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LIST OF FIGURES

2.1 Image of myelin from an electron microscope. The myelin sheath (shaded in

blue) consists of layers of myelin (myelin bilayers). Water trapped within the

myelin bilayers is called myelin water, and all other water (both within the

axon—the area enclosed by the myelin sheath—and without the axon) is called

non-myelin water. (Original image from http://www.teachmentortexts.

com/2013/01/be-agent-of-change.html, accessed September 18, 2020 at

9:57 AM EDT.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Tissue models for MWI. The two compartments of the two-compartment

model (a) are myelin water and non-myelin water, each with its own T1, T2,

compartment fraction, and (for myelin water) off-resonance frequency. Ex-

change between myelin water and non-myelin water can also be modeled (not

shown). The three-compartment model (b) adds a macromolecule compart-

ment, with its own T1, T2, and compartment fraction, as well as exchange

from myelin water to macromolecules. The subscript “f” is for “fast” or “fast-

relaxing” and is used for myelin water because it experiences faster relaxation

than non-myelin water; conversely, non-myelin water uses the subscript “s”

for “slow” or “slow-relaxing”. The subscript “m” stands for “macromolecule”. 16

3.1 Workflow of the proposed methods. We first optimized a set of STFR scan

parameters by minimizing a Cramér-Rao Lower Bound, then acquired data

using those scans, as well as Bloch-Siegert (BS) scans. Two of the STFR scans

were equivalent to SPGR scans, so were used to estimate ∆ω, and the BS scans

were used to estimate κ. These parameters were treated as known values in

the MWF estimation step. We then generated noisy training data using an

STFR signal model. Finally, we passed the training data, acquired STFR

images, and known parameters to PERK to estimate MWF voxel-by-voxel. 22
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3.2 The two optimized scans (see Table 3.2) were evaluated to explore how in-

cluding the additional myelin water off-resonance ∆ωf in the design process

affects performance. Design A (where ∆ωf was included in the optimization)

has a better expected CRLB for every value of ∆ωf within the 5–35 Hz range

over which design A was optimized. Design B (where ∆ωf was ignored) un-

derstandably has a better expected CRLB for ∆ωf = 0. For each value of ∆ωf

investigated in this plot, the expected CRLB was computed with that value

of ∆ωf held constant but unknown. Typical values of ∆ωf in white matter are

5–35 Hz [1]. Although these CRLB values predict estimator standard devia-

tion (for an unbiased estimator) on the order of 100% MWF or more, we are

not restricted by these large values because we are using a Bayesian estimator

(see Figure 3.11 for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 RMSE of MWF estimates from simulated test data for various ways of ac-

counting for the additional myelin water off-resonance ∆ωf . The diamond-

markered green curve was generated using scan design B (where ∆ωf was

ignored) and using PERK training data where ∆ωf = 0. In other words, ∆ωf

was not considered in any aspect, neither in the scan design nor when training.

The square-markered red curve was also generated using scan design B, but

the training data included a range of ∆ωf values. The circle-markered blue

curve was generated using design A and a range of values of ∆ωf . The latter

two methods look almost identical, but both have much better RMSE than

the first method as ∆ωf increases. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Right : MWF maps from five methods using simulated test data for a three-

compartment tissue model with exchange. Table 3.3 reports numerical results.

The proposed STFR3-PERK estimates are closer to the true MWF value for

white matter tissue values than are the MESE-NNLS estimates. Left : Bulk

off-resonance ∆ω and flip angle scaling κ maps used in this simulation. . . . 35

3.5 MWF maps from five methods using simulated test data for a nine-compart-

ment tissue model with exchange. These results are essentially the same as

when using the three-compartment exchanging model (see Figure 3.4). Thus,

even though STFR3-PERK was trained with a three-compartment exchanging

model, it still produced good MWF estimates from signal generated using a

nine-compartment exchanging model. . . . . . . . . . . . . . . . . . . . . . 36
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3.6 MWF maps from in vivo MESE data and STFR data using scan design A.

Table 3.4 shows numerical results for several manually selected regions of

interest. The MESE-NNLS MWF map appears noisier than those shown in

other works. This is likely due to the lower SNR of our data due to differences

in voxel size. To match the STFR resolution, we acquired MESE with 1.1 mm

isotropic voxels, whereas often MESE data is collected with slice thickness of 5

mm and 1.6 mm or greater in the phase encode direction. Remarkably, MESE-

PERK is much less noisy than MESE-NNLS. This is likely due to PERK being

a Bayesian estimator that discourages estimates that are far from the mean

MWF training value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 RMSE of MWF estimates for white matter and gray matter simulated test

data. Scan design A has better RMSE in white matter for values of ∆ωf we

expect to see in white matter. This better RMSE in white matter is at the

cost of worse RMSE in gray matter. Note that the values of T1,f and T1,s for

gray matter were outside of the range of values used for the scan designs and

for training our estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 MWF maps from five methods using simulated test data for a four-compart-

ment tissue model with exchange. The four compartments considered were

myelin water, axonal water (i.e., water in myelinated axons), all other wa-

ter, and macromolecules. The results are similar to those using the three-

compartment model with exchange. Table 3.5 shows numerical results. . . . 43

3.9 MWF maps from five methods using simulated test data for a three-compart-

ment tissue model without exchange. Without exchange, the three-compart-

ment model becomes essentially a two-compartment model because the T2

of the macromolecular pool is so small. Thus it makes sense that STFR2-

PERK performs well. Surprisingly, MESE-PERK still produces good MWF

estimates, even though it is trained with the three-compartment exchanging

model (like STFR3-PERK). This could be because the TR of the MESE scan

is long compared to the residence times governing exchange. Furthermore, it

is possible that if the training ranges for the residence times were adjusted

appropriately (increased) then STFR3-PERK would also do well. Table 3.6

shows numerical results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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3.10 In vivo images for two SPGR and nine STFR scans using scan design A.

Each image is the square root sum of squares combination of the individual

coil data. STFR produces contrast similar to balanced SSFP, including a

similar off-resonance profile that induces the characteristic banding artifact

of balanced SSFP. Different points of this profile are sampled as the phase

ϕ of the STFR tip-up excitation varies. The nine STFR images are sorted

by increasing ϕ, so this off-resonance profile is easily visualized. In the lower

right is the field map estimated from the two SPGR scans. . . . . . . . . . 46

3.11 Comparison of biased and unbiased CRLBs for white matter tissue values us-

ing the two-compartment non-exchanging model. The biased CRLB is much

lower than the unbiased CRLB, suggesting that bias is the reason why our

STFR-based MWF estimation results in estimates with low variance. How-

ever, our proposed method still shows sensitivity to changes in MWF (see

Figure 3.12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.12 Expected MWF estimates from the proposed STFR3-PERK MWF estima-
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exchanging model. The proposed method is (mildly) biased, yet it is still

very sensitive to changes in true MWF value. Furthermore, bias decreases as

SNR increases. (An unbiased estimator would have estimates along the line

of identity, i.e., along the dashed line.) . . . . . . . . . . . . . . . . . . . . . 48

4.1 Diagram of the end-to-end scan design process, in which scan parameters

P are optimized subject to constraints P to minimize the end-to-end cost

function (4.3). Validation and training sets of tissue parameters are sampled

before and held fixed during the iterative optimization. The end-to-end cost

function is computed in several steps. First, the current candidate scan de-

sign P is used to simulate noisy data, using a signal model f , from both

the validation and training tissue parameter sets. The training set of tissue

parameters is then paired with the associated noisy signals and used to train

the estimator x̂(·). Next, the noisy signals from the validation set of tissue

parameters are given to the estimator to estimate the underlying tissue pa-

rameters. Finally, these estimates are compared to the true tissue parameters

to compute a (weighted) MSE. The scan design process seeks to minimize this

MSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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with 18 STFR scans. We computed the square root of the expected CRLB

of MWF estimates (left subplot) and the RMSE of MWF estimates (right

subplot) for each of the 20 scan designs. Optimizing scan parameters to

minimize the RMSE results in scan designs that have lower RMSEs than scan

designs optimized to minimize the expected CRLB. (The one CRLB design

that has a RMSE on par with the end-to-end designs, indicated by the white

triangle marker, was initialized with an end-to-end design and did not change

much, i.e., was stuck near a poor local minimum, during the optimization

process.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Scan parameters of the best end-to-end scan design and the best CRLB scan

design, sorted by increasing tip-down angle. Each design consists of 18 STFR

scans, each with its own tip-down angle, tip-up angle, and tip-up phase (that

were optimized). Each scan additionally had fixed Tfree = 8 ms, Tg = 2.8

ms, and TE = 4 ms. Interestingly, the end-to-end design has much lower flip

angles, in general, than the CRLB design. . . . . . . . . . . . . . . . . . . . 61

4.5 Histograms of estimated MWF versus true MWF obtained when using the

end-to-end scan design and when using the CRLB scan design for the ex-

periment where we drew the test data randomly from the distributions in

Figure 4.1. Though only MWF is shown as varying, we varied all tissue pa-

rameters. The table shows the ensemble RMSE, average absolute bias, and

average standard deviation of the MWF estimates. The MWF estimates ob-

tained using the end-to-end scan design were more accurate, less biased, and

less noisy than those obtained using the CRLB design. . . . . . . . . . . . . 63

xii



4.6 Estimated MWF maps obtained when using the end-to-end scan design and

when using the CRLB scan design. The true MWF varied from 0.1 to 0.2 in

WM and from 0.02 to 0.05 in GM from image bottom to top. The results

using the end-to-end design were more accurate, less biased, and less noisy

than those obtained using the CRLB design. The second row shows the error

maps for reference. The table shows the RMSE, mean, and standard deviation

(SD) of the MWF estimates across all WM and GM voxels. For reference, the

true MWF map has a mean value of 0.151 for WM and 0.035 for GM. . . . 64

4.7 Estimated MWF maps obtained from in vivo data acquired using the end-to-

end scan design and the CRLB scan design. The MWF map from the end-to-

end design was less noisy and appeared to have more reasonable values and

decent WM/GM contrast. The table shows the mean and standard deviation

(SD) of the MWF estimates across a pooled region of interest (ROI) consisting

of WM voxels (see Figure 4.8). . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 One STFR scan with WM ROIs shown from which we computed the mean

and standard deviation of the MWF estimates from the in vivo data. . . . . 66

4.9 Estimated MWF maps obtained from in vivo data acquired using the end-

to-end scan design and the CRLB scan design, with PERK trained with a

noise standard deviation that was computed from background voxels of the

reconstructed images. The MWF map from the end-to-end design had higher

values than what one might expect in the brain, but was less noisy than the

MWF map from the CRLB design. The table shows the mean and standard

deviation (SD) of the MWF estimates across a pooled region of interest (ROI)

consisting of WM voxels (see Figure 4.8). . . . . . . . . . . . . . . . . . . . 74

4.10 MSE of fitted STFR signals versus PERK training noise standard deviation

for the modified BrainWeb experiment. The noise standard deviation added

to the BrainWeb data was 2−9.6 (denoted by the vertical line). The cross-

validated noise standard deviation performed well in this case. . . . . . . . 75

4.11 MSE of fitted STFR signals versus PERK training noise standard deviation

for the in vivo data. The training noise standard deviation we manually chose

based on visual preference (used for Figure 4.7) was 2−10.8 (denoted by the

vertical line). The cross-validated noise standard deviation did not perform

well in this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



4.12 Trend lines used for de-biasing MWF estimates. We estimated MWF using

PERK for 1,000 sets of non-scan parameters and averaged over 100 noise

realizations. Here we show 2D histograms of the average estimates versus the

true MWF values. We then fit a trend line to the scatter plot underlying each

histogram. This trend line was used in de-biasing MWF estimates; when an

estimate was given by PERK, we would look up the corresponding true MWF

value predicted by the trend line and return that MWF value as the de-biased

estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.13 M0 BrainWeb estimates. The true M0 values are shown before scaling by 3. 78

4.14 T1,f BrainWeb estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.15 T1,s BrainWeb estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.16 T2,f BrainWeb estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.17 T2,s BrainWeb estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.18 τf→s BrainWeb estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.19 ∆ωf BrainWeb estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.20 ∆ω BrainWeb estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.21 κ BrainWeb estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.22 M0 in vivo estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.23 T1,f in vivo estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.24 T1,s in vivo estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.25 T2,f in vivo estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.26 T2,s in vivo estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.27 τf→s in vivo estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.28 ∆ωf in vivo estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.29 ∆ω in vivo estimates alongside a reference B0 map acquired from two TE-

offset SPGR scans. While some tissue structure remains visible in the ∆ω

estimates from the end-to-end design, overall there is good visual agreement

between the estimated B0 map and the reference one. . . . . . . . . . . . . 85

4.30 κ in vivo estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 BrainWeb image weighted by the four individual coil sensitivities used in

the simulation experiments. Only the middle slice of the simulated object

is shown. Each coil “sees” only part of the object, but the information from

each coil is used jointly during reconstruction to determine the true underlying

object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiv



5.2 Off-resonance map and its spatial gradients used in the simulation experi-

ments. Only the values corresponding to the middle slice are shown. The

B0 gradients in the x and y directions range from −3.6 to 3.6 Hz/voxel. For

TE = 21.6 ms, this corresponds to less than 1/12 cycle/voxel at most. In the

z-direction, the peak of −61 Hz/voxel leads to more than one cycle/voxel. . 93

5.3 True and reconstructed images for k-space data simulated with and without

ideal RF prephasing. We compared three reconstruction approaches: square

root sum-of-squares (SSoS) reconstruction and model-based reconstruction

with and without modeling intravoxel B0 and RF prephasing effects. The

SSoS reconstructed images were scaled for display. Without RF prephasing,

the reconstructed images had severe signal loss due to intravoxel dephasing.

This signal loss was mitigated, but not entirely removed due to (near) complete

signal loss that occurs at and near the zero-crossings of the sinc function in

(5.4), when reconstructing with a model that incorporated such intravoxel

dephasing. Ideal RF prephasing by itself essentially eliminated all signal loss

due to intravoxel dephasing, regardless of reconstruction method. . . . . . . 96

5.4 True and reconstructed images for k-space data simulated with and without

ideal RF prephasing using a single-shot 3D EPI readout. The reconstruction

approaches were the same as in Figure 5.3. The SSoS reconstructed images

were scaled for display. Overall, these reconstructed images are of worse qual-

ity than those from the stack-of-EPI data, but they do show similar trends.

The most notable difference, however, is that ideal RF prephasing did not

recover the true image without also being combined with model-based recon-

struction using a model that includes intravoxel B0 and RF prephasing effects.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Reconstructed images for k-space data simulated with varying amounts of

RF prephasing. We reconstructed these images using a model that included

intravoxel B0 and RF prephasing effects. As expected, the reconstructed

image quality improved as the rephasing time increased from 0 (no prephasing)

to TE (ideal prephasing). The residual signal loss artifact was still severe for

rephasing times t ∈ {0, 5} ms. Starting at a rephasing time of 10 ms, however,

the reconstructed image quality improved significantly. . . . . . . . . . . . . 98

xv



5.6 Reconstructed images for k-space data simulated with varying amounts of RF

prephasing. We reconstructed these images using a model that did not include

intravoxel B0 and RF prephasing effects. The image quality of these recon-

structed images degrades much less gracefully as the rephasing time decreases

compared to Figure 5.5, which has images reconstructed using a model that

included intravoxel B0 and RF prephasing effects. . . . . . . . . . . . . . . 99

A.1 Steady state STFR signal acquired at TE = 0.5 ms for a three-compartment,

exchanging system using instantaneous and non-instantaneous RF excitation

pulses versus bulk off-resonance frequency ∆ω. The signals are essentially the

same in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xvi



LIST OF TABLES

3.1 Unknown and known parameters used in scan design and in simulation. Values

were chosen to match literature values for white matter [1–4]. The columns

“Design A” and “Design B” contain the tissue distributions used for comput-

ing the expectation in the CRLB scan design cost function (3.6). We used

M0 = 1 for the scan designs because it only scales the STFR signal. The

columns “WM” and “GM” specify the tissue parameters used for simulating

white matter and gray matter tissues, respectively. For such simulations, we

hold the tissue parameters fixed across different voxels, but vary ∆ω and κ.

The last column contains the tissue parameter distributions from which we

sampled sets of tissue parameters for training PERK. The line below κ sepa-

rates parameters used in both the two-compartment and three-compartment

models (above) from those used only in the three-compartment exchanging

model (below). WM: white matter. GM: gray matter. . . . . . . . . . . . . 28

3.2 Optimized STFR scan parameters. All values have units of degrees. For design

A, the additional myelin water off-resonance ∆ωf was taken to be unknown

and distributed uniformly from 5 to 35 Hz. For design B, ∆ωf was ignored

(i.e., taken to be known and equal to 0). Both design A and design B also

include two fixed SPGR scans with α = 5◦. . . . . . . . . . . . . . . . . . . 31

3.3 Comparison of various methods of MWF estimation. The reported time refers

to the entire estimation, combining the time to estimate MWF in white matter

voxels and gray matter voxels; it also includes training time for the methods

that use PERK. The best value in each column is highlighted. See Figure 3.4

for a visual comparison of these methods. . . . . . . . . . . . . . . . . . . . 34

3.4 Left : White matter (WM) and gray matter (GM) regions of interest (ROIs).

The underlying image is from a standard MP-RAGE acquisition, acquired in

the same scan session and registered to the other scans. Right : Sample means

± standard deviations of MWF estimates for four WM ROIs and one GM

ROI. Figure 3.6 shows corresponding MWF maps. . . . . . . . . . . . . . . 35

3.5 Numerical results for Figure 3.8. . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Numerical results for Figure 3.9. . . . . . . . . . . . . . . . . . . . . . . . . 44

xvii



4.1 Tissue parameter distributions used in scan designs and in simulation re-

sults, unless otherwise noted in the text. Parameters were uniformly dis-

tributed between the given minimum and maximum values. PERK training

also used these same distributions, except for a slightly expandedM0 distribu-

tion ([0.6, 1.2] instead of the values in the table) to account for the uncertainty

in in vivo M0 values due to unknown scanner gain. Note that we chose the

range for ∆ω to cover one full period of the magnitude STFR signal model

(which is periodic in ∆ω with period 1/Tfree, where we fixed Tfree = 8 ms for

the scan design process). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Comparison of RMSEs of MWF estimates from simulated data of optimized

18-scan end-to-end designs with combinations of bulk off-resonance ∆ω and

flip angle scaling κ being assumed unknown and known parameters. The

RMSE is unchanged regardless of whether a separate B0 map (∆ω) is acquired,

whereas acquiring a separate B1+ map (κ) improved the RMSE by about

13%. In this work, despite the predicted increase in MWF estimation error,

we decided to forego acquiring separate B0 and B1+ maps for ease of practical

in vivo implementation and to lessen the overall scan time. . . . . . . . . . 58

4.3 Computed myelin water and non-myelin water T1 values (T1,f and T1,s, respec-

tively) determined by combining the water and macromolecule pools associ-

ated with myelin and non-myelin, respectively, using (4.5). Values for Rm,

Rw, km→w, and kw→m were determined using values in Table 1 in [5]. We also

computed T1 values T a
1,f and T a

1,s with an adjusted Rm to account for field

strength, in which case Rm was scaled by 4.7 T
3.0 T

. Units for all table values are

s−1 except for T
(a)
1,f/s, which have units of ms. Based on this range of values for

T1,f and T1,s, we trained PERK using T1,f values uniformly distributed from

200 to 500 ms and T1,s values uniformly distributed from 1500 to 2500 ms. . 71

4.4 CRLB (a) and RMSE (b) of MWF estimates computed using the optimized

18-scan CRLB and end-to-end scan designs as well as the scan designs used for

initialization. The end-to-end design used to initialize a CRLB scan design

was initialized with the hand-crafted initialization. (The optimized RMSE

of the end-to-end design initialized with the hand-crafted design is different

than the initial RMSE for the CRLB design initialized with the end-to-end

design due to slightly different PERK hyperparameter values.) The displayed

percentages indicate the change relative to the initial value. Despite resulting

in drastically worse CRLBs compared to the initial values in nearly all cases,

the end-to-end designs significantly improved the RMSEs in all cases. . . . 73

xviii



5.1 NRMSEs for each of the reconstructed images in (a) Figure 5.3 and (b) Fig-

ure 5.4. (a) Even though the NRMSE for the image reconstructed with a

model including intravoxel B0 effects from data without RF prephasing was

only 2.3%, residual artifacts are still clearly visible in the reconstructed im-

age. On the other hand, both model-based reconstructed images from data

with ideal RF prephasing had excellent NRMSEs, regardless of whether or

not intravoxel B0 and RF prephasing effects were modeled. (b) The NRMSEs

from the single-shot 3D EPI data were worse than those from the stack-of-

EPI data (a), at least for the model-based reconstructed images. In this case,

reconstructing the data with ideal RF prephasing requires using a model that

includes intravoxel B0 and prephasing effects for good performance. . . . . 95

5.2 NRMSEs for each of the reconstructed images in Figures 5.5 and 5.6. As

expected, the NRMSE improved as the amount of RF prephasing increased

from no prephasing to ideal prephasing. The NRMSEs for the images recon-

structed using a model that included intravoxel B0 and RF prephasing effects

were much better overall than those of the images reconstructed without those

intravoxel effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.1 Steady state single-compartment magnetization using instantaneous and non-

instantaneous RF excitation pulses. A macromolecule magnetization (espe-

cially the longitudinal component Mz) is much more sensitive to the duration

of the excitation pulse than is a white matter magnetization. iRF: instanta-

neous excitation. niRF: non-instantaneous excitation. . . . . . . . . . . . . 111

xix



ABSTRACT

Magnetic resonance imaging (MRI) is a useful imaging modality governed by complicated

physics. One important application of MRI is myelin water imaging (MWI), in which myelin

water fraction (MWF), a measure of myelin content, is estimated. As a measure of myelin

content, MWF can be used to track the onset and progression of demyelinating diseases

such as multiple sclerosis. The traditional method used for MWI uses a multi-echo spin echo

(MESE) scan that is prohibitively slow and has not been widely adopted clinically. One aim

of this dissertation is to introduce new methods for MWI that are faster than the traditional

method and that will allow for higher quality MWF maps. This dissertation introduces using

the small-tip fast recovery (STFR) MRI scan, which is faster than the traditional scan, for

MWI. In addition, this dissertation develops a new method for optimizing scan parameters

for improved MWI by minimizing the estimation error of the estimator to be used. A set of

STFR scans are optimized to be informative about MWF to enable accurate estimation of

MWF. MWF is estimated using parameter estimation via regression with kernels (PERK), a

recently developed learning-based method that can learn nonlinear functions with practical

training time. PERK is trained with data simulated using a tissue model that incorporates

parameters that are neglected in the traditional method for MWI, namely chemical exchange

and off-resonance frequency differences. STFR-based in vivo MWF estimates comparable to

MESE-based MWF estimates are obtained in about 1/5 the scan time. In simulation, the

normalized root mean squared error (NRMSE) of MWF estimates is reduced from 42% to

14%.

In addition to advances in MWI, another aim of this dissertation is to improve the

quality of MRI images by correcting for physics-induced image imperfections. As implied

by its name, MRI uses a large magnet for imaging. Spatial variations in the ideally uniform

magnetic field due to magnetic susceptibility differences of different tissues can result in

image artifacts, or imperfections in the reconstructed image. One such image artifact is

signal loss, which occurs when the magnetic field varies too quickly across space, causing

signals at different spatial locations to be out of phase with each other. Approaches exist

that can correct for this effect to an extent, but not in very extreme cases. Therefore,

this dissertation introduces a novel acquisition and reconstruction approach to tackle this

problem. In particular, data is acquired with prephasing so the signals at different spatial

locations start out of phase but then rephase as the signal is acquired. Then an image

xx



is reconstructed from the data using a novel model-based reconstruction technique that

accounts for both the spatial variation of the magnetic field as well as the proposed prephasing

acquisition scheme. In simulation, the NRMSE of a reconstructed image is reduced from

2.3% when reconstructed without prephasing to 0.2% when reconstructed using the proposed

prephasing-based approach.
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CHAPTER 1

Introduction

Magnetic resonance imaging (MRI) is a popular medical imaging modality. It offers a non-

invasive view of the imaged object with excellent soft-tissue contrast without the need for

ionizing radiation. Furthermore, MRI is flexible, having the ability to obtain information

about many different physical processes by adjusting acquisition parameters.

One challenge in MRI is obtaining information about tissue microstructure. Typically in

MRI, the resolution of an image (i.e., the size of an image voxel, or 3D pixel) is on the order

of 1 mm3. Such resolution suffices for many applications (e.g., tumor detection), but for

phenomena that occur on a smaller scale (e.g., demyelination), more advanced techniques

are needed. Typically, microstructural information is obtained from MRI by acquiring mul-

tiple MRI scans and fitting the data to some model that accounts for multiple sub-voxel

compartments.

