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ABSTRACT

Quantitative magnetic resonance imaging (QMRI) produces images of potential

MR biomarkers: measurable tissue properties related to physiological processes

that characterize the onset and progression of specific disorders. Though QMRI

has potential to be more diagnostic than conventional qualitative MRI, QMRI poses

challenges beyond those of conventional MRI that limit its feasibility for routine

clinical use. This thesis first seeks to address two of these challenges. It then applies

these solutions to develop a new method for myelin water imaging, a challenging

application that may be specifically indicative of certain white matter disorders.

One challenge that presently precludes widespread clinical adoption of QMRI

involves relatively long scan durations: to disentangle potential biomarkers from

numerous nuisance MR contrast mechanisms, QMRI typically requires more data

than conventional MRI and thus longer scans. Even allowing for long scans, it has

previously been unclear how to systematically tune the “knobs” of highly flexible

MR acquisitions so as to reliably enable precise biomarker estimation. Chapter 4

formalizes these challenges as a min-max optimal acquisition design problem that

seeks scan parameter combinations that robustly enable precise object parameter

estimation. It applies this technique to optimize combinations of spoiled gradient-

recalled echo (SPGR) and dual-echo steady-state (DESS) scans for T1, T2 relaxom-

etry in white matter (WM) and grey matter (GM) regions of the human brain at 3T

field strength. Phantom accuracy experiments showed that SPGR/DESS scan com-

binations are in excellent agreement with reference measurements. Phantom pre-

cision experiments showed that trends in T1, T2 pooled sample standard deviations

xvi



reflect theoretical predictions. In vivo experiments showed that in WM and GM,

T1, T2 estimates from a pair of optimized DESS scans exhibit precision comparable

to that of optimized combinations of SPGR and DESS scans. To our knowledge, T1

maps from DESS acquisitions are new. This example application illustrates that ac-

quisition design can enable new biomarker estimation techniques from established

MR pulse sequences, a fact that subsequent chapters exploit.

Another QMRI challenge involves the typically nonlinear dependence of MR

signal models on the underlying potential biomarkers of interest: these nonlineari-

ties cause conventional likelihood-based estimators to either scale very poorly with

the number of unknowns or risk producing suboptimal estimates due to spurious lo-

cal minima. Chapter 5 instead introduces a fast, general method for dictionary-free

QMRI parameter estimation via regression with kernels (PERK). PERK first uses

prior distributions and the nonlinear MR signal model to simulate many parameter-

measurement pairs. Inspired by machine learning, PERK then takes these parameter-

measurement pairs as labeled training points and learns from them a nonlinear re-

gression function using kernel functions and convex optimization. PERK admits

a simple implementation as per-voxel nonlinear lifting of MRI measurements fol-

lowed by linear minimum mean-squared error regression. Chapter 5 demonstrates

PERK for T1, T2 estimation using one of the SPGR/DESS acquisitions optimized

in Chapter 4. Numerical simulations as well as single-slice phantom and in vivo

experiments demonstrated that PERK and two well-suited maximum-likelihood

(ML) estimators produce comparable T1, T2 estimates in WM and GM, but PERK

is consistently at least 140× faster. Similar comparisons to an ML estimator in a

more challenging QMRI estimation problem (described in Chapter 6) suggest that

this 140× acceleration factor will increase by several orders of magnitude for full-

volume QMRI estimation problems involving more latent parameters per voxel.

Chapter 6 applies ideas developed in previous chapters to design a new fast
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method for imaging myelin water content, a potential biomarker for healthy myelin.

Since myelin degeneration characterizes certain white matter disorders (e.g., multi-

ple sclerosis), myelin water quantification could improve MRI specificity for mon-

itoring the onset and progression of such demyelinating conditions. Specifically,

Chapter 6 first develops a two-compartment DESS signal model and then uses a

Bayesian variation of acquisition design (Chapter 4) to optimize a new DESS ac-

quisition for precise myelin water imaging. The precision-optimized acquisition

is as fast as conventional SS myelin water imaging acquisitions, but enables ∼2-

3× better expected coefficients of variation in fast-relaxing fraction fF estimates.

Simulations without model mismatch demonstrate that PERK (Chapter 5) and ML

fF estimates from the proposed DESS acquisition exhibit comparable root mean-

squared errors, but PERK is more than 500× faster. Simulations with modest levels

of model mismatch suggest that in vivo differences between DESS and conven-

tional multi-echo spin-echo (MESE) myelin water images may be attributable to

either unaccounted bulk-T1 modeling errors and accounted flip angle variation in

MESE estimates and/or the two-compartment assumption in DESS estimates. Nev-

ertheless, in vivo experiments are to our knowledge the first to demonstrate lateral

WM myelin water content estimates from a fast (3m15s) SS acquisition that are

similar to conventional estimates from a slower (32m4s) MESE acquisition.
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CHAPTER 1

Introduction

Magnetic resonance imaging (MRI) is a non-invasive tool that has earned widespread clin-

ical adoption due (among other reasons) to its potential for excellent soft tissue contrast,

its absence of ionizing radiation, and its flexibility to characterize a diversity of physical

phenomena. Despite its numerous advantages, MRI requires highly specialized hardware,

ongoing liquid-helium cooling of its superconducting main magnet, and long scan times.

For these reasons, MRI is expensive relative to other medical imaging modalities. To better

focus expenditures, one broad initiative advocated by the MR community is to increase

the value of MRI examinations. One popular (and ambitious) measure of value is an MRI

acquisition’s specificity in distinguishing one disorder from a collection of candidates. The

field of quantitative MRI (QMRI) seeks to estimate MR biomarkers, or measurable tissue

properties that may be indicative of specific disorders of interest.

QMRI has potential to be more informative than conventional MRI. Conventional MRI

is qualitative: it produces images comprised of voxels (i.e., three-dimensional pixels) that

are informative only relative to each other, not individually. Conventional MRI voxels are

qualitative because they directly localize the MR signal, a typically complex function of

not only biomarkers but also two types of confounds: nuisance markers that characterize

undesired signal sources and/or MRI system imperfections; and acquisition parameters

that characterize the MRI system’s tunable “knobs”. QMRI seeks to remove confound

influence by instead imaging the biomarkers directly. Each QMR image voxel is thus a

measurement of a given biomarker at a specific location. QMRI can therefore provide

localized biomarker measurements (e.g., myelin water content) related to a specific physio-

logical process (e.g., demyelination) that can through longitudinal study be used to monitor

the onset and progression of disease (e.g., multiple sclerosis).

QMRI poses several challenges beyond those of conventional MRI that currently limit

its feasibility for routine clinical use. For example, accurate biomarker quantification tra-

ditionally requires multiple MR scans and thus long scan times. Furthermore, it has previ-

ously been unclear how to tune acquisition parameters of these multiple scans to ensure that
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biomarkers can be quantified precisely. Finally, MR biomarker quantification is a challeng-

ing estimation problem for which efficient algorithms have previously been unavailable.

Addressing these challenges is essential for widespread clinical adoption of QMRI.

1.1 Overview

This thesis seeks to address the above challenges by developing an automated workflow for

QMRI. We exploit tools from optimization, statistics, and machine learning to develop fast

algorithms for quantifying biomarkers that characterize specific physiological processes.

We apply this framework to challenging QMRI problems of clinical interest. Our goal is to

introduce fast, automated tools that will increase the clinical value of QMRI.

Our solutions to two distinct subproblems in QMRI constitute two stages of our pro-

posed QMRI workflow. Questions in acquisition design (Chapters 4, 6) ask how to assem-

ble fast collections of scans that yield data rich in information about physical processes of

interest. Questions in parameter estimation (Chapters 3, 5) ask how to quickly and reliably

quantify biomarkers associated with these relevant physical processes. The overall work-

flow seeks to first design fast and informative scans based on the application, and to then

accurately and precisely estimate clinically relevant biomarkers.

1.2 Organization

The main body of this thesis is organized as follows. Within this main body, Chapters 4-6

organize the key contributions to science of this thesis.

• Chapter 2 reviews relevant background material on MRI and optimization.

• Chapter 3 discusses methods for QMRI parameter estimation from likelihood models

and applies these methods for model-based MR relaxometry, a simple and popular

application. It partially derives content from conference papers [4, 5].

• Chapter 4 introduces a minimax optimization problem to aid robust and application-

specific MR scan selection and optimization for precise latent parameter estimation.

It optimizes several practical acquisitions and uses the likelihood-based estimation

techniques introduced in Chapter 3 to assess the utility of scan optimization through

simulations as well as phantom and in vivo experiments. It mainly derives content

from published journal paper [6] that extends conference paper [7].

• Chapter 5 introduces a fast, general algorithm for dictionary-free QMRI parameter

estimation via regression with kernels (PERK). It demonstrates orders-of-magnitude
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acceleration over likelihood-based estimators through simulations as well as phan-

tom and in vivo experiments. It also characterizes PERK performance through bias-

covariance analysis and several robustness studies. It mainly derives content from

accepted journal paper [8] that extends two conference papers [9, 1].

• Chapter 6 introduces a new method for imaging an MR biomarker of clinical interest.

It applies ideas developed in earlier chapters to design a new fast QMRI workflow

that may be specific to healthy myelin, whose degradation is associated with cer-

tain white matter disorders. It demonstrates this new method of potentially myelin-

specific imaging in simulations and in vivo experiments. It partially derives content

from in-preparation journal paper [10] that extends conference paper [11].

• Chapter 7 suggests several future research directions.

The appendices contain unpublished, less mature work and are organized as follows:

• Appendix A proposes an algorithm for simultaneously coil-combining a collection

of MR coil image datasets without prior knowledge of coil sensitivity maps. Several

chapters in the main body used a variation of this algorithm for coil data combination.

• Appendix B develops from first principles a new model for the influence of RF pulses

on the steady-state (SS) transverse magnetization and then proposes two algorithms

for SS-informed RF pulse design.
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CHAPTER 2

Background

This chapter focuses only on background information pertinent to multiple subsequent

chapters. We present further topic-specific information at the beginnings of correspond-

ing chapters. Section 2.1 places emphasis on reviewing necessary MR fundamentals, and

Section 2.2 proceeds to a shorter discussion regarding optimization as it pertains to QMRI.

2.1 Relevant MR Physics

This section begins with the fundamental Bloch equations and derives the signal models

associated with two MR pulse sequences used extensively in this thesis. Our coverage of

MRI is far from comprehensive, and omits fundamental but tangential topics such as signal

localization. We refer the interested reader to books such as [12, 13, 14].

2.1.1 Bloch Equations

The Bloch equations [15] describe the macroscopic magnetization dynamics of spin, or

(loosely) atomic nuclei with nonzero angular momentum and thus nonzero magnetic mo-

ment, e.g. 1H. If the dominant source of magnetic flux arises (as is typical in MRI) from a

main magnetic field that is oriented along the z-axis, the equations read

∂

∂t
mxy(r, t) = iγ(mz(r, t)bxy(r, t)−mxy(r, t)bz(r, t))−

mxy(r, t)

T2(r)
; (2.1)

∂

∂t
mz(r, t) = γ(mx(r, t)by(r, t)−my(r, t)bx(r, t))−

mz(r, t)−m0(r)

T1(r)
. (2.2)

Here, mxy(r, t) := mx(r, t) + imy(r, t) ∈ C and mz(r, t) ∈ R are the transverse and

longitudinal components of the magnetization vector at position r := [x, y, z]T ∈ R3 and

time t ≥ 0; bxy(r, t) := bx(r, t) + iby(r, t) ∈ C and bz(r, t) ∈ R are the transverse and lon-

gitudinal components (in an inertial reference frame) of the applied magnetic field; T1(r)
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and T2(r) are spin-lattice and spin-spin relaxation time constants; m0(r) is the equilib-

rium magnetization and is proportional to the density of spins per unit volume as well as

the main field strength; γ is the gyromagnetic ratio; and i :=
√
−1. As written, (2.1)-

(2.2) specifically model the temporal dynamics of a single spin isochromat, or collection of

macroscopically similar spins; later chapters consider higher-order effects such as multiple

(possibly interacting) isochromat compartments (Chapter 6).

It is often convenient to study Bloch dynamics in a non-inertial reference frame rotat-

ing clockwise about the z-axis at Larmor frequency ω0 := γB0, where B0k̂ is the (nearly

uniform) main magnetic field. In these coordinates, the apparent transverse magnetic field

b′xy(r, t) = b′x(r, t) + ib′y(r, t) := bxy(r, t)e
iω0t transforms only in phase, but the apparent

longitudinal magnetic field b′z(r, t) := bz(r, t) − B0 is greatly reduced in magnitude. The

magnetization components transform more simply as m′
xy(r, t) = m′

x(r, t) + im′
y(r, t) :=

mxy(r, t)e
iω0t and m′

z(r, t) := mz(r, t). Remarkably, inserting these coordinate transfor-

mations into (2.1)-(2.2) does not change the form of the dynamical equations:

∂

∂t
m′

xy(r, t) = iγ
(
m′

z(r, t)b
′
xy(r, t)−m′

xy(r, t)b
′
z(r, t)

)
− m′

xy(r, t)

T2(r)
; (2.3)

∂

∂t
m′

z(r, t) = γ
(
m′

x(r, t)b
′
y(r, t)−m′

y(r, t)b
′
x(r, t)

)
− m′

z(r, t)−m0(r)

T1(r)
. (2.4)

It thus suffices to consider how perturbations b′(r, t) to main field B0k̂ influence rotating-

frame magnetization m′(r, t) via Eqs. (2.3)-(2.4). The inertial-frame magnetizationm(r, t)

is then easily constructed via mxy(r, t) = m′
xy(r, t)e

−iω0t and mz(r, t) = m′
z(r, t).

It is challenging to explicitly solve Eqs. (2.3)-(2.4) for arbitrary field perturbations

b′(r, t). We discuss relevant special cases in the following.

2.1.1.1 Non-Selective Excitation

Here, we derive solutions to Eqs. (2.3)-(2.4) in the case of short, spatially non-selective

excitations. We take the following common assumptions:

• We assume negligible spatial variation in the main magnetic field, so b′z(r, t) ≈ 0.

• We assume the transverse field separates in position and time; oscillates at the Lar-

mor frequency (commonly in the radiofrequency (RF) range); and aligns at initial

time t ← t0 with the x-axis. Together, these assumptions restrict the so-called RF

excitation to take form b′xy(r, t) ≈ κt(r)b′1,x(t)̂i + 0ĵ, where κt(r) ∈ R is the RF

transmit coil spatial variation and b′1,x(t) ∈ R is the RF excitation envelope.

• We assume that the duration TP of RF excitation (often TP ∼1ms) is much shorter

than relaxation time constants (typically T1 ∼1000ms and T2 ∼50ms in brain tissue)
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and thus neglect relaxation effects during excitation.

Under these assumptions, Eqs. (2.3)-(2.4) reduce to the linear system

∂

∂t



m′

x(r, t)

m′
y(r, t)

m′
z(r, t)


 =



0 0 0

0 0 γκt(r)b′1,x(t)

0 −γκt(r)b′1,x(t) 0






m′

x(r, t)

m′
y(r, t)

m′
z(r, t)


. (2.5)

Eq. (2.5) admits the simple solution (for t ≥ t0)



m′

x(r, t)

m′
y(r, t)

m′
z(r, t)


 =



1 0 0

0 cos (α(r, t; t0)) sin (α(r, t; t0))

0 − sin (α(r, t; t0)) cos (α(r, t; t0))






m′

x(r, t0)

m′
y(r, t0)

m′
z(r, t0)


, (2.6)

where m′(r, t0) :=
[
m′

x(r, t0), m
′
y(r, t0), m

′
z(r, t0)

]T
is the initial magnetization and

α(r, t; t0) := γκt(r)

∫ t

t0

b′1,x(τ) d τ (2.7)

is the nutation (or “flip”) angle at time t. Eq. (2.6) reveals that on-resonance RF excitation

causes the magnetization vector to rotate clockwise about an axis parallel to the direction

of excitation. The nutation angle accumulated over an RF pulse of duration TP is often

decomposed as α(r, t0 + TP; t0) =: α0κ
t(r), where α0 is a prescribed nominal flip angle.

For deriving signal models in later sections, it is convenient and intuitive to define

matrix operators that summarize relevant dynamics. Here, we rewrite Eq. (2.6) as

m′(r, t) = Rx′(α(r, t; t0))m
′(r, t0), (2.8)

where Rx′(α(r, t; t0)) denotes a clockwise rotation of angle α(r, t; t0) about the x′-axis.

2.1.1.2 Free Precession and Relaxation

Next, we derive solutions to the rotating-frame Bloch equations when no RF excitation

is present, i.e. b′xy(r, t) ≈ 0. In this case, Eqs. (2.3)-(2.4) decouple, yielding separate

dynamical equations for the transverse and longitudinal magnetization components:

∂

∂t
m′

xy(r, t) = −iγm′
xy(r, t)b

′
z(r, t)−

m′
xy(r, t)

T2(r)
; (2.9)

∂

∂t
m′

z(r, t) = −
m′

z(r, t)−m0(r)

T1(r)
. (2.10)
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Eqs. (2.9)-(2.10) admit simple solutions with no further assumptions:

m′
xy(r, t) = m′

xy(r, t0)e
−(t−t0)/T2(r)e−iφ′(r,t;t0); (2.11)

m′
z(r, t) = m′

z(r, t0)e
−(t−t0)/T1(r) +m0(r)

(
1− e−(t−t0)/T1(r)

)
, (2.12)

where m′
xy(r, t0) and m′

z(r, t0) are the initial magnetization components and

φ′(r, t; t0) := γ

∫ t

t0

b′z(r, τ) d τ (2.13)

denotes the phase accumulation due to main field inhomogeneity (often called off-resonance

effects). Eq. (2.11) reveals that without RF excitations, the transverse magnetizationm′
xy(r, t)

relaxes to zero exponentially fast with time constant T2(r), while accruing phase due to

off-resonance effects. Eq. (2.12) similarly reveals that without RF excitations, longitudinal

magnetization m′
z(r, t) recovers to m0(r) exponentially fast with time constant T1(r).

As in Section 2.1.1.2, we rewrite Eqs. (2.11)-(2.12) for t ≥ t0 using matrix operators:

m′(r, t) = Rz′(φ
′(r, t; t0))E(r, t; t0)m

′(r, t0) +m0(r, t; t0) (2.14)

where m0(r, t; t0) := m0(r)
(
1− e−(t−t0)/T1(r)

)
k̂;

Rz′(φ
′(r, t; t0)) :=




cos (φ′(r, t; t0)) sin (φ′(r, t; t0)) 0

− sin (φ′(r, t; t0)) cos (φ′(r, t; t0)) 0

0 0 1


 (2.15)

denotes a clockwise rotation of angle φ′(r, t; t0) about the z′-axis; and

E(r, t; t0) :=



e−(t−t0)/T2(r) 0 0

0 e−(t−t0)/T2(r) 0

0 0 e−(t−t0)/T1(r)


 (2.16)

is an exponential relaxation operator. Section 2.1.2 (and later chapters) use matrix dynam-

ical representations (2.8) and (2.14) to succinctly describe pulse sequence signal models.

2.1.2 Steady-State Sequences

MRI experiments typically involve repeated cycles of (pulsed) RF excitation; signal local-

ization (not discussed here); and transverse T2 relaxation and free precession, alongside

(relatively slow) longitudinal T1 recovery. We can build models of the received MR signal
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by considering the magnetization dynamics induced by specific pulse sequences.

Classical pulse sequences use relatively long cycle repetition times TR to ensure near-

complete T1 recovery of the magnetization vector back to equilibrium state m0(r)k̂ prior

to the start of each RF cycle. For such long-TR sequences, it suffices to approximate the

magnetization as fully recovered (i.e., m′(r, t0 + rTR) ≈ m0(r)k̂, ∀r ∈ {0, 1, 2, . . .}) just

prior to each RF excitation. This approximation yields a sequence of initial conditions

and allows computation of the magnetization at corresponding times of data acquisition via

direct application of Bloch dynamics (2.8) and (2.14). Resulting signal models are typically

simple expressions of relaxation parameters T1(r) and T2(r); however, model accuracy

often depends strongly on the long-TR assumption, which requires long acquisitions.

Steady-state (SS) sequences [16] utilize short TR, and can thus achieve much faster scan

times. Due to short repetition times, SS sequences achieve only partial T1 recovery in be-

tween RF excitations; thus, their magnetization responses do not obey the simple classical

initial conditions (for the second RF cycle onwards). Although their transient magnetiza-

tion dynamics can be complicated, SS sequences produce (under certain assumptions [17])

long-time magnetization responses that eventually1 achieve a steady-state condition:

lim
t0→∞

m′(r, t0 + rTR) = m′(r, t0), (2.17)

where repetition count r ∈ {1, 2, . . . } for fixed RF excitations and off-resonance induced

phase increments (as is assumed in the following). Subsections 2.1.2.1 and 2.1.2.2 use

SS condition (2.17) and Bloch equation matrix operators introduced in (2.8) and (2.14) to

derive long-time signal models for Spoiled Gradient-Recalled Echo (SPGR) and Dual-Echo

Steady-State (DESS), two SS pulse sequences useful for quantitative MRI.

2.1.2.1 Spoiled Gradient-Recalled Echo (SPGR) Sequence

SPGR [19] is a fast pulse sequence that repeats cycles of fixed RF excitation (such that

b′1,x(t + rTR) = b′1,x(t), ∀t ∈ [t0, t0 + TP], r ∈ {1, 2, . . . }); data acquisition; relaxation

and recovery; and residual transverse magnetization “spoiling” (discussed later). Here we

develop a simple and popular steady-state SPGR signal model.

Let m′(r, t0) denote the magnetization at an initial time t0 selected well into the steady-

state and just prior to excitation. The SPGR sequence first applies an RF excitation, which

1The progression to steady state takes on the order of 5T2/TR RF cycles [17], typically a small but not

insignificant period during which data acquisition is often foregone. This transition can (in some cases) be

accelerated by prepending SS sequences with tailored “magnetization-catalyzing” modules [18].
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rotates the initial magnetization as per (2.8):

m′(r, t0 + TP) = Rx′(α(r, t0 + TP; t0))m
′(r, t0). (2.18)

The excited magnetization then precesses and relaxes as per (2.14) until data acquisition,

defined to occur at “echo time” TE ∈
[
TP

2
, TR

]
after the (midpoint of) RF excitation:

m′

(
r, t0 +

TP

2
+ TE

)
= Rz′

(
φ′

(
r,
TP

2
+ TE;TP

))
E

(
r,
TP

2
+ TE;TP

)
m′(r, t0 + TP)

+m0

(
r,

TP

2
+ TE;TP

)
. (2.19)

The remaining transverse magnetization is spoiled2 following signal reception3 while the

longitudinal component is unaffected. We model an ideal spoiling operation as

Sm′

(
r, t0 +

TP

2
+ TE

)
, where S :=



0 0 0

0 0 0

0 0 1


. (2.20)

After spoiling, the longitudinal magnetization (partially) recovers until t← t0 + TR:

m′(r, t0 + TR) = Rz′

(
φ′

(
r, TR;

TP

2
+ TE

))
E

(
r, TR;

TP

2
+ TE

)
Sm′

(
r, t0 +

TP

2
+ TE

)

+m0

(
r, TR;

TP

2
+ TE

)
. (2.21)

In steady-state, one cycle of excitation, acquisition, spoiling, and recovery returns the mag-

netization back to its initial state. We enforce this through the steady-state condition

m′(r, t0 + TP) = Rx′(α(r, t0 + TP; t0))m
′(r, t0 + TR) (2.22)

2Transverse signal spoiling is often (nearly) achieved in practice using gradient fields, or strong induced

field inhomogeneities that cause rapid transverse signal dephasing, in tandem with RF excitations that addi-

tionally impart nonlinear (often quadratically increasing) transverse magnetization phase [19]. Though the

nonlinear RF phase used in so-called “RF-spoiling” prevents any one spin from reaching a true steady-state,

the signal integrated over a typically-sized voxel achieves SS-like behavior [20].
3MRI signal reception also uses gradient fields to spatially localize signal; thus signal reception would

in general impart additional magnetization phase. However, we assume hereafter that MR signal is received

using “balanced” imaging gradients that impart zero net phase per repetition cycle; under this restriction,

balanced imaging gradients have a negligible net affect on the magnetization vector.
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which yields an algebraic system of equations. When it exists, the solution is

m′(r, t0 + TP) =
1

1− e−(TR−TP)/T1(r) cos (α(r))




0

m0(r) sin (α(r))
(
1− e−(TR−TP)/T1(r)

)

m0(r) cos (α(r))
(
1− e−(TR−TP)/T1(r)

)


,

(2.23)

where α(r) := α(r, t0 + TP; t0) is a slight abuse of notation. Remarkably, the SPGR

steady-state magnetization immediately after excitation is approximately independent of

both off-resonance effects and T2(r). Researchers more often cite the expression

m′
xy(r, t0 + TP) = m′

x(r, t0 + TP) + im′
y(r, t0 + TP)

=
im0(r) sin (α(r))

(
1− e−TR/T1(r)

)

1− e−TR/T1(r) cos (α(r))
(2.24)

for the complex transverse magnetization as it modifies (2.23) to include a simple first-

order correction for unaccounted T1 recovery during the RF pulse. Substituting (2.24) into

(2.19) yields an expression for the transverse magnetization at the echo time:

m′
xy

(
r, t0 +

TP

2
+ TE

)
= m′

xy(r, t0 + TP)e
−(TE−TP/2)/T2(r)e

−iφ′

(
r,t0+

TP
2
+TE;t0+TP

)

≈ m′
xy(r, t0 + TP)e

−TE/T2(r)e
−iφ′

(
r,t0+

TP
2
+TE;t0+

TP
2

)

, (2.25)

where the approximation again keeps in line with literature expressions.

The received signal is approximately proportional to the integrated transverse magneti-

zation over a volume V. To derive expressions, we take a few more usual assumptions:

• We assume that the signal is localized to a scale over which there is off-resonance

phase variation, but minimal variation of m0(r), T1(r), T2(r), and α(r). This as-

sumption is reasonable4 when describing the signal arising from a typical voxel.

• We assume that (free-precession) off-resonance phase grows linearly with time, i.e.

φ′
(
r, t0 +

TP

2
+ TE; t0 +

TP

2

)
≈ ω′(r)TE. We further assume that off-resonance fre-

quency ω′(r) is distributed over the localized voxel as pω′ := Cauchy(ω̄′, R′
2), where

ω̄′(r) is the median off-resonance frequency and R′
2(r) is the broadening bandwidth.

