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ABSTRACT

We live in a world where imaging systems are ubiquitous. From the cell phones in

our pockets to our cars and doorbells and on to telescopes and medical scanners, imaging

has changed how we share, document, and understand our world. There is an increasing

demand to make these systems more e�cient by producing higher-quality images with

fewer and fewer resources. When we need an image that is of higher quality than can

be directly constructed from its samples, we have an inverse problem and must rely on

nonlinear reconstruction schemes. These reconstruction algorithms �ll the gap between

the measured samples and the desired high-quality images by leveraging a model that

attempts to distinguish image content from artifacts.

Many modern image models are optimized — or trained — to produce high-quality

results on a large dataset of images. These methods have shown a large improvement

over classical �xed models, but require a lot of computation and high-quality data for

the dataset. This thesis applies and develops adaptive image models which are trained

during reconstruction for a particular image and can optionally be pre-trained on a dataset.

These adaptive methods are formulated as part of a regularization term of a minimization

problem and enabled by e�cient model updates. In particular, we further develop a union

of subspaces model and a dynamic subspace model which are both enabled by an e�cient

generalized Procrustes update. Beyond subspace models, this work also investigates the

application of neural networks trained at reconstruction time on image patches. The

proposed methods are applied to problems in light-�eld imaging and mri.

xvii



CHAPTER 1

Introduction

Modern imaging systems rely on computational techniques to produce high-quality im-
ages. These systems are often resource-constrained and inherently lossy. For example, ct
imaging is limited in how much radiation it can expose the patient to, mri is limited by
the long duration of the scan, and optical imaging systems are constrained by how many
photons each pixel is able to collect. All of these systems are further subject to noise and
other system nonidealities. These physical constraints limit the number and quality of the
measured image samples and are unavoidable at a hardware level.

Computational imaging allows us to go beyond these �xed sampling budgets and sys-
tem nonidealities to produce higher-quality images than would be possible with the hard-
ware alone. Because these physical degradations cannot be directly removed, or inverted,
with knowledge of the imaging system alone, reconstructing higher-quality images from
lower-quality samples is known as an inverse problem.

Solving these inverse problems is the central goal of this work. A common way to
handle these inverse problems is to pose the reconstruction as an optimization problem
consisting of a data-�delity term encouraging our reconstruction to be consistent with the
measured samples and a regularization term, that enforce our measurement-independent
expectation about the class of images we are reconstructing. The limited nature of the
measurements generally makes solving the data-�delity term alone ill-posed. As such, de-
veloping e�ective regularization is essential to image-reconstruction accuracy. Develop-
ing e�ective regularization is challenging, as it must provide a model that is both �exible
enough to represent all plausible true images, yet discriminating enough to reject noise
and artifacts.

A common approach in the design of regularization is modeling redundant features
with reduced dimensionality. An image, for example, may have repeating or similar tex-
tures that, when extracted into smaller image chunks or patches, can be more easily mod-
eled, such as belonging to a union of subspaces. Many signals of interest fall into a shift-
invariant class (at least locally). Shifting an image by a few pixels generally produces an
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image that is equally realistic. By modeling overlapping image patches instead of entire
images, we implicitly model the shift-invariant structure of images.

Modern image regularization is often data-driven. These image models are not �xed,
but instead describe a class of image models that we can choose from by optimizing a
loss on a dataset of high-quality images. These classes range from the relatively simple,
such as subspace models, to the nonlinear and complex, such as neural networks. Often,
optimizing these image models can be computationally intensive, in part due to the large
size of the dataset. Generally, once these models are trained, they are �xed as part of the
regularization term during image reconstruction.

In this work, we apply and develop adaptive image models as regularization for solving
inverse problems. Like traditional data-driven models, these adaptive models are not fully-
�xed and instead describe a class of possible regularizers we can optimize over. As such,
these methods can optionally be pre-trained on a dataset. Unlike traditional data-driven
regularization though, these models are not �xed at reconstruction time and we continue
to optimize over the class of image models as we iterate our reconstruction. Because these
methods do not require knowledge of ground-truth images to optimize their parameters,
they are also known as “blind” or “instance-adaptive” regularization [65]. As such, they
provide an accessible alternative in the absence of a large high-quality dataset.

Theoretically, any data-driven regularizer could be applied adaptively by optimizing
its parameters at reconstruction time. But if this class of image models is too broad and
expressive, it can easily learn to �t noise and artifacts. Additionally, some data-driven
regularizers are computationally intensive to update and so are less favorable to apply
in a time and resource-constrained reconstruction method. Thus, a good adaptive regu-
larization is both (1) constrained enough to reject noise and artifacts, and (2) employs an
e�cient update for its parameters.

The adaptive version of a data-driven regularizer is also subtly di�erent. For example,
while a data-driven transform sparsity regularizer will encourage the reconstructed image
to be sparse under a particular operator, an adaptive transform sparsity regularizer merely
encourages the reconstructed image to be sparsi�able under a broad class of operators.
Similarly, a pre-trained convolutional neural network constrains a reconstructed image
to lie in or near its range, while an untrained convolutional network such as dip [82]
merely biases the reconstructed image towards smoothness.
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1.1 Contributions

This work investigates the applicability of, expands existing, and develops new adap-
tive regularization methods for inverse problems in imaging. In particular, we investi-
gate the e�ectiveness of blind unitary transform learning (utl) for reconstructing light-
�eld images and determine an e�ective approach for extracting patches from these high-
dimensional signals [10]. We then further expand this approach with adaptively set spar-
sity thresholds by appropriately weighting the sparsity-encouraging regularization. Em-
pirically, we show that blind utl performs better than pretrained utl on a heterogeneous
dataset. Next, we investigate applying generative neural networks on image patches as
both pre-trained and instance-adaptive regularization and compare these to the more con-
strained utl method. Finally, we develop a new signal model based on time-varying sub-
spaces on piecewise geodesics [11]. We show this model e�ectively �ts patches of dynamic
mri and video.

1.2 Outline

To start, Chapter 2 provides the necessary background on the mathematical framework we
will use for modeling inverse problems. It introduces the details of compressive light-�eld
imaging and mri as applications of solving inverse problems. We then review transform
learning, a speci�c adaptive regularization.

Chapter 3 builds on the application and regularization of the previous chapter by in-
vestigating the e�ective application of unitary transform learning to light-�eld reconstruc-
tion from focal-stack data. In particular, we investigate how to best distribute the patch
dimensions among the light �eld dimensions.

Chapter 4 further develops this work on utl by investigating a novel transform weight-
ing scheme which adaptively set sparsity thresholds for blind reconstruction of light �elds.
Several heuristics for setting these weights are explored and evaluated on light �elds
jointly reconstructed and demosaiced from raw focal-stack images.

Chapter 5 looks at the generalizability of unitary transform learning on heterogeneous
data. We investigate empirically how an instance-adaptive regularizer compares to pre-
trained regularizer on heterogeneous mri data.

In Chapter 6, we look beyond sparse subspace models and investigate the use of gen-
erative neural networks as regularization on a patch level. We investigate both the use of
pretrained networks and untrained networks trained at reconstruction time. The proposed
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methods are evaluated on both synthetic phantoms and retrospectively undersampled real
mri data.

Finally, Chapter 7 develops a novel piecewise geodesic model for dynamic subspace
estimation. The proposed model is minimized by alternating majorize-minimize updates.
The e�ectiveness of the approach is shown on fmri data and videos.

Chapter 8 concludes this work. and presents some directions for future work.
In the appendix, we provide more in depth algorithmic detail than is provided in the

main chapters. In particular, Appendix A derives a discretized focal stack forward model
for light �elds using principles of geometric optics.

Appendix B provides supplemental detail for Chapter 7 on dynamic subspace estima-
tion. In particular, both majorize minimize iterations are derived in detail. Further infor-
mation about the dataset used is also presented and a second geodesic model for subspace
estimation is brie�y presented and compared to the model proposed in Chapter 7.
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CHAPTER 2

Background

This thesis focuses on estimating solutions to inverse problems in light-�eld imaging and
mri. Here, we introduce inverse problems mathematically and present a generic frame-
work for addressing such problems. We present light-�eld imaging and mri in su�cient
detail for this work as two areas where inverse problems arise. Having presented concrete
inverse problems, we describe the generalized Procrustes problem, and its solution which
we will use in several chapters. We expound on Transform Learning, a data-driven method
that has been successfully employed estimating solution for inverse problems, and which
will be the basis for several of the following chapters.

2.1 Inverse Problems

When collecting samples of some signal1 of interest, it is almost always the case that we
cannot collect signal samples directly, but instead measure some function of the signal, be
it blur, missing data, a projection, or something more complex. For the linear case, we can
describe how the discrete measurements y are collected from the underlying (possibly
continuous) true signal xtrue, with the following equation:

y = Axtrue + ε. (2.1)

Here,A represents the linear measurement model and ε is additive white Gaussian noise
(awgn). Often A removes information from x, i.e., via blur or undersampling, and so A
is generally wide when it can be written as a matrix. In such cases, estimating xtrue from
y andA is an underdetermined inverse problem, as there are many possible signals x that
could give rise to the same measurements y.

1A note on terminology: In this work, a signal is a function conveying information free of noise or
artifacts. An image is a 2d signal, but the terms will occasionally be used interchangeably. Thus, we may
generically refer to “image reconstruction” even when applicable to other signals, like 4d light �elds.
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In light of this inverse problem, several common paradigms exist for choosing an esti-
mate x̂ of the true signal. Classically, linear or �ltering-based methods were developed for
di�erent system models. While these methods, such as �ltered back projection for ct or
Wiener �ltering for deconvolution problems, are fast and e�cient, their results are often
of insu�cient quality for practical use.

Model-based image reconstruction (mbir) is a family of nonlinear reconstruction meth-
ods that has shown to be both �exible to a variety of inverse problems, and able to produce
quality estimates. As such, mbir, as described in the following section, will be the main
framework used throughout this work.

More recently, inspired by its success in computer vision, Deep Learning has been
applied to a variety of inverse problems. Traditional deep learning methods require a large
training dataset, and often struggle on inverse problems that are not spatially localized.
Nonetheless, the signal estimates produced via these methods are of high quality, and how
to best combine the bene�ts of both mbir and Deep Learning is a key question of both
Chapter 6 and in the greater research community.

2.1.1 Model-Based Image Reconstruction

mbir has its roots in Bayesian maximum a posteriori (map) estimation. In map estimation,
we seek to maximize the probability of our estimate given our measurements, i.e., the
posterior distribution p(x|y). Using Bayes’ Rule we can rewrite the posterior as

p(x|y) =
p(y|x) p(x)

p(y)
. (2.2)

Thus, to maximize the left-hand side, we equivalently maximize the right-hand side. When
maximizing w.r.t. x, we can drop p(y) as a constant scaling, and apply − log(·) to write
the problem as

x̂ = arg min
x
− log(p(y|x))− log(p(x)) . (2.3)

In the context of map estimation, the �rst term is often called the negative log-likelihood
and encodes the measurement dependence of our estimate. In the case of awgn and mea-
surement model (2.1), the negative log-likelihood is proportional to ‖Ax− y‖2

2. The sec-
ond term, referred to as the negative log-prior, or just simply the prior, encodes our pre-
conceived assumptions about which signals x are more probable irrespective of measure-
ments. Thus, map provides a modular estimation framework modeling both measurement
dependence and signal characteristics. Unfortunately, common signal characteristics are
not easily encoded as a prior probability distribution.
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mbir relaxes the probabilistic interpretation of (2.3). To delineate from the map in-
terpretation, we refer to the �rst term as the data-�delity term instead of the negative
log-likelihood, and the second term as regularization, instead of a prior. These map terms
are often used informally though, despite the lack of statistical interpretability of many
regularization functions.

Thus, in mbir a common estimation problem for (2.1) may be posed as

x̂ = arg min
x
‖Ax− y‖2

2 + β R(x), (2.4)

where R(x) is the regularization function penalizing deviation from our signal model, and
β is a hyperparameter representing a trade-o� between �t to data and R.

As a concrete example, we could model an image as having relatively few edges with
the anisotropic tv regularizer, R(x) = ‖Tx‖1, where T is the 2d �nite di�erence oper-
ator. An estimate could then be obtained via a nonsmooth optimization algorithm, such
as admm [13]. This regularizer does not correspond to any prior distribution, but is still
useful for reconstruction.

Developing e�ective signal and image models and corresponding regularization func-
tion is challenging. Ideally, an image model is both broad enough to describe all plausible
true images, while discriminating enough to reject noise and artifacts. Developing e�ec-
tive regularization is a central goal of this work.

2.1.2 Deep Learning for Inverse Problems

Instead of directly estimating a latent signal, another option is to estimate an approximate
(left) inverse mapping for the forward model on the set of possible signals. This inverse
mapping can then be applied to measurements to recover the latent true signal. This is
often done in a supervised framework, where we assume to have a large set of clean signals
xi paired with their measurements yi = Axi + ε. Given such a dataset, {(xi,yi)}Ki=1, we
can estimate our inverse mapping

f̂θ(·) = f
(
· ; θ̂
)

s.t. θ̂ ∈ arg min
θ

K∑
i

L(xi, f(yi;θ)), (2.5)

where f denotes a class, or an architecture, of functions parameterized by weights θ. The
loss function L provides a metric of the quality of an estimated signal x̂i = f(yi;θ)

compared to the true signal xi. Generally (2.5) is minimized via some variant of stochastic
(sub)gradient descent.
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In arti�cial neural networks, the architecture f is designed as a composition of simpler
functions, or layers,

f(· ; [θL,θL−1, . . .θ1]) = fL(· ;θL) ◦ fL−1(· ;θL−1) . . . ◦ f1(· ;θ1), (2.6)

where a typical layer may be f`(y`−1, [W`, b`]) = σ`(W`y`−1 + b`) with nonlinear ac-
tivation function σ`(·). This layered structure allows for the e�cient computation of pa-
rameter gradients by applying the chain rule and backpropagating the results to earlier
layers.

A major advantage of estimating an inverse mapping f̂θ over iteratively reconstructing
the signal estimate x̂ is speed. While learning f̂θ can take days on modern hardware, once
learned, a forward pass x̂ = f̂θ(y) generally takes only a fraction of the time needed for
iterative reconstruction. Another advantage is that the di�cult task of image modeling
is learned automatically and implicitly by the network from the dataset as it learns the
mapping. These networks often provide state-of-the-art performance on well-represented
data and well-behaved problems.

Despite this success, modern deep learning methods have several disadvantages. First,
the forward modelA is often only used implicitly in the dataset. Any change to the sam-
pling pattern or other structure of A may require re-learning the inverse mapping f̂θ. In
addition, if a discrete model is used to retrospectively create the training pairs, model-
ing error can leave the learned network unusable on real measurement data. In response,
several methods have included physical system updates into the network architecture to
alleviate some of these challenges [68, 70, 36].

Another weakness is a tendency to hallucinate realistic false structure in images [80].
Often these networks are ill-conditioned; a small imperceptible perturbation on the in-
put can cause noticeable structural changes on the output [32]. These problems are com-
pounded by the lack of large and truly representative datasets for computational imaging
problems. Often we collect images to look for something exceptional, be it cancer, product
defects, or unknown developments. It is di�cult to collect and well represent the excep-
tional. Recently, Nataraj and Otazo [58] trained over 40 state-of-the-art Deep Learning
architectures on mri brain scans with a variety of pathologies. In all cases, they found
Deep Learning, with no physical modeling, to be inadequate alone at preserving unseen
pathologies, even at modest undersampling levels. In some cases, networks removed large
rare tumors from the images.

In light of these strengths and weakness, a natural question arises of how we can com-
bine the �exibility and robustness of mbir, with the speed and superior image modeling
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(x,y) (u,v)

fig 2.1 – Parameterization of all light rays within a camera using the sensor and aperture
planes. All rays of interest must intersect these two planes.

of deep networks. This question will be further addressed in Chapter 6, where we consider
adapting deep networks as regularization.

2.2 Light-Field Imaging

In optical imaging, it is often su�cient to characterize light from a geometric-optics per-
spective that treats all light as rays. If one can characterize all the rays of light within
a space, then one can simulate all possible images taken within that space, and easily
perform related operations, such as depth map estimation and extended depth-of-�eld
imaging. A ray r = (x, y, z, θ, φ, λ, t) is parameterized by its spatial position, its angular
orientation, and its spectral wavelength, as a function of time. We would like to know
the value of the plenoptic function that assigns a non-negative scalar intensity per volume
P (r) = P (x, y, z, θ, φ, λ, t) for every ray in ray space.

Characterizing the plenoptic function over an arbitrary space is di�cult and rarely un-
dertaken in practice. To simplify, often one considers only the rays of a certain wavelength
in a space bounded by two planes that is free of occluders or light-sources, where light
propagates freely in one general direction (see fig 2.1). In this context, one can reparam-
eterize the 5d spatio-angular coordinates of the plenoptic function in 4 dimensions: the
(u, v) coordinate where rays intercept the entry plane, and the (x, y) coordinate where
they intercept the exit plane. A scalar function over these free space parameterizations is
called a light �eld L(x, y, u, v), and one generally drops the spectral and temporal dimen-
sions when not needed.

While this context may seem restrictive at �rst, it is exactly the situation that arises
for light rays inside a camera. Every ray of interest in a camera must enter the camera

9



x

u

y

x

u

v

u

x

Slice v

Slice y

a light field an epipolar view

a subaperture view

fig 2.2 – The anatomy of a light �eld. (Left) An intuitive interpretation of light �eld is
a matrix of subaperture images, where each subaperture view has a slight di�erence in
perspective. (Center) An epipolar view is constructed by slicing one angular/perspective
dimension and one spatial dimension. Here we show slicing the vertical angular coor-
dinate v to obtain a stack of subaperture views with horizontal perspective shifts. Slic-
ing the y dimension of this stack results in an epipolar view. (Top) In an epipolar image,
nonspecular or Lambertian points in the scene, that emit the same ray information in
all directions, draw out lines as they shift through the perspective dimension. (Bottom
Right) A top-down view of the scene demonstrates why di�erent angular coordinates
have slight di�erences in perspective. Crystal ball light �eld taken from Stanford Light
�eld Archive [79]
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x,y

fig 2.3 – (Left) The Lytro Illum was a handheld light �eld camera based on microlens
technology. (Right) A diagram of how microlens cameras work. Each microlens collects
light from di�erent spatial locations and distributes it to di�erent photosites on the sensor.
This means that microlens pitch, not pixel pitch, gives us our spatial resolution.

through the aperture plane and terminate at the sensor plane. These two planes provide
a natural parameterization for the rays in the camera. A light �eld, once acquired, can
be used to simulate di�erent focal settings by accumulating rays where they would have
terminated.

An intuitive interpretation of a light �eld is as a 2d array of images, each with a slight
shift in perspective. Each of these subaperture images (sai) provides a view of the scene
through a speci�c point in the real or simulated aperture. If instead of �xing both angular
coordinates, we �x one spatial coordinate and one angular coordinate, we get what is
called an epipolar image (epi). fig 2.2 shows an example light �eld in terms of both its
sai slices and an epi slice.

2.2.1 Compressive-Light Field Photography

Handheld light �eld cameras, such as those made by Lytro and Raytrix, acquire the 4d
light �eld by multiplexing angular coordinates with spatial coordinates using a microlens
array as in fig 2.3. In e�ect, each microlens acts as a miniature camera that takes a picture
of the aperture plane from within the camera, so unique rays are determined by which
microlens picture they end up in and where in said picture they terminate. For a �xed
sensor size, this con�guration reduces the measured spatial resolution by a factor of the
angular resolution, leading to an undesirable trade-o�.
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fig 2.4 – (Left) The Stanford camera array collected many view points by positioning
cameras in a grid [88]. (Right) A diagram of a camera array. The spacing between cameras
controls the angular sampling rate.

Another way to capture a light �eld is through a camera array or camera gantry [88].
In this setup, a camera is placed at di�erent locations along a virtual aperture plane as
in fig 2.4. Images acquired at each location represent the (x, y) coordinates for some
�xed (u, v). For a �xed array size, camera arrays are limited in their aperture plane res-
olution by the physical size of the camera. Increasing the array size adds both bulk and
expense. Camera gantries su�er from poor temporal resolution, due to the requirement
to physically move the camera.

Despite the redundant structure of these light �eld dimensions, traditional light-�eld
imaging methods are burdened with capturing the full 4d light �eld structure directly.
Microlens-based light �eld cameras must trade o� spatial resolution, and camera arrays
must add additional bulk and expense. In response to this sampling burden and the ap-
parent redundancy in the light �eld between sai views, several compressive light-�eld
imaging methods have been proposed.