One application of MRI to obtaining information about tissue microstructure is myelin

water imaging (MWI). MWI images myelin water, or the water trapped between the lipid

bilayers of the myelin sheath, and provides information about the integrity of myelin struc-

ture. It does so by computing the myelin water fraction (MWF), the fraction of MRI signal

that comes from myelin water. MWI is useful for tracking myelination and demyelination,

and can be used to monitor related diseases such as multiple sclerosis. Though MWI was

first demonstrated in vivo in humans in 1994 [6], and has been shown to correlate well

with histological measures of myelin content [7], it is still not a clinically accepted method

for determining myelin content due to the excessive scan times needed for conventional

MWI methods. Furthermore, conventional MWI methods neglect to model some aspects of

MRI physics, namely chemical exchange and differences in off-resonance frequencies between

myelin water and non-myelin water.

One aim of this dissertation is to address the speed and modeling issues of conventional

MWI methods. Specifically, I propose to optimize and use a faster MRI scan, small-tip fast

recovery (STFR) [8], in a novel way for MWI. I estimate MWF from multiple STFR scans

(optimized to be informative about MWF) using parameter estimation via regression with

1



kernels (PERK) [9], a recently developed learning-based method that can learn nonlinear

functions with minimal training time. I train PERK with simulated data using a tissue model

that models physics more faithfully by incorporating exchange and off-resonance frequency

differences.

Another challenge in MRI is correcting for physics-induced image imperfections, or arti-

facts. The signal obtained in MRI is governed by many physical phenomena. Not accounting

for the physics when reconstructing an image from MRI data makes reconstruction simpler

and faster, but the result is a poorer quality image. Therefore, another aim of this disserta-

tion is to improve the quality of MRI images by correcting for physics-induced artifacts by

incorporating the physics into a model used in model-based reconstruction.

One physics-induced image artifact is signal loss due to spatial variations in the main B0

magnetic field. When the magnetic field varies too quickly across space, particularly within

a single voxel, signals at different spatial locations within the voxel have different phases;

thus the overall voxel signal is smaller than if everything was in phase. Approaches exist

that can correct for this effect to an extent, but not in very extreme cases.

Therefore, in this dissertation I introduce a novel acquisition and reconstruction approach

in which I acquire data with prephasing so the signals at different spatial locations within a

voxel start out of phase but then rephase as the total signal is acquired. Then I reconstruct

an image from the data using a novel model-based reconstruction technique that models

both the intravoxel B0 variation as well as the proposed prephasing acquisition scheme.

The rest of the dissertation (including my contributions, which are contained in Chap-

ters 3–5 and Appendix A and in the provided citations) is organized as follows:

• Chapter 2 explains relevant background material.

• Chapter 3 introduces the use of STFR and PERK for MWI. Its content comes from

published journal paper [10] that extends conference abstracts [11, 12].

• Chapter 4 introduces an end-to-end approach to optimizing scan parameters for MWI.

Its content comes from in-preparation journal paper [13] that extends conference ab-

stract [14].

• Chapter 5 introduces a novel model-based reconstruction approach for correcting for

intravoxel B0 variation using a prephasing acquisition. Its content is an extension of

conference abstract [15].

• Chapter 6 suggests several possible areas of future work.

• Appendix A contains a brief investigation into the effects of magnetization transfer

(MT) on PERK MWF estimates from STFR scans.
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CHAPTER 2

Background

This chapter discusses necessary background information. I will start with a discussion

of relevant MRI physics and describe the origin of MRI signals. I will continue with a

discussion about the STFR scan and introduce a model describing the MRI signal that

arises from a STFR scan. Next, I will describe PERK, a supervised learning algorithm for

parameter estimation. Finally, I will describe MWI, including a definition of MWF and the

current reference method for estimating it. I will describe background related to model-based

reconstruction and intravoxel B0 effects in the relevant chapter (Chapter 5).

2.1 MRI Physics

Fundamentally, MRI is a quantum mechanical problem involving the spin property of indi-

vidual nuclei. However, a classical description often suffices because for a 1 mm3 volume (a

typical voxel size in MRI) there are a lot of nuclei.

A nucleus with nonzero spin rotates around its own axis, creating a magnetic field (due

to the nonzero charge of nuclei). In a classical description, this magnetic field is represented

by a vector called the magnetic moment. Normally, each nucleus’ magnetic moment is

randomly aligned, resulting in no net macroscopic magnetization. In the presence of an

applied magnetic field B0, however, each magnetic moment assumes one of two or more

discrete energy states (the number of energy states depends on the type of nucleus, e.g., 1H or
31P nuclei) that dictate the orientation of the magnetic moment with respect to the external

magnetic field [17]. Lower energy states are preferred, and thus the vector sum of a large

number of magnetic moments results in a nonzero net magnetization vector aligned with the

external magnetic field. This net magnetization vector is denoted by M⃗ = [Mx,My,Mz]
⊺ ∈

R3, and, since by convention the direction of the external magnetic field is along the z-axis,

M⃗ = M⃗0 ≜ [0, 0,M0]
⊺ in thermal equilibrium, where the equilibrium magnetization M0 is

proportional both to the number of nuclei whose magnetic moments make up M⃗ and to the

strength of the external magnetic field [17].

3



The net magnetization will stay in thermal equilibrium until acted upon, or excited, by

another applied magnetic field, B1. This magnetic field is applied perpendicularly to B0 (in

the transverse plane) and must rotate at the resonance frequency of the nuclei (also called the

Larmor frequency) to push M⃗ out of thermal equilibrium. The Larmor frequency is given

by ω0 ≜ 2πγB0, where B0 ≜ ∥B0∥2 and γ is a nucleus-dependent physical constant called

the gyromagnetic ratio. Because each type of nucleus has a different resonance frequency,

B1 can excite one type of nucleus while leaving other nuclei undisturbed. Typically, MRI

targets 1H nuclei having a gyromagnetic ratio of γ = 42.58 MHz/T, resulting in a resonance

frequency of about 128 MHz for a typical B0 = 3 T magnet. Because B1 is typically applied

for a short time and oscillates in the radio-frequency range, B1 is frequently called an RF

(excitation) pulse [17].

Following excitation, M⃗ will experience free precession (rotation of the transverse com-

ponent Mxy ≜ Mx + iMy, where i ≜
√
−1, at the Larmor frequency) and relaxation

(decay of Mxy and recovery of the longitudinal component Mz) as it returns to thermal

equilibrium. Precession causes time-varying magnetic flux that by Faraday’s law can in-

duce a voltage in a receiver coil tuned to the Larmor frequency [17]. Thus, the signal

received in MRI measures Mxy. Specifically, the signal received from a voxel centered at r

is s(r, t) =
∫
V(r)Mxy(r

′, t) dr′, where V(r) represents the spatial extent of the voxel.

An MRI experiment typically consists of alternating periods of excitation (to generate

observable signal) and free precession and relaxation (during which the signal is recorded).

The time between successive excitation pulses is called the repetition time (TR), and the

time from the center of the RF pulse to the center of signal recording is called the echo time

(TE).
1 This process of alternating between excitation and signal acquisition is repeated until

enough data has been collected, and then the MRI image can be reconstructed.

1The technically correct definition of TE actually depends on the so-called readout trajectory, which is
related to signal localization. This dissertation, however, does not focus on signal localization, so the given
definition (which is correct for traditional Cartesian readouts) suffices.
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2.1.1 Bloch Equation

The dynamics of the net magnetization M⃗(r, t) for nuclei at position r are described by the

Bloch equation2:

∂

∂t
M⃗ (r, t) =


− 1

T2(r)
∆ω(r) −2πγB1,y(r, t)

−∆ω(r) − 1
T2(r)

2πγB1,x(r, t)

2πγB1,y(r, t) −2πγB1,x(r, t) − 1
T1(r)

M⃗(r, t) +

 0

0
M0(r)
T1(r)

 . (2.1)

B1,x and B1,y are the x and y components, respectively, of the spatially- and time-varying RF

excitation pulse B1; T1 is the spin-lattice time constant governing the rate of recovery of Mz

to thermal equilibrium (M0); T2 is the spin-spin time constant governing the rate of decay

of Mxy to 0; and ∆ω is the off-resonance frequency, representing deviations in resonance

frequency from the Larmor frequency due to spatial variations in the main magnetic field

B0 and chemical shift (deviations in the magnetic field experienced by a nucleus due to its

particular chemical environment). As written, (2.1) has no analytical solution; however, if

one assumes the RF pulse is short relative to the effects of free precession and relaxation (a

common assumption in MRI, where a typical RF pulse lasts about 1 ms, compared to T2

values from about 20–100 ms and T1 values from about 300–3000 ms) then one can solve the

Bloch equation for the separate cases of excitation and free precession and relaxation.

Excitation

For excitation, i.e., neglecting the effects of free precession and relaxation (and assuming B1

is aligned with the x-axis3), the Bloch equation (2.1) becomes

∂

∂t
M⃗ (r, t) =

0 0 0

0 0 2πγB1,x(r, t)

0 −2πγB1,x(r, t) 0

M⃗ (r, t). (2.2)

2Technically, (2.1) presents the dynamics of M⃗ in a rotating frame of reference that rotates at the
Larmor frequency. Using the rotating frame simplifies notation, but otherwise is essentially equivalent. In
the stationary frame, ∆ω(r) is replaced by ω0 +∆ω(r). Additionally, if B1,x(r, t) and B1,y(r, t) are viewed
as the real and imaginary parts, respectively, of B1(r, t) ∈ C, then in the stationary frame they are replaced
by the real and imaginary parts, respectively, of B1(r, t)e

−iω0t. Thus, only the rotational frequency of B1

is affected. These changes in the Bloch equation (2.1) do not affect the dynamics of Mz, and the only
difference between Mxy in the rotating frame and the stationary frame is its rotational frequency (i.e., a
factor of e−iω0t).

3Excitation about an arbitrary axis in the transverse plane is possible by appropriately setting B1,x and
B1,y. This case can be viewed as first rotating the reference frame such that the arbitrary axis becomes the
x-axis in the new frame of reference, applying the solution to (2.2) (since, intuitively, changing the reference
frame does not change the dynamics of the system), and then rotating back to the original reference frame.
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Its solution is simply rotation of M⃗ about the x-axis by angle (called the flip angle) α(r) ≜

2πγ
∫ t0+∆t

t0
B1,x(r, t) dt, where t0 is the time at which excitation begins and ∆t is the duration

of the excitation pulse (again, assumed to be small). (Often it is convenient to represent

the flip angle as α(r) = κ(r)α, where α is a constant prescribed or nominal flip angle and

κ(r) captures spatially varying imperfections in B1.) Described as a matrix equation, the

solution to (2.2) is

M⃗ (r, t0 +∆t) = Rx(r)M⃗ (r, t0), (2.3)

where

Rx(r) ≜

1 0 0

0 cosα(r) sinα(r)

0 − sinα(r) cosα(r)


describes rotation of the magnetization about the x-axis.

Free Precession and Relaxation

For free precession and relaxation, B1 = 03, so the Bloch equation (2.1) becomes

∂

∂t
M⃗(r, t) =


− 1

T2(r)
∆ω(r) 0

−∆ω(r) − 1
T2(r)

0

0 0 − 1
T1(r)

M⃗(r, t) +

 0

0
M0(r)
T1(r)

 . (2.4)

Its solution for t > t0 is

M⃗ (r, t) = E(r, t− t0)F (r, t− t0)M⃗ (r, t0) + (I3 −E(r, t− t0)F (r, t− t0))M⃗0(r), (2.5)

where M⃗0(r) ≜ [0, 0,M0(r)]
⊺ is the magnetization vector in thermal equilibrium,

E(r, t) ≜

e
−t/T2(r) 0 0

0 e−t/T2(r) 0

0 0 e−t/T1(r)


describes relaxation of the magnetization, and

F (r, t) ≜

 cos(∆ω(r)t) sin(∆ω(r)t) 0

− sin(∆ω(r)t) cos(∆ω(r)t) 0

0 0 1


describes precession of the transverse magnetization about the z-axis.

6



2.1.2 Bloch-McConnell Equation

The Bloch equation (2.1) uses a single-compartment model, assuming that the imaged object

is homogeneous at position r and thus can be described by a single T1 and T2. However, a

more realistic model is a multi-compartment model, where at position r there exist multiple

chemical environments, giving rise to a net magnetization vector that is a composite of the

magnetization vectors originating from each of the chemical environments. Additionally, nu-

clei may move from one compartment to another through chemical exchange. The dynamics

of the magnetization vectors for each compartment in a multi-compartment model with C

compartments are described by the Bloch-McConnell [18] equation4:

∂

∂t
M⃗MC(r, t) =


Ac1(r, t) Ec2→c1(r) · · · EcC→c1(r)

Ec1→c2(r) Ac2(r, t) · · · EcC→c2(r)
...

...
. . .

...

Ec1→cC (r) Ec2→cC · · · AcC (r, t)

M⃗MC(r, t)

+


M⃗0,c1(r)/T1,c1(r)

...

M⃗0,cC (r)/T1,cC (r)

 , (2.6)

where

Aci(r, t) ≜


− 1

T2,ci
(r)

−∑
j ̸=i

1
τci→cj (r)

∆ωci(r) −2πγB1,y(r, t)

−∆ωci(r) − 1
T2,ci

(r)
−∑

j ̸=i

1
τci→cj (r)

2πγB1,x(r, t)

2πγB1,y(r, t) −2πγB1,x(r, t) − 1
T1,ci

(r)
−∑

j ̸=i

1
τci→cj (r)


for i = 1, . . . , C,

Eci→cj(r) ≜ diag

([
1

τci→cj(r)
,

1

τci→cj(r)
,

1

τci→cj(r)

]⊺)
for i, j = 1, . . . , C, diag(·) creates a diagonal matrix with its vector input along the main

diagonal, T1,ci is the T1 for compartment ci, T2,ci is the T2 for compartment ci, ∆ωci is the off-

resonance frequency for compartment ci, τci→cj is the residence time (inverse exchange rate)

for exchange from compartment ci to compartment cj, M⃗0,ci(r) ≜ [0, 0, fci(r)M0(r)]
⊺ is the

thermal equilibrium magnetization vector for compartment ci, fci is the fraction of nuclei at

4Like the Bloch equation (2.1), the Bloch-McConnell equation (2.6) is presented in the rotating frame of
reference.
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position r that correspond to compartment ci (
∑C

i=1 fci = 1), and M⃗MC ≜ [M⃗ ⊺
c1
· · ·M⃗ ⊺

cC
]⊺

collects the magnetization vectors for each compartment. The overall net magnetization

vector is M⃗ =
∑C

i=1 M⃗ci . Note that when the number of compartments is C = 1 the

Bloch-McConnell equation (2.6) is the same as the Bloch equation (2.1). For analyzing the

Bloch-McConnell equation, it is again convenient to split into two cases: one for excitation,

and another for free precession, relaxation, and exchange.

Excitation

For excitation, i.e., neglecting the effects of free precession, relaxation, and exchange (and

again assuming B1 is aligned with the x-axis), the Bloch-McConnell equation (2.6) becomes

∂

∂t
M⃗MC(r, t) =

IC ⊗

0 0 0

0 0 2πγB1,x(r, t)

0 −2πγB1,x(r, t) 0


M⃗MC(r, t), (2.7)

where ⊗ denotes the Kronecker product. In this case, the dynamics of each compartment

are decoupled, and so the solution to (2.7) is the same as the Bloch equation solution (2.3)

applied to each compartment individually, i.e.,

M⃗MC(r, t0 +∆t) = (IC ⊗Rx(r))M⃗MC(r, t0)

=


Rx(r)M⃗c1

...

Rx(r)M⃗cC

 . (2.8)

Free Precession, Relaxation, and Exchange

In the absence of B1, the Bloch-McConnell equation (2.6) becomes

∂

∂t
M⃗MC(r, t) = A(r)M⃗MC(r, t) + c(r), (2.9)

where

A(r) ≜


Ãc1(r) Ec2→c1(r) · · · EcC→c1(r)

Ec1→c2(r) Ãc2(r) · · · EcC→c2(r)
...

...
. . .

...

Ec1→cC (r) Ec2→cC · · · ÃcC (r)

 , c(r) ≜


M⃗0,c1(r)/T1,c1(r)

...

M⃗0,cC (r)/T1,cC (r)

 ,
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and

Ãci(r) ≜


− 1

T2,ci
(r)

−∑
j ̸=i

1
τci→cj (r)

∆ωci(r) 0

−∆ωci(r) − 1
T2,ci

(r)
−∑

j ̸=i

1
τci→cj (r)

0

0 0 − 1
T1,ci

(r)
−∑

j ̸=i

1
τci→cj (r)


for i = 1, . . . , C. The solution to (2.9) for t > t0 is

M⃗MC(r, t) = e(t−t0)A(r)M⃗MC(r, t0) + (I3C − e(t−t0)A(r))M⃗0,MC(r), (2.10)

where M⃗0,MC ≜ [M⃗ ⊺
0,c1

· · ·M⃗ ⊺
0,cC

]⊺, and eX ≜
∑∞

k=0
1
k!
Xk is the matrix exponential function.

In general, there is no simpler form that avoids the matrix exponential. However, if there

is no exchange between a compartment and any of the others then that compartment’s

dynamics are decoupled from the other compartments’ dynamics, and thus can be solved

independently using the solution to the Bloch equation (2.5).

As stated previously, MRI measures transverse magnetization Mxy. For the multi-

compartment case, the measured signal is a composite of the transverse magnetizations

for each individual compartment, i.e., Mxy =
∑C

i=1Mxy,ci . In the absence of exchange, each

compartment’s dynamics evolve independently (and thus can ignore compartment fraction).

Then the measured signal is a weighted sum of each compartment’s transverse magnetization,

i.e., Mxy =
∑C

i=1 fciMxy,ci .

2.1.3 MRI Scans

The Bloch and Bloch-McConnell equations (2.1) and (2.6) can be used to model MRI scans.

Essentially, an MRI scan is a way to manipulate magnetization vectors to obtain a desired

signal (which of course depends on tissue properties such as T1 and T2). Different scans

differentiate themselves by changing the dynamics magnetization vectors experience, accom-

plished by changing the TR, TE, flip angle(s), number of RF pulses per TR, and phase of the

RF pulse(s), among other things. The large number of user-controlled parameters results in

a variety of unique MRI scans.

2.2 Small-Tip Fast Recovery (STFR)

One type of MRI scan is small-tip fast recovery (STFR) [8]. STFR includes two RF pulses

per TR, providing greater flexibility in controlling magnetization dynamics (and thus the
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observed signal) than traditional MRI scans that include only one RF pulse.

One repetition of STFR begins with an initial tip-down excitation with flip angle α. Then

there is time Tfree during which free precession occurs, after which there is a tip-up excitation

(“fast recovery”) where magnetization is rotated up towards the +z-axis with flip angle β

and phase ϕ. Finally, there is gradient spoiling5 for time Tg. For STFR, TR = Tfree + Tg.

STFR is a steady-state scan, meaning the signal is acquired after many repetitions such

that the net magnetization experiences the same dynamics from repetition to repetition.

An expression for the steady-state magnetization can be obtained by setting up a recurrence

relation. Note that the solutions to the Bloch and Bloch-McConnell equations (2.1) and (2.6)

for the simplified cases of excitation and free precession, relaxation, and exchange all have the

form M⃗+ = AM⃗−+c, where M⃗− is the magnetization before the dynamics occur and M⃗+

is the magnetization after (and c is the zero vector in the case of excitation); thus A and c

describe the dynamics that the magnetization experiences. Let M⃗1 be the magnetization just

after the tip-down pulse. This magnetization then experiences free precession, relaxation,

and exchange for time Tfree (with dynamics Afree and cfree), followed by the tip-up pulse

(with dynamics Atip−up), gradient spoiling, and finally the tip-down pulse (with dynamics

Atip−down). For simplicity, the gradient spoiling can be modeled as free precession, relaxation,

and exchange for time Tg (with dynamics Aspoil and cspoil) followed by (assumed) ideal

spoiling in which the x- and y-components of the magnetization (for each compartment) are

set to 0 (modeled by multiplication with a matrix S). Written mathematically,

M⃗2 = AfreeM⃗1 + cfree

M⃗3 = Atip−upM⃗2

M⃗4 = AspoilM⃗3 + cspoil

M⃗5 = SM⃗4

M⃗6 = Atip−downM⃗5.

In steady-state, M⃗ss ≜ M⃗1 = M⃗6. Thus,

M⃗ss = (I3C −Atip−downSAspoilAtip−upAfree)
−1 (Atip−downS (AspoilAtip−upcfree + cspoil)) ,

(2.11)

where M⃗ss is the steady-state magnetization immediately following the tip-down pulse. The

5Gradient spoiling can be viewed as free precession with purposely induced off-resonance with the intent
to zero out the signal within each voxel.
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steady-state magnetization at the echo time is then given by

M⃗ss,TE = ATEM⃗ss + cTE, (2.12)

where ATE and cTE describe the dynamics of free precession, relaxation, and exchange for

time TE.

For a single compartment, (2.12) has an analytical expression; the steady-state signal

obtained at a given spatial location from an STFR scan at echo time TE ∈ (0, Tfree) (typically,

TE = Tfree/2 for Cartesian scans) is given by [19]

s(M0, T1, T2,∆ω, κ, Tfree, Tg, α, β, ϕ, TE) =

M0 sin(κα)
[
e−Tg/T1

(
1− e−Tfree/T1

)
cos(κβ) +

(
1− e−Tg/T1

)]
e−TE/T2e−i∆ωTE

1− e−Tg/T1e−Tfree/T2 sin(κα) sin(κβ) cos(∆ω · Tfree − ϕ)− e−Tg/T1e−Tfree/T1 cos(κα) cos(κβ)
.

(2.13)

For multiple compartments with exchange, there is no analytical expression for the steady-

state signal due to the matrix exponential in (2.10). For any compartment ci that does not

exchange with the other compartments, however, its steady-state signal can be computed

using (2.13) (using fciM0 instead of M0) and then added to the signal generated from the

other compartments that do exchange with each other (computed using the Bloch-McConnell

equation (2.6)).

The STFR signal depends on both known, user-controlled scan parameters and unknown

tissue parameters. If multiple STFR scans are acquired with different scan parameters,

then the unknown tissue parameters can be estimated using a variety of different estimation

techniques. (Figure 3.10 shows examples of such STFR scans.)

2.3 Parameter Estimation via Regression with Kernels

(PERK)

One estimation technique is parameter estimation via regression with kernels (PERK) [9], a

supervised learning method for estimating unknown parameters x given data observations y

and known parameters ν (which are typically estimated separately and then treated as known

values in PERK). In the context of MRI, y ∈ CD collects the acquired signal for a single

voxel across D scans, and x and ν collect the unknown and known parameters (e.g., T1, ∆ω,

etc.) for the corresponding voxel. Training data is obtained by simulating data observations

yi (e.g., by using the Bloch-McConnell equation (2.6) or STFR signal model (2.13) for each
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of the D scans) for various values of unknown and known parameters xi and νi; these T

training data points are collected as (q1,x1), . . . , (qT ,xT ), where qi ≜ [|yi|⊺ ν⊺
i ]

⊺ ∈ RQ

and | · | denotes element-wise complex modulus. Each qi is a training feature vector with

Q features, and the test feature vector q is formed analogously for each voxel of acquired

data. PERK computes estimates via regularized linear regression (ridge regression) after

first transforming the feature vectors q (for both training and testing) via some user-defined

feature map (which is never directly used but is indirectly specified through the choice of

kernel function). The PERK estimator is [9]

x̂(q) =
1

T
X1T +XM(MKM + TρIT )

−1k(q), (2.14)

where X ≜ [x1 · · ·xT ] denotes all of the unknown parameters in the training data, 1T ∈ RT

is a vector of all ones, M ≜ IT − 1
T
1T1

⊺
T is a de-meaning operator, ρ is a regulariza-

tion parameter, the Gram matrix K ∈ RT×T has entries Ki,j ≜ k(qi, qj), where k(q) =

[k(q, q1), . . . , k(q, qT )]
⊺ − 1

T
K1T , and k(q, q

′) is the user-specified kernel function. A com-

mon choice of kernel function is the Gaussian kernel

k(q, q′) = exp

(
−1

2
∥Λ−1(q − q′)∥22

)
, (2.15)

where Λ is a positive definite weighting matrix. PERK with a Gaussian kernel corresponds to

first transforming the feature vectors q via a nonlinear feature map into infinite-dimensional

features, and then applying ridge regression on the transformed features. This lifting of fea-

tures to a higher-dimensional space improves the ability to capture the nonlinear dependence

of the signal on the unknown parameters to be estimated.

When the number of training examples T is large, (2.14) requires inverting a large matrix.

To reduce computation, one can approximate (2.14) using random Fourier features [9, 20].

Specifically, features q ∈ RQ can be approximated with

z(q) =

√
2

H
[z(v1, s1; q), . . . , z(vH , sH ; q)]

⊺,

where H is the kernel approximation order. It is an approximation in the sense that, by the

strong law of large numbers,

lim
H→∞

z(q)⊺z(q′)
a.s.−→ Ev,s[z(v, s; q)z(v, s; q

′)] = k(q, q′)

for translation-invariant kernels, an appropriate function z, and appropriate probability dis-
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tributions for v and s. For the (translation-invariant) Gaussian kernel (2.15),

z(v, s; q) = cos(2π(v⊺q + s)),

v1, . . . ,vH are drawn independently from pv ∼ N (0Q, (2πΛ)−2) (note that this Λ is the

same as in (2.15)), and s1, . . . , sH are drawn independently from ps ∼ unif(0, 1). With this

approximation, the PERK estimator (2.14) becomes [9]

x̂(q) =
1

T
X1T +

1

T
XMZ⊺

(
1

T
ZMZ⊺ + ρIH

)−1(
z(q)− 1

T
Z1T

)
, (2.16)

where Z ≜ [z(q1) · · · z(qT )] is such that Z⊺Z is a low-rank approximation to K.