With these additional assumptions, the received steady-state SPGR (noiseless) signal model

4Model mismatch due to within-voxel spatial variation of relaxation parameters can be significant, espe-

cially for large voxels. Chapter 6 studies so-called partial volume effects and uses them for QMRI.
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for a typically sized voxel centered at position r is (to within constants):

sS

(
r, t0 +

TP

2
+ TE

)
∝
∫

V(r)

m′
xy

(
r, t0 +

TP

2
+ TE

)
d3 r (2.26)

≈ mxy(r, t0 + TP)e
−TE/T2(r)

∫

R

e−iω′TEpω′(ω′) dω′

= mxy(r, t0 + TP)e
−TE/T2(r)e−R′

2(r)TE−iω̄′(r)TE

=
im0(r) sin (α(r))

(
1− e−TR/T1(r)

)

1− e−TR/T1(r) cos (α(r))
e−TE/T

∗

2 (r)e−iω̄′(r)TE , (2.27)

where T ∗
2 (r) :=

(
1
T2

+R′
2

)−1

is a modified spin-spin relaxation time that accounts for

additional transverse magnetization decay due to off-resonance effects.

2.1.2.2 Dual-Echo Steady-State (DESS) Sequence

DESS [21, 22] is a fast pulse sequence that interlaces fixed, constant-phase RF excitations

with fixed dephasing “gradients” (i.e., induced main field inhomogeneities that vary nearly

linearly with space) to produce two distinct signals per RF excitation. Here we develop

simple steady-state DESS signal models.

As in Subsection 2.1.2.1, let m′(r, t0) denote the magnetization at an initial time t0

selected well into the steady-state and just prior to excitation. The DESS sequence first

applies a fixed RF rotation α(r) := α(r, t0 + rTR + TP; t0 + rTR), ∀r ∈ {0, 1, 2, . . . }:

m′(r, t0 + TP) = Rx′(α(r))m′(r, t0). (2.28)

The excited transverse magnetization contributes to a first acquired signal; dephases (but

does not spoil completely) due to gradient dephasing5 and contributes again to a second

(smaller, but nonzero) acquired signal. Since (with proper selection) dephasing gradients

mainly contribute to off-resonance phase accrual, the net effect after data acquisition and

gradient dephasing is well described simply by precession and relaxation:

m′(r, t0 + TR) = Rz′(φ
′(r))E(r, TR;TP)m

′(r, t0 + TP) +m0(r, TR;TP), (2.29)

where the abbreviation φ′(r) := φ′(r, t0 + (r + 1)TR; t0 + rTR + TP), ∀r ∈ {0, 1, 2, . . .}
implies fixed phase accrual (due to gradient dephasing, field inhomogeneity, and other

5It is worth distinguishing gradient dephasing (commonly but somewhat misleadingly referred to as gradi-

ent spoiling) from RF spoiling. Gradient dephasing (used in DESS) primarily affects magnetization phase and

is modeled simply as precession. RF spoiling (used in SPGR) combines gradient dephasing with nonlinear

RF phase cycling and suppresses magnetization magnitude in steady-state.
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unaccounted effects) over each repetition cycle.

In steady-state, one cycle of excitation, first acquisition, gradient spoiling, second ac-

quisition, and (partial) recovery returns the magnetization back to its initial state. We en-

force this through the steady-state condition

m′(r, t0) = m′(r, t0 + TR) (2.30)

which yields an algebraic system of equations. When it exists, the solution gives the steady-

state magnetization just prior to RF excitation:

m′(r, t0) =




E2(r, TF) sinα(r) sinφ
′(r)

−E2(r, TF) sinα(r)(E2(r, TF)− cosφ′(r))

1− E2(r, TF) cosφ
′(r) + E2(r, TF) cosα(r)(E2(r, TF)− cos φ′(r))


q(r, TF),

(2.31)

where TF := TR − TP is the free precession interval; E1(r, t) := e−t/T1(r) and E2(r, t) :=

e−t/T2(r) are relaxation operators; and q(r, t) :=

m0(r)(1− E1(r, t))

(1−E1(r, t) cosα(r))(1−E2(r, t) cosφ′(r))− E2(r, t)(E1(r, t)− cosα(r))(E2(r, t)− cosφ′(r))
.

Substituting (2.31) into (2.28) produces a similar expression for the steady-state magneti-

zation immediately following RF excitation:

m′(r, t0 + TP) =




E2(r, TF) sinα(r) sinφ
′(r)

sinα(r)(1− E2(r, TF) cosφ
′(r))

cosα(r)(1− E2(r, TF) cosφ
′(r)) + E2(r, TF)(E2(r, TF)− cosφ′(r))


q(r, TF).

(2.32)

The transverse magnetizations before and after RF excitation are then

m′
xy(r, t0) = −i sinα(r)E2(r, TR)

(
E2(r, TR)− e−iφ′(r)

)
q(r, TR); (2.33)

m′
xy(r, t0 + TP) = +i sinα(r)

(
1−E2(r, TR)e

iφ′(r)
)
q(r, TR), (2.34)

where (2.33)-(2.34) include simple first-order corrections for yet-unaccounted relaxation

and recovery during excitation. Frequently, the DESS signals are acquired at symmetric

echo times TE before and after the center of each RF pulse. Substituting (2.34) into (2.9)
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gives the magnetization at the data acquisition time after RF excitation:

m′
xy

(
r, t0 +

TP

2
+ TE

)
= m′

xy(r, t0 + TP)e
−(TE−TP/2)/T2(r)e

−iφ′

(
r,t0+

TP
2
+TE;t0+TP

)

≈ m′
xy(r, t0 + TP)e

−TE/T2(r)e
−iφ′

(
r,t0+

TP
2
+TE;t0+

TP
2

)

(2.35)

≈ m′
xy(r, t0 + TP)e

−TE/T2(r)e−iω′(r)TE , (2.36)

where in (2.35) we again approximately correct for relaxation during excitation and in

(2.36) we assume linear off-resonance phase accrual during free precession. To compute

the magnetization at the acquisition time before excitation, we consider the free precession

and relaxation that occurs between6 signal reception and excitation:

m′
xy(r, t0) = m′

xy

(
r, t0 −

(
TE −

TP

2

))
e−(TE−TP/2)/T2(r)e

−iφ′

(
r,t0;t0−

(
TE−

TP
2

))

. (2.37)

Rearranging (2.37) and applying approximations similar to those of (2.35)-(2.36),

m′
xy

(
r, t0 +

TP

2
− TE

)
= m′

xy(r, t0)e
+(TE−TP/2)/T2(r)e

+iφ′

(
r,t0;t0−

(
TE−

TP
2

))

≈ m′
xy(r, t0)e

+TE/T2(r)e
+iφ′

(
r,t0+

TP
2
;t0+

TP
2
−TE

)

(2.38)

≈ m′
xy(r, t0)e

+TE/T2(r)e+iω′(r)TE . (2.39)

The received signal is approximately proportional to the integrated transverse magne-

tization over a volume V. To derive expressions, we retake assumptions used in Subsec-

tion 2.1.2.1 and append an additional assumption on the full-repetition phase accrual φ′(r):

• We assume that the signal is localized to a scale over which there is off-resonance

phase variation, but minimal variation of m0(r), T1(r), T2(r), and α(r). This as-

sumption is reasonable7 when describing the signal arising from a typical voxel.

• We assume that free precession off resonance frequency ω′(r) is distributed over the

localized voxel as pω′ ← Cauchy(ω̄′, R′
2), where ω̄′(r) is the median off-resonance

frequency and R′
2(r) is the broadening bandwidth.

• We assume that the dephasing gradient imparts an integral number ncyc of across-

6Observe that we do not attempt to express the magnetization prior to (the next) RF excitation by simply

operating on the magnetization after (the current) RF excitation with further precession and relaxation. The

reason is due to the intermediate dephasing gradient, which causes phase accrual in excess of off-resonance

effects and thus forbids an approximation akin to (2.36).
7Model mismatch due to within-voxel spatial variation of relaxation parameters can be significant, espe-

cially for large voxels. Chapter 6 studies so-called partial volume effects and uses them for QMRI.
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voxel phase cycles8 such that full-repetition phase accrual φ′(r) is distributed essen-

tially uniformly as pφ′ ← unif(0, 2πncyc), ncyc ∈ {1, 2, 3, . . .}.
With these assumptions, the received steady-state DESS (noiseless) signal models for a

typically sized voxel centered at position r are (to within constants):

sD

(
r, t0 +

TP

2
+ TE

)
∝
∫

V(r)

m′
xy

(
r, t0 +

TP

2
+ TE

)
d3 r (2.40)

≈
∫

R

∫

R

m′
xy

(
r, t0 +

TP

2
+ TE

)
pφ′(φ′)pω′(ω′) dφ′ dω′

≈ e−TE/T2(r)

∫

R

m′
xy(r, t0 + TP)pφ′(φ′) dφ′

∫

R

e−iω′TEpω′(ω′) dω′

= +im0(r)E2(r, TE)e
−(R′

2(r)+iω̄′(r))TE tan
α(r)

2

(
1− η(r, TR)

ξ(r, TR)

)
;

(2.41)

sD

(
r, t0 +

TP

2
− TE

)
∝
∫

V(r)

m′
xy

(
r, t0 +

TP

2
− TE

)
d3 r (2.42)

≈
∫

R

∫

R

m′
xy

(
r, t0 +

TP

2
− TE

)
pφ′(φ′)pω′(ω′) dφ′ dω′

≈ e+TE/T2(r)

∫

R

m′
xy(r, t0)pφ′(φ′) dφ′

∫

R

e+iω′TEpω′(ω′) dω′

= −im0(r)E
−1
2 (r, TE)e

−(R′

2(r)−iω̄′(r))TE tan
α(r)

2
(1− η(r, TR)),

(2.43)

where (2.41) and (2.43) introduce intermediate variables

η(r, t) :=

√
1− E2

2(r, t)

1− E2
2(r, t)/ξ

2(r, t)
;

ξ(r, t) :=
1− E1(r, t) cosα(r)

E1(r, t)− cosα(r)
.

In steady-state, the DESS signal is typically greatest immediately following excitation and

defocuses with rate 1
T2

+ R′
2 until what we hereafter denote the defocusing echo time.

After a low-signal period between RF pulses, the DESS signal then refocuses with rate
1
T2
− R′

2 from what we hereafter denote the refocusing echo time until just prior the next

8In theory, it suffices to design dephasing gradients to impart as little as one cycle of net phase variation

across a voxel. In practice, field inhomogeneities will induce spurious through-voxel field gradients that mod-

ify the effective dephasing gradient moment and thereby create partial phase cycles that distort the nominally

uniform phase distribution. To reduce model mismatch due to so-called partial spoiling effects, dephasing

gradients are usually designed to nominally impart multiple complete cycles of across-voxel phase variation.

However, larger dephasing gradients cause greater DESS signal loss due to unaccounted diffusive effects.
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excitation. Fortuitously, the defocusing (2.41) and refocusing (2.43) DESS signal models

have significantly different dependence on relaxation parameters (especially T2) and thus

together are quite useful for relaxation parameter estimation.

2.2 Optimization in QMRI

This section overviews how optimization methods are leveraged in a substantial portion

of this thesis to solve practical QMRI problems. For such problems, the central idea is

to construct a suitable scalar cost function Ψ of some design variables x, whose output

Ψ(x) ∈ R is designed to provide a measure of the undesirability of x. We then employ

tailored optimization algorithms to find an x that minimizes Ψ over a set X, written as

x∗ ∈
{
arg min

x∈X
Ψ(x)

}
. (2.44)

In either optimization-based parameter estimation (Chapter 3) or acquisition design (Chap-

ter 4), we have reason to design Ψ to depend on corresponding design variables x through

MR signal models. Because these models are often (strongly) nonlinear functions of de-

sign variables, corresponding cost functions are usually non-convex in x (though the search

space X is almost always assumed convex in this thesis). Thus, most QMRI problems in

the form of (2.44) are non-convex optimization problems.

In general, solving (2.44) is more challenging when Ψ is non-convex in x than oth-

erwise, due in part to the possible presence of local extrema and/or saddle points. In the

following, we discuss two strategies used in this thesis to cope with non-convex optimiza-

tion. Subsection 2.2.1 relaxes (2.44) to instead seek a local minimizer via iterative methods.

Subsection 2.2.2 restricts attention to signal models that are linear in a portion of x and dis-

cusses a specific problem for which (2.44) simplifies for such partially linear structures.

2.2.1 Iterative Local Optimization with Constraints

This subsection overviews a method for finding a local minimizer x̂ of possibly non-convex

cost function Ψ over convex constraint set X. Such x̂ ∈ X must satisfy for some local

neighborhood’s radius δ > 0

Ψ(x̂) ≤ Ψ(x) ∀x ∈ X : ‖x̂− x‖2 < δ. (2.45)

Observe that a global optimizer x∗ satisfies (2.45) for arbitrarily large δ; thus, any global

minimizer is a local minimizer (but the converse is not necessarily true unless Ψ is convex).
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As even locally optimal minimizers are often challenging to compute analytically, many

algorithms construct x̂ by iteratively updating an initial guess x(0) until some convergence

criterion is satisfied. For a differentiable cost and convex constraints, the gradient projec-

tion method [23] is one such iterative algorithm and repeats the following simple update:

x(i) ← PX

(
x(i−1) −Π∇xΨ

(
x(i−1)

))
, (2.46)

where PX denotes projection onto X; ∇x :=
[

∂
∂x1

, . . . , ∂
∂xL

]
denotes row gradient with

respect to length-L vector x; and Π is a diagonal preconditioning matrix that permits ele-

ments of x to take scale-informed step sizes along the negative gradient direction.

If Ψ is convex and sufficiently smooth, iterates produced via (2.46) converge to a limit

point [24] that is a constrained global minimum (for appropriately selected Π). If instead

Ψ is non-convex (but X is still convex), statements regarding convergence9 to a particular

constrained local minimizer require additional (strong) assumptions regarding initialization

and in general are still much weaker than in the convex case.

Since non-convex cost functions can have many local extrema (whose associated costs

can vary dramatically), the utility of a locally optimal solution depends strongly on initial-

ization quality. Accordingly, this thesis uses iterative local optimization for non-convex

QMRI problems where a reasonable initialization is available and global optimization (to

within quantization error) via exhaustive grid search is intractable.

2.2.2 Partially Linear Models and the Variable Projection Method

(Constrained, weighted) nonlinear least-squares is a specific non-convex optimization prob-

lem that is useful for many parameter estimation problems:

x∗ ∈
{
arg min

x∈X
‖y − f(x)‖2W

}
, (2.47)

where f : X 7→ CD is a nonlinear forward model that (barring noise) relates parameters

x ∈ X ⊆ C
L to data y ∈ C

D; weighted 2-norm ‖ι‖W :=
√
ιHWι for a symmetric,

positive-semidefinite weighting matrix W ∈ RD×D and arbitrary vector ι ∈ CD; and (·)H

denotes conjugate transpose. The variable projection method [25] reduces the complexity

of (2.47) when the forward model takes the partially linear structure f(x) ≡ A(xN)xL and

9For example, it suffices to assume that x(0) lies in the attraction basin B
x̃

of a given unconstrained local

minimum x̃, where attraction basin is defined here as the largest convex set containing x̃ over which Ψ is

convex. If B
x̃
∩ X is nonempty and step sizes within Π are small enough to contain iterates within B

x̃
, then

iterates converge to the limit point PX(x̃).
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the feasible set takes the partially unconstrained form X ≡ C
LL × XN, where xL ∈ C

LL;

xN ∈ XN; and A : XN 7→ CD×LL is a matrix function. These restrictions on (2.47) define a

so-called separable least-squares problem:

(x∗
L,x

∗
N) ∈



arg min

xL∈C
LL

xN∈XN

‖y −A(xN)xL‖2W



. (2.48)

The variable projection method simplifies (2.48) by exploiting the partially linear structure

of f to explicitly express the optimal x∗
L as a function of any fixed xN ∈ XN:

x∗
L(xN) = arg min

xL∈C
LL

‖y −A(xN)xL‖2W

=
(
W1/2A(xN)

)†
W1/2y (2.49)

=
(
AH(xN)WA(xN)

)−1
AH(xN)Wy, (2.50)

where (·)† denotes pseudoinverse; W1/2 denotes principal (matrix) square root; and (2.50)

holds if the matrix inversion within exists. Substituting (2.50) into (2.48) yields a new

non-convex optimization problem that contains LL fewer unknowns than before:

x∗
N ∈

{
arg min

xN∈XN

∥∥∥y −A(xN)
(
AH(xN)WA(xN)

)−1
AH(xN)Wy

∥∥∥
2

W

}

≡
{
arg max

xN∈XN

yHWA(xN)
(
AH(xN)WA(xN)

)−1
AH(xN)Wy

}
, (2.51)

where the equivalence leading to (2.51) omits terms independent of xN.

In low-dimensional QMRI applications (e.g., those discussed in Chapter 3), reduced

problem (2.51) may be tractable via exhaustive grid search, in which case a global opti-

mum (x∗
L(x

∗
N),x

∗
N) is achievable to within quantization error. However, larger estimation

problems involving more nonlinear parameters might only be tractable via iterative opti-

mization (see Subsection 2.2.1) towards a local solution (x̂L(x̂N), x̂N).
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CHAPTER 3

QMRI Parameter Estimation

using Likelihood Models

3.1 Introduction

This brief chapter1 describes methods for QMRI parameter estimation from statistical like-

lihood models. The main purpose of this chapter is to serve as a bridge between the back-

ground information reviewed in Chapter 2 and more novel ideas introduced in later chap-

ters. As such, we place emphasis here on development of notation and terminology over

thorough validation. As instructional examples, we demonstrate likelihood-based parame-

ter estimation on simple problems involving estimation of relaxation parameters T1 and T2,

applications that Chapter 4 motivates and studies in much greater detail.

The remainder of this chapter is organized as follows. Section 3.2 introduces the notion

of a QMRI scan profile, describes a signal model for parameter estimation, and formu-

lates two likelihood-based estimators using this model. Section 3.3 demonstrates these

likelihood-based estimators through simulation experiments in two simple applications

where conventional estimators are available. Section 3.4 discusses advantages and draw-

backs of these two likelihood-based estimators. Section 3.5 provides concluding remarks.

3.2 Likelihood-Based Estimation in QMRI

3.2.1 The QMRI Scan Profile

After image reconstruction, many MRI pulse sequences useful for parameter estimation

produce at each voxel centered at position r a set of noisy voxel values {y1(r), . . . , yD(r)},
1This chapter partially derives content from conference papers [4, 5].

18



each of which can be described with the following general model:

yd(r) = sd(x(r);ν(r),pd) + ǫd(r), (3.1)

where d ∈ {1, . . . , D}. Here, x(r) ∈ CL collects L latent object parameters at r; ν(r) ∈
CK collects K known object parameters at r; sd : C

L×CK×RA 7→ C is a (pulse-sequence

dependent) function that models the noiseless signal obtained from the dth dataset using

acquisition parameter pd ∈ RA; and ǫd ∼ CN (0, σ2
d) is assumed for simplicity2 to be

(circularly-symmetric) complex Gaussian noise [28, 29] with zero mean and variance σ2
d.

Semicolon positions in signal model (3.1) and similar expressions throughout this thesis

distinguish unknown and known parameters. Concrete examples follow shortly.

For accurate, well-conditioned QMRI parameter estimation, it is typically necessary to

acquire a collection of datasets, which we refer to hereafter as a scan profile. A scan profile

consists of D datasets from up to D pulse sequences (some sequences yield more than one

dataset, e.g., DESS). Let y(r) := [y1(r), . . . , yD(r)]
T ∈ C

D collect noisy voxel values

centered at r from a given scan profile. Then the vector signal model

y(r) = s(x(r);ν(r),P) + ǫ(r) (3.2)

helps define the noiseless signal s := [s1, . . . , sD]
T : CL × CK × RA×D 7→ CD and

acquisition parameters P := [p1, . . . ,pD] ∈ RA×D associated with that scan profile.

Here, noise ǫ(r) := [ǫ1(r), . . . , ǫD(r)]
T ∈ CD typically has diagonal covariance structure

Σ := diag
(
[σ1, . . . , σD]

T

)
due to independence across datasets, where diag(·) assigns its

argument to the diagonal entries of an otherwise zero (square) matrix.

The following subsections describe two concrete scan profiles whose signals can be

modeled via (3.2) and that we study through experiments later in this chapter.

3.2.1.1 Example: An SPGR Scan Profile for T1 estimation

We first consider the problem of T1(r) estimation at r from as few SPGR scans as possible,

given a prior estimate of transmit field variation κt(r) (see (2.7)). Examining SPGR model

(2.27) makes clear that by fixing echo time TE across scans, SPGR signal dependence is

2Though the noise distribution of k-space raw data is usually well-modeled as complex white Gaussian,

the noise distribution of the dth reconstructed image yd depends both on the acquisition and reconstruction.

If single receive channel k-space data is fully-sampled on a Cartesian grid, each dataset yd is recoverable

via separate Fourier transform, and is thus complex Gaussian and independent across datasets. However if

k-space data is multi-channel, undersampled, and/or non-Cartesian, it may be preferable that yd be estimated

by more sophisticated techniques, e.g. [26, 27]. In such cases, reconstructed image noise is unlikely to be

Gaussian-distributed.
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reduced to just two spatially varying latent parameters: desired parameter T1(r) ∈ R and

nuisance parameter c1(r) := im0(r)e
−TE/T

∗

2 (r)e−iω̄′(r)TE ∈ C. We assign x← [T1, c1]
T

and

ν ← κt for L← 2 latent and K ← 1 known parameters, respectively.

With TE fixed, prescribed flip angles α0 and repetition times TR are the only remaining

A← 2 acquisition parameters available to choose that appear explicitly in (2.27). Thus, an

SPGR scan profile useful for T1 estimation must vary pd ← [α0, TR]
T∀d ∈ {1, . . . , D} over

SSPGR scan repetitions to produce D ≥ L← 2 datasets for well-conditioned estimation.

3.2.1.2 Example: A DESS Scan Profile for T2 estimation

We next consider the problem of T2(r) estimation at r from as few DESS scans as possi-

ble. Examining DESS models (2.41) and (2.43) makes clear that even with fixed TE over

possibly several acquisitions, there is signal dependence on five distinct object parameters:

κt(r) ∈ R, T1(r) ∈ R, ω̄′(r) ∈ R, c2(r) := m0(r)e
−TE/T

∗

2 (r) ∈ C, and T2(r) ∈ R. In this

chapter, we take κt(r) ∈ R and T1(r) ∈ R as known for simplicity. To avoid (separate or

joint) ω̄′(r) estimation, we choose to use magnitude DESS data, at the expense of slight

model mismatch3 due to Rician noise. These choices assign ν ← [κt, T1]
T

as K ← 2

known parameters and leave L← 2 latent parameters x← [T2, c2]
T

to be estimated.

With TE again fixed, pd ← [α0, TR]
T∀d ∈ {1, . . . , D} collects the remaining A ← 2

tunable scan parameters that appear explicitly in (2.41) and (2.43). As in Example 3.2.1.1,

D ≥ L ← 2 datasets are necessary for well-conditioned estimation. Unlike before how-

ever, a minimum D ← 2 datasets need not require scan repetition, since SDESS DESS scan

repetitions produce D ← 2SDESS datasets.

3.2.2 Latent Object Parameter Estimation

3.2.2.1 Signal Model and Problem Statement

A scan profile’s reconstructed images can be modeled to discretize the bulk MR signal into

V localized voxels centered at positions r1, . . . , rV :

Y = S(X;N,P) + E. (3.3)

3The assumption of complex Gaussian noise in noisy MRI images implies that corresponding magnitude

MRI images are Rician-distributed. However, the statistical estimators we will develop in Subsection 3.2.2

are based on Gaussian data. Fortunately, this source of model mismatch is negligible (less than 1%) for signal-

to-noise ratio (SNR) in excess of 10 [30], and the acquisitions we examine here are capable of producing SNR

in tissue of at minimum 100 and usually more.
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Here, signal model S : CL×V × C
K×V × R

A×D 7→ C
D×V is a matrix function that maps

latent X := [x(r1), . . . ,x(rV )] ∈ CL×V and known N := [ν(r1), . . . ,ν(rV )] ∈ CK×V

parameter images (with fixed acquisition parameter P) to reconstructed image data Y :=

[y(r1), . . . ,y(rV )] ∈ CD×V , save for noise image E := [ǫ(r1), . . . , ǫ(rV )] ∈ CD×V . The

goal in QMRI parameter estimation is to estimate latent parameter images X from MR

image data Y, for a fixed scan profile defined by S and P and given (separately acquired,

estimated, and here assumed) known parameter images N.

3.2.2.2 Maximum Likelihood Methods

In maximum likelihood (ML) estimation, one seeks model parameters that maximize the

likelihood of observing output data. We apply ML estimation to QMRI by first construct-

ing a likelihood function that describes the probability of observing image data Y given

latent parameters X. We then formulate ML latent parameter estimator X̂ML by finding an

estimate X̂ML(Y;N,P) of X that maximizes this likelihood function.

We first construct the likelihood function for the vth voxel’s data y(rv) and latent pa-

rameter x(rv). For complex Gaussian noise, the likelihood function is

L(x(rv)) ∝ exp
(
−‖y(rv)− s(x(rv);ν(rv),P)‖2Σ−1

)
, (3.4)

where (3.4) omits constants that are independent of x(rv) and are therefore irrelevant. As-

suming noise independence across image voxels, we can next build a simple and practical

likelihood function of the full image data as

L(X) =
V∏

v=1

L(x(rv)). (3.5)

We form an ML parameter estimate by finding X that maximizes this likelihood function:

X̂ML(Y;N,P) ∈
{
arg max

X∈XV
L(X)

}

≡
{
arg min

X∈XV
− log L(X)

}
(3.6)

=

{
arg min

X∈XV

V∑

v=1

‖y(rv)− s(x(rv);ν(rv),P)‖2Σ−1

}

=

{
arg min

X∈XV

∥∥∥Σ−1/2(Y − S(X;N,P))
∥∥∥
2

F

}
, (3.7)

where X is a (typically convex) latent parameter search space; the set equivalence in (3.6)
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uses the monotonicity of the log function; and ‖·‖F denotes the Frobenius matrix norm.

Typically, QMR image model S is nonlinear in X and so ML estimation problem (3.7)

involves non-convex optimization, which is challenging in general (see Section 2.2). Two

properties of (3.7) guide our solution strategies. First, (3.7) is separable across voxels,

so problem non-convexity is addressable on a voxel-by-voxel basis. Second, MR signal

models are usually partially linear, in which case we may employ the variable projection

method (described in Section 2.2.2) to further reduce problem complexity. For applications

studied in this chapter, these properties allow for (3.7) to be solved via simple grid search.

