e nem} =  0 if n ^ m ,

where t\ < . . .  < tpf. The weights wn are assumed known, but the variance a 2  may be 

unknown. Estimation of g by smoothing the yn’s always involves a tradeoff between 

fit to the data and smoothness of the estimated function g. For normally distributed 

measurement errors, the natural measure of fit to the data is the weighted residual 

sum of squares,

Spline smoothing is based on the following nonparametric measure of the roughness 

(lack of smoothness) of g:

Hk(g) = I N{g(h){t))2 dt.
Jt  i

General differential operators have also been considered, e.g. [182,197]. For simplicity, 

we consider here only the case k = 2 , though the algorithm derived below is fully
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generalizable. R2 (5 ) is related to the curvature of g, so it weights functions that are 

very wiggly more heavily. This measure also has the desirable property that R2 (5 ) =  0 

if and only if g is linear.

We would like to minimize RSS(#) and R 2(<7) simultaneously, but these are con­

flicting goals in general3. The standard nonparametric solution is to use the curve 

tha t minimizes a  weighted combination of the two:

ness. As a  —» 0, ga approaches the cubic-spline interpolant of the measurements, and 

as a  —> oo, ga approaches the linear regression of the measurements. Automatic

spline with knots if and only if there exist coefficients {an, bn, Cn, dn}n=o such

that:

„ Aga =  argm m
9

(8.3)

The smoothing param eter a  controls the tradeoff between fit to the data and smooth-

selection of a  will be discussed in Section 8.4. R 2 (5 ) acts as a “roughness penalty” 

[188] that prevents excessive local variation in the curve g. This idea is related to the 

regularization methods of computer vision [216].

The Solution

As a consequence of the Euler equation corresponding to  the variational prob­

lem (8.3), the minimizing function ga is a cubic spline [164]. A function g is a cubic

g(t) = an + bn(t -  tn) +  y  (t -  t n ) 2  -I- y  (t -  tn)3, t e  [in, f n + l ] .  (8-4)

and

5 (0 , 5 (0 , 5 ( 0  are continuous. (8.5)

(<o is any number less than <1 , and t^+i  is any number greater than t ^ . )

3The solution  to the problem o f m inim izing R2 (g) subject to g{ tn ) =  y„Vn  is cubic-spline inter­
polation. Interpolation is useful only if  the m easurem ents are noiseless [164].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8. L IN EAR NO N PAR AM ETRIC  SMOOTHING 126
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a0  = ai +  bihi d -  \ c \h \  d -  \ d \h \  
do =  d\

<*N =  Q n - i  d -  d -  \ c xh2N_x +  
d / v  =  dw-i

Table 8.1: Boundary conditions for spline smoothing.

The continuity conditions (8.5) impose a system of equations on the polynomial 

coefficients that are knot dependent. These equations are [164]:

bn =  ■g^n(cn+i d- 2 cn) -(- hn (an+j ®n)j n =  0 , . . . ,  W — 1 ,

dn =  K l (Cn+\ ~Cn), U = 0, . . . , N -  1,

fyv =  g^yv-iCjv-1 +  ( a N  —

hn an — (hn -f h,n+l)an+i +  hnJrlanj, .2  —

~rhnCn d" d" ^n+l)<-'n+l d" 7T^n+l*bi+li Jt =  0, . . . , N  2, (8 -6 )
b o  b

where hn = f„_i. There are a total of 4(jV+l) unknowns, so by adding 4 boundary

conditions to the above 3N  equations, we can express all of the coefficients in terms 

of (a t,...,aw )<  Table 8.1 presents two possible boundary conditions. We restrict 

our attention here to natural cubic-splines by imposing the boundary condition that 

ga{t) is linear for f > iw and t < t\. Other boundary conditions, e.g. periodic and 

complete splines, are possible, which may be im portant if derivatives of g are to be 

estimated [190, 193].

For natural cubic-splines, the most im portant constraints are summarized by the 

following m atrix relation:

Q 'a  =  Tc, (8.7)

where a  =  ( a i , . . . ,  a^)',  and c =  (c2, . . . ,  cw_i)'. Q  and T  are N  x  (N  — 2) and
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(N  — 2) x  (N  — 2) band matrices respectively:

h T \ j  =  * j  =  i -  1

Qji =  -
H K 1 +  i),
l - l
« t + l )

j  =  i +  1 

j  = i + 2

T -  — <
3{hi -(- 1), j  =  * 

j  = i + 1

. 0 , otherwise . o, otherwise

(The B-spline version of Q and T  is known to result in a numerical algorithm tha t is 

more stable [193]; we present this version for simplicity.)

Let y  =  (j/i,. . . ,  2/at)' and W  =  diag(u>i,. . . ,  w n ). If g is a  natural cubic-spline 

with expansion (8.4), then it was shown in [170] that

M g )  = J  (g(t))2dt =  c 'T c  =  a 'Q T ^ Q 'a ,  (8 .8 )

and

RSS(<7) =  ( y - a ) 'W - 2 ( y - a ) .

Therefore the coefficients of the smoothing spline gQ minimize the quadratic:

a  =  arg inin [(y — a) 'W ~ 2(y — a) +  a a 'Q T - 1Q'a] .

One can find the solution to this minimization by solving the following system of 

equations for a  and c [164]:

Q 'y  =  ( T /a  +  Q 'W 2 Q )(ca)

a  =  y  — W 2Q (ca). (8.9)

Since T  and Q are band matrices, we can solve (8.9) in 0 ( N ) operations [220]. These 

band matrices will also be im portant to the efficiency of the algorithm for smoothing 

vector measurements. Having computed a  and c, we can compute b and d  from (8 .6 ), 

thereby obtaining the piecewise-cubic expansion of ga. In many cases, only a  is needed 

sine e g a{tn) = an.
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8.3 Spline Sm oothing o f Vector M easurements

The Problem

We now generalize the results of the previous section by considering the vector 

measurement model4:

y n = g (< n )+ S n , n =  1,. . . , N,  (8.10)

g(*n),£n,yn € <?„ ~  N(0,  £ „ ) , E { e ne'm) =  0, n ^  m.

Although we assume the error covariances £ „  are known for the derivation below, 

they can be estimated (Section 8.5) if the errors are identically distributed. The goal 

is to estim ate g from the measurements {yn}-

Again we must compromise between fit to the data  and smoothness of the esti­

m ated functions. Assuming the errors are normally distributed, the natural measure 

of fit to the data is

RSS(g) =  £ ( y „  -  g ( tn) ) '£ - x(yn -  g (tn)).
71= 1

Although we assume tha t the component functions gm(t) of g ( t )  are smooth, they 

may have different degrees of smoothness, different scales, and different marginal 

measurement-error variances. Hence, M  smoothing parameters, a  =  ( a i , . . .  , ocm), 

are required to formulate the problem. However, if a group of the component functions 

are known to have similar properties, then we equate the corresponding smoothing 

parameters. The multidimensional generalization of (8.3) is then

■ N  M  -

£ ( y n  -  g(t„)),£ ~ 1 (y„ -  g(i„)) +  otm ) ) 2 dtg a  =  arg rmn
.7 1 = 1  771= 1

(8 .11 )

4T he objection could be raised th at m odel (8 .10) is not as general as m odel (8 .1), which contains 
the additional H „ term. However, if the m easurem ent m atrices H „ are all o f rank M , then mul­
tip lying both  sides o f (8 .1) by (H J.E ” 1! ! , , ) - 1 !!}, E " 1 transforms (8.1) into (8.10). In general, the 
m easurem ent matrices m ay not all be o f rank M .  If they are not, then even optim al Kalm an filters, 
derived from the state-space m odel (8 .2 ), w ill be effective only if  the pairs (H „ ,A „ )  satisfy the 
technical condition o f stochastic observability  [126]. T his condition is usually satisfied because of the 
presence o f  delay or difference term s in x „ . Any such (application dependent) a priori  information  
should be incorporated into the nonparam etric paradigm  presented here.
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Before presenting the solution to  this general minimization problem, we note two 

special cases. If the covariances £ „  are diagonal, then (8.11) separates into M  inde­

pendent term s of the form (8.3), so ga  can be com puted by M  evaluations of (8.9). 