One method is focal stack reconstruction where the light �eld is recovered from a
series of images captured with di�erent focal settings. While alleviating some of the sam-
pling burden, reconstructing a light �eld from a focal stack presents an additional chal-
lenge: information about the light �eld is invariably lost due to the dimensionality gap [50].
The full 4d light �eld cannot be directly recovered from a 1d set of 2d measurements with-
out enforcing additional assumptions. The forward operator for computing focal stacks
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fig 2.5 – A few cameras for compressive light-�eld capture. The plenoptic camera directly
samples a light-�eld by sacri�cing spatial resolution. Focal-stack cameras and coded-mask
cameras collect 2d measurements and must reconstructed the 4d light �eld.

from light �elds consists of a series of parallel plane integrals, and shares many similari-
ties with the Radon transform used in ct reconstruction. Appendix A derives a discretized
forward model for focal stack reconstruction.

Other compressive light �eld cameras include coded mask and coded aperture cam-
eras, which place a known transmission mask near the sensor or aperture, respectively,
to encode angular variation of rays within a camera [53]. fig 2.5 depicts several of the
light-�eld cameras discussed here.

2.3 Magnetic Resonance Imaging

A full exposition of the physics of mri is unnecessary for the purposes of this work. Here,
we brie�y review the details of single-coil imaging for mri. In single-coil imaging, mea-
surements y are collected sequentially in the spatial Fourier space, i.e., k-space, of the true
image. When k-space is fully sampled, the image can be reconstructed using an inverse
dft. To accelerate scan times, k-space is often undersampled and standard reconstruction
methods result in spatial aliasing artifacts.

In the context of mri, our system model A can be written as A = UF where F is
a (Discrete) Fourier Transform and U is an undersampling operator. This forward model
has the nice property that the hessian of the standard data-�delity termA′A is e�ciently
diagonalizable by the dft. When the data update involves minimizing a quadratic cost
function, this will often allow for a closed-form update that is implementable on large-
scale problems.
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2.4 Generalized Procrustes Problems

A key result we will leverage throughout this thesis to e�ciently update adaptive regular-
izers is the solution to a generalized Procrustes problem [71]. We let VN×k(F) denote the
Stiefel Manifold

VN×k(F) =
{
Q ∈ FN×k : Q′Q = I

}
, (2.7)

i.e., the set of N × k matrices with orthonormal columns. The �eld F may be the real
numbers R or the complex numbers C and we will drop it from the notation when the
result is generic over the choices or it is implied by the problem.

The generalized Procrustes problems is then given by

Q̂ = arg min
Q∈VN×k

|||QA−B|||2F (2.8)

= arg min
Q∈VN×k

|||A|||2F − 2 real{trace{Q′BA′}}+|||B|||2F (2.9)

= arg max
Q∈VN×k

real{trace{Q′BA′}}, (2.10)

where A and B are given matrices of the appropriate size. The solution is given by the
svd ofBA′

Q̂ = UV ′ (2.11)

where UΣV ′ is the (thin) svd ofBA′. (2.12)

While computing an svd on large problems can be computationally intensive, we will
apply this result on smaller image patches where the svd can be computed e�ciently.

2.5 Analysis Sparsity Models

Broadly speaking, sparsity signal models for inverse problems can be categorized as be-
ing synthesis type or analysis type. In a linear synthesis setting, we could model a true
image xtrue as xtrue ≈ Dz where D is often referred to as a dictionary or (overcom-
plete) basis and z is sparse. Thus, we say xtrue is (approximately) synthesized from the
columns ofD. In a linear analysis setting, we model xtrue in some transformed space, i.e.,
we say Txtrue ≈ z where z is sparse. T is referred to as a transform or analysis opera-
tor. Anisotropic tv is an example of regularization employing a (strict) analysis sparsity
model, R(x) = ‖Tx‖1, where T is the �nite di�erence operator.
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fig 2.6 – Extracting 1d patches of length 5 from the 1d vector x yields the patch matrix
X on the right.XT is the correlation matrix of x

While similar, these di�erent models are generally distinct. If the approximation is
taken to be a strict equality, then they are equivalent whenD = T−1, while if the approx-
imation is interpreted as having a small `2 di�erence, then they are equivalent when the
(stricter) unitary condition D−1 = D′ = T holds. Many analysis and synthesis models
are not square though and so cannot be considered equivalent in either sense.

Often, due to data size and image self-similarities, it is easier to model the local —
instead of global — properties of an image. In other words, we assume TPjx is approx-
imately sparse, where Pj is an n × N matrix of 0 and 1 elements that extracts the jth,
patch or window of n elements from the image, and T is a transform that sparsi�es the
patch. A patch-wise or local transform sparsity regularization could then be written as

R(x) = min
{zj}

∑
j

‖TPjx− zj‖2
2 + γ‖zj‖p (2.13)

where p is chosen to encourage sparsity in zj , typically p ∈ [0, 1].
For notational convenience, we often let X = [P1x . . .PJx] and similarly Z =

[z1 . . . zJ ]. We can then simplify (2.13) as2

R(x) = min
Z
|||TX −Z|||2F + γ‖vec(Z)‖p. (2.14)

Interestingly, when the set of Pj’s extracts maximally overlapping patches, each row
of T in (2.13) performs an inner product with a sliding window in x, which is equivalent
to �ltering via correlation [62, 68]. Put another way,XT is the correlation matrix of image
x. fig 2.6 provides an illustration of a simple vector x and patch matrixX . Thus, we can

2Because our images are often natively 2d, ‖x‖2 can sometimes be ambiguous as to whether it refers to
a vector or matrix 2-norm. In this work, we denote all matrix norms with |||·||| and all vector norms with ‖·‖
to remove any ambiguity. Of course, there is no ambiguity here for the Frobenius matrix norm.
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rewrite (2.13) equivalently as

R(x) = min
{Zi,:}

n∑
i

∥∥T ∗i,: ? x−Zi,:

∥∥2

2
+ γ‖Zi,:‖p (2.15)

where Zi,: are sparse images, Ti,: is the ith row of T , and the �ltering is performed in the
natural dimensions of x (2d for grayscale images). For this reason, we sometimes refer to
a patch-wise transform T as a �lter bank and to the rows of T as �lters. In this work, we
will prefer the matrix product notation of (2.13), but which is preferred for implementation
will depend on other factors.

2.5.1 Population-Adaptive Transform Learning

Classically, transforms — such as �nite di�erences, the dct, wavelets, curvelets, platelets,
etc.— have been derived to be optimal over some class of images. Often these classes are
restrictive for mathematical necessity, such as a class of piecewise constant images. An
arguably more appropriate, but less algebraic, choice of transform is one that minimizes
the expected value of the regularizer (2.13) over the distribution of possible true images

T̄ = arg min
T∈T

Ex

[
min
{zj}

∑
j

‖TPjx− zj‖2
2 + γ‖zj‖p

]
. (2.16)

The set T represents the set of feasible T , and should, at a minimum, exclude the trivial
solution T = 0.

We cannot describe the distribution of true images in closed-form, but given a (large)
set ofK training signals {x1, . . . ,xK}we can estimate3 (2.16) by minimizing the following
cost function

T̂ = arg min
T∈T

1

K

K∑
k=1

(
min
{zj,k}

∑
j

‖TPjxk − zj,k‖2
2 + γ‖zj,k‖p

)
(2.17)

= arg min
T∈T

min
{Zk}

1

K

(
|||T [X1 . . .XK ]− [Z1 . . .ZK ]|||2F + γ‖vec([Z1 . . .ZK ])‖p

)
.

(2.18)

A common choice for T is the set of unitary matrices, which we denote Vn×n. While
restrictive, this choice emits a closed-form solution for (2.18) with �xedZ as a Procrustes

3A simple su�cient, but not necessary, condition is for the training samples to be jointly independent,
but not necessarily pairwise independent.
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problem. Other classes of transforms, in conjunction with penalty functions, have been
proposed, such as linear independent columns [67], or Fourier incoherence of rows [62].

Once a estimate T̂ has been obtained, it can be applied to reconstruct an image by
minimizing cost (2.4) with regularizer (2.13)

x̂ = arg min
x
‖Ax− y‖2

2 + β

(
min
{zj}

∑
j

∥∥∥T̂ Pjx− zj∥∥∥2

2
+ γ‖zj‖p

)
. (2.19)

A common approach to minimizing (2.19) is block coordinate descent (bcd), which
alternates between a simple quadratic x update and evaluating prox`p

(
TPjx,

γ
2

)
for each

zj .
Transform learning methods have been applied in the context of 2d image denois-

ing [66], MR image reconstruction from undersampled k-space measurements [67], and
video denoising [87].

2.5.2 Instance-Adaptive (Blind) Transform Learning

Instead of minimizing the expected value of the regularizer (2.13) over a population of
images as described previously, we could minimize (2.13) with respect to a particular in-
stance. Ideally, we would minimize with respect to the image we are reconstructing xtrue,
but, as this is not available, we can approximate it with our current best estimate x̂ each
iteration of the reconstruction. Thus, we estimate T blindly, i.e., without knowledge of
a true x, by using a regularizer of the following form that has an internal minimization
problem within it:

R(x) = min
T∈T

min
{zj}

∑
j

‖TPjx− zj‖2
2 + γ‖zj‖p. (2.20)

We generally minimize the resulting cost function using bcd like described previously,
only now T is updated every iteration.

Despite their clear structural similarity, population- and instance-adaptive transform
learning represent di�erent assumptions about our class of true images. A population-
speci�c transform is more constrained, but the learned �lters represent features of the
population. An instance-speci�c transform is more �exible, but only enforces that the
image estimate is sparsi�able, not sparse under any speci�c transform. Chapter 5 further
investigates when one choice of model may be preferable over the other.
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2.5.2.1 Blind Unitary Transform Learning

Common choices for applying blind transform learning are T = Vn×n, the set of all
unitary matrices of size n × n, and p = 0. Here, we describe the common approach for
minimizing a regularizer with these parameters.

We apply blind unitary transform learning as a regularizer for the problem of recov-
ering an image x from measurements y by minimizing the following cost function using
block coordinate descent (bcd):

x̂ = arg min
x

min
{zj}

min
T∈Vn×n

λ‖Ax− y‖2
2 +

∑
j

‖TPjx− zj‖2
2 + γ2‖zj‖0. (2.21)

Again,A ∈ RM×N represents our system model that generated vectorized measurements
y ∈ RM . Each matrix Pj ∈ {0, 1}n×N extracts the jth patch of n elements from a vec-
torized image x and we sum over all such j with overlapping windows of stride 1. The
shape of these patches, or windows, is a hyperparameter of this model and must be cho-
sen beforehand. Generally, we want the patches to be large enough to capture meaningful
features in each dimensions. Here, ‖·‖0 denotes the so-called zero “norm” or counting
measure (number of nonzero vector elements).

While (2.21) is a non-convex cost function, due both to the non-convex zero “norm” and
product between T and x, applying bcd to it is globally convergent, i.e., bcd converges
to a local minimizer from any initial starting point [67].

A bcd method alternates between minimizing the sparse codes {zj}, the unitary trans-
form T , and the image x. Minimizing (2.21) with respect to zj leads to the following prox-
imal problem with known closed-form solution:

ẑj = arg min
zj

‖TPjx− zj‖2
2 + γ2‖zj‖0 (2.22)

= hardγ(TPjx) (2.23)

where hardγ(·) is element-wise hard-thresholding by threshold γ

hardγ(a) =

0 |a| ≤ γ

a |a| > γ.
(2.24)

Compared to dictionary learning, where `0-sparse coding is NP-Hard and requires an
expensive step such as Orthogonal Matching Pursuit (omp), transform learning provides
a simple closed-form sparse-code update.
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Algorithm 1 Blind utl
Require: x(0), T (0) y,A, λ, γ > 0

LetW =
∑

j P
′
jPj

for i = 1, . . . , I do
ConstructX = [P1x

(i−1) . . .Pjx
(i−1) . . .PJx

(i−1)]
U ,Σ,V ′ = svd

(
Z(i−1)X ′

)
T (i) = UV ′

Z(i) = hardγ
(
T (i)X

)
Construct x̄ =

∑
j P
′
jT
′(i)Z(i)

:,j

x(i) = (λA′A+W )
−1

(λA′y + x̄)
end for

De�ning X = [P1x . . .PJx] and Z = [z1 . . . zJ ], we rewrite the T update as a
Procrustes problem with known closed-form solution:

T̂ = arg min
T∈Vn×n

∑
j

‖TPjx− zj‖2
2

= arg min
T∈Vn×n

|||TX −Z|||2F = UV ′ (2.25)

where U , Σ, V ′ denotes the svd of ZX ′. Because T is an n × n matrix, where n is the
number of elements in a patch, this svd is performed on a relatively small matrix.

The image update is then a standard quadratic minimization problem

x̂ = arg min
x

λ‖Ax− y‖2
2 +

∑
j

‖TPjx− zj‖2
2

= (λA′A+
∑
j

P ′jPj)
−1

(λA′y +
∑
j

P ′jT
′zj). (2.26)

Because
∑

j P
′
jPj is a diagonal matrix, system models that have an e�ciently diagonal-

izable Hessian matrix A′A, such as denoising, inpainting or deblurring, are e�ciently
computed in closed-form. For all other cases, running a few iterations of conjugate gradi-
ent will still descend the cost and converge on a solution.

Algorithm 1 summarizes a patch-wise implementation of blind unitary transform learn-
ing as described above. As described before in (2.15), a �ltering interpretation can be un-
derstood by examining the relationship of the rows of T with the original image x. Each
row of T performs an inner product with a sliding window in x, which is equivalent to
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minx

x x*

x(i) x(i+1)

NonlinearityConv. Layer Conv. Layer Data-Update

fig 2.7 – Regularization based on transform learning can be interpreted as a �lter bank
followed by a data update term. A �lter bank can be interpreted as a shallow Convolutional
Neural Network (cnn). The red and yellow regions correspond to (2.23) and the green and
blue regions correspond to (2.26). (The update of the transform T in (2.25) each iteration
is not pictured.)

�ltering via convolution [62]. Thus, the set of sparse codes Z represents the thresholded
output of a �lter bank of n �lters, where n is the number of rows of T . Applying the
inverse transform T ′ and aggregating is equivalent to �ltering with matched �lters and
summing the channels. fig 2.7 shows a diagram of the �ow of x in one iteration. (Note
that it does not show the update of the �lters T ). Thus, we can interpret each iteration
of blind unitary transform learning as an instance-adaptive shallow cnn, where the �l-
ters are learned iteratively in an unsupervised fashion, followed by a data update that
incorporates our prior knowledge on y andA. Ravishankar et al. [68] builds on this cnn
interpretation by unrolling the iterations of utl as layers of a deep neural network and
training the �lters of each layer independently and greedily.

We note that the unitary constraint is particularly well suited for the blind or instance-
adaptive transform learning approach because it is computationally e�cient, and can,
thus, be computed at reconstruction time, and not because it is likely to be an ideal class
of e�cient sparsifying transforms.4 Empirically, it performs well and Chapter 5 further
compares utl in both the blind and non-blind setting. In the non-blind case, better op-
tions for learning sparsifying transforms likely exist, e.g., the Analysis k-svd [69]. The
use of blind unitary transform learning has been shown to be an e�ective regularizer for

4Several popular classical transforms — such as the dct or orthogonal wavelets — do belong to this class
though.
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mr images [67]. The next chapter investigates the use of unitary transform learning for
higher-dimensional light �eld patches.
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CHAPTER 3

Blind Unitary Transform Learning for

Inverse Problems in Light-Field Imaging

Light-�eld cameras have enabled a new class of digital post-processing techniques. Unfor-
tunately, the sampling requirements needed to capture a 4d color light �eld directly using
a microlens array requires sacri�cing spatial resolution and snr in return for greater angu-
lar resolution. Because recovering the true light �eld from focal-stack data is an ill-posed
inverse problem, we propose using blind unitary transform learning (utl) as a regularizer.
utl attempts to learn a set of �lters that maximize the sparsity of the encoded represen-
tation. This paper investigates which dimensions of a light �eld are most sparsi�able by
utl and lead to the best reconstruction performance. We apply the utl regularizer to light
�eld inpainting and focal stack reconstruction problems and �nd it improves performance
over traditional hand-crafted regularizers.

3.1 Introduction

3.1.1 Inverse Problems

Reconstructing a light �eld from a set of compressed or subsampled measurements is
an underdetermined inverse problem. There can be many possible light �elds that will
perfectly match our data. Thus, a model is needed to select one of the many candidate
light �elds, by choosing one that is consistent with our assumptions about the true light
�eld’s properties. A common paradigm that we use in this work is to include the model
as regularization in a minimization problem

x̂ = arg min
x

λ‖Ax− y‖2
2 + R(x) (3.1)

This chapter based on the author’s published work at iccvw 2019 [10].
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where A is a wide matrix encoding the linear operation relating the unknown light �eld
x to the measurement y, λ is a hyperparameter representing our con�dence in the mea-
surements, and R(x) is a regularization function representing our signal model.

A number of previous works attempt to restore a light �eld from a set of compressed or
corrupted measurements, such as view inpainting, focal stack reconstruction, coded aper-
ture reconstruction, super-resolution, denoising, and inpainting. A majority of these ap-
proaches can be divided into linear �ltering based methods [21, 22, 50], depth-estimation-
dependent methods [51, 55, 48], deep learning methods [27, 42, 56, 89, 91, 95], and low-
rank or sparse methods [3, 4, 9, 23, 25, 40, 41, 53, 54, 73, 77, 83, 84]. Most of the sparsity
based methods assume a hand-crafted transform, such as the discrete cosine transform
(dct) [54] or shearlets [83, 84]. A notable exception is [53] that applies k-svd to learn
a dictionary for light �eld patches from training data a priori. While using hand-crafted
transforms, lf-bm5d [3] does employ instance-adaptive thresholding and �ltering.

Transform sparsity models data as being locally sparsi�able. In other words, we as-
sume TPjx is sparse, where Pj is a matrix of 0 and 1 elements that extracts the jth, for
example, px× py× pu× pv× pc patch or window from the data, and T is a transform that
sparsi�es the patch. Compared to dictionary methods, that generally synthesize a signal
vector from a set of sparse codes, transform sparsity encourages a signal to be sparsi�able.
These conditions are not necessarily equivalent, except in the uncommon case when the
dictionary and transform are inverses of each other.

In transform learning, we attempt to learn a transform from data, instead of using a
hand-crafted transform such as wavelets or the dct. There are multiple modes of trans-
form learning. One mode is to use a set of training signals {x1, . . . ,xK} and learn a trans-
form T that is e�ective for sparsifying patches drawn from those signals. In words, we
want T such that TPjxk is typically sparse. One way this can be done is by minimizing
the following cost function

T̂ = arg min
T∈Vn×n

min
{zj,k}

K∑
k=1

∑
j

‖TPjxk − zj,k‖2
2 + γ2‖zj,k‖0, (3.2)

where Vn×n denotes the set of unitary matrices. This approach bears many similarities to
a standard dictionary learning formulation

D̂ = arg min
D

min
{zj}

K∑
k=1

∑
j

‖Pjxk −Dzj,k‖2
2 + γ2‖zj,k‖0. (3.3)
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Transform learning methods have been applied in the context of 2d image denoising [66],
MR image reconstruction from undersampled k-space measurements [67], and video de-
noising [87].

3.1.2 Contributions

Because of the unitary invariance of the `2 norm, unitary transform learning is equivalent
to a formulation of unitary dictionary learning. Thus, our proposed method is most similar
to that of Marwah et al. [53]. The work proposed here di�ers in two major aspects.

First, we do not learn our transforms from training data a priori. We instead opt for
a blind utl method that learns sparsifying transforms blindly in an instance-adaptive
fashion. To the authors’ knowledge, this is the �rst time instance-adaptive transform or
dictionary sparsity has been applied to light-�eld imaging.

Second, we investigate the sparsi�ability of di�erent dimensions of the light �eld. Mar-
wah et al. [53] used a 5d (4d + color) light �eld patch in learning and �tting their dictionary.
While dictionary atoms describing epipolar patches or spatial patches could, in theory, be
learned inside of a 5d patch, often dense full-dimensional patches are learned. Due to the
non-convexity of these learning methods, it is not given that the learned dense 5d patches
are optimal, though we hope they approximate this well. Indeed, much of the prior work
can be divided among epipolar methods [83, 84, 89] and 4d+ methods [3, 40, 54, 56].