3.2.2.3 Regularized Likelihood Methods

In regularized likelihood (RL) estimation, we modify ML estimation problem (3.6) to in-

clude additional information in the form of regularization:

X̂RL(Y;N,P) ∈
{
arg min

X∈XV
− log L(X) + R(X)

}
. (3.8)

Here, we have freedom to design regularizer R : CL×V 7→ R to encourage desirable struc-

ture in estimates of X. We observe that it is usually reasonable to assume that each latent

object parameter map is piecewise smooth as a function of space: that is, each parameter is

likely to vary smoothly in space, except for sharp discontinuities at tissue boundaries. To

encourage piecewise-smoothness in parameter estimates, we use the regularizer

R(X) :=

L∑

l=1

βl

J∑

j=1

φl

([
JXT

]
jl

)
, where (3.9)

φl(·) := γ2
l

(√
1 + |·/γl|2 − 1

)
(3.10)

is a differentiable approximation of the absolute value function; J ∈ R
J×V evaluates J

(multi-dimensional) finite-differencing operations; [·]jl extracts the (j, l)th matrix element;

and βl is a regularization parameter that controls the relative importance of smoothing the

lth latent object parameter image. Conceptually, this regularizer penalizes inconsistencies

in adjacent latent parameter image voxels, but with a severity that depends on the degree

of inconsistency. “Small” voxel-to-voxel differences are likely due to image data noise

within a single tissue type and are penalized near-quadratically, while “large” differences

are likely due to tissue boundaries and are penalized near-linearly. Useful notions of small

versus large differences are governed by shape parameters γl ∀l ∈ {1, . . . , L}, and vary for

different latent parameter maps based on their units and relative scale.

22



In general, QMRI image signal modelS is nonlinear in X and so RL estimation problem

(3.8) requires non-convex optimization. Unlike in ML estimation, (3.8) is not separable

across voxels due to regularization, precluding global optimization (via grid search or other

methods). We instead take the corresponding ML estimate as initialization and solve (3.8)

via iterative constrained local optimization (detailed in Section 2.2.1).

3.3 Experimentation

This section demonstrates likelihood-based estimation through two experiments in simula-

tion that correspond to the simple problems defined in Section 3.2.1. Subsection 3.3.1 con-

tinues Example 3.2.1.1 in studying T1 estimation from two SPGR scans. Subsection 3.3.2

continues Example 3.2.1.2 in studying T2 estimation from one DESS scan.

3.3.1 T1 estimation from two SPGR scans

We selected T1 and T2 WM and GM values based on previously reported measurements

at 3T [31, 32] and extrapolated other nuisance latent object parameters m0 and T ∗
2 from

measurements at 1.5T [33]. For simplicity, we assumed no flip angle variation κt ← 1

and no phase accrual due to off-resonance effects ω̄′ ← 0. We assigned these parameter

values to the 81st slice of the BrainWeb digital phantom [34, 33] to create ground truth

M0,T1,T2,T
∗
2 ∈ RV maps. We simulated 217 × 181 noiseless single-coil SPGR image

datasets, varying nominal flip angles α0 ← 5, 30◦ and fixing repetition times TR ← 12.2ms

and echo times TE ← 4.67ms across SSPGR ← 2 scans. We corrupted noiseless datasets

with additive complex Gaussian noise to yield D ← 2 noisy complex datasets with signal-

to-noise ratio (SNR) ranging from 57-93, where SNR is defined here as

SNR(S,Y) :=
‖S‖F

‖Y − S‖F
. (3.11)

We estimated latent parameter maps T1,C1 using a conventional method-of-moments

(MOM) estimator [35], the ML estimator (3.7), and the RL estimator (3.8). The MOM, ML,

and RL estimators respectively took 0.11s, 0.75s, and 31s. The MOM estimator applies

linear regression voxel-by-voxel to an appropriately transformed version of the noiseless

magnitude SPGR signal model that is linear in T1, c1; see e.g. [35, 36] for details. We next

describe our implementations of ML and RL estimation in turn.

The ML estimator applies the variable projection method (VPM; described in Subsec-

tion 2.2.2) to separate nonlinear T1 estimation from linear C1 estimation. Specifically, the
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algorithm first estimates T1 voxel-by-voxel via an exhaustive grid search (over 1000 T1

values logarithmically spaced between (101.5, 103.5)ms) for a maximizer of the separated

least squares cost (2.51). It then estimates C1 via per-voxel linear regression.

The RL estimator applies a preconditioned variant of the classical gradient projection

method (GPM; described in Subsection 2.2.1) to iteratively descend towards a local opti-

mizer of the RL cost described in (3.8). We designed the preconditioner as the inverse of a

positive definite diagonal majorizer of the RL cost function’s Hessian matrix, updated for

the first five iterations and fixed thereafter. We employed a diagonal preconditioner to retain

the linear convergence guarantees of GPM [37] yet approach the practical performance of

other unprojected second-order methods (e.g., Newton’s method). We employed a simple

step-halving line search at each iteration to ensure monotone local convergence in cost. We

initialized GPM with the ML estimates. We selected regularization parameters as described

in Subsection 4.4.2.1. We used the Michigan image reconstruction toolbox [38] to construct

the regularizer and rapidly evaluate its gradient and Hessian. We used the MATLAB® sym-

bolic toolbox to generate analytical expressions for the gradient and Hessian of the SPGR

signal model. At each iteration, we used these gradient and Hessian expressions to com-

pute a preconditioned descent direction, updated the iterate (possibly after backtracking to

ensure descent), and projected each voxel’s T1 iterate to within [10, 3000]ms. We continued

iterations until the convergence criterion

∥∥Ω−1
(
X(i) −X(i−1)

)∥∥
F
< 10−7

∥∥Ω−1
(
X(i)

)∥∥
F

(3.12)

was satisfied, where (·)(i) denotes the ith iterate, Ω := diag
(
med

(
X(0)

))
is a weighting

matrix, and med(·) takes the median across the columns of its argument.

Fig. 3.1 compares MOM, ML, and RL T1 estimates alongside 10× magnified absolute

difference images with respect to the ground truth. Overall, all three estimators produce

reasonable T1 maps. The MOM and ML T1 estimates are visually similar. The RL T1 es-

timates are smoother than the MOM and ML T1 estimates away from tissue interfaces, but

the RL T1 estimate incurs systematically higher errors near tissue boundaries and provides

reduced spatial resolution.

Table 3.1 presents T1, c1 samples statistics within WM-like and GM-like ROIs selected

to contain voxels that are well away from tissue interfaces. In both WM and GM, MOM

and ML T1,C1 estimates are comparable. RL estimates consistently exhibit the lowest

variation, but the RL T1 estimate exhibits the greatest bias in WM. All RL bias values

would be significantly greater if ROIs instead contained voxels at tissue interfaces.
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Figure 3.1: T1 MOM, ML, and RL estimates and corresponding error images, from two

simulated SPGR scans. Magnitude error images are 10× magnified. Voxels not assigned

WM- or GM-like relaxation times are masked out in post-processing for display. Table 3.1

presents corresponding sample statistics.

Truth MOM ML RL

WM T1 832 832.7 ± 15.6 832.7 ± 15.6 834.00 ± 2.77
GM T1 1331 1332 ± 34.9 1332 ± 34.9 1332.2 ± 6.3

WM c1 0.77 0.7266 ± 0.00744 0.7314 ± 0.00749 0.73184 ± 0.00475
GM c1 0.86 0.8245 ± 0.0108 0.8301 ± 0.0109 0.8287 ± 0.0059

Table 3.1: Sample means ± sample standard deviations of MOM, ML, and RL T1, c1 esti-

mates from two simulated SPGR datasets, computed over 3001 WM-like and 1151 GM-like

voxels. Each sample statistic is rounded off to the highest place value of its (unreported)

standard error, computed via formulas in [3]. T1 values are in milliseconds. c1 values are

unitless. Fig. 3.1 presents corresponding images.

3.3.2 T2 estimation from one DESS scan

Using the same ground truth parameters maps as in Subsection 3.3.1, we simulated noise-

less single-coil DESS image datasets arising from SDESS ← 1 DESS scan with nominal flip

angle α0 ← 45◦, repetition time TR ← 17.5ms, and symmetric echo times TE ← 4.67ms.

We corrupted noiseless datasets with additive complex Gaussian noise to yield D ← 2

noisy complex datasets with SNR ranging from 97-134, where SNR is defined as in (3.11).

We estimated latent parameter maps T2,C2 using a conventional MOM estimator [22],
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the ML estimator (3.7), and the RL estimator (3.8). The MOM, ML, and RL estimators

respectively took 0.09s, 0.76s, and 26s; we describe their implementations next in turn. For

symmetric echo times, the voxel-by-voxel MOM estimator assigns

T̂2(y1, y2)← −
2(TR − TE)

log |y2/y1|
, (3.13)

where y1 and y2 are noisy measurements of the defocused (2.41) and refocused (2.43)

DESS signals, respectively. With T̂2 fixed, the MOM method then estimates C2 via per-

voxel linear regression. This MOM estimator incurs strong bias for flip angles that provide

practical SNR levels, mainly because it neglects T1 effects. This MOM estimator also

amplifies noise due to the division operation.

Similar to Subsection 3.3.1, the ML estimator applies VPM to separate nonlinear T2 es-

timation from linear C2 estimation. The algorithm first estimates T2 voxel-by-voxel via an

exhaustive grid search over 1000 T2 values logarithmically spaced between (100.5, 103)ms.

It then estimates C2 via per-voxel linear regression.

The RL estimator applies preconditioned GPM to iteratively descend towards a local

optimizer of the RL cost described in (3.8). GPM implementation details remain largely

unchanged from those described in Subsection 3.3.1. At each iteration, we computed a

preconditioned descent direction (using MATLAB®-generated analytical expressions for

the gradient and Hessian of the DESS signal models), updated the iterate (possibly after

backtracking to ensure monotone descent), and projected each voxel’s T2 iterate to within

[1, 700]ms. We continued iterations until convergence criterion (3.12) was satisfied.

Fig. 3.2 compares MOM, ML, and RL T2 estimates alongside 10× magnified absolute

difference images with respect to the ground truth. Overall, the ML and RL estimators

produce more reasonable T2 maps than does the MOM estimator (but utilize additional

κt, T1 information). The RL T2 estimates are smoother than ML T2 estimates away from

tissue interfaces, but the RL T2 estimate incurs systematically higher errors near tissue

boundaries and provides reduced spatial resolution.

Table 3.2 presents T2, c2 sample statistics within the same well-isolated ROIs as was

used in Table 3.1. MOM estimates are consistently most biased. The MOM and ML T2

estimates exhibit similar levels of variability. RL estimates consistently exhibit more bias

and less variation than ML estimates.
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Figure 3.2: T2 MOM, ML, and RL estimates and corresponding error images, from one

simulated DESS scan. Magnitude error images are 10× magnified. Voxels not assigned

WM- or GM-like relaxation times are masked out in post-processing for display. Table 3.2

presents corresponding sample statistics.

Truth MOM ML RL

WM T2 79.6 68.13 ± 1.64 79.36 ± 2.18 76.402 ± 0.411
GM T2 110. 95.86 ± 3.21 110.2 ± 4.19 111.57 ± 0.88

WM c2 0.77 0.8578 ± 0.0148 0.7852 ± 0.0149 0.79290 ± 0.00457
GM c2 0.86 0.9523 ± 0.0241 0.8545 ± 0.0240 0.8510 ± 0.0063

Table 3.2: Sample means ± sample standard deviations of MOM, ML, and RL T2, c2 esti-

mates from one simulated DESS dataset, computed over 3001 WM-like and 1151 GM-like

voxels. Each sample statistic is rounded off to the highest place value of its (unreported)

standard error, computed via formulas in [3]. T2 values are in milliseconds. c2 values are

unitless. Fig. 3.2 presents corresponding images.

3.4 Discussion

The simulated experiments in this chapter serve to illustrate that MRI parameter estimation

from likelihood models can often offer greater accuracy than conventional MOM estima-

tion, though usually at the expense of greater computation. Simulations corresponding to

Ex. 3.2.1.1 demonstrated small but consistent ML and RL accuracy gains over MOM c1

estimation, primarily because likelihood-based estimators here considered complex image

27



noise statistics. Simulations corresponding to Ex. 3.2.1.2 demonstrated larger ML and RL

accuracy gains over MOM T2, c2 estimation, primarily because likelihood-based estimators

here required fewer bias-inducing signal model approximations. In general, such accuracy

gains may be more substantial in more complicated QMRI estimation problems that for

MOM estimation will require stronger model approximations.

Because likelihood-based estimators do not rely on (possibly intractable) algebraic ma-

nipulations of the application-specific signal model, they are also more general-purpose

tools than are MOM estimators. Indeed, algorithms for implementing the ML (3.7) (i.e.,

VPM with grid search) or RL (3.8) estimators (i.e., GPM) are typically available even when

the associated inverse problem is poorly conditioned. In such cases, ML estimates still need

not necessarily be imprecise in all latent parameter entries, a behavior that Ch. 4 charac-

terizes and then exploits. Because of their relative flexibility, we utilize likelihood-based

estimators over MOM estimators for the more complex QMRI problems studied in Ch. 4.

Simulations herein demonstrate that ML versus RL estimation performance can be char-

acterized by a bias-variance tradeoff: RL estimation reduces variation in regions well away

from tissue interfaces, but increases bias near interfaces. Thus, a decision of whether to

include regularization (and with what strength) should consider the degree to which re-

gions of interest contain interfaces. Since the applications studied in later chapters take

interest in resolving subtle WM/GM boundaries with high spatial resolution and associ-

ated experiments use fully-sampled k-space data, we hereafter employ ML estimation by

default (though Ch. 4 also provides comparisons with RL estimation). In other QMRI

problems that utilize low spatial frequency or highly under-sampled data or involve poorly-

conditioned parameter estimation, including regularization may instead be preferable.

Both simulated experiments used acquisition parameters similar to those used in ear-

lier studies [36, 39]. While these studies provide intuitive reasoning for some acquisition

parameter choices, it is unclear whether these choices are in any sense optimal for the re-

spective tasks of T1 or T2 estimation. Motivated by this question, Ch. 4 defines one notion

of acquisition parameter optimality and investigates how optimized acquisition parameters

can improve T1, T2 ML estimation performance.

3.5 Conclusion

This transitional chapter has developed a formalism to describe a general QMRI scan pro-

file and has described two likelihood-based estimators for QMRI parameter estimation. We

have demonstrated these ML and RL estimators in two simple applications where conven-

tional MOM estimators are available, namely T1 estimation from two SPGR scans and T2
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estimation from one DESS scan. Simulations illustrate that ML and RL estimators can of-

ten offer greater accuracy than MOM estimators, though usually at the expense of greater

computation. Because of their accuracy and generality, likelihood-based QMRI estimators

will be used to validate a new method for scan design in Ch. 4 and for comparison with a

new QMRI parameter estimation method in Ch. 5.
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CHAPTER 4

QMRI Acquisition Design via

Min-Max Optimization

4.1 Introduction

Fast, accurate relaxometry, or quantification of spin-lattice and spin-spin relaxation param-

eters T1 and T2 has been of longstanding interest in MRI. Many researchers have suggested

that T1, T2 “maps” (i.e., estimated parameter images) may serve as biomarkers for moni-

toring the progression of various disorders [40]. Neurological applications include: lesion

classification in multiple sclerosis [41]; tumor characterization [42, 43]; and symptom on-

set prediction in stroke [44, 45]. In addition, T1, T2 have shown promise for detecting

hip and knee cartilage degeneration [46, 47] and for assessing cardiac dysfunction due to

iron overload [48] or edema [49]. Motivated by this broad interest in T1, T2 mapping, this

chapter1 describes a systematic method to guide QMRI scan design.

Classical pulse sequences such as inversion/saturation recovery (IR/SR) or (single) spin

echo (SE) yield relatively simple methods for T1 or T2 estimation, respectively; however,

these methods require several scans, each with long repetition time TR, leading to unde-

sirably long acquisitions. Numerous modifications such as the Look-Locker method [50],

multi-SE trains [51], or fast k-space trajectories [52, 53, 54] have been proposed to accel-

erate T1 [55, 56, 57, 58] and T2 [59, 60, 61, 62] relaxometry with these classical sequences.

These techniques are more sensitive to model non-idealities [63, 64, 65], and are still speed-

limited by the long TR required for (near)-complete T1 recovery.

Steady-state (SS) pulse sequences [16, 17] permit short TR, and are thus inherently

much faster than classical counterparts. SS techniques are well-suited for relaxometry be-

cause the signals produced are highly sensitive to T1 and T2 variation. However, short TR

times also cause SS signals to be complex functions of both desired and undesired (nui-

1This chapter mainly derives content from published journal paper [6] that extends conference paper [7].
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sance) parameters, complicating quantification. Furthermore, some such methods [36, 66]

still require scan repetition, though individual scans are now considerably shorter. Despite

these difficulties, the potential for rapid scanning with high T1, T2 sensitivity has motivated

numerous SS relaxometry studies [67, 36, 66, 68, 69, 70, 71, 39, 72, 73].

The dual-echo steady-state (DESS) sequence [22] was recently proposed as a promising

SS imaging technique for T2 estimation [71]. Because it produces two distinct signals per

excitation, the DESS sequence can reduce scan repetition requirements by recording close

to twice as much data per scan. As with other SS methods, the resulting signals [74, 75] are

complicated functions of T1, T2, and other parameters (see Section 2.1.2.2 for derivations).

Prior works have isolated T2 dependencies using either algebraic manipulations of the first-

and second-echo signals [71, 39] or separate scans to first estimate nuisance parameters [5].

Although DESS concurrently encodes rich T1 and T2 information, these methods have shied

away from using DESS for T1 estimation, either through bias-inducing approximations, or

noise-propagating sequential estimation, respectively.

Whether it be with DESS, other sequences, or even combinations thereof, it is generally

unclear how to best assemble a scan profile (i.e., a collection of scans) for a fixed amount

of scan time. Furthermore, for a given scan profile, it is typically not obvious how to best

select acquisition parameters (e.g., flip angles, repetition times, etc.) for relaxometry. In

this and subsequent chapters, the term scan design refers to the related problems of scan

profile selection and acquisition parameter optimization.

Historically, scan design for relaxometry has mainly been explored using figures of

merit related to estimator precision. In particular, several studies have used the Cramér-Rao

Bound (CRB), a statistical tool that bounds the minimum variance of an unbiased estimator.

Earlier works have used the CRB and variations to select inversion times for recovery

experiments [76, 77], flip angles for spoiled gradient-recalled echo (SPGR) sequences [78],

and echo times for SE experiments [79]. More recent studies have considered additional

scan design challenges, including scan time constraints [80], multiple latent parameters

[81], multiple scan parameter types [82], and latent parameter spatial variation [83, 84, 85].

The aforementioned studies consider scan parameter optimization for profiles consist-

ing of only one pulse sequence. In contrast, this chapter introduces a general framework

for robust, application-specific scan design for parameter estimation from combinations of

pulse sequences. The framework first finds multiple sets of scan parameters that achieve

precise estimation within a tight, application-specific range of object parameters (e.g.,

T1, T2, etc.). The framework then chooses the one scan parameter set most robust to esti-

mator precision degradation over a broader range of object parameters. As a detailed ex-

ample, we optimize three combinations of SPGR and DESS sequences for T1, T2 mapping.
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For a fixed total scan time, we find that well-chosen DESS scans alone can be used to es-

timate both T1 and T2 with precision and robustness comparable to combinations of SPGR

and DESS. This example illustrates that, with careful scan profile design, well-established

pulse sequences can find use in new estimation problems.

This chapter is organized as follows. Section 4.2 describes a CRB-inspired min-max op-

timization problem for robust, application-specific scan design. Section 4.3 optimizes three

practical DESS/SPGR combinations to show that, even in the presence of radiofrequency

(RF) field inhomogeneity, DESS is a promising option for T1, T2 relaxometry. Section 4.4

describes simulation, phantom, and in vivo experiments and discusses corresponding re-

sults. Section 4.5 investigates the sensitivity of single-compartment T2 estimates to model

mismatch due to multi-compartment relaxation. Section 4.6 discusses advantages, chal-

lenges, and extensions. Section 4.7 summarizes key contributions.

4.2 A CRB-Inspired Scan Selection Method

4.2.1 The CRB and its Relevance to QMRI

Recall from Section 3.2.1 that after image reconstruction, we can model the single-voxel

MR image domain data associated with a particular scan profile as

y = s(x;ν,P) + ǫ, (4.1)

where signal model s := [s1, . . . , sD]
T : CL × CK × RA×D 7→ CD relates latent x ∈ CL,

known ν ∈ C
K , and acquisition P ∈ R

A×D parameters to noisy scan profile image data

y ∈ CD, barring noise ǫ ∈ CD. Assuming (as in Section 3.2.1) complex Gaussian noise

ǫ ∼ CN (0,Σ), the likelihood function (3.4) is (to within constants independent of x)

L(x|y) ∝ exp
(
−‖y − s(x;ν,P)‖2Σ−1

)
. (4.2)

Under suitable2 regularity conditions, the Fisher information matrix F(x;ν,P) ∈ CL×L

[86] characterizes the imprecision of unbiased estimates of x from y, given ν and P:

F(x;ν,P) := Ey

(
(∇x log L(x|y))H∇x log L(x|y)

)

= (∇xs(x;ν,P))HΣ−1∇xs(x;ν,P), (4.3)

2In particular, s must be analytic in complex components of x.
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where Ey(·) denotes element-wise expectation with respect to y. In particular, the matrix

CRB [87] ensures that any unbiased3 estimator x̂ satisfies

cov x̂;ν,P � F−1(x;ν,P), (4.4)

where for arbitrary, equally-sized C1 and C2, matrix inequality C1 � C2 means C1 −C2

is positive semi-definite. In the following, we design an optimization problem based on the

CRB to guide QMRI scan design for relaxometry.

4.2.2 Min-max Optimization Problem for Scan Design

Following [88], we focus on minimizing a weighted average of the variances in each of the

L latent object parameter estimates. A reasonable objective function for overall estimator

precision is therefore given by

Ψ(x;ν,P) = tr
(
WF−1(x;ν,P)WT

)
, (4.5)

where W ∈ R
L×L is a diagonal, application-specific matrix of weights, preselected to

control the relative importance of precisely estimating the L latent object parameters. For

scan design, we would like to minimize (4.5) with respect to scan parameters P.

The CRB depends not only on P but also on the spatially varying object parameters x

and ν . Thus, one cannot perform scan design by “simply” minimizing Ψ with respect to

scan parameters P. Instead, we pose a min-max optimization problem for scan design: we

seek candidate scan parameters P̆ over a search space P that minimize the worst-case (i.e.,

maximum) cost Ψ̃t, as viewed over “tight” object parameter ranges Xt and Nt:

P̆ ∈
{
arg min

P∈P
Ψ̃t(P)

}
, where (4.6)

Ψ̃t(P) := max
x∈Xt

ν∈Nt

Ψ(x;ν,P). (4.7)

Here, we select latent parameter set Xt based on the application and known parameter set

Nt based on the spatial variation typically observed in the known parameters ν. Min-max

3Provided that signal model s(·) is injective and continuously differentiable in x, maximum-likelihood

(ML) estimates of x (discussed in Subsection 3.2.2.2) are asymptotically consistent and efficient, and thus

asymptotically achieve the CRB. For Gaussian noise models, increasing sample size is statistically equivalent

to increasing signal-to-noise ratio. Thus, in regions where the data provides sufficiently high SNR (and is

thus approximately Gaussian-distributed even in magnitude [30]), ML estimates will exhibit minimal esti-

mation bias, and the CRB can be used to reliably predict ML estimation error. Table 4.2 in Subsection 4.4.1

empirically explores the validity of this high-SNR assumption, through simulations at realistic noise levels.
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approach (4.9) should ensure good estimation precision over a range of parameter values.

Since Ψ is in general non-convex with respect to P, it may have multiple global min-

imizers as well as other scan parameters that are nearly global minimizers. To improve

robustness to object parameter variations, we form an expanded set of candidate scan pa-

rameters by also including scan parameters that yield costs to within a tolerance δ ≪ 1

of the optimum. Mathematically, we define this expanded set of candidate scan parameter

combinations (for a given scan profile) as

P̆ :=
{
P : Ψ̃t(P)− Ψ̃t

(
P̆
)
≤ δΨ̃t

(
P̆
)}

. (4.8)

To select amongst these candidate scan parameters, we employ a robustness criterion: we

select the single scan parameter P̂ that degrades the least when the worst-case cost is

viewed over widened object parameter sets Xb ⊇ Xt and Nb ⊇ Nt:

P̂ = arg min
P∈P̆

Ψ̃b(P), where (4.9)

Ψ̃b(P) := max
x∈Xb

ν∈Nb

Ψ(x;ν,P). (4.10)

To compare different scan profiles, we select corresponding search spaces P to satisfy ac-

quisition constraints (e.g., total scan time), but otherwise hold optimization parameters W,

δ, Xt, Xb, Nt, Nb fixed. Since Ψ is data-independent, we can solve (4.6) and (4.9) offline

for each scan profile. The result of each profile’s min-max optimization process (4.9) is a

corresponding optimized scan parameter matrix P̂ that is suitable for the range of latent x

and known ν object parameters specified in Xt and Nt, and is robust to variations in those

parameters over broader sets Xb and N
b, respectively.

4.3 Optimizing SS Sequences for Relaxometry in the Brain

This section applies the methods of Section 4.2.2 to the problem of scan design for joint

T1, T2 estimation from combinations of SS sequences. Section 4.3.1 details how we use

optimization problems (4.6) and (4.9) to tailor three SPGR and DESS scan combinations for

precise T1, T2 estimation in white matter (WM) and grey matter (GM) regions of the brain.

Section 4.3.2 compares the predicted performance of the three optimized scan profiles.
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4.3.1 Scan Design Details

There are numerous candidate scan profiles involving DESS and/or other pulse sequences

that may be useful for fast, accurate T1, T2 mapping. In this chapter, we consider combi-

nations of magnitude SPGR and DESS scans for estimating the L ← 3 latent parameters

T1, T2, and proportionality constant c2 (defined in Example 3.2.1.2), given knowledge of

transmit field inhomogeneity κt as K ← 1 known parameter. With proper RF phase cycling

and gradient spoiling, the SPGR signal sS (as expressed in (2.27)) contains no explicit T2

dependence. SPGR’s reduced dependence on spatially varying unknowns is reason for its

use in T1 mapping [67, 66, 68] and subsequent T2 mapping from other sequences [36, 5].