2.4 Myelin Water Imaging (MWI)

One parameter that we wish to estimate is myelin water fraction (MWF). Myelin plays an

important role in the transmission of electrical signals throughout the brain, and myelin loss

is associated with decreased cognitive function. As a result, being able to measure myelin

content is of interest. The structure of myelin is smaller than typical MRI voxel sizes, so

direct imaging is not possible. However, one can account for multiple compartments within

a voxel to create quantitative maps of myelin content. Specifically, myelin water imaging

(MWI) involves creating an image of MWF, the fraction of MRI signal from a given voxel

that comes from 1H nuclei in myelin water (the water trapped between lipid bilayers within

the myelin sheath, as illustrated in Figure 2.1). The differences in the tissue parameter values

of myelin water and non-myelin water—in particular their very different T2 times (∼20 ms for

myelin water versus ∼80 ms for non-myelin water)—result in different signal characteristics,

enabling separation of the two compartments.

2.4.1 Multi-Echo Spin Echo (MESE)

The standard method for myelin water imaging uses the multi-echo spin echo (MESE) MRI

scan. A MESE scan samples the signal at multiple time points after excitation, giving

information about the T2 decay characteristics of the signal. This information is useful for

separating myelin water from non-myelin water based on T2 values.

One repetition of MESE [21] that uses a Carr-Purcell-Meiboom-Gill (CPMG) train con-

sists of an initial excitation with flip angle αex = 90◦ about the x-axis followed by a sequence

of Nref refocusing excitations with flip angle αref = 180◦ about the y-axis. The signal is
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Figure 2.1: Image of myelin from an electron microscope. The myelin sheath (shaded in
blue) consists of layers of myelin (myelin bilayers). Water trapped within the myelin bilayers
is called myelin water, and all other water (both within the axon—the area enclosed by
the myelin sheath—and without the axon) is called non-myelin water. (Original image
from http://www.teachmentortexts.com/2013/01/be-agent-of-change.html, accessed
September 18, 2020 at 9:57 AM EDT.)
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sampled at times TE, 2TE, . . . , NrefTE after the initial excitation, resulting in Nref images in

one MESE scan.

MWF is estimated from the MESE images using the nonnegative least squares (NNLS)

algorithm, which solves

x̂(y) = argmin
x≥0

∥Ax− y∥22 + β∥x∥22, (2.17)

where x ≥ 0 constrains each element of x to be nonnegative, and β ≥ 0 is a regularization

parameter. In the context of myelin water imaging with MESE, y ∈ RNref represents the

acquired magnitude MESE signals (one after each refocusing excitation) for a given voxel,

A ∈ RNref×C is a dictionary where each column represents the Nref simulated magnitude

MESE signals for a particular choice of T2, and x ∈ RC represents how much of the different

T2 compartments are present. MWF is calculated by summing up the elements of x̂ that

correspond to T2 values within a certain range corresponding to myelin water (typically

10–40 ms) divided by
∑C

c=1 x̂c.

One benefit of using NNLS for myelin water imaging is that a large number of compart-

ments C can be modeled at one time by specifying C different T2 values when constructing

the signal dictionaryA. On the other hand, this method ignores exchange between any of the

compartments, as the signals arising from different compartments are just linearly combined

to model the acquired signals y. Another drawback is that the dictionary entries vary only

with T2 (i.e., other tissue parameters are held constant), though there are generalizations

that overcome this issue (at the cost of increased computation) [22].

2.4.2 Tissue Models for MWI

When using NNLS, one assumes a certain tissue model, one wherein the tissue is charac-

terized by C different compartments that differ only in T2 values and that do not exchange

with each other. There are other tissue models that can be utilized as well. This disser-

tation considers three other models: a two-compartment model with and without exchange

and a three-compartment model with exchange. These models are described next and are

summarized in Figure 2.2.

Two-Compartment Tissue Model with and without Exchange

The two-compartment tissue model without exchange consists of two compartments that

represent myelin water and non-myelin water and that differ in T1, T2, and off-resonance

frequency, as shown in Figure 2.2(a). The T1 and T2 values of the myelin water compartment
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(a) Two-compartment model without exchange.

M0

T1,f
T2,f
ff
∆ωf

Myelin
Water

M0 T1,s

T2,s fs

Non-Myelin
Water

(b) Three-compartment model with exchange.

Myelin Water

M0 T1,f

T2,f ff

∆ωf

M0 T1,m

T2,m fm

Macromolecules

M0 T1,s

T2,s fs

Non-Myelin
Water

τf→s

τs→f

τ
f→

m

Figure 2.2: Tissue models for MWI. The two compartments of the two-compartment model
(a) are myelin water and non-myelin water, each with its own T1, T2, compartment frac-
tion, and (for myelin water) off-resonance frequency. Exchange between myelin water and
non-myelin water can also be modeled (not shown). The three-compartment model (b)
adds a macromolecule compartment, with its own T1, T2, and compartment fraction, as
well as exchange from myelin water to macromolecules. The subscript “f” is for “fast” or
“fast-relaxing” and is used for myelin water because it experiences faster relaxation than
non-myelin water; conversely, non-myelin water uses the subscript “s” for “slow” or “slow-
relaxing”. The subscript “m” stands for “macromolecule”.
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are denoted as T1,f and T2,f (the subscript “f” refers to “fast” or “fast-relaxing” and arises

because the T1 and T2 values of the myelin water compartment are smaller than those of

the non-myelin water compartment, leading to faster relaxation rates). Similarly, the T1 and

T2 values of the non-myelin water compartment are denoted as T1,s and T2,s (“s” for “slow”

or “slow-relaxing”). The two compartments share the same M0, but differ in compartment

fraction (ff for myelin water, fs for non-myelin water). In this sense, M0 represents the

total equilibrium magnetization in the voxel, while M0ff and M0fs represent the effective

M0 for each compartment individually. MWF is represented by ff , and ff +fs = 1 since they

represent fractions of the entire observed signal for one voxel. Off-resonance frequency ∆ω

(also called the bulk off-resonance frequency) is not tissue specific, and thus is not included

in the tissue model; however, other sources of off-resonance effects can be tissue specific,

leading to different off-resonance frequencies for tissues that experience such effects. This

additional off-resonance frequency is denoted by ∆ωf , and plays a role only in the myelin

water compartment [1]. (To be clear, the total off-resonance frequency experienced by myelin

water is ∆ω+∆ωf , and that experienced by non-myelin water is just ∆ω.) The myelin water

off-resonance shift ∆ωf comes from magnetic susceptibility differences between myelin and

the surrounding water and varies with the orientation of the myelinated axons with respect

to B0 [23].

The two-compartment model can also incorporate exchange, characterized by the resi-

dence time or inverse rate of exchange. Specifically, magnetization exchanges from the myelin

water compartment to the non-myelin water compartment (with residence time τf→s) and

vice versa (with residence time τs→f). This model also assumes the two compartments are

in chemical equilibrium, meaning ffτs→f = fsτf→s.

Three-Compartment Tissue Model with Exchange

The three-compartment tissue model with exchange consists of three compartments that rep-

resent myelin water, non-myelin water, and macromolecules and that differ in T1, T2, and off-

resonance frequency, as shown in Figure 2.2(b). This model starts with the two-compartment

exchanging model and adds another compartment for magnetization in macromolecules.

The associated T1, T2, and compartment fraction are T1,m, T2,m, and fm (“m” for “macro-

molecule”). As in the two-compartment model, MWF is represented by ff , ff + fs + fm = 1,

and only the myelin water compartment experiences additional off-resonance. Unlike the

two-compartment exchanging model, the three-compartment model incorporates exchange

from the myelin water compartment to the macromolecule compartment (with residence time

τf→m) [3].

In this dissertation, I used these different tissue models for MWI. In particular, in Chap-
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ter 3 I used the three-compartment model with exchange. I chose to use this model because

not only does it model myelin water and non-myelin water, but it also accounts for macro-

molecules that, despite having very short T2 times, nevertheless influence the acquired signal

through exchange [3]. Later, in Chapter 4, I opted to use the two-compartment model with

exchange to have a model with fewer parameters and because exchange between water and

macromolecules manifests as a change in water T1 values (see Section 4.8). In both cases,

however, I sought to use a model that incorporated relevant MR physics to enable accurate

MWF estimates.
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CHAPTER 3

Myelin Water Fraction Estimation Using Small-Tip

Fast Recovery MRI

This chapter presents published journal paper [10] that extends conference abstracts [11]

and [12]. Sections 3.1–3.6 are taken from the main published paper [10], and Section 3.7 is

taken from the supporting information for the paper.

3.1 Introduction

Quantitative magnetic resonance imaging (QMRI) is the application of MRI to estimate

parameters of interest. One QMRI application of growing interest is myelin water imaging,

where one seeks quantitative maps of myelin water fraction (MWF) [2, 24]. The MWF is

the proportion of MRI signal in a given voxel that originates from water bound within the

myelin sheath. MWF maps are desirable for tracking progression of demyelinating diseases

[24], e.g., multiple sclerosis [6].

The most widely accepted myelin water imaging techniques use the multi-echo spin echo

(MESE) MRI scan (or variants) [6,22,25]. MESE is the standard for clinical MWF imaging

to which alternative MWF mapping techniques are typically compared. However, MESE

traditionally suffers from long scan times, impeding its routine clinical use. On the other

hand, a combined gradient and spin echo (GRASE) MRI scan, a variant of MESE, has been

shown to enable whole-brain MWF maps in under 8 minutes [26].

An alternative to MESE-based myelin water imaging is multicomponent driven equilib-

rium single pulse observation of T1 and T2 (mcDESPOT) that uses faster, steady-state MRI

scans [27] that can acquire whole-brain MWF maps in 7 minutes [26]. Despite evidence

showing that this method produces reproducible MWF maps (thus enabling longitudinal

studies), there are concerns about overestimating the true MWF [28, 29] and its precision

[30]. Other steady-state methods have also been explored for MWF estimation, such as

multi-echo gradient echo (GRE) [31–33] and dual-echo steady-state (DESS). [34–36].
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To our knowledge, most of these myelin water imaging techniques ignore potential differ-

ences in the effective magnetic field experienced by myelin-bound water compared to water

outside of myelin (an exception being [33]). However, it has been shown that in cerebral

white matter, myelin-bound water does in fact experience a different effective magnetic field

[1].

In preliminary work [11], we showed that modeling the additional off-resonance experi-

enced by myelin water reduces the Cramér-Rao Lower Bound (CRLB) of estimates of MWF

using small-tip fast recovery (STFR) MRI [8]. We showed that the STFR sequence is sen-

sitive to the frequency differences, suggesting that the difference in off-resonance between

myelin and non-myelin water is a potentially useful contrast mechanism containing informa-

tion that can help estimate MWF [11]. Simulations using optimized STFR scan parameters

led to MWF estimates with lower errors when there was a fixed, non-zero (but unknown)

difference in off-resonance, compared to when there was no (still unknown) frequency dif-

ference. To our knowledge, this work was the first to specifically design scans for myelin

water imaging that exploit frequency differences. Because the actual frequency difference

is unknown and might vary between voxels or disease conditions, the proposed approach

treats the difference as an unknown parameter that is estimated alongside other unknown

parameters like the T1 and T2 values of the various tissue compartments.

One limitation of our previous work was its tissue model. In [11] we assumed a two-

compartment, non-exchanging model for simplicity in computing the STFR signal. However,

neglecting exchange can lead to biases in MWF estimates [37]. Therefore, the method

proposed in this chapter uses a three-compartment model. The three compartments are

myelin water, non-myelin water, and a macromolecular pool; myelin water and non-myelin

water are in exchange, while myelin water exchanges with the macromolecular pool [3].

We previously estimated MWF from optimized STFR scans using parameter estimation

via regression with kernels (PERK), a recently developed learning-based technique for pa-

rameter estimation in MRI that uses kernel ridge regression at its core [9,11]. One alternative

method for MWF estimation is nonlinear least squares, which requires iterative methods for

solving and can get stuck in a local minimum. Another alternative is dictionary search,

which requires evaluating the STFR signal model on a discretized grid of the signal model

parameters, which quickly becomes impractical as the number of parameters increases due

to the exponential scaling of the dictionary size and compute time. Yet another alternative

is to use a neural network. While neural networks can lead to good parameter estimates,

they require a lot of training data and long training time. In contrast, PERK trains quickly

and avoids the other problems associated with nonlinear least squares and dictionary search.

Therefore, this work again uses PERK.
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This chapter substantially builds upon our previous work. First, we re-optimize the

STFR scan parameters to model variations of bulk off-resonance and to account for two

spoiled gradient-recalled echo (SPGR) scans that are used for separate bulk off-resonance

estimation. Next, we compare STFR-based MWF estimates to MESE-based MWF estimates

in simulation. In particular, we estimate MWF from the optimized STFR scans with PERK

[9] using a three-compartment tissue model with exchange. Finally, we compare our proposed

STFR-based MWF estimation method to MESE-based MWF estimation in vivo. Figure 3.1

illustrates the proposed approach.

The organization of this chapter is as follows. Section 3.2 provides background informa-

tion on the scans used in this work (STFR and MESE), the scan design process, and PERK.

Section 3.3 outlines our experiments, both for the STFR scan design and for MWF esti-

mation in simulation and in vivo. Section 3.4 reports the experimental results. Section 3.5

discusses our results. Section 3.6 gives concluding remarks.

3.2 Background

3.2.1 STFR

One repetition of STFR [8] begins with an initial tip-down excitation with flip angle α. Then

there is time Tfree during which free precession occurs, after which there is a tip-up excitation

(“fast recovery”) where magnetization is rotated up towards the +z-axis with flip angle β

and phase ϕ. Finally there is gradient spoiling for time Tg. For a single compartment, the

signal obtained at a given spatial location from a STFR scan is given by [19]

s1(M0, T1, T2,∆ω, κ, Tfree, Tg, α, β, ϕ) =

M0 sin(κα)
[
e−Tg/T1

(
1− e−Tfree/T1

)
cos(κβ) +

(
1− e−Tg/T1

)]
e−Tfree/(2T2)e−i∆ωTfree/2

1− e−Tg/T1e−Tfree/T2 sin(κα) sin(κβ) cos(∆ω · Tfree − ϕ)− e−Tg/T1e−Tfree/T1 cos(κα) cos(κβ)
,

(3.1)

where M0 is the equilibrium magnetization, T1 and T2 are the spin-lattice and spin-spin

time constants, respectively, ∆ω is the off-resonance frequency, and κ is a flip angle scaling

constant (to account for differences between the prescribed and actual flip angles). Note

that approximating flip angle error as a scale factor is accurate for the small flip angles used

in this work, but typically inaccurate at larger flip angles. STFR with β = 0 is the same as

SPGR with TR = Tfree + Tg.

For myelin water imaging, more than one compartment must be modeled. In a two-

compartment model, one compartment consists of spins within myelin (myelin water), and
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Figure 3.1: Workflow of the proposed methods. We first optimized a set of STFR scan
parameters by minimizing a Cramér-Rao Lower Bound, then acquired data using those
scans, as well as Bloch-Siegert (BS) scans. Two of the STFR scans were equivalent to SPGR
scans, so were used to estimate ∆ω, and the BS scans were used to estimate κ. These
parameters were treated as known values in the MWF estimation step. We then generated
noisy training data using an STFR signal model. Finally, we passed the training data,
acquired STFR images, and known parameters to PERK to estimate MWF voxel-by-voxel.
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the other compartment consists of other spins (non-myelin water). If one neglects ex-

change, then the STFR signal at a given spatial location is the weighted sum of the single-

compartment STFR signals of the individual compartments:

s2(M0, ff , T1,f , T1,s, T2,f , T2,s,∆ωf ,∆ω, κ, Tfree, Tg, α, β, ϕ) =

ff · s1(M0, T1,f , T2,f ,∆ω +∆ωf , κ, Tfree, Tg, α, β, ϕ) +

(1− ff) · s1(M0, T1,s, T2,s,∆ω, κ, Tfree, Tg, α, β, ϕ), (3.2)

where the weight ff is the myelin water fraction (MWF), T1,f and T2,f are the T1 and T2

time constants for the fast-relaxing, myelin water compartment, T1,s and T2,s are the T1

and T2 time constants for the slow-relaxing, non-myelin water compartment, and ∆ωf is the

additional off-resonance that is experienced only by myelin water [1].

Although (3.2) has a convenient analytical expression, a more accurate tissue model

for cerebral white matter consists of three compartments (non-myelin water, myelin water,

and a macromolecule water pool) with exchange between the non-myelin and myelin water

compartments and from the myelin water compartment to the macromolecule compartment

[3]. In this case, the STFR signal is also a function of the macromolecule compartment

volume fraction fm, the macromolecule compartment T1,m and T2,m, the residence time for

exchange from myelin water to non-myelin water τf→s, and the residence time for exchange

from myelin water to the macromolecule compartment τf→m, in addition to the previously

mentioned parameters. We assume the myelin water and non-myelin water compartments are

in chemical equilibrium, which means that ffτs→f = (1−ff−fm)τf→s, and we assume there is

no other exchange, i.e., τm→f = τs→m = τm→s = ∞ [3]. Because of exchange, the STFR signal

no longer has an analytical expression and must be computed using the Bloch-McConnell

equation [18].

3.2.2 MESE

One repetition of MESE [21] consists of an initial excitation with flip angle αex (typically

90◦) followed by a sequence of Nref refocusing excitations with flip angle αref (typically 180◦).

The signal is sampled at times TE, 2TE, . . . , NrefTE after the initial excitation, resulting in

Nref images in one MESE scan. The repetition time TR is typically chosen to be long enough

so that the net magnetization of the spins is in equilibrium prior to each repetition. Thus,

the MESE signal is a function of αex, αref , TE, and TR, as well as the same tissue parameters

as the STFR signal; but if TR is sufficiently long there is little dependence on T1 (of any

compartment). Additionally, for myelin water imaging using MESE, normally the acquired
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MESE signal is modeled as a weighted sum of MESE signals from individual compartments,

i.e., ignoring exchange between compartments. When ignoring exchange, we computed the

MESE signal using the extended phase graph (EPG) method [38]. When accounting for

exchange, we used Bloch-McConnell simulation.

3.2.3 Scan Design Using the Cramér-Rao Lower Bound

MR image data for a single voxel in a single scan is often modeled as

y = f(x,ν,p) + ϵ, (3.3)

where f(x,ν,p) ∈ C is the MR signal that is a function of unknown parameters x, known

parameters ν, and scan parameters p; and ϵ ∼ CN (0, σ2) is additive complex Gaussian

noise. When there are D scans then the data for a single voxel across each scan is collected

into a vector:

y = f(x,ν,P ) + ϵ, (3.4)

where y ∈ CD, f(x,ν,P ) = [f1(x,ν,p1), . . . , fD(x,ν,pD)]
T , fd is the signal given by the

dth scan for d = 1, . . . , D, P = (p1, . . . ,pD) denotes the collection of all scan parameters,

and the noise vector is ϵ ∼ CN (0,Σ). We assume that each scan has noise independent

of the other scans, and we assume that each scan has the same noise variance σ2; thus

Σ = σ2ID, where ID is the D ×D identity matrix.

For simplicity in computing the Fisher information matrix (see below), we further assume

that the MR signal model f is real-valued. We also take the magnitude of the received signal

y, resulting in a Rician distributed signal [39]; however, we assume sufficiently high SNR so

that this magnitude signal is approximately normally distributed with mean f(x,ν,p) and

variance σ2.

Under these assumptions, the Fisher information matrix for the magnitude of signal

model (3.4) is [40]

I(x,ν,P ) =
1

σ2
(∇xf(x,ν,P ))⊺(∇xf(x,ν,P )), (3.5)

where ∇x denotes a row gradient with respect to the unknown parameters x. The inverse

Fisher information matrix gives the Cramér-Rao Lower Bound (CRLB) for unbiased estima-

tors [41]. In particular, the variance of an unbiased estimator for the ith unknown parameter

xi has a lower bound given by the ith diagonal element of the inverse Fisher information

matrix, i.e., var(x̂i) ≥ [(I(x,ν,P ))−1]i,i. This bound on the precision of unbiased estima-

tors is useful for optimizing experimental designs. The CRLB has been used to optimize

24



MR sequence parameters for a variety of pulse sequences and applications, e.g., [9, 42–44].

In this work, we optimize scan parameters of a set of D STFR scans for MWF estimation

by minimizing an expected weighted sum of the CRLB for each unknown parameter [45]:

P̂ = argmin
P∈P

Ex,ν [trace(W (I(x,ν,P ))−1)], (3.6)

where P denotes the scan parameter search space, Ex,ν denotes an expectation over x and ν,

and W is a diagonal weighting matrix used to indicate the relative importance of precisely

estimating the different unknown parameters.

3.2.4 Parameter Estimation via Regression with Kernels (PERK)

This section describes the PERK method we use to estimate MWF from STFR scans. Sup-

pose a set of scan parameters P is given, typically the P̂ from the scan design process (3.6).

We seek to estimate unknown parameters x after acquiring data using the D scans corre-

sponding to these scan parameters. We generate training data by simulating data yn via

(3.4) with appropriate signal models f for various values of unknown and known parame-

ters xn and νn; these N training data points are collected as (q1,x1), . . . , (qN ,xN), where

qn = [|yn|T ,νT
n ]

T and | · | denotes element-wise complex modulus. After scanning (with

the scan parameters P ), we have test data q for each voxel (where ν collects separately

estimated parameters, such as B1+ maps, that are treated as known values), and we want

to estimate x. PERK computes estimates via regularized linear regression (ridge regres-

sion), after first transforming the feature vectors q (for both training and testing) via some

user-defined feature map (which is never directly used but is indirectly specified through the

choice of kernel function). The PERK estimator is [9]

x̂(q) =
1

N
X1N +XM(MKM +NρIN)

−1k(q), (3.7)

whereX = [x1, . . . ,xN ] denotes all of the training data, 1N ∈ RN is a vector of all ones,M =

IN − 1
N
1N1

T
N is a de-meaning operator, ρ is a regularization parameter, the Gram matrix

K ∈ RN×N has entries Ki,j = k(qi, qj), where k(q) = [k(q, q1), . . . , k(q, qN)]
T − 1

N
K1N ,

and k(q, q′) is the user-specified kernel function. In this work, we used the Gaussian kernel

k(q, q′) ≜ exp

(
−1

2
∥Λ−1(q − q′)∥22

)
, (3.8)

where Λ is a positive definite weighting matrix. PERK with a Gaussian kernel corresponds to

first transforming the feature vectors q via a nonlinear feature map into infinite-dimensional
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features, and then applying ridge regression on the transformed features. This lifting of fea-

tures to a higher-dimensional space improves the ability to capture the nonlinear dependence

of the signal on the unknown parameters we wish to estimate.

To reduce storage and computational needs, we approximated (3.7) using random Fourier

features [9, 20].

3.3 Methods

This section describes the experiments performed in this work. We first explain the scan

design process for optimizing a set of STFR scans for MWF estimation. We then explain

simulated MWF estimation experiments that compare our proposed method to MESE-based

MWF estimation. Finally, we explain an experiment to test our proposed method in vivo.

The code for reproducing the methods and results in this chapter is available at https:

//github.com/StevenWhitaker/STFR-MWF. The raw data is available at https://doi.

org/10.7302/nw6e-1d66.

3.3.1 Scan Design

For the STFR scan design, we computed the CRLB using the two-compartment non-ex-

changing signal model (3.2). (We used the non-exchanging model as opposed to the three-

compartment exchanging model for computational reasons.) We chose the weighting matrix

W to place full weight on the CRLB for ff (i.e., the diagonal entries of W were all 0 except

for a 1 in the location corresponding to ff). We took the flip angle scaling κ and bulk off-

resonance ∆ω to be known, i.e., part of ν, and we optimized a set of D = 11 STFR scans.

Two of these scans were SPGR scans with fixed scan parameters and an echo time shift. We

included these scans to enable the option of estimating ∆ω using conventional techniques

and then treat ∆ω as known for further parameter estimation.

We fixed Tg = 2.8 ms across all 11 scans. We fixed α = 5◦ and Tfree = 10.3 ms for the

two SPGR scans. We chose a small flip angle to limit contrast between white matter and

gray matter in the SPGR scans (and thus in the estimated field map). The TE of each STFR

scan and the first SPGR scan was 4 ms. The echo time shift between the two SPGR scans

was 2.3 ms, chosen such that fat would be out of phase between the two SPGR scans at 3 T.