This work explores multiple approaches to choosing light �eld patches for transform
and dictionary learning, including subaperture image (sai) patches (x, y, c), epipolar im-
age (epi) patches in both the horizontal (x, u, c) and vertical (y, v, c) directions as well
as full-dimensional light �eld (lf) patches (x, y, u, v, c). In a hand-crafted and pre-trained
setting, applying a method only spatially along subaperture images completely ignores
light �eld structure. In contrast, in the blind setting, features can in theory be learned
more e�ectively due to the light �eld redundancy. As di�erent light-�eld imaging appli-
cations may bene�t more from di�erent types of patches, we compare di�erent patch
dimension choices on a couple of inverse problems in light-�eld imaging: inpainting and
reconstruction from focal stack images.

Section 3.2 provides a general description of unitary transform learning (utl) as used
in this work. For a more detailed description of utl, including a convergence analysis,
see [67]. Section 3.3 applies utl with di�erent patch structures to inverse problems in
light-�eld imaging. Section 3.4 compares the performance of the di�erent methods and
analyzes the learned transforms.
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3.2 Methods

We apply blind unitary transform learning as a regularizer for the problem of recovering a
light �eld x from measurements y by minimizing the following cost function using block
coordinate descent (bcd):

x̂ = arg min
x∈RN

min
{zj∈RN}

min
T∈Vn×n

λ‖Ax− y‖2
2 +

∑
j

‖TPjx− zj‖2
2 + γ2‖zj‖0. (3.4)

We let A ∈ RM×N represent our system model that generated vectorized measurements
y ∈ RM . HerePj ∈ {0, 1}n×N is a matrix that extracts the jth px×py×pu×pv×pc patch
from a vectorized light �eld x and we sum over all such j with overlapping windows of
stride 1. Here, ‖·‖0 denotes the so-called zero “norm” or counting measure (number of
nonzero vector elements). We follow the steps outlined in Section 2.5.2.1 to minimize (3.4)
using bcd for utl.

In this work, we propose 3 variations of (3.4), namely lf utl, epi utl and sai utl,
that di�er only in the shape of the patches extracted by Pj . For sai utl, we constrain
pu = pv = 1 so that we only learn spatial patches. For epi utl, we constrain either
px = pu = 1 or py = pv = 1 to only learn features in the epipolar dimension. Finally,
for lf utl, we learn full-dimensional patches. In all variations, we include all 3 color
dimensions in every patch (pc = 3). We divide our approaches in this manner, so that we
can better understand the potential of each of these dimensions.

Because
∑

j P
T
j Pj is a diagonal matrix, system models that have a diagonalizable Hes-

sian matrixATA, such as denoising, inpainting or deblurring, are e�ciently computed in
closed-form. For all other cases, running a few iterations of conjugate gradient provides a
suitable approximation. In the case of the focal stack system model, I experimented with
further accelerating conjugate gradient and other smooth optimization methods with cir-
culant preconditioning. While the focal stack Hessian matrix is Toeplitz, the fact that my
angular dimensions, u,v, were each only 5 wide resulted in edge artifacts dominating when
preconditioning with a circulant matrix. Interestingly, the original Hessian matrix already
has most of its energy near the main diagonal. The fact that the projections are over di-
mensions only 5 wide means that the operations are still highly localized, and common
preconditioning choices provided little improvement.
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fig 3.1 – Central subaperture images from The (New) Stanford Light Field Archive [79].
From left to right, (Top) amethyst, Lego knights, crystal ball, bracelet, jelly beans, bunny
(Bottom) eucalyptus, treasure chest, Lego bulldozer, Lego truck. Images resized indepen-
dently.

3.3 Experiments

We validated the proposed method on 10 light �elds from the Stanford Light Field Dataset [79];
see fig 3.1. From each light �eld, we extracted the central 5 × 5 views and spatially
downsampled by a factor of 3 for testing our method. For each patch shape, we tuned
all hyperparameters, unless otherwise stated, using the Tree of Parzen Estimators as im-
plemented in the hyperopt Python package [8]. For hyperparameter tuning, we used
smaller 5 × 5 × 192 × 192 light �elds cropped from the bunny, crystal ball, and Lego
bulldozer light �elds to reduce tuning time. We used peak signal-to-noise ratio (psnr) as
the criterion for tuning and for method evaluation.

We investigated light �eld inpainting and light �eld reconstruction from focal stack
images. In all cases, we initialized the transform T with the px × py × pu × pv × pc-point
dct and ran utl for 120 iterations.

3.3.1 Inpainting Light Fields

We apply blind utl to light �eld inpainting by minimizing (3.4) withA = diag{vec(M)}
where

M [i, j, k, l, c] =

1 (i, j, k, l, c) ∈ Ω

0 otherwise
(3.5)
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s = 1.5 s = -0.5

fig 3.2 – An example 2-image focal stack and the amount of pixel shift, s, applied to
light �eld before summing. Di�erent jelly beans come into focus as the focal plane passes
through the scene

Truth Zero-Filled SAI Cubic Interpolation

SAI UTL EPI UTL LF UTL

fig 3.3 – Zoomed in view of the central perspective of inpainted Lego truck light �elds.

and Ω is the set of samples taken of the light �eld. In our experiments, Ω is such that only
20% of all samples are kept at random. Samples in Ω were drawn independently for each
light �eld tested. We used spatial cubic interpolation to initialize x.

For the inpainting problem, we let λ = 108 and tuned the patch shape and sparsity
threshold, γ, for all three patch shapes. In all cases, we used the full color patch dimension
of 3. For sai utl and lf utl, patch dimensions in x and y were constrained to be equal,
while in lf utl patch dimensions in u and v were similarly constrained. All methods had
an upper bound on the largest patch that could be chosen due to memory constraints,
as updating T in a blind setting precludes computing Z on-the-�y. While sai utl and
epi utl did not reach that bound, and instead settled on smaller patch sizes, lf utl did,
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Method n
Patch Shape

(px, py, pu, pv, pc)
γ

sai utl 108 (6, 6, 1, 1, 3) 0.0625
epi utl 135 (9, 1, 5, 1, 3) 0.0582
lf utl 243 (3, 3, 3, 3, 3) 0.0454

tbl 3.1 – Patch Shape and Thresholds for inpainting problem. For brevity, we only list
(x, u) patch dimension for epi utl, although we learn �lters for the corresponding patches
in (y, v) as well.

Truth Back Projection Edge-Preserving SAI UTL EPI UTL LF UTL

fig 3.4 – Zoomed in view of the central perspective of Lego knight light �elds recon-
structed using di�erent methods.

due to its increased dimensionality. tbl 3.1 lists the tuned hyperparameters for the three
cases.

We applied each of the three methods with their tuned hyperparameters to the 10
light �elds in our dataset. tbl 3.2 shows the psnr of each of the reconstructions. lf
utl surpassed epi utl by 1.5dB and sai utl by 6.2dB on average. fig 3.3 compares the
performance of each of the methods on a zoomed in section of the Lego truck light �eld.
lf utl is able to preserve �ne features more accurately than any of the other methods.

3.3.2 Reconstruction From Focal Stack Images

The capture of a photograph in a particular focal setting can be modeled by:

Ik(x, y, c) =

∫∫
A
L(x+ sku, y + skv, u, v, c) du dv, (3.6)
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Cubic Interpolation Proposed blind UTL methods

light �eld SAI EPI SAI UTL EPI UTL LF UTL

amethyst 28.50 26.74 31.72 37.67 39.79

crystal ball 21.56 21.29 25.68 30.22 30.71

Lego bulldozer 26.69 23.95 29.94 34.02 35.63

bunny 32.21 28.71 35.21 39.49 42.04

bracelet 23.28 22.84 27.99 34.70 34.90

eucalyptus 29.32 28.15 32.24 37.85 39.69

Lego knights 26.40 24.16 31.29 34.00 36.68

treasure chest 24.57 23.19 27.86 32.92 32.46
jelly beans 35.82 32.35 38.16 40.41 41.81

Lego truck 28.95 27.86 32.17 38.25 40.62

Average 27.73 25.92 31.23 35.95 37.43

tbl 3.2 – psnr in dB for each recovered light �eld using di�erent inpainting methods.

whereA is the support set of the aperture, and sk is a parameter determined by the focus
setting of the kth photo. Thus, we can render photographs with a varying focal plane by
appropriately adjusting sk; see for example fig 3.2. For further information regarding
photograph capture and its relation to Fourier subspaces, see [59, 50].

Interestingly, (3.6) can also be written as

Ik(p, q, c) =

∫∫∫∫
L(x, y, u, v, c) δ2((x− sku)− p, (y − skv)− q) dx dy du dv . (3.7)

Written this way, we can see that this forward model is a set of parallel plane integrals,
similar to the Radon transform in ct.

We apply Ak by shifting subaperture images by sk times their u, v coordinates and
summing. A then represents the application of each Ak in a stack. We used linear inter-
polation to shift the subaperture images. Our measurement model is then

y = Ax+ ε, (3.8)

where ε denotes additive white Gaussian noise with standard deviation σ. In our exper-
iments, we retrospectively added ε with σ = 1% of the peak value of the photographs
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Scaled Back Edge Proposed blind UTL methods

light �eld Projection Preserving SAI UTL EPI UTL LF UTL

amethyst 28.94 33.39 29.11 36.19 37.23

crystal ball 20.33 23.30 21.83 24.65 24.73

Lego bulldozer 23.07 28.70 25.36 30.01 29.35
bunny 29.94 35.40 31.57 38.40 39.59

bracelet 18.23 24.46 23.18 26.26 24.51
eucalyptus 30.40 33.83 30.37 36.72 37.56

Lego knights 21.93 25.73 24.72 28.10 27.75
treasure chest 24.85 29.63 25.77 32.13 32.15

jelly beans 25.08 35.96 32.90 37.92 38.44

Lego truck 24.75 34.24 29.68 37.44 38.42

Average 24.75 30.46 27.45 32.78 32.97

tbl 3.3 – psnr in dB for each light �eld using di�erent focal stack reconstruction methods

y. We used shift parameters s ∈ {−1,−0.5, 0, 0.75, 1.5} to simulate 5 photographs taken
with our model.

We compare our proposed method against an edge-preserving regularizer of the form:

x̂ = arg min
x

1

2
‖Ax− y‖2

2

+ βx,y
∑
i

ψ([Cx,yx]i; δx,y)

+ βu,v
∑
j

ψ([Cu,vx]j; δu,v), (3.9)

where ψ(·, δ) denotes the Huber potential function, a smooth approximation of an ab-
solute value function. δk,l is a hyperparameter controlling the function curvature. Ck,l

applies �nite di�erences along dimensions k and l. We tuned βx,y, δx,y, βu,v, δu,v on the
same set as the utl methods, which resulted in 7.47, 98.9, 3 × 10−2, 6 × 10−4 for each
parameter respectively.

For each of the utl methods, we used the patch shape and threshold learned during
inpainting and tuned λ, which resulted in 4.14× 10−2, 2.61× 10−1, 2.27× 10−1 for sai,
epi, and lf utl respectively. For the data update, we used 5 conjugate gradient iterations.
tbl 3.3 shows the psnr of each of the methods applied to the 10 light �elds in our dataset.
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Learned EPI Transform3D DCT

fig 3.5 – Comparison of the �lters learned using epi utl (right) with those of the 3d
dct (left) used to initialize the blind inpainting method. The learned �lters adapt to the
vertical linear structure of the epi light �eld slices.

For this problem, lf utl only out performed epi utl by 0.19dB on average. fig 3.4 shows
zoomed in views from the Lego knights light �eld.

3.4 Discussion

fig 3.5 shows the reshaped rows of the transform learned on the epipolar patches of
amethyst during blind inpainting. Each of these transform patches is e�ectively convolved
with the light �eld for regularization. The �lters have learned the mostly vertical linear
structure of the epipolar domain by learning vertical �nite-di�erence-like operations. We
also see the slight tilt in some of the structures, re�ecting the skew in out-of-focus pixels.
As expected, most of this vertical structure is captured in luminance rather than color
channels.

fig 3.6 shows the �lters learned using sai utl during blind inpainting. Similar to the
epi case, we �nd �nite-di�erence-like structures in the luminance channels, but with less
vertically aligned structure. In both cases, utl learned shifted versions of the same �lter.
This is a weakness of the unitary constraint, because shifted versions of the same �lter can
be orthogonal, but provide no new information for regularizing the reconstruction. The
unitary constraint also forces one to learn a low-pass �lter, which one does not expect
to induce sparsity in general. We leave it as future work to investigate more e�ective
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3D DCT
Learned Spatial
Transform

fig 3.6 – Comparison of the �lters learned using sai utl (right) with those of the 3d dct
(left) used to initialize the method.

constraints on the learned �lters, such as Fourier magnitude incoherence [62] or tight-
frame conditions on a wide transform, or some other consideration of light �eld physics.

We found that full dimensional patches best represented our data, but their increased
dimensionality limited their extent in any one dimension due to memory constraints in
storingZ . As we assume many (but not all) of the rows ofZ to be sparse, we believe utl
can be optimized for more e�cient storage. An alternative may be to store a subsampled
or sketch of Z , and only approximate the T update. This work focused on maximally
overlapping patches with a stride of 1, but larger strides could be used. We leave it as
future work to investigate how these memory saving techniques impact reconstruction
accuracy.

Because epi patches were able to regularize the data nearly as well as full lf patches,
presumably because of the shifting structure of the epi dimensions, it would be interest-
ing to see if a union of sai and epi transforms could capture the light �eld structure as
well as full lf patches. Such unions have been e�ective in other inverse problems [97].
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Combining adaptive sparsity with other regularizers such as low-rank models may also
be e�ective [86].

3.5 Conclusion

This work investigated the e�ectiveness of using learned sparsifying transforms for di�er-
ent patch structures to regularize light �eld inverse problems. We found that full-dimensional
patches provided the best data model, but epi patches could capture most of the signal
model with a lower dimensionality. We validated our proposed light �eld models on two
inverse problems: light �eld inpainting and focal stack reconstruction. In both cases, regu-
larization using transform learning yielded better reconstruction psnr than simple hand-
crafted methods.
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CHAPTER 4

Weighted Transform Learning for

Light-Field Imaging

4.1 Introduction

In the previous chapter, we demonstrated that blind unitary transform learning (utl)
showed superior performance on compressive light-�eld imaging problems in compari-
son to other non-data-driven methods. The unitary constraint allowed us to avoid a trivial
solution while also being computational e�cient to compute, but unfortunately, was not
motivated by what we would expect transform �lters to look like. In fact, the unitary con-
straint requires that we learn a low-pass �lter, despite such �lters generally not producing
sparse outputs on natural light �elds and images. More generally, we may expect di�erent
�lters to produce di�erent levels of sparsity in utl. In this work, we explore weighting the
sparsity regularization of di�erent �lters. We investigate several methods for determining
the weights, but �nd empirically that none of the proposed methods produce signi�cant
improvement over blind utl.

Our work is most similar to that of Miyagi et al. [54], who weighted the �lters of the
dct in a dictionary formulation with `1 sparsity for light �eld reconstruction. Because
the dct is a unitary operator, that approach is equivalent to the methods described here
applied to a static dct transform. Because we weight the sparse images instead of the
�lters, our weights are equivalent to the multiplicative inverse of the weights described
in that paper. We also do not learn the weights on a dataset, and instead opt for a blind
approach. This chapter further explores di�erent weighting schemes and applies them to
an adaptively estimated transform as opposed to a static one. As `0 sparsity is computa-
tionally feasible in a transform framework, we also opt for a `0 “norm” in our formulation
to encourage sparsity.

The work in this chapter showed no signi�cant improvements so was never published.
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4.2 Methods

Recall from the previous chapter the blind utl cost function for recovering an image x
from measurement vector y:

x̂ = arg min
x

min
T∈V

min
{zj}
‖Ax− y‖2

2 + β
(∑

j

‖TPjx− zj‖2
2 + γ2‖zj‖0

)
. (4.1)

The zero “norm” can be written in terms of a sum of indicator functions Ic(q)(q) which
take the value 1 when the condition c(q) is true and 0 otherwise

‖q‖0 =
∑
i

Iqi 6=0(qi) . (4.2)

We can generalize this “norm” by taking a weighted sum such that some indices are
penalized more for being nonzero

‖q‖w,0 =
∑
i

w2
i Iqi 6=0(qi) . (4.3)

When using such a weighted sum, the corresponding proximal operator update applies
a scaled hard thresholding for each element of zj

hard(qi;wiγ) =

0 |qi| ≤ wiγ

qi |qi| > wiγ.
(4.4)

From a �lter bank perspective, such weighting allows each “arm” or channel of the
�lter bank to have its own threshold. Ideally, we would choose thresholds such that chan-
nels that carry more artifacts and noise have larger thresholds. It is not clear what the best
choice of weights/thresholds would be. In this work we investigate several options for set-
ting the weights in the context of blind transform learning. Because in the blind setting we
do not assume to have training data, we attempt to infer good weights from a dct trans-
form TDCT , an initial reconstructionX0, or a better reconstruction like a edge-preserving
regularized reconstructionXEP .
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Weighting Option 1 One option for choosing the weights w was (equivalently) pre-
sented by Miyagi et al. [54] in the context of a weighted `1 norm for dct regularization

wi =

√
1

1
J

∑J
j |TDCTXref|2i,j

. (4.5)

In their work, they used training dataXref ∈ Rn×J for learning the weights. In this work
we will use patches from a ep reconstruction XEP . Here, if a �lter does not sparsify the
reference patches, then it gets assigned a small threshold. Conversely, if a �lter sparsi�es
the image extremely well, then (4.5) assigns it a large threshold to encourage that sparsity
at test time.

Weighting Option 2 A potential downside of the previous option is that it does not
consider artifacts and noise when setting the thresholds. Intuitively, a channel that has
more noise or artifact energy will need a larger threshold to remove these degradations.
One way we can estimate where artifacts end up is by �ltering the di�erence between a
basic and more advanced reconstruction and increasing the weights where that energy
ends up. One option for doing this could be

wi =

√√√√ 1
J

∑J
j |TDCT(XEP −X0)|2i,j
1
J

∑J
j |TDCTXEP|2i,j

. (4.6)

Weighting Option 3 Consider the regularization term in the case of `1 sparsity where
W = diag{w}

|||TX −Z|||2F + γ‖vec(WZ)‖1. (4.7)

Performing a change of variable Z = W -1Z̃ yields∣∣∣∣∣∣∣∣∣TX −W -1Z̃
∣∣∣∣∣∣∣∣∣2

F
+ γ
∥∥∥vec(Z̃)∥∥∥

1
. (4.8)

If we assume we know T ,X and Z , we can minimize this term with respect to each
diagonal element ofW -1 independently as

ŵ-1
ii = arg min

w-1
ii

∥∥∥[TX]i,: − w-1
ii Z̃i,:

∥∥∥
2

(4.9)

=
〈Z̃i,:, [TX]i,:〉∥∥∥Z̃i,:

∥∥∥2

2

. (4.10)
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fig 4.1 – The Heidelberg Light Field Dataset Training Images, from left to right: Boxes,
Cotton, Dino, and Sideboard. Only central views shown.

If we think of Z̃ as sparse code corresponding to a true or clean image (≈ TDCTXEP),
and TX as the noisy or corrupted sparse codes (≈ TDCTX0), then we might propose the
following weights for our problem

wi =

∑J
j |TDCTXEP|2i,j

〈[TDCTXEP]i,:, [TDCTX0]i,:〉+ ε
. (4.11)

Weighting Option 4 As one of the initial motivations for this study of weighted reg-
ularizers was to avoid sparsifying the low-pass �lters that inherently must be learned
by any unitary transform, we also could suggest this simple choice of weights that does
not penalize the constant terms of the dct (of which there are three in the case of color
images)

wi =

0, i ≤ 3

1, otherwise.
(4.12)

4.3 Experiments

We evaluated the proposed regularizer on light �elds from the Heidelberg 4d Light Field
Dataset [38]. We used the 4 “Training” light �elds from the dataset (namely, Boxes, Cotton,
Dino, and Sideboard, see fig 4.1) to set hyperparameters β and γ and to choose from the
proposed weighting choices. Once these parameters were chosen, the method was tested
on 19 light �elds from the “Test” and “Additional” collections of the dataset. For all light
�elds, we extract the central 5×5 views.

For all experiments, we jointly reconstructed and demosaiced light �elds from Bayer-
encoded focal stack measurements. As the light �elds in this dataset have srgb color,
we �rst transform the light �elds into a linear rgb color space before any processing.
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Method β γ Avg. nrmse

utl 7.954 0.017770 0.0531
(4.5) 7.921 0.003246 0.0580
(4.6) 7.590 0.036573 0.0520
(4.11) 12.993 0.008254 0.0507

(4.12) 13.749 0.012313 0.0518

tbl 4.1 – Tuned regularization parameters for weighted utl. Weighted utl with weights
chosen by (4.11) performed the best on average for the 4 training light �elds.