In a similar spirit, we examine scan profiles containing SPGR over other SS sequences

because we predict that the SPGR sequence’s T2-independence may help estimators disen-

tangle T2 from other unknown sources of DESS signal contrast.

As respectively discussed in Examples 3.2.1.1-3.2.1.2, each SPGR and DESS scan

leaves p← [α0, TR]
T as A← 2 acquisition parameters available to optimize. A given scan

profile consisting of SSPGR SPGR and SDESS DESS scans yields D ← SSPGR + 2SDESS

datasets. We optimize such a scan profile by solving (4.9) over a dimension-AD ←
2(SSPGR + 2SDESS) space of scan parameters.

We select constraints on search space P based on hardware limitations and desired scan

profile properties. Since each pair of DESS signals must share the same p, the search space

P is reduced to A
SSPGR
0,SPGR × A

SDESS
0,DESS × T

SSPGR
R,SPGR × T

SDESS
R,DESS (superscripts denote Cartesian

powers). We assign flip angle ranges A0,SPGR ← [5, 90]◦ and A0,DESS ← [5, 90]◦ to restrict

RF energy deposition within the orifice of the main magnet. We set feasible TR solution sets

TR,SPGR ← [12.2,+∞)ms and TR,DESS ← [17.5,+∞)ms based on pulse sequence designs

that control for other scan parameters. These control parameters are described in further

detail in Section 4.4, and are held fixed in all subsequent SPGR and DESS experiments. To

equitably compare optima from different scan profiles, we require

TR := [TR,1, . . . , TR,SSPGR
, TR,SSPGR+1, . . . , TR,SSPGR+SDESS

]T

to satisfy a total time constraint, ‖TR‖1 ≤ Tmax. For a scan profile consisting of SSPGR

SPGR and SDESS DESS scans, these constraints collectively reduce the search space di-

mension from AD to 2(SSPGR + SDESS)− 1.

Prior works have considered T1 or T2 estimation from as few as 2 SPGR [78, 36] or

1 DESS [71] scan(s), respectively. We likewise elect to optimize the (SSPGR, SDESS) ←
(2, 1) scan profile as a benchmark. We choose Tmax ← 2(12.2) + 1(17.5) = 41.9ms and

select other scan profiles capable of meeting this time constraint. Requiring that candidate
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profiles contain SDESS ≥ 1 DESS scans for T2 contrast and satisfy D ≥ L(= 3) for well-

conditioned estimation, we note that (1, 1) and (0, 2) are the only other eligible profiles.

In the ensuing experiments, we focus on precise T1, T2 estimation in the brain. Noting

that T1 ∼ 10T2, we choose W ← diag(0.1, 1, 0) to place approximately equal impor-

tance on precise T1 versus T2 estimation and zero weight on proportionality constant c2

estimation (obviating the need for complex differentiation in (4.3)). Since Ψ then de-

pends on c2 through only a scale factor, it suffices to fix c2 ← 1 and design the la-

tent object parameter range as Xt ← Tt
1 × Tt

2 × 1. Here, Tt
1 ← [800, 1400]ms and

Tt
2 ← [50, 120]ms correspond to WM and GM regions of interest (ROIs) at 3T [31, 32]. We

take Nt ← [0.9, 1.1] to account for 10% transmit field spatial variation. Broadened ranges

X
b ← [400, 2000]ms × [40, 200]ms × 1 and N

b ← [0.5, 2] are constructed to encourage

solutions robust to a realistically wide range of object parameters. We assume constant

noise variance σ2
1 = · · · = σ2

D := σ2, where σ2 ← 1.49 × 10−7 is selected to reflect mea-

surements from normalized phantom datasets (cf. Section 4.4.2.1 for acquisition details).

Lastly, we set δ ← 0.01 to select a robust scan parameter P̂ with associated worst-case cost

Ψ̃t
(
P̂
)

within 1% of global optimum Ψ̃t
(
P̆
)

.

4.3.2 Scan Profile Comparisons

We solve (4.6) and (4.9) via grid search to allow illustration of Ψ̃t(P) as well as worst-case

T1, T2 standard deviations σ̃t
T1
(P) and σ̃t

T2
(P), each defined as

σ̃t
T1
(P) := max

x∈Xt

ν∈Nt

σT1(x;ν,P); (4.11)

σ̃t
T2
(P) := max

x∈Xt

ν∈Nt

σT2(x;ν,P), (4.12)

where σT1(x;ν,P) and σT2(x;ν,P) are corresponding diagonal elements of inverse Fisher

matrix F−1(x;ν,P). Grid searches for the (2, 1), (1, 1), and (0, 2) profiles each took about

4, 43, and 28 minutes, respectively. All experiments described hereafter were carried out

using MATLAB® R2013a on a 3.5GHz desktop with 32GB RAM.

Table 4.1 compares optimized scan parameters for profiles consisting of (2, 1), (1, 1),

and (0, 2) SPGR and DESS scans, respectively. In addition to σ̃t
T1
(P̂) and σ̃t

T2
(P̂), Ta-

ble 4.1 presents analogous worst-case standard deviations σ̃b
T1
(P̂) and σ̃b

T2
(P̂) over Xb×Nb

to show how each estimator degrades over the broadened object parameter range. When

viewed over tight range Xt × Nt, the (0, 2) profile provides a 11.5% reduction in worst-

case cost over the other choices. Extending to broadened range Xb × Nb, this reduction
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Scan (2, 1) (1, 1) (0, 2)

α̂spgr
0 (15,5)◦ 15◦ –

α̂dess
0 30◦ 10◦ (35,10)◦

T̂ spgr
R (12.2, 12.2) 13.9 –

T̂ dess
R 17.5 28.0 (24.4, 17.5)

σ̃t
T1
(P̂) 28 27 21

σ̃b
T1
(P̂) 154 169 113

σ̃t
T2
(P̂) 1.3 2.8 1.5

σ̃b
T2
(P̂) 9.1 8.8 6.0

Ψ̃t(P̂) 4.0 4.9 3.5

Ψ̃b(P̂) 17.7 17.9 12.2

Table 4.1: Performance summary of different scan profiles, optimized by solving (4.9)

subject to scan time constraint Tmax = 41.9ms. The first row defines each profile. The next

four rows describe P̂. The latter three pairs of rows show how worst-case values degrade

from tight to broad ranges. Flip angles are in degrees; all other values are in milliseconds.

grows dramatically to 31.4%. We thus observe that while the different optimized profiles

afford similar estimator precision over a narrow range of interest, the (0, 2) profile may be

preferable due to its robustness to a wide range of object parameters.

Fig. 4.1 displays heat maps of worst-case latent parameter standard deviations σ̃t
T1

, σ̃t
T2

and worst-case cost Ψ̃t as pairs of flip angles are varied away from the optimized scan

design P̂. Boxes group subfigures corresponding to the same scan profile. Viewing the

bottom row of subfigures, it is evident that Ψ̃t(P̂) takes similar values for the different scan

profiles. However, it is apparent that the (SSPGR, SDESS) = (0, 2) profile is substantially

more robust to transmit field variation than other tested profiles (namely, (2, 1) and (1, 1)).

Optimized worst-case cost over broadened latent parameter ranges Ψ̃b(P̂) captures this

by expanding the range of possible flip angles from Nt = [0.9, 1.1] to Nb = [0.5, 2] to

account for factor-of-two spatial variation in relative flip angle. As a result, we find that the

properties of “broad” search criterion Ψ̃b provide a stronger reason to select the (0, 2) scan

for joint T1, T2 estimation in the brain than the properties of “tight” search criterion Ψ̃t.

As the DESS sequence has already found success for T2 mapping from even one scan

[71], it is reassuring but unsurprising that our analysis finds two DESS scans to yield the

most precise T2 estimates. More interestingly, our methods suggest that, with a minimum

SDESS = 2 scans, DESS can be used to simultaneously estimate T1 as well. In fact, for

certain choices of parameter ranges, a second DESS scan is predicted to afford T̂1 precision

comparable to two SPGR scans.
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4.4 Experimentation

To test our approach to optimized scan design (described in Section 4.2.2), we estimate

T1 and T2 maps (using maximum likelihood (ML) and regularized likelihood (RL) meth-

ods detailed in Section 3.2.2) from datasets collected using the scan profiles optimized in

Section 4.3. In Section 4.4.1, we study estimator statistics from simulated data. In Sec-

tions 4.4.2-4.4.3, we progress to phantom and in vivo datasets to evaluate scan profile per-

formance under increasingly complex settings. For the latter experiments, we use reference

parameter maps from classical (long) pulse sequences, in lieu of ground truth maps.

4.4.1 Numerical Simulations

We select T1 and T2 WM and GM values based on previously reported measurements at

3T [31, 32] and extrapolate other nuisance latent object parameters m0 and T ∗
2 from mea-

surements at 1.5T [33]. We assign these parameter values to the discrete anatomy of the

BrainWeb digital phantom [34, 33] to create ground truth M0,T1,T2,T
∗
2 ∈ RV maps.

We then choose acquisition parameters based on Table 4.1 (with fixed TE = 4.67ms)

and apply models (2.27) and (2.41)-(2.43) to the 81st slices of these true maps to compute

noiseless 217× 181 SPGR and DESS image-domain data, respectively.

For each scan profile, we corrupt the corresponding (complex) noiseless dataset S with

additive complex Gaussian noise, whose variance σ2 ← 1.49 × 10−7 is set to match CRB

calculations. This yields realistically noisy datasets Y ranging from 105-122 signal-to-

noise ratio (SNR), where SNR is defined here as

SNR(S,Y) :=
‖S‖F

‖Y − S‖F
. (4.13)

We use each profile’s noisy magnitude dataset |Y| to compute estimates T̂1 and T̂2 We

then evaluate estimator bias and variance from latent ground truth T1 and T2 maps.

In these simulations, we intentionally neglect to model a number of physically realistic

effects because their inclusion would complicate study of estimator statistics. First and

foremost, we assume knowledge of a uniform transmit field, to avoid confounding κt and

T1, T2 estimation errors. For a similar reason, spatial variation in the sensitivity of a single

receive coil is also not considered. We omit modeling partial volume effects to ensure

deterministic knowledge of WM and GM ROIs. We will explore the influence of these

(and other) nuisance effects on scan design in later subsections and chapters.

To isolate bias due to estimator nonlinearity from regularization bias, we solve ML

problem (3.7) only, and do not proceed to solve RL problem (3.8). This permits considera-
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Scan (2, 1) (1, 1) (0, 2) Truth

WM T̂ML
1 830± 17 830± 15 830± 14 832

GM T̂ML
1 1330± 30. 1330± 24 1330± 24 1331

WM T̂ML
2 80.± 1.0 80.± 2.1 79.6± 0.94 79.6

GM T̂ML
2 110.± 1.4 110.± 3.0 110.± 1.6 110

Table 4.2: Sample means ± sample standard deviations of T1 and T2 ML estimates in

WM and GM ROIs of simulated data, compared across different optimized scan profiles.

Sample means exhibit insignificant bias, and sample standard deviations are consistent with

worst-case standard deviations σ̃t
T1

and σ̃t
T2

reported in Table 4.1. All values are reported

in milliseconds.

tion of T1, T2 estimation from each of the 7733 WM or 9384 GM data points as voxel-wise

independent realizations of the same estimation problem. To minimize quantization bias,

we optimize (3.7) using a finely spaced dictionary of signal vectors from 1000 T1 and T2

values logarithmically spaced between [102, 103.5] and [101, 102.5], respectively. Using 106

dictionary elements, solving (3.7) took less than 7 minutes for each tested scan design P̂.

Table 4.2 verifies4 that, despite model nonlinearity and Rician noise, estimation bias

in WM- and GM-like voxels is negligible. Sample standard deviations are consistent with

σ̃t
T1

and σ̃t
T2

(cf. Table 4.1). We observe that the (1, 1) and (0, 2) profiles afford high T̂ML
1

precision, while the (2, 1) and (0, 2) scans afford high T̂ML
2 precision. In agreement with

the predictions of Ψ̃t and Ψ̃b, these simulation studies suggest that at these SNR levels, an

optimized profile containing 2 DESS scans can permit T1 and T2 estimation precision in

WM and GM comparable to optimized profiles containing SPGR/DESS combinations.

Fig. 4.2 histograms (voxel-wise independent) ML estimates T̂ML
1 and T̂ML

2 from the

(0, 2) scan profile. Each histogram is over a WM or GM ROI, within which all voxels are

assigned the same single-component true T1 and T2 nominal value, listed in Table 4.2.

Overlaid in dashed maroon are normal distributions with latent means T1 and T2 and

variances computed from the Fisher matrix at T1, T2 values in WM or GM. It is apparent

that despite finite SNR and Rician noise, T̂ML
1 and T̂ML

2 exhibit negligible bias and near-

Gaussian shape, suggesting locally linear behavior of the DESS signal model in T1 and T2

(T̂ML
1 and T̂ML

2 distributions from other profiles are similar).

The subfigures of Fig. 4.2 superimpose in solid green a second set of normal distribu-

tions, with the same means T1 and T2 as before, but worst-case standard deviations σ̃t
T1

and σ̃t
T2

. The separations between these distribution pairs visually depict how estimator

4Each sample statistic presented in this chapter is rounded off to the highest place value of its correspond-

ing uncertainty measure. For simplicity, each uncertainty measure is itself endowed one extra significant

figure. Decimal points indicate the significance of trailing zeros.
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2 in voxels with GM-like T2 ← 110

Figure 4.2: Histograms of T1 and T2 estimates from noisy independent measurements of a

single nominal WM or GM value. In each plot, two normal distributions are overlaid, each

with latent means T1 and T2. In (a)-(b) and (c)-(d), the solid green curve isN
(
T1, (σ̃

t
T1
)2)
)

andN
(
T2, (σ̃

t
T2
)2
)
, respectively. In (a)-(d), the dashed maroon curves have variances com-

puted from the Fisher information at a priori unknown T1, T2 values in WM or GM. These

plots correspond to an optimized (0, 2) scan profile; analogous plots for other profiles are

visually similar. At realistic noise levels, parameter estimates distribute with minimal bias

and near-Gaussian shape. Thus, the CRB reliably approximates T̂ML
1 and T̂ML

2 errors.
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variances specific to WM or GM T1 and T2 values differ from worst-case variances. Using

the fixed latent object parameters to optimize scan profiles can tailor scans for precise es-

timation in either WM or GM. In contrast, the proposed min-max formulation finds scan

parameters that ensure precise estimation in both WM and GM.

4.4.2 Phantom Experiments

This subsection describes two experiments. In the first experiment, we compare SPGR/DESS

scan profiles described in Table 4.1 (as well as a reference profile consisting of IR and SE

scans) against nuclear magnetic resonance (NMR) measurements from the National Insti-

tute for Standards and Technology (NIST) [2]. These measurements provide information

about ROI sample means and ROI sample standard deviations (Fig. 4.5), which we define

as first- and second-order statistics computed across voxels within an ROI. In the second ex-

periment, we repeat the SPGR/DESS scan profiles 10 times and compute sample standard

deviation maps across repetitions. Taking ROI sample means of these maps gives pooled

sample standard deviations (Table 4.4), which indicate relative scan profile precision.

4.4.2.1 Within-ROI Statistics

We acquire combinations of (2, 1), (1, 1), and (0, 2) SPGR and DESS coronal scans of a

High Precision Devices® MR system phantom T2 array. For each scan profile, we prescribe

the optimized flip angles α̂0 and repetition times T̂R listed in Table 4.1, and hold all other

scan parameters fixed. We achieve the desired nominal flip angles by scaling a 20mm

slab-selective Shinnar-Le Roux excitation [89], of duration 1.28ms and time-bandwidth

product 4. For each DESS (SPGR) scan, we apply 2 (10) spoiling phase cycles over a

5mm slice thickness. We acquire all steady-state phantom and in vivo datasets with a

256× 256× 8 matrix over a 240× 240× 40 mm3 field of view (FOV). Using a 31.25kHz

readout bandwidth, we acquire all data at minimum TE ← 4.67ms before or after RF

excitations. To avoid slice-profile effects, we sample k-space over a 3D Cartesian grid.

After Fourier transform of the raw datasets, only one of the excited image slices is used

for subsequent parameter mapping. Including time to reach steady-state, each steady-state

scan profile requires 1m37s scan time.

To validate a reference scan profile for use in in vivo experiments, we also collect 4

IR and 4 SE scans. For (phase-sensitive, SE) IR, we hold (TR, TE) ← (1400, 14)ms fixed

and vary (adiabatic) inversion time TI ∈ {50, 150, 450, 1350}ms across scans. For SE, we

similarly hold TR ← 1000ms fixed and vary echo time TE ∈ {10, 30, 60, 150}ms across

scans. We prescribe these scan parameters to acquire 256 × 256 datasets over the same
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240 × 240× 5 mm3 slice processed from the SPGR/DESS datasets. Each IR and SE scan

requires 5m58s and 4m16s, for a total 40m58s scan time.

We additionally collect a pair of Bloch-Siegert shifted 3D SPGR scans for separate

transmit field estimation [90]. We insert a 9ms Fermi pulse at ±8kHz off-resonance into

an SPGR sequence immediately following on-resonant excitation. We estimate regularized

transmit field maps [91] from the resulting pair of datasets. We normalize this transmit field

map estimate by the 0.075G peak Fermi pulse amplitute to estimate transmit coil spatial

variation map st. After calibration via separate measurements, we take st as known. For

consistency, we account for flip angle variation when estimating T1 and T2 from both

candidate (SPGR/DESS) and reference (IR/SE) scan profiles. With a repetition time of

21.7ms, this transmit field mapping acquisition requires 1m40s total scan time.

We acquire all phantom datasets using a GE Discovery™ MR750 3.0T scanner with an

8-channel receive head array. We separately normalize and combine coil data from each

scan profile using a natural extension of [92] to the case of multiple datasets. For each

optimized SPGR/DESS scan profile P̂, we pre-cluster known parameter maps N into 10

clusters using k-means++ [93] and use each of the 10 cluster means to compute a corre-

sponding dictionary of signal vectors from 300 T1 and T2 values logarithmically spaced

between [101.5, 103.5] and [100.5, 103], respectively. We then iterate over clusters and use

each dictionary in conjunction with corresponding coil-combined magnitude image data to

produce ML parameter estimates X̂ML

(
N, P̂

)
. We subsequently solve RL problem (3.8)

with initialization X̂ML

(
N, P̂

)
to obtain regularized estimates X̂RL

(
N, P̂

)
for each P̂.

We design regularizer (3.9) to encourage RL parameter estimates from different scan pro-

files to exhibit similar levels of smoothness. Letting l ∈ {1, 2, 3} enumerate latent object

parameters T1, T2, and the proportionality constant, we choose mild regularization param-

eters (β1, β2, β3) := D × (2−21, 2−23, 2−26) to scale with the number of datasets and fix

shape parameters (γ1, γ2, γ3) := (25 ms, 22 ms, 2−2) to values on the order of anticipated

standard deviations. We iteratively update X until convergence criterion

∥∥X(i) −X(i−1)
∥∥
F
< 10−7

∥∥X(i)
∥∥
F

(4.14)

is satisfied. For all steady-state profiles tested, ML initializations and RL reconstructions

of phantom datasets require less than 3m30s and 9s, respectively.

We next describe sequential5 T1, then T2 estimation from IR and SE reference scans.

5We initially attempted to circumvent sequential T1, then T2 estimation by instead jointly estimating

M0, T1, T2, and inversion efficiency from the IR and SE datasets together. Even using magnitude data and

signal models, this resulted in heavily biased parameter maps, possibly due to the dependence of adiabatic

inversion efficiency on relaxation parameters [94].
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We first jointly coil-combine all 8-channel IR and SE phantom datasets to produce complex

images. We next estimate T1 along with a (nuisance parameter) inversion efficiency map

via (3.7) and (3.8) from the 4 complex coil-combined IR images. By using the same flip

angle scaling map st as is used for SPGR/DESS profiles, we estimate T1 using a signal

model similar to one proposed in [95], which accounts for imperfect excitation/refocusing

and imperfect inversion. We then take both T1 and st as known and estimate T2 along with

nuisance parameter M0 (accounting for imperfect excitation/refocusing and incomplete

recovery) via (3.7) and (3.8) from the 4 complex coil-combined SE images. We hold all

other reconstruction details identical to those of SPGR/DESS reconstructions.

Figs. 4.3-4.4 compare in color and grayscale phantom T1 and T2 ML and RL estimates

from optimized scan profiles. Vials are enumerated in Fig. 4.5 in descending T1 and T2

order. Vials corresponding to tight Xt and broad Xb parameter ranges are highlighted with

orange and yellow labels, respectively. Within these vials of interest, parameter maps from

different scans appear visually similar.

In higher-T1 vials (and the surrounding water), more bias is apparent in T̂1 ML and RL

estimates from the (0, 2) scan profile than from the (2, 1) and (1, 1) scan profiles. With the

signal models used in this study, the images suggest that scan profiles consisting of at least

one SPGR scan may offer increased protection against T1 estimation bias.

Fig. 4.5 plots sample means and sample standard deviations computed within circular

ROIs of phantom T1 and T2 ML and RL estimates. The highlighted orange and yellow

parameter spaces correspond to design ranges Xt and Xb. T1 estimates from both the

candidate (2, 1), (1, 1), and (0, 2) (SPGR, DESS) and reference (4, 4) (IR, SE) profiles

are in reasonable agreement with NIST estimates [2] across the vial range. T2 estimates

from all profiles are also in good agreement with NIST for vials within Xb. SPGR/DESS

profiles likely underestimate large T2 values (≥200ms) due to greater influence of diffusion

in DESS [96, 97, 98]. SPGR/DESS profiles possibly overestimate and the IR/SE profile

likely underestimates short (≤30ms) and very short (≤15ms) T2 values, respectively, due

to poorly conditioned estimation. Table 4.3 replicates sample statistics in Fig. 4.5 for vials

5-8. Compared to ML initializations, (weakly) regularized estimates reduce error bars

without introducing substantial additional bias.

4.4.2.2 Across-Repetition Statistics

In a second study, we repeat the (2, 1), (1, 1), and (0, 2) scan profiles 10 times each and

separately compute T1 and T2 ML estimates for each repetition of each scan profile. We

then estimate the standard deviation across repetitions on a per-voxel basis, to produce

sample standard deviation maps for each profile. Each ROI voxel of the sample standard
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Figure 4.3: Colorized T1 and T2 ML and RL estimates from an HPD® quantitative phan-

tom. Columns correspond to scan profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1

DESS), (0 SPGR, 2 DESS), and (4 IR, 4 SE) acquisitions. Rows distinguish T1 and T2

ML and RL estimators. Fig. 4.4 provides identical grayscale images that enumerate vials.

Colorbar ranges are in milliseconds.

deviation map is a better estimate of the population standard deviation (which the CRB

characterizes) than the ROI sample standard deviation from a single repetition, because the

latter estimate is contaminated with slight spatial variation of voxel population means (due

to imaging non-idealities such as Gibbs ringing due to k-space truncation).

Table 4.4 reports pooled sample standard deviations and pooled standard errors of the

sample standard deviations (computed via expressions in [3]) for phantom vials within (or

nearly within) tight design range Xt (marked orange in Fig. 4.4). Due to error propagation
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Figure 4.4: Grayscale T1 and T2 ML and RL estimates from an HPD® quantitative phan-

tom. Columns correspond to scan profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1

DESS), (0 SPGR, 2 DESS), and (4 IR, 4 SE) acquisitions. Rows distinguishT1 and T2 ML

and RL estimators. Vials are enumerated and color-coded to correspond with data points in

Fig. 4.5. Fig. 4.3 provides identical colorized images. Colorbar ranges are in milliseconds.

from coil combination and st estimation, pooled ML sample standard deviations cannot be

compared in magnitude to worst-case predicted standard deviations (Table 4.1); however,

trends of empirical and theoretical standard deviations are overall similar. In particular,

the optimized (0, 2) DESS-only scan profile affords T1 ML estimation precision (in vials

whose T1, T2 is similar to that of WM/GM) comparable to optimized (2, 1) and (1, 1) mixed

(SPGR, DESS) profiles. Also in agreement with predictions, the optimized (2, 1) and (0, 2)

profiles afford greater T2 ML estimation precision than the optimized (1, 1) profile.
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Figure 4.5: Phantom within-ROI sample statistics of T1 and T2 ML and RL estimates

from optimized SPGR/DESS and reference IR/SE scan profiles, versus NIST NMR mea-

surements [2]. Markers and error bars indicate ROI sample means and ROI sample standard

deviations within the 14 labeled and color-coded vials in Fig. 4.4. Tight Xt and broad Xb

latent parameter ranges are highlighted in orange and yellow, respectively. Table 4.3 repli-

cates sample statistics within Vials 5-8. Our MR measurements are at 293K and NIST

NMR measurements are at 293.00K. Within the designed parameter ranges, estimates from

different acquisitions are in reasonable agreement with NIST measurements.

47



(2SP,1DE) (1SP,1DE) (0SP,2DE) (4IR,4SE) NIST NMR

V5 T̂ML
1 1450± 50. 1380± 41 1600± 130 1380± 44 1332± 0.8

V5 T̂RL
1 1450± 26 1370± 16 1540± 98 1380± 37

V6 T̂ML
1 1100± 30. 1050± 39 1120± 39 1100± 74 1044± 3.2

V6 T̂RL
1 1100± 15 1040± 14 1110± 16 1100± 64

V7 T̂ML
1 870± 22 830± 29 880± 29 870± 25 801.7± 1.70

V7 T̂RL
1 865± 7.1 820± 11 860± 18 870± 21

V8 T̂ML
1 680± 12 640± 18 670± 12 658± 8.8 608.6± 1.03

V8 T̂RL
1 674± 7.6 637± 7.4 662± 6.6 658± 7.1

V5 T̂ML
2 131± 5.5 140± 10. 141± 8.4 143± 4.9 133.27± 0.073

V5 T̂RL
2 131± 5.2 145± 9.1 139± 7.1 142± 4.8

V6 T̂ML
2 91± 3.5 99± 6.0 95± 4.2 96± 2.7 96.89± 0.049

V6 T̂RL
2 91± 3.4 104± 6.2 93± 3.7 96± 2.6

V7 T̂ML
2 64± 2.2 69± 3.9 65± 2.1 69± 1.2 64.07± 0.034

V7 T̂RL
2 65± 2.1 71± 4.3 64± 1.9 69± 1.2

V8 T̂ML
2 46± 1.5 50.± 2.3 46± 1.1 47.6± 0.87 46.42± 0.014

V8 T̂RL
2 46± 1.5 50.± 2.3 46± 1.0 47.5± 0.85

Table 4.3: Phantom within-ROI sample means ± sample standard deviations of T1 and

T2 estimates from optimized SPGR/DESS and reference IR/SE scan profiles, versus NIST

NMR measurements (cf. slide 22 of e-poster corresponding to [2]). For sake of brevity,

sample statistics corresponding only to phantom vials within (or nearly within) tight design

range X
t (color-coded orange in Fig. 4.4) are reported. Fig. 4.5 plots sample statistics for

all vials. ‘V#’ abbreviates vial numbers. All values are reported in milliseconds.