For the remaining nine STFR scans, we fixed Tfree = 8 ms and we constrained α ∈ [1, 15]◦,

β ∈ [0, 15]◦, and ϕ ∈ [−180, 180]◦. We chose the fixed timing parameters to be small but still

physically realizable, and we chose the flip angle constraints to ensure the resulting scans

would be well below specific absorption rate (SAR) constraints.
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The expectation in (3.6) requires choices for the probability distributions of the unknown

and known parameters. Table 3.1 shows the distributions we used. To explore the effect that

the additional myelin water off-resonance ∆ωf has on the CRLB of ff , we performed one

scan design (design A) where we took ∆ωf to be unknown, and another (design B) where

we ignored ∆ωf (i.e., we assumed it was known and equal to 0). To solve the optimization

in (3.6), we used the NLopt package [46–49] in the Julia programming language [50].

3.3.2 MWF Estimation

For MWF estimation, we compared several estimation protocols. The proposed method,

which we call STFR3-PERK, uses PERK to estimate MWF from the optimized STFR scans,

with training data generated using the three-compartment exchanging model. This method

assumes bulk off-resonance ∆ω and flip angle scaling κ are known (unless otherwise noted).

Another method, STFR2-PERK, is the same as STFR3-PERK, except training data is

generated using the two-compartment non-exchanging model. Again, ∆ω and κ are assumed

known. The reference method, MESE-NNLS, uses regularized NNLS to estimate MWF from

a MESE scan. Following [22], we fit 40 different T2 components spaced logarithmically from

15 ms to 2000 ms, and computed MWF as the proportion of signal coming from components

with T2 ≤ 40 ms to the total signal. This method does not assume knowledge of ∆ω or

κ, but jointly estimates κ. A fourth method, MESE-PERK, estimates MWF from a MESE

scan using PERK, with training data generated using the three-compartment exchanging

model. This method was included to determine whether performance differences were due

to the estimation method (i.e., NNLS versus PERK), or due to the scans (i.e., MESE versus

STFR). MESE-PERK does not assume knowledge of ∆ω or κ. Finally, because the proposed

STFR3-PERK assumes ∆ω and κ are known, whereas the reference MESE-NNLS does not,

we compared a fifth method, STFR3-PERK-JE, that is the same as STFR3-PERK except

∆ω and κ are assumed unknown. Table 3.1 shows the training ranges for the methods that

use PERK.

The methods that use PERK require specifying the regularization parameter ρ and the

positive definite matrix Λ in the Gaussian kernel. For the Gaussian kernel, to eliminate

dependence on scale we set Λ = λ diag(m|q|), where λ is a regularization parameter and

m|q| denotes the sample average across all voxels of the magnitude test data |q|, where q

collects the magnitude STFR signals |y| and the known parameters ν (see Section 3.2.4).

We chose ρ = 2−60 and λ = 23.5 for the regularization parameters, which we tuned using a

holdout process described in [9, Section S.II].
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Table 3.1: Unknown and known parameters used in scan design and in simulation. Values
were chosen to match literature values for white matter [1–4]. The columns “Design A”
and “Design B” contain the tissue distributions used for computing the expectation in the
CRLB scan design cost function (3.6). We used M0 = 1 for the scan designs because it
only scales the STFR signal. The columns “WM” and “GM” specify the tissue parameters
used for simulating white matter and gray matter tissues, respectively. For such simulations,
we hold the tissue parameters fixed across different voxels, but vary ∆ω and κ. The last
column contains the tissue parameter distributions from which we sampled sets of tissue
parameters for training PERK. The line below κ separates parameters used in both the
two-compartment and three-compartment models (above) from those used only in the three-
compartment exchanging model (below). WM: white matter. GM: gray matter.

Parameter Design A Design B WM GM PERK Training Ranges

M0 1 1 0.77 0.86 unif(0,Mmax
0 )a

ff unif(0.03, 0.31) unif(0.03, 0.31) 0.15 0.03 unif(0.03, 0.31)
T1,f (ms) N (400, 802) N (400, 802) 400 500 unif(320, 480)
T1,s (ms) N (1000, 2002) N (1000, 2002) 832 1331 unif(800, 1200)
T2,f (ms) N (20, 42) N (20, 42) 20 20 unif(16, 24)
T2,s (ms) N (80, 162) N (80, 162) 80 80 unif(64, 96)
∆ωf (Hz) unif(5, 35) 0* 15 5 unif(0, 35)
∆ω (Hz) unif(−50, 50)* unif(−50, 50)* Varies Varies unif(−50, 50)b

κ unif(0.8, 1.2)* unif(0.8, 1.2)* Varies Varies unif(0.8, 1.2)b

fm N/A N/A 0.1 0.03 unif(0.03, 0.31)
T1,m (ms) N/A N/A 1000 1000 unif(800, 3000)
T2,m (ms) N/A N/A 0.02 0.02 unif(0.01, 0.1)
τf→s (ms) N/A N/A 100 20 unif(80, 150)
τf→m (ms) N/A N/A 50 10 unif(40, 75)

N/A – Not applicable (scan designs only used the two-compartment model).
unif(a, b) – Uniform distribution on the interval [a, b].
N (µ, σ2) – Normal distribution with mean µ and variance σ2.
*Known parameter.
aMmax

0 given by the maximum signal value from data divided by the mean signal value
from the signal model with M0 = 1.
bUnless the parameter is known at test time, in which case the training range covers
the range of values in the known map.
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Numerical Simulation

We compared the two optimized sets of STFR scans to validate the scan design process. We

simulated test data using the two-compartment non-exchanging STFR signal model (3.2)

using the range of tissue parameters over which the scans were optimized (to match the scan

design assumptions), and we estimated MWF using STFR2-PERK. We measured the root

mean squared error (RMSE) of the MWF estimates versus the additional myelin water off-

resonance ∆ωf for three cases: first, using design B and training data that ignored ∆ωf (i.e.,

all training points had ∆ωf = 0); second, using design B and training data that accounted

for ∆ωf ; and third, using design A and training data that accounted for ∆ωf . Section 3.7.1

describes another experiment where test data was generated using the two-compartment

model with fixed white matter and gray matter tissue values (see Table 3.1).

Next, we investigated the effects of exchange and compared STFR-based MWF estimates

to MESE-based estimates. We simulated STFR scans using design A and a MESE scan using

αex = 90◦, αref = 180◦, Nref = 32, TE = 10 ms, and TR = 1200 ms. We simulated test data

using the three-compartment model with exchange and tissue parameters corresponding to

white matter and gray matter (see Table 3.1). Additionally, we chose bulk off-resonance

∆ω values to vary from −30 to 30 Hz and κ values to vary from 0.8 to 1.2. We compared

MWF estimates from each of the aforementioned methods (STFR3-PERK, STFR2-PERK,

MESE-NNLS, MESE-PERK, and STFR3-PERK-JE). For these simulations we added com-

plex Gaussian noise corresponding to a SNR in white matter ranging from 7–28 across the

STFR scans and from 2–122 across the 32 MESE echoes (to match the SNR of the in vivo

data), where SNR was calculated by dividing the white matter signal mean by the noise

standard deviation.

The proposed method (STFR3-PERK) uses a model that matches the model used to

generate the test data in the previous experiment. To investigate the effects of model mis-

match, we repeated the previous experiment using a nine-compartment tissue model with

exchange for the test data. The nine compartments were created by splitting each of the

three compartments in the three-compartment model into three sub-compartments. For ex-

ample, the myelin water compartment with fraction ff and relaxation time T2,f was split

into three compartments with fractions 0.5ff , 0.25ff , and 0.25ff and relaxation times T2,f ,

0.8T2,f , and 1.2T2,f . Section 3.7.2 repeats this experiment for a four-compartment model with

exchange and a three-compartment model without exchange.
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In Vivo Experiments

Under an IRB-approved protocol, we scanned a healthy volunteer to compare the proposed

STFR-based MWF estimation to MESE-based MWF estimation. We used 3D acquisitions

for both the STFR and MESE scans to avoid slice profile effects. The STFR scans used

design A, and the RF pulses had time-bandwidth product of 8 and duration of 1 ms; the

two SPGR scans took 58 s and the nine STFR scans took 3 min 36 s for a total scan time of

4 min 34 s. We also acquired a pair of Bloch-Siegert (BS) scans for separate estimation of κ

[51]; the excitation RF pulse of these scans had time-bandwidth product of 8 and duration

of 1 ms, and used ±4 kHz off-resonant Fermi pulses between excitation and readout. The

total duration of the BS scans was 2 min 40 s. Therefore, our overall STFR-based MWF

estimation scan protocol lasted 7 min 14 s. For the MESE scan, we used the same scan

parameters as in simulation (described above); the initial excitation RF pulse had time-

bandwidth product of 6, duration of 3 ms, and slab thickness of 0.9 cm, and each refocusing

pulse had time-bandwidth product of 2, duration of 2 ms, and slab thickness of 2.1 cm. Each

refocusing pulse was also flanked with crusher gradients, each of which imparted 14 cycles

of phase across the imaging volume. The total duration of the MESE scan was 36 min 11

s. For all scans, we acquired a 22 × 22 × 0.99 cm3 field of view (FOV) with matrix size

200 × 200 × 9 (except the BS scans used matrix size 200 × 50 × 9). We implemented the

protocol in TOPPE [52].

We used a GE Discovery™ MR750 3.0T scanner with a 32-channel Nova Medical® head

coil. We used conventional inverse FFT reconstruction followed by square-root of sum-of-

squares coil combination to make the magnitude images used for MWF estimation. We

estimated the SNR in the white matter brain regions (pooling the four white matter regions

of interest (ROIs) in Table 3.4 for each scan/echo) to vary from 8–17 across the STFR scans

and from 6–73 for across MESE echoes.

We analyzed the center slice of the acquired data. We estimated MWF using STFR3-

PERK, STFR2-PERK, MESE-NNLS, and MESE-PERK. In this case, for STFR3-PERK

and STFR2-PERK we took bulk off-resonance ∆ω to be unknown (but still assumed κ to

be known).

3.4 Results

3.4.1 Scan Design

Table 3.2 reports the two optimized scan design parameters. For design A, the additional

myelin water off-resonance ∆ωf was taken to be unknown and distributed uniformly from 5
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Table 3.2: Optimized STFR scan parameters. All values have units of degrees. For design
A, the additional myelin water off-resonance ∆ωf was taken to be unknown and distributed
uniformly from 5 to 35 Hz. For design B, ∆ωf was ignored (i.e., taken to be known and
equal to 0). Both design A and design B also include two fixed SPGR scans with α = 5◦.

Scan # 1 2 3 4 5 6 7 8 9

Design A
α 15.0 15.0 15.0 15.0 15.0 15.0 15.0 11.4 15.0
β 15.0 15.0 11.6 15.0 13.3 15.0 14.9 0.3 14.4
ϕ -139.3 -108.1 -66.0 -28.0 25.9 64.4 104.1 146.3 173.0

Design B
α 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
β 15.0 14.5 14.9 14.8 14.8 14.9 0.0 14.5 15.0
ϕ -139.3 -113.3 -63.7 -14.3 14.3 63.7 83.2 113.3 139.3

to 35 Hz. For design B, ∆ωf was ignored (i.e., taken to be known and equal to 0).

Figure 3.2 compares the expected CRLB of the standard deviation of MWF of these two

scan designs versus ∆ωf , where at each data point ∆ωf is fixed (unlike the other parameters

that vary according to the distributions in Table 3.1) but still unknown, i.e., is contained in

x (see Section 3.2.3). For these CRLB calculations, we used a noise standard deviation that

corresponds to SNR ranging from 9–15 in white matter across the STFR scans to match the

SNR of the 1.1 mm isotropic in vivo data. Figure 3.2 shows that modeling ∆ωf improves the

precision of the optimized scan design, and that MWF becomes easier to estimate as ∆ωf

increases.

3.4.2 MWF Estimation

Numerical Simulation

We computed the RMSE of MWF estimates for test data generated using (3.2) with different

values of ∆ωf and a range of tissue parameters. For design A, we estimated MWF using

training data that was generated with a range of ∆ωf values. For design B, in one experiment

we estimated MWF using training data that was generated with a range of ∆ωf , and in

another experiment the training data included only ∆ωf = 0. Figure 3.3 shows the results.

The mean MWF value in the test data was 0.17, so the minimum RMSE of 0.045 corresponds

to about 26% relative error. Figure 3.7 reports an analogous experiment using fixed white

matter and gray matter tissue values.

Furthermore, we investigated the effects of exchange on MWF estimates. We simulated

STFR scans (using design A) and a MESE scan, and we used the three-compartment tissue

model with exchange using tissue parameters corresponding to white matter and gray matter.
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Figure 3.2: The two optimized scans (see Table 3.2) were evaluated to explore how including
the additional myelin water off-resonance ∆ωf in the design process affects performance.
Design A (where ∆ωf was included in the optimization) has a better expected CRLB for
every value of ∆ωf within the 5–35 Hz range over which design A was optimized. Design
B (where ∆ωf was ignored) understandably has a better expected CRLB for ∆ωf = 0. For
each value of ∆ωf investigated in this plot, the expected CRLB was computed with that
value of ∆ωf held constant but unknown. Typical values of ∆ωf in white matter are 5–35
Hz [1]. Although these CRLB values predict estimator standard deviation (for an unbiased
estimator) on the order of 100% MWF or more, we are not restricted by these large values
because we are using a Bayesian estimator (see Figure 3.11 for details).
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Figure 3.3: RMSE of MWF estimates from simulated test data for various ways of accounting
for the additional myelin water off-resonance ∆ωf . The diamond-markered green curve was
generated using scan design B (where ∆ωf was ignored) and using PERK training data where
∆ωf = 0. In other words, ∆ωf was not considered in any aspect, neither in the scan design
nor when training. The square-markered red curve was also generated using scan design B,
but the training data included a range of ∆ωf values. The circle-markered blue curve was
generated using design A and a range of values of ∆ωf . The latter two methods look almost
identical, but both have much better RMSE than the first method as ∆ωf increases.
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Table 3.3: Comparison of various methods of MWF estimation. The reported time refers to
the entire estimation, combining the time to estimate MWF in white matter voxels and gray
matter voxels; it also includes training time for the methods that use PERK. The best value
in each column is highlighted. See Figure 3.4 for a visual comparison of these methods.

White Matter Gray Matter
(MWF = 0.15) (MWF = 0.03)

RMSE Mean SD RMSE Mean SD Time (s)

STFR2-PERK 0.215 0.349 0.082 0.185 0.209 0.047 21.9
STFR3-PERK 0.021 0.158 0.020 0.046 0.074 0.015 43.1
STFR3-PERK-JE 0.026 0.145 0.026 0.044 0.069 0.021 41.3
MESE-NNLS 0.063 0.092 0.025 0.029 0.001 0.003 1602.4
MESE-PERK 0.029 0.134 0.025 0.026 0.026 0.025 142.7

We estimated MWF using STFR2-PERK, STFR3-PERK, MESE-NNLS, MESE-PERK, and

STFR3-PERK-JE. Table 3.3 shows the RMSEs, means, and standard deviations of the MWF

estimates. Figure 3.4 shows the ground truth map and a visual comparison of the estimated

MWF maps. Figure 3.5 shows the results of this experiment when using a nine-compartment

exchanging model. Figures 3.8 and 3.9 show results when using a four-compartment exchang-

ing model and a three-compartment non-exchanging model, respectively. The anatomy for

the simulated data used in these experiments came from BrainWeb [53].

In Vivo Experiments

We scanned a healthy volunteer using scan design A. Figure 3.10 shows images of the two

SPGR and nine STFR scans of the subject. In the same scan session, we also scanned the

volunteer with a MESE scan. Figure 3.6 shows MWF maps that were computed from the

STFR and MESE scans. In this case, we made the STFR-based MWF estimates without

using a separately estimated ∆ω map because the MWF estimates made with the separately

estimated ∆ω map exhibited spatial variation that mimicked the field map spatial variations,

which we do not expect in MWF maps (i.e., we expect myelin content to be independent of

∆ω). Table 3.4 shows numerical results for the in vivo data for several ROIs.

3.5 Discussion

Almost all of the optimized flip angles α and β for both scan designs A and B are equal

to (or are very close to) the upper constraint, and there is a wide spread of tip-up phases

(see Table 3.2). This seems to suggest that most of the information needed for estimating
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Figure 3.4: Right : MWF maps from five methods using simulated test data for a three-
compartment tissue model with exchange. Table 3.3 reports numerical results. The proposed
STFR3-PERK estimates are closer to the true MWF value for white matter tissue values
than are the MESE-NNLS estimates. Left : Bulk off-resonance ∆ω and flip angle scaling κ
maps used in this simulation.

Table 3.4: Left : White matter (WM) and gray matter (GM) regions of interest (ROIs).
The underlying image is from a standard MP-RAGE acquisition, acquired in the same scan
session and registered to the other scans. Right : Sample means ± standard deviations of
MWF estimates for four WM ROIs and one GM ROI. Figure 3.6 shows corresponding MWF
maps.

ROI STFR2-PERK STFR3-PERK

WM1 0.175± 0.021 0.116± 0.029
WM2 0.175± 0.009 0.117± 0.011
WM3 0.206± 0.010 0.133± 0.010
WM4 0.195± 0.008 0.138± 0.010
GM 0.187± 0.034 0.110± 0.029

ROI MESE-NNLS MESE-PERK

WM1 0.096± 0.042 0.105± 0.030
WM2 0.089± 0.046 0.097± 0.023
WM3 0.108± 0.036 0.133± 0.014
WM4 0.121± 0.039 0.141± 0.014
GM 0.034± 0.035 0.085± 0.034
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Figure 3.5: MWF maps from five methods using simulated test data for a nine-compartment
tissue model with exchange. These results are essentially the same as when using the three-
compartment exchanging model (see Figure 3.4). Thus, even though STFR3-PERK was
trained with a three-compartment exchanging model, it still produced good MWF estimates
from signal generated using a nine-compartment exchanging model.
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Figure 3.6: MWF maps from in vivo MESE data and STFR data using scan design A.
Table 3.4 shows numerical results for several manually selected regions of interest. The
MESE-NNLS MWF map appears noisier than those shown in other works. This is likely due
to the lower SNR of our data due to differences in voxel size. To match the STFR resolution,
we acquired MESE with 1.1 mm isotropic voxels, whereas often MESE data is collected with
slice thickness of 5 mm and 1.6 mm or greater in the phase encode direction. Remarkably,
MESE-PERK is much less noisy than MESE-NNLS. This is likely due to PERK being a
Bayesian estimator that discourages estimates that are far from the mean MWF training
value.
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MWF lies in the phase accrual that occurs between the tip-down and tip-up excitations, so

the flip angles should be chosen to maximize SNR. Interestingly, however, an unreported

experiment showed that a scan design with flip angles set to 15◦ and with an even spread

of tip-up phases ϕ resulted in CRLBs that were many orders of magnitude worse than

the optimized scans. This result emphasizes the importance of the scan design process in

choosing scan parameters, because these optimized parameters are robust across a range

of ∆ωf values (see Figure 3.2). We also looked at optimized scan parameters when fixing

Tfree to 6 ms. We found that the tip-up phases still covered a spread of values, but the

range of phases was slightly smaller, which makes sense because a smaller Tfree leads to less

off-resonance precession.

The expected CRLB for scan design A is better than that of design B when compared

across many values of the additional myelin water ∆ωf (see Figure 3.2), as expected because

the optimization of design B ignored the presence of ∆ωf . Figure 3.2 also illustrates the

impact that ∆ωf has on estimates of MWF; MWF becomes harder to estimate as ∆ωf

approaches 0. These findings appear to be at variance with the findings in [54], where in

multi-GRE MWF estimation modeling ∆ωf led to worse estimates at 3T. However, there

is likely more information about ∆ωf in the STFR scans because of the optimized tip-up

phases, which could explain why modeling ∆ωf in this work improved MWF estimation.

Simulated test data showed that scan design A and scan design B gave similarly good

estimates of MWF across many values of ∆ωf , at least for a range of tissue parameters (see

Figure 3.3). At first glance, one may be surprised that design A performed noticeably better

than design B with respect to the expected CRLB, and yet the two designs had similar

RMSE values. One may also be surprised that the RMSE values were relatively small

(about 25% of the mean MWF value) even though the expected CRLB predicted errors of

100% or more. However, PERK is a Bayesian estimator; thus, the unbiased CRLB does

not necessarily predict the precision of MWF estimates computed by PERK. We minimized

the unbiased CRLB during scan design because of its simplicity, but recognize that other

objective functions for scan optimization may be better suited for MWF estimates from

PERK or other Bayesian estimation methods. We investigated the effect of bias in Section

S3 of the Supporting Information.

Simulated test data also shows that STFR-based myelin water imaging compares well to

MESE-based approaches. Compared to the conventional MESE-NNLS, STFR3-PERK gives

more accurate results in simulated white matter voxels, in addition to reducing estimation

time by more than an order of magnitude (see Table 3.3). This result is interesting because

the simulated MESE echoes generally had much higher SNR than the STFR scans. Combin-

ing MESE with PERK improves upon the NNLS results. However, the MESE scan is longer
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than the combined time of all the STFR and BS scans. Furthermore, MWF estimation

using MESE-PERK takes longer than STFR3-PERK because when simulating the MESE

signal one must simulate a collection of spins to account for stimulated echoes, which is not

necessary for STFR. This simulated data also shows that ignoring exchange when estimating

MWF with STFR scans results in drastically overestimated MWF values (see Figure 3.4), so

it is essential to generate training data that accounts for exchange. These same results hold

even when the test data was generated using a nine-compartment exchanging model (see Fig-

ure 3.5). See Section S2 of the Supporting Information for results using a four-compartment

exchanging model and a three-compartment non-exchanging model.

The in vivo MWF estimates in Figure 3.6 further emphasize the importance of modeling

exchange. The MWF map given by STFR2-PERK has higher MWF values than the map

given by STFR3-PERK. The three-compartment model led to maps that better agreed with

the MWF maps estimated from MESE data. Table 3.4 indicates that in all white matter

ROIs the STFR3-PERK estimates are within one standard deviation of the mean MESE-

NNLS estimates. In gray matter it is different; however, this difference could be due to

how the STFR training data were simulated, as typical values for gray matter T1,f and T1,s

are slightly outside of the range of values generated for training. Figure 3.6 and Table 3.4

also demonstrate the effect that the estimation method has on MWF estimates: the MESE-

PERK estimates have decreased standard deviation compared to the MESE-NNLS estimates.

Furthermore, Table 3.4 demonstrates that STFR-based MWF estimates have lower standard

deviation than MESE-based MWF estimates, despite the MESE scans being 5× longer than

the STFR scans.

For the in vivo data, we did not use a separately acquired bulk off-resonance ∆ω map as

a known parameter for our proposed STFR-based MWF estimation technique, even though

the scan design and simulations assumed that ∆ω was known. When we attempted to use

the separately acquired ∆ω map for the in vivo data, the MWF estimates appeared to be

more biased in regions with high ∆ω values. Further work is needed to investigate this

behavior.

For the in vivo data we acquired a 9 mm slab in about 7 minutes total scan time with 1.1

mm isotropic resolution. Whole brain coverage would require 4 times as much data (with 2

mm slices), so our proposed approach would take about 28 minutes, which is longer than the

8 minutes achieved by the GRASE method. However, in [26] the authors under-sampled the

GRASE data by a factor of 4, whereas we acquired fully sampled data. By under-sampling

by the same factor the proposed STFR approach would achieve whole-brain coverage in

about 7 minutes.

39



3.6 Conclusion

This work optimized a set of STFR scans that can be used to estimate MWF. We found that

estimates of MWF are more precise for larger values of the frequency difference ∆ωf between

myelin water and non-myelin water. Fortunately, in white matter reported values of ∆ωf

that are far enough away from 0 to aid estimation of MWF [1]. We also found that modeling

exchange (i.e., using a more accurate tissue model) greatly impacts the MWF estimates from

STFR scans. When modeling exchange, STFR with PERK yields MWF estimates that are

comparable to MESE-based MWF estimates.

This is the first work to compare STFR-based MWF estimation to MESE-based MWF

estimation. Additionally, to our knowledge, this is the first work to generate MWF estimates

from a MESE scan using PERK. While this estimation method was not the main point of

this chapter, it illustrates another potential method for MWF estimation.

This study was a proof-of-concept study to see if STFR could be applied to estimating

MWF. As such, only a single healthy volunteer was scanned. While the initial comparison

of STFR to MESE is promising, future studies should compare the two methods across mul-

tiple volunteers. Additionally, our proposed MWF estimation method should be validated

in pathology to verify that it can detect, e.g., multiple sclerosis lesions. Such verification is

especially important because the proposed method assumes a fixed number of tissue com-

partments, which may or may not inhibit its sensitivity to anomalies.

There are several ways in which the scan design process could be further explored. Our

choice to optimize nine STFR scans for scan design was somewhat arbitrary, so one could

explore different numbers of scans to see how the CRLB is affected for a given scan time

budget. Additionally, one could change the space of scan parameters over which to optimize;

especially interesting would be to increase the upper bound on α and β to see if the optimized

scans would have a greater variety of flip angles. Another route to explore is to adjust the

weighting matrix W to optimize STFR scans for estimating other parameters in addition

to or instead of MWF. In particular, since the results here suggest that the STFR scans are

sensitive to the effects of exchange, it could be interesting to optimize STFR scan design for

quantifying exchange parameters. Additionally, future work could explore what parameters

to include as known parameters versus unknown parameters, in both the scan design and in

PERK.