We computed quality metrics, such as psnr, in the (perceptual) srgb space. We gener-
ate measurements at the original 512×512 resolution, downsample by 2, and add noise
so our measurements have 50dB psnr. We reconstruct at 256×256 spatial resolution and
downsample the dataset light �elds by 2 for comparison. By generating our measurement
with higher resolution light �elds, we avoid committing an “inverse crime” in our experi-
ments [18].

We initialized all methods by bilinear demosaicing the focal stack photographs and
then back projecting the result through the focal stack model. For patches, we extract 3×3
spatial patches with a stride of 1 and maintain full dimensionality in other dimensions
resulting in a patch shape of 5 × 5 × 3 × 3 × 3. Our measurement model generated
256×256 Bayer patterned sensor images photographs via the shift-and-sum method (see
Section 3.3.2) with pixel shifts −1,−0.5, 0, 0.75, 1.25 and bilinear interpolation.

For implementing the edge-preserving (ep) reconstruction, we used a Huber potential
with the parameters described on page 30 and ran 50 iterations of conjugate gradient
which seemed adequate. We ran utl and the proposed methods for 100 iterations using
the bcd approach described previously in Section 2.5.2.1.

We tuned β, γ, and the weighting choice over 1000 trials with the objective of min-
imizing the average nrmse of the 4 training images. For fair comparison, utl was also
similarly tuned. tbl 4.1 summarizes the results of the parameter search. Weighted utl
with weights chosen by (4.11) performed the best on average for the 4 training light �elds.

With the selected parameters, we ran ep, utl and the proposed weighted utl on the
19 light �elds in the test set. tbl 4.2 shows the psnr for each reconstructed light �eld.
The proposed algorithm improved the average psnr of the test set by just under 0.2dB.
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Light Field ep utl wutl

antinous 35.116 35.687 37.189

bedroom 27.080 30.664 30.644
bicycle 25.107 28.620 28.568
boardgames 25.021 28.819 29.092

dishes 26.234 28.664 28.554
greek 31.248 33.429 33.824

herbs 29.179 30.694 30.913

kitchen 26.364 30.942 31.042

museum 29.126 32.888 32.883
origami 25.719 29.479 29.350
pens 30.771 32.239 32.403

pillows 30.578 32.466 32.757

platonic 28.993 31.245 31.160
rosemary 28.674 31.485 31.533

table 26.725 31.050 30.962
tomb 35.369 35.100 36.141

tower 30.545 31.311 31.159
town 28.129 32.317 32.146
vinyl 27.689 32.301 32.251

Average 28.825 31.547 31.714

tbl 4.2 – psnr in dB for weighted utl on Heidelberg light �eld dataset

Just over half of the light �elds were better recovered using plain utl, though some light
�elds showed more than 1dB of improvement with weighted utl.

4.4 Conclusion

While the proposed weighted utl approach showed signi�cant improvement on a few
test light �elds, our results show that the improvement is not signi�cant on average when
regularization parameters are tuned carefully. It is unclear if there is any systematic way
to predict which of either utl or weighted utl will perform better for any particular
dataset.
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Since plain utl corresponds to a special case of weighted utl, for any one test case
there exists an optimal weighting that does no worse then plain utl. This work attempted
to approximate this optimal weighting in a non-rigorous fashion with some simple weight-
ing formulations that adapted to each test case. While the optimal weighting could do no
worse than plain utl, it is unclear if it would do signi�cantly better. Thus, our poor results
could be due either to poorly �nding good weightings for each test image or because the
method is inherently of little help to the reconstruction. One observation which might
suggest the latter is that the low-pass �lter’s sparse codes are generally much larger than
the thresholds used in plain utl. Thus, scaling down those thresholds (or even setting
them to zero) does not a�ect the results much in the case of hard thresholding. We might
expect more of a di�erence with `1 sparsity regularization, but that regularizer generally
performs worse than `0 sparsity regularization.

The average psnr improvement shown here is not large enough for us to con�dently
recommended weighted utl. It is likely that applying the weighting schemes considered
here could degrade psnr for any given test case.

The weighting methods investigated herein are all “hand crafted” formula and it might
be possible to develop a machine-learning approach for learning a mapping from the raw
data to the weights given su�cient training data. For example, Gu et al. [33] found a
supervised choice of tuning parameters could help `1-sparse mri reconstruction perform
as well as deep learning. Perhaps a neural network could better estimate these weights.
However, if such training data is available then perhaps the transform T could also be
learned in a supervised manner, rather than in the “blind” learning style considered here.
On the other hand, some combinations of blind learning and supervised learning have
been shown to be bene�cial [45].
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CHAPTER 5

Generalizability of

Learned Unitary Transforms

5.1 Introduction

Unitary Transform Learning comes in two distinct variants. In standard non-blind (population-
adaptive) utl, the transform — aka �lter — coe�cients are trained to �t a population of
training data under the assumption that members of the population will be sparsi�able
under a common transform. This training data is assumed to be representative of the un-
known data that is going to be reconstructed. If the image to be reconstructed has features
similar to the training data, then we can expect the transform to sparsify it well, leading
to greater noise rejection and higher reconstruction accuracy. For these same reasons, if
the training data is not representative, we would expect reconstruction accuracy to de-
crease. It is therefore important to have representative training data whenever applying
a population-adaptive approach like non-blind utl.

In contrast with non-blind utl, blind (instance-adaptive) utl requires no training
data. Instead, blind utl learns a transform at test time in an instance-adaptive fashion. As
the reconstruction iterates, the transform should be re�ned as better and better estimates
of the �nal image are produced. Note the transform no longer represents sparsi�able fea-
tures of a population, but now merely enforces the sparsi�ability of the reconstructed im-
age. In denoising problems, where noise is often modeled as independent in image space,
it is reasonable to expect the noise to not be sparsi�able. In practice, this model works
well even for more complicated inverse problems.

Thus, despite their clear structural similarity, non-blind and blind utl represent di�er-
ent assumptions about our signal, sparsi�able under a population speci�c transform and
just sparsi�ability, respectively. As a population-speci�c transform is more constrained

The work in this chapter showed no signi�cant improvements so was never published.
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and brings in information about the population in the form of sparsifying �lters, we
might hypothesize that non-blind utl would out perform blind utl in general. But this
dependence on a population might make non-blind utl more prone to error when recon-
structing out-of-population samples, such as anomalies or never before seen anatomies
or objects.

It is therefore unclear when to prefer non-blind or blind utl in general. This chapter
aims to answer the following question: How representative does your training data need to
be to prefer non-blind utl over the more adaptive blind utl ? I.e., how well can a unitary
transform generalize to dissimilar data? As a concrete problem, this chapter examines the
reconstruction accuracy of T1-weighted brain and proton-density knee mri images with
transforms trained on a varying mix of both populations.

5.2 Related Works

Unitary transform learning in the context of mri reconstruction was �rst proposed by
Ravishankar and Bresler [67], but they did not compare non-blind and blind version or
suggest a strategy to pick one over the other. Bahadir et al. [6] used data-driven methods
to design sampling patterns for mri, and they compared the optimal sampling patterns
for knee and brain images. Unlike this work, they did not look at the e�ect anatomy has
on the reconstruction algorithm.

5.3 Unitary Transform Learning

Section 2.5 provides thorough description of transform learning. For completeness, we
provide a brief review of population-adaptive (non-blind) and instance-adaptive (blind)
unitary transform learning.

In non-blind unitary transform learning, we �rst learn a unitary transform in a train-
ing phase. The objective of this training is to minimize the expected �t of image patches
Pjx over a population of images {x1 . . .xK} with respect to the transform T and sparse
codes z:

T̂ = arg min
T∈Vn×n

min
{zj,k}

1

K

K∑
k=1

∑
j

‖TPjxk − zj,k‖2
2 + γ‖zj,k‖0. (5.1)
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fig 5.1 – Example brain image reconstructed with espirit [46] and sense on fully sam-
pled k-space, zero-�lled undersampled reconstruction, and the log undersampled k-space

For notational convenience, we letX = [P1x1 . . .PJx1 . . .PJxK ] and similarlyZ =

[z1,1 . . . zJ,1 . . . zJ,K ]. We can then simplify (5.1) as

T̂ = arg min
T∈Vn×n

min
Z

1

K
|||TX −Z|||2F + γ2‖vec(Z)‖0. (5.2)

We minimize (5.2) via block-coordinate descent on T with a Procrustes update and on Z
with hard-thresholding [67].

Once a suitable estimate ofT has been obtained, it can be used in iterative optimization
routines to reconstruct images at test time via this regularizer on each image patch:

R(x) = min
{zj}

∑
j

∥∥∥T̂ Pjx− zj∥∥∥2

2
+ γ2‖zj‖0. (5.3)

Blind utl, on the other hand, has no training phase, and we just apply the following
regularizer in the reconstruction of each image x:

R(x) = min
T∈Vn×n

min
{zj}

∑
j

‖TPjx− zj‖2
2 + γ2‖zj‖0. (5.4)

Updates of blind-utl follow that of the non-blind version: a block coordinate descent on
x, T , and each zj (see Chapter 2).
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fig 5.2 – Example knee image reconstructed with espirit [46] and sense on fully sam-
pled k-space, zero-�lled undersampled reconstruction, and the log undersampled k-space

5.4 Experiments

To better understand the a�ect of training data mix, we compared the reconstruction ac-
curacy of non-blind utl on test sets consisting of brain mri images and knee mri images
after being trained on a population of varying amounts of each anatomy. We used (5.1) to
train utl and applied our learned transforms for each trial t by minimizing the following
regularized cost function

x̂t = arg min
x

min
{zj}

λ‖Ax− y‖2
2 +

∑
j

∥∥∥T̂tPjx− zj∥∥∥2

2
+ γ2

test‖zj‖2. (5.5)

The system matrixA represents the phase-encoded undersampled Fourier transform and
y represent the undersampled k-space data. Hyperparameter λ encodes a trade-o� in data-
�t and model-�t. dct reconstructions were performed by letting Tt in (5.5) be the 2d-dct
transform. Blind utl reconstructions were performed by additionally minimizing over Tt
each iteration.

The dataset consists of 512× 512 T1-weighted flair axial brain images (fig 5.1) and
360× 360 proton-density coronal knee images (fig 5.2). Gold standard (complex-valued)
data was reconstructed using espirit sensitivity maps in a sense reconstruction [46]. The
original knee data was collected with 15 channels on a 3t Siemens scanner [92], while the
original brain data was collected with 32 channels on a 3t ge scanner. The gold standard
data was then retrospectively undersampled by masking fully-sampled k-space with a
randomly-generated mask to simulate 4× single coil phase encode acceleration. A total
of 100 2d slices were used in the study, 50 from brains and 50 from knees. The brain images
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fig 5.3 – Reconstruction accuracy as a function of training mix. (Left) utl’s accuracy on
brain images improves as the amount brain training data increases. (Right) utl’s accuracy
on knee images improves as the amount knee training data increases. However, in both
cases the di�erence only spans 0.1dB.

and knee images were split evenly between train, validation and test sets for a total of 40,
20, and 40 slices respectively. In any one trial training non-blind utl, 20 slices were used
from the training dataset varying between 20 brain images to 20 knee images to simulate
di�erent mixes.

The validation dataset was used to tune γtrain and γtest. While these perform a similar
role in the training phase and the reconstruction/test phase, empirical results show that
better accuracy can be achieved with di�erent values. This may be because the test data
is subject to greater noise than the training data. We used the black-box Bayesian tree-
structured Parzen estimator (tpe) [8] method to tune these hyperparameters jointly on
brain data and knee data over the course of several days. From this we found γtrain = 0.156,
γtest,brain = 0.0212 for brain data and γtest,knee = 0.0305 for knee data. In all cases we �xed
λ to be 108, as the data was noiseless, and we wanted to retain sampled values, e�ectively
enforcing anAx = y constraint.

Unitary transforms were then learned using non-blind utl on 11 di�erent training
dataset mixes ranging from 0% to 100% brain images (i.e., at 70% brain images, the training
set consisted of 14 brain images and 6 knee images). Once a transform was learned it was
applied as a transform sparsity regularizer to reconstruct 20 brain images and 20 knee
images in the test set. fig 5.3 shows the test reconstruction accuracy as a function of
training set mix for both brains and knees. fig 5.3 also shows the results of adaptive
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blind utl and standard dct transforms (both of which do not depend on training data)
for comparison.

5.5 Discussion

The results in fig 5.3 show that for brain images, we need about 30% brain images in
our population to outperform the blind method, with little improvement after 50% brain
data. Overall, using representative brain data boosted utl by 0.1dB over blind utl and
by 0.6dB over the non-adaptive dct.

For the knee test images, we needed about 30% knee training data to outperform
the non-adaptive dct. Surprisingly, for this population, the blind utl method outper-
formed the learned method even when the training population was 100% knee data. Over-
all though, the spread across training mixes was less than 0.1dB.

Qualitatively speaking, compared to the knee data, the brain images seem more similar
to each other. The round structure of the brain anatomy makes the edge content of the
image more robust to slight rotations and is more similar across subjects. The knee images
on the other hand vary in bone size, fat content and joint angle. For these variations, it
seems that a square unitary transform does not have the degrees of freedom to adequately
model the population.

Interestingly, blind utl only outperformed the dct by 0.5dB on the brain data and
even less on the knee data. Both methods are e�ective at removing aliasing artifacts from
the black background and so get a similar boost in psnr in early iterations on mri data.
Even after masking the results to relevant structure, the performance is similar. In fact,
many of the psnr curves presented in the original blind utl paper [67] on mri data are
nearly identical1 when run with a �xed dct transform — an observation that presumably
the authors [67] did not realize at the time of its publication. It seems that the dct is a
very good transform for mri data and larger improvements are only seen when the data is
drawn from a su�ciently di�erent distribution. For example, blind utl vastly outperforms
a �xed dct on piecewise constant data as it is able to learn �nite-di�erence-like �lters.
This is the bene�t of adaptive regularization; we do not need to know whether the data
will be better sparsi�ed by something dct-like or �nite-di�erence-like as blind utl will
pick the superior �lter.
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fig 5.4 – Left: Magnitude of learned complex �lters on all knees training data. Center:
Magnitude of learned complex �lters when half of the training data were knees and half
were brains. Right: Magnitude of learned complex �lters on all brains training data.

fig 5.4 presents the magnitude of the complex �lters as a function of training mix.
The �lters for brain images look tuned to �nd edges at a variety of angles, while the knee
�lters are harder to interpret.

5.6 Conclusion and Future Work

The work set out to understand when it is advantageous to train a unitary transform from
a priori training data, over opting for a blind method that learns a unitary transform in
an instance adaptive fashion. The unexpected conclusion of this preliminary study has
been that pre-learning is only advantageous when the training data is highly correlated
and self similar. Large variations in training populations are too diverse to be su�ciently
captured in a unitary model. In a blind setting, a unitary transform only has to sparsify a
single image estimate, and so the limited expressibility of a unitary transform is less of a
hindrance.

Traditionally, the unitary constraint has been motivated by the need to avoid a trivial
solution T = 0 and Z = 0. While in the absence of the unitary constraint, this is clearly
a global minimizer, it is unclear whether bcd would �nd this global minimizer given an
arbitrary initialization due to the non-convexity of the problem. fig 5.5 shows a prelimi-
nary result of �tting a transform to an image without the unitary constraint, with a dct
initialization. The transform update becomes a simple least-squares solution. Preliminary
e�orts at applying this transform in a non-blind setting suggest that the local minimizer

1per iteration, comparing elapsed time, the dct rises faster since no svd is computed.
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fig 5.5 – Preliminary result of a transform �lters learned using a least squares
transform update on a single image. (Left) the �lter magnitudes (Right) the cost
|||TX −Z|||2F + γ‖vec(Z)‖0 converges to a nonzero �xed point from a dct initialization.

attained in this way with bcd is no more e�ective than the minimizer found with the
unitary constraint.

These results highlight two possible paths for future work for improving the express-
ibility of transform models. (1) The minimizers found by bcd may be suboptimal, and it
may be bene�cial to explore joint updates of T and Z . Currently, T is �t to Z and Z is
�t to T repeatedly. This interaction may cause the bcd updates not to stray too far from
the initialization and tend to converge slowly. (2) Minimizing the sparsity �t may not be
the most e�ective training model. Equation (5.1) proposes we choose a unitary transform
that minimizes the expected transform sparsity error. Preliminary results (fig 5.5) with-
out the unitary constraint suggest that this formulation may be suboptimal even without
the unitary constraint. It may be more e�ective to minimize expected test time reconstruc-
tion error directly (a true supervised loss), using a combination of backpropagation and
subgradient descent on a bilevel optimization problem [20]

W̄ = arg min
W

Ex,ε
[
‖x− f(Ax+ ε,W , γ)‖2

2

]
(5.6)

where f applies a set number of iterations of transform regularized image reconstruction.
This formulation naturally drops the need for a unitary constraint, as the trivial solution,
T = 0, Z = 0, would generally not be optimal for reconstruction accuracy.
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In light of this, a promising future direction would be to replace the limited expressibil-
ity of a transform with a multilayer (deep) transform model updated by backpropagation
and subgradient descent.
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CHAPTER 6

Deep Generative Regularization on Patches

6.1 Introduction

The demand for quality high-resolution sampling in spatial, temporal, spectral and other
physical parameter spaces in a variety of sensing applications, such as ct, mri, remote
sensing and light-�eld imaging, has led to a need to sample at sub-Nyquist frequencies
to �t a �xed sampling budget. As a result, the traditional reconstructions are generally
corrupted or not directly interpretable.

A common way to handle these inverse problems is to pose the reconstruction as an
optimization problem consisting of data-�delity terms that enforce our expectation that
our collected samples are consistent with our reconstruction given a reasonable amount of
measurement noise, and regularization terms, that enforce our measurement-independent
expectation about the class of images we are reconstructing.

The undersampled nature of the measurements generally makes solving the data-
�delity term alone ill-posed. As such, developing e�ective regularization is essential to
image-reconstruction accuracy. Developing e�ective regularization is challenging, as it
must provide a model for the true signal that is both �exible enough to represent all plau-
sible true images, yet discriminating enough to reject noise and artifacts.

A common approach in the design of regularization is modeling redundant features
with reduced dimensionality. An image, for example, may have repeating or similar tex-
tures that, when extracted into image patches, can be more easily modeled, such as be-
longing to a union of subspaces. Many signals of interest fall into a shift-invariant class
(at least locally). Shifting an image by a few pixels generally produces an image that is
equally realistic. By modeling overlapping data patches instead of entire images, we im-
plicitly model the shift-invariant structure of images.

The work in this chapter showed no signi�cant improvements so was never published.
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Classically, subspaces have been used to describe patch-wise models. These models
are attractive as they dramatically simplify analysis. But this simplicity also results in a
lot of reduced model �exibility. For this reason, nonlinear models have been growing in
popularity, especially with modern deep neural networks.

Modern generative networks show remarkable performance on synthesizing fairly re-
alistic images from low-dimensional latent spaces [63]. These networks tend to be highly
parameterized and require large datasets to train on realistic image sizes.

6.2 Related Work

Recently, Bora et al. [12] applied generative models in the context of compressed sensing
(csgm) with the following cost function (c.f . [12, (1, 3)])

x̂ = G(ẑ), ẑ = arg min
z
‖AG(z)− y‖2

2 + λ‖z‖2
2, (6.1)

where G is a nonlinear generative function generally resulting from training a neural
network. As many generative networks impose a Gaussian assumption on the distribution
of z, (6.1) penalizes the `2 norm of z, which is consistent with the Bayesian interpretation
of the problem. This model leads to an estimate x̂ that lies in the range of the generator
R(G), which may be unnecessarily restrictive and may limit any features not present in
the training data from being seen. The nonlinearity of the generator makes optimizing
z prone to converging to poor local minima when minimized via a standard subgradient
descent. Bora et al. [12] circumvented this problem by rerunning their algorithm with 10
random initializations and choosing the solution with the least measurement error.

Building on the work of Bora et al., Shah and Hegde [72] reformulated (6.1) as a con-
strained optimization problem of the form

x̂ = arg min
x∈R(G)

‖Ax− y‖2
2 (6.2)

and solved it using projected gradient descent (pgd-gan). This approach reportedly im-
proved performance and allowed for convergence guarantees, but the projection requires
an inner minimization. To overcome this challenge, Raj et al. [64] replaced the projection
minimization with a learned projection network based on a learned nonlinear “pseudoin-
verse” of G. Several other works have looked at learning image projectors outside the
context of the range space of a generator network [15].
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In comparison to those previously described works that all depend on a pretrained
generator, the Deep Image Prior (dip) method aims to �t an untrained generator to an
image by �xing its input z and optimizing its weights θ at reconstruction time [82]

x̂ = G(z; θ̂), θ̂ = arg min
θ
‖AG(z;θ)− y‖2

2. (6.3)

While a generative cnn could in theory produce corrupted or noisy images, Ulyanov et
al. [82] note that it learns smooth representations more quickly. Thus, early stopping the
optimization can achieve a cleaner image. Heckel and Hand [37] further improved on this
work by proposing an architecture with a more limited capacity that was more robust to
�tting noise and artifacts.