4.4.3 In vivo Experiments

In a single long study of a healthy volunteer, we acquire the same optimized scan profiles

containing (2, 1), (1, 1), and (0, 2) SPGR/DESS scans (cf. Table 4.1), as well as the refer-

ence profile containing (4, 4) IR/SE scans. We obtain axial slices from a 32-channel Nova

Medical® receive head array. To address bulk motion between acquisitions and to compare

within-ROI statistics, we rigidly register6 each coil-combined image to an IR image prior

to parameter mapping. All acquisition and reconstruction details are otherwise the same as

in phantom experiments (cf. Section 4.4.2.1). For all SS scan profiles tested, ML and RL

reconstructions of brain datasets require less than 3m30s and 9s, respectively.

6For each coil-combined dataset, we compute a separate 2D rigid transformation (with respect to the

TI = 50ms IR dataset) via the MATLAB® function imregtform and then apply the transformation via

imwarp. We choose to use rigid transformations instead of affine distortions to avoid scaling; however

in doing so we sacrifice compensating for small through-plane rotations. We do not find registration to

substantially change subsequently estimated relaxation maps; however, this extra step substantially improves

alignment of (especially cortical GM) ROIs in T1 and T2 estimates from different scan profiles.
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Figure 4.6: Colorized T1 and T2 ML and RL estimates from the brain of a healthy volun-

teer. Columns correspond to profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS),

(0 SPGR, 2 DESS), and (4 IR, 4 SE) acquisitions. Rows distinguish T1 and T2 ML and

RL estimators. Table 4.5 presents corresponding WM/GM within-ROI sample statistics.

Colorbar ranges are in milliseconds.
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(2SP,1DE) (1SP,1DE) (0SP,2DE)

V5 σ̂T̂ML
1

50± 12 40± 10. 39± 9.4

V6 σ̂T̂ML
1

70± 18 60± 15 70± 16

V7 σ̂T̂ML
1

60± 13 50± 13 50± 13

V8 σ̂T̂ML
1

23± 5.4 20.± 4.7 18± 4.3

V5 σ̂T̂ML
2

2.6± 0.63 6± 1.4 3.5± 0.84

V6 σ̂T̂ML
2

1.9± 0.46 5± 1.1 2.3± 0.54

V7 σ̂T̂ML
2

1.4± 0.34 3.4± 0.80 1.5± 0.35

V8 σ̂T̂ML
2

1.1± 0.26 3.5± 0.84 1.4± 0.33

Table 4.4: Phantom pooled sample standard deviations± pooled standard errors of sample

standard deviations, from optimized SPGR/DESS scan profiles. Each entry is a measure

of uncertainty of a typical voxel’s T1 or T2 ML estimate, estimated over 10 repeated acqui-

sitions. For sake of brevity, sample statistics corresponding only to phantom vials within

(or nearly within) tight design range Xt (color-coded orange in Fig. 4.4) are reported. ‘V#’

abbreviates vial numbers. All values are reported in milliseconds.

Fig. 4.6 compares brain T1 and T2 ML and RL estimates from optimized scan profiles.

Though in-plane motion is largely compensated via registration, through-plane motion and

non-bulk motion likely persist, and will influence ROI statistics. Due to motion (and scan

duration) considerations, we examine within-ROI statistics from a single repetition as in

Section 4.4.2.1, and do not attempt across-repetition statistics as in Section 4.4.2.2.

Visually, T̂1 maps from steady-state profiles exhibit similar levels of contrast in WM/GM

regions well away from cerebrospinal fluid (CSF) as that seen in the reference T̂1 estimate.

Since we did not optimize any scan profiles for estimation in high-T1 regions, it is expected

that greater differences may emerge in voxels containing or nearby CSF. In particular, T1

is significantly underestimated within and near CSF by the (0, 2) DESS-only profile. This

suggests that with the signal models used in this work, including at least one SPGR scan in

an optimized profile may offer greater protection against estimation bias in high-T1 regions.

Table 4.5 summarizes within-ROI sample means and sample standard deviations com-

pute7 over four separate WM ROIs containing 96, 69, 224, and 148 voxels and one pooled

cortical GM ROI containing 156 voxels. Within-ROI T̂1 sample standard deviations are

comparable across SS profiles. In agreement with Table 4.1, T2 estimates from the op-

timized (1, 1) scan profile exhibit higher within-ROI sample variation than corresponding

(2, 1) and (0, 2) T̂2 maps. Compared to ML counterparts, RL estimates generally reduce

within-ROI sample variation and do not significantly change within-ROI sample means.

7We have taken effort to select ROIs that reflect expected anatomy in all coil-combined and registered

images, including adjacent slices in images from 3D acquisitions. However, we acknowledge the possibility

of some contamination across tissue boundaries, especially WM and/or CSF contamination into cortical GM.
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L

P

R

 

ROI (2SP,1DE) (1SP,1DE) (0SP,2DE) (4IR,4SE)

T̂ML
1

AR WM 840± 32 770± 31 840± 43 780± 22
AL WM 740± 61 660± 45 740± 55 760± 24
PR WM 890± 88 860± 72 960± 84 810± 26
PL WM 860± 70. 850± 61 880± 79 820± 37
A GM 1200 ± 210 1200 ± 230 1300 ± 230 1300 ± 180

T̂RL
1

AR WM 840± 24 770 ± 20. 840± 43 780± 20.
AL WM 740± 51 670± 37 740± 54 760± 23
PR WM 890± 79 860± 61 960± 82 810± 24
PL WM 870± 62 850 ± 50. 880± 78 820± 35
A GM 1200 ± 200 1200 ± 220 1300 ± 230 1300 ± 180

T̂ML
2

AR WM 40.± 1.3 54± 3.8 46± 1.5 55± 1.9
AL WM 40.± 1.7 50.± 4.5 44± 1.7 53± 1.8
PR WM 43± 2.7 60.± 6.9 51± 3.6 59± 2.1
PL WM 43± 1.8 57± 4.9 49± 2.5 57± 1.8
A GM 50± 12 60± 15 60± 11 59± 6.0

T̂RL
2

AR WM 40.± 1.3 54± 3.4 46± 1.5 55± 1.9
AL WM 40.± 1.7 50.± 4.4 43± 1.7 53± 1.8
PR WM 43± 2.8 60.± 6.7 51± 3.7 58± 2.3
PL WM 43± 1.7 57± 4.7 49± 2.5 57± 1.8
A GM 50± 12 60± 15 60± 11 59± 6.4

Table 4.5: Left: WM/GM ROIs, overlaid on a representative anatomical (coil-combined,

IR) image. Separate WM ROIs are distinguished by anterior-right (AR), anterior-left (AL),

posterior-right (PR), and posterior-left (PL) directions. Four small anterior (A) cortical

GM polygons are pooled into a single ROI. Right: Within-ROI sample means ± within-

ROI sample standard deviations of T1 and T2 ML and RL estimates from the brain of a

healthy volunteer (Fig. 4.6 presents corresponding images). Sample statistics are computed

within ROIs indicated in the anatomical image. All values are reported in milliseconds.

In most cases, T̂1 within-ROI sample means from optimized SPGR/DESS scan profiles

do not deviate substantially from each other or from reference IR/SE measurements. Two

notable exceptions are T̂ML
1 in anterior left and posterior right WM from (1, 1) and (0, 2)

profiles: these estimates are significantly lower and higher than analogous estimates from

other profiles, respectively. Results thus suggest that the optimized (2, 1) scan profile yields

WM T̂ML
1 estimates that are more consistently similar to IR WM T̂ML

1 estimates than other

optimized SPGR/DESS profiles.

Systematic differences in T̂2 sample means are evident across scan profiles, particularly

within WM ROIs. Curiously, the (1, 1) profile agrees most consistently (in WM/GM T̂ML
2

within-ROI sample mean) with reference estimates, though with relatively high sample

variation. The (2, 1) and (0, 2) SPGR/DESS profiles produce consistently lower WM T̂ML
2

than the reference IR/SE profile, though the (0, 2) profile is in reasonable agreement with
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other steady-state estimates [99]. These discrepancies may due to differences in sensitivity

to multi-compartmental relaxation [100]. Specifically, different signal models with differ-

ent scan parameter choices might be more or less sensitive to the model mismatch incurred

by neglecting to distinguish the multiple T2 components within each voxel. Section 4.5

studies T2 estimation bias due to multi-compartmental relaxation in more detail.

4.5 Sensitivity to Multiple-Compartment Relaxation

This section investigates through simulations and in vivo experiments the sensitivity of

single-compartment T2 estimates to model mismatch due to multi-compartment relaxation.

The exploratory study in SE data discussed here inspired other similar unreported studies

in SPGR/DESS data that contributed to the development of Ch. 6.

We simulate multi-exponential data to arise from three non-exchanging pools of myeli-

nated water (T1, T2) ← (500, 20)ms, intracellular and extracellular water (T1, T2) ←
(1000, 80)ms, and free water (T1, T2) ← (3500, 250)ms [100, 101]. We assign pool frac-

tions of (0.15, 0.80, 0.05) in WM and (0, 0.95, 0.05) in GM to the 81st slice of the BrainWeb

digital phantom [33, 34] to create ground truth M0, T1, and T2 compartment-wise maps.

We simulate component-wise IR signals (acquisition parameters in Subsection 4.4.2.1) and

add them to yield noiseless multi-component IR data. We likewise simulate and then add

component-wise SE signals to construct three scan profiles consisting of pairs of multi-

component SE datasets with variable TE ∈
{
[10, 30]T, [10, 60]T, [10, 150]T

}
. To avoid con-

founding sources of bias, we assume knowledge of a uniform transmit field and a uniform

sensitivity profile of a single-channel receive coil. We estimate a single-component T̂1 ML

map from multi-component IR data, which we then use to estimate a single-component T̂2

ML map from each multi-exponential SE scan profile.

The upper row of Fig. 4.7 compares T̂2 maps from simulated multi-exponential SE

data. The lower row of Fig. 4.7 compares in vivo T̂2 maps from corresponding subsets of

the SE reference profile discussed in Section 4.4.3. As echo times are further separated, T̂2

in WM approaches T̂2 in GM, creating an apparent reduction in T̂2 WM/GM contrast.

Table 4.6 summarizes T̂ML
2 sample means and sample standard deviations (computed

within WM/GM ROIs depicted in Table 4.5) from in vivo SE scan profiles. Single-component

T̂ML
2 estimates depend on SE echo times more significantly in WM than in GM. Comparing

with Table 4.5, trends suggest that disagreement in T̂ML
2 estimates across scan profiles may

in part be attributable to the substantial differences of acquisition parameters (e.g., echo

times) used in different pulse sequences.
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Figure 4.7: Colorized monoexponential T2 ML estimates from pairs of (top) multi-

exponential simulated and (bottom) in vivo SE datasets. Columns denote SE dataset echo

times. Colorbar ranges are in milliseconds.

4.6 Discussion

Phantom experiments show that optimized scan profiles consisting of (2, 1), (1, 1), and

(0, 2) (SPGR, DESS) scans yield accurate WM/GM T1, T2 estimates, and that empirical

precision trends across profiles agree reasonably with CRB-based predictions. However, in

vivo experiments reveal that even with scan optimization, it may be challenging to achieve

clinically viable levels of precision from the aforementioned SS profiles, at least at 3T. At

the expense of greater scan time, it is of course possible that optimized profiles containing

greater numbers of SPGR, DESS, and/or other SS scans can provide clinically acceptable

precision levels. For these and other more complicated scan profiles, estimator dependence

on scan parameters becomes even less intuitive, increasing the need for scan design.

The proposed scan design framework addresses spatial variation in object parameters

through a min-max design criterion. The min-max criterion guarantees an upper bound on
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ROI (10, 30) (10, 60) (10, 150)

T̂ML
2

AR WM 54± 3.0 56± 1.9 54± 2.4
AL WM 50.± 2.2 54± 1.8 54± 2.4
PR WM 55± 2.6 58± 2.2 61± 2.6
PL WM 50± 2.2 57± 2.0 61± 2.1
A GM 58± 6.5 61± 6.8 57± 7.3

Table 4.6: Within-ROI sample means ± within-ROI sample standard deviations of mono-

exponential T2 ML estimates, from pairs of in vivo SE datasets. Column headers indicate

echo times TE (ms) of SE datasets. Sample statistics are computed within ROIs indicated

in Table 4.5. Single-component T̂ML
2 estimates in WM depend on SE echo times.

a weighted sum of variances and assumes no prior knowledge of distributions. However, in

general it is non-differentiable in P, precluding gradient-based optimization. Furthermore,

it is conservative by nature, and often selects scan parameters based on corner cases of the

object parameter space. To reduce the influence of corner cases, it may be desirable to

instead construct a cost function related to the coefficient of variation as in [79, 77, 80, 81],

perhaps by setting parameter weights W−1 ← diag(x) for x 6= 0 in (4.5).

As a less conservative alternative to min-max design, other recent works [83, 84] have

addressed object parameter spatial variation by instead constructing cost functions related

to the Bayesian CRB [102], which characterizes the expected precision with respect to a

prior distribution on object parameters. Bayesian cost functions are usually differentiable

and can also, with appropriate priors, penalize object parameter coefficients of variation

instead of variances, as in [83]. However, prior distributions are generally unknown, and

may need to be estimated from data, as in [84].

Careful calibration of flip angle scaling κt is essential for accurate T1,T2 estimation

from SPGR/DESS scan profiles. In this work, we estimate κt from separate acquisitions

and adjust nominal flip angles prior to reconstruction, but acknowledge that non-idealities

in those separate acquisitions may themselves cause resultant transmit field estimation er-

rors to propagate into our T1,T2 estimates. To reduce error propagation, it may be de-

sirable to instead design scan profiles to permit joint estimation of κt, in addition to other

latent object parameters. Unfortunately, we find that optimizing the (2, 1) or (0, 2) profile

to allow for four-parameter x(r)← [T1(r), T2(r), c2(r), κ
t(r)]

T
estimation results in unac-

ceptably high amplification of the worst-case T1 standard deviation. (Incidentally however,

precise T2 ML and RL estimation alone from the (2, 1) or (0, 2) profile is possible [5].)

It remains an open scan design question as to whether time spent collecting Bloch-Siegert

data for separate κt mapping could instead be better spent collecting additional SPGR,

DESS, and/or other data for joint estimation.
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By working with closed-form signal expressions, we neglect to model several higher-

order effects (e.g., interactions between multiple intravoxel water compartments). How-

ever, it is apparent that the nonlinear estimation procedures required for many mapping

problems can amplify the influence of these secondary effects, often inducing significant

estimation bias. Since the CRB (as described) applies only to unbiased estimators, it is thus

desirable to use signal models that are as complete as possible for CRB-based scan design.

In theory, scan optimization approach (4.9) is even compatible with acquisitions where a

closed-form model relating data to latent and scan parameters is unknown, as in [61, 103].

In practice, difficulties arise in efficient computation of signal gradients required in (4.3),

which may demand more specialized techniques, as in [104]. Designing scan profiles in-

volving such complex signal models would likely necessitate optimization techniques more

involved than the simple grid searches used in this work.

4.7 Conclusion

This chapter has introduced a CRB-inspired min-max optimization approach to guide MR

scan design for precise parameter estimation. As a detailed example, we have optimized

combinations of fast SPGR and DESS scans for T1, T2 relaxometry in WM and GM regions

of the human brain at 3T. Numerical simulations show that at typical noise levels and

with accurate flip angle prior knowledge, WM- and GM-like T1, T2 ML estimates from

optimized scans are nearly unbiased, and so worst-case CRB predictions yield reliable

bounds on ROI sample variances. Phantom accuracy experiments show that optimized

combinations of (2, 1), (1, 1), or (0, 2) (SPGR, DESS) scans are in excellent agreement

with NIST and IR/SE measurements over the designed latent object parameter range of

interest. Phantom precision experiments show that these SPGR/DESS combinations exhibit

trends in pooled sample standard deviations that reasonably reflect CRB predictions.

In vivo experiments suggest that with optimization, the (0, 2) profile can yield com-

parable T̂1, T̂2 precision to the more conventional (2, 1) [5] scan profile in well-isolated

WM/GM ROIs; however, the (0, 2) T1 estimates are unreliable within and near the CSF

and do not agree with IR measurements in WM as consistently as the (2, 1) profile. This

and other disagreements across profiles in vivo may be attributable to differences in signal

model sensitivities to multi-compartmental relaxation. Nevertheless, the example appli-

cation studied in this chapter illustrates that scan optimization can enable new parameter

mapping techniques from established pulse sequences.
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CHAPTER 5

QMRI Parameter Estimation

via Regression with Kernels (PERK)

5.1 Introduction

This chapter1 reconsiders the problem of QMRI parameter estimation (first introduced in

Chapter 3), where one seeks to estimate latent parameter images from suitably informa-

tive data. Chapter 3 applied a common parameter estimation strategy to QMRI that in-

volves minimizing a cost function related to a statistical likelihood function. Because MR

signal models are typically nonlinear functions of the underlying latent parameters, such

likelihood-based estimation usually requires non-convex optimization. To seek good so-

lutions, Chapter 3 as well as many other works (e.g., [105, 106, 95, 107, 103, 108, 109,

110, 61, 111, 112, 113, 6, 114, 115]) approach estimation with algorithms that employ

exhaustive grid search, which requires either storing or computing on-the-fly a “dictio-

nary” of signal vectors. These works estimate a small number (2-3) of nonlinear latent

parameters, so grid search is practical. However, for moderate or large sized problems, the

required number of dictionary elements renders grid search undesirable or even intractable,

unless one imposes artificially restrictive latent parameter constraints. Though several re-

cent works [109, 112, 114, 115] focus on reducing dictionary storage requirements, all of

these methods ultimately rely on some form of dictionary-based grid search.

There are numerous QMRI applications that could benefit from an alternative parameter

estimation method that scales well with the number of latent parameters. For example, vec-

tor (e.g., flow [116]) and tensor (e.g., diffusivity [117] or conductivity [118]) field mapping

techniques require estimation of at minimum 4 and 7 latent parameters per voxel, respec-

tively. Phase-based longitudinal [119] or transverse [120, 90] field mapping could avoid

1This chapter mainly derives content from accepted journal paper [8] that extends two conference papers

[9, 1].
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noise-amplifying algebraic manipulations on reconstructed image data that are conven-

tionally used to reduce signal dependencies on nuisance latent parameters. Compartmental

fraction mapping [100, 11] from steady-state pulse sequences requires estimation of at least

7 [121] and as many as 10 [101] latent parameters per voxel. In these and other applica-

tions, greater estimation accuracy requires more complete signal models that involve more

latent parameters, increasing the need for scalable estimation methods.

The fundamental challenge of scalable MRI parameter estimation stems from MR sig-

nal model nonlinearity: standard linear estimators would be scalable but inaccurate. One

natural solution strategy involves nonlinearly preprocessing reconstructed images such that

the transformed images are at least approximately linear in the latent parameters. As an

example, for simple T2 estimation from measurements at multiple echo times, one could

apply linear regression to the logarithm of the measurements (Subsection 5.6 builds fur-

ther intuition using this simple application). However, such simple transformations are

generally not evident for more complicated signal models. Without such problem-specific

insight, sufficiently rich nonlinear transformations could dramatically increase problem di-

mensionality, hindering scalability. Fortunately, a celebrated result in approximation the-

ory [122] showed that simple transformations involving reproducing kernel functions [123]

can represent nonlinear estimators whose evaluation need not directly scale in computation

with the (possibly very high) dimension of the associated transformed data. These ker-

nel methods later found popularity in machine learning (initially for classification [124]

and quickly thereafter for other applications, e.g., regression [125]) because they provided

simple, scalable nonlinear extensions to fast linear algorithms.

The general idea of using linearization to simplify a nonlinear estimation problem has

been used before in QMRI. For example, orthogonal transforms have been used to linearly

represent exponential [126] and extended phase graph [127] models for T2 estimation. An

unscented Kalman filter has been used to linearly represent nonlinear models for general

multiple-parameter estimation up to third-order accuracy [128]. Whereas these prior works

largely focus on parameter estimation accuracy gains in under-sampled acquisitions, this

paper focuses on acceleration for general per-voxel MRI parameter estimation from recon-

structed images.

This chapter introduces a fast dictionary-free method for MRI parameter estimation via

regression with kernels (PERK). PERK first simulates many instances of latent parameter

inputs and measurement outputs using prior distributions and a general nonlinear MR signal

model. PERK takes such input-output pairs as simulated training points and then learns

(using an appropriate nonlinear kernel function) a nonlinear regression function from the

training points. PERK may scale considerably better with the number of latent parameters
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than likelihood-based estimation via grid search.

The remainder of this chapter is organized as follows. Section 5.2 reviews pertinent

background information about kernels. Section 5.3 formulates a function optimization

problem for MRI parameter estimation and efficiently solves this problem using kernels.

Section 5.4 studies bias and covariance of the resulting PERK estimator. Section 5.5 ad-

dresses practical implementation issues such as computational complexity and model selec-

tion. Section 5.6 provides intuition into PERK through a simple toy problem. Section 5.7

demonstrates PERK in numerical simulations as well as phantom and in vivo experiments.

Section 5.8 investigates PERK robustness to two types of non-idealities. Section 5.9 dis-

cusses advantages, challenges, and extensions. Section 5.10 summarizes key contributions.

5.2 Preliminaries

This brief section reviews relevant definitions and facts about kernels. A (real-valued)

kernel k : P2 7→ R is a function that describes a measure of similarity between two pattern

vectors q,q′ ∈ P. The matrix K ∈ RN×N associated with kernel k and N ∈ N patterns

q1, . . . ,qN ∈ P consists of entries k(qn,qn′) for n, n′ ∈ {1, . . . , N}. A positive definite

kernel is a kernel for which K is positive semidefinite (PSD) for any finite set of pattern

vectors, in which case K is a Gram matrix. A symmetric kernel satisfies k(q,q′) = k(q′,q)

∀q,q′ ∈ P. We hereafter restrict attention to symmetric, positive definite (SPD) kernels.

An SPD kernel k : P2 7→ R defines an inner product in a particular Hilbert func-

tion space H̄ that we briefly describe here because it characterizes the class of candidate

regression functions over which PERK operates. To envision H̄, first define a kernel’s as-

sociated (canonical) feature map z : P 7→ RP that assigns each q ∈ P to a (canonical)

feature k(·,q) ∈ R
P. Then H̄ is a completion of the space H :=

{∑N
n=1 ank(·,qn)

}

spanned by point evaluations of the feature map, where N ∈ N, a1, . . . , aN ∈ R, and

q1, . . . ,qN ∈ P are arbitrary. Let 〈·, ·〉 : H̄2 7→ R denote the inner product on H̄. Then for

any h, h′ ∈ H that have finite-dimensional canonical representations h :=
∑N

n=1 ank(·,qn)

and h′ :=
∑N

n′=1 bn′k(·,qn′), the assignment

〈h, h′〉H̄ =
N∑

n=1

N∑

n′=1

anbn′k(qn′,qn) (5.1)

is consistent with the inner product on H̄. This inner product exhibits ∀h ∈ H̄,q ∈ P an
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interesting reproducing property

〈h, k(·,q)〉H̄ = h(q) (5.2)

that can be seen to directly follow from (5.1) for h ∈ H.

A reproducing kernel (RK) is a kernel that satisfies (5.2) for some real-valued Hilbert

space H̄. A kernel is reproducing if and only if it is SPD. There is a bijection between RK

k and H̄, and so H̄ is often called the reproducing kernel Hilbert space (RKHS) uniquely

associated with RK k. This bijection is critical to practical function optimization over

an RKHS in that it translates inner products in a (usually high-dimensional) RKHS H̄

into equivalent kernel operations in the (lower-dimensional) pattern vector space P. The

following sections exploit the bijection between an RKHS and its associated RK.

5.3 A Function Optimization Problem & Kernel Solution

Recall from Section 3.2.1 that after image reconstruction, many QMRI acquisitions pro-

duce at each voxel position a sequence of noisy measurements y ∈ CD, modeled as

y = s(x,ν) + ǫ, (5.3)

where x ∈ RL denotes L latent parameters; ν ∈ RK denotes K known parameters; s :

RL × RK 7→ CD models D noiseless continuous signal functions; and ǫ ∼ CN (0D,Σ) is

complex Gaussian noise with zero mean 0D ∈ RD and known covariance Σ ∈ RD×D. (As

a concrete example, for T2 estimation from spin echo measurements, x could collect spin

density and T2; ν could collect known longitudinal and transverse field inhomogeneities;

and y could collect measurements at D echo times.) We seek to estimate on a per-voxel

basis each latent parameter x from measurement y and known parameter ν.

To develop an estimator x̂, we simulate many instances of forward model (5.3) and

use kernels to estimate a nonlinear inverse function. We sample part of RL × RK × CD

and evaluate (5.3) N times to produce sets of object parameter and noise realizations

{(x1,ν1, ǫ1), . . . , (xN ,νN , ǫN)} and corresponding measurements {y1, . . . ,yN}. We seek

a function ĥ : RQ 7→ RL and an offset b̂ ∈ RL that together map each pure-real2 regressor

qn := [|yn|T,νT

n ]
T to an estimate x̂(qn) := ĥ(qn) + b̂ that is “close” to corresponding

2We present our methodology assuming pure-real patterns q and estimators x̂ for simplicity and to main-

tain consistency with experiments, in which we choose to use magnitude images for unrelated reasons (see

Subsection 5.7.1 for details). It is straightforward to generalize Theorem 1 for complex-valued kernels and

thereby address the cases of complex patterns and/or estimators.
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regressand xn, where Q := D + K, n ∈ {1, . . . , N}, and (·)T denotes vector transpose.