Finally, to reduce the scan time of the STFR scans, either to allow for more scans or to

reduce scan time, one could under-sample the MRI k-space data. The image reconstruction

would then be under-determined, thus requiring some sort of regularized reconstruction.

Methods that jointly reconstruct all D scans at once would be a natural approach, e.g.,
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[55, 56].

3.7 Supporting Information

This supporting information presents additional results and discussion for experiments not

included in the main body of the chapter.

3.7.1 Estimator RMSE for White and Gray Matter Tissue Values

We compared MWF estimates from scan designs A and B. We simulated test data using the

two-compartment non-exchanging STFR signal model using tissue values typical of white

matter and gray matter (see Table 3.1), and we estimated MWF using STFR2-PERK. We

plotted RMSE of MWF estimates from both scan designs versus the additional myelin water

off-resonance ∆ωf . Figure 3.7 shows the results.

Figure 3.7 indicates that scan design A gives better MWF estimates in white matter over

values of ∆ωf we expect to see, but scan design B performs better in gray matter. However,

the values of T1,f and T1,s for gray matter are (slightly) outside of the range of values used

for the scan designs and for training our estimator. When quantifying MWF in gray matter

is of interest, one probably should use a wider range of values for scan design and training.

3.7.2 Estimator Performance with Model Mismatch

We compared MWF estimates from STFR2-PERK, STFR3-PERK, MESE-NNLS, MESE-

PERK, and STFR3-PERK-JE for different ground truth models. First, we generated test

data for white matter and gray matter tissue values using a four-compartment exchanging

model. The four compartments were myelin water, axonal water (i.e., water in myelinated

axons), all other water, and macromolecules. Myelin water was in exchange with the macro-

molecular pool, myelin water and axonal water exchanged with each other, and myelin water

and all other water exchanged with each other. Figure 3.8 shows the results, and Table 3.5

reports numerical values. STFR3-PERK still provides good MWF estimates despite the

model mismatch between the test data and the training data.

We then generated test data for white matter and gray matter tissue values using a

three-compartment non-exchanging model. The three compartments were the same as in

the three-compartment exchanging model that STFR3-PERK was trained with, except no

exchange occurred (i.e., the exchange rates were set to 0). Figure 3.9 shows the results,

and Table 3.6 reports numerical values. Without exchange, the three-compartment model

becomes essentially a two-compartment model because the T2 of the macromolecular pool
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Figure 3.7: RMSE of MWF estimates for white matter and gray matter simulated test data.
Scan design A has better RMSE in white matter for values of ∆ωf we expect to see in white
matter. This better RMSE in white matter is at the cost of worse RMSE in gray matter.
Note that the values of T1,f and T1,s for gray matter were outside of the range of values used
for the scan designs and for training our estimator.

Table 3.5: Numerical results for Figure 3.8.

White Matter Gray Matter
(MWF = 0.15) (MWF = 0.03)

RMSE Mean SD RMSE Mean SD Time (s)

STFR2-PERK 0.170 0.308 0.062 0.112 0.133 0.044 14.7
STFR3-PERK 0.028 0.130 0.020 0.028 0.052 0.017 42.1
STFR3-PERK-JE 0.040 0.120 0.026 0.028 0.046 0.022 42.2
MESE-NNLS 0.071 0.084 0.024 0.029 0.001 0.004 1623.6
MESE-PERK 0.033 0.127 0.023 0.056 -0.005 0.043 167.3
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Figure 3.8: MWF maps from five methods using simulated test data for a four-compartment
tissue model with exchange. The four compartments considered were myelin water, axonal
water (i.e., water in myelinated axons), all other water, and macromolecules. The results
are similar to those using the three-compartment model with exchange. Table 3.5 shows
numerical results.
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Table 3.6: Numerical results for Figure 3.9.

White Matter Gray Matter
(MWF = 0.15) (MWF = 0.03)

RMSE Mean SD RMSE Mean SD Time (s)

STFR2-PERK 0.048 0.181 0.037 0.047 0.045 0.044 14.8
STFR3-PERK 0.097 0.055 0.020 0.051 0.058 0.043 41.9
STFR3-PERK-JE 0.092 0.061 0.024 0.047 0.045 0.045 41.9
MESE-NNLS 0.031 0.148 0.031 0.027 0.007 0.013 1606.2
MESE-PERK 0.038 0.178 0.025 0.046 0.066 0.029 142.1

is so small. Thus it makes sense that STFR2-PERK gives good MWF estimates. The

overestimation of MWF could be because the macromolecular pool has a nonzero fm, but

since it contributes no signal the estimator assumes that the smaller signal is due to a

larger MWF. MESE-NNLS does better without exchange, though it still underestimates

gray matter MWF, while STFR3-PERK does poorly. It is possible, though, that if the

training ranges for the residence times were adjusted appropriately (increased, to allow for

less exchange) then STFR3-PERK would also do well, although doing so might cause greater

estimator bias. It is somewhat surprising that MESE-PERK still gives good MWF estimates,

despite being trained with the three-compartment exchanging model. This could be because

the TR of the MESE scan is long compared to the residence times (more than 10× longer).

3.7.3 Estimator Bias

To assess the effect of MWF estimator bias, we computed the biased CRLB [30] of scan

design A for fixed white matter tissue values (for the two-compartment non-exchanging

model). (This is unlike what we did in Figure 3.2, where we calculated an expected CRLB

over distributions of the parameters.) The biased CRLB was computed by multiplying the

inverse Fisher information matrix (3.5) by the partial derivatives with respect to the unknown

parameters of the expected parameter estimates given by PERK [30]. The biased CRLB

indeed was smaller than the unbiased CRLB (see Figure 3.11), suggesting that estimator

bias is why our estimates had low variance. We investigated the bias of our STFR3-PERK

estimator for test data using the three-compartment exchanging model with fixed white

matter tissue values. We found that even with (mild) estimator bias, our proposed MWF

estimation technique is still sensitive to changes in MWF (see Figure 3.12). Furthermore,

our estimator bias decreases as SNR increases (e.g., by using larger voxels). Thus, while the

proposed method is biased, it still shows promise for detecting changes in MWF.

44



Figure 3.9: MWF maps from five methods using simulated test data for a three-compart-
ment tissue model without exchange. Without exchange, the three-compartment model
becomes essentially a two-compartment model because the T2 of the macromolecular pool is
so small. Thus it makes sense that STFR2-PERK performs well. Surprisingly, MESE-PERK
still produces good MWF estimates, even though it is trained with the three-compartment
exchanging model (like STFR3-PERK). This could be because the TR of the MESE scan is
long compared to the residence times governing exchange. Furthermore, it is possible that
if the training ranges for the residence times were adjusted appropriately (increased) then
STFR3-PERK would also do well. Table 3.6 shows numerical results.
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Figure 3.10: In vivo images for two SPGR and nine STFR scans using scan design A. Each
image is the square root sum of squares combination of the individual coil data. STFR
produces contrast similar to balanced SSFP, including a similar off-resonance profile that
induces the characteristic banding artifact of balanced SSFP. Different points of this profile
are sampled as the phase ϕ of the STFR tip-up excitation varies. The nine STFR images
are sorted by increasing ϕ, so this off-resonance profile is easily visualized. In the lower right
is the field map estimated from the two SPGR scans.
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Figure 3.11: Comparison of biased and unbiased CRLBs for white matter tissue values using
the two-compartment non-exchanging model. The biased CRLB is much lower than the
unbiased CRLB, suggesting that bias is the reason why our STFR-based MWF estimation
results in estimates with low variance. However, our proposed method still shows sensitivity
to changes in MWF (see Figure 3.12).
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Figure 3.12: Expected MWF estimates from the proposed STFR3-PERK MWF estimation
technique for fixed white matter tissue values from a three-compartment exchanging model.
The proposed method is (mildly) biased, yet it is still very sensitive to changes in true MWF
value. Furthermore, bias decreases as SNR increases. (An unbiased estimator would have
estimates along the line of identity, i.e., along the dashed line.)
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CHAPTER 4

End-to-End MRI Scan Design Approach for Improved

Myelin Water Imaging

This chapter presents in-preparation journal paper [13] that extends conference abstract

[14]. Sections 4.1–4.6 are taken from the main paper [13], and Section 4.7 is taken from

the supporting information of the paper. Further results not found in the paper are also

presented in Section 4.8.

4.1 Introduction

Myelin water imaging (MWI) consists of making quantitative maps of myelin water fraction

(MWF) [2], the proportion of the total magnetic resonance imaging (MRI) signal within a

voxel that arises from myelin water, or water trapped within the myelin sheath. MWF maps

have potential clinical utility in that they can allow tracking the progression of demyelinating

diseases such as multiple sclerosis [6].

The most widely accepted MWI technique uses the multi-echo spin echo (MESE) scan [6].

A faster variant of this approach uses a combined gradient and spin echo (GRASE) scan [25].

Steady-state scans also have been used for MWI, including combinations of balanced steady-

state free precession (bSSFP) and spoiled gradient-recalled echo (SPGR) scans [27], multi-

echo gradient echo scans (mGRE) [31–33], dual-echo steady-state (DESS) scans [34–36], and

small-tip fast recovery (STFR) scans [10–12,14]. With the exception of the MWI approaches

using DESS and STFR, these approaches use manually chosen scan parameters, which may

limit their overall effectiveness.

In MRI, there are a number of scan parameters that are user-controlled and that affect

the acquired signal. In situations where many different scans are run, e.g., in MWI or in

quantitative MRI (QMRI) in general, one would like to choose scan parameters that produce

images that are as informative as possible. Because of complicated nonlinear relationships

between scan parameters and the acquired images, optimizing the scan parameters is not
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always straightforward. One way to automate the design of scan parameters is first to define

an objective function that provides some measure of how much information a set of images

produced by given scan parameters has, and then optimize the objective function to find the

scan design that gives the best objective function value.

The Cramér-Rao Lower Bound (CRLB), a lower bound on the variance of parameter

estimates from an unbiased estimator, often is used for optimizing scan parameters in QMRI

applications. For example, the CRLB has been used for optimizing scan parameters for

estimating relaxation times [9, 40, 42, 44, 57], for B1 mapping [43], for MWI [10–12, 34–

36], for arterial spin labeling [58], in magnetic resonance fingerprinting (MRF) [57, 58], and

when estimating parameters using machine learning [9–12, 34–36, 58]. However, the CRLB

characterizes only unbiased estimators; therefore, scan parameters optimized using the CRLB

may be suboptimal when paired with a biased estimator (such as regularized least squares

methods and machine learning models).

Other methods also exist for designing scan parameters. For example, in MRF one can

maximize the discrimination between tissue types present in the pattern matching dictionary

[59,60].

An alternative scan design approach is to use an end-to-end approach, where one in-

corporates an estimator into the scan design process and directly optimizes the quality of

parameter estimates from that estimator rather than the CRLB or any other metric that

is not specific to any one estimator. Such an approach has been used in, e.g., coded aper-

ture design, in which a neural network was trained while jointly optimizing the set of coded

apertures [61]. End-to-end approaches also have been used in MRF to jointly train a neural

network to estimate relaxation times while optimizing the MRF scan parameters [62] and to

design a MRF scan to minimize the error of relaxation time maps estimated using pattern

matching [63].

In this work, we introduce an end-to-end scan design approach for QMRI and apply it to

MWI. Specifically, we optimize scan parameters for a set of STFR scans [8] by minimizing

the mean squared error (MSE) of MWF estimates obtained using parameter estimation via

regression with kernels (PERK) [9]. We compare this proposed approach to optimizing

STFR scan parameters by minimizing the CRLB of MWF estimates and show improved

MWF estimates using the proposed approach. This work expands upon the results of a

recent conference abstract [14].

The organization of this chapter is as follows. Section 4.2 details the end-to-end scan

design approach. Section 4.3 describes our experiments. Section 4.4 reports the experimental

results. Section 4.5 provides some discussion of the results and the proposed scan design

approach. Section 4.6 gives concluding remarks.
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4.2 Theory

Suppose, for a given voxel, there are L tissue parameters (e.g., relaxation times, field map1,

etc.) to estimate that describe the MRI signal for the voxel. Further suppose we want to

optimize P scan parameters (e.g., flip angles, repetition times, etc.). Let f : RL×RP → CD

be a signal model that takes tissue and scan parameters x and P as input and outputs

the signal produced for a single voxel by a set of D scans (or a time series of length D in

the MRF setting). Note that f may also depend on other parameters (scan parameters or

not) that are not estimated/optimized, but we assume for simplicity of notation that these

parameters are included in f . (Such parameters could include scan parameters that are held

fixed or tissue parameters that are assumed to be known, e.g., off-resonance determined via

a separately acquired field map, in which case f would differ from voxel to voxel according

to the spatial variation of the known parameter.) Thus P contains all the scan parameters

to be optimized for each of the D scans (or for the MRF schedule).

The scan design process involves solving

argmin
P∈P

Ψ(P ), (4.1)

where Ψ is a cost function to minimize and P is the set of possible scan designs. (P includes

scans that are physically realizable, e.g., scans with positive timing parameters, and that

satisfy user-defined constraints such as flip angle limits.) For a CRLB-based scan design, Ψ

computes, e.g., an average CRLB over a distribution of tissue parameters one expects to see

when scanning [10, 40]. For an end-to-end scan design, Ψ will involve parameter estimates

given by a particular choice of estimator x̂(·) that estimates the tissue parameters given the

output of a signal model f .

In this work, we use MSE for the cost function. Given a signal model f and N sets of

tissue parameters {xn}Nn=1, the cost function has the form

Ψ(P ) =
1

N

N∑
n=1

∥W (x̂(fε(xn,P ))− xn)∥22, (4.2)

whereW is a diagonal weighting matrix used to place emphasis on the parameters of interest,

and fε(xn,P ) = f(xn,P ) + ϵn is the signal model with noise added to simulate scanner

1In this work, we use the term “tissue parameters” to mean all parameters that influence the acquired
MRI signal that are not user-controlled scan parameters. We include non-tissue-specific parameters such as
B0 and B1+ inhomogeneities as well. An alternative label could be “non-scan parameters”, but that seems
less clear (though more precise). Because the main “tissue parameter” of interest in this work is MWF,
which is an actual tissue parameter, we trade precision of writing for clarity of intent.
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noise. With this cost function, we optimize scan parameters specifically to improve the error

of our chosen estimator, thus tailoring the scan parameters to the estimator’s needs.

Typically, the tissue parameters xn will be drawn randomly from user-chosen distri-

butions. If x̂(·) is a supervised machine learning method, then T training data pairs

{(x̃t,fε(x̃t,P ))}Tt=1 also are required, in which case the training tissue parameters x̃t also

typically will be drawn randomly from user-chosen distributions (usually the same as used

for the xn draws). We randomly draw these parameters once and then hold them constant

throughout the scan design process.

Another consideration for supervised machine learning estimators is that the training

data pairs (x̃t,fε(x̃t,P )) depend on P . As a result, one cannot train x̂(·) once and use it

throughout the scan design process; rather, x̂(·) must be retrained whenever P is updated.

In this case (or in any case where the estimator depends on P , such as when generating a

dictionary for pattern matching in MRF), the MSE cost function more appropriately would

be written

Ψ(P ) =
1

N

N∑
n=1

∥W (x̄(fε(xn,P ),P )− xn)∥22, (4.3)

where x̄(·) first trains x̂(·) using P and then applies x̂(·) to estimate tissue parameters.

Figure 4.1 shows a block diagram illustrating the end-to-end scan design approach using

(4.3).

4.3 Methods

In this work, we used a tissue model with two compartments: myelin water and non-myelin

water. In each voxel we modeled L = 10 tissue parameters: the overall M0, MWF ff , T1 for

each compartment (T1,f and T1,s), T2 for each compartment (T2,f and T2,s), residence time

τf→s of water exchange from myelin water to non-myelin water, bulk off-resonance frequency

∆ω, additional off-resonance frequency offset ∆ωf experienced by myelin water [1], and flip

angle scaling κ. (The subscript “f” refers to the fast-relaxing compartment, or myelin water,

while the subscript “s” refers to the slow-relaxing compartment, or non-myelin water.) We

assumed the two water pools were in chemical equilibrium, and thus the residence time of

exchange from non-myelin water to myelin water was determined from ff and τf→s [10]. We

evaluated the STFR signal model with this two-compartment exchanging tissue model using

the Bloch-McConnell equation [18] implemented in the Julia [50] package BlochSim.jl [64].

Table 4.1 lists the parameter distributions used for generating N = 1,000 validation and

T = 20,000 training sets of tissue parameters for the scan designs and for training PERK.

These parameter distributions were chosen to cover a range of tissue parameter values seen in
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Figure 4.1: Diagram of the end-to-end scan design process, in which scan parameters P are
optimized subject to constraints P to minimize the end-to-end cost function (4.3). Validation
and training sets of tissue parameters are sampled before and held fixed during the iterative
optimization. The end-to-end cost function is computed in several steps. First, the current
candidate scan design P is used to simulate noisy data, using a signal model f , from both
the validation and training tissue parameter sets. The training set of tissue parameters is
then paired with the associated noisy signals and used to train the estimator x̂(·). Next,
the noisy signals from the validation set of tissue parameters are given to the estimator to
estimate the underlying tissue parameters. Finally, these estimates are compared to the true
tissue parameters to compute a (weighted) MSE. The scan design process seeks to minimize
this MSE.
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Table 4.1: Tissue parameter distributions used in scan designs and in simulation results,
unless otherwise noted in the text. Parameters were uniformly distributed between the
given minimum and maximum values. PERK training also used these same distributions,
except for a slightly expanded M0 distribution ([0.6, 1.2] instead of the values in the table)
to account for the uncertainty in in vivo M0 values due to unknown scanner gain. Note that
we chose the range for ∆ω to cover one full period of the magnitude STFR signal model
(which is periodic in ∆ω with period 1/Tfree, where we fixed Tfree = 8 ms for the scan design
process).

Parameter Minimum Maximum

M0 0.7 1
ff 0.02 0.31
T1,f (ms) 200 500
T1,s (ms) 1500 2500
T2,f (ms) 10 25
T2,s (ms) 60 100
τf→s (ms) 10 150
∆ωf (Hz) 0 10
∆ω (Hz) −62.5 62.5
κ 0.8 1.2

cerebral white matter (WM) and gray matter (GM) [2–5,23]. (See Section 4.7 and Table 4.3

for a discussion of using the results in [5] to determine values to use for T1,f and T1,s.)

4.3.1 Scan Designs

We sought to optimize the scan parameters of D STFR scans for improved MWF estimation

(i.e., we choseW in (4.3) to place emphasis only on MWF, thus computing the MSE of MWF

estimates). We chose to use STFR scans because STFR is a fast, steady-state scan that also

incorporates an additional tip-up RF pulse, giving additional degrees of freedom (relative to

typical steady-state scans that include just one RF pulse per repetition) for the scan design

process to explore and potentially exploit for improved MWF estimation. Furthermore, in

addition to relaxation times, STFR is also sensitive to ∆ωf [10], which we modeled in this

work. (We note, however, that the end-to-end scan design approach proposed in this work is

general and can be applied using other scans or even a combination of different scans.) For

simplicity, we fixed all timing parameters with Tfree = 8 ms (time between the excitation, or

tip-down, pulse and the tip-up pulse), Tg = 2.8 ms (time after the tip-up pulse during which

gradient spoiling occurs), and TE = 4 ms. We optimized the tip-down angle α ∈ [1, 75]◦, the

tip-up angle β ∈ [0, 75]◦, and the phase of the tip-up pulse ϕ ∈ [−180, 180]◦ for each STFR

scan. Thus we optimized a total of P = 3D scan parameters.
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We used the BFGS optimizer in the Optim.jl [65] package to optimize the scan pa-

rameters. We computed gradients of the cost function and for computing the CRLB us-

ing the Zygote.jl [66] and ForwardDiff.jl [67] automatic differentiation packages. We ran

the scan designs until reaching convergence to a local minimum (when the ℓ2-norm of the

gradient of the cost function was less than 10−8, the default Optim.jl tolerance) or after

running for 16 days. We wrote the code for running the scan designs (and for the exper-

iments below) in the Julia programming language [50]. The code is publicly available at

https://github.com/StevenWhitaker/EndtoEndScanDesign.

In addition to optimizing scan parameters, we also selected the two hyperparameters used

in PERK: the Tikhonov regularization parameter ρ and the Gaussian kernel length scale λ.

We used cross-validation to select the hyperparameters. Specifically, we randomly selected

20,000 sets of training points and 1,000 sets of validation points using the distributions in

Table 4.1. Then for each (ρ, λ) ∈ {2−35, 2−34, . . . , 20}×{2−5, 2−4.9, . . . , 25}, we trained PERK

and computed the MSE of MWF estimates from the validation data and then chose the ρ and

λ that resulted in the least MSE. We did cross-validation before optimizing scan parameters,

i.e., using the initial scan design, held ρ and λ fixed during the scan design, and then did

cross-validation again with the optimized scan parameters.

In previous work [10], ∆ω and κ were taken to be known parameters, simplifying the

computation of the CRLB during the scan design process at the cost of needing to acquire

separate B0 and B1+ maps when scanning. Here, we first performed four end-to-end scan

designs of 18 STFR scans, varying whether ∆ω and κ were known or unknown parameters

to determine the impact knowledge of those parameters has on the optimized root mean

squared error (RMSE) of MWF estimates, thus determining whether acquiring separate B0

and B1+ maps is worth the additional scan time needed. For each of the four scan designs,

we initialized 16 of the STFR scans with α linearly spaced in the range [15, 30]◦, β = c·α with

c linearly spaced in the range [0.9, 1], and ϕ linearly spaced in the range (−180, 180]◦. The

remaining two STFR scans were initialized with Tfree = 10.3 ms, Tg = 2.8 ms, α = 5◦, β = 0,

ϕ = 0, and two different echo times: TE,1/TE,2 = 4/6.3 ms. These two scans are equivalent to

a pair of TE-offset spoiled gradient recalled echo (SPGR) scans that can be used for separate

∆ω estimation. Thus, for the two designs where ∆ω was taken to be known these two SPGR

scans were held fixed, whereas for the two designs where ∆ω was taken to be unknown the

α, β, and ϕ of these two STFR scans were optimized as for the other 16 STFR scans. Note

that in the case were ∆ω was taken to be known we included the fixed SPGR scans with the

STFR scans during the scan design so the scan design could optimize the STFR scans while

accounting for any (potential) additional knowledge provided by the SPGR scans beyond

just a B0 map. We did not include Bloch-Siegert scans (used for separate κ estimation) with
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the STFR scans because neither type of scan is a special case of the other. After these four

scan designs, we took ∆ω and κ to be unknown for the remaining scan designs.

We then investigated how the number of optimized STFR scans impacts the RMSE of

MWF estimates. We varied the number of scans D from 11 to 20 and we ran 10 scan designs

with different initializations for each, for a total of 100 scan designs (separate from the four

scan designs from the previous paragraph). We used multiple starting points because the

end-to-end scan design cost function is non-convex, and thus there are possibly many global

and local minima, and the choice of initialization influences which local minimum is found.

For each D, one initialization was similar to the initialization described above, excluding the

two SPGR scans. For the other initializations, we uniformly randomly chose the STFR scan

parameters for each scan such that α ∈ [5, 70]◦, β ∈ [0, α], and ϕ ∈ [−180, 180]◦.

We next ran 10 CRLB scan designs, in which we optimized the STFR scan parameters

for D = 18 scans to minimize the mean CRLB of MWF estimates, as in [10]. We computed

this mean by averaging the CRLB for 20,000 sets of tissue parameters, randomly selected

according to the distributions in Table 4.1. We initialized these CRLB designs in the same

way as the 18-scan end-to-end designs, except we replaced one of the random initializations

with an optimized end-to-end scan design (so that CRLB design started where the end-to-end

design stopped).

4.3.2 MWF Estimation

We compared the MWF estimates of the 18-scan end-to-end design with the lowest MWF

estimation error to those of the 18-scan CRLB design with the lowest CRLB of MWF es-

timates. We computed the MWF estimates using PERK, as in the end-to-end scan design.

Unlike in the scan design, in the following experiments we also de-biased the MWF esti-

mates. (De-biasing in the end-to-end scan design was avoided for computational reasons.)

To de-bias, we first randomly generated 1,000 sets of tissue parameters according to the

distributions in Table 4.1. We then used the scan design to simulate the 18 STFR signals for

each set of tissue parameters, repeated 100 times, each time with a different noise realization.

Thus there were 100,000 sets of 18 noisy STFR signals each. Each set of STFR signals was

given to PERK from which to estimate MWF, resulting in 100,000 MWF estimates total,

or 100 MWF estimates for each true MWF value. For each true MWF value, we averaged

the associated 100 MWF estimates to obtain the average PERK MWF estimate for that

true MWF value. We then fit a line to the 1,000 average MWF estimates to obtain an

estimate of the average PERK MWF estimate for any given value of MWF. Then, whenever

PERK produced a MWF estimate from test data, we took the estimate and returned the
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corresponding estimate of the true MWF value from the line fit above.