Similarly, if the covariances are simultaneously diagonalizable, then a transformation 

of (8.11) yields a separable expression [197].

T h e  S o lu tio n

Again, by the Euler equations for (8.11), the solution g a  is a vector spline with 

component functions {gm,a}m=l tha t are each natural cubic-splines. Their piecewise 

polynomial expansions (8.4) have coefficients denoted by a(TO),b (m),c lm), and dh”), 

where

c<"> = (4” >,. . . ,  c<A y ,  c<” > =  cfr1 =  0,

and the coefficients b(m) and satisfy (8 .6 ).

As shown in Appendix A, a  and c  are computed in 0 ( M 3 N ) operations by solving 

the following banded equations (cf. (8.9)):

(Q ' ® lM )y =  ((T  <E> D ( a ) -1 ) +  (Q'<g> I m )£ (Q  ® I m ))cq:,

a =  y -  £ (Q  ® Im )c« , (8.12)

where ® denotes m atrix tensor product, I m  is an M  x M  identity matrix,

a  =  ( a |^ , . . . ,  a[M\ . . . ,  a ^ }, . . . ,  ajv^)7, (8.13)

r _  ( M  JM)  Ji)
c  — \c2 J • • • ? ‘ ’ cN - l )  ?

Ca = (Im(vv-2) ® D (a ))c,

D (a )  =  d ia g (a i , . ..

y = (yi» - • - »yjv)#»

and

£  =  d i a g ( £ ! , . . . , £ N).
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The matrix £  is the N M  x N M  block diagonal covariance of y.

The minimization (8.11) has resulted in a linear relationship, a  =  A ( a ) y ,  between 

the measurements and the estimates, where from (8 .1 2 ),

A (a )  =  Inm  —S (Q ® IA/) ( (T ® D (a ) -1) +  (Q , ® IM)S (Q ® IA/) ) - 1(Q , ®lM). (8.14)

In statistics, A (a )  is called the hat or influence m atrix and will be used in the next 

section for automatic selection of oc.

8.4 Choosing the Sm oothing Param eters

If the smoothing param eter a  is too large or too small, then the measurements will 

be over-smoothed or under-smoothed, respectively. In the scalar case, Reinsch [164] 

suggested choosing a  so th a t RSS(<7a ) ss No2. However, Craven and Wahba [173] 

showed tha t this led to consistent over-smoothing. Ideally, we would like to choose 

the smoothing parameters to minimize the mean square error:

M SE(a) £  ^ E l | g a ( ( » ) - g ( O f ,
i V  7 1 = 1

« m s e  =  argm m M SE (a). (8.15)

In practice, this minimization is impossible since g is unknown. For the scalar mea­

surement problem, several methods have been suggested for estimating ckmse from 

the data [201], including two due to Akaike [203]. We present below three of these

methods, each generalized to apply to our vector measurement problem. They are

compared empirically in Section 8.7. Note that for small samples one may prefer to 

use robust variants of these estimators [203].

The estimators discussed below all depend on the central bands of the influence 

matrix A ( a ) .  Hutchinson and de Hoog [186, 196] have presented algorithms for 

computing these bands in 0 ( M 3 N)  operations. Their algorithm is directly applicable 

to the vector measurement problem, so we do not present it here.
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8.4.1 Unbiased Risk

In the scalar case with known error standard deviation, Craven and Wahba [173] have 

suggested using the value of the smoothing param eter that minimizes an unbiased 

estimator of the expected mean square error (risk). This idea can be extended directly 

to the vector measurement case. One can easily show that

U R (a) =  ^ IK 1 -  A (“ ))yH2 -  ^ t r a c e ( S ( I  -  A (a))) + -^trace(E )

is an unbiased estimator of E{M SE(a)}. The unbiased risk estimate of c k m s e  is thus

<*UR =  argm inU R (a).

The estimators a c v  and ckqcv discussed below have been more popular than « u r  

in the scalar case, perhaps because the la tter depends on the (often unknown) error 

variance a 2. For the vector measurement problem, all three estimates depend on the 

covariance matrices {£„}.

8.4.2 Cross Validation

Wahba and Wold [168 , 169] have suggested using the smoothing param eter that min­

imizes the cross-validation (CV) score:

C V (a) t  l f ; ( y n - g a I_B(<„)),S - 1 ( y „ - g a I-n (^ ) ) ,  (8 .1 6 )
•‘ V 7 1 = 1

a c v  =  argm inC V (a).

g a , - n  is the solution to the smoothing problem (8 .1 1 )  with N-l data  points, posed 

without the data pair (tn, y n)> i.e.:

N  M  .

£  (y» -  g(*n))'S^1(yn -  g(<„)) + £  am J  (9m(t))2 dt .
71=1,715^1 771 =  1

Each data pair is dropped in turn, the smoothed curve g a , - 7i is estimated, and the 

predicted value g a , - n{tn) is compared with the unused measurement. If the CV score

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g a ,- ,  =  argnain



CH APTER 8. L INEAR NO N PAR AM ETRIC  SMOOTHING 132

is small, then we have chosen the smoothing param eter that makes the estimated 

curve a good self predictor.

Although equation (8.16) illustrates the idea behind cross-validation, it is compu­

tationally inefficient. We show in Appendix B tha t (8.16) can be rewritten

c v <“ ) =  i f  E  l i s h l *  -  V l W ' l j .  -  ga(i„))H 2, (8.17)
7 1 = 1

where A(nn)(q ) is the n th M  x  M  block diagonal submatrix of the influence ma­

trix (8.14). By using the Hutchinson and de Hoog algorithm [186], (8.17) is computed 

in only 0 ( M 3 N)  operations.

8.4.3 G eneralized C ross-Validation

Craven and Wahba [173] have also suggested using the smoothing param eter that 

minimizes the generalized cross-validation (GCV) score, whose vector spline general­

ization is:

C C V fql =  ^ R S S (g q ) ^ ( y - g a ) S - 1 ( y - g q )
(^ trace(I -  A (q ) ) ) 2 (^ trace(I -  A (q ) ) ) 2

<*g c v  =  argm inG C V (q).

In the scalar case, the GCV score is a weighted version of the CV score tha t is 

invariant to rotations of the data when periodic end conditions are imposed [203]. 

See [201] for a discussion of the asymptotic properties of GCV. Again, [186] is used 

to  evaluate G C V (a) in 0 ( M 3 N)  operations.