For any finite N , there are infinitely many candidate estimators that are consistent with

training points in this manner. We use function regularization to choose one estimator that

smoothly interpolates between training points:

(
ĥ, b̂

)
∈ arg min

h∈H̄L

b∈RL

Ψ
(
h,b; {(xn,qn)}N1

)
, where (5.4)

Ψ
(
h,b; {(xn,qn)}N1

)
=

L∑

l=1

Ψl

(
hl, bl; {(xl,n,qn)}N1

)
; (5.5)

Ψl(hl, bl; {(xl,n,qn)}N1 ) = ρl‖hl‖2H̄ +
1

N

N∑

n=1

(hl(qn) + bl − xl,n)
2. (5.6)

Here, each hl : RQ 7→ R is a scalar function that maps to the lth component of the output

of h; each bl, xl,n ∈ R are scalar components of b,xn; H̄ is an RKHS whose norm ‖·‖
H̄

is

induced by inner product 〈·, ·〉H̄ : H̄2 7→ R; and each ρl controls for regularity in hl.

Since (5.5) is separable in the components of h and b, it suffices to consider optimizing

each (hl, bl) by separately minimizing (5.6) for each l ∈ {1, . . . , L}. Remarkably, a gener-

alization of the Representer Theorem [129], restated as is relevant here for completeness,

reduces minimizing (5.6) to a finite-dimensional optimization problem.

Theorem 1 (Generalized Representer, [129]) Define k : RQ × RQ 7→ R to be the SPD

kernel associated with RKHS H̄, such that reproducing property hl(q) = 〈hl, k(·,q)〉H̄
holds for all hl ∈ H̄ and q ∈ RQ. Then any minimizer (ĥl, b̂l) of (5.6) over H̄ × R admits

a representation for ĥl of the form

ĥl(·) ≡
N∑

n=1

al,nk(·,qn), (5.7)

where each al,n ∈ R for n ∈ {1, . . . , N}.

Thm. 1 ensures that any solution to the component-wise (N + 1)-dimensional problem

(âl, b̂l) ∈ arg min
al∈R

N

bl∈R

ρl

∥∥∥∥∥

N∑

n′=1

al,n′k(·,qn′)

∥∥∥∥∥

2

H̄

+

1

N

N∑

n=1

(
N∑

n′=1

al,n′k(qn,qn′) + bl − xl,n

)2

(5.8)

corresponds via (5.7) to a minimizer of (5.6) over H̄ × R, where al := [al,1, . . . , al,N ]
T.
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Fortunately, a solution of (5.8) exists uniquely for ρl > 0 and can be expressed as

âl = ((MKM+NρlIN))
−1
Mxl; (5.9)

b̂l =
1

N
1T

N(xl −Kâl), (5.10)

where K ∈ RN×N is the Gram matrix consisting of entries k(qn,qn′) for n, n′ ∈ {1, . . . , N};
M := IN − 1

N
1N1

T

N ∈ RN×N is a de-meaning operator; xl := [xl,1, . . . , xl,N ]
T; IN ∈

RN×N is the identity matrix; and 1N ∈ RN is a vector of ones. Substituting (5.9) into (5.7)

yields an expression for the lth entry x̂l of MRI parameter estimator x̂:

x̂l(·)← x
T

l

(
1

N
1N +M((MKM+NρlIN))

−1
k(·)

)
, (5.11)

where k(·) := [k(·,q1), . . . , k(·,qN)]
T − 1

N
K1N : RQ 7→ RN is an embedding operator.

When ρl > 0 ∀l ∈ {1, . . . , L}, estimator x̂(·) with entries (5.11) minimizes (5.5) over

H̄L × RL. However, the utility of x̂(·) depends on the choice of kernel k, which induces a

choice on the RKHS H̄ and thus the function space H̄
L × R

L over which (5.4) optimizes.

For example, if k was selected as the canonical dot product k(q,q′) ← 〈q,q′〉RQ := qTq′

(for which RKHS H̄ ← RQ), then (5.11) would reduce to affine ridge regression [130]

which is optimal over RQ×R but is unlikely to be useful when signal model s is nonlinear

in x. Since we expect a useful estimate x̂(q) to depend nonlinearly (but smoothly) on q in

general, we instead use an SPD kernel k that is likewise nonlinear in its arguments and thus

corresponds to an RKHS much richer than RQ. Specifically, we use a Gaussian kernel

k(q,q′)← exp

(
−1
2
‖q− q′‖2Λ−2

)
, (5.12)

where positive definite matrix bandwidth Λ ∈ RQ×Q controls the length scales in q over

which the estimator x̂ smooths and ‖·‖Γ ≡
∥∥∥Γ1/2(·)

∥∥∥
2

is a weighted ℓ2-norm with PSD

matrix weights Γ. We use a Gaussian kernel over other candidates because it is a universal

kernel, meaning weighted sums of the form
∑N

n=1 ank(·,qn) can approximate L2 functions

to arbitrary accuracy for N sufficiently large [131].

Interestingly, the RKHS associated with Gaussian kernel (5.12) is infinite-dimensional.

Thus, Gaussian kernel regression can be interpreted as first “lifting” via a nonlinear feature

map z : RQ 7→ H̄ each q into an infinite-dimensional feature z(q) = k(·,q) ∈ H̄, and

then performing regularized affine regression on the features via dot products of the form

〈k(·,q), k(·,q′)〉H̄ = k(q′,q). From this perspective, the challenges of nonlinear estima-

tion via likelihood models are avoided because we select (through the choice of kernel)
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characteristics of the nonlinear dependence that we wish to model and need only estimate

via (5.8) the linear dependence of each entry in x̂ on the corresponding features.

5.4 Bias and Covariance Analysis

This section presents expressions for the bias and covariance of Gaussian PERK estima-

tor x̂(·), conditioned on object parameters x,ν. We focus on these conditional statistics

to enable study of estimator performance as x,ν are varied. Though not mentioned ex-

plicitly hereafter, both expressions treat the training sample {(x1,q1), . . . , (xN ,qN )} and

regularization parameters ρ1, . . . , ρL as fixed.

5.4.1 Conditional Bias

The conditional bias of x̂ ≡ x̂(α,ν) is written as

bias(x̂|x,ν) := Eα|x,ν(x̂(α,ν))− x

= REα|x,ν(k(α,ν)) + (mx − x), (5.13)

where Eα|x,ν(·) denotes expectation with respect to α := |y| and conditioned on x,ν.

Here, the lth row of R ∈ RL×N and lth entry of regressand sample mean mx ∈ RL re-

spectively are x̃lTM((MKM+NρlIN))
−1

and 1
N
x̃lT1N for l ∈ {1, . . . , L}. To proceed

analytically, we make two mild assumptions. First, we assume that y ∼ CN (0D,Σ) has

sufficiently high signal-to-noise ratio (SNR) such that its complex modulus α is approx-

imately Gaussian-distributed. We specifically consider the typical case where covariance

matrix Σ is diagonal with diagonal entries σ2
1, . . . , σ

2
D, in which case measurement ampli-

tude conditional distribution pα|x,ν is simply approximated as pα|x,ν ← N (µ,Σ), where

µ ∈ RD has dth coordinate

√
|sd(x,ν)|2 + σ2

d for d ∈ {1, . . . , D} [30]. Second, we

assume that the Gaussian kernel bandwidth matrix Λ has the block diagonal structure

Λ←
[

Λα 0D×K

0K×D Λν .

]
(5.14)
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where Λα ∈ R
D×D and Λν ∈ R

K×K are positive definite. With these simplifying assump-

tions, the nth entry of the expectation in (5.13) is well approximated as

[
Eα|x,ν(k(α,ν))

]
n
=

∫

RD

e−
1
2
‖q−qn‖

2
Λ−2pα|x,ν(α|x,ν) dα

≈ e
− 1

2
‖ν−νn‖

2

Λ
−2
ν

√
(2π)D det(Σ)

∫

RD

e
− 1

2

(
‖α−αn‖

2

Λ
−2
α

+‖α−µ‖2
Σ−1

)

dα

=
e
− 1

2

(
‖ν−νn‖

2

Λ
−2
ν

+‖µ−αn‖
2

(Λ−2
α

Σ+ID)
−1

Λ
−2
α

)

√
det
(
Λ−2

α
Σ + ID

) , (5.15)

where det(·) denotes determinant and the Gaussian integral follows after completing the

square of the integrand’s exponent. It is clear from (5.15) that as Σ→ 0D×D for fixed Λα,

Eα|x,ν(k(α,ν))→ k(µ,ν) and therefore

Eα|x,ν(x̂(α,ν))→ x̂
(
Eα|x,ν(α),ν

)
≡ x̂(µ,ν) (5.16)

which perhaps surprisingly means that the conditional bias asymptotically approaches the

noiseless conditional estimation error x̂(µ,ν)− x despite x̂ being nonlinear in α.

5.4.2 Conditional Covariance

The conditional covariance of x̂ ≡ x̂(α,ν) is written as

cov(x̂|x,ν) := Eα|x,ν

((
x̂− Eα|x,ν(x̂)

)(
x̂− Eα|x,ν(x̂)

)T)

= REα|x,ν

(
k̃(α,ν)k̃(α,ν)T

)
RT, (5.17)

where k̃(α,ν) := k(α,ν) − Eα|x,ν(k(α,ν)). To proceed analytically, we take the same

high-SNR and block-diagonal bandwidth assumptions as in Subsection 5.4.1. Then after

straightforward manipulations similar to those yielding (5.15), the (n, n′)th entry of the

expectation in (5.17) is well approximated as

[
Eα|x,ν

(
k̃(α,ν)k̃(α,ν)T

)]
n,n′

= e
− 1

2

(
‖ν−νn‖

2

Λ
−2
ν

+‖ν−νn′‖
2

Λ
−2
ν

)

×


e−

1
2(‖α̃n−α̃n′‖

2
∆(0)+‖α̃n+α̃n′‖

2
∆(2))

√
det
(
2Λ−2

α
Σ + ID

) − e−
1
2(‖α̃n−α̃n′‖

2
∆(1)+‖α̃n+α̃n′‖

2
∆(1))

det
(
Λ−2

α
Σ+ ID

)


, (5.18)
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where α̃n := µ−αn and ∆(t) := 1
2

((
tΛ−2

α
Σ+ ID

))−1
Λ−2

α
for t ∈ N. The emergence of

α̃n± α̃n′ terms in (5.18) show that the conditional covariance (unlike the conditional bias)

is directly influenced not only by the individual expected test point distances to each of the

training points α̃1, . . . , α̃N but also by the local training point sampling density.

5.5 Implementation Considerations

This section focuses on important practical implementation issues. Subsection 5.5.1 dis-

cusses a conceptually intuitive approximation of PERK estimator (5.11) that in many prob-

lems can significantly improve computational performance. Subsection 5.5.2 describes

strategies for data-driven model selection.

5.5.1 A Kernel Approximation

In practical problems with even moderately large ambient dimension Q, the necessarily

large number of training samples N complicates storage of (dense) N × N Gram matrix

K. Using a kernel approximation can mitigate storage and processing issues. Here we

employ random Fourier features [132], a recent method for approximating translation-

invariant kernels having form k(q,q′) ≡ k(q− q′). This subsection reviews the main

result of [132] for the purpose of constructing an intuitive and computationally efficient

approximation of (5.11).

The strategy of [132] is to construct independent probability distributions pv and ps

associated with random v ∈ RQ and random s ∈ R as well as a function (that is parame-

terized by q) z̃(·, ·;q) : RQ × R× RQ 7→ R, such that

Ev,s(z̃(v, s;q)z̃(v, s;q
′)) = k(q− q′), (5.19)

where Ev,s(·) denotes expectation with respect to pvps. When such a construction exists,

one can build approximate feature maps z̃ by concatenating and normalizing evaluations of

z̃ on Z samples {(v1, s1), . . . , (vZ , sZ)} of (v, s) (drawn jointly albeit independently), to

produce approximate features

z̃(q) :=

√
2

Z
[z̃(v1, s1;q), . . . , z̃(vZ , sZ ;q)]

T
(5.20)
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for any q. Then by the strong law of large numbers,

lim
Z→∞
〈z̃(q), z̃(q′)〉RZ

a.s.→ k(q,q′) ∀q,q′ (5.21)

which, in conjunction with strong performance guarantees for finite Z [132, 133], justifies

interpreting z̃ as an approximate (and now finite-dimensional) feature map.

We use the Fourier construction of [132] that assigns z̃(v, s;q)← cos
(
2π
(
vTq+ s

))
.

If also ps ← unif(0, 1), then Ev,s(z̃(v, s;q)z̃(v, s;q
′)) simplifies to

∫

RQ

cos
(
2πvT(q− q′)

)
pv(v) dv. (5.22)

For symmetric pv, the integral in (5.22) exists [134] and is a Fourier transform. Thus

choosing pv ← N
(
0Q, (2πΛ)−2)

satisfies (5.19) for Gaussian kernel (5.12), where 0Q ∈
RQ is a vector of zeros.

Sampling pv, ps Z times and subsequently constructing Z̃ := [z̃(q1), . . . , z̃(qN)] ∈
RZ×N via repeated evaluations of (5.20) gives for Z ≪ N a low-rank approximation Z̃TZ̃

of Gram matrix K. Substituting this approximation into (5.11) and applying the matrix

inversion lemma [135] yields

x̂l(·)← mxl
+ cTzxl

((Cz̃z̃ + ρlIZ))
−1(z̃(·)−mz̃), (5.23)

where mxl
:= 1

N
x̃lT1N and mz̃ := 1

N
Z̃1N are sample means; and czxl

:= 1
N
Z̃Mx̃l and

Cz̃z̃ := 1
N
Z̃MZ̃T are sample covariances. Estimator (5.23) is an affine minimum mean-

squared error estimator on the approximate features, and illustrates that Gaussian PERK

via estimator (5.11) is asymptotically (in Z) equivalent to regularized affine regression

after nonlinear, high-dimensional feature mapping.

5.5.2 Tuning Parameter Selection

This subsection proposes guidelines for data-driven selection of user-selectable parameters.

Our goal here is to use problem intuition to automatically choose as many tuning param-

eters as possible, thereby leaving as few parameters as possible to manual selection. In

this spirit, we focus on “online” model selection, where one chooses tuning parameters for

training the estimator x̂(·) after acquiring (unlabeled) real test data. This online approach

can be considered a form of transductive learning [136, Ch. 8] since we train our estimator

with knowledge of unlabeled test data in addition to labeled training data. Observe that

since many voxel-wise separable MRI parameter estimation problems are comparatively
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low-dimensional, PERK estimators can often be quickly trained using only a moderate

number of simulated training examples; in fact, training can in some problems take compa-

rable or even less time than evaluating the PERK estimator on full-volume high-resolution

measurement images. For these reasons, online PERK model selection is often practical.

5.5.2.1 Choosing Sampling Distribution

For reasonable PERK performance, it is important to choose the joint distribution of latent

and known parameters px,ν such that latent parameters can be estimated precisely over the

joint distribution’s support supp(px,ν). For continuously differentiable magnitude signal

model µ, we quantify precision at a single point (x,ν) using the Fisher information matrix

F(x,ν) := Eα|x,ν

((
∇x log pα|x,ν

)T∇x log pα|x,ν

)

≈ (∇xµ(x,ν))
T(Σ)−1∇xµ(x,ν) (5.24)

where ∇x(·) denotes row gradient with respect to x and the approximation holds well for

moderately high-SNR measurements [30]. When it exists, the inverse of F(x,ν) provides

a lower-bound on the conditional covariance of any unbiased estimator of x [87]. For good

performance, it is thus reasonable to ensure F(x,ν) is well-conditioned over supp(px,ν).

There are many strategies one could employ to control the condition number of F(x,ν)

over supp(px,ν). In our experiments, we used data [6] from acquisitions designed to mini-

mize a cost function related to the maximum of F−1(x,ν) over bounded latent and known

parameter ranges of interest (Subsection 5.7.1 provides application-specific details). We

then assigned supp(px,ν) to coincide with the support of these acquisition design parameter

ranges of interest. Assessing worst-case imprecision via the conservative minimax crite-

rion is appropriate here because point-wise poor conditioning at any (x,ν) ∈ supp(px,ν)

can induce PERK estimation error over larger subsets of supp(px,ν).

If many separate prior parameter estimates are available, one can estimate the particular

shape of px,ν empirically and then clip and renormalize px,ν so as to assign nonzero prob-

ability only within an appropriate support. When prior estimates are unavailable, it may

in certain problems be reasonable to instead assume a separable distributional structure

px,ν ≡ pxpν in which case one can still estimate pν empirically but must set px manually

based on typical ranges of latent parameters.
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5.5.2.2 Choosing Regularization Parameters

As presented, PERK estimator (5.11) and its approximation (5.23) leave freedom to select

different regularization parameters ρ1, . . . , ρL for estimating each of the L latent param-

eters. However, the respective unitless matrices MKM and Cz̃z̃ whose condition num-

bers are influenced by ρ1, . . . , ρL do not vary with l. Thus it is reasonable to assign each

ρl ← ρ ∀l ∈ {1, . . . , L} some fixed ρ > 0. This simplification significantly reduces train-

ing computation to just one rather than L large matrix inversions. We select the scalar

regularization parameter ρ using the holdout process described in Subsection 5.7.1.1.

5.5.2.3 Choosing Kernel Bandwidth

It is desirable to choose the Gaussian kernel’s bandwidth matrix Λ such that PERK esti-

mates are invariant to the overall scale of test data. We use (after observing test data, and

for both training and testing)

Λ← λ diag
([

mT

α
,mT

ν

]T)
, (5.25)

where mα ∈ RD and mν ∈ RK are sample means across voxels of magnitude test image

data and known parameters, respectively; and diag(·) assigns its argument to the diagonal

entries of an otherwise zero matrix. We select the only scalar bandwidth parameter λ > 0

using holdout as well.

5.6 PERK Demonstration in a 1-D Toy Problem

To build intuition and for ease of visualization, we first apply PERK in a one-dimensional

toy problem, namely T2 estimation from a single spin-echo measurement. We generated

training data using a mono-exponential (unity-m0) signal model y = e−TE/T2+ǫ, where y is

a complex spin-echo measurement, TE ← 30ms is the echo time and ǫ ∼ CN (0, 0.012) is

complex Gaussian noise. We sampled N ← 10, 20, 50, 200 regressands from T2 sampling

distribution pT2 ← logunif(10, 500) and took the magnitude of noisy complex signal model

evaluations to generate corresponding magnitude regressors. We trained PERK separately

using each of the four labeled training datasets, holding fixed hyperparameters (λ, ρ) ←
(2−1.5, 2−20) that were manually chosen to aid in illustrating PERK’s typical behavior.

Fig. 5.1 illustrates the 1-D PERK estimator T̂PERK
2 and shows how its performance

improves as N is increased. To produce each subfigure, we uniformly sampled 100,000

true (latent) T2 values, evaluated the noisy signal model as in training to generate magnitude
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(a) N ← 10 (b) N ← 20

(c) N ← 50 (d) N ← 200

Figure 5.1: Illustrations of PERK for T2 estimation from a single spin echo measurement.

Subfigures vary the number N of PERK training points, marked with black circles. The

orange and yellow curves plot PERK T̂PERK
2 and MOM T̂MOM

2 estimators evaluated at test

points, marked with blue dots. Dashed black lines denote the sampling distribution support

supp(pT2) over which each PERK estimator was trained. As N increases, T̂PERK
2 appears

more similar to T̂MOM
2 within well-sampled regions of supp(pT2).

test points (blue dots), and evaluated each PERK estimator at the unlabeled test points

(orange curves). For comparison, subfigures within Fig. 5.1 also plot the intuitive method-

of-moments (MOM) estimator T̂MOM
2 (·) := −TE/ log |·| (yellow curves). As N increases,

T̂PERK
2 appears more similar to T̂MOM

2 within well-sampled regions of supp(pT2) (marked

by dashed black lines). PERK will be more useful in nonlinear estimation problems where

such a minimally biased and low-dimensional MOM estimator is unavailable.

68



5.7 Experimentation

This section demonstrates PERK for quantifying MR relaxation parameters T1 and T2,

a well-studied application. We studied this relatively simple problem instead of the more

complicated problems that motivated our method because we had access to reference T1, T2

phantom NMR measurements [2] for external validation and because it is easier to validate

PERK estimates against gold-standard grid search estimates in problems involving few

unknowns (Ch. 6 applies PERK to a more challenging problem). Subsection 5.7.1 describes

implementation details that were fixed in all simulations and experiments. Subsection 5.7.2

studies estimator statistics in numerical simulations. Subsection 5.7.3 and Subsection 5.7.4

respectively compare PERK performance in phantom and in vivo experiments.

5.7.1 Methods

In all simulations and experiments, we used data arising from a fast acquisition [6] con-

sisting of two spoiled gradient-recalled echo (SPGR) [19] and one dual-echo steady-state

(DESS) [22] scans. Since each SPGR (DESS) scan generates one (two) signal(s) per exci-

tation, this acquisition yielded D ← 4 datasets. We fixed scan parameters to be identical to

those in [6], wherein repetition times and flip angles were optimized for precise T1 and T2

estimation in cerebral tissue at 3T field strength [6] and echo times were fixed across scans.

We used standard magnitude3 SPGR and DESS signal models expressed as a function of

four free parameters per voxel: flip angle spatial variation (due to transmit field inhomo-

geneity) κ; longitudinal and transverse relaxation time constants T1 and T2; and a pure-real

proportionality constant m0. We assumed prior knowledge of K ← 1 known parameter

ν ← κ (in experiments, through separate acquisition and estimation of flip angle scaling

maps) and collected the remaining L← 3 latent parameters as x← [m0, T1, T2]
T

.

We used the same PERK training and testing process across all simulations and ex-

periments. We assumed a separable prior distribution px,ν ← pm0,T1,T2,κ ≡ pm0pT1pT2pκ

and estimated flip angle scaling marginal distribution pκ from known κ map voxels via ker-

nel density estimation (implemented using the built-in MATLAB® function fitdistwith

default options). To match the scaling of training and test data, we set m0 marginal distribu-

tion pm0 ← unif(2.2× 10−16, u), with u set as 6.67× the maximum value of magnitude test

3Standard complex DESS signal models depend on a fifth free parameter associated with phase accrual

due to off-resonance effects. Because the first and second DESS signals depend differently on off-resonance

phase accrual [6], off-resonance related phase (unlike signal loss) cannot be collected into the (now complex)

proportionality constant. To avoid (separate or joint) estimation of an off-resonance field map, we followed

[6] and used magnitude SPGR and DESS signal models. We accounted for consequently Rician-distributed

noise in magnitude image data during training.
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data. We chose the supports of T1, T2 marginal distributions pT1 ← logunif(400, 2000)ms,

pT2 ← logunif(40, 200)ms and clipped the support of pκ to assign nonzero probability

only within [0.5, 2] such that these supports coincided with the supports over which [6]

optimized the acquisition. We assumed noise covariance Σ of form σ2I4 (as in [6]) and

estimated the (spatially invariant) noise variance σ2 from Rayleigh-distributed regions of

magnitude test data, using estimators described in [137]. We sampled N ← 105 latent

and known parameter realizations from these distributions and evaluated SPGR and DESS

signal models to generate corresponding noiseless measurements. After adding complex

Gaussian noise realizations, we concatenated the (Rician) magnitude of these noisy mea-

surements with known parameter realizations to construct pure-real regressors. We sepa-

rately selected and then held fixed free parameters λ ← 20.6 and ρ ← 2−41 via a simple

holdout process, described in Subsection 5.7.1.1. We set Gaussian kernel bandwidth ma-

trix Λ from test data via (5.25). We sampled v, s Z ← 103 times to construct approximate

feature map z̃. For each lth latent parameter where l ∈ {1, . . . , L}, we applied z̃ to training

data; computed sample means mxl
,mz̃ and sample covariances czxl

,Cz̃z̃; and evaluated

(5.23) on test image data and the known flip angle scaling map on a per-voxel basis.

5.7.1.1 Model Selection via Holdout

We selected Gaussian kernel bandwidth scaling parameter λ and regularization parameter

ρ using the following offline holdout procedure in simulation. We discretized (λ, ρ) over a

finely spaced grid spanning many orders of magnitude. As described in Subsection 5.7.1,

we trained a PERK estimator x̂λ,ρ for each candidate model parameter setting. We evalu-

ated each PERK estimator on a separate simulated dataset consisting of many samples from

the training prior distribution px,ν . We selected model parameters by exhaustively seeking

a minimizer
(
λ̂, ρ̂
)

of the “holdout” cost function

Ψ(λ, ρ) :=

√√√√ 1

T

T∑

t=1

∥∥([diag(xt)])
−1(x̂λ,ρ(qt)− xt)

∥∥2
W

(5.26)

where t ∈ {1, . . . , T} indexes T test points; each xt is the true latent parameter corre-

sponding to holdout test data point qt; and W is a diagonal unit-trace weighting matrix.

Intuitively, Ψ(λ, ρ) is the weighted normalized root mean squared error of PERK estima-

tor x̂λ,ρ, where the mean approximates an expectation with respect to px,ν and the latent

parameter weighting is specified by W.

Fig. 5.2 plots Ψ(λ, ρ) for T ← 105 test points and W ← diag
(
[0, 0.5, 0.5]T

)
selected
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0.16

Figure 5.2: Holdout criterion Ψ(λ, ρ) versus Gaussian kernel bandwidth scaling parameter

λ and regularization parameter ρ. Each pixel is the weighted normalized root mean squared

error of a candidate PERK estimator, where the empirical mean over 105 test points ap-

proximates an expectation with respect to training prior distribution px,ν and the weighting

places emphasis on good T1, T2 estimation performance. A white star marks the minimizer(
λ̂, ρ̂
)
← (20.6, 2−41).

to place equal emphasis on T1, T2 estimation. We chose our fine grid search range using a

preliminary coarse grid search spanning a much wider range of (λ, ρ) values. Overall, we

observe a broad range of (λ, ρ) values that yield similar cost function values. Holdout cost

Ψ(λ, ρ) gracefully increases with larger (λ, ρ) values due to under-fitting. For very small ρ

values, Ψ(λ, ρ) can be large because poorly conditioned matrix inversions cause machine

imprecision to dominate estimation error. In all simulations and experiments, we fixed free

model parameters to the minimizer
(
λ̂, ρ̂
)
← (20.6, 2−41), indicated by a white star.
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5.7.1.2 Evaluation

We evaluated PERK latent parameter estimates against maximum-likelihood (ML) esti-

mates computed via two well-suited algorithms that we describe here in turn. We first

implemented a grid search estimator accelerated by the variable projection method (VPM)

[25], a popular technique that has been used in many QMRI algorithms and applications

(see e.g. [138, 105, 106, 95, 103, 109, 108, 111, 113, 139, 6]). Following [6], we clus-

tered flip angle scaling map voxels into 20 clusters via k-means++ [93] and used each

of the 20 cluster means along with 500 T1 and T2 values logarithmically spaced between(
101.5, 103.5

)
and

(
100.5, 103

)
to compute 20 dictionaries, each consisting of 250, 000 signal

vectors (fewer clusters introduced noticeable errors in experiments). Iterating over clusters,

we generated each cluster’s dictionary and applied VPM and grid search over magnitude

image data voxels assigned to that cluster.