We first compared the MWF estimates of the two scan designs in simulation. As was

done for the de-biasing process, we randomly generated 1,000 sets of tissue parameters,

added 100 noise realizations for each, and then estimated MWF using PERK, resulting in

100,000 MWF estimates for each scan design. We then compared the de-biased estimates to

the true MWF values.

We next compared the end-to-end design to the CRLB design using a modified BrainWeb

digital phantom [53]. We included WM and GM tissues with the following fixed tissue

parameters for WM/GM: M0 = 0.77/0.86, T1,f = 250/250 ms, T1,s = 2000/2000 ms, T2,f =

15/15 ms, T2,s = 80/80 ms, τf→s = 100/20 ms, and ∆ωf = 7/2 Hz. The flip angle scaling κ

was fixed to 1 throughout the digital phantom. We varied ff from 0.1/0.02 to 0.2/0.05 from

image bottom to top for WM/GM, and we varied ∆ω from −62.5 to 62.5 Hz from image left

to right. We used each scan design to simulate noisy signals for each voxel in the phantom.

To mimic differences in scale between acquired data and simulated training data, we scaled

the simulated test data by a factor of 3 (that was unknown by the training data). We then

added noise to achieve a SNR comparable to that of the in vivo data we acquired. After

simulating the noisy test data, we then normalized each voxel by the mean STFR signal

for that voxel across the 18 scans of the scan design. For training, we tried to add noise to

result in a similar training SNR as the test SNR by taking the noise standard deviation that

was used for the test data and scaling it by the ratio of the mean test STFR signal (across

all voxels and scans) to the mean STFR signal generated from 10,000 randomly selected

sets of tissue parameters from the distributions in Table 4.1. We also normalized the noisy

training data by the mean STFR signal across STFR scans. Because we ran cross-validation

previously without signal normalization, we ran cross-validation again for both scan designs

as before, but this time scaling the validation signals by 3 and finding an appropriate training

noise standard deviation as just described. We also altered the de-biasing approach to take

into account signal normalization. We compared the de-biased MWF estimates to the true

MWF map.

Under an IRB-approved protocol, we scanned a healthy volunteer with both the end-to-

end scan design and the CRLB scan design. We implemented the protocol in TOPPE [52].

For the implemented STFR scans, Tfree = 8.2 ms, Tg = 4.2 ms, and TE = 4.3 ms. We used

3D acquisitions to avoid slice profile effects. The RF pulses had time-bandwidth product of

4 and duration of 1.5 ms. Each STFR scan took 19.9 s for a total of 5 min 57 s for each scan

design. We acquired a 24×24×1.07 cm3 field of view (FOV) with matrix size 180×180×8.

We used a GE UHP 3T scanner with a 32-channel Nova Medical® head coil. We ensured

the scanner gain was the same across all 36 STFR scans. We used conventional inverse
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Table 4.2: Comparison of RMSEs of MWF estimates from simulated data of optimized 18-
scan end-to-end designs with combinations of bulk off-resonance ∆ω and flip angle scaling
κ being assumed unknown and known parameters. The RMSE is unchanged regardless of
whether a separate B0 map (∆ω) is acquired, whereas acquiring a separate B1+ map (κ)
improved the RMSE by about 13%. In this work, despite the predicted increase in MWF
estimation error, we decided to forego acquiring separate B0 and B1+ maps for ease of
practical in vivo implementation and to lessen the overall scan time.

∆ω Unknown ∆ω Known

κ Unknown 0.046 0.046
κ Known 0.041 0.041

FFT reconstruction followed by square-root sum-of-squares coil combination to make the

magnitude images used for MWF estimation. We analyzed the fifth slice of the end-to-end

data and the sixth slice of the CRLB data (there was slight motion between the scans, so we

chose the CRLB data slice that visually looked closest to the chosen end-to-end data slice).

For PERK, we used the updated hyperparameters we used in the BrainWeb experiment. For

the training data noise, we used a noise standard deviation that was approximately half that

found by taking the standard deviation of background noise voxels and scaling it as we did in

the BrainWeb experiment. To choose the noise standard deviation, we manually inspected

the MWF maps resulting from training PERK with different noise standard deviations and

chose the one that seemed to give the most visually reasonable MWF map for the end-to-

end design. (In the Supporting Information we also estimated MWF training PERK without

manually tuning the training noise standard deviation.) We compared the de-biased MWF

estimates obtained from both scan designs.

4.4 Results

4.4.1 Scan Designs

All four end-to-end scan designs that we ran to investigate the effects of taking ∆ω and κ to

be known or unknown ran to local convergence. Table 4.2 shows that the MWF RMSE of

these scan designs was virtually unaffected by whether ∆ω was known or unknown, whereas

the RMSE increased by about 13% (from 0.041 to 0.046) when κ was taken to be unknown

compared to when it was known.

All 100 end-to-end scan designs that we ran to investigate how the number of scans

influences the RMSE of MWF estimates ran to local convergence. When varying the number

of STFR scans in the end-to-end scan design, we found that the best MWF RMSE in each
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Figure 4.2: Optimized RMSE of MWF estimates from end-to-end scan designs with varying
initializations and number of STFR scans. The 10 points in the plot for each given number
of scans correspond to the scan designs optimized starting from 10 different initializations.
From these results, we decided that using 18 scans was a good trade-off between scan time
and performance.

case monotonically decreased (with two exceptions), as seen in Figure 4.2. From these results,

we decided that using 18 scans was a good trade-off between scan time and performance.

None of the CRLB scan designs ran to local convergence, though in all cases the opti-

mized designs yielded lower expected CRLBs than their respective initializations. Figure 4.3

compares the 10 18-scan end-to-end designs to the 10 18-scan CRLB designs. The expected

CRLBs of 8 of the CRLB designs are understandably much lower than those of the end-to-

end designs. Surprisingly, one of the CRLB designs has a much higher expected CRLB than

do all the end-to-end designs; this is likely due to a poor initialization and possibly due to

not having enough time to reach a local minimum. One CRLB design was initialized with an

end-to-end design; the corresponding optimized scan design, though having a (very slightly)

lower expected CRLB, remained virtually the same as the initialization, which explains why

in both plots of Figure 4.3 there is one CRLB design that matches up with one of the end-

to-end designs (the one with which the CRLB design was initialized). On the other hand, all

of the end-to-end designs have much lower RMSE of MWF estimates than all of the CRLB

designs (with one exception just discussed).

Figure 4.4 shows the scan parameters of the best end-to-end scan design and the best

CRLB scan design that were used in the remaining experiments.
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Figure 4.3: Comparison of 10 CRLB scan designs to 10 end-to-end scan designs, each with
18 STFR scans. We computed the square root of the expected CRLB of MWF estimates
(left subplot) and the RMSE of MWF estimates (right subplot) for each of the 20 scan
designs. Optimizing scan parameters to minimize the RMSE results in scan designs that
have lower RMSEs than scan designs optimized to minimize the expected CRLB. (The one
CRLB design that has a RMSE on par with the end-to-end designs, indicated by the white
triangle marker, was initialized with an end-to-end design and did not change much, i.e.,
was stuck near a poor local minimum, during the optimization process.)
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Figure 4.4: Scan parameters of the best end-to-end scan design and the best CRLB scan
design, sorted by increasing tip-down angle. Each design consists of 18 STFR scans, each
with its own tip-down angle, tip-up angle, and tip-up phase (that were optimized). Each
scan additionally had fixed Tfree = 8 ms, Tg = 2.8 ms, and TE = 4 ms. Interestingly, the
end-to-end design has much lower flip angles, in general, than the CRLB design.
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4.4.2 MWF Estimation

The de-biased MWF estimates obtained using the end-to-end scan design were more ac-

curate, less biased, and less noisy than those obtained using the CRLB design. The end-

to-end/CRLB designs’ estimates had a RMSE of 0.060/0.080, an average absolute bias of

0.040/0.043, and an average standard deviation of 0.035/0.060. Figure 4.5 shows a 2D his-

togram of the estimates versus the true MWF values for each scan design.

Figure 4.6 shows the results of the modified BrainWeb experiment. As in the previous

experiment, the de-biased MWF estimates obtained using the end-to-end scan design were

more accurate, less biased, and less noisy than those obtained using the CRLB design.

Figure 4.7 shows the de-biased MWF maps estimated from the in vivo data. Figure 4.8

shows one of the STFR scans with WM regions of interest (ROIs) shown from which we

computed the mean and standard deviation of the MWF estimates. The MWF map from

the end-to-end design was less noisy and appeared to have more reasonable values and decent

WM/GM contrast.

4.5 Discussion

Even though treating the flip-angle scaling factor κ as a known parameter improved the

MWF RMSE of end-to-end scan designs (see Table 4.2), we decided to take it as an unknown

parameter to simplify our method and to lessen the overall scan time by avoiding a separate

B1+ acquisition (e.g., a pair of Bloch-Siegert scans). Future work could explore this trade-off

more in-depth.

Although Figure 4.2 shows many points (representing the optimized RMSE resulting from

different initializations) for each value of D (number of scans), the most relevant RMSE in

terms of minimizing the end-to-end cost is the lowest value; it is the value closest to the true

global minimum. Intuitively, this value should monotonically decrease as D increases, and

for the most part we observe this behavior. Strangely, however, the minimum RMSE for

D = 17 scans is greater than that for D = 16 (and again for D = 19 versus D = 18). Further

investigation is needed to determine why this is the case. One should keep in mind, however,

that the end-to-end scan design optimization problem is non-convex, and thus Figure 4.2 does

not show the global minimum RMSE for each value of D; this global minimum, if it could

be determined, very likely would decrease monotonically with increasing D as expected.

We note for reference that the 18-scan end-to-end scan designs typically took about 7–8

days to run to convergence on a 20-core, 2.8 GHz CPU with 64 GB memory running Ubuntu

18.04.6. However, we used the default tolerances for determining convergence, which may
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Figure 4.5: Histograms of estimated MWF versus true MWF obtained when using the end-
to-end scan design and when using the CRLB scan design for the experiment where we drew
the test data randomly from the distributions in Figure 4.1. Though only MWF is shown
as varying, we varied all tissue parameters. The table shows the ensemble RMSE, average
absolute bias, and average standard deviation of the MWF estimates. The MWF estimates
obtained using the end-to-end scan design were more accurate, less biased, and less noisy
than those obtained using the CRLB design.
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WM GM
RMSE Mean SD RMSE Mean SD

End-to-End 0.035 0.180 0.031 0.024 0.024 0.023
CRLB 0.057 0.200 0.038 0.035 0.023 0.034

Figure 4.6: Estimated MWF maps obtained when using the end-to-end scan design and when
using the CRLB scan design. The true MWF varied from 0.1 to 0.2 in WM and from 0.02 to
0.05 in GM from image bottom to top. The results using the end-to-end design were more
accurate, less biased, and less noisy than those obtained using the CRLB design. The second
row shows the error maps for reference. The table shows the RMSE, mean, and standard
deviation (SD) of the MWF estimates across all WM and GM voxels. For reference, the true
MWF map has a mean value of 0.151 for WM and 0.035 for GM.
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Mean SD

End-to-End 0.178 0.059
CRLB 0.109 0.089

Figure 4.7: Estimated MWF maps obtained from in vivo data acquired using the end-to-end
scan design and the CRLB scan design. The MWF map from the end-to-end design was
less noisy and appeared to have more reasonable values and decent WM/GM contrast. The
table shows the mean and standard deviation (SD) of the MWF estimates across a pooled
region of interest (ROI) consisting of WM voxels (see Figure 4.8).
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Figure 4.8: One STFR scan with WM ROIs shown from which we computed the mean and
standard deviation of the MWF estimates from the in vivo data.
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have been too stringent; relaxing the tolerances may have led to quicker convergence without

noticeably impacting the resultant scan designs. It is possible the CRLB designs also would

have converged to local minima (instead of timing out at 16 days) had we used less stringent

stopping criteria. However, we find it unlikely (particularly in light of Figure 4.3) that having

the CRLB scan designs converge would significantly impact the overall findings of this work.

The results in Figure 4.3 underscore that having a low CRLB does not imply having a low

RMSE, at least under the conditions explored in this work. Therefore, if the goal is to have

low estimation error then an end-to-end scan design approach is preferable. Future work

could extend the analysis here to consider other applications and/or estimators to determine

whether the result seen here generalizes.

The simulation results (see Figures 4.5 and 4.6) further illustrate the improved perfor-

mance of the end-to-end scan design compared to the CRLB design. The MWF estimates

resulting from the end-to-end design outperform those resulting from the CRLB design in

terms of RMSE, bias, and standard deviation; this holds when considering an ensemble of

tissue parameters (Figure 4.5) as well as when considering WM- and GM-like parameters

(Figure 4.6).

The in vivo MWF maps in Figure 4.7 also demonstrate the potential for improved per-

formance of the end-to-end scan design. The end-to-end design resulted in a less noisy

MWF map, and overall it appeared to have more reasonable MWF values. However, we

had to manually adjust the noise standard deviation to use for PERK training. Further

work is needed to determine a more principled way to choose an appropriate noise standard

deviation to use for training PERK to estimate MWF from in vivo data.

We also tried using the noise standard deviation computed from background voxels and

then scaled as we did for the BrainWeb experiment (this scaled noise standard deviation was

about two times that used in Figure 4.7). Figure 4.9 shows the resulting MWF maps. In

this case, the MWF maps for both scan designs had higher values than shown in Figure 4.7.

However, the end-to-end design still resulted in cleaner MWF estimates. Additionally, the

CRLB design’s MWF map had spatial variations that appeared to mimic coil sensitivity

patterns (i.e., diminished values in the center of the brain, and increasing towards the edges

of the brain), whereas the end-to-end design’s MWF map did not. Having said that, it is

difficult to conclude much about the accuracy of the in vivo MWF maps without a ground

truth. Work towards developing a well-characterized phantom including multiple exchanging

water compartments would be very valuable in this regard.

As illustrated in the previous paragraph, the way PERK is trained can significantly

impact the resulting MWF estimates. We have found in unreported experiments that the

distributions used for generating tissue parameters for training PERK, as well as the PERK
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hyperparameters ρ and λ, can also influence the resulting MWF estimates. Future work could

more thoroughly characterize how the way PERK is trained impacts parameter estimates.

Because the end-to-end scan design approach incorporates a specific estimator, in prin-

ciple one could optimize estimator hyperparameters jointly with scan parameters. Doing so

would increase the computational cost of each iteration of optimization but could also result

in a better local minimizer, leading to better parameter estimates. PERK has two hyperpa-

rameters (ρ and λ), but we chose not to optimize them jointly because we found in unreported

experiments that jointly optimizing the hyperparameters only marginally improved the MSE

of MWF estimates compared to selecting the hyperparameters via cross-validation after opti-

mizing the scan parameters. Other estimators with more tunable parameters (such as neural

networks) potentially could benefit from such joint optimization.

Because the training data depends on P , PERKmust be retrained each time P is updated

during the scan design process. Training PERK is non-iterative and so retraining PERK

is not computationally prohibitive. However, using a deep neural network as the estimator

could be infeasible due to the computationally expensive training required. Thus, for neural

networks, it may be preferable to optimize scan parameters to minimize training error as in

[62] rather than optimizing scan parameters to minimize generalization error as proposed in

this work.

The end-to-end scan design approach we proposed in this work is similar to the approach

in [63] in that scan parameters are optimized to minimize a validation loss (as opposed to

a training loss). One major difference, however, is that the loss in [63] is computed over

three specific sets of tissue parameters, whereas in this work we compute the loss over a

large ensemble of tissue parameters. We are able to do so because we consider collections

of individual voxels, whereas an entire image is considered in [63] to enable the modeling of

under-sampling artifacts, which are severe in the MRF approach considered in that work.

Future work could apply the end-to-end scan design proposed here to MRF and compare

this approach to that in [63].

4.6 Conclusion

In this work, we proposed an end-to-end scan design approach and applied it to MWI using

STFR scans. We compared an end-to-end scan design to a CRLB design in simulation and

in vivo. In simulation, we found that the end-to-end design resulted in more accurate, less

biased, and less noisy MWF estimates than the CRLB design, both for an ensemble of tissue

parameters and for WM- and GM-like parameters. In the in vivo case, we likewise saw that

the MWF map from the end-to-end design was less noisy and appeared qualitatively more
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reasonable than that from the CRLB design. However, there was no gold standard method

to which to compare our MWF maps, so it is difficult to make a definitive conclusion about

whether the end-to-end scan design worked better than the CRLB design.

The aim of this work was to introduce the end-to-end scan design approach. As such,

only a single healthy volunteer was scanned. Further studies are needed to use the proposed

method across multiple volunteers, both with and without pathology, to validate the efficacy

of the proposed approach.

There are several ways in which the end-to-end design approach could be further explored.

For example, one could consider a different cost to minimize rather than MSE. One approach

could be to decompose MSE as a sum of variance and bias squared terms and then introduce

a tuning parameter to control how much emphasis the optimization places on minimizing

bias versus variance. Or, rather than having a tuning parameter, one could minimize the

bias of parameter estimates subject to a constraint on the maximum allowed variance in

the estimates. Alternatively, one could replace MSE with another metric such as the mean

absolute error of parameter estimates.

Future work could also use the end-to-end design approach itself in different ways. In

this work, we only explored one estimator (PERK) and one application (MWI with STFR

scans). One could use the end-to-end scan design approach to optimize the scan parameters

of a different type (or a collection of different types) of scans for estimating one (or more)

different parameters using a different estimator.

Finally, in this work we used fully sampled data. Thus another avenue for future work is

to acquire under-sampled data and see how parameter estimates look when estimated from

the reconstructed under-sampled images even though the end-to-end design did not account

for under-sampling effects. Regularized reconstruction techniques would be needed in this

case. Methods that reconstruct all D images jointly (such as [55, 56]) would be a natural

approach.

4.7 Supporting Information

4.7.1 Choosing PERK Training Distributions for T1,f and T1,s

To choose training distributions for T1,f (myelin water T1) and T1,s (non-myelin water T1) to

use with PERK (and to inform the range of those values to use for the simulated evaluation

data during the end-to-end scan design), we relied on the work of Manning et al. [5].

Manning et al. developed a four-pool model for describing white matter (WM) longitudinal

relaxation. The pools included both water and macromolecules for both myelin and non-
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myelin. Relative pool sizes, T1 values for each pool, and exchange times between the pools

were estimated by fitting the model for several tissue samples.

To simplify the model from four to two pools to use in our work, we combined the

water and macromolecule pools associated with myelin and non-myelin by determining an

apparent T1 for myelin water and non-myelin water, resulting in one myelin water pool and

one non-myelin water pool with T1 values that reflect contributions from both water and

macromolecules. We determined the combined T1 values by computing the eigenvalues of

the Bloch-McConnell equation for longitudinal relaxation [18]:dMz,m

dt

dMz,w

dt

 =

−Rm − km→w kw→m

km→w −Rw − kw→m

Mz,m

Mz,w

+

M0,mRm

M0,wRw

 , (4.4)

where the subscripts “m” and “w” respectively stand for “macromolecules” and “water”,

Mz,m/w is the longitudinal magnetization, Rm/w is the longitudinal relaxation rate, km/w→w/m

is the exchange rate from one pool to the other, andM0,m/w is the equilibrium magnetization.

The eigenvalues2 are given by [68]

λf/s =
1

2
(Rm +Rw + km→w + kw→m)

± 1

2

√
(Rm −Rw + km→w − kw→m)2 + 4km→wkw→m. (4.5)

The combined T1 is then given by 1/λs. As there are two pairs of water and macromolecule

pools to combine, we used (4.5) twice: once to obtain T1,f by combining myelin water and

myelin macromolecules, and again to obtain T1,s by combining non-myelin water and non-

myelin macromolecules.

Manning et al. estimated model parameters for three WM tissue samples. We com-

puted T1,f and T1,s using those parameters for each tissue sample. Values for Rm, Rw,

km→w, and kw→m were determined using values in Table 1 in [5]. For the myelin wa-

ter pool, Rm = 1/T1,M, Rw = 1/T1,MW, km→w = kw→mMMW(∞)/MM(∞), and kw→m =

MM(∞)/(Tcr,M/MW(MMW(∞)+ 1)). Similar expressions hold for the non-myelin water pool.

We also investigated accounting for the B0 dependence of Rm assuming an inversely propor-

tional relationship [68], in which case Rm was scaled by 4.7 T (field strength in [5])
3.0 T (our field strength)

. Table 4.3 shows

the resulting T1,f and T1,s values. Based on this range of values, we trained PERK using T1,f

values uniformly distributed from 200 to 500 ms and T1,s values uniformly distributed from

1500 to 2500 ms.

2Technically, (4.5) gives the negated eigenvalues (to result in positive values). The original eigenvalues
are negative because they describe exponential decay.
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Table 4.3: Computed myelin water and non-myelin water T1 values (T1,f and T1,s, respec-
tively) determined by combining the water and macromolecule pools associated with myelin
and non-myelin, respectively, using (4.5). Values for Rm, Rw, km→w, and kw→m were de-
termined using values in Table 1 in [5]. We also computed T1 values T a

1,f and T
a
1,s with an

adjusted Rm to account for field strength, in which case Rm was scaled by 4.7 T
3.0 T

. Units for all

table values are s−1 except for T
(a)
1,f/s, which have units of ms. Based on this range of values

for T1,f and T1,s, we trained PERK using T1,f values uniformly distributed from 200 to 500
ms and T1,s values uniformly distributed from 1500 to 2500 ms.

M
ye
li
n

Rm Rw km→w kw→m λs T1,f λas T a
1,f

Sample WM-fr 4.3 0.33 12 21 2.7 370 4.1 250
Sample WM-sp1 5.3 0.42 9.9 17 3.3 310 4.8 210
Sample WM-sp2 6.7 0.45 11 15 3.6 280 5.2 190

N
on

-M
ye
li
n Rm Rw km→w kw→m λs T1,s λas T a

1,f

Sample WM-fr 1.6 0.33 10 1.8 0.50 2000 0.61 1600
Sample WM-sp1 1.0 0.42 13 1.3 0.47 2100 0.51 1900
Sample WM-sp2 0.40 0.45 12 1.3 0.44 2300 0.46 2200

We also determined the overall apparent T1 by applying (4.5) again, this time with

the myelin water pool (subscript “m”) and the non-myelin water pool (subscript “w”). In

this case, we let Rm/w = 1/T1,f/s, km→w ∈ {13, 21, 18} s−1 (each entry corresponding to

one of the tissue samples in Table 4.3 and computed from values in Table 1 of [5]), and

kw→m = ffkm→w/(1 − ff), where ff is the myelin water fraction (MWF). For ff , we used

values of 0.12, 0.078, and 0.10 (derived from [5] for each tissue sample) as well as 0.15 and

0.20. The range of overall apparent T1 values was about 990 to 1500 ms, which is in line with

the largest eigenvalues (i.e., the overall apparent T1 computed using a four-pool version of

(4.5)) reported in Table 2 in [5]. When accounting for field strength, the range of apparent

T1 values was about 790 to 1300 ms, which is consistent with [68] (see λs in Table 2 therein).

4.7.2 Comparison of Initial and Optimized Scan Designs

Here we compare the CRLB and RMSE of MWF estimates of the optimized 18-scan CRLB

and end-to-end scan designs to those of their corresponding initializations. Table 4.4 shows

the comparison, revealing several interesting points. First, the CRLB designs resulted in

significantly improved CRLBs than the initial values (the one exception being the CRLB

design that was initialized with an end-to-end design); despite this, the RMSEs were much

more mildly affected. Second, the end-to-end designs resulted in significantly improved

RMSEs than the initial values despite resulting in drastically worse CRLBs in nearly all
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cases. Third, the hand-crafted initialization (described in Section 4.3.1) had a CRLB about

40 times worse than the average random initialization, and yet it had the best RMSE. Finally,

despite having the best initial RMSE, the hand-crafted initialization actually resulted in the

worst end-to-end design. The best end-to-end design had a RMSE 13% better than the

hand-crafted design.

Table 4.4 (a) reports CRLB values that are much higher than a nominal MWF value of

0.15. However, the results in this table are expected CRLB values, where the expectation is

taken over quite a large range of parameter values. Computing the CRLB using literature

WM tissue parameters lowers the CRLB of the best CRLB design from 16.6 to 2.8. While

the CRLB still is huge compared to a nominal MWF value, Figure 3.11 (though computed

with a tissue model without exchange) indicates that bias is likely responsible for PERK

still obtaining MWF estimates with low variance.

4.7.3 In Vivo MWF Map Using Computed Noise

Here we present MWF maps estimated from in vivo data acquired using the end-to-end

scan design and the CRLB scan design. We followed the same PERK training procedure as

described in the main text, but instead of manually adjusting the noise standard deviation

to use for the training data, we computed the standard deviation of background noise voxels

from the acquired data and scaled it by the ratio of the mean acquired STFR signal (across

all voxels and scans, pooling the data for both scan designs) to the mean STFR signal

generated from 10,000 randomly selected sets of tissue parameters from the distributions in

Table 4.1 using all 36 scans from both scan designs. We used this scaled standard deviation

as the training noise standard deviation for training PERK for both scan designs. Figure 4.9

shows the resulting maps. In this case, the MWF maps for both scan designs had higher

values than shown in Figure 4.7. However, the end-to-end design still resulted in cleaner

MWF estimates. Additionally, the CRLB design’s MWF map had spatial variations that

appeared to mimic coil sensitivity patterns (i.e., diminished values in the center of the brain,

and increasing towards the edges of the brain), whereas the end-to-end design’s MWF map

did not.