8.5 Error Covariance Estim ation

For the scalar measurement case with unknown error variance, Wahba [171] 

discussion in [2 0 0 ]) proposed the following estimator:

11(1 — A (q ) )y | | 2

trace(I — A (q)) ’
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where the denominator is the natural extension of “degrees of freedom” to nonpara- 

metric regression. For the vector measurement case with unknown error covariance, 

if the measurement errors are identically distributed, that is S n =  S. Vn, then we can 

generalize this idea to estim ate S. by the following algorithm:

1 . For each m  = 1 , . . . ,  M ,  smooth the m th measurement component {yn,m}n=i to 

compute gm,am using the scalar algorithm of Section 8 .2 , and using, for example, 

the CV score to choose a m.

2. Estimate the elements of £  using the standard correlation estimate:

^  _  E b = 1  ( y n , i  ~  9i,ai{tn))(yn,j  ~  f f j . o j ( t n ) )

^/trace(I — A(a,-))-ytrace(I — A  (ay) )

(which simplifies to (8.18) for the diagonal elements of £ ) .  For the non-i.i.d. case, 

Silverman’s iterative reweighting approach may be useful [188].

8.6 Algorithm

Table 8 . 2  outlines the organization of the algorithm’s implementation (C source code 

is available as v s p lin e  from n e t l i b  [222]). The first set of computations are inde­

pendent of a .  The second set computes the smoothed estimates a, and the third set 

evaluates the cross-validation score. The computational requirements for this algo­

rithm  are of the same order as those for Kalman filter smoothers [124], when a: is 

known. The second and third set are typically repeated for several values of cx to find 

the minimum CV score. This search is the computational penalty for our uncertainty 

about the smoothness of the functions we are estimating. The computational require­

ments are based on the operation counts given in Table 8.3, most of which follow from 

the algorithms given in [220]. For the i.i.d. case, the transformation method of Miller 

and Wegman [197] is preferable as it requires only 0 ( M 2 N)  computations for the 

transformations, and 0 ( M N ) computations for smoothing.
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Computation Flops
I. Initialization
Q ,T
(Q ' ® I \ f ) y
Bo =  (Q ' ® I m )£ (Q  ® I m )

N { 7) -  7
N(5M ) -  5M
N ( 9 M 2  + 6 ) -  23M 2 -  16

Subtotal: N ( 9 M 2 -F 5M  + 13) -  23M2 -  5M  -  23
II. Regression
(T  ® D ( a ) -1 )
B =  ( T ® D ( a ) - 1) +  B 0 

[L, D] =  Cholesky(B)

Solve (L D L ')ca  =  (Q / ® lM )y 
(Q ' ® W ) c a  
E (Q ' <g> lA/)ca  
a  =  y - E ( Q '® I j j f ) c a

N(2M ) -  5M  
N ( 2 M 2) -  AM 2  

N ( % M 3  -  §M 2 -  M)
-5 4  M 3  +  12iW2 +  2 M  
N(12M 2 -  3M)  -  42M 2  +  12M  
N ( 6 M ) -  12M  
N ( 2 M 2 -  M )
N ( M)

Subtotal: N {% M 3  +  f  M 2  +  4M) -  54M 3 -  34M 2 -  3M
III. Compute CV Score
B ” 1 =  Invert(LD L/) [186] 
F  =  (Q ® Im JB -H Q ' ® Im) 
e„ =  y„ -  g a ( t n)
Solve (F(„„))f„ =
C V (a) =  i E i L , f ; E ; 1t .

N (18M 3 -  6 M 2) -  2 M (3M  -  1)(12M  -  1) 
N {% M (M  +  1)) -  f M ( M  +  1 )
N ( M)
N {± M 3  + k M 2  -  M)
N ( 2 M 2 + M — 1)

Subtotal: N ( % M 3  +  llik V +  f  M  -  1) -  72M 3  +  ^ M 2 -  q-M

Table 8.2: Computational requirements of linear smoothing algorithm.

Computation Flops
Kron (J , n) with diag(M ) 
Kron («/, n) with M  x M  
Choi (J , n)
Solve (J, n)
Invert (</, n)

n ( M ( J +  l ) ) - f  J { J + l )
n ( M 2J  + %M(M -  1 )) -  i M 2 {J 2  + J )
n(%J2 +  !</) — J ( J  +  l ) 2

n ( l +  4J)  - 2 J 2 - J
n ( 2 J ( J  +  1 )) — \ J { J  +  1)(2J +  1 )

Table 8.3: Computational requirements for band m atrix operations.
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Figure 8.1: True curves (-) and noisy measurements (o,*).

8.7 Sim ulation R esults

To demonstrate the new smoothing algorithm and to compare the three methods 

of choosing the smoothing param eter a  automatically, we applied the methods to 

simulated data. Figure 8.1 is a plot of two functions, gx, a decaying sinusoid, and g2 , 

a hyperbolic tangent, and one realization of their noisy sampled measurements. We 

generated the measurements by adding pseudo-random Gaussian noise vectors with 

covariance m atrix
_  2.25 2.4

~  2.4 4

to N  = 100 samples of the function drawn uniformly on [0,1].

First we applied the scalar smoothing algorithm to  the noisy samples of g\ shown 

in Figure 8.1. Figure 8.2 shows U R(a), CV(a), GCV(a), and M SE(a) over a  range of 

the smoothing param eter. The minima of the UR, CV, and GCV scores (denoted by 

the small circles) occur very close to the minimum of the MSE; thus, at least for this 

scalar example, each of the three methods would select a good smoothing parameter.
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GCV(ar)
2 + C V ( a ) /1 0
UR(a)
M S E (a)

-35 -25-40 -30 -20 -15 -10

log(a/A0

Figure 8 .2 : Comparison of MSE, UR, CV, and GCV for scalar measurements.

It is interesting that the UR, CV, and GCV scores are all flatter than the MSE near

« M S E -

To evaluate the three scores in the vector measurement case, we did a  Monte 

Carlo simulation with 400 runs, each with a different measurement noise realization. 

For each run we computed < * m se>  « U R )  <*cv. and c u g c v  using Powell’s method for 

nonlinear minimization as given in [223, p. 315]. Our intent was to compare the 

estimators’ best possible performances, so we initialized the minimization procedure 

at a value of a  that resulted in low MSE for a few initial runs. To compare the 

estimators, we use their relative efficiencies, defined by:

,  ^ A  MSE(c*mse,,) 
m(oc) =  M S E (o ) ’

where i indicates the i th run. By definition (8.15), 77,- € [0,1].

Table 8.4 shows summary statistics of the computed relative efficiencies for the 

400 runs. Three other cases are included for comparison; “None” : no smoothing, 

“d iag(S)”: smoothing with just the diagonal components of the covariances (with 

minimum CV score), and “S.” : smoothing with the estim ated covariance procedure
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Summary statistic Smoothing approach
of None UR CV GCV diag(S) £
mean rj 0.076 0.812 0.841 0.846 0.754 0.839
5th %-ile 0.034 0.532 0.578 0.605 0.463 0.555

25th %-ile 0.054 0.731 0.762 0.767 0.664 0.757
50t/l %-ile 0.071 0.836 0.877 0.877 0.777 0.883
75th %-ile 0.092 0.924 0.947 0.945 0 . 8 6 8 0.946
95th %-ile 0.130 0.991 0.992 0.990 0.945 0.993
°5T =  CTt)/\/400 0 . 0 0 2 0.007 0.007 0.006 0.007 0.007

Table 8.4: Relative efficiencies of the different smoothing approaches.

described in Section 8.5 (also with minimum CV score).