Those methods required the entire image to lie in the range space of a generator. While
likely requiring more training data to produce realistic output in the trained methods, such
approaches also �x the dimensions of the image x. Thus, the model cannot easily be used
in similar inverse problems without �rst reparameterizing and, if trained, retraining the
network. Patch-based models require less data to train and can easily be applied to vary-
ing image sizes. Gilton et al. [30] investigated the use of patch-based denoising networks
in both an unrolled optimization and red framework and found that they improved per-
formance in small-dataset settings.

This chapter investigates the e�ectiveness of using generative models for regulariza-
tion applied patch-wise.

6.3 Method

We investigated both methods that rely on a pretrained generator, as well as methods that
adaptively learn a generator’s weights at test time. This distinction is similar to that of
population-adaptive and instance-adaptive (blind) utl, where the former learns a trans-
form based on a dataset (population) and the latter learns a transform at test time. Here we
divide the proposed methods into these two categories, pretrained generators and blind
generators.
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6.3.1 Pretrained Generator

Our model for a pretrained generator can be formulated as

x̂ = arg min
x

1

2
‖Ax− y‖2

2 + β R(x) (6.4)

R(x) = min
{zj}

∑
j

‖Pjx−G(zj)‖pp (6.5)

where x denotes the unknown image, y the given measurements, A the system model
encoding the measurement physics, Pj extracts the jth patch from x, and p ∈ {1, 2}. The
choice p = 2 is popular for its ease of optimization, but p = 1 has shown robustness to
outliers, better generalization performance in neural network losses [96], and gives the
system model more relative weight on outliers.

bcd provides a convenient way to minimize (6.4). We update z by computing the
subgradient of z w.r.t. the cost using backpropagation and minimizing till convergence
with adam [44]. For p = 2, we get the following update for x

x̂ =

(
A′A+ β

∑
j

P ′jPj

)−1(
A′y + β

∑
j

P ′jG(zj)

)
. (6.6)

For large problems where constructing A′A is prohibitive, conjugate gradient could be
used for the x update.

In the case of p = 1, deriving an e�cient optimization method for the x update is less
straight forward. For the results shown below I used a generic (accelerated) subgradient
method, speci�cally adam [44], as I did with the z update. Nonetheless, here I will con-
sider more speci�c algorithms that one could further develop for the `1 case. If patches
are taken without any overlap, then β R has (for �xed z) a simple proximal operator

proxβ R(x) = soft(x− x̄,wβ) +x̄ (6.7)

where x̄ =
∑

j P
′
jG(zj) and w is an indicator vector with 1s in the ith position if xi is

included in a patch (commonly all pixels are included in one of the patches and sow can
be disregarded). This proximal operator can be used in e�cient methods such as pogm [78,
43].
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When patches are overlapping such that every pixel appears in n patches, we can
segment the J patches into n sets J1 . . . Jn. We can then write R (given z) as

R(x; z) =
n∑
i=1

∥∥∥∥∥x−
Ji∑
j=1

P ′jG(zj)

∥∥∥∥∥
1

(6.8)

=
n∑
i=1

‖x− x̄i‖1. (6.9)

Interestingly, the minimizer (w.r.t. x) of R in this case is the voxel-wise medians of the n
images. Finding its proximal operator is more complicated, and involves sorting the pixels
at each position between the n images and computing the proximal operator based on the
index of each pixel of x in the sorted pixels. This would be computationally intensive, but
element-wise separable w.r.t. x and thus highly parallelizable.

It is unclear to me whether the proximal-operator–based approach described above
would be favorable over a splitting-based approach, which could be formulated as

x̂ = arg min
x

min
{wi,ηi}

1

2
‖Ax− y‖2

2 + β
n∑
i

‖wi‖1 +
µi
2

(
‖x− x̄i −wi + ηi‖2 − ‖ηi‖

2
2

)
.

(6.10)
admm would then involve the following updates (not including z update)

x =

(
A′A+ β

n∑
i

µi

)−1(
A′y +

n∑
i

x̄i +wi − ηi
)

(6.11)

wi = soft

(
x− x̄i + ηi,

β

µi

)
∀i (6.12)

ηi = ηi + x− x̄i −wi ∀i (6.13)

which is at least n-way parallelizable in the proximal update. The results presented in this
chapter will use a subgradient method, but in future work, one could further investigate
these methods for the `1 norm.

6.3.2 Blind Generator

We also considered models where the generator is learned blindly at test time, i.e., we
learn θ while reconstructing x. While the original Deep Image Prior work left the input
z �xed, here we also learn the input zj to the generator for each patch. Without learning
zj it is unlikely that a single generator could �t all patches from random inputs. Thus, our
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cost minimizes over x, zj and θ

x̂ = arg min
x

min
θ

min
z

λ

2
‖Ax− y‖2

2 +
∑
j

1

2
‖G(zj;θ)− PjHx‖2

2. (6.14)

H is an optional pre�lter for the image, allowing the generator to �t just certain features,
like edges for example. Such �ltering is typical in convolutional dictionary learning meth-
ods [17]. Whereas dip learned from a single example image, our patchwise model learns
from a collection of patches from a single image. We hope that also learning zj alleviates
this greater representation requirement.

Another variation we considered was to have the latent patches zj resemble the image
patches. In this case the generator is blindly denoising the patches as follows

x̂ = arg min
x

min
θ

min
z

λ

2
‖Ax− y‖2

2 +
∑
j

β

2

∥∥G(P z
jHz;θ)− P x

j Hx
∥∥2

2
+
γ

2
‖z − x‖2

2.

(6.15)
Here, instead of learning a zj for every patch, we only learn one z the size ofx from which
we extract patches. G is constrained architecturally from learning the identity function,
speci�cally, by using an autoencoder or hourglass architecture.

6.4 Experiments

6.4.1 Pretrained Generator Method

Following the experiments presented in Bora et al. [12], we start with a compressed sens-
ing problem on mnist digits [49]. We used patches of mnist digits to train a Deep Con-
volutional Generative Adversarial Network (dcgan) [63] to learn a generator of patches
of digits using standard supervised adversarial training with a discriminator. Each digit
is 28 × 28, resulting in an optimization vector of length 784. We compute 100 random
Gaussian measurements from test mnist images not used in training and regularize with
12× 12 overlapping patches.

As an initial test, we attempt to �t the regularizer alone by minimizing R(xtrue) w.r.t.
{zj} with p = 2. fig 6.1 describes the process. Most generated patches are able to �t to
the oracle patches, after 5 random restarts on each patch. While a few patches still exhibit
some error, the artifacts are averaged out in the net a�ect of the regularization.
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Best of 10
subgradient
descents on R
with random
initialization

fig 6.1 – Attempt to �t an oracle with a patch-wise generator network

fig 6.2 – Attempt to use a patch-wise generator in a compressed sensing reconstruction.
csgm is the method of Bora et al. [12] that is similar to the proposed method without being
patch-wise. pgd-gan is the method of Shah and Hegde [72]. For the proposed method,
the image was initialized with the output of csgm.
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fig 6.2 presents the results of attempting to use R in a compressed sensing recon-
struction. While z does not yet �nd as accurate of a minimizer as csgm with random
initializations, the patch separability of the proposed method allows iterative re�nement
of the estimate image by random reinitializing patches and keeping the best performers.
This means while csgm generally has the best �nal estimate, its average estimate is much
worse than the proposed method.

When we applied the proposed method in a reconstruction problem using the de-
scribed bcd approach, the �rst iteration severely degraded the quality of the image es-
timate, though the following iterations slowly recovered some of that loss. This seems to
be because the generator does not fully �t our initial image estimate in the �rst iteration
and then the x update transfers that low-quality �tting to the image. To remedy this, we
allowed the z update to run longer in the �rst iteration to fully �t the initialization and
allowed for multiple restarts to help z �nd a good minimizer. But when we do this, the
algorithm became �xed at this iterate and no further improvements beyond the initializa-
tion were made.

One idea would be to move away from a bcd approach and estimate {zj} andx jointly.
While this would likely be harder to optimize than even {zj} is alone, we could add a
stochastic element to this update by only updating a subset of zj and patches of x. Maybe
this randomness could improve the optimization performance as it has been shown to do
in deep neural networks.

6.4.2 Blind Generator Methods

In the previous section, I worked with mnist data as its small size allowed for quick
training and experimentation. In the blind generator methods, no pretraining is required,
and so I opted to work on a more realistic problem, namely phase-encode single coil mri
reconstruction.

In the case of single coil mri, patch extraction with wrapping end conditions, and a
circulant pre�lterH , the x update can be computed in closed form as

F -1

λMy + H̃
′
F
∑

j P
′
jG(zj;θ)

λM 2 + ω diag2
{
H̃
}

 , (6.16)

whereF is the Fourier transform,M is a diagonal matrix of Fourier sampling locations, y
is zero-�lled k-space measurements, and H̃ is a diagonal matrix such that F -1H̃F = H .
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For a pre�lter, we used the Tikhonov high pass �lter that has been used in dictionary
methods to only learn edges

H = I − (I + λHC
′C)

-1
, (6.17)

where C is a (2d) �nite-di�erence operator. In our experiments, we also triedH = I .
In our experiments, both blind methods, with or without H , performed little better

than a zero-�ll reconstruction, even if the initialization was much better. Generally, what-
ever the generator could learn to represent in one iteration was where the algorithm
stayed for any future iteration. Thus, if we increased the number of inner θ iterations
in the �rst iterations, we could �t our better initialization, but then the algorithm would
be �xed there.

We also found that the original Deep Decoder and Deep Image Prior methods did not
perform as well as standard sparsity based methods such as utl or soup for this single-
coil mri application on the images we were working with.

6.5 Conclusion

Despite trying many variations on these algorithms, we were unable to �nd any poten-
tial for signi�cant gains. The non-convexity of neural networks makes them di�cult to
optimize on a single set of patches. Because there were so many patches we were opti-
mizing over, it was common to see a large portion of them get stuck in poor local minima
while optimizing. Compared to restarting the optimization of a single image, detecting
poor patches and restarting them is more challenging. For this reason, these models do
not seem as attractive for adaptive regularization compared to other methods with more
e�cient updates.
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CHAPTER 7

Dynamic Subspace Estimation

with Piecewise Geodesics

Dynamic subspace estimation, or subspace tracking, is a fundamental problem in statisti-
cal signal processing and machine learning. This chapter considers a piecewise geodesic
model for time-varying subspaces. The natural objective function for this model is non-
convex. We propose a novel algorithm for minimizing this objective and estimating the pa-
rameters of the model from data with Grassmannian-constrained optimization. We show
that with this algorithm, the objective is monotonically non-increasing. We demonstrate
the performance of this model and our algorithm on synthetic data, video data, and dy-
namic fmri data.

7.1 Introduction

Modeling data using linear subspaces is a powerful analytical tool that enables practition-
ers to more e�ciently and reliably solve high-level tasks like inference and decision mak-
ing, classi�cation, and anomaly detection, among others. In some applications of interest,
the data generation process is time-varying or dynamic in nature, which motivates the
use of a dynamic linear subspace for data modeling. Some example applications where
dynamic subspace models are prevalent include array signal processing [90, 28, 74, 47],
communication systems [35], video processing [85], and dynamic magnetic resonance
imaging (mri) [61]. The goal in these applications is to learn a time-varying subspace
from the observed data.

Most previous theoretical work for modeling a dynamic subspace relies on very strong
assumptions of the dynamics – either assuming very simple dynamics like sudden changes

This chapter based on work submitted for double-blinded review and was written in collaboration with
Haroon Raja, Je�rey A. Fessler, and Laura Balzano. Experiments on video data and associated �gures were
done by Haroon Raja.
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with an otherwise static subspace, or assuming a speci�c known dynamical model. A
much broader empirical literature for subspace tracking considers a wide range of algo-
rithms with di�erent strengths and weaknesses with regards to signal-to-noise ratios,
speed of dynamics, and computational complexity. For the vast majority of these algo-
rithms, accuracy guarantees in the presence of dynamics are still an open question.

The �rst contribution of this paper is to study a �exible and natural dynamic subspace
model: the piecewise geodesic model. A piecewise geodesic can approximate any curve
on the Grassmannian, i.e., any continuously varying subspace. This model generalizes
both the previously studied time-varying subspace models and piecewise linear approxi-
mations that are pervasive in the theory and practice of statistical signal processing. This
model has only been very brie�y discussed in existing literature, probably in part due to
the di�culty of parameter estimation and algorithmic guarantees in this setting. The cen-
tral contribution of this paper, therefore, is an algorithm for learning the parameters of this
model in a batch setting that is guaranteed to descend an appropriate cost function (cor-
responding to a log-likelihood for Gaussian noise) at every step. We also demonstrate the
performance of the proposed algorithm empirically on both synthetic and real datasets.

7.1.1 Problem Formulation and Geodesic Model

We start with the following broad generative model for data arising from a time-varying
subspace. At each time point i we observe ` vectors from a time-varying subspace. Let
Xi ∈ Rd×` for i = 1, 2, . . . , T be data generated from a low-rank model with noise:

Xi = UiGi +Ni (7.1)

where Ui ∈ Rd×k is a matrix with orthonormal columns representing a point on the
Grassmannian G(k, d), the space of all rank-k subspaces in Rd; Gi ∈ Rk×` holds weight
or loading vectors; andNi ∈ Rd×` is an independent additive noise matrix. We observeXi

and our objective is to estimateUi for i = 1, . . . , T . Note that while we use “time-varying”
to describe this generative model, in practice “i” could represent some dimension other
than time, and the algorithms we consider are batch in the sense that they use all the data
Xi, i = 1, . . . , T for estimating Ui, i = 1, . . . , T .

If Ui = Ū is static for all i = 1, 2, . . . , T , and if Gi has zero-mean columns, then we
could concatenate all Xi together and apply the svd, which is well-known to recover a
good approximation of Ū as long as the number of samples `T is large enough to over-
come the noise. However, ifUi is varying for every i, one can immediately see that if ` < k,
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estimating Ui is impossible without further assumptions. Even when ` ≥ k, in many ap-
plications it is natural to impose a relationship between the Ui subspace matrices over
time, to guarantee regularity properties or known application constraints. Various con-
straints have been studied in the literature, such as a slowly rotating subspace, a subspace
that is mostly static except for intermittent sudden changes, or a subspace that changes
one dimension at a time [57]. Those models are all subsumed by the piecewise geodesic

model for dynamic subspaces, illustrated in fig 7.1. In this work, we focus on e�ciently
learning a single geodesic.

Model for a Single Geodesic Let 2k ≤ d. We model each Ui as an orthonormal
basis whose span has been sampled from a single continuous Grassmannian geodesic
U(t) : [0, 1]→ Vd×k parameterized as follows:

Ui = U(ti) = H cos(Θti) +Y sin(Θti) (7.2)

where Vd×k is the set of d× k matrices with orthonormal columns (the Stiefel manifold),
H ∈ Vd×k is an orthonormal basis for a point on the Grassmannian, Y is a matrix with
orthonormal columns whose span is in the tangent space of the Grassmannian at span(H),
i.e., Y ∈

{
Y |H>Y = 0,Y ∈ Vd×k

}
, and Θ ∈ Rk×k is a diagonal matrix where θj is the

jth principal angle between the two endpoints of the geodesic, and sine/cosine are the
matrix versions. These constraints ensure eachUi has orthonormal columns. The scalars
ti ∈ [0, 1] represent the location of eachUi along the geodesic, i.e., time-points scaled (or
normalized) to the interval if the geodesic is sampled over time. For more information,
see [1, Section 3.8] and [24].

Because we are only interested in the span ofUi, this parameterization of a Grassman-
nian geodesic is not unique. Permuting the columns of H , Y and the diagonal elements
of Θ would result in a Ui with the same span. Additionally, there is a sign ambiguity be-
tween columns of Y and diagonal elements of Θ. In practice, our loss is invariant to these
ambiguities and so they are not a problem. Any speci�c parameterization can easily be
transformed into another.
H , Y and Θ are all learnable parameters describingU(t). Conceptually, we can think

of H as a starting point on the Grassmannian, Y as a normalized direction we want to
walk, and the products Θti as the distances in each dimension we should walk from H

on the surface of the manifold to get to Ui.
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fig 7.1 – Illustration of the piecewise geodesic model. H1, . . . ,H4 are points on the
Grassmannian. When estimating a single geodesic, e.g., the one from H2 to H3, thenH
is an orthonormal basis for H2 and Y is an orthonormal basis for (I −HH ′)H3.

Single Geodesic vs. Piecewise Geodesic In this work, we focus on learning a sin-
gle geodesic from data with given time points ti. This focus essentially makes two key
simplifying assumptions: (1) the locations of the knots, or change-points, in a piecewise
approximation are given, and (2) between two knots in the piecewise approximation, ei-
ther the time-points ti are given, or observed matricesXi are equidistant along a geodesic
curve. With these assumptions, our high-level approach is to take each set of data matri-
ces between change-points and learn a single geodesic. We plan to relax both of these
assumptions in future work, see Section 7.4.

7.1.2 Related work

Classical literature on subspace tracking uses online approaches to estimate the time-
varying subspaces [90, 16, 5, 7, 35, 57, 85, 19]. Early theoretical results were limited to
asymptotic convergence guarantees with static underlying subspaces. Among the more
recent works, the petrels algorithm [16] portrays a recursive least squares approach
and provides convergence theory that assumes that the subspace changes at a particu-
lar instant and then stays constant for su�cient time so that the change can be tracked
(also called the piecewise constant model). Narayanamurthy and Vaswani [57] relax the
assumption of constant subspace to a very slowly varying subspace between the change
points. For a review of these methods, see [85].

Dynamic subspace estimation has also been studied for the more general Grassman-
nian geodesic model [47, 28, 74, 39], also the focus of this paper. Unlike the subspace
tracking problem, these contributions focus more on batch data settings with access to
the whole dataset for estimation, which is the approach we take herein. For example,
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Lake and Keenan [47] formulate the subspace tracking for any given epoch in the gen-
erative geodesic model in the form of a likelihood function to maximize. The likelihood
is non-concave, but the authors provide an annealing approach to solve it, which will
have very high computational burden for many modern high-dimensional and large-data
applications. Fuhrmann [28] and Srivastava and Klassen [74] have also studied the gener-
ative geodesic model. The solution provided by Srivastava and Klassen [74] is not appli-
cable to large-scale settings since it relies on a sampling based strategy like Markov chain
Monte-Carlo (mcmc) and hence is computationally intensive. On the other hand, the so-
lution provided by Fuhrmann [28] is computationally inexpensive, but it only handles
one-dimensional subspaces (k = 1). In summary, major weaknesses of the state-of-the-
art methods include high computational costs, lack of theoretical guarantees, and/or need
to tune hyperparameters. This chapter approaches the problem using modern non-convex
optimization tools, alleviating these issues by devising an algorithm that is parameter free
other than the subspace dimension, descends the loss function monotonically, and uses
thin svds to solve the problem.

7.2 Method

Given data and associated time points {Xi, ti}Ti=1, we �t the proposed geodesic model for
U(t) by minimizing the following loss function

L(U) = L(H ,Y ,Θ) = min
{Gi}Ti=1

T∑
i=1

|||Xi −U(ti)Gi|||2F (7.3)

= −
T∑
i=1

|||X ′iU(ti)|||2F + c, (7.4)

where in the last equality we have substituted the optimalGi = (U (ti))
′Xi and simpli�ed

and c is a constant [31]. At a high level, we minimize our loss function with respect toH ,
Y and Θ via block coordinate descent. Our �rst block updates (H ,Y ) jointly via an svd
of a d×2k matrix. Next, we update Θ via a �rst-order iterative minimization. Speci�cally,
we design an e�cient majorize-minimize (mm) iteration for updating Θ.
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7.2.1 (H , Y ) Update

Let Q , [H Y ] and Zi , [cos(Θti); sin(Θti)]. Then we rewrite our model (7.2) as
Ui = QZi. By constraining Q ∈ Vd×2k, we also satisfy the constraints of H and Y
individually.