4.7.4 Noise Cross-Validation

Figures 4.7 and 4.9 show the MWF estimates resulting from using two different noise stan-

dard deviations for training PERK, and the resulting maps are quite different. We thus

investigated a way to choose the noise standard deviation via cross-validation. We swept

different values of noise standard deviation in the set {2−15, 2−14.9, . . . , 2−5}. For each value,
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Table 4.4: CRLB (a) and RMSE (b) of MWF estimates computed using the optimized 18-
scan CRLB and end-to-end scan designs as well as the scan designs used for initialization.
The end-to-end design used to initialize a CRLB scan design was initialized with the hand-
crafted initialization. (The optimized RMSE of the end-to-end design initialized with the
hand-crafted design is different than the initial RMSE for the CRLB design initialized with
the end-to-end design due to slightly different PERK hyperparameter values.) The displayed
percentages indicate the change relative to the initial value. Despite resulting in drastically
worse CRLBs compared to the initial values in nearly all cases, the end-to-end designs
significantly improved the RMSEs in all cases.

(a) sqrt(Expected CRLB of MWF Estimates)

Initialization Initial CRLB Design End-to-End Design

Hand-Crafted 4710 445 (−91%) 166 (−96%)
Random 1 102 16.8 (−83%) 276 (+171%)
Random 2 105 17.1 (−84%) 208 (+97%)
Random 3 118 17.5 (−85%) 157 (+33%)
Random 4 72.6 N/A 192 (+165%)
Random 5 96.6 17.5 (−82%) 288 (+198%)
Random 6 121 17.5 (−86%) 188 (+55%)
Random 7 98.9 17.1 (−83%) 225 (+127%)
Random 8 134 18.5 (−86%) 289 (+116%)
Random 9 79.3 16.6 (−79%) 175 (+121%)
End-to-End 166 166 (−0%) N/A

(b) RMSE of MWF Estimates

Initialization Initial CRLB Design End-to-End Design

Hand-Crafted 0.0519 0.0595 (+15%) 0.0465 (−10%)
Random 1 0.0599 0.0577 (−3.5%) 0.0457 (−24%)
Random 2 0.0604 0.0583 (−3.5%) 0.0453 (−25%)
Random 3 0.0597 0.0621 (+3.9%) 0.0460 (−23%)
Random 4 0.0576 N/A 0.0462 (−20%)
Random 5 0.0605 0.0606 (+0.1%) 0.0457 (−24%)
Random 6 0.0612 0.0588 (−4.0%) 0.0458 (−25%)
Random 7 0.0571 0.0594 (+4.2%) 0.0453 (−21%)
Random 8 0.0596 0.0615 (+3.3%) 0.0464 (−22%)
Random 9 0.0593 0.0592 (−0.3%) 0.0459 (−23%)
End-to-End 0.0462 0.0460 (−0.6%) N/A

73



Mean SD

End-to-End 0.249 0.045
CRLB 0.201 0.056

Figure 4.9: Estimated MWF maps obtained from in vivo data acquired using the end-to-end
scan design and the CRLB scan design, with PERK trained with a noise standard deviation
that was computed from background voxels of the reconstructed images. The MWF map
from the end-to-end design had higher values than what one might expect in the brain, but
was less noisy than the MWF map from the CRLB design. The table shows the mean and
standard deviation (SD) of the MWF estimates across a pooled region of interest (ROI)
consisting of WM voxels (see Figure 4.8).
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Figure 4.10: MSE of fitted STFR signals versus PERK training noise standard deviation for
the modified BrainWeb experiment. The noise standard deviation added to the BrainWeb
data was 2−9.6 (denoted by the vertical line). The cross-validated noise standard deviation
performed well in this case.

we trained PERK as usual and then estimated tissue parameters from several voxels in WM

ROIs. After clamping the parameter estimates to physically reasonable values, we used them

to simulate the STFR signals for each voxel, normalizing the signals on a per-voxel basis as

done previously. We then computed the error between the predicted STFR signals and the

actual STFR signals for each voxel. We used the noise standard deviation resulting in the

lowest error to train PERK for estimating MWF over the whole object.

For the modified BrainWeb experiment, we found that this cross-validation process chose

a training noise standard deviation that resulted in MWF estimates that were just as good as

those in Figure 4.6. Figure 4.10 shows the signal fitting MSE versus training noise standard

deviation.

For the in vivo data, however, the cross-validation chose a training noise standard devia-

tion that did not result in (visually) good MWF estimates; the resulting maps were closer to

those in Figure 4.9 (and actually had a bit higher MWF values) than to those in Figure 4.7.

Figure 4.11 shows the in vivo signal fitting MSE versus training noise standard deviation.
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Figure 4.11: MSE of fitted STFR signals versus PERK training noise standard deviation for
the in vivo data. The training noise standard deviation we manually chose based on visual
preference (used for Figure 4.7) was 2−10.8 (denoted by the vertical line). The cross-validated
noise standard deviation did not perform well in this case.
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Figure 4.12: Trend lines used for de-biasing MWF estimates. We estimated MWF using
PERK for 1,000 sets of non-scan parameters and averaged over 100 noise realizations. Here
we show 2D histograms of the average estimates versus the true MWF values. We then
fit a trend line to the scatter plot underlying each histogram. This trend line was used in
de-biasing MWF estimates; when an estimate was given by PERK, we would look up the
corresponding true MWF value predicted by the trend line and return that MWF value as
the de-biased estimate.

4.8 Appendix

This appendix presents additional results not included in the main body of the chapter.

4.8.1 De-biasing

Figure 4.12 shows a 2D histogram of the MWF estimates and fitted trend line used for

de-biasing the MWF estimates in the chapter for both the end-to-end scan design and the

CRLB design. To de-bias, when an estimate was given by PERK, we would look up the

corresponding true MWF value predicted by the trend line and return that MWF value as

the de-biased estimate. From the trend lines, we observe that the end-to-end design appears

to be more informative of MWF than the CRLB design because its trend line is closer to

the ideal case. (A scan design with no information about MWF would result in a horizontal

trend line, i.e., would regress to the mean training MWF value.)
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Figure 4.13: M0 BrainWeb estimates. The true M0 values are shown before scaling by 3.

Figure 4.14: T1,f BrainWeb estimates.

4.8.2 Other BrainWeb Parameter Estimates

Here we show the other parameter estimates obtained with PERK for the modified BrainWeb

digital phantom experiment for both the end-to-end scan design and the CRLB design. Note

that the scan designs were optimized for just MWF, so we do not have any expectation as

to how good the other parameter estimates should be. Figure 4.13 shows M0, Figure 4.14

shows T1,f , Figure 4.15 shows T1,s, Figure 4.16 shows T2,f , Figure 4.17 shows T2,s, Figure 4.18

shows τf→s, Figure 4.19 shows ∆ωf , Figure 4.20 shows ∆ω, and Figure 4.21 shows κ.
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Figure 4.15: T1,s BrainWeb estimates.

Figure 4.16: T2,f BrainWeb estimates.

Figure 4.17: T2,s BrainWeb estimates.

79



Figure 4.18: τf→s BrainWeb estimates.

Figure 4.19: ∆ωf BrainWeb estimates.

Figure 4.20: ∆ω BrainWeb estimates.
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Figure 4.21: κ BrainWeb estimates.

Figure 4.22: M0 in vivo estimates.

4.8.3 Other In Vivo Parameter Estimates

Here we show the other parameter estimates obtained with PERK from the in vivo data

for both the end-to-end scan design and the CRLB design. These estimates correspond

to Figure 4.7 (i.e., we trained PERK with a manually chosen noise level). Figure 4.22

shows M0, Figure 4.23 shows T1,f , Figure 4.24 shows T1,s, Figure 4.25 shows T2,f , Figure 4.26

shows T2,s, Figure 4.27 shows τf→s, Figure 4.28 shows ∆ωf , Figure 4.29 shows ∆ω, and

Figure 4.30 shows κ. Of these parameter estimates, only ∆ω appears reasonable, as verified

with the independently measured field map. All other parameter estimates are too high or

low compared to values typically reported in literature. We again note that the scan designs

were optimized for just MWF. Despite the poor parameter estimates for most of the other

parameters, the MWF estimates from the end-to-end design still seem reasonable.
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Figure 4.23: T1,f in vivo estimates.

Figure 4.24: T1,s in vivo estimates.
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Figure 4.25: T2,f in vivo estimates.

Figure 4.26: T2,s in vivo estimates.
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Figure 4.27: τf→s in vivo estimates.

Figure 4.28: ∆ωf in vivo estimates.
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Figure 4.29: ∆ω in vivo estimates alongside a reference B0 map acquired from two TE-offset
SPGR scans. While some tissue structure remains visible in the ∆ω estimates from the
end-to-end design, overall there is good visual agreement between the estimated B0 map
and the reference one.
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Figure 4.30: κ in vivo estimates.
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CHAPTER 5

Intravoxel B0 Corrected Image Reconstruction with

RF Prephasing

This chapter presents preliminary work extending conference abstract [15].

5.1 Introduction

Various MRI methods require acquiring signal with either a long readout and/or a long

TE (e.g., fMRI, multi-gradient echo sequences, etc.), allowing a long time for off-resonance

precession to occur. In areas of relatively constant B0 field inhomogeneity, this precession

impacts only the phase of the image. However, in voxels having large B0 gradients, spins

within a single voxel can dephase with respect to each other, inducing signal loss in the

reconstructed image.

One approach to reduce the effect of this intravoxel dephasing is to sample higher fre-

quency components in k-space [69], thus decreasing the size of voxels and limiting the in-

travoxel variation of off-resonance. A drawback of such an approach, however, is that longer

scan times are needed. Another drawback of smaller voxels is lower SNR because there are

fewer spins contributing signal in each voxel.

Another approach is to use model-based reconstruction using a model that accounts for

intravoxel B0 effects [70–72]. Reconstructing images in this way can help alleviate artifacts

from B0-induced signal loss. However, in areas of severe signal loss such as near the sinuses,

such reconstruction can fail to fully recover the image due to near complete signal loss.

Therefore, in this work we propose to combine model-based reconstruction with the use

of a prephasing RF pulse so that the intravoxel spread of spins is approximately zero at the

echo time, mitigating the associated signal loss. We incorporate the effects of this prephasing

into a model-based reconstruction method and demonstrate improved reconstructed images.

The organization of this chapter is as follows. Section 5.2 provides some background

necessary for understanding model-based image reconstruction. Section 5.3 explains the
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model-based image reconstruction technique proposed in this chapter. Section 5.4 describes

our experiments. Section 5.5 reports the experimental results. Section 5.6 provides some

discussion of the results. Section 5.7 gives concluding remarks and discusses ideas for future

work.

5.2 Background

The data dc acquired by the cth RF receive coil at time t in a MRI scan can be modeled as

[72]

dc(t) =

∫ ∞

−∞
sc(r)ρ(r)e

−i2π∆f(r)te−i2πk(t)·r dr, (5.1)

where sc is the spatially varying receive coil sensitivity map for the cth coil, ρ is the imaged

object, ∆f(r) = ∆ω(r)
2π

(see (2.1)) is the off-resonance map that accounts for spatially vary-

ing differences in spins’ resonance frequencies due to deviations in the main B0 field, the

integration is over 3D spatial location r = (x, y, z), and k(t) = (kx(t), ky(t), kz(t)) is the 3D

k-space location that represents systematic spatial variations in B0 introduced by separate

gradient coils used for spatial localization of signal. These gradient coils are controlled by

the user and are used to determine what points k to sample. As seen from the Fourier

transform structure of the last exponential in (5.1), these points are points in the spatial

frequency domain (also called k-space) of the imaged object. The set of sampled k-space

points and the time at which they are sampled comprise a readout, or k-space, trajectory.

One common readout trajectory is the echo planar imaging (EPI) readout. The EPI

readout is a Cartesian sampling scheme in which, after RF excitation, kz is fixed but a

matrix of kx and ky samples are acquired in rapid succession. This readout can be repeated

for as many kz samples as desired, resulting in a stack-of-EPI readout. The EPI readout also

generalizes directly to 3D, in which case kz is not fixed and a 3D array of data is acquired.

This is called a single-shot 3D EPI readout.

Introducing a voxel basis function ψ(·) (representing the shape of a voxel, or the dis-

tribution of signal within a voxel) and discretizing in space allows one to replace sc(r)ρ(r)

with
∑N

n=1 sc,nxnψ(r − rn), where N is the number of voxels, sc,n is the coil sensitivity for

the nth voxel and cth coil, xn is the image intensity for the nth voxel, and rn is the spatial

position of the center of the nth voxel. Combining this discretization with (5.1) yields

dc(t) =
N∑

n=1

sc,nxn

∫ ∞

−∞
ψ(r − rn)e

−i2π∆f(r)te−i2πk(t)·r dr. (5.2)
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Note that typically ψ is taken to be a Dirac impulse, resulting in

dc(t) =
N∑

n=1

sc,nxne
−i2π∆f(rn)te−i2πk(t)·rn , (5.3)

which, if one ignores the off-resonance term and samples in time are taken such that k-space

samples lie on a suitable Cartesian grid, permits the use of the Fast Fourier Transform (FFT)

for image reconstruction.

To model intravoxel B0 effects, ψ cannot be a Dirac impulse (i.e., it must have some

spatial extent). One choice is to use a rectangular basis. Further assuming off-resonance

varies linearly within each voxel and discretizing in time yields [72]

dc(tm) =
N∑

n=1

sc,nxn

∫ ∞

−∞
rect3

(
r − rn
∆

)
e−i2π(fn+gn·(r−rn))tme−i2πkm·r dr

=
N∑

n=1

sc,nxne
−i2πfntm

∫ ∞

−∞
rect3

(
r − rn
∆

)
e−i2πgn·(r−rn)tme−i2πkm·r dr

=
N∑

n=1

sc,nxne
−i2πfntm sinc3((km + gntm)⊙∆)e−i2πkm·rn , (5.4)

where tm is the k-space sample time, fn is the off-resonance frequency at the center of the

nth voxel, sinc3 is the 3D sinc function (i.e., sinc3(x, y, z) = sinc(x) sinc(y) sinc(z)), rect3 is

the 3D rectangle function (defined similarly), km is the k-space location for the mth sample

time, gn is the spatial gradient of the B0 field map at the nth voxel, ∆ is the voxel size,

and ⊙ is element-wise (Hadamard) product. Signal loss due to the intravoxel dephasing

of spins is modeled via the sinc3 term (which includes dephasing due to variations in off-

resonance frequency as well as due to the gradient coils used for spatial localization, i.e.,

k-space location).

Collecting M time sample points into data vector yc, one can rewrite (5.4) in matrix-

vector form:

yc = Acx, (5.5)

where x = [x1, . . . , xN ]
⊺ and Ac is the system model, which, for (5.4), is given by

Ac = (W ⊙ F )Sc, (5.6)

where Sc = diag([sc,1, . . . , sc,N ]
⊺), F is the Fourier operator, and the elements of W are given

by [72, 73] Wmn = e−i2πfntm sinc3((km + gntm) ⊙∆). In this case, one cannot use the FFT

to compute Acx, even when assuming M = N and the k-space samples lie on a Cartesian
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grid (in which case F is the 3D Discrete Fourier Transform (DFT) matrix).

To improve computational efficiency, one can use a rank-L approximation of W and then

rewrite (5.5) as [72]

yc =

((
L∑
l=1

ulv
′
l

)
⊙ F

)
Scx

=
L∑
l=1

ul ⊙ (F (v∗
l ⊙ Scx)), (5.7)

where ul and vl are the columns of U and V , respectively, such that W ≈ UV ′, (·)′ denotes
conjugate transpose, and (·)∗ denotes element-wise conjugation. Now, instead of performing

one matrix-vector product to compute Acx, L FFTs can be used, greatly reducing the

computational burden for L≪ N (L ≈ 10 usually suffices in practice).

5.3 Theory

In this work, we propose a model-based image reconstruction technique that incorporates

the effects of both intravoxel dephasing and RF prephasing. Typically, RF excitation pulses

are chosen not to impart any phase on the imaged object. However, one can adjust the phase

of the excitation pulse, thus adjusting the phase of the image. Furthermore, this imparted

phase can vary spatially. Purposely imparting phase on an object using the RF excitation

pulse is called RF prephasing.

The effects of RF prephasing can be incorporated into (5.1):

dc(t) =

∫ ∞

−∞
sc(r)ρ(r)e

−i2πϕ(r)e−i2π∆f(r)te−i2πk(t)·r dr, (5.8)

where ϕ is the spatially varying phase (in units of cycles) imparted by the RF pulse. After

discretizing using the rectangular basis, assuming ϕ varies linearly within each voxel, and

rewriting in matrix-vector form, the data vector again is given by yc = Acx. This time,

however, the system matrix Ac includes the effects of RF prephasing. In particular,

Ac = (W ⊙ F )ΦSc, (5.9)

where Φ = diag([e−i2πϕ(r1), . . . , e−i2πϕ(rN )]⊺) is a diagonal matrix containing the bulk phase

imparted to the center of each voxel by the RF prephasing pulse and now the elements of
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W are

Wmn = e−i2πfntm sinc3((km + gntm + γn)⊙∆), (5.10)

where γn = ∇ϕ(r)|r=rn
is the spatial gradient of the RF prephasing phase map at the nth

voxel. (Note that under the assumption that ϕ varies linearly within each voxel, ϕ(r) =∑N
n=1(ϕn+γn · (r− rn)) rect3

(
r−rn
∆

)
, where ϕn is the phase imparted by the RF prephasing

pulse to the center of the nth voxel.)

Note that Φ and γn are the key new aspects that incorporate the effects of RF prephasing

into the system model. An ideal RF prephasing pulse will impart phase such that fnTE+ϕn =

0 and an intravoxel spread of phase such that gnTE + γn = 03 ∀n, i.e., all spins throughout
the object will be in phase at the echo time.

We use the system matrix Ac in (5.9) in a regularized model-based reconstruction frame-

work for multi-channel data. In particular, we solve

argmin
x

C∑
c=1

1

2
∥Acx− yc∥22 + λR(x), (5.11)

where yc is the acquired k-space data from coil c, C is the total number of coils, R is a

regularizer, and λ is a tuning parameter. We note that (5.11) assumes we know all the terms

that make up the system matrix Ac. In particular, coil sensitivity maps (Sc) and a B0 field

map (fn values) must be separately acquired. The RF prephasing pulse is then designed

using the B0 field map and the echo time to determine the ideal amount of prephasing to

impart. (Thus the RF prephasing pulse is designed in an online way and then used to scan.)

Because the RF pulse is known, the RF prephasing map (Φ) is known. The spatial gradients

of the field map (gn values) and of the RF prephasing map (γn values) are computed via

finite differences.

5.4 Methods

For the experiments in this work, we reconstructed raw MRI k-space data using (5.11). We

used the ℓ2-norm of 3D finite differences in the three principal (x, y, and z) directions for

the regularizer R with λ = 0.1. We solved the minimization problem using 300 iterations

of conjugate gradient (ncg in the Julia [50] package MIRT.jl [74]), which was enough to

converge to the global minimum cost function value in all cases. We used a rank-10 approx-

imation of W . To ease the computational burden of computing the singular vectors of W ,

we approximately computed them by randomly sampling 1,000 rows and columns of W ,

following what was done in [72].
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Figure 5.1: BrainWeb image weighted by the four individual coil sensitivities used in the
simulation experiments. Only the middle slice of the simulated object is shown. Each coil
“sees” only part of the object, but the information from each coil is used jointly during
reconstruction to determine the true underlying object.

For the simulation experiments, we used a digital BrainWeb phantom [53] with matrix

size 128× 128× 3. We used four synthetic coil sensitivity maps (shown in Figure 5.1). We

generated an off-resonance map with values 0–85 Hz and spatial gradients with values −3.6–

3.6 Hz/voxel in the x direction, −3.6–3.6 Hz/voxel in the y direction, and −61–0 Hz/voxel

in the z direction (see Figure 5.2). In other words, each voxel had a linear intravoxel spread

of off-resonance frequencies in each of the x, y, and z directions. For example, if a voxel

had a spatial gradient of 3 Hz/voxel in the x direction, then spins within the voxel on

the right border of the voxel would precess with an off-resonance frequency 3 Hz greater

than spins on the left border of the voxel. The spatial gradients were computed using

central finite differences for all non-border voxels and left or right finite differences otherwise.

We generated noisy k-space data by simulating a Cartesian stack-of-EPI readout, unless

otherwise noted. Each readout occurred from 3 to 40 ms with TE = 21.6 ms.

In the first simulation experiment, we compared different reconstruction methods for data
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Figure 5.2: Off-resonance map and its spatial gradients used in the simulation experiments.
Only the values corresponding to the middle slice are shown. The B0 gradients in the x and
y directions range from −3.6 to 3.6 Hz/voxel. For TE = 21.6 ms, this corresponds to less
than 1/12 cycle/voxel at most. In the z-direction, the peak of −61 Hz/voxel leads to more
than one cycle/voxel.
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simulated both with and without RF prephasing. The data simulated with RF prephasing

used ideal prephasing. We compared three reconstruction techniques for each data set:

1. Square root sum-of-squares (SSoS): We reconstructed the data for each coil individually

using an inverse FFT and then combined the individual coil images with a square root

sum-of-squares combination. Note that this method uses a model that ignores coil

sensitivity effects, bulk B0 and prephasing effects, and intravoxel effects, i.e., Ac = F .

This method also has no regularization.

2. Model-based reconstruction without intravoxel effects: We reconstructed the data using

system matrix (5.9) but with gn = γn = 03 ∀n. Thus we ignored intravoxel dephasing

due to off-resonance and RF prephasing, but we modeled coil sensitivity effects, bulk

B0 and prephasing effects, and intravoxel dephasing due to k-space location.

3. Model-based reconstruction with intravoxel effects: We reconstructed the data using

the proposed system model (5.9) (which is the same as (5.6) when RF prephasing is

not used during data acquisition), thus accounting for both intravoxel B0 effects and

(when applicable) intravoxel RF prephasing effects.

We also repeated this experiment with a single-shot 3D EPI readout. We kept the readout

timing the same (from 3 to 40 ms, effectively traversing k-space three times more quickly

than in the initial experiment), but the echo time changed slightly to TE = 21.5 ms.

In the second simulation experiment, we investigated what happens when RF prephasing

is not ideal. We simulated data with RF prephasing varying from none to ideal. In other

words, instead of having fnTE +ϕn = 0 and gnTE +γn = 03 ∀n, we had RF prephasing such

that fnt+ ϕn = 0 and gnt+ γn = 03 ∀n for rephasing times t ∈ {0, 5, 10, 12, 15, TE} ms. We

reconstructed the data using model-based reconstruction both with and without intravoxel

effects (methods 2 and 3 above). For the cases where we reconstructed the data accounting

for intravoxel effects, we assumed we exactly knew the amount of non-ideal RF prephasing

that was done.

5.5 Results

Figure 5.3 shows the ground truth image and the results of the different reconstruction

methods for the k-space data simulated with and without RF prephasing. Only the middle

slice is shown. Table 5.1(a) shows the corresponding normalized root mean squared error

(NRMSE) for each reconstructed image, where NRMSE = ∥x̂ − x∥22/∥x∥22, where x is the

true image and x̂ is the reconstructed image. Without RF prephasing, there was severe signal
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Table 5.1: NRMSEs for each of the reconstructed images in (a) Figure 5.3 and (b) Figure 5.4.
(a) Even though the NRMSE for the image reconstructed with a model including intravoxel
B0 effects from data without RF prephasing was only 2.3%, residual artifacts are still clearly
visible in the reconstructed image. On the other hand, both model-based reconstructed
images from data with ideal RF prephasing had excellent NRMSEs, regardless of whether
or not intravoxel B0 and RF prephasing effects were modeled. (b) The NRMSEs from the
single-shot 3D EPI data were worse than those from the stack-of-EPI data (a), at least for
the model-based reconstructed images. In this case, reconstructing the data with ideal RF
prephasing requires using a model that includes intravoxel B0 and prephasing effects for
good performance.

(a) Stack-of-EPI readout

No RF Prephasing Ideal RF Prephasing

SSoS reconstruction 72.5% 67.2%
Reconstruction without intravoxel effects 21.5% 0.1%
Reconstruction with intravoxel effects 2.3% 0.2%

(b) Single-shot 3D EPI readout

No RF Prephasing Ideal RF Prephasing

SSoS reconstruction 72.0% 66.8%
Reconstruction without intravoxel effects 34.8% 117.8%
Reconstruction with intravoxel effects 5.1% 0.7%

loss in the area of the image with large B0 gradients. Even when taking intravoxel B0 effects

into account during image reconstruction, there was still residual artifact. The reconstructed

images from the data with ideal RF prephasing were all free from signal loss artifacts,

though the SSoS-reconstructed image still had incorrect image scaling due to unmodeled

coil sensitivities. The two images reconstructed using model-based reconstruction were close

to the true image and were very similar despite one not modeling intravoxel B0 and RF

prephasing effects.