From the summary statistics for this example, we conclude that the CV and GCV 

scores perform equally well, and both slightly outperform the UR score. Those three 

were significantly more efficient than smoothing the components individually, which 

was expected since the measurement correlation was 0.8. All smoothing approaches 

decreased the MSE by a factor of approximately 10. It was a pleasant surprise that 

the performance using the estim ated covariance m atrix was about as good as the 

performance using the true covariance. This suggests tha t the approach described in 

this chapter may be preferable to smoothing the components individually, even when 

the error covariance is unknown. The off-diagonal elements of the covariance matrices 

clearly play an im portant role, even when estimated.

There is still no consensus on the relative theoretical merits of the UR, CV, and 

GCV scores, even in the scalar case. We have derived and presented the vector 

generalizations of all three since their performances may be application dependent.

As a representative example, Figure 8.3 shows the smoothed estimates (dashed) 

superimposed on the true curves (solid) for the data shown in Figure 8.1, using acv - 

The estimated functions agree well with the true functions, and the overall smoothness 

is qualitatively similar as well.
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Figure 8.3: True curves (solid) and estimated curves (dashed) using CV score.

8.8 Summary

We have presented a computationally efficient algorithm for nonparametric fixed- 

interval smoothing of noisy measurements with arbitrary measurement covariances. 

The effectiveness of the approach was demonstrated on a numerical example. The 

approach promises to be an attractive alternative to parametric Kalman smoothing 

for off-line applications.

Possible extensions of this work would include developing a more robust ap­

proach to covariance estimation, and applying Silverman’s iterative reweighting ap­

proach [188] for non-i.i.d. covariance estimation. The relationship of nonparametric 

estimation to state-space methods could also be explored more completely, which 

could result in a recursive formulation of the solution.
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8.9 A ppendix A: Spline Sm oothing Derivation

In this appendix, we derive the solution (8.12) to  the minimization problem (8.11):

M
g a  =  argm inR SS(g) +  £  a mR(gm).

7 7 1 = 1

By (8.13),

RSS(g) =  (y  -  a ) 'E -1 (y -  a),

and by (8 .8 ),
M

£  a mR(gm) =  ( c ^ y T c ^  =  c '(T  (8 ) D (a ))c .
7 7 1 = 1

Since the minimizing component functions are each natural cubic-splines, they 

must each satisfy the constraint Q 'a ^  =  T c ^  of (8.7). These constraints can be 

aggregated to form the constraint (Q ' 0  I;w)a =  (T  0  Im)c. The optimal coefficients 

thus minimize

(y -  a / S " 1 (y -  a) +  c '(T  ® D (o ))c  (8.19)

subject to

(Q / ® lM )a =  ( T 0 l M)c. (8.20)

Since (T  0  Ia/) is symmetric and invertible, c =  (T  0  Im )- 1 (Q / ® lA/)a, which, 

substituted into (8.19) yields

(y -  a ),S -1 (y -  a) +  ((T  0  I ^ W  0  I m M T  0  D (a ) ) (T  0  Im )_1(Q ' ® W )a

=  y ,S “1y  -  2 a ,S - 1y  +  a ^ E " 1 +  (Q  0  D (a ) ) (T  0  Im )" 1 (Q / ® Iw ))a.

Minimizing over a  by setting the  partial derivative with respect to a  equal to zero 

yields

E - V  =  (E - 1 +  (Q  0  D (a ) ) (T  0  0  IM))a. (8 .2 1 )

Solving for a:

a = ( E " 1 +  Sa ) - 1 E - 1y , (8.22)
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where

Sc* =  (Q ® lM )(T ® D (a )-1) - 1(Q/ ®lM) =  (Q T -1Q,)® D (a ). (8.23)

We could compute a directly from equation (8.22), but a few manipulations [164] 

yield a banded form that is easier to evaluate. Multiplying both sides of (8.21) by £  

and using (8 .2 0 ), we get

y =  a +  £(Q  ® Im)(Im(at-2) 0  D (a))c.

Multiplying both sides by (Q' <8 > Im)£  and using (8.20) yields:

(Q' <2> Im )v  =  ((T ® Im) +  (Qr 0  Im)S(Q ® Im)(Im(jv-2) 0  D (a)))c. (8.24)

Symmetric band matrices are the easiest to use, so define ca  =  (Im(n-2) 0  D (a))c. 

Combining this definition with (8.24) yields:

(Q' 0  Ijif)y =  ((T ® D (a ) -1) +  (Q# ® Im)S(Q ® I M))ca .

Thus the minimizing coefficients a and c are the solutions to the following system of 

equations:

((T ® D (a )-1) +  (Q' ® Im)S(Q  ® I^ ))ca  =  (Q; 0  lM)y, 

c =  (Im(jv-2) 0  D (a )_1)ca , 

a =  y -  £ (Q  ® IM)ca-
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8.10 A ppendix B: CV Score Derivation

la  this appendix, we show that equation (8.16) is equivalent to equation (8.17). Again 

we use A(nn)(a )  to denote the n th M  x M  central diagonal submatrix of A (a ) . The 

same arguments used in the proof of Lemma 3.1 by Craven and Wahba [173] imply 

that for all n  and i

N
g a , - n { t i )  —  ^  ^  A ( i k ) ( a . ) y k  - F  A ( , -n ) ( o : ) g Q ! ( _ n ( f n ) .

fc=l, k£n

By the definition of A  (a ) ,

iv
y n  - g a { t n )  =  y n  -  Y ,  A(m)(a)yi

i = i

N
= yn y  A (ni)(^)y» ~  A(nn) ( a ) g a f_»(«B) A(nnj(o:)(yn SO,-n(^n))

1 = 1 ,  i ? £ n

=  y  n g a c , - n { t n )  A ( nn) ( t x ) ( y  n g  C K , - n ( t n ) )

=  ( I  —  A ( n n ) ( ° £ ) ) ( y n  “ '  g O ! , - n ( t n ) ) -

Therefore

yn -  g a , - n ( * n )  = (I -  A (rm)(a;))_1(yn -  g a ( t n ) ) ,  

which can be substituted into (8.16) to yield (8.17).
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Chapter 9 

Nonlinear Nonparam etric 

Sm oothing

T h i s  chapter generalizes the linear smoothing algorithm of Chapter 8 to the problem 

of estimating a smooth vector-valued function given noisy nonlinear vector-valued 

measurements of that function1. We present a nonparametric optimality criterion for 

this estimation problem, and develop a computationally efficient iterative algorithm 

for its solution. The new algorithm provides an alternative to the extended Kalman 

filter, as it does not require a parametric state-space model. We also present an 

automatic procedure that uses the measurements to determine how much to smooth. 

The preceding chapters have demonstrated the performance of this algorithm on 

the object-estimation problem; here, the algorithm demonstrates subpixel estimation 

accuracy on a problem from picture processing: estimation of a curved edge in a noisy 

image.

1T his chapter is derived largely from [205].

142
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9.1 Introduction

This chapter considers the problem of estimating a smooth vector-valued function 

from noisy measurements observed through a nonlinear mapping. We assume the 

following nonlinear measurement model:

yn =  h n(x„) “t" n =  1 , . . . ,  N,  (9-1)

where

e n, y n £  xn e  and h„. : —> 3iL".