Following [14], we form a linear majorizer for our loss (7.4) atQ(n) and minimize it with
a Stiefel constraint simply by projecting its negative gradient onto the Stiefel manifold.
This projection is just the solution to the generalized Procrustes problem (c.f . Section 2.4).
The update is then given by

Q(n+1) = arg min
Q∈Vd×2k

∣∣∣∣∣∣∣∣∣(∑T

i=1
XiX

′
iQ

(n)ZiZ
′
i

)
−Q

∣∣∣∣∣∣∣∣∣2
F

(7.5)

= WV ′, where (7.6)

WΣV ′ is the svd of
T∑
i=1

XiX
′
iQ

(n)ZiZ
′
i (7.7)

=
T∑
i=1

[
XiĜi

′
cos(Θti) XiĜi

′
sin(Θti)

]
,

where in the last line we let Ĝ′i = X ′iU
(n)

i = X ′iQ
(n)Zi. Although here we eliminated

{Gi}Ti=1 from our loss (7.4), if we had not, this same update could be derived as a block
coordinate update onQ and {Gi}Ti=1, where, again, theQ update would be a generalized
Procrustes problem. See Appendix B.1.1 for more details.

7.2.2 Θ Update

The loss (7.4) for �xedH andY is a smooth function of Θ and can be e�ectively optimized
via an iterative quadratic majorize-minimize scheme. Here we provide an overview of the
method. Appendix B.1.2 provides a more complete derivation of the majorizer. First, we
simplify the loss (7.4)

Θ̂ = arg min
Θ

−
T∑
i=1

|||X ′iUi|||2F (7.8)

= arg min
Θ

−
T∑
i=1

|||X ′i (H cos(Θti) +Y sin(Θti))|||2F (7.9)

= arg min
Θ

−
T∑
i=1

k∑
j=1

ri,j cos(2θjti − φi,j) +bi,j, (7.10)
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where de�ning arctan2(y, x) as the angle of the point (x, y) in the 2d plane counter-
clockwise from the positive x-axis, the associated constants ri,j, φi,j, bi,j are de�ned as

φi,j = arctan2

(
βi,j,

αi,j − γi,j
2

)
ri,j =

√(
αi,j − γi,j

2

)2

+ β2
i,j

bi,j =
αi,j + γi,j

2

αi,j = [H ′XiX
′
iH ]j,j

βi,j = real
{

[Y ′XiX
′
iH ]j,j

}
γi,j = [Y ′XiX

′
iY ]j,j

. (7.11)

This loss is separable for each diagonal element of Θ, so we �nd each θ̂j via a (1d)
minimization. Let fi,j(θj) , −ri,j cos(2θjti − φi,j) +bi,j . Then (c.f . [29]) the following
qi,j de�nes a quadratic majorizer for fi,j at θj

qi,j
(
θj; θ̄j

)
= fi,j

(
θ̄j
)

+ ḟi,j
(
θ̄j
)
(θj − θ̄j) +

1

2
wfi,j

(
θ̄j
)

(θj − θ̄j)2 (7.12)

≥ fi,j(θj) (7.13)

where the derivative ḟi,j and curvature function wfi,j are given by

ḟi,j(θj) = 2ri,jti sin(2θjti − φi,j) and (7.14)

wfi,j(θj) =
ḟi,j(θj)

mod
(

(θj − φi,j
2ti

) + π
2ti
, 2π

2ti

)
− π

2ti

. (7.15)

Appendix B.1.2.2 gives a detailed construction of wfi,j .
Our majorize-minimize iterations for each diagonal element of Θ are then given by

θ(n+1)
j = arg min

θj

T∑
i=1

qi,j
(
θj; θ

(n)

j

)
(7.16)

= θ(n)

j −
∑T

i=1 ḟi,j
(
θ(n)

j

)∑T
i=1wfi,j

(
θ(n)

j

) . (7.17)

Conceptually, each mm update can be interpreted as a gradient descent step with a
variable step size s(n) = 1/(

∑T
i=1 wfi,j

(
θ(n)

j

)
) that is guaranteed to not increase the loss

even without any line search. Indeed, as both updates just outlined are known for their
monotonicity properties, we have the following monotonicity result for our overall algo-
rithm. In practice, we see global convergence in the vast majority of experiments, but not
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in all. A more thorough investigation of the loss landscape and algorithmic convergence
properties is of great interest for future work.

Theorem 1 Algorithm 2 produces iterates U (n)(t) = H (n) cos(Θ(n)t) + Y (n) sin(Θ(n)t)

that are monotonically non-increasing in loss (7.4), i.e., L(U (n+1)) ≤ L(U (n)).

Proof: It su�ces to show that each block coordinate update does not increase the loss.
Both the [H Y ] block and Θ block updates are instances of mm methods that guarantee
this property. See, for example, Sun et al. [76, Section II.C] for a general treatment and
Breloy et al. [14, Section III.B] for mm convergence with the non-convex Stiefel constraint.

7.3 Experiments

To show the e�ectiveness of the proposed method, we present results on both synthetic
and real data. On the synthetic data, we show the e�ect of the di�erent data parameters,
such as d, k, `, T and the additive noise standard deviation σ. With the intuition we build
on the synthetic data, we present results on real measured data and show how we deter-
mine the underlying rank. All experiments were performed on a 2021 Macbook Pro laptop
computer and implemented in Python.

7.3.1 Synthetic Data

In the case of synthetic data, we are able to compare our estimated geodesic Û(t) against
the true geodesic from which the data was generated. Our error metric is the square root
of the average squared subspace error between corresponding points along the geodesic

Subspace Error =
1√
2k
|||ÛÛ ′ −UU ′|||F (7.18)

Geodesic Error =

√∫ 1

0

1

2k
|||Û(t)Û(t)′ −U (t)U (t)′|||2F dt . (7.19)

In practice, we approximate the integral by sampling the geodesic at a large number of
time points. The subspace error (7.18) takes a minimum value of 0 when span(Û) =

span(U ) and a maximum value of 1 when span(Û) ⊥ span(U). As such, the geodesic
error (7.19) is similarly bounded. For all of our synthetic experiments, we generated data
from our planted model (7.1). Θ was constrained to generate distance-minimizing geodesics,
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Algorithm 2 Geodesic Subspace Estimation

Require: {Xi, ti}Ti=1, H (0),Y (0),Θ(0), N = # of outer iterations, M = # of inner mm
iterations
for n = 1, . . . , N do

#H ,Y update
U (n−1)
i = H (n−1) cos

(
Θ(n−1)ti

)
+Y (n−1) sin

(
Θ(n−1)ti

)
∀i

Gi = (U (n−1)
i )′Xi ∀i

M =
T∑
i=1

[
XiG

′
i cos

(
Θ(n−1)ti

)
XiG

′
i sin

(
Θ(n−1)ti

)]
W ,Σ,V ′ = svd(M )
[H (n) Y (n)] = WV ′

# Θ update
Θ(n,0) = Θ(n−1)

for j = 1, . . . , k do

αi,j = [H ′XiX
′
iH ]j,j ∀i

βi,j = real
{

[Y ′XiX
′
iH ]j,j

}
∀i

γi,j = [Y ′XiX
′
iY ]j,j ∀i

φi,j = arctan2

(
βi,j,

αi,j − γi,j
2

)
∀i

ri,j =

√(
αi,j − γi,j

2

)2

+ β2
i,j ∀i

form = 1, . . . ,M do

zj =
∑T

i=1
2ri,jti sin

(
2θ(n,m−1)

jti − φi,j
)

wj =
T∑
i=1

2ri,jti sin(2θ(n,m−1)
jti − φi,j)

mod
(

(θ(n,m−1)
j − φi,j

2ti
) + π

2ti
, 2π

2ti

)
− π

2ti

θ(n,m)
j = θ(n,m−1)

j −
zj
wj

end for

end for

Θ(n) = Θ(n,M)

end for
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fig 7.2 – The average geodesic error over 15 trials for varying rank k and number of
sample points T . One vector was sampled at each of T points (` = 1). The ambient dimen-
sion was d = 40, and we added zero-mean white Gaussian noise with standard deviation
σ = 10-5. We see a phase transition at T = 2k; with at least this many samples, we recover
the true subspace with low error.

i.e., |||Θ|||2 < π/2. We drew Gi from a standard normal distribution. The noise Ni is addi-
tive white Gaussian noise (awgn) with standard deviation σ. Unless otherwise noted, we
initialized the proposed method with a random geodesic for all experiments. For the ex-
periments in fig 7.2 and fig 7.3, we formed a course estimate of the starting and ending
rank-k subspaces, and computed a geodesic between these subspaces with [1, (19)] for
initialization.

fig 7.2 shows the average geodesic error when ` = 1, i.e., we receive one vector per k-
dimensional subspace, as a function of both the true underlying rank (k) and the number
of sample points (T ). This plot shows that a phase transition occurs at T = 2k, where if
we have at least this many samples, the proposed method can recover the true geodesic
with low error. Because computing the rank-2k svd requires 2k samples, this bound is
the best we could hope to do.

In fig 7.3(a), we further investigate the e�ect of the number of samples on the aver-
age geodesic error. Because a rank-k geodesic spans a space as large as 2k, we have also
shown for reference the subspace error of recovering a rank-2k subspace with an svd
under two di�erent distributions of loading vectors. The dashed lines show the subspace
recovery error for data generated isotropically in a rank-2k subspace with additive white
Gaussian noise. The dotted lines show the subspace recovery error for data distributed on
a geodesic in the rank-2k subspace. Both svd-based methods are only recovering a single
rank-2k subspace and not recovering a geodesic. Empirically, we can see that the sample
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fig 7.3 – (a) The recovered geodesic error (solid lines) as a function of sample size and
additive noise standard deviation, averaged over 10 problems.Xgeo represents the batched
geodesic data that has data distributed like a geodesic in a rank-2k subspace.X2k denotes
data that is distributed isotropically in a rank-2k subspace. For data generated from a
geodesic, the proposed method recovers the geodesic error with a lower error than an
svd can estimate its span. (b) Average geodesic error over 100 trials for varying number
of samples (`) collected at each time point for a �xed number of time points (T = 11) on a
planted rank-4 geodesic with awgn σ = 10-2. When ` ≥ k we can estimate the subspace
with the svd on just those ` samples. The geodesic model can estimate the subspaces even
when ` < k and leverages all of the data to produce lower error.

complexity of the proposed geodesic model and method tracks well with rank-2k svd and
outperforms svd on geodesic data.

When the number of samples per time point (`) is less than k the proposed method is
still able to recover the true geodesic given that T is large enough. When ` ≥ k, one could
estimate the subspace at each time point by applying a rank-k svd at each time point. But,
as shown in fig 7.3(b), even when ` ≥ k, the proposed method recovers the subspaces at
each time point with lower error for data generated from a geodesic.

Like a low-rank svd approximation, our method requires choosing the rank k before
�tting. fig 7.4 shows the loss as a function of assumed rank for data generated from a
rank-1 geodesic (left) and rank-2 geodesic (right). Because a rank-k geodesic spans a rank-
2k subspace, rank-k and rank-2k svd results are shown for comparison. Rank-2k svd
will always have a lower loss by de�nition. Similarly, the proposed model will always
have a lower loss than the rank-k svd, since a rank-k subspace is a special case of a
rank-k geodesic. Thus, we can lower-bound and upper-bound the loss of the proposed
model on any data by a rank-2k and rank-k svd respectively. Additionally, if the data
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fig 7.4 – Loss on synthetic data for a rank-1 geodesic (left) and a rank-2 geodesic (right).
The loss of the proposed method is lower-bounded and upper-bounded by rank-2k and
rank-k svd, respectively. When the assumed rank is equal to the true rank, than the loss
of the proposed method is much closer to that of rank-2k svd, while permuting the data
signi�cantly increases the loss. From this, it is easy to deduce the true rank. The second
row shows the “Data Error,” which is the norm of the residual between the projected noisy
data and the noiseless data. We can see that rank-2k svd was over�tting noise to obtain
a lower training loss, but this increases its error. The proposed method has a lower error
than rank-2k svd as long as the assumed rank is greater than or equal to the true rank on
geodesic data.
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fig 7.5 – Convergence of the proposed algorithm in geodesic error to the true geodesic for
a single run of nine planted geodesic models with varying ranks in R40. The planted mod-
els were used to generate 100 sample points (T = 100, ` = 1) and awgn with standard
deviation σ = 10−3 was added. The algorithm was initialized with a random geodesic.

has geodesic structure, then it is ordered. For comparison we also show the loss of the
proposed method on data that was generated from a geodesic and then permuted. We
see that when the assumed rank is equal to the true rank of the underlying geodesic, the
proposed method produces a loss much closer to that of a rank-2k svd while the proposed
method applied to permuted data produces a loss much closer to that of a rank-k svd. For
permuted unordered data, the proposed model learns a geodesic with small values of Θ,
approximating a static rank-k subspace similar to a rank-k svd. For comparison, fig 7.4
also shows the data error, which is the norm of the residual between the projected noisy
data and the noiseless data. These plots show that rank-2k svd over�ts the noise and has
a higher error. The proposed method has a lower error than rank-2k svd for any assumed
rank greater than or equal to the true rank on geodesic data.

fig 7.5 shows the geodesic error per iteration of the proposed algorithm applied to sev-
eral synthetically generated planted models. Generally, the proposed algorithm for rank-1
geodesics converges in only a few iterations, while larger k requires an increasing number
of iterations to converge. These experiments were initialized randomly, but were still able
to recover the true geodesic with error at the level of the additive noise. We occasionally
see the algorithm converge to poor local minima and fail to recover the true geodesic. We
leave it a future work to make the algorithm more robust to these instances and to provide
theoretical bounds on geodesic recovery.
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fig 7.6 – The loss function for learning a rank-1 geodesic in 2d, where we have made
the transformation H = [cos(ω); sin(ω)] and Y = [− sin(ω); cos(ω)]. Note that the y-
axes are π-periodic. (Left) The unaltered loss function and associated algorithm iterates
(red). The iterates approach the minimum slowly, as the structure of the loss is not well
aligned with the coordinate directions. (Right) The loss after making the transformation
t̃i = ti − tH for tH = 0.5. The iterates fully converge in only a few iterations. Both sets
of iterations are initialized at equivalent points.

Rank-1 subspace in R2 To provide some simple intuition for our problem, we present
the algorithm applied to learning a rank-1 subspace in two dimensions. In this special
case, Θ is a scalar θ, and H and Y can be parameterized by a single scalar rotation ω

(up to a sign �ip in Y , which we can absorb into θ). Then H = [cos(ω); sin(ω)] and
Y = [− sin(ω); cos(ω)]. Our loss (7.4) then simpli�es to a two-dimensional function of θ
and ω

L(U) = −
T∑
i=1

ri,1 cos(2θti − φi,1 + 2ω) +bi,1 + c, (7.20)

where ri,1, φi,1, bi,1 are de�ned as previously, but with [H Y ] = I and c is the same
constant from (7.4).

fig 7.6 (left) shows this loss function on some noisy synthetic data with iterates of
the proposed algorithm shown in red. Many iterations take small steps as the minimizers
of θ and ω are very interdependent.

Intuitively, this behavior may be because the optimal starting subspace H is very
dependent on the arc length θ of the geodesic, as the method will naturally want to center
the geodesic to minimize error. If we instead parameterized our geodesic by its center
subspace, the resultingH minimizer would hopefully be more independent of arc length.
This can be done by applying the proposed method after �rst transforming the time points
by letting t̃i = ti−tH , where tH ∈ [0, 1] is the point along the geodesic equal toH . fig 7.6
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fig 7.7 – Loss for ossi dynamic fmri data. 10 fast time points were collected in a vector
(d = 10) and modeled across slow time. We �t the various subspace models �rst inves-
tigated in fig 7.4 on just the even samples of slow time and then validated this loss on
odd samples of slow time. Note that the loss does not penalize models for over�tting, and
so it is expected that the rank-2k svd is lower even in validation (when k = 5 the rank
of the svd equals d and the loss is 0). In the k = 1 case, the proposed method has a loss
close to rank-2k svd and permuting the data produces a loss closer to rank-k svd, which
is similar to fig 7.4 (top, left). From this behavior, we infer that the data likely has rank-1
geodesic structure.

(right) shows the loss and associated iterates of setting tH = 1/2. The proposed algorithm
converges in only a few iterations.

7.3.2 fmri Data

We show the e�ectiveness of the proposed method by applying it to (fully anonymized)
dynamic functional mri data collected with irb approval. An e�ective data model for
fMRI could be applied as part of an advanced image reconstruction algorithm, allowing
for reduced scan times and higher temporal resolution without sacri�cing image quality.
We leave a full investigation of joint reconstruction and modeling as future work and, here,
show only the viability of this model on fMRI data. In particular, we apply the proposed
method on data collected with an oscillating steady state imaging (ossi) [34] acquisition
on a 3t ge mr750 scanner. Appendix B.2.1 and [34] provide more details on acquisition and
reconstruction parameters and example data. The ossi acquisition rapidly cycles through
10 (tfast) di�erent acquisition settings and then repeats this (tslow) for the duration of the
scan. During the scan, subject breathing and scanner drift lead to slowly varying sub-
space changes that we hypothesized are suitable for a geodesic model. The scanner drift
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fig 7.8 – Comparison of ossi magnitude images reconstructed with a static 2k subspace
vs. the geodesic model for a particular slow and fast time point. For each pixel, fast time
points were collected in a vector and a rank-1 geodesic was �t across even slow time
points for training. Odd slow time points were then projected onto the geodesic for test.
The bottom row shows the magnitude di�erence maps of the reconstructions against the
true test point. The geodesic model appears to have smoothed the image, possibly remov-
ing more noise than the svd. Despite being more temporally constrained, the proposed
method has a similar test loss.
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fig 7.9 – Quantitative evaluation of geodesic subspace model for video data. In (a) loss
from (7.4) is plotted for a video sequence containing 260 frames/images. Loss is plotted
against di�erent values of assumed rank of data k. In (b) we added awgn to the video
data and then apply rank-k svd, rank-2k svd, and the geodesic model to denoise the
noisy version of video with k = 10 and ` = 4. (c) Visual example of denoising frame 125
in the Curtain video sequence with awgn of σ = 110. The geodesic model was able to
denoise the noisy image more e�ectively than svd.

is approximately linear in time, so equally spaced ti values seems reasonable. The mea-
surements are dynamic, high dimensional, and show redundant anatomical structure. As
is common for image subspace models, we model a spatial patch of data.

fig 7.7 shows the loss of applying the proposed method for a variety of ranks. Similar
to fig 7.4, we show a comparison to rank-k and rank-2k svd and the proposed method
on the data permuted. From this �gure, we can see that the ossi data appears to be well
modeled by a rank 1 geodesic; the proposed method with rank 1 performs similarly to
rank-k svd and permuting the data signi�cantly increases the loss to that of rank-k svd.

fig 7.8 provides comparison to ground truth and rank-2k svd for the geodesic ossi
reconstruction presented in fig 7.7 on a single slow and fast time point. The proposed
geodesic model �ts nearly as well despite being a more constrained model.

7.3.3 Video denoising

In this section we apply the geodesic data model for a video denoising application. The
video sequence used in this experiment is the �rst 260 frames of the Curtain video dataset [52,
Section V-A]. The video sequence has variations due to a moving curtain and a person en-
tering the scene at the end of the video. See more details and results for other videos in
Appendix B.2.2.
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We start by showing that the geodesic model is a good choice for this video data. Along
similar lines as the fmri data, we achieve this goal by computing loss (representation
error) for approximating the video using rank-k svd, rank-2k svd, the proposed geodesic
method, and applying the geodesic method after reordering/permuting the frames in video
sequence. Again, the rationale behind permuting the frames is that if there is no temporal
correlation in the frames then permuting the data would not have any negative impact
on the loss. fig 7.9 shows the training loss as a function of the rank k and the psnr of
the denoised video as a function of added noise level. The training loss for the geodesic
model lies in between k and 2k cases, similar to the simulated data. More importantly,
applying the geodesic model to permuted data degrades the loss, con�rming that there is
temporal correlation for the geodesic model to exploit. We add additive white Gaussian
noise (awgn) with di�erent values of standard deviation σ to the video sequence and
applied rank-k svd, rank-2k svd, and the proposed geodesic subspace model to denoise
the video sequence. The quality of the denoised image is measured using the peak signal
to noise ratio (psnr), de�ned as:

PSNR = 20 log10

(
255

1√
d`
|||Xi − X̂i|||F

)
.

fig 7.9 shows that rank-2k svd has the worst denoising performance (due to over-
�tting the very large amount of noise) while the proposed geodesic method has the best
performance in the noisiest regime. For visual evidence, fig 7.9c illustrates the denois-
ing performance of rank-k svd and geodesic model for frame 125 in the sequence when
noise of σ = 110 is added. Again, similar to the simulated data, the superior denoising
performance of geodesic model is quite evident.