We also compared PERK to iterative ML optimization via a preconditioned variant of

the classical gradient projection method (PGPM) [23]. We designed the preconditioner as

the inverse of a positive definite diagonal majorizer of the negative log-likelihood cost func-

tion’s Hessian matrix, updated for the first five iterations and fixed thereafter. We employed

a diagonal preconditioner to retain the linear convergence rate guarantees of GPM [37]

yet accelerate practical performance. We initialized PGPM via conventional method-of-

moments estimators of m0, T1 from 2 SPGR scans [35] and T2 from 1 DESS scan [22] (the

method-of-moments T2 estimator is strongly biased). We used the MATLAB® Symbolic

Toolbox to generate cumbersome but analytical expressions for the gradient and Hessian

of the magnitude SPGR and DESS signal models. At each PGPM iteration, we used these

expressions to compute a preconditioned descent direction, update the iterate, and project

each voxel’s T1 and T2 iterate to lie within [100, 3000]ms and [10, 700]ms, respectively. We

continued iterations until the convergence criterion

∥∥(Ω)−1(
X(i) −X(i−1)

)∥∥
F
< 10−7

∥∥(Ω)−1(
X(i−1)

)∥∥
F

(5.27)

was satisfied, where X collects latent parameter voxels in its columns, (·)(i) denotes the ith

iterate, Ω := diag
(
med

(
X(0)

))
is a fixed latent parameter weighting matrix, and med(·)

takes the median across the columns of its argument.

To ensure monotone local convergence in cost, we implemented PGPM to include a

simple step-halving line search at each iteration. In early experiments however, we ob-

served even in simulation and even with preconditioning that attempting to update all

voxels simultaneously using a single line search resulted in large errors due to excessive

step-halving and subsequent early termination of iterations. To circumvent separate line
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searches for every voxel, we first clustered latent parameter initializations and flip angle

scaling map voxels into 50 clusters and then ran PGPM separately on each cluster (fewer

clusters reintroduced early stopping).

We performed all simulations and experiments running MATLAB® R2013a on a 3.5GHz

desktop computer equipped with 32GB RAM. Because our experiments use a single slice of

image data, we report PERK training and testing times separately and note that only the lat-

ter time would scale linearly with the number of voxels (the former would scale negligibly

due only to online model selection). In the interest of reproducible research, code and data

will be freely available at https://gitlab.eecs.umich.edu/fessler/qmri.

5.7.2 Numerical Simulations

We assigned typical T1, T2 values in white matter (WM) and grey matter (GM) at 3T [31]

to the 81st slice of the BrainWeb digital phantom [34] to produce ground truth m0, T1, T2

maps. We simulated 217×181 noiseless single-coil SPGR and DESS image data, modeling

(and then assuming as known) 20% flip angle spatial variation. We corrupted noiseless

datasets with additive complex Gaussian noise to yield noisy complex datasets with SNR

ranging from 94-154 in WM and 82-154 in GM, where SNR is defined

SNR(ỹ, ǫ̃) := ‖ỹ‖2/‖ǫ̃‖2 (5.28)

for image data voxels ỹ and noise voxels ǫ̃ corresponding to a region of interest (ROI)

within a single SPGR/DESS dataset. We estimated m0, T1, T2 from noisy magnitude im-

ages and known κ maps using VPM, PGPM, and PERK. VPM took 791s; PGPM took

1821s; and PERK training and testing respectively took 3.6s and 1.5s.

Figs. 5.3, 5.4, and 5.5 compare VPM, PGPM, and PERK estimates of m0, T1, T2 respec-

tively, alongside 10×magnified absolute difference images with respect to the ground truth.

Voxels not assigned WM- or GM-like relaxation times are masked out in post-processing

for display. Difference images demonstrate that within WM- and GM-like voxels, all three

methods exhibit low estimation error.

Table 5.1 compares sample statistics of VPM, PGPM, and PERK m0, T1, T2 estimates,

computed over 7810 WM-like and 9162 GM-like voxels. Overall, all three methods achieve

excellent performance. PERK estimates are slightly more precise but slightly less accurate

than gold-standard VPM estimates. Results suggest that at least in WM- and GM-like

voxels, PGPM is capable of descending the ML cost towards a desirable solution; in fact,

PGPM achieves slightly better precision than either VPM or PERK. All three methods

exhibit comparable root mean squared errors (RMSEs).
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Figure 5.3: m0 VPM, PGPM, and PERK estimates and corresponding error images, in

simulation. Magnitude error images are 10× magnified. Voxels not assigned WM- or

GM-like relaxation times are masked out in post-processing for display. Difference images

demonstrate that all three m0 estimates exhibit low estimation error. Table 5.1 presents

corresponding sample statistics.

Truth VPM PGPM PERK

WM m0 0.77 0.7700± 0.00919 (0.0092) 0.76999± 0.00871 (0.00871) 0.77002± 0.00873 (0.00873)
GM m0 0.86 0.8601± 0.01192 (0.0119) 0.8600± 0.01142 (0.0114) 0.8613± 0.01147 (0.0133)
WM T1 832 832.1± 17.2 (17.2) 832.1± 16.2 (16.2) 833.0± 16.5 (16.5)
GM T1 1331 1331.5± 31.1 (31.1) 1331.2± 29.7 (29.7) 1332.1± 30.4 (30.4)
WM T2 79.6 79.61± 0.988 (0.988) 79.60± 0.952 (0.952) 79.46± 0.978 (0.989)
GM T2 110. 110.02± 1.40 (1.40) 110.02± 1.35 (1.35) 109.91± 1.35 (1.35)

Table 5.1: Sample means ± sample standard deviations (RMSEs) of VPM, PGPM, and

PERK m0, T1, T2 estimates, computed in simulation over 7810 WM-like and 9162 GM-like

voxels. Each sample statistic is rounded off to the highest place value of its (unreported)

standard error, computed via formulas in [3]. m0 values are unitless. T1, T2 values are in

milliseconds. Figs. 5.3, 5.4, and 5.5 present corresponding images.

5.7.3 Phantom Experiments

Phantom experiments used datasets from fast coronal scans of a High Precision Devices®

MR system phantom T2 array acquired on a 3T GE Discovery™ scanner with an 8-channel

receive head array. This acquisition consisted of: two SPGR scans with 5, 15◦ flip angles

and 12.2, 12.2ms repetition times; one DESS scan with 30◦ flip angle and 17.5ms repetition
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Figure 5.4: T1 VPM, PGPM, and PERK estimates and corresponding error images, in

simulation. Magnitude error images are 10× magnified. Voxels not assigned WM- or

GM-like relaxation times are masked out in post-processing for display. Difference images

demonstrate that all three T1 estimates exhibit low estimation error. Table 5.1 presents

corresponding sample statistics.

time; and two Bloch-Siegert (BS) scans [90] (for separate flip angle scaling estimation).

Nominal flip angles were achieved by scaling a 2cm slab-selective Shinnar-Le Roux RF

pulse [89] of duration 1.28ms and time-bandwidth product 4. All scans collected fully-

sampled 3D Cartesian data using 4.67ms echo times with a 256 × 256 × 8 matrix over a

24 × 24 × 4cm3 field of view. Scan time totaled 3m17s. The scan room temperature was

recorded as 293K at the beginning of the exam. Further acquisition details are in [6].

For each SPGR, DESS, and BS dataset, we reconstructed raw coil images via 3D

Fourier transform and subsequently processed only one image slice centered within the

excitation slab. We combined SPGR and DESS coil images using a natural extension of

[92] to the case of multiple datasets. We similarly (but separately) combined BS coil images

and estimated κ maps by normalizing and calibrating regularized transmit field estimates

[91] from complex coil-combined BS images. We estimated m0, T1, T2 from magnitude

SPGR/DESS images and κ maps using VPM, PGPM, and PERK. VPM took 928s; PGPM

took 1257s; and PERK training and testing respectively took 4.2s and 1.9s.

Fig. 5.6 compares VPM, PGPM, and PERK m0, T1, T2 estimates. Vials are enumerated

in descending T1, T2 order. Vials whose T1, T2 values are within sampling distribution
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Figure 5.5: T2 VPM, PGPM, and PERK estimates and corresponding error images, in

simulation. Magnitude error images are 10× magnified. Voxels not assigned WM- or

GM-like relaxation times are masked out in post-processing for display. Difference images

demonstrate that all three T1 estimates exhibit low estimation error. Table 5.1 presents

corresponding sample statistics.

support supp(px,ν) (as measured by NIST NMR reference measurements [2]) have labels

highlighted with yellow numbers. Here, supp(px,ν) was chosen to reflect the ranges of

latent parameter values for which the SPGR/DESS scan parameters were optimized in [6].

Circular ROIs are selected well away from vial encasings and correspond with sample

statistics presented in Fig. 5.7. Distilled water surrounds the encased vials. Within the

highlighted vials of interest, VPM, PGPM, and PERK estimates appear visually similar.

Fig. 5.7 compares sample means and sample standard deviations computed within ROIs

of VPM, PGPM, and PERK T1, T2 estimates against nuclear magnetic resonance (NMR)

reference measurements reported at 293.00K from the National Institute for Standards of

Technology (NIST) [2]. Yellow box boundaries indicate projections of the PERK sam-

pling distribution’s support supp(px,ν). ROI labels correspond with vial markers depicted

in Fig. 5.6. Within supp(px,ν), corresponding tables demonstrate that VPM, PGPM, and

PERK estimates agree excellently with each other and reasonably with NMR measure-

ments. We do not expect good PERK performance outside supp(px,ν) and indeed observe

poor ability to extrapolate. As discussed in Subsection 5.5.2.1 and demonstrated in Sub-

section 5.8.2, expanding supp(px,ν) well beyond the acquisition design parameter range of
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Figure 5.6: VPM, PGPM, and PERK m0, T1, T2 estimates in a quantitative phantom. Vials

are enumerated and highlighted to correspond with markers and colored boxes in Fig. 5.7.

PERK has only been trained to accurately estimate within vials 4-8; within these vials,

VPM, PGPM, and PERK estimates appear visually similar.

interest can reduce PERK performance for typical T1, T2 WM and GM values.

5.7.4 In vivo Experiments

In vivo experiments used datasets from axial scans of a healthy volunteer acquired with

a 32-channel Nova Medical® receive head array. To address bulk motion between scans,

we rigidly registered coil-combined images to a reference before parameter estimation.

All other data acquisition, image reconstruction, and parameter estimation details are the

same as in phantom experiments (acquisition and reconstruction details are reported in [6]).
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Ideal
VPM

PGPM
PERK

NMR VPM PGPM PERK

V4 T1 1604± 7.2 1645± 48 1649± 48 1626± 46
V5 T1 1332± 0.8 1335± 61 1331± 41 1332± 40.
V6 T1 1044± 3.2 1055± 28 1060.± 29 1061± 29
V7 T1 801.7± 1.70 834± 21 840.± 23 839± 23
V8 T1 608.6± 1.03 627± 25 623± 12 620.± 13

V4 T2 190.94± 0.011 194± 5.5 192.4± 5.2 192.5± 4.9
V5 T2 133.27± 0.073 131.2± 5.3 131± 5.5 131± 5.5
V6 T2 96.89± 0.049 90.8± 3.5 90.8± 3.5 90.9± 3.5
V7 T2 64.07± 0.034 64.6± 2.2 64.5± 2.1 65.0± 2.1
V8 T2 46.42± 0.014 46.4± 1.5 46.4± 1.5 46.1± 1.5

Figure 5.7: Phantom sample statistics of VPM, PGPM, and PERK T1, T2 estimates and

NIST NMR reference measurements [2]. Plot markers and error bars indicate sample

means and sample standard deviations computed over ROIs within the 14 vials labeled and

color-coded in Fig. 5.6. Yellow box boundaries indicate projections of the PERK sampling

distribution’s support supp(px,ν). Missing markers lie outside axis limits. Corresponding

tables replicate sample means ± sample standard deviations for vials within supp(px,ν).
Each value is rounded off to the highest place value of its (unreported) standard error,

computed via formulas in [3]. ‘V#’ indicates vial numbers. All values are reported in mil-

liseconds. Within supp(px,ν), VPM, PGPM, and PERK estimates agree excellently with

each other and reasonably with NMR measurements.

VPM took 838s; PGPM took 2178s; and PERK training and testing took 4.2s and 1.6s.

Fig. 5.8 compares VPM, PGPM, and PERK m0, T1, T2 estimates. The PERK m0 esti-

mate appears smoothed (although no spatial regularization was used) but is otherwise very

similar to the VPM and PGPM m0 estimates. Narrow display ranges emphasize that VPM,

PGPM, and PERK T1, T2 estimates discern cortical WM/GM boundaries similarly, though
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Figure 5.8: VPM, PGPM and PERK estimates of m0, T1, T2 in the brain of a healthy volun-

teer. Separate WM ROIs are distinguished by anterior/posterior (A/P) and right/left (R/L)

directions. Four small anterior cortical GM polygons are pooled into a single GM ROI.

Images are cropped in post-processing for display.

PERK T1 estimates are noticeably highest in some WM regions. VPM, PGPM, and PERK

T2 estimates are nearly indistinguishable in lateral regions but disagree somewhat in medial

regions close to cerebrospinal fluid (CSF). We neither expect nor observe reasonable PERK
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ROI VPM PGPM PERK

T1

AR WM 778± 28 779± 27 832± 31
AL WM 731± 37 713± 33 725± 41
PR WM 805± 52 796± 51 831± 51
PL WM 789± 40 788± 38 815± 42
A GM 1120± 180 1120± 180 1150± 170.

T2

AR WM 40.0± 1.29 40.0± 1.27 41.18± 0.94
AL WM 39.7± 1.7 39.7± 1.7 41.3± 1.02
PR WM 43.0± 2.7 43.0± 2.7 43.7± 2.6
PL WM 43.0± 1.8 43.0± 1.8 43.5± 1.36
A GM 53.5± 11.8 53.4± 11.7 53.3± 11.6

Table 5.2: In vivo sample means± sample standard deviations of VPM, PGPM, and PERK

T1, T2 estimates, computed over color-coded ROIs indicated in Fig. 5.8. Each value is

rounded off to the highest place value of its (unreported) standard error, computed via

formulas in [3]. All values are in milliseconds.

performance in voxels containing CSF.

Table 5.2 summarizes sample statistics of VPM, PGPM, and PERK T1, T2 estimates,

computed over four separate WM ROIs containing 96, 69, 224, and 148 voxels and one

pooled cortical anterior GM ROI containing 156 voxels. Overall, VPM, PGPM, and PERK

T1, T2 estimates are comparable. T1 estimates in GM and T2 estimates in WM/GM do not

differ significantly. PERK T1 estimates are significantly higher than VPM and PGPM T1

estimates in one WM ROI; however, all T1 estimates are well within the range of typical

literature measurements at 3T (see e.g. [31, 32]).

5.8 Robustness Studies

This section investigates PERK robustness to two types of non-idealities that may be en-

countered in other applications. Subsection 5.8.1 studies PERK performance sensitivity

to mismatch between training and testing noise variance. Subsection 5.8.2 studies PERK

performance degradation when trained with latent parameter distributions that have wider

support than the parameter ranges used for optimizing the scan design in [6].

5.8.1 Mismatch in Training vs. Testing Noise Statistics

To assess the importance of training PERK with appropriately noisy training data, we in-

vestigated PERK’s performance sensitivity to the standard deviation σ of the noise dis-

tribution from which noise realizations are drawn to generate training data. Instead of
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Figure 5.9: Performance criterion Ψ(σ) versus PERK training noise standard deviation σ,

over two different scales. Similar to Fig. 5.2, each point on the blue curve is the weighted

normalized root mean squared error of a separately trained PERK estimator. In each sub-

plot, a black star marks the performance criterion minimizer σ̂ ← 2−8.8 while a dashed red

line marks the (latent) test data noise standard deviation σ⋆ ← 2−8.736. To within quan-

tization error, PERK performs best when trained with training data whose noise statistics

match test data noise statistics. Performance degradation as measured by Ψ does not exceed

10% for σ values within a factor of two of σ⋆. This result suggests that PERK is somewhat

robust to moderate misspecification of the noise level.

setting σ online as in other experiments, here we fixed σ offline to one of many discretized

values spanning many orders of magnitude. Otherwise as described in Subsection 5.7.1,

we trained a PERK estimator for each σ setting. Similar to Subsection 5.7.1.1, we tested

each PERK estimator on a separate simulated dataset consisting of 105 samples from train-

ing prior distribution px,ν . We assessed performance sensitivity by comparing evaluations

Ψ(σ) of holdout cost (5.26) at each σ setting.

Fig. 5.9 plots Ψ(σ) as σ is varied over two different scales. In each subplot, a black star

marks the minimizer σ̂ ← 2−8.8 while a dashed red line marks the (latent) test data noise

standard deviation σ⋆ ← 2−8.736. To within quantization error, PERK performs best when

trained with training data whose noise statistics match test data noise statistics. As mea-

sured by Ψ, PERK performance degrades by at most 10% for choices of σ ∈ [2−10.2, 2−8].

Results suggest that for good PERK performance, it is desirable to set σ to within about

a factor of two of the test data noise standard deviation σ⋆. Nevertheless, there is a zone

near σ⋆ where PERK performance is reasonably similar, indicating that PERK is somewhat

robust to some misspecification of the noise level.
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5.8.2 Mismatch in Scan Design vs. Sampling Distribution Support

Although the SPGR/DESS acquisition was optimized in [6] for a certain range of T1, T2

values, it is interesting to investigate how well PERK can perform outside that parameter

range if presented (simulated) training data over a wider range of latent parameters. It is

also interesting to explore whether using such a wider range of latent parameters for train-

ing degrades performance for the parameter range of primary interest. Thus, we repeated

the phantom experiment described in Subsection 5.7.3 except now using a PERK estimator

trained using a sampling prior distribution with broader support. We still assume a sepa-

rable prior distribution px,ν ← pm0pT1pT2pκ (with pm0 and pκ set as before) but now set

pT1 ← logunif(101.5, 103.5) and pT2 ← logunif(100.5, 103.5) to have wider supports. These

support endpoints now match the grid search support used by the VPM. All other training

and testing details are unchanged from before.

Fig. 5.10 is analogous to Fig. 5.7 in that it plots sample means and sample standard de-

viations computed within ROIs of VPM, PGPM, and PERK T1, T2 estimates, except now

using a PERK estimator trained over the broader sampling distribution. Fig. 5.11 presents

corresponding images. The yellow boxes are unchanged from Fig. 5.7 and so their bound-

aries no longer correspond to projections of the PERK sampling distribution’s support.

Rather, they serve to clearly highlight that PERK estimator performance can significantly

deteriorate even over the parameter range of interest, when trained using a range of param-

eters that exceeds the design criteria of the acquisition.

Fig. 5.10 also tabulates sample means and sample standard deviations computed within

ROIs of vials 4-8. Comparing again with Fig. 5.7, PERK T2 estimation accuracy is more

severely affected than T1 estimation accuracy (interestingly, T1 estimation accuracy is in

fact improved for many vials). PERK T1, T2 estimation precision is consistently worse in

vials 4-8 when trained over the broader sampling range.

These observations highlight the importance of considering acquisition design and pa-

rameter estimation in tandem, and with consideration of the latent parameter ranges of

interest in a given application.

5.9 Discussion

The single-slice experiments show that PERK can achieve similar WM/GM T1, T2 esti-

mation performance as dictionary-based grid search via VPM or iterative optimization via

PGPM, but in more than 2 orders of magnitude less time. This acceleration factor will grow

to at least 3 orders of magnitude for T1, T2 estimation over a typical full imaging volume
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Ideal
VPM

PGPM
PERK

NMR VPM PGPM PERK

V4 T1 1604± 7.2 1645± 48 1639± 48 1649± 51
V5 T1 1332± 0.8 1335± 61 1331± 41 1343± 40.
V6 T1 1044± 3.2 1055± 28 1060.± 29 1083± 32
V7 T1 801.7± 1.70 834± 21 840.± 23 821± 25
V8 T1 608.6± 1.03 627± 25 623± 12 604± 18

V4 T2 190.94± 0.011 194± 5.5 193.1± 5.2 197± 11
V5 T2 133.27± 0.073 131.2± 5.3 131± 5.5 138± 8
V6 T2 96.89± 0.049 90.8± 3.5 90.8± 3.5 106.6± 3.6
V7 T2 64.07± 0.034 64.6± 2.2 64.5± 2.1 89.2± 3.7
V8 T2 46.42± 0.014 46.4± 1.5 46.4± 1.5 48.9± 4.6

Figure 5.10: Phantom sample statistics of VPM, PGPM, and PERK T1, T2 estimates and

NIST NMR reference measurements [2] in the case of strong mismatch between acquisi-

tion design versus PERK training distribution support. Unlike analogous results in Fig. 5.7,

here the PERK estimator was trained with a sampling distribution whose support extended

well beyond the range of T1, T2 values for which the acquisition was optimized. Compar-

ing to Fig. 5.7, we find that PERK estimator performance degrades within the highlighted

T1, T2 range of interest. Plot markers and error bars indicate sample means and sample

standard deviations computed over ROIs within the 14 vials labeled and color-coded in

Fig. 5.11. Corresponding tables replicate sample means ± sample standard deviations for

vials within the highlighted range. Each value is rounded off to the highest place value of its

(unreported) standard error, computed via formulas in [3]. All values are in milliseconds.

(because PERK training time scales negligibly with the number of voxels) and may grow

even higher for full-volume parameter estimation in problems involving more unknowns

per voxel (see [9] for a demonstration in simulation). Even with recent low-rank dictionary

approximations [109, 112, 114, 115] dictionary-based methods are unlikely to achieve the

83



 

 

 
VPM PGPM PERK

M
0

1
2

3

4

5
6

7

8

9

10

11 12

1314

a
.u

.

0

6

12

18

24

30

 

 

T
1

m
s

0

600

1200

1800

2400

3000

 

 

T
2

m
s

0

100

200

300

400

500

Figure 5.11: More aggressively trained VPM, PGPM, and PERK m0, T1, T2 estimates in a

quantitative phantom. Here the PERK estimator was trained with a sampling distribution

whose support extended over less well identified T1, T2 values. Comparing with analogous

images in Fig. 5.6, PERK performance within vials 4-8 degrades, though in other vials

performance clearly improves. Vials are enumerated and highlighted to correspond with

markers and colored boxes in Fig. 5.10.

large-scale speed of PERK.

PERK also handles known parameters ν more naturally than does dictionary-based

grid search. Grid search necessitates pre-clustering ν voxel values and generating one

dictionary per cluster; however, it is in general unclear a priori how many clusters are

needed to balance accuracy and computation. In contrast, PERK simply considers the

coordinates of each ν sample as additional regressor dimensions. As the Gaussian PERK

estimator is continuous in ν (and α), Gaussian PERK does not suffer from either cluster
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(or grid) quantization bias.

Interestingly, PERK storage requirements grow more directly with regressor dimen-

sion Q than with regressand dimension L. Using formulas for rank-one covariance matrix

updates, constructing x̂(·) element-wise via L evaluations of (5.23) can be implemented

to use O(Z2) memory units when ρl ← ρ ∀l ∈ {1, . . . , L} (as recommended in Subsec-

tion 5.5.2.2). Direct application of [133, Proposition 4] to the case of Gaussian kernel

(5.12) reveals that Z should be scaled subquadratically but superlinearly with Q to conser-

vatively maintain a given threshold of maximal kernel approximation error. Thus, PERK

memory requirements need grow no faster than O(Q4) to maintain a given level of kernel

approximation error.

The O(Q4) PERK memory requirement ensures improvement over large-scale grid

search in modestly overdetermined estimation problems, i.e. when Q ≈ L. In applica-

tions where the number of measurements far exceeds L (e.g., MR fingerprinting [103]),

PERK may still provide performance gains if images are projected [109] or directly recon-

structed [114] into a low-dimensional measurement subspace prior to per-voxel processing.

Using this idea, we recently applied PERK to MR fingerprinting in [1].

Phantom experiments most clearly demonstrate that while PERK T1, T2 estimates are

accurate within a properly selected training range, PERK may extrapolate poorly outside

the sampling distribution’s support (an improperly selected support can significantly de-

grade performance; see Subsection 5.8.2 for a demonstration). If more graceful degrada-

tion is desired, it may be helpful to additionally fit coefficients of a low-order polynomial

and thereby form estimates of form, e.g., x̂l(q) := ĥl(q) + b̂l + ĉTl q. However, greater

model complexity may require more training samples to prevent overfitting.

In vivo experiments demonstrated that VPM, PGPM, and PERK T1, T2 estimates are

overall comparable in WM and GM regions of interest. Nevertheless, small but consis-

tently unidirectional discrepancies persist between the ML and PERK T1 estimates in WM,

one of which is statistically significant. These subtle discrepancies may indicate that ML

and PERK estimators behave differently in regions with increased model mismatch. One

possible source of in vivo model mismatch could be diffusive signal loss, to which DESS is

especially sensitive [97, 96]. In particular, unaccounted diffusive signal loss could reduce

the DESS second echo’s already low SNR in WM to a point where non-Gaussian noise

statistics become important to consider. Whereas PERK was trained with simulated data

corrupted by Rician-distributed noise, the ML estimators used in this work take a (stan-

dard) Gaussian noise assumption and may thus be more prone than PERK to noise-related

bias at low SNR. Taking these statements together, unaccounted diffusive effects might bias

Gaussian ML estimators more than a properly trained PERK estimator and might explain
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minor discrepancies between ML and PERK T1 estimates in WM.

The present formulation constructs separate scalar estimators for each coordinate of x̂.

A natural extension might instead seek to construct vector estimators that consist of linear

combinations of vector features that reside in an RKHS of vector-valued functions (see

[140] for a review). Here, the associated reproducing kernel would now be matrix-valued

and might encode expected dependencies among the outputs of x̂. With enough train-

ing points, the resulting vector estimator could achieve improved estimator performance

in terms of accuracy and precision, at the expense of tuning more model parameters and

increased computational burden.