We assume the additive measurement errors are independent between samples and 

are normally distributed with mean zero. W ithout loss of generality, we assume the 

covariance m atrix of e„ is <j2I, where <r2 may be unknown2. The states {xn} are 

(possibly unequally spaced) samples of a smooth vector-valued function g:

Xn =  [gi(tn),---, 9 M(tn)]' = g(*n), *n <  *n+l Vn, (9.2)

where denotes m atrix transposition. The goal is to  estim ate g from the measure­

ments {y„}£U.

The prevalent approach to this estimation problem is the extended Kalman fil­

ter (EKF) [125]. The EKF hinges on an assumption tha t the states adhere to a 

param etric Gauss-Markov state-space model. However, in applications such as the 

edge-estimation example given in Section 9.6, the parameters required by the EKF 

formulation (state evolution matrices and covariances) are unknown and are difficult 

to determine. Furthermore, the state-space formulae imply the a priori variance of 

the function varies with t. Although it is natural for tracking applications, where one 

is given a starting state tha t evolves with increasing uncertainty over time, this vari­

ation is counter-intuitive for off-line applications such as image processing, where t 

often represents space rather than time. For example, when detecting and estimating

2 If the m easurem ent error has the (positive definite) covariance m atrix (r2£ n , then we can pre­
m ultiply y„ and h„ by £ „  ^ 2. Singular covariances m ay be the result o f  linearly dependent m ea­
surem ents, indicating th at other constraints should be incorporated.
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an edge in an  image, the a priori variance of the position of the edge (the uncer­

tainty before actually seeing the image) is the same throughout the image. Despite 

these objections to param etric methods, we must use our a priori knowledge of the 

smoothness of the underlying functions if we are to obtain accurate estimates. This 

necessity has motivated nonparametric approaches to smoothing [188, 2 0 1 ], and is 

the basis for the new algorithm presented in this chapter.

In Chapter 8 , we presented a computationally efficient algorithm for nonparamet­

ric smoothing for the special case when hn is linear, and we presented the rationale 

behind “penalized likelihood” estimation. Here, just as in the linear case, we m ust 

compromise between the agreement with the data and the smoothness of the esti­

mated functions. Thus we propose the following optim ality criterion:

g =  argmin$*(g),

N M »

*.(g) = E  lly. -  h„(g(i„))||! + E “.  /  <“ ■ 0-3)
n = l  m —1

This criterion is the natural generalization of (8.11). O ’Sullivan [192] considered 

this criterion for the case of scalar measurements. For simplicity, we assume k =  2. 

The param eter a  =  (<*1 , . . . ,  a\r)  controls the influence of the penalty term, and in 

Section 9.4 we describe how to estim ate a  from the measurements automatically. 

Until then, we assume a  is known.

By the “minimal property of splines” proven in Theorem 2 of [162], any function 

g that achieves the minimum of 4>* is a vector spline with component functions tha t 

are cubic splines (for k  =  2). (We restrict our attention here to natural cubic- 

splines by imposing the end conditions tha t gm(t) is linear for t < ty and t > tpf.) 

However, unlike in the linear case, in general there may be multiple minima3. Physical 

constraints will usually rule out the irrelevant solutions. The EKF suffers the same 

ambiguity, a fact usually ignored since the filter update equations are initialized at 

some (presumably meaningful) starting state. The iterative algorithms we present 

below also require an initial estimate.

3Consider h n (a:) =  x 2 , then $*(,ff(<)) =  4>*(—g (t)).
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Since the component functions of g are natural cubic-splines, we need only esti­

m ate the coefficients of their piecewise-polynomial expansions (or, for better numeri­

cal stability, their B-spline expansion [193]). In fact, if we compute g (t) a t t \ , . . .  ,tm, 

then we can compute all the coefficients from (8 .6 ). From (9.2), this is equivalent to 

estimating the states {x„}^=1. From Section 8.9,

where S «  is defined by (8.23), and

x  =  [x j,.. .,* '* ] '.

Therefore, the variational problem (9.3) is equivalent to the following penalized non­

linear least-squares problem:

x a  =  a rg m in $ a (x),

$ a ( x )  =  ||y — h(x ) | | 2 -f x 'S Qx ,

where

y = h (x ) = M x ! ) ', . . . ,  h^xyv)']'.

S « , which also depends on k in general, is the spline penalty m atrix tha t prohibits 

excessive local variation in g.

In Sections 9.2 and 9.3, we develop an iterative method for computing x « .  This 

method is summarized as a  computationally efficient algorithm in Section 9.5, after we 

discuss selection of a  in Section 9.4. We demonstrate the algorithm on a curved-edge 

estimation problem in Section 9.6, and conclude with open problems in Section 9.7.
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9.2 Linearization Approach

We first consider estimating x  by a linearization method similar to the EKF approach. 

Assume x 0 =  [x(,i , . . .  , x'oAr]' is an initial estimate4 of x. By the first-order Taylor’s 

expansion of h n about x 0,n:

h„(xn) h n(x 0 |n) H” H n(x„ Xo,n)j (9-4)

where H n is the L n y.M  Jacobian of h n evaluated at x 0,„. Substituting (9.4) into (9.1), 

we get

Yn ^  b n(x 0)n) "t" H n(xn X0,n) "f" ^n- 

Multiplying both sides by (H ^H ,,)-1!!^  and rearranging yields

zn « x n +  v„, (9.5)

where

Zn t  Xo.n +  ^ H ^ ^ H ' J y n - h ^ X o J ) .

The transformed measurement error v n is normally distributed with mean zero and 

covariance m atrix I In =  (H(jH„)-1 . This procedure requires5 th a t (H^Hn) be in­

vertible, or equivalently that the Jacobians all have rank M.  A necessary condition is 

therefore that Ln > M  Vn. (One special case is worth noting: if the initial estim ate is 

the (unpenalized) maximum-likelihood estimate, i.e., x 0,n =  argm inXn ||yn —h„(xn)||2, 

then zn =  x 0,n, and each covariance m atrix  n „  is a corresponding Fisher information 

matrix.)

4Obtaining an initial estim ate is clearly application dependent. T he transform approach o f  
Bresler [128] is well suited for nonlinearities that separate into “shift” and “shape” parameters.

5It is not strictly  necessary th at all the Jacobians exist or have rank M. Spline sm ooth ing can
be applied to non-uniformly spaced m easurem ents, so one could sim ply discard any m easurem ents 
violating the existence or rank conditions.
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We have transformed the nonlinear measurements (9.1) into a set of linearized 

measurements (9.5) that are now in a  form suitable for the linear vector-spline smooth­

ing algorithm of Chapter 8 . The resulting estimate, denoted by XLin> satisfies

XLin =  argm in $ 0(x),

$o(x) =  (z — x )'II_1(z — x) +  x 'S a x ,

where

z  =  [zj, • • . ,  zjv)', II =  diag(IIn).

4»o is a quadratic form, and its minimizer (cf. (8 .2 2 )) is:

X L in  = (n -1 + s a )-1n - 1z. (9.6)

In the implementation of this algorithm, we compute Xun with the 0 ( M 3 N )  algorithm 

of Chapter 8 , rather than by direct evaluation of (9.6).