7.4 Algorithm Extensions and Future Work

7.4.1 Piecewise Geodesics

While the ossi data can be modeled well by a rank-1 geodesic, fig 7.10 provides some
initial evidence that a piecewise rank-1 geodesic may be a better model. In this �gure, we
�rst modeled it with a single rank-1 geodesic (as described in this chapter), and plotted
value of the loss function at each data point Xi (on the left). From this we can see that
the loss varies in a W shape across the data points, which may indicate that a piecewise
geodesic is more appropriate. Then we tried two rank-1 geodesics, �tting the �rst half
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fig 7.10 – (Left) The loss broken down for each time point t for �tting a rank-1 geodesic
on ossi fmri data. In addition to a seemingly noisy component, the loss also exhibits
systematic variations. We hypothesize that these systematic variations result from the
limitations of a single geodesic to �t a curve. (Right) Instead of �tting a single rank-1
geodesic, we model the data as a piecewise geodesic by �tting a rank-1 geodesic on each
half of the data. The resulting loss retains the noisy variations from the single geodesic
model, but removes most of the systematic variation.

and second half of the data to separate rank-1 geodesics. When we plot the loss for this
model, the shape of the loss is somewhat �atter. A more detailed investigation of methods
for identifying knots in a piecewise geodesic model is of great interest for future work.

Even when we know the knots of a piecewise geodesic model, applying the described
geodesic estimation algorithm on each segment individually is not guaranteed to pro-
duce a continuous piecewise geodesic. If we let Uj(t) represent the jth geodesic seg-
ment, then we would like span(Uj(1)) = span(Uj+1(0)), or equivalently Uj(1)Uj(1)′ =

Uj+1(0)Uj+1(0)′, ∀j = 1 . . . J − 1. Combining this constraint with our loss yields the
following optimization problem for piecewise geodesics

min
Uj
−

J∑
j=1

T∑
i=1

∣∣∣∣∣∣X ′j,iUj(ti)
∣∣∣∣∣∣2

F
(7.21)

s.t. Uj(1)Uj(1)′ = Uj+1(0)Uj+1(0)′ ∀j = 1 . . . J − 1.

We can simplify this problem by relaxing the constraint to a penalty. If we optimize the
loss using a bcd approach on each segment, then the penalized loss for the jth segment
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is

min
Uj
−

T∑
i=1

|||X ′iUj(ti)|||2F + λ|||Uj(0)Uj(0)′ −Uj−1(1)Uj−1(1)′|||2F

+ λ|||Uj(1)Uj(1)′ −Uj+1(0)Uj+1(0)′|||2F (7.22)

min
Uj
−

T∑
i=1

|||X ′iUj(ti)|||2F − λ|||Uj−1(1)′Uj(0)|||2F − λ|||Uj+1(0)′Uj(1)|||2F, (7.23)

whereXi is the data on just the jth segment. Intuitively, this loss can be minimized using
the same updates described previously, but with extra data X̃1 ,

√
λUj−1(1) and X̃T ,√

λUj+1(0) at each end of the geodesic, t1 = 0 and tT = 1 respectively.
This formulation will perform better on a continuous piecewise geodesic than just

applying the proposed method to each geodesic individually, but this approach will only
approximate a continuous piecewise geodesic when λ is su�ciently large (though too
large of λ will cause the bcd algorithm to disregard the data and stall suboptimally). An
e�ective approach may be to start with λ = 0 and slowly increase it as the algorithm
converges. This may be su�cient since we are only approximating real data as being de-
rived from a piecewise geodesic and still are able to leverage the extra data. In a large data
regime, enforcing the constraint too strictly may only lead to larger modeling error. Thus,
a penalized formulation allows us to balance the �t to the model and the data. Alterna-
tively, an admm [13] approach could be developed to satisfy the constraint strictly in a
similar manner.

7.4.2 Inverse Problems

We can apply the geodesic model to solving inverse problems by including the geodesic
loss1 (7.3) as a regularization term

x̂ = arg min
x

min
H,Y ∈V,Θ

min
{gi,1...gi,`}T

i=1

1

2
‖Ax− y‖2

2 +
β

2

T∑
i=1

∑̀
j=1

‖Pi,jx−U (ti)gi,j‖2
2,

(7.24)
wherePi,j extracts the jth patch of the ith time point. Note that letting [Pi,1x . . .Pi,`x] =

Xi (and similarly for gi,j , Gi) would allow us to rewrite this regularization term as we
have before. As such, a bcd approach yields the same updates forH , Y , and Θ described
previously.

1We note that the constant in geodesic loss (7.4) depends on the dataX and so is not equivalent to (7.3)
in this case.
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This minimization problem is similar to the utl cost (2.21) with the non-smooth zi
minimization replaced by a simple quadratic minimization of gi and U(ti) = T ′. We
could, thus, apply analogous methods for updating x as given by this closed form solu-
tion (c.f . (2.26))

x(n+1) =

(
A′A+ β

T∑
i=1

∑̀
j=1

P ′i,jPi,j

)-1(
A′y + β

T∑
i=1

∑̀
j=1

P ′i,jU(ti)U(ti)
′Pi,jx

(n)

)
.

(7.25)
P ′i,jPi,j is a diagonal matrix which enables e�cient updates, particularly when A′A is
easily diagonalizable (e.g., single-coil mri). Here, we have substituted the optimal g(n)

i,j =

U(ti)
′Pi,jx(n) after deriving the solution.

Another method for updating x would be to �rst project out the dependence on gi,j
before deriving the solution

x̂ = arg min
x

min
H,Y ∈V,Θ

1

2
‖Ax− y‖2

2 +
β

2

T∑
i=1

∑̀
j=1

‖(I −U (ti)U(ti)
′)Pi,jx‖2

2. (7.26)

This is a Tikhonov regularization problem which penalizes signal energy outside the cur-
rent geodesic estimate. The solution to the x update can then be given in closed form
as

x̂ =

(
A′A+ β

T∑
i=1

∑̀
j=1

P ′i,j (I −U(ti)U(ti)
′)Pi,j

)-1

A′y. (7.27)

It is unclear if there is an e�cient method for computing this update on large-scale prob-
lems with e�ciently diagonalizable A′A akin to (7.25). We could apply an e�cient iter-
ative minimization algorithm for quadratics, such as nonlinear conjugate gradient, using
the following gradient

A′ (Ax− y) + β

T∑
i=1

∑̀
j=1

P ′i,j (I −U (ti)U(ti)
′)Pi,jx. (7.28)

Computing the gradient before substituting the optimal gi,j yields the same expression.
For problems with e�ciently diagonalizable A′A, it is unclear how iterating (7.25)

(corresponding to a two block coordinate quadratic minimization) would compare to non-
linear conjugate gradient on a single quadratic minimization problem with gradient (7.28).
We leave it as future work to compare these data updates and to apply this regularizer on
inverse problems such as ossi reconstruction.
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7.4.3 Estimating sample times

The proposed method requires knowledge of the sample time points ti. This is reasonable
for temporal data with actual sample times, but there may be problems where we do not
know the sample times or we want to model an unknown varying velocity across the
geodesic. In these cases, we would need a method to estimate suitable ti.

We can minimize the loss (7.10) with respect ti

t̂i = arg min
ti:ti−1<ti<ti+1

−
k∑
j=1

ri,j cos(2θjti − φi,j) +bi,j, (7.29)

where we have assumed we at least know the order of the samples. This ordering and the
associated bounds constraint makes the problem not fully separable across sample index
i. Because this dependence is only with neighboring sample times, we can minimize the
sample times with a two-block descent on the even and odd sample time indices. We can
also �x, without loss of generality, the �rst and last sample time to be 0 and 1, respectively.
Alternatively, normalization can be done after by appropriately adjustingH , Y and Θ.

The minimization can be done by following the same derivation carried out for the
Θ update in Section 7.2.2 by replacing θj with ti, ti with θj , and

∑T
i=1 with

∑k
j=1, and

projecting each majorize-minimize iteration into bounds

t(n+1)
i = P[ti−1,ti+1]

t(n)

i −
∑k

j=1
˙̃fi,j
(
t(n)

i

)∑k
j=1 w̃f̃i,j

(
t(n)

i

)
 . (7.30)

7.4.4 Accelerating (H , Y ) Estimation

Estimating (H ,Y ) each iteration requires computing an svd which is relatively expen-
sive compared to other update steps. The proposed (H ,Y ) update constructs a linear
majorizer on Rd×2k even though Vd×2k would be su�cient. Thus, there may be room for a
tighter majorizer and more e�cient update. We leave deriving such a majorizer to future
work. Because our current majorizer is valid over a larger set, it may be possible to relax
the non-convex Stiefel constraint to |||[H Y ]|||22 ≤ 1 and produce the same iterates. Such
a convex relaxation seems to hold for the static pca loss and might similarly hold here to
ease analysis.

Another option to speed up the algorithm is to update H and Y under a stricter
constraint that supersedes the Stiefel constraint. For example, we could updateH and Y
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by rotating their corresponding columns within their span

H (n+1)(Ω) = H (n) cos(Ω) +Y (n) sin(Ω) (7.31)

Y (n+1)(Ω) = −H (n) sin(Ω) +Y (n) cos(Ω) . (7.32)

Here, Ω is a diagonal matrix with diagonal elements ωj representing rotations for each
H ,Y column pair. Under this parameterization, we can update our loss by minimizing Ω

and Θ. We note that such a update is not su�cient on its own for updatingH and Y , but
can augment the svd-based update. For this parameterization, the resulting minimization
problem and loss function for �xedH (n) and Y (n) is then separable for each jth diagonal
element of Θ and Ω

θ̂j, ω̂j = arg min
θj ,ωj

−
T∑
i=1

ri,j cos(2θjti − φi,j + 2ωj) +bi,j. (7.33)

As one might expect, letting ωj = 0 yields the same loss (7.10). Associated parameters
ri,j, φi,j and bi,j are computed with respect toH (n) and Y (n).

This 2d loss function can be minimized simply with a bcd approach. The θ update is
the same as described previously (just with an additional 2ωj added to each φi,j). The ωj
update can be given in closed-form as

ω̂j =
1

2
arctan2

(
−

T∑
i=1

ri,j sin(2θjti − φi,j),
T∑
i=1

ri,j cos(2θjti − φi,j)
)
. (7.34)

Conveniently, alternating between these two updates does not require updating the more
expensive parameters to compute ri,j, φi,j .

By augmenting the H , Y update with an interleaved Ω, Θ update, we were able to
minimize rank-1 geodesics in a single iteration when tested on synthetic data. Improve-
ments on synthetic problems with k > 1 were generally more marginal. How this update
a�ects the radius of initialization under which the algorithm will converge to the global
minimizer is left to future work.

Another interesting insight from reparameterizing the loss in 2d this way is that it
can help us understand why having tH = 1/2 seems to lead to faster convergence than
tH = 0 (see fig 7.6). We need fewer updates when ω̂j is less dependent on θj , i.e., when
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dω̂j
dθj
≈ 0. Using some small angle approximations

dω̂j
dθj
≈ −

∑T
i=1 2ri,j(ti − t̂H)∑T

i=1 2ri,j
= 0 (7.35)

t̂H =

∑T
i=1 ri,jti∑T
i=1 ri,j

. (7.36)

So by choosing a tH close to this weighted average, we need fewer alternations between Ω

(or fullH ,Y if we do not include Ω) and Θ. We could update tH every iteration with the
current ri,j to minimize the number of inner iterations, but tH = 1/2 tends to be very close
to optimal when the data is generated symmetrically and only 3 or so inner iterations are
required. It is unclear if it would be worth the extra computation since it would require
recomputingH and Y .

7.5 Conclusion, Discussion, and Future Work

This work proposed a model and algorithm for dynamic subspace estimation, or batch-
computed subspace tracking. The proposed method is sample e�cient and the optimiza-
tion requires no hyperparameters beyond the assumed rank of the data. The model and
method are applicable to real data, as shown on dynamic fmri data and video data, and
the single geodesic we studied here represents a major building block for a very general
piecewise geodesic model.

The model and loss proposed here are non-convex and, thus, the algorithmic results
can be sensitive to initialization. In our experiments, we used an svd for initialization,
and this was generally su�cient to recover the true geodesic in our synthetic experiments.
fig 7.2 exhibits some brighter patches in the T > 2k regime where a few instances appear
to have converged to poor local minima. These instances seem relatively uncommon for
the geodesics considered here. We leave it as future work to develop even better initializa-
tion and theoretical bounds on geodesic recovery.

In this chapter we were able to show the monotonicity of the updates. Empirically, we
also see this algorithms iterates converge to local minimizers. We leave it as future work to
prove this convergence to a stationary point. Ravishankar and Bresler [67, Section 4] prove
convergence of an bcd algorithm with a Stiefel constraint and may be a good starting
point.

While we did not make explicit assumptions on the additive noise, minimizing our
loss will yield the maximum likelihood estimate for white Gaussian noise. If the true noise
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distribution has heavy tails or if the data has many outliers, a more robust loss will likely
perform better. We leave it as future work to investigate �tting the geodesic model with
a robust loss, such as a Huber function.

Finally, subspace tracking is often applied to problems where data is modeled as it
arrives, e.g., in array processing and communications. It would therefore also be of great
interest to develop a streaming algorithm for the piecewise geodesic model.
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CHAPTER 8

Conclusion

This thesis has investigated the application of adaptive regularizers to inverse problems
in imaging. Chapters 3 and 4 investigated and extended blind utl for application to light-
�eld imaging and it was shown that this regularizer could outperform a data-less regular-
izer on these light-�eld reconstructions. We attempted to further improve the strength of
blind utl with several blind sparsity threshold heuristics, but the results were inconsis-
tent across the dataset. Chapter 5 than compared blind utl to its own data-driven coun-
terpart, and we showed that the adaptive regularizer was able to perform better on the
mixed dataset of brain and knee mri scans.

In Chapter 6, we considered larger adaptive image models. Namely, we applied neural
networks to model patches of an image, similar to utl. Optimizing these networks on the
patches of a single image proved di�cult and settling in poor local minima was common.

In Chapter 7, we considered the dynamic subspace estimation problem. We proposed a
novel model for dynamic subspaces, namely the piecewise geodesic model, and developed
e�cient majorize-minimize updates for estimating the geodesic. The proposed model �t
well on dynamic fmri data and video data. This work presented an initial investigation
into the viability of this model. Having shown its viability on real data, many exciting
avenues for future work include extending the model further, such as with change-point
estimation or by applying it to real-world applications. The model can be applied as an
reconstruction-time adaptive regularizer, jointly learning a piecewise geodesic while re-
constructing a dynamic image. Investigating the e�ectiveness of this model as an adaptive
regularizer is an exciting next step for this work in particular.

This thesis has motivated the use of adaptive regularization when a high-quality and
representative training dataset is not available. In practice, drawing this line can be am-
biguous. When is my dataset representative enough? When should I reach for an adaptive
regularizer over a trained model in practice? Chapter 5 made an initial empirical investi-
gation of this question for unitary transform learning models and found that for such a
limited model, blind learning is almost always as good or better at image recovery. At the
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time of this work, we had limited access to a brain image dataset (the brain dataset of this
chapter was collected by the author). This small dataset necessitated working with less
data-intensive models such as the unitary transform model.

Since then, fastMRI [92] has released a brain dataset comparable in size to their knee
dataset. With such a large dataset, an interesting avenue of future work would be repeat
the experiments of Chapter 5 using larger models such as deep neural networks. While
it is very likely that a U-Net trained exclusively on knee images could out perform an
adaptive regularizer like utl or deep image prior at reconstructing knee images, how
would it compare if reconstructing an image it was not trained on, such as a brain image?
How many brain images does it need to have seen in training to outperform an adaptive
approach, and does this di�er for deep networks that incorporate the forward model, such
as modl [2]? And what about other forms of heterogeneity? Are T1-weighted images
su�cient for training a network used for reconstructing T2-weighted images of the same
anatomy? In many ways, mri seems like the ideal modality to empirically investigate
heterogeneous datasets as the di�erent kinds of heterogeneity are often well labeled (e.g.,
T1, brain, 3t ge scanner) and images within a certain class are relatively homogeneous.
A better understanding of how robust data-driven models are to these di�erences would
help better inform the choice of when an adaptive regularizer should be used in practice.

In addition to these questions, much more work can be done to improve each of these
individual regularizers. For transform learning, it would be interesting to further investi-
gate other transform constraints outside of unitary matrices. Chapter 5 presented some
initial results that even an unconstrained transform will not learn a zero matrix when op-
timized using bcd. While we may still want some constraint, this results indicates we may
have more �exibility in its choice. The other question this result naturally rises is whether
bcd is the best approach for minimizing a transform learning problem. The non-convexity
of these problems means that our choice of optimization scheme can signi�cantly in�u-
ence the limit points of the sequence generated by the algorithm. This source of implicit
bias was not investigated in this thesis and, as such, it would be interesting to both (1)
compare di�erent optimization strategies and (2) better quantify the performance of bcd
on utl using a planted model.

For the geodesic subspace model of Chapter 7, there are many ways the model could
be improved. For geodesics with rank greater than 1, the algorithm is slow and a further
investigation of ways to accelerate the H , Y update, in particular, is needed. Another
important next step with regards to the optimization strategy is proving its convergence
to a stationary point. Beyond this, it would also be interesting to develop a theory of global
recovery under some set of nontrivial conditions. Finally, Chapter 7 focused on learning a
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single geodesic. Expanding this model to true connected piecewise geodesics and applying
it to real data is of great interest. Section 7.4 presents an initial investigation of both this
and other improvements.

Adaptive image models and regularization methods are valuable tools for reconstruct-
ing images from corrupted undersampled measurements. The methods investigated in
this thesis require no training dataset and are designed to be computationally tractable
for use at the time of reconstruction. As this thesis has shown, designing such methods
can be challenging, but they o�er a distinct advantages over classical models when a high-
quality and representative dataset is not available. For these reasons, there are still many
exciting opportunities to improve these models going forward.
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APPENDIX A

Derivation of Discrete Focal Stack System

Model

In this appendix, we expound on the discretization of the focal stack system model �rst
presented by Nien [60]. To describe a continuous-space light �eld discretely, we must �rst
decide on a discrete basis for the light �eld. For brevity, we let x = (x, y) and u = (u, v).
A simple choice is to model continuous-space light �elds as piece-wise constant with rect

basis functions

LF (x,u) ≈
∑
p

∑
k

LF [p,k] rect∆x(x− p∆x) rect∆u(u− k∆u) . (A.1)

We denote the distance between the aperture plane and image plane of the light �eld as
F . Given a continuous-space light �eld with plane separation F , we can compute the
continuous-space photograph taken with back focal distance F by integrating out the
angular dimension, i.e., each point in the photograph is the summation of rays from all
angles hitting that point.

IF (x) =

∫
u∈A

LF (x,u) du . (A.2)

A digital discrete-space photograph is then captured by integrating the photograph against
each (square) pixel

IF [m] =

∫
IF (x) rect∆x(x−m∆x) dx . (A.3)

To compute a digital photograph with arbitrary back focal distance κF we must repa-
rameterize a light �eld LF as LκF . This can be done using geometric optics, and the as-
sumption that there are no occluders or emitters between the two planes (see fig A.1)

LκF (x,u) = LF (x/κ+ u(1− 1/κ),u). (A.4)
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fig A.1 – A diagram of light transport inside a camera from a geometric optics perspective

We can now relate a captured digital photograph IκF to a latent discrete-space light
�eld LF . We let a = 1/κ, b = (1 − 1/κ), combine the previous four equations (letting
F = κF in equations (A.2),(A.3)), and simplify.