Figure 5.4 is the same as Figure 5.3 but with the data acquired using a simulated single-

shot 3D EPI readout. Table 5.1(b) shows the corresponding NRMSEs. Overall, these re-

constructed images are of worse quality than those from the stack-of-EPI data, but they do

show similar trends. The most notable difference, however, is that ideal RF prephasing did

not recover the true image without also being combined with model-based reconstruction

using a model that included intravoxel B0 and RF prephasing effects.

Figure 5.5 shows the images reconstructed with a model that included intravoxel effects

from data with different amounts of RF prephasing. Again, only the middle slice is shown.

Table 5.2 shows the corresponding NRMSEs. As expected, as the amount of RF prephas-
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Figure 5.3: True and reconstructed images for k-space data simulated with and without
ideal RF prephasing. We compared three reconstruction approaches: square root sum-of-
squares (SSoS) reconstruction and model-based reconstruction with and without modeling
intravoxel B0 and RF prephasing effects. The SSoS reconstructed images were scaled for
display. Without RF prephasing, the reconstructed images had severe signal loss due to
intravoxel dephasing. This signal loss was mitigated, but not entirely removed due to (near)
complete signal loss that occurs at and near the zero-crossings of the sinc function in (5.4),
when reconstructing with a model that incorporated such intravoxel dephasing. Ideal RF
prephasing by itself essentially eliminated all signal loss due to intravoxel dephasing, regard-
less of reconstruction method.

96



Figure 5.4: True and reconstructed images for k-space data simulated with and without ideal
RF prephasing using a single-shot 3D EPI readout. The reconstruction approaches were the
same as in Figure 5.3. The SSoS reconstructed images were scaled for display. Overall, these
reconstructed images are of worse quality than those from the stack-of-EPI data, but they
do show similar trends. The most notable difference, however, is that ideal RF prephasing
did not recover the true image without also being combined with model-based reconstruction
using a model that includes intravoxel B0 and RF prephasing effects.
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Figure 5.5: Reconstructed images for k-space data simulated with varying amounts of RF
prephasing. We reconstructed these images using a model that included intravoxel B0 and RF
prephasing effects. As expected, the reconstructed image quality improved as the rephasing
time increased from 0 (no prephasing) to TE (ideal prephasing). The residual signal loss
artifact was still severe for rephasing times t ∈ {0, 5} ms. Starting at a rephasing time of 10
ms, however, the reconstructed image quality improved significantly.

ing increased from none to ideal, the quality of the reconstructed images improved. The

residual signal loss artifact was still severe for rephasing times t ∈ {0, 5} ms. Starting at a

rephasing time of 10 ms, however, the reconstructed image quality improved significantly.

When reconstructing the images without modeling intravoxel B0 and prephasing effects, a

similar trend was seen but with more severe signal loss as the rephasing time decreased (see

Figure 5.6 and Table 5.2).

5.6 Discussion

In the simulated experiments of this work, we used an artificially generated off-resonance map

with severe through-voxel gradients to illustrate the benefits of RF prephasing and model-

based reconstruction. We note that, in practice, the intravoxel B0 gradients, expressed in
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Table 5.2: NRMSEs for each of the reconstructed images in Figures 5.5 and 5.6. As expected,
the NRMSE improved as the amount of RF prephasing increased from no prephasing to
ideal prephasing. The NRMSEs for the images reconstructed using a model that included
intravoxel B0 and RF prephasing effects were much better overall than those of the images
reconstructed without those intravoxel effects.

Model Intravoxel Effects?
Yes No

R
ep
h
as
in
g
T
im

e 0 ms 2.0% 21.5%
5 ms 1.7% 16.1%
10 ms 0.7% 5.5%
12 ms 0.5% 2.2%
15 ms 0.3% 1.2%
21.6 ms (TE) 0.2% 0.2%

Figure 5.6: Reconstructed images for k-space data simulated with varying amounts of RF
prephasing. We reconstructed these images using a model that did not include intravoxel B0
and RF prephasing effects. The image quality of these reconstructed images degrades much
less gracefully as the rephasing time decreases compared to Figure 5.5, which has images
reconstructed using a model that included intravoxel B0 and RF prephasing effects.
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units of Hz/mm, are similar in all three principal directions, so the off-resonance map we

simulated in this work is not necessarily realistic. Therefore, future work could extend this

analysis to evaluate what effect RF prephasing and model-based reconstruction have for a

range of typical values for the spatial gradients of off-resonance maps encountered in practice,

particularly when scanning near the sinuses.

Figures 5.3 and 5.4 both illustrate the effect ideal RF prephasing has in the presence

of large B0 gradients. Even when taking intravoxel B0 effects into account during image

reconstruction, there was still residual artifact when reconstructing data simulated without

RF prephasing, indicating that model-based reconstruction is not entirely sufficient on its

own to correct for the signal loss due to intravoxel B0 effects. Combining the model-based

reconstruction with ideal RF prephasing resulted in greatly improved reconstructed image

quality.

Figure 5.3 seems to indicate that modeling intravoxel B0 and RF prephasing effects is

unimportant when ideal RF prephasing is used; the reconstructed image had less than 1%

error regardless of whether or not those intravoxel effects were modeled. However, Fig-

ure 5.4 demonstrates that other factors (in this case, the readout trajectory) can influence

the relative impact of reconstructing data with ideal RF prephasing using a model including

intravoxel B0 and prephasing effects versus using a model without those effects. Future work

could further investigate different readout trajectories to see in what circumstances using a

model including intravoxel effects is necessary for good reconstruction quality. Additionally,

other factors (e.g., under-sampling) could be investigated to see if they also influence the

relative impact of using such intravoxel modeling.

Even with the stack-of-EPI acquisition, Figures 5.5 and 5.6 show that modeling intravoxel

B0 and RF prephasing effects becomes more important when the RF prephasing is not

ideal. Using such modeling during image reconstruction results in a more graceful decline in

reconstructed image quality as the rephasing time decreases (becomes less ideal) than when

reconstructing using a model without those intravoxel effects.

Figure 5.5 also indicates that ideal RF prephasing is not necessary to overcome the effects

of severe through-voxel B0 gradients; the NRMSE of the reconstructed image was still below

1% even for a rephasing time of 10 ms, which is less than half the ideal rephasing time

(TE = 21.6 ms). This result bodes well for RF prephasing in practice, where achieving ideal

RF prephasing may at times be impractical.

Additionally, Figure 5.6 gives some sense of how robust the proposed reconstruction ap-

proach is to inaccuracies in the spatial gradients of the B0 and prephasing maps. In this

work, we assumed perfect knowledge of the B0 and prephasing maps and their spatial gradi-

ents. In practice, however, these estimates will be imperfect, and thus the reconstruction will
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assume some amount of dephasing exists that is more or less than the amount of dephasing

actually present in the data. In Figure 5.6, the case with a rephasing time of t = 15 ms

assumed there was no dephasing at the echo time (i.e., gnTE + γn = 03), while in reality

the amount of dephasing was gn(TE − t) (i.e., there was some dephasing that occurred from

the rephasing time t to the echo time TE). Despite this model mismatch, which can also be

viewed as an underestimation of gn by about 30% or an overestimation of γn by about 44%,

the reconstructed image has high visual quality and low NRMSE (1.2%). Thus the proposed

reconstruction approach appears to be robust to errors in the spatial gradients on the order

of 30%. Of course, the robustness of the proposed approach to such inaccuracies likely also

depends on the readout trajectory. Future work could do a more thorough characterization

of such robustness for different readout trajectories.

In this work, we used a rectangular basis function for representing the shape of voxels.

However, it may be that other basis functions lead to better reconstructed images. In

particular, a sinc basis may be a better choice due to the nature of the Fourier sampling.

Future work could explore different voxel basis functions in more detail and analyze the

impact they have on image reconstruction, both with and without RF prephasing.

5.7 Conclusion

In this work, we proposed incorporating RF prephasing into model-based reconstruction

that models intravoxel B0 and prephasing effects. We compared this approach in simulation

to model-based reconstruction with intravoxel B0 effects but without RF prephasing. The

proposed approach resulted in a reconstructed image that more closely matched the true

underlying image. We also found that while RF prephasing can be sufficient on its own to

eliminate the signal loss artifact due to intravoxel dephasing, combining RF prephasing with

model-based reconstruction that incorporates intravoxel B0 and prephasing effects provides

better reconstructed images for a wider range of situations (e.g., for a different readout

trajectory, or when RF prephasing is not ideal, as explored in this work).

The aim of this work was to introduce the proposed reconstruction method. So far, only

simulations have been done. These results need to be verified with actual data. For this,

it will be necessary to develop algorithms for designing RF prephasing pulses. Future work

could investigate doing so with pulses based on spectral [75] and/or spatial [76,77] excitation

profiles.

Furthermore, the proposed reconstruction method can be used, e.g., as part of a fMRI

study where long echo times are needed to observe the BOLD effect. Therefore, future work

could investigate the effect of the proposed method on fMRI activation maps.
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CHAPTER 6

Future Work

This chapter offers ideas for future work that are more broadly applicable than for just one

of the previous chapters. The discussion and conclusion sections of Chapters 3, 4, and 5

contain ideas for future work that are more specific to the corresponding chapters.

6.1 Model Intravoxel Dephasing in MWI

When using STFR and PERK for MWI as in Chapters 3 and 4, we used a tissue model that

ignored so-called T ∗
2 effects, i.e., variations in off-resonance frequencies due to interactions

between spins at a microscopic level. These interactions cause a spread of off-resonance

frequencies within a voxel, which in turn causes magnetization vectors within a voxel to

dephase with respect to each other, causing signal loss. This phenomenon is similar to

intravoxel B0 effects as discussed in Chapter 5, but is different in that it is tissue-specific.

Another difference is that the intravoxel spread of off-resonance values due to T ∗
2 effects is

not well modeled by a uniform distribution of off-resonance values, but rather a Lorentzian

distribution. T ∗
2 effects influence the STFR signal [19]; therefore, an area of future work is

to model T ∗
2 effects in the STFR signal model used to train PERK for MWI and investigate

how PERK MWF estimates are affected. Additionally, intravoxel B0 variations could also

be modeled, and their effect on PERK MWF estimates studied.

6.2 Jointly Reconstruct Under-sampled STFR Scans

The in vivo results presented in Chapters 3 and 4 used fully sampled STFR scans. The

scan time can be reduced by under-sampling, at the cost of a more complicated image

reconstruction. Normally, under-sampled MRI images are reconstructed one at a time by

solving the following optimization problem:

x̂d = argmin
x

1

2
∥Adx− yd∥22 + βR(x), (6.1)
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where x̂d represents the reconstructed image for the dth scan, Ad is the system matrix that

converts the true image xd into the observed data yd, R is a regularizer that encourages, e.g.,

sparsity and/or low-rankness in some domain [78], and β > 0 is a regularization parameter.

Note that, ignoring system imperfections and coil sensitivity profiles, and for the single-coil

case, Ad is given by taking the DFT matrix and removing the rows corresponding to the

unsampled data points for the dth scan. This formulation (6.1), however, does not take into

account image similarities across all scans.

One way to set up the reconstruction to use information across all scans is to jointly

reconstruct all images together, i.e.,

(x̂1, . . . , x̂D) = argmin
x1,...,xD

D∑
d=1

1

2
∥Adxd − yd∥22 + βR(x1, . . . ,xD), (6.2)

where now the regularizer R is a function of all scans together. For MWI with STFR,

multiple STFR scans are acquired of the same anatomy, so choosing R to encourage common

structure across all scans, such as group sparsity [79,80] or low-rankness [80], should improve

the reconstructions. Also, for each spatial location of the imaged object, the D STFR values

lie on a manifold whose dimension is the number of free parameters in the STFR signal

model, so another choice for R encourages the STFR signals for each voxel to lie close to

that manifold. In this case,

R(x1, . . . ,xD) =
N∑

n=1

min
θn

∥∥∥[x(n)1 , . . . , x
(n)
D

]⊺
− s(θn)

∥∥∥2
2
, (6.3)

where x
(n)
d represents the nth voxel of the dth scan and s is the STFR signal model as a

function of the unknown parameters θn.

A direction for future work is to investigate different methods for reconstructing the

under-sampled STFR scans. In particular, one idea is to develop a method for group sparsity

using either a mixed ℓ2-ℓ0-norm or an ℓ0-norm on the singular values of the matrix X ≜

[x1 · · ·xD], using an exact reformulation of the ℓ0-norm to make the problem tractable

[81,82], and compare it to the other aforementioned methods.

In addition to developing a method for reconstructing the under-sampled STFR scans,

one could also investigate the trade-off between sampling in space versus along the contrast

dimension. For a given amount of scan time, one can try to under-sample each STFR

scan as much as possible to maximize the number of STFR scans that can be acquired,

increasing sampling along the contrast dimension at the expense of less spatial sampling.

(This approach is akin to magnetic resonance fingerprinting [83].) On the other extreme, one
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can fully sample each STFR scan, minimizing the number of contrasts that can be acquired.

Future work could investigate the trade-off between the two extremes to determine how to

balance spatial sampling and contrast sampling.

6.3 Replace PERK with Deep Learning

In this dissertation, I used PERK for MWF estimation. Increasingly, however, deep neural

networks are being used to achieve state-of-the-art performance in various MRI applications,

including QMRI. One attractive aspect of using a deep neural network for QMRI is the ability

to incorporate a signal model into network training. One way to do this is to train a network

to estimate tissue parameters from the acquired images but optimize the network parameters

to minimize the error between the acquired images and the images obtained by passing the

estimated tissue parameters through a signal model [84–86]. An avenue for future work

could be to investigate different network architectures (e.g., fully connected, CNN, U-Net)

and jointly train the network and optimize the STFR scan parameters in an end-to-end

fashion similar to the one introduced in Chapter 4.

6.4 Explore Bias-Variance Trade-Off

in End-to-End Scan Design

In the end-to-end scan design (Chapter 4), I minimized the MSE of MWF estimates from

PERK. MSE is equal to the sum of the variance and squared bias of the estimates, so

minimizing the MSE places equal emphasis on both aspects. However, it may be useful to

place unequal emphasis on the two. For example, since humans are good at reading through

noise, it may be desirable to place more emphasis on minimizing the bias of estimates. One

way to achieve this is to introduce a weighting hyperparameter γ ∈ (0, 2) and then minimize

Ex[γ∥Bias(x̂)∥22 + (2− γ) var(x̂)], (6.4)

where the bias and variance are the conditional bias and variance of parameter estimates

given a particular true underlying parameter. Then, as in Chapter 4, the scan design would

minimize an expected cost, averaged over distributions of tissue parameters. In this way,

choosing a higher value of γ places more emphasis on minimizing bias, while choosing a

lower value of γ places more emphasis on minimizing variance. Note that choosing γ = 1

is equivalent to minimizing the MSE. On one hand, adding γ introduces another hyperpa-

rameter that must be tuned, but on the other hand, adding γ allows finer control over the
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true objective of interest. Furthermore, adding γ does not introduce any complexity to the

actual minimization (i.e., minimizing the modified objective function is just as easy as mini-

mizing MSE, in the sense that no constraints are added). Note also that using this approach

would likely make the de-biasing procedure described in Chapter 4 unnecessary, as one could

increase γ to decrease the bias of parameter estimates.

Besides adding γ, another way to place unequal emphasis on bias and variance is to

minimize one with a constraint on the other. For example, one may desire to minimize

bias subject to some constraint on the variance, resulting in MWF estimates that are as

unbiased as possible given some allowable amount of noise. While adding a constraint makes

the minimization problem harder, doing so can help ensure that MWF estimates have an

acceptable level of noise or bias, which is not guaranteed in the previous formulation.

6.5 Optimize Magnetic Resonance Fingerprinting

Scans

Magnetic resonance fingerprinting (MRF) is a successful, relatively new approach to QMRI

[83]. Rather than using the same scan parameters (flip angles, repetition times, etc.) for

each repetition of excitation and signal acquisition in a scan, in MRF the scan parameters

are allowed to vary from repetition to repetition. The result is a signal time course that can

then be fit to a model to estimate tissue parameters.

One idea for future work is to investigate optimizing MRF scan parameters using the

end-to-end scan design approach from Chapter 4. To adapt the experiments in that chapter

to MRF, instead of having a signal model to generate 18 STFR signals for a given set of

tissue parameters, one would use a signal model to generate a MRF time course of, e.g.,

1,000 time points. Furthermore, if not using PERK for parameter estimation, one would

replace PERK training with generating the dictionary used for MRF pattern matching or

with training a learning-based estimator (e.g., a neural network) as applicable.

There are a few things to consider when applying the end-to-end scan design approach to

MRF. The first is that many MRF scans contain on the order of 1,000 scan parameters (many

more than the 54 STFR scan parameters I optimized in Chapter 4). Thus the computational

burden of computing gradients may be an issue, particularly when using a signal model that

involves the Bloch-McConnell equation (2.6) (i.e., when modeling exchange between two or

more compartments). One approach to lowering the number of parameters to optimize is

to vary the scan parameters according to some parameterized function and then optimize

that function’s parameters. Then only a few parameters will need to be optimized, at the
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expense of adding constraints on the scan parameters.

Another consideration (that is applicable in general but is especially pertinent to MRF)

is under-sampling. MRF data often are severely under-sampled, resulting in reconstructed

images with severe artifacts. However, the end-to-end scan design ignores the effects of under-

sampling. If using a dictionary and pattern matching for parameter estimation, ignoring

under-sampling effects in the scan design may be acceptable due to the incoherence of such

artifacts with respect to the dictionary time courses [83]. On the other hand, if using a learned

estimator for parameter estimation, under-sampled time courses should be used for training,

and so should not be ignored in the scan design. To incorporate under-sampling effects

into the end-to-end scan design approach, instead of drawing sets of tissue parameters from

specified distributions (effectively simulating signals on a voxel-by-voxel basis), one would

need to simulate full images with realistic anatomical features (e.g., using a BrainWeb digital

phantom [53]), both for the validation data and for the training data. (Such an end-to-end

approach would be much closer to the work in [63].) One would need to investigate how many

realistic simulated images would be needed, particularly for training; for example, could one

image have a wide range of tissue parameter values, or would the resulting under-sampling

artifacts be too unrealistic?

Finally, the end-to-end scan design approach is amenable to optimizing continuous vari-

ables. Discrete variables, such as how many inversion pulses a MRF scan should have and

when to include them, would need to be selected in some other way.

6.6 Investigate CSF Partial Volume Effects

One physical effect I ignored in this dissertation is partial volume effects, in which two (or

more) macroscopic environments (such as WM and GM) exist within a single voxel. (This

is in contrast to multiple microscopic environments, such as myelin water and non-myelin

water, existing within a single voxel, which I did consider in this dissertation.) Partial volume

effects with cerebrospinal fluid (CSF) are of particular interest; for example, voxels near the

cortical surface of the brain will have a mix of GM and CSF. These effects also become more

pronounced as the brain ages and atrophies. Since PERK assumes each voxel comprises just

one of either WM or GM or CSF, partial volume effects lead to model mismatch. One avenue

of future work is to add a CSF compartment to the tissue model and to investigate the effect

this has on MWF estimates and, in particular, WM/GM contrast in vivo. For simplicity,

one could assume the CSF compartment does not exchange with the other compartments.

This assumption is reasonable for partial volume effects that are at the interface between

brain tissue and CSF in, e.g., the ventricles, where there is a natural barrier that prevents
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exchange. However, this assumption breaks down in pathological conditions such as edema,

where brain tissue and CSF are in direct contact [87]. First, one could investigate the model

mismatch by simulating test data using the new tissue model but training PERK using the

model that does not include CSF. If significant differences in the MWF estimates are found,

the new tissue model model could be used to train PERK for estimating MWF from in vivo

data to see whether WM/GM contrast improves.
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APPENDIX A

Effects of Magnetization Transfer on STFR-Based

Myelin Water Imaging

Chapter 3 estimated MWF by simulating the STFR signal for training PERK. The sig-

nals were simulated assuming instantaneous RF excitation pulses. However, real excitation

pulses have finite duration (about 1–2 ms). For magnetization with relaxation times much

longer than the excitation pulse duration, the difference between instantaneous and non-

instantaneous pulses is negligible, but for other magnetization, such as is found in macro-

molecules with T2 values on the order of 10 µs, the difference can lead to significant changes

in the simulated signal. Though magnetization with such short T2 is not typically MR-

visible, it impacts the observed signal through exchange with other tissue compartments, a

process called magnetization transfer (MT). This appendix presents work investigating how

MT affects the STFR signal and how that, in turn, affects MWF estimates.

A.1 Introduction

It was shown in [88] that MT effects cause the steady state bSSFP signal to be much lower

than predicted by conventional theory. STFR produces a similar signal to bSSFP, so we

investigated to what extent MT effects influence the steady state STFR signal and, in turn,

MWF estimates from STFR scans.

A.2 Methods

A.2.1 Modeling MT Effects

Brain tissues were modeled using a three-compartment model with exchange, as in Chapter 3.

When simulating the STFR signal for training PERK in that chapter, however, instanta-

neous RF excitation pulses were assumed, i.e., the magnetization simply was rotated by

109



the prescribed flip angle without undergoing any relaxation or free-precession. To assess

the effects of model mismatch, we accounted for MT effects by simulating sinc-shaped RF

excitation pulses with 1 ms duration and time-bandwidth product of 8. Each RF pulse was

played out in 401 time points, each of which was treated as an instantaneous RF pulse, and

between each hard pulse, the magnetization experienced relaxation and free-precession.

A.2.2 Experiments

First, we looked at how a single-compartment macromolecule magnetization with M0 = 1,

T1 = 1000 ms, and T2 = 50 µs was affected by the non-instantaneous RF excitation pulse.

We also looked at a single-compartment white matter magnetization with M0 = 1, T1 = 833

ms, and T2 = 80 ms for comparison. Next, we looked at the magnetization of a three-

compartment, exchanging system with M0 = 1, ff = 0.15, fm = 0.1, T1,f = 400 ms, T1,s =

1000 ms, T1,m = 1000 ms, T2,f = 20 ms, T2,s = 80 ms, T2,m = 50 µs, τf→s = 100 ms, τf→m = 50

ms, ∆ωf = 15 Hz, κ = 1, and ∆ω ranging from −100 to 100 Hz. In both cases, we looked

at the magnetization arising from an STFR scan in steady state with Tfree = 8 ms, Tg = 2.8

ms, α = 15◦, β = 15◦, ϕ = 0, and TE at either 0 ms (immediately after the instantaneous

pulse), 0.5 ms (immediately after the 1 ms pulse), or 4 ms (the conventional echo time).

After looking at the STFR steady state signals for a single STFR scan, we then inves-

tigated how PERK MWF estimates were influenced by non-instantaneous RF excitation

pulses. We generated test data by simulating STFR scans with 1 ms sinc excitation pulses,

and we compared training PERK with instantaneous excitation pulses to training PERK

with non-instantaneous pulses. The STFR scans were simulated using scan design A from

Table 3.2, with Tfree = 8 ms, Tg = 2.8 ms, and TE = 4 ms. Both test and training data were

simulated from a range of tissue parameters given in Table 3.1.

A.3 Results

A single-compartment macromolecule magnetization is greatly affected by the duration of

the excitation pulse (especially the longitudinal componentMz), unlike a single-compartment

white matter magnetization, as seen in Table A.1. For a three-compartment, exchanging

system, however, the acquired signal in steady state is essentially the same for both instan-

taneous and non-instantaneous excitation pulses, as shown in Figure A.1. The results in

Figure A.1 are for TE = 0.5 ms, i.e., immediately after the 1 ms sinc excitation pulse.
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Table A.1: Steady state single-compartment magnetization using instantaneous and non-
instantaneous RF excitation pulses. A macromolecule magnetization (especially the longi-
tudinal component Mz) is much more sensitive to the duration of the excitation pulse than
is a white matter magnetization. iRF: instantaneous excitation. niRF: non-instantaneous
excitation.

TE = 0 TE = 0.5 ms TE = 4 ms
iRF niRF iRF niRF iRF

Macromolecule
Mxy 0.035 −0.001 0.000 0.000 0.000
Mz 0.131 0.197 0.132 0.200 0.135

White Matter
Mxy 0.175 0.173 0.174 0.166 0.166
Mz 0.652 0.652 0.652 0.653 0.654
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Figure A.1: Steady state STFR signal acquired at TE = 0.5 ms for a three-compartment,
exchanging system using instantaneous and non-instantaneous RF excitation pulses versus
bulk off-resonance frequency ∆ω. The signals are essentially the same in both cases.
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The RMSE of PERK MWF estimates was essentially equal when training with instanta-

neous excitation pulses as it was when training with non-instantaneous pulses (0.0206 versus

0.0199).

A.4 Conclusion

We found that while the steady state of a single macromolecule magnetization changes

dramatically depending on whether the RF excitation pulses are instantaneous or not, the

steady state STFR signal from a three-compartment, exchanging system does not change

much at all. We also found that MT effects did not affect PERK MWF estimates very much,

which is in line with the finding that the steady state STFR signal did not change much. In

sum, it appears that for STFR-based MWF estimation using PERK modeling MT effects is

not important.
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