A significant difference between this nonparametric approach and the EKF ap­

proach is the timing of the linearization. Here, we first independently linearize all 

the measurements, and then smooth. For the EKF, the measurements are linearized 

about the most recent estimate from the recursive update formulae [125]. Though 

our approach therefore requires more effort “up front” in obtaining initial estimates, 

it does avoid some of the potential problems of EKF mistracking [107, 128].

Since the accuracy of XL,m depends on the accuracy of (9.4), we would usually 

iterate by using XLin as a new “initial” estim ate and repeating the above procedure. 

Unfortunately, there is no guarantee such iterations will accomplish our original goal 

of minimizing or will even converge. The most we can claim is tha t the optimal 

estimate x a  is a fixed-point of the iterations, i.e., if x 0 =  x q  then xyn =  Xa. The 

standard solution to this dilemma is to introduce a relaxation parameter. It is not 

clear how to do this from the above derivation, despite its intuitive appeal. W ith an 

eye towards applying the Levenberg-Marquardt relaxation method [131], in the next 

section we derive the Hessian estim ate of x.
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9.3 H essian Approach

The Hessian approach [223] for nonlinear least-squares problems is to approximate 

the functional locally by a quadratic:

$<x(x) «  $ a ( x 0) -  2d '(x  -  x0) +  (x  -  x 0) 'D (x  -  x 0).

The estim ate is then given as

XHess — Xo "I" S,
where 6  is the solution to

D  6  = d. (9.7)

Neglecting second derivatives [223], one can easily compute d  and D:

1 d$a
2 dx  

and

=  H '(y  -  h (x 0)) -  Sq-Xo,

1 j d<&a  d§ot i /TT_!

where

H  =  diag(H„).

Therefore, the Hessian estim ate is:

XHess =  x 0 +  ( I T 1 +  Sa )- 1 [H '(y -  h(x0)) -  Sa xJ. (9.8)

The Levenberg-Marquardt (LM) approach [131] to relaxation of the Hessian non­

linear least-squares method is equally applicable to our penalized nonlinear least- 

squares problem, since the penalty is a quadratic. Instead of (9.7), the LM approach 

(see discussion in [223, §14.4]) is to compute the update as follows:

(D  +  AA )6 X = d,

yielding the estim ate

XHess, A =  Xo +  6  ,\.
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The m atrix A is diagonal, and its elements are a measure of scale; we take A to be the 

diagonal elements of I I - 1 . The LM algorithm provides a procedure for choosing the 

relaxation param eter A to ensure that the new estimate is better than the previous 

estimate, i.e., (xHess,a) < $<*(x °). This procedure guarantees convergence to a 

local minimum when one iterates the Hessian method.

By applying (9.5), (9.6), and (9.8):

X L in  =  ( n ^  +  S a ^ n ^ z

=  ( n - '  +  S a r 'n - M n H 't y - M x o ^  +  Xoj

= (n -1 + S a )“1[H/(y -  h(x0)) + n^Xo +  s a x„ -  Sa x0] 

= x0 + (n -1 + Sa;)''1[H,(y -  h(x„)) -  Sa x 0]

=  Xness,

we see tha t the Hessian approach and the linearization approach of Section 9.2 are 

equivalent, i.e., xyn =  XHess- Using this equivalence, we can translate the relaxation 

parameter idea back into the spline-smoothing formulation. By the same arguments 

as above, if we define

X L in ,A =  ( I I ^ 1 +  Sq-)- 1I I ^ 1Za,

where

zA =  n AH'(y -  h (x0)) +  x 0,

and

IIa1 = n -1 + AA,

then XLin,a =  XHess,a- In words, rather than smoothing the pseudo-measurements 

zn (with covariances I I n), we smooth z„,a (with covariances I In,A). This estimation 

procedure is translated into an algorithm in Section 9.5.
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9.4 Choosing the Sm oothing Param eters

As in the linear case, we want to choose the smoothing param eter at to provide good 

estimates of g. One method with intuitive appeal and high (statistical) efficiency (as 

shown in Chapter 8 ) in the linear case is to choose the smoothing param eter that 

minimizes the cross-validation (CV) score, defined by

C V (c) ^  i  £  ||y„ -  h„(ga ,_„((„))||2, (9.9)
-‘V n=l

where

N M
g =  argm in £  ||y„ -  h n(g(fn ) ) | | 2 +  £  <*m

n—l,n ^ i  m=l

ga, - i  is the solution to the smoothing problem posed without data point y,-. Ex­

act evaluation of (9.9) is impractical since it would require N  iterative smoothing 

problems for each value of a .  Motivated by the corresponding formula for the lin­

ear case (8.17), we propose the following approach: for a given value of a ,  compute 

X a ,  and use xa  to compute the linearized measurement z, the Jacobian H , and the 

covariance I I  =  (H 'H )-1 . Then an approximation for C V (a) is

C V o(a) =  | | n ^ ( I M -  A (nn)( a ) ) - 1(z„ -  x a , j | | 2> (9-10)
iV n=l

where (cf. (9.6))

A  (a )  i  ( n ^ + S a r ' n - 1,

and A(nn)(a )  is the n th M  x M  block diagonal submatrix of A  (a). This approx­

imation is based on the expectation that x q  will be close enough to g that the 

Taylor expansion (9.4) will be accurate. Once xq: is computed, (9.10) is evaluated in 

0 ( M 3N)  operations as discussed in Chapter 8 . The accuracy of the approximation 

used in deriving CVo is less im portant than whether or not the minimum-of CVo 

occurs at a value of a  for which x.a is a good estimate. In Section 9.6 we show an 

empirical result that indicates the utility of CVo-
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9.5 Algorithm

The algorithm depicted in Table 9.1 computes x a  iteratively for a particular value 

of a .  The computational complexity is only 0 ( M 3N).  We have borrowed ideas 

from [223, §14.4], substituting in our optimality criteria. All operations containing 

terms with the subscript n are repeated for n =  1 Source code for this

algorithm is available as v s p lin e  from n e t l i b  [222]. The dominant computational 

requirements are the vector-spline smoothing and the computation of CVo- Since 

these computations are required even in the linear measurement case, the principle 

“penalty” incurred when considering nonlinear problems is the necessity of iteration.

The algorithm of Table 9.1 is implemented as a procedure th a t returns C V o(a).  

This procedure is typically called with several different values of a  to minimize 

C V o(a).  We used the subroutine given in [223] for Powell’s method for this min­

imization. We can make considerable computational savings by using the smoothed 

estimates for one value of a  as the initial state when smoothing for a nearby value 

of a .  Using this procedure, we have found empirically that although the smoothing 

algorithm may require six to ten iterations for the first value of a ,  on subsequent 

calls the smoothing procedure typically converges to within 0 .1 % of minx $ a ( x )  in 

just one or two steps.