In this work, we trained PERK using simulated training data corrupted by noise real-

izations drawn from a single noise distribution, whose statistics were estimated once from

background regions of unlabeled test image data. This training strategy produced reason-

able results perhaps in part because our experiments used fully-sampled Cartesian data, for

which coil-combined images exhibit little spatial variation in the noise distribution due to

receive coil sensitivity spatial variation [141]. To apply PERK in applications where input

measurement images exhibit large spatial variation in the noise variance (e.g., multiple-coil

acquisitions with parallel imaging acceleration), it may be advantageous to train PERK

using simulated training data corrupted by noise realizations drawn from an appropriate

distribution over noise distributions. If noise variance maps are available, one could alter-

nately train several PERK estimators with training datasets corrupted by different amounts

of noise and apply each estimator to correspondingly noisy measurement image voxels.

Because there is ambiguity in MR data scale due to receive gains and other amplitude

scaling factors, it is desirable to construct an estimator that is unaffected by changes in data

scale between training and testing. In experiments, we address scaling ambiguity by setting

the marginal m0 sampling distribution pm0 based on test measurements, thereby matching

simulated training measurement scale to test measurement scale. This strategy would re-

quire retraining between acquisitions that are different in scale but are otherwise identical,

which may be undesirable in practice. Alternatively, one could preprocess each noisy train-

ing regressor and each noisy test measurement by rescaling each such that (without loss of

generality) its first entry is unity, is subsequently uninformative, and can thus be safely

pruned to reduce problem dimensionality. Training and testing estimators (for latent pa-

rameters other than m0) using these preprocessed regressors and test points is then largely

invariant to the support of pm0 [1]. One drawback to this approach is that normalization by

noisy training regressors and test measurements could increase estimation variance.

As explained further in Subsection 5.5.2, we chose to train PERK after observation

of unlabeled test data, a strategy that permits automatic selection of some tuning parame-
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ters but requires training at test time. Other applications may require many more training

points than was required in our experiments for reasonable PERK performance, in which

case such online training might be less practical. Using our PERK implementation, of-

fline training would require additional selection of test measurement scale, known object

parameter distribution pν , and noise variance σ2. Test measurement scale selection could

be avoided using the scale-invariant training strategy discussed in the previous paragraph.

As emphasized in Subsection 5.5.2.1 and demonstrated in Subsection 5.8.2, PERK perfor-

mance is quite sensitive to the object parameter distribution’s support, and so at least the

support of pν would need to be carefully selected based on separate prior parameter esti-

mates or problem-specific intuition. As demonstrated in Subsection 5.8.1, PERK performs

best when training and testing data noise statistics coincide but degrades gracefully with

mild levels of mismatch, so σ2 could be selected based on separate SNR approximations.

As an alternative to PERK, researchers have recently proposed MRI parameter esti-

mation via deep neural network learning [142, 143]. Deep learning requires enormous

numbers of training points to train many model parameters without overfitting, and its lim-

ited theoretical basis renders its practical use largely an art. Here, we have introduced and

investigated PERK with an emphasis on its simplicity and its relatively intuitive model se-

lection (see Subsection 5.5.2); a thorough comparison with deep learning is a possible topic

for future work.

5.10 Conclusion

This paper has introduced PERK, a fast and general method for dictionary-free MRI pa-

rameter estimation. PERK first uses prior parameter/noise distributions and a general non-

linear MR signal model to simulate many parameter-measurement training points and then

constructs a nonlinear regression function from these training points using linear com-

binations of nonlinear kernels. We have demonstrated PERK for T1, T2 estimation from

optimized SPGR/DESS acquisitions [6], a simple application where it is straightforward to

validate PERK estimates against gold-standard VPM estimates, iterative PGPM estimates,

and NIST reference measurements. Numerical simulations showed that PERK achieves

T1, T2 RMSE comparable to VPM and PGPM in WM- and GM-like voxels. Phantom

experiments showed that within a properly chosen sampling distribution support, VPM,

PGPM, and PERK estimates agree excellently with each other and reasonably with NIST

NMR measurements. In vivo experiments showed that VPM, PGPM, and PERK produce

comparable T1 estimates and nearly indistinguishable T2 estimates in WM and GM ROIs.

PERK used identical model selection parameters across all simulations and experiments
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and consistently provided at least a 140× acceleration over VPM and PGPM. This acceler-

ation factor may increase by several orders of magnitude for estimation problems involving

more latent parameters per voxel [9, 11].
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CHAPTER 6

Fast Myelin Water Imaging

via Acquisition Design and PERK

6.1 Introduction

This chapter1 adapts acquisition design (developed in Ch. 4) and applies parameter estima-

tion (developed in Ch. 5) to design a new method for imaging a specific MR biomarker of

clinical interest. In particular, we study a biomarker for myelin content in the human brain.

Myelin is a lipid-rich material that forms an insulating sheath encasing neuronal axons

predominantly in white matter (WM) regions of the human brain [144]. Demyelination

(i.e., myelin loss) is central to the development of several neurodegenerative disorders such

as multiple sclerosis (MS) [145]. Non-invasive myelin quantification in WM is thus desir-

able for monitoring the onset and progression of neurodegenerative disease.

MR relaxation time constants (especially spin-spin time constant T2) depend on the

macromolecular environment surrounding excited water molecules. In nerve tissue, these

environments vary spatially on scales much smaller than the millimeter-scale resolutions

used in typical MR imaging experiments. Thus, there is significant variation of relaxation

times within a typical imaging voxel containing nerve tissue.

Many researchers have attempted to characterize tissue microstructure by estimating

the distribution of MR relaxation time constants and associating certain ranges of time

constants with particular “compartments” or “pools” of water molecules that exist in simi-

lar macromolecular environments. In vitro NMR studies of nerve animal tissue ascribed a

fast-relaxing2 water compartment with T2 ∼10-40ms initially to general protein and phos-

pholipid structures [146] and later more specifically to water trapped between the phos-

1This chapter partially derives content from in-preparation journal paper [10] that extends conference

paper [11].
2The fast-relaxing compartment bears its name with reference to the portion of the T2 distribution in water

(from about 10ms to at least 1000ms) that is typically observable in MRI.
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pholipid bilayers of myelin [147, 148]. Shortly thereafter, the first MR images of so-called

myelin water fraction (MWF), defined as the proportion of MR signal arising from the fast-

relaxing water compartment relative to total MR signal, were demonstrated in vivo in the

human brain [100]. More recently, MWF has been shown to correlate well with histological

measurements of myelin content in animal models of nerve injury [149] and demyelination

[150]. In humans, MWF has been measured to be significantly lower in “normally appear-

ing” WM of MS patients versus controls [151], and to correlate strongly with post-mortem

histological measurements of myelin content in MS patients [152]. Thus, there is strong

evidence that MWF as defined in [100] is a specific biomarker for WM myelin content.

All of the aforementioned studies estimate MWF images from a multi-echo spin echo

(MESE) MRI pulse sequence [51] with long repetition time TR ≥ 2s to ensure sufficient

recovery of the longitudinal magnetization in nerve tissue. Whole-brain MWF imaging us-

ing such long-TR MESE acquisitions at a typical imaging resolution would require hours of

scan time. To enable more clinically practical scan times, researchers have more recently

shown that MESE-based MWF imaging can be accelerated without significantly changing

the resulting MWF images [153, 154] by acquiring multiple gradient echoes per refocus-

ing pulse [155]. However, these and other acquisition modifications used in [154] do not

address the fundamental long-TR requirement of MESE acquisitions and thus would still

require long scan times for whole-brain MWF imaging at millimeter-scale resolution. Fur-

thermore, estimating a T2 distribution from MESE data constitutes a poorly-conditioned

estimation problem that continues to demand high SNR [156, 157], so the need remains for

a more SNR-efficient acquisition for myelin water imaging. As an alternative to MESE ac-

quisitions, scan profiles consisting of short-TR steady-state (SS) sequences were proposed

for whole-brain myelin water imaging in about 30m scan time [121]. Despite recent further

refinements [158, 101], myelin water images from SS pulse sequences have thus far been

shown to be incomparable with MWF images from MESE pulse sequences [159], likely

due at least in part to insufficient precision [160].

Inspired by [6], we reconsidered myelin water imaging from SS pulse sequences from

the perspective of statistical experiment design. In [6], we optimized several combina-

tions of spoiled gradient-recalled echo (SPGR) [19] and dual-echo steady-state (DESS)

scans [21, 22] for single-compartment T1, T2 estimation and found that different optimized

scan combinations gave rise to significantly different in vivo T2 estimates (but comparable

phantom T2 estimates), indicating in vivo sensitivity to model nonidealities (see Ch. 4).

Further simulation studies suggested that these inconsistencies may be explained by multi-

compartmental relaxation. This chapter shows that this apparent SPGR/DESS sensitivity

to multi-compartmental relaxation can be exploited for fast myelin water imaging.
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This chapter introduces a fast SS MRI acquisition for precise myelin water imaging.

The acquisition consists of a combination of SPGR and DESS scans that enables maxi-

mally precise estimation of the faster-relaxing signal fraction fF from two-compartment

SPGR/DESS signal models, subject to a scan time constraint. The precision-optimized

acquisition is as fast as the SS acquisition proposed in [158] but enables ∼40% expected

coefficient of variation in unbiased fF estimates. (Similar calculations for [121, 158] found

that fF coefficients of variation frequently exceeded 100% [160].) To our knowledge, in

vivo experiments are the first to demonstrate (lateral) WM myelin water content estimates

from a fast SS acquisition that are similar to conventional MWF estimates from a slower

MESE acquisition.

The remainder of this chapter is organized as follows. Section 6.2 reviews and develops

simple two-compartment signal models for SPGR and DESS pulse sequences, respectively.

Section 6.3 adapts and then applies QMRI acquisition design (developed in Chapter 4) to

design a fast DESS acquisition for precise fF estimation. Section 6.4 demonstrates myelin

water content imaging from a fast precision-optimized DESS acquisition in numerical sim-

ulations and in vivo experiments. Section 6.5 discusses advantages, challenges, and future

work. Section 6.6 summarizes key contributions.

6.2 Multi-Compartmental Models for SS Sequences

This section develops multi-compartmental signal models for the SPGR and DESS pulse

sequences. Subsection 6.2.1 reviews and extends a concise Bloch-matrix derivation [161]

of an SPGR signal model that accounts for exchange between multiple compartments. Sub-

section 6.2.2 applies the Bloch-matrix representation to derive analogous (but previously

unpublished) multi-compartmental DESS signal models. Though the derivations below fo-

cus for simplicity on only two exchanging compartments, the Bloch-matrix formulation

generalizes readily to greater numbers of interacting compartments.

6.2.1 A Two-Compartment SPGR Signal Model

The McConnell equations [162] extend the Bloch equations [15] to account for physical ex-

change3 between two or more intra-voxel compartments. Here, we consider the interaction

3The word “exchange” is often a source of confusion because it is used in different contexts to refer to a

variety of transport phenomena. As originally described in [162], chemical exchange specifically refers to the

rapid reversible transfer of a nucleus between two or more molecular environments (e.g., hydrogen bonding

in water or proton exchange between water and a macromolecule). More recently, exchange has also been

loosely used to describe several other processes that can be characterized with similar physical equations

but where explicit nuclear transfer does not occur. One such process that we denote for clarity as physical
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of a fast-relaxing water compartment (characterized by comparatively short spin-lattice T1,F

and spin-spin T2,F relaxation times) with a slow-relaxing water compartment (characterized

by longer relaxation times T1,S, T2,S). In primed coordinates rotating clockwise about the

longitudinal z-axis at the Larmor frequency, the dynamics of corresponding fast-relaxing

and slow-relaxing compartmental magnetization vectors m′
F :=

[
m′

x,F, m
′
y,F, m

′
z,F

]T
and

m′
S :=

[
m′

x,S, m
′
y,S, m

′
z,S

]T
are coupled via first-order exchange rates rF→S (from fast

to slow compartment) and rS→F (vice-versa). During periods when no RF excitation is

present, these magnetization dynamics separate in transverse and longitudinal components.

The two-compartment transverse equations extend (2.9) to read

∂

∂t
m′

xy,F(r, t) = −iγm′
xy,F(r, t)ω

′
F(r)−

m′
xy,F(r, t)

T2,F(r)
− rF→S(r)m

′
xy,F(r, t) + rS→F(r)m

′
xy,S(r, t);

(6.1)

∂

∂t
m′

xy,S(r, t) = −iγm′
xy,S(r, t)ω

′
S(r)−

m′
xy,S(r, t)

T2,S(r)
− rS→F(r)m

′
xy,S(r, t) + rF→S(r)m

′
xy,F(r, t),

(6.2)

where m′
xy,F(r, t) := m′

x,F(r, t)+ im′
y,F(r, t) and m′

xy,S(r, t) := m′
x,S(r, t)+ im′

y,S(r, t) are

complex compartmental representations of the transverse magnetization at position r and

time t; ω′
F(r) ∈ R and ω′

S(r) ∈ R allow for compartment-specific but time-invariant off-

resonance effects; and γ ∈ R is the gyromagnetic ratio. During periods when no excitation

is present, analogous two-compartment longitudinal equations extend (2.10) to read

∂

∂t
m′

z,F(r, t) = −
m′

z,F(r, t)− fF(r)m0(r)

T1,F(r)
− rF→S(r)m

′
z,F(r, t) + rS→F(r)m

′
z,S(r, t);

(6.3)

∂

∂t
m′

z,S(r, t) = −
m′

z,S(r, t)− fS(r)m0(r)

T1,S(r)
− rS→F(r)m

′
z,S(r, t) + rS→F(r)m

′
z,F(r, t),

(6.4)

where fF(r) ∈ [0, 1] and fS(r) ∈ [0, 1] denote fast- and slow-relaxing compartmental

fractions and m0(r) denotes the total4 equilibrium magnetization.

Equations (6.1)-(6.4) comprise a first-order affine dynamical system and can be equiv-

exchange involves the transfer of intact molecules between different compartments (e.g., water molecules

across a membrane). In the ensuing derivations, we refer specifically to physical exchange but note that the

McConnell equations describe chemical exchange as well.
4The numerous parameters introduced here are often interdependent. In regions with only two water

compartments present, fF(r) + fS(r) = 1. In regions where only two water pools exhibit exchange and that

exchange is in chemical equilibrium, fF(r)rF→S(r) = fS(r)rS→F(r).
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alently and concisely written in matrix form as

∂

∂t
m′(r, t) = A(r)m′(r, t) + c(r), (6.5)

where m′(r, t) := vec
(
[m′

F(r, t),m
′
S(r, t)]

T

)
∈ R

6 collects the compartmental magneti-

zation vectors and vec(·) denotes vectorization. Here, system matrix A(r) ∈ R6×6 admits

a block diagonal form5 A(r) ≡ [Axy(r), 04×2; 02×4,Az(r)], with Axy(r) :=




− 1
T2,F(r)

− rF→S(r) rS→F(r) ω′
F(r) 0

rF→S(r) − 1
T2,S(r)

− rS→F(r) 0 ω′
S(r)

−ω′
F(r) 0 − 1

T2,F(r)
− rF→S(r) rS→F(r)

0 −ω′
S(r) rF→S(r) − 1

T2,S(r)
− rS→F(r)




(6.6)

collecting transverse dynamics;

Az(r) :=

[
− 1

T1,F(r)
− rF→S(r) rS→F(r)

rF→S(r) − 1
T1,S(r)

− rS→F(r)

]
(6.7)

collecting longitudinal dynamics; and c(r) :=
[
0, 0, 0, 0, fF(r)m0(r)

T1,F(r)
, fS(r)m0(r)

T1,S(r)

]T
. If A(r) is

invertible, a matrix exponential solution to (6.5) exists and reads

m′(r, t) = e(t−t0)A(r)m′(r, t0) +
(
e(t−t0)A(r) − I6

)
(A(r))−1

c(r) ∀t ≥ t0, (6.8)

where m′(r, t0) is the magnetization at an initial time t0 and I6 ∈ R6×6 is an identity

matrix. In chemical equilibrium (described in Footnote 4), a direct calculation involving

compartmental equilibrium magnetization m0(r) := [0, 0, 0, 0, fF(r)m0(r), fS(r)m0(r)]
T

reveals that A(r)m0(r) = −c(r), in which case (6.8) simplifies to

m′(r, t) = e(t−t0)A(r)m′(r, t0) +
(
I6 − e(t−t0)A(r)

)
m0(r) ∀t ≥ t0, (6.9)

a form that resembles the matrix operator solution (2.14) to the single-compartment Bloch

equations in the presence of only free precession and relaxation.

5For conciseness we use here the MATLAB®-like shorthand

[M1,1,M1,2;M2,1,M2,2] ≡
[
M1,1M1,2

M2,1M2,2

]

for all appropriately sized submatrices M1,1,M1,2,M2,1,M2,2.
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To develop a two-compartment SPGR signal model, we modify the derivation of the

single-compartment SPGR model (presented in Subsection 2.1.2.1) to account for inter-

compartmental exchange (via (6.9)) during intervals of free precession and relaxation. As

before, let m′(r, t0) denote the magnetization at an initial time t0 selected well into the

steady-state and just prior to RF excitation. The SPGR sequence first applies an RF excita-

tion with pulse duration TP. If we neglect relaxation, off-resonance, and exchange during

excitation (which is reasonable for sufficiently short TP) and further assume that each com-

partment experiences this excitation with equal transmit field sensitivity, we may model RF

excitation as a rotation by a compartment-wise constant (but spatially varying) nutation an-

gle α(r, t0 + TP; t0) (defined in (2.7)), abbreviated α(r) hereafter. For clockwise rotations

about the x′-axis, such near-instantaneous rotation may be represented as

m′(r, t0 + TP) = R⊗2
x′ (α(r))m

′(r, t0), (6.10)

where R⊗2
x′ (α(r)) := Rx′(α(r)) ⊗ I2 ∈ R

6×6 is a compartment-wise rotation operation;

Rx′(α(r)) is defined in (2.6); and ⊗ denotes the Kronecker product.

The compartments exchange while their magnetization vectors precess and relax as per

(6.8) until data acquisition at echo time TE ∈
[
TP

2
, TR

]
after the midpoint of RF excitation:

m′

(
r, t0 +

TP

2
+ TE

)
= e

(
TE−

TP
2

)
A(r)

m′(r, t0 + TP) +

(
I6 − e

(
TE−

TP
2

)
A(r)

)
m0(r).

(6.11)

Following signal reception (which we assume as in Footnote 3 of Chapter 2 to negligibly in-

fluence magnetization), the SPGR sequence spoils the remaining transverse magnetization

in both compartments while leaving unaffected the longitudinal magnetization components

in each compartment. We model ideal spoiling in both compartments as

S⊗2m′

(
r, t0 +

TP

2
+ TE

)
, (6.12)

where S⊗2 := S ⊗ I2 ∈ R6×6 is a compartment-wise spoiling operator and S ∈ R3×3

is the diagonal binary matrix defined in (2.20). After spoiling, compartments continue to

exchange while their longitudinal magnetization components partially recover until t ←
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t0 + TR, completing one repetition cycle:

m′(r, t0 + TR) = e

(
TR−

(
TP
2
+TE

))
A(r)

S⊗2m′

(
r, t0 +

TP

2
+ TE

)

+

(
I6 − e

(
TR−

(
TP
2
+TE

))
A(r)

)
m0(r). (6.13)

In steady-state, one cycle of excitation, acquisition, spoiling, and recovery returns the mag-

netization back to its initial state. We enforce this through the steady-state condition

m′(r, t0 + TP) = R⊗2
x′ (α(r))m

′(r, t0 + TR), (6.14)

which yields an algebraic system of equations. When it exists, the solution is

m′(r, t0 + TP) =
(
I6 −R⊗2

x′ (α(r))S
⊗2e(TR−TP)A(r)

)−1
R⊗2

x′ (α(r)) (6.15)

×
(
I6 − S⊗2e(TR−TP)A(r) − e

(
TR−

(
TP
2
+TE

))
A(r)(

I6 − S⊗2
))

m0(r)

=
(
I6 −R⊗2

x′ (α(r))S
⊗2e(TR−TP)A(r)

)−1
R⊗2

x′ (α(r)) (6.16)

×
(
I6 − S⊗2e(TR−TP)A(r)

)
m0(r),

where (6.15) is due to straightforward matrix operations and (6.16) makes use of the ideal

spoiling property (I6 − S⊗2)m0(r) = 06∀r. Substituting (6.16) into (6.11) yields an ex-

pression for the compartmental magnetization at the echo time.

The matrix exponentials in (6.16) would be cumbersome to expand in general but for-

tunately always arise prepended by spoiling matrix S⊗2. The combined form reduces to

S⊗2e(TR−TP)A(r) ≡
[
04×4, 04×2; 02×4, e

(TR−TP)Az(r)
]

(6.17)

and admits an explicit representation for (6.16) that we find via standard solvers6. Note that

if RF pulses are assumed instantaneous (i.e., TP ← 0), then the longitudinal components of

(6.16) are equivalent to [161, Eq. 34]. Another instructive (and much simpler) special case

6Since we require many signal evaluations for acquisition design and parameter estimation, it is well

worthwhile from a computational standpoint to symbolically solve algebraic systems of equations whenever

possible. However, for complicated equation systems such as (6.16), the manipulations required are tedious

and error-prone. In MATLAB®, we used the Symbolic Toolbox and the function matlabFunction to

symbolically solve (6.16) and automatically generate memory-friendly function handles.
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neglects exchange (i.e., rF→S ← 0 and rS→F ← 0), in which case (6.16) reduces to

m′(r, t0 + TP) =




0

0
fF(r) sin (α(r))

(
1−e−(TR−TP)/T1,F(r)

)

1−e
−(TR−TP)/T1,F(r)

cos (α(r))

fS(r) sin (α(r))
(
1−e

−(TR−TP)/T1,S(r)
)

1−e−(TR−TP)/T1,S(r) cos (α(r))

fF(r) cos (α(r))
(
1−e−(TR−TP)/T1,F(r)

)

1−e
−(TR−TP)/T1,F(r)

cos (α(r))

fS(r) cos (α(r))
(
1−e

−(TR−TP)/T1,S(r)
)

1−e−(TR−TP)/T1,S(r) cos (α(r))




m0(r), (6.18)

a two (non-exchanging) compartment extension to the SPGR steady-state solution (2.23).

The received signal is approximately proportional to the integrated transverse magneti-

zation arising from both compartments. We take further assumptions to derive expressions,

the first two of which are two-compartment extensions of assumptions used in §2.1.2.1:

1. We assume that the signal is localized to a scale over which there is within-voxel

variation of each compartment’s off-resonance frequency, but minimal intra-voxel

variation of other space-varying parameters m0, fF, fS, T1,F, T1,S, T2,F, T2,S, α, rF→S, rS→F.

This assumption effectively fixes all compartmental properties other than ω′
F and ω′

S

over the volume V of a sufficiently small voxel.

2. We assume that the fast-relaxing and slow-relaxing compartments’ off-resonance

frequencies are independently distributed within a localized voxel with marginal

distributions pω′

F
:= Cauchy

(
ω̄′
F, R

′
2,F

)
and pω′

S
:= Cauchy

(
ω̄′
S, R

′
2,S

)
, where ω̄′

F, ω̄
′
S

are median off-resonance frequencies and R′
2,F, R

′
2,S are broadening bandwidths.

3. We assume for short echo time TE that minimal exchange occurs between excitation

and signal reception. We use this strong assumption only to facilitate first-order ex-

pansion of the matrix exponential in (6.20), thereby separating broadening integrals

by compartment. Without this assumption, (6.20) remains valid.

With these assumptions, the noiseless two-compartment steady-state SPGR signal model
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for a voxel centered at position r and with volume defined by V(r) is (to within constants):

sS

(
r, t0+

TP

2
+TE

)
∝
∫

V(r)

[1, 1, i, i, 0, 0]m′

(
r, t0 +

TP

2
+ TE

)
d3 r (6.19)

≈
(∫

R2

[1, 1, i, i, 0, 0]e

(
TE−

TP
2

)
A(r)

pω′

F
(ω′

F)pω′

S
(ω′

S) dω
′
F dω′

S

)
m′(r, t0 + TP)

(6.20)

≈




e
−(1/T2,F(r)+R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

e
−(1/T2,S(r)+R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

)

ie
−(1/T2,F(r)+R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

ie
−(1/T2,S(r)+R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

)

0

0




T

m′(r, t0 + TP) (6.21)

= m′
xy,F(r, t0 + TP)e

−(1/T2,F(r)+R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

+

m′
xy,S(r, t0 + TP)e

−(1/T2,S(r)+R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

)

. (6.22)

Observe that (6.20) uses Assumption 1 to leave m′(r, t0 + TP) outside of broadening in-

tegrals defined by Assumption 2 and (6.21) uses Assumption 3 to expand the matrix ex-

ponential and evaluate broadening integrals component-wise. Eq. (6.22) naturally extends

the single-compartment SPGR model (2.27) and shows clearly that compartmental signals

simply add if exchange between excitation and signal reception is neglected.

Though the manipulations leading to (6.22) require strong assumptions, they serve to

demonstrate the nontrivial two-compartment SPGR signal dependence on off-resonance

distributions. Unlike in the single-compartment case, the signal decay and dephasing terms

due to off-resonance effects e−(R
′

2,F+iω̄′

F)TE and e−(R
′

2,S+iω̄′

S)TE may not be absorbed into

an apparent spin density (in fact, to first order these terms would affect the apparent com-

partmental fractions of typical interest). Since off-resonance distributions do often differ

significantly in cerebral tissue [163, 164], accurate in vivo parameter estimation from this

model requires either joint estimation of compartmental distributions or acquisition with

echo times much shorter than compartmental broadening timescale differences.

6.2.2 A Two-Compartment DESS Signal Model

To develop two-compartment DESS signal models, we first adapt the McConnell equa-

tion solutions of Subsection 6.2.1 to describe compartmental magnetization evolution in
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the presence of time-dependent field inhomogeneities (such as the unbalanced dephasing

gradient used in DESS). We then modify corresponding derivations of single-compartment

DESS models (presented in Subsection 2.1.2.2), to account for inter-compartmental ex-

change during intervals of free precession and relaxation.

As discussed in Subsection 2.1.2.2, the DESS pulse sequence interlaces fixed RF excita-

tions with fixed dephasing gradients to produce two distinct signals per excitation. Because

these dephasing gradients create time-dependence in compartmental off-resonance effects,

DESS signal dynamics cannot in general be described by matrix exponential solution (6.9).

Instead, the dynamics (during periods without excitation) arise as a solution to

∂

∂t
m′(r, t) = A(r, t)m′(r, t) + c(r), (6.23)

where A(r, t) ≡ [Axy(r, t), 04×2; 02×4,Az(r)] contains now time-dependent compartmen-

tal off-resonance effects ω′
F(r, t), ω

′
S(r, t) that appear only in submatrix Axy(r, t) :=




− 1
T2,F(r)

− rF→S(r) rS→F(r) ω′
F(r, t) 