IκF [m] =

∫ (∫ ∑
p

∑
k

LF [p,k] rect∆x(ax+ bu− p∆x) rect∆u(u− k∆u) du

)
rect∆x(x−m∆x) dx

=
∑
p

∑
k

LF [p,k]

∫∫
rect∆x(ax+ bu− p∆x) rect∆u(u− k∆u) rect∆x(x−m∆x) dx du

=
∑
p

∑
k

LF [p,k]

∫∫
rect∆x(ax+ bu− p∆x) rect∆u(u− k∆u) rect∆x(m∆x − x) dx du

=
∑
p

∑
k

LF [p,k]

∫∫
rect∆x((ax− p∆x) +bu) rect∆u(u− k∆u) rect∆x(m∆x − x) dxdu

(A.5)
Perform a change of variables:

x′ = ax− p∆x dx′ = adx u′ = −u du′ = −du (A.6)
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=
∑
p

∑
k

LF [p,k]

∫∫
1

a
rect∆x

(
x′ − bu′

)
rect∆u

(
−k∆u − u′

)
rect∆x

(
m∆x −

1

a
(p∆x + x′)

)
dx′ du′

=
∑
p

∑
k

LF [p,k]

∫∫
1

a
rect∆x

(
x′ − bu′

)
rect∆u

(
−k∆u − u′

)
recta∆x

(
am∆x − p∆x − x′

)
dx′ du

=
∑
p

∑
k

LF [p,k]

{
1

a
rect∆x(x− bu) ∗ rect∆u(u) recta∆x(x)

} ∣∣∣∣
x=(am−p)∆x,u=−k∆u

=
∑
p

∑
k

LF [p,k] g[am− p, 0− k]

= {LF ∗g}[m′,k′]
∣∣∣∣
m′=am,k′=0

(A.7)
Thus, a 2d captured photograph can be computed from a 4d discrete-space light �eld

by discretely convolving with kernel

g[p,k] =

{
1

a
rect∆x(x− bu) ∗ rect∆u(u) recta∆x(x)

} ∣∣∣∣
x=p∆x,u=k∆u

(A.8)

and slicing. In practice, The 4d convolution can be performed as a set of 2d convolutions
along the slice [60]. The constant a conveys the magni�cation that occurs at di�erent
sensor positions. This is occasionally disregarded (a ≈ 1) when magni�cation is minimal
(or, equivalently, when a focal stack is collected by changing the focal length of the lens
instead of moving the sensor).

I leave it as future work to expound on other system models as necessary. Currently,
di�raction is not considered as we have derived the system model from a purely geometric
optics perspective. Color is also not directly considered, but can be modeled easily enough
by modeling a separate light �eld for each channel and masking each pixel value in I by
its corresponding color.
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APPENDIX B

Supplementary Material for “Dynamic

Subspace Estimation with Piecewise

Geodesics”

B.1 Additional Algorithmic Derivations and Details

B.1.1 Derivation of (H , Y ) Update as Linear Majorize Minimize

Step

LetQ , [H Y ] and Zi , [cos(Θti); sin(Θti)]. Then our model can be written as

Ui = H cos(Θti) +Y sin(Θti) = QZi. (B.1)

To form a linear majorizer for loss with respect to Q, we �rst derive its unconstrained
gradient

L(Q) = −
T∑
i=1

|||X ′iQZi|||2F + c = −
T∑
i=1

trace{Q′XiX
′
iQZiZ

′
i}+ c (B.2)

∇Q L
(
Q̄
)

= −
T∑
i=1

2XiX
′
iQ̄ZiZ

′
i. (B.3)

We can form a linear majorizer for the loss

g(Q; Q̄) , trace
{
Q′∇Q L

(
Q̄
)}

+ c (B.4)

≥ L
(
Q̄
)
. (B.5)
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Note that g(Q̄; Q̄) = L
(
Q̄
)
, and it is linear and continuous. The above inequality only

needs to hold for Q ∈ Vd×2k. It currently holds for Rd×2k so there is room for a tighter
majorizer.

Following the work of Breloy et al. [14], we can write g(Q; Q̄) = −2trace
{
Q′R(Q̄)

}
+

c for matrix function R(Q̄) =
∑T

i=1XiX
′
iQ̄ZiZ

′
i. We can then minimize the linear ma-

jorizer gwith a Stiefel manifold constraint simply by projecting its negative gradientR(Q̄)

onto the Stiefel manifold. The update is then given by

Q̂ = arg min
Q∈Vd×2k

∣∣∣∣∣∣R(Q̄)−Q
∣∣∣∣∣∣2

F
(B.6)

= arg min
Q∈Vd×2k

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

T∑
i=1

XiX
′
iQ̄ZiZ

′
i

)
−Q

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

F

(B.7)

= WV ′, (B.8)

whereWΣV ′ =
T∑
i=1

XiX
′
iQ̄ZiZ

′
i

=
T∑
i=1

[
XiĜi

′
cos(Θti) XiĜi

′
sin(Θti)

]
,

where in the last line we have let Ĝi

′
= X ′iU

(n)

i = X ′iQ̄Zi.
We can derive this same update as a block coordinate update on Q and {Gi}Ti=1. We

start with our loss (7.4) without projecting out {Gi}Ti=1 and substitute our geodesic model
(7.2). The (H ,Y ) update with �xed Θ and {Gi}Ti=1 can be minimized by recognizing it
as a generalized Procrustes problem

Ĥ , Ŷ = arg min
H,Y ∈Vd×k,H′Y =0

T∑
i=1

|||Xi − (H cos(Θti) +Y sin(Θti))Gi|||2F (B.9)

[Ĥ Ŷ ] = arg min
[H Y ]∈Vd×2k

T∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣Xi − [H Y ]

cos(Θti)

sin(Θti)

Gi

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(B.10)

= WV ′, (B.11)

whereWΣV ′ =
T∑
i=1

Xi

cos(Θti)

sin(Θti)

Gi

′

=
T∑
i=1

[XiG
′
i cos(Θti) XiG

′
i sin(Θti)] .
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This Procrustes step involves a single svd of the d×2kmatrix shown in the last line. While
derived on di�erent losses, Updates (B.8) and (B.11) yield the same update for (H ,Y ).

B.1.2 Derivation of Θ Update

We derive a majorize minimize iteration for Θ. First we simplify the loss and highlight
the separability of the loss with respect to the diagonal elements of Θ. We then construct
majorizers for each term in the simpli�ed loss using a translated Huber majorizer. The
update is then given by minimizing the sum of these majorizers.

We note that while we may refer to Θ as arc distances, we do not constrain the ele-
ments of Θ to be non-negative. Conceptually, the negative values of Θ represent walking
in the opposite direction on the surface of the Grassmannian, i.e., they are signed arc dis-
tances.

B.1.2.1 Simplifying the Loss

We start by simplifying the loss

Θ̂ = arg min
Θ

min
{Gi}

T∑
i=1

|||Xi − (H cos(Θti) +Y sin(Θti))Gi|||2F (B.12)

= arg min
Θ

−
T∑
i=1

|||X ′i (H cos(Θti) +Y sin(Θti)) |||2F (B.13)

= arg min
Θ

−
T∑
i=1

trace
{
X ′i
(
H cos2(Θti)H

′

+2 real{H cos(Θti) sin(Θti)Y
′}

+Y sin2(Θti)Y
′)Xi

} (B.14)

= arg min
Θ

−
T∑
i=1

trace
{

cos2(Θti)H
′XiX

′
iH

+2 cos(Θti) sin(Θti) real{Y ′XiXiH}
+ sin2(Θti)Y

′XiX
′
iY
} (B.15)

= arg min
Θ

−
T∑
i=1

k∑
j=1

cos2(θjti) [H ′XiX
′
iH ]j,j

+2 cos(θjti) sin(θjti) [real{Y ′XiXiH}]j,j
+ sin2(θjti) [Y ′XiX

′
iY ]j,j.

(B.16)

92



We solve the problem of optimizing Θ by updating each of its diagonal elements θj sepa-
rately. We de�ne the following constants

αi,j = [H ′XiX
′
iH ]j,j (B.17)

βi,j = real
{

[Y ′XiX
′
iH ]j,j

}
(B.18)

γi,j = [Y ′XiX
′
iY ]j,j. (B.19)

Our optimization problem for each j = 1, . . . , k is now

θ̂j = arg min
θj

−
T∑
i=1

αi,j cos2(θjti) +2βi,j cos(θjti) sin(θjti) +γi,j sin2(θjti) . (B.20)

Using the following trigonometric identities

2 cos(x) sin(x) = sin(2x) (B.21)

cos2(x) + sin2(x) = 1 (B.22)

cos2(x) =
1

2
(cos(2x) +1) (B.23)

a cos(x) +b sin(x) =
√
a2 + b2 cos(x− arctan2(b, a)), (B.24)

we further simplify the loss:

θ̂j = arg min
θj

−
T∑
i=1

αi,j cos2(θjti) +βi,j sin(2θjti) +γi,j sin2(θjti) (B.25)

= arg min
θj

−
T∑
i=1

(αi,j − γi,j) cos2(θjti) +βi,j sin(2θjti) +γi,j
(
cos2(θjti) + sin2(θjti)

)
(B.26)

= arg min
θj

−
T∑
i=1

(αi,j − γi,j)
1

2
(cos(2θjti) +1) + βi,j sin(2θjti) +γi,j (B.27)

= arg min
θj

−
T∑
i=1

ri,j cos(2θjti − φi,j) +bi,j, (B.28)
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where

ri,j =

√(
αi,j − γi,j

2

)2

+ β2
i,j (B.29)

φi,j = arctan2

(
βi,j,

αi,j − γi,j
2

)
(B.30)

bi,j =
αi,j + γi,j

2
. (B.31)

B.1.2.2 Constructing a majorizer

To majorize our loss function, we construct a quadratic majorizer for each term of the
form

fi,j(θj) , −ri,j cos(2θjti − φi,j) +bi,j. (B.32)

To be a majorizer at a point θ̄j , we require qi,j
(
θ̄j; θ̄j

)
= fi,j

(
θ̄j
)

(equal at the point
of construction) and qi,j

(
θj; θ̄j

)
≥ fi,j(θj) (greater than or equal to the loss everywhere).

This can be achieved with a quadratic of the form

qi,j
(
θj; θ̄j

)
= fi,j

(
θ̄j
)

+ ḟi,j
(
θ̄j
)
(θj − θ̄j) +

1

2
wfi,j

(
θ̄j
)

(θj − θ̄j)2
, (B.33)

where ḟi,j(θj) = 2ri,jti sin(2θjti − φi,j) is the derivative of fi,j and wfi,j is an appropriate
curvature (or “weighting”) function. A simple option is wfi,j

(
θ̄j
)

= Lḟi,j the Lipschitz
constant of the derivative. Minimizing the resulting majorizer yields the standard �xed
step size gradient descent algorithm. A tighter majorizer will touch our original function
at two or more points. Note that φi,j

2ti
is a minimizer and our function is symmetric and

quasi-convex on the interval
[
φi,j−π

2ti
,
φi,j+π

2ti

]
about this point. Our approach will be to

construct a curvature function w̄fi,j for points in this interval and periodically extend
it to construct the �nal curvature function wfi,j . Because fi,j is symmetric about φi,j

2ti
, our

majorizer will touch at two points when the axis (and minimizer) of qi,j is φi,j
2ti

, equivalently
when its gradient at this point equals zero

q̇i,j

(
φi,j
2ti

; θ̄j

)
= 0. (B.34)

Solving for w̄fi,j
(
θ̄j
)

yields

w̄fi,j
(
θ̄j
)

=
ḟi,j
(
θ̄j
)

θ̄j − φi,j
2ti

, (B.35)
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fig B.1 – An example of four cosines (top two rows, blue) that sum to form the (non-
convex) loss for a single θj (bottom row, blue). For each cosine function, we construct
a quadratic majorizer (top two rows, orange) at a point θ̄j (blue dot). The sum of these
individual quadratic majorizers form a quadratic majorizer for the loss (bottom, orange)
that has a closed-form minimizer. Although the loss is non-convex, distance-minimizing
geodesics will have θj ∈ [−π/2, π/2]. On this interval, the loss is often well-behaved
(here, quasi-convex).

which can be recognized as a (translated) Huber curvature function. For the case when
θ̄j =

φi,j
2ti

, we de�ne wfi,j
(
φi,j
2ti

)
= 4t2i ri,j , which is its limit point.

Forming wfi,j by periodically extending w̄fi,j only requires periodically extending the
denominator, since the numerator is already periodic. The resulting periodic version of
the curvature function is

wfi,j
(
θ̄j
)

=


ḟi,j(θ̄j)

mod
(

(θ̄j−
φi,j
2ti

)+ π
2ti
, 2π
2ti

)
− π

2ti

θ̄j 6= φi,j+2πm

2ti
,m ∈ Z

4t2i ri,j θ̄j =
φi,j+2πm

2ti
,m ∈ Z.

(B.36)

The �nal majorizer for our loss function of θj is then

qj
(
θj; θ̄j

)
=

T∑
i=1

qi,j
(
θj; θ̄j

)
. (B.37)

fig B.1 shows an example loss and the constructed majorizer.
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fig B.2 – A sample of ossi acquisitions. Each column, referred to as fast time, represents
a certain set of acquisition parameters. Each row, referred to as slow time, is a complete
cycle through these acquisitions, which is done many times. Here we only show the �rst,
second, and last slow time set. We see that there is little di�erence between neighboring
slow time points, but that over the course of the scan they change more signi�cantly.

B.1.2.3 Minimizing the Majorizer

Because the majorizer is a sum of one-dimensional quadratics, we minimize it by setting
its derivative to zero and solving for θj

q̇j
(
θj; θ̄j

)
=

T∑
i=1

q̇i,j
(
θj; θ̄j

)
(B.38)

0 =
T∑
i=1

ḟi,j
(
θ̄j
)

+wfi,j
(
θ̄j
)
(θj − θ̄j) (B.39)

=

(
T∑
i=1

ḟi,j
(
θ̄j
))

+

(
T∑
i=1

wfi,j
(
θ̄j
))

(θj − θ̄j) (B.40)

θj = θ̄j −
∑T

i=1 ḟi,j
(
θ̄j
)∑T

i=1 wfi,j
(
θ̄j
) . (B.41)

Iteratively constructing majorizers and minimizing them yields the following descent
scheme

θ(n+1)
j = θ(n)

j −
∑T

i=1 ḟi,j
(
θ(n)

j

)∑T
i=1 wfi,j

(
θ(n)

j

) . (B.42)
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B.2 Additional Experiments and Details

B.2.1 ossi Dynamic fmri Dataset Details

The ossi dynamic fmri dataset was acquired on a 3t ge mr750 scanner with a 32-channel
head coil and is comprised of 167 slow time, 10 fast time and 128 × 128 spatial samples.
The complex data was fully sampled with a variable-density spiral trajectory with ni = 8

interleaves, a densely sampled core, and spiral-out readouts. Detailed ossi acquisition pa-
rameters (tr, nc, te, and �ip angle) can be found in Guo and Noll [34]. The volunteer was
given a left versus right reversing-checkerboard visual stimulus (20 s Left / 20 s Right× 5
cycles) for 200 s in total. For reconstruction, the k-space data was compressed to 16 virtual
coils and espirit [46] sense maps were generated using the bart toolbox [81]. Finally,
the images were reconstructed using conjugate gradient sense with a Huber potential
via the mirt toolbox [26]. fig B.2 shows the magnitude of a sample of the reconstructed
images.

B.2.2 Video Denoising Additional Experiments and Details

The link to the video data from [52, Section V-A] has been broken for a while, but the
videos can still be found using the internet archive. We downloaded the videos from [75].

We provide further denoising results for video data in this section. We perform exper-
iments on waterfall video data (in addition to the curtain video we provided in the main
text), and the results are presented in fig B.3 and fig B.4b. Same as before, we start by
showing that the geodesic model is a good choice for this video data. fig B.3a shows the
training loss as a function of the rank k. The training loss for the geodesic model lies in
between k and 2k cases, as expected. It also has smaller error as compared to permuted
data, which is strong evidence that the geodesic model is a reasonable model to consider
for the waterfall video sequence. Next, we study the denoising capabilities of rank-k svd,
rank-2k svd, and rank-k geodesic model by adding awgn with di�erent values of stan-
dard deviation σ to the video sequence and applying these three approaches to remove
noise. The quality of the denoised image is measured using the peak signal to noise ra-
tio (psnr). fig B.3b shows the psnr of the denoised video as a function of added noise
level. Finally, we provide visual evidence of denoising in fig B.4. In fig B.4a frame 125
is shown for denoising the video corrupted with awgn of σ = 110. Each image shown
is the reconstruction of that frame using each model for denoising, and the psnr is given
at the top of each image. Notice that both psnr and the perceptual quality of image de-
noised by the rank-k geodesic model is better than the other two methods, which is a
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fig B.3 – Quantitative evaluation of geodesic subspace model for waterfall video se-
quence. In (a) loss from (7.4) is plotted for a video sequence containing 260 frames/images.
Loss is plotted against di�erent values of assumed rank of data k. In (b) we added awgn
to the video data and then applied rank-k svd, rank-2k svd, and the geodesic model to
denoise the noisy version of video with k = 10 and ` = 4.

similar trend we observed in fig 7.9b for the Curtain dataset. Next, in fig B.4b we show
results from a similar experiment but the noise added is awgn with σ = 30, which is
signi�cantly lower than the previous experiment. From this experiment we can conclude
that the three methods have almost similar performance in low noise settings.

Finally, we display frame 125 for curtain and waterfall sequences for a lower noise
(higher snr) regime in fig B.5. These results show that in lower noise settings rank-2k
svd is able to learn more structure in data and hence has better denoising performance
than rank-k svd and rank-k geodesic model. In contrast, in higher noise settings the
structure in the images described by smaller singular values is overwhelmed by noise and
rank-2k svd ends up learning a lot of noise, which diminishes its denoising capabilities.

B.3 Empirical Analysis of Additional Geodesic

Estimation Algorithm

In Chapter 7, we parameterized a geodesic by a point on the geodesicH , a tangent matrix
Y , and a set of arc lengths Θ. If we consider only shortest-path geodesics (|||Θ|||2 < π

2
),

we can describe a geodesic by its start and endpoint, which we will denote A and B,
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fig B.4 – Visual example of denoising frame 125 in the waterfall video sequence with
awgn of σ = 110 in (a) and σ = 30 in (b). The geodesic model was able to denoise the
noisy image more e�ectively than rank-k svd and rank-2k svd in high noise regime in
(a). On the other hand for lower noise regime in (b) the denoising performance is quite
similar.
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fig B.5 – When the snr is higher, the geodesic model and pca model are more compa-
rable. This �gure shows the same frames from both the curtain and waterfall videos and
their reconstructions with σ = 10.
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respectively. Our subspaces are then given by

Ui = U(ti;A,B) = AZ cos(Θti) +Y sin(Θti) (B.43)

where Y tan(Θ)Z ′ is the svd of (I −AA′)B(A′B)
-1
. (B.44)

We will attempt to minimize the geodesic loss (7.3),

Â, B̂ = arg min
A,B∈G(k,d)

min
{Gi}Ti=1

T∑
i=1

|||Xi −U (ti;A,B)Gi|||2F, (B.45)

by applying an alternating update on A and B. If we can derive an update on A, then
we can exploit the symmetry of this geodesic model to also have an update for B since
U(ti;A,B) = U(1 − ti;B,A). Considering just the A update �rst, we start by substi-
tuting the new model (B.43) to the geodesic loss (B.45)

Â = arg min
A∈G(k,d)

T∑
i=1

|||Xi − (AZ cos(Θti) +Y sin(Θti))Gi|||2F. (B.46)

While the loss has an explicit dependence onA, parameters Y , Θ, andZ are also implicit
complicated functions ofA. It is unclear what step could be taken minimize this loss with
respect toA. If we ignore the implicit dependencies onA (ad hoc approximating them as
constant), then the above problem is a generalized Procrustes problem

Â = arg min
A∈G(k,d)

T∑
i=1

|||(Xi − Y sin(Θti)Gi)−AZ cos(Θti)Gi|||2F (B.47)

= WV ′, where (B.48)

WΣV ′ is the svd of
T∑
i=1

(Xi − Y sin(Θti)Gi) (Z cos(Θti)Gi)
′. (B.49)

A similar B update can be formulated by swapping the roles of A and B and replacing
ti with 1 − ti. While it is unclear if this approximating update is guaranteed to mono-
tonically not increase the loss, empirically it seems to. Indeed, this geodesic estimation
algorithm alternating on A and B generally converges in at least an order of magnitude
fewer iterations than the algorithm proposed in Chapter 7 on all but the k = 1 case (see
fig B.6).
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fig B.6 – Comparison of convergence of geodesic estimation error for two parameteriza-
tions of a geodesic. Here “Old” refers to the geodesic model parameterized by its start and
endpoint A and B. “Proposed” is the geodesic model and associated updates presented
in Chapter 7.
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fig B.7 – A plot of the loss function parameterized by the geodesic endpointsA,B, where
we project out the dependence on {Gi}. Because we are in 2d, we can expressA andB by
their angle with the positive x-axis. On the left, we show the loss surface and the iterates.
The discontinuities occur when |∠A− ∠B| = π/2. Note that the edges of the plotted
loss wraps around in both the vertical and horizontal directions. On the right, we show
whereA andB got stuck despite not reaching a minimizer of their respective costs.

Unfortunately, there are instances where this algorithm fails to converge to a station-
ary point of the loss. fig B.7 presents a visual example of a rank-1 geodesic in 2d (the
same data shown in fig 7.6) where this algorithm failed to converge to a local minimizer.
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