In the examples of Section 9.6, the “else” section of this procedure rarely executed, 

hence the iterations converged nearly quadratically to the estim ate Xa-
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Computation Flops
Obtain initial estimate x G ?
x  :=  x 0

A := 0.001
Yn -=  h n(x„) ?
H n :=  Jacobian of h n a t x n ?
®n •== Yn Yn N(L)
wn :=  H'nen N( 2ML )
n - 1 :=  ( h ; h „ ) N ( 2 M 2L)
/ b e s t  :=  $ a ( x ) N ( U M )
An :=  diagonal elements of I I " 1

repeat {
n~A :=  I I " 1 +  AAn N(2M)
Invert 11"^ N ( M 3)
Zn,A :=  Xn +  n " \ w n N ( 2 M 2)
XLin,a :=  vector-spline smooth { zn,\}, covariances {II„tA} N { % M 3)
Y n =  h „(x Lin,A) ?

e n  =  Y n  -  y „ N(L)
/n e w  : =  ^ Q :(X L in ,A ) N(7M)
If ( /n e w  ^  / b e s t )

X  :=  X L in, A

/ b e s t  -=  /n e w

Y n  :=  $  n
H n :=  Jacobian of hn at x„ ?
w n :=  HJj k n N( 2ML )
n - 1 :=  (H'„Hn) N { 2 M 2L)
An :=  diagonal elements of I I " 1

rHoII 1

else
A := 10A 1

} until $ a ( x )  decreases insignificantly.
compute CVo score for x<* N ( f M 3)

Table 9.1: Iterative nonlinear estimation algorithm and computational requirements.
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Figure 9.1: Noisy image data for curved edge estimation example.

Figure 9.2: Noisy image data  for straight edge estimation example.
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9.6 Edge E stim ation Application

One simple application of the nonlinear smoothing algorithm described above is to 

the problem of estimating the position of edges in digital images. Consider Figure 9.1 

and Figure 9.2; each of the ( N  =  64) rows of these images contains (L =  64) samples 

of a  step function of unknown shift (M  =  1). If the edge is known to be straight, 

then high accuracy techniques exist for estimating the edge [217]. However, if the 

edge is smoothly varying curve, the nonlinear estimation approach of this chapter is 

applicable.

An approximate model for the measurement function for this problem is:

h i ( r )  =  [  l{ s<r} d s , (9.11)
J i —1

where

l { a < r }  =  '
1 , S  .<  T 

0, S >  T

with corresponding Jacobian:

dhi  (r)  1
Q- -  =  l/2 |< l/2 } -

We generated the data displayed in Figures 9.1 and 9.2 by using (9.11) and adding 

Gaussian noise with variance a2 = 0.25. The resulting SNR (=  l/<r) is 2.

Assuming tha t the underlying edge is smoothly varying (which Figures 9.1 and 9.2 

do seem to suggest), the only remaining requirement for the nonlinear smoothing 

algorithm is to provide an initial estimate. We used the following simple heuristic: a 

temporary copy of each row of the image was convolved with an approximate matched 

filter kernel [1 , 1 , 1 , 1 , 1 , 1 , 0 , —1 , —1 , —1 , —1 , —1 , —1], and the index of the pixel with 

maximum value was stored. This set of N  =  64 numbers was then median filtered, 

and the result was the initial estim ate of the edge position.

We do not have any reason to  stipulate a particular smoothing parameter, so we 

use cross-validation. To verify the CVo approximation, we show in Figure 9.3 a plot
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of the mean-squared error and the CVo score as a function of a  for the data set shown 

in Figure 9.1, where

M S E M  £  - l E l l g a W - g W I I 2-
iV  n = l

The minimum of the CVo curve is very close to the minimum of the MSE curve, thus 

our approximation for the CV score is useful for achieving accurate estimates. The 

underlying curve in Figure 9.2 is truly a straight line. Hence, as shown in Figure 9.4, 

the MSE is monotonically decreasing with increasing a.  Because of the low signal 

to noise ratio, the CVo score decreases to a certain point and then increases again. 

Nevertheless, the minimum of CVo does occur where the MSE is reasonably small.

Figures 9.5 and 9.6 show a comparison of the true and the estimated position func­

tions for the optimal a ’s. The algorithm adapted itself to both the curved edge and 

the straight edge—choosing a much larger value for the smoothing param eter in the 

la tter case. This example highlights the versatility of this nonparametric paradigm. 

Figure 9.7 shows plots of the estim ation errors for the above examples. The subpixel 

errors demonstrate the estimation accuracy of this approach.
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Figure 9.3: Comparison of MSE and CVo for curved edge example.
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Figure 9.4: Comparison of MSE and CVo for straight edge example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 9. NO NLINEAR N O N PAR AM ETRIC  SMOOTHING 157

CO
■a;x
£

t

Figure 9.5: True (solid) and estim ated (dashed) edge position from Figure 9.1.
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Figure 9.6: True (solid) and estim ated (dashed) edge position from Figure 9.2.
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Figure 9.7: Estimation errors for edge estimation examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 9. NO NLINEAR N O NPARAM ETRIC  SMOOTHING 159

9.7 Summary

We have presented an iterative algorithm for nonlinear estimation of a  smooth vector- 

valued function, based on a nonparametric optimality criterion. This algorithm 

provides an alternative to the EKF that is useful for off-line processing. We have 

suggested one approximate method for choosing the smoothing parameter autom at­

ically. There are a plethora of methods in use for the linear case, including robust 

choices [203]; a detailed comparison of these methods in the nonlinear case is an open 

problem.

That our algorithm requires an initial estim ate for every state is a mixed blessing. 

Recursive formulae have also been developed for linear spline smoothing [179, 182]. 

Perhaps an extension of this work would yield a  recursive nonlinear smoother that 

would only require a  single initial state.

In this chapter, we have demonstrated the potential of this algorithm on a simple 

edge-estimation problem. In addition to the 3-D reconstruction problem of this thesis, 

other potential applications include biomechanics [190] (tracking the movement of 

limbs from photographic images), and geophysics [225] (estimating continental plate 

motion from surface measurements).
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Discussion

10.1 Summary of Contributions

T h i s  thesis has described a new object-based method for reconstructing 3-D de­

scriptions of arterial trees from a few projections. The method captures our a pri­

ori knowledge of the structure of arterial trees in a parametric object model, and 

quantifies arterial smoothness using new nonparametric smoothing algorithms. By 

incorporating this a priori knowledge into an optimality criterion, we have translated 

the reconstruction problem into a param eter estimation problem. We developed and 

implemented an estimation algorithm tailored to this problem, and demonstrated 

subpixel accuracy reconstructions from as few as four noisy projection images.

We have generalized the measurement model to account for the time-variations 

of contrast density; an essential extension for MR angiography. We have generalized 

the object model to accommodate branching arteries. These generalizations allowed 

us to break through the ‘simulated da ta’ barrier, and we demonstrated the first in 

vivo reconstructions of an arterial tree with an object-based method. We have also 

demonstrated the robustness and versatility of the elliptical model by applying it to 

simulated projections of crescent-shaped cross-sections.

160
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Essential to these low-SNR reconstructions was our use of the smoothness prop­

erties of arteries. We generalized the linear, scalar spline smoothing technique to 

nonlinear, vector measurements. We also generalized the method of cross-validation 

to these cases. The nonparametric smoothing algorithms are very practical for natu­

ral scenes such as angiograms, since the difficult task of deciding how much to smooth 

is addressed automatically.

The promise of this m ethod is perhaps best demonstrated by Figures 7.3 and 7.4, 

which show that accurate reconstruction of bifurcations is achievable with parametric 

models. Note tha t an attem pt to reconstruct intersecting ellipses on a local, slice- 

by-slice basis would be too sensitive to noise; it is the powerful a priori knowledge 

of smoothness that makes our global approach effective. Figures 4.7 and 4.8 are also 

very encouraging results; they show tha t accurate estimation of the arterial radius is 

achievable even without assuming that the radius function is smooth, provided that 

the position and density functions are smooth.

As noted by Ross et al. [20]: “Some digital techniques are in use in clinical practice, 

but application of these promising approaches is not yet widespread.” The author 

hopes tha t by having addressed some of the limitations of the previous methods, 

this dissertation will be a step towards a clinically useful method. Unfortunately, 

a possible disadvantage of this approach is its complexity; our implementation con­

sists of over ten thousand lines of C programs. However, computer capabilities have 

risen while the prices have dropped, and our reconstruction times are reasonable (a 

few minutes) on an affordable workstation. The emphasis on reducing computations 

tha t pervaded earlier work in quantitative angiography is unjustifiable now, and re­

searchers will be able to address the remaining challenges by considering increasingly 

sophisticated models.
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10.2 Open Problem s

The theory we present has the potential of providing a fully automatic reconstruction 

algorithm. However, like many methods, the current implementation of our algorithm 

requires some manual initialization. Automating this will be a necessary step towards 

making the algorithm useful clinically. Once possible approach would use a detection 

algorithm based on the outer two minimizations of (6.4). Brute force minimization 

of (6.4) would be impractical computationally; one will need to  exploit the structure 

of arterial trees as done in Chapter 6 . Automating the procedure should be relatively 

easier in the high-SNR case, as with intra-arterial contrast studies [80].

The most im portant areas for future work are implementing and demonstrating 

the cone-beam reconstruction algorithm for X-ray angiography, and extending the 

models to accommodate multi-valued generalized cylinders. A more extensive analy­

sis of the constraints under which the approximations used to develop the cone-beam 

algorithm is also needed. W hen addressing the multi-valued problem it should be use­

ful to consider the paradigm tha t has led to the single-valued object reconstruction 

algorithm: first consider a single object in a single view, then a single object in multi­

ple views, and perhaps apply the AM iterations to accommodate multiple branching 

objects. The author suspects it will be more fruitful to  first consider the multi-valued 

problem in a more general projection geometry than the cylindrical one considered 

here. For example, since three ideal projections are sufficient for reconstructing an 

ellipse, it should be possible to reconstruct a multi-valued object from projections in 

six directions: the three coordinate axes and the three bisectors of pairs of those axes.

In addition, there remain a wealth of unanswered questions pertaining to 3-D 

reconstruction. How should one best choose the smoothing factor a  for arterial 

trees? Should a  be the same for every object, or should a  scale with object size 

since smaller arteries tend to be more tortuous? In MR, increasing the resolution 

by decreasing the field-of-view (FOV) causes a decrease in signal energy. W hat is 

the optimal FOV for a given anatomical region?- How large a rotation angle (6r) is 

required for a dual bi-plane projection geometry for a  given desired accuracy?
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We have demonstrated single-object reconstruction with a smooth background 

from a simulated projection. The accuracy of such an approach needs to be examined 

more carefully on real X-ray angiograms. In intra-arterial angiography, the typical 

signal-to-noise ratio is quite high, but the signal-to-background ratio may be poor. 

The regular characteristics of arterial projections suggest tha t morphological filters 

should be useful for reducing background interference.

Although we have designed a method that accounts for statistical measurement 

noise, there is another source of error that needs further attention. Most X-ray sys­

tems are not positionable precisely, so the 3-D coordinate system for each projection 

must be calibrated indirectly, typically from projections of a phantom. W hat is the 

sensitivity of a param etric reconstruction algorithm to errors in this calibration? The 

author suspects tha t the multiple-view methods tha t use the fewest views are the 

most vulnerable to such errors, since small errors might tend to ‘average out’ when 

dozens of views are used. However, calibration errors are similar in character to the 

errors introduced by the parallel approximation to a cone-beam geometry, so in light 

of the results of Section 7.5, perhaps the sensitivity is reasonable. For reconstruction 

from MR angiograms, the consequences of vessels of different phase being superim­

posed in a projection needs further examination. This may be challenging to study 

since plastic phantoms induce susceptibility artifacts into MR images.

In our object-based approach, the ellipse area is not a  param eter, but it can 

be computed directly (by 7r r2) once the radius is estimated. For arterial segments 

with overlap-free projections, one could also compute the density-weighted area. De­

viations from the elliptical model could then be tested by applying a  generalized 

likelihood-ratio test that compares the densitometric area with pirr2. The p-value 

of the deviations could be reported graphically1 to indicate potential non-elliptical 

lesions to the physician. It would also be useful to report confidence intervals for the 

parameter estimates to the physician. Unfortunately, the theory of confidence inter­

vals for nonparametric smoothing is not developed firmly. One could certainly report 

1 At the risk of being ridiculed, one might suggest using color for this purpose.
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the Cramer-Rao lower bound, but we frequently exceed tha t bound by exploiting 

smoothness. One approach may be to ‘simulate the posterior’ by generating syn­

thetic projections of the estimated arterial tree with comparable SNR, re-estimating 

the arterial tree from the synthetic projections, and then looking a t the variations 

over several noise realizations. This may be less time-consuming than one might ex­

pect, since one could use the originally estimated arterial tree to initialize the iterative 

algorithm at a  point reasonably close to the optimal estimate.

Our approach has been to avoid enforcing plausible constraints such as equality 

of the density of overlapping ellipses. Though such constraints could reduce the de­

grees of freedom and thereby decrease the estimate variance, they could also increase 

potential modeling error. Nevertheless, if the SNR is very low, it may be necessary to 

use even more a priori knowledge. The branching-spline method of Silverman [198], 

applied to agricultural data  originally, may be a one useful approach to enforcing 

tighter constraints between objects that branch.

As mentioned in Chapters 8 and 9, several research opportunities also remain in 

nonparametric smoothing. In particular, the cross-validation score for nonlinear mea­

surements is an approximation that needs to be evaluated more carefully. We have 

based our smoothness penalties on a squared second-derivative criterion. This is cer­

tainly appropriate for the position parameters, but for the other parameters a squared 

first-derivative may be more appropriate. This is true especially for the ellipse ori­

entation parameter. A careful examination of Figure 7.24 reveals a ‘spiral’ character 

to some of the smaller objects. This is due to a linear orientation function that is 

completely unpenalized by the second-derivative, even though intuition tells us that 

such an object is less likely than a non-spiral object. The nonparametric smoothing 

algorithm and software could be easily generalized to accommodate different penalty 

functions for the different parameters. t*

As the above theoretical issues are resolved, increasing attention should be paid 

to improving the user-interface software, if the method has hopes of being used clini­

cally. Fortunately, the arterial tree descriptions in an object-based approach are very
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amenable to user interaction. Shaded-surface displays can be generated very rapidly 

at any projection angle, particular segments of the tree can be identified easily for 

closer examination, and hemodynamic factors can be computed directly from the 

parametric description.

One of the most compelling motivations for using as few projections as possible 

is the practical difficulty in acquiring more than a few ‘simultaneous’ projections. 

However, perhaps simultaneous projections are unnecessary for arterial reconstruc­

tion, since arterial tree motion is constrained. Wu [90] made effective use of multiple 

cine-projections for simple position and area estimates; it would be interesting to in­

corporate that approach into the global estimation framework of this thesis to utilize 

the 4-D information available from cine-projections more completely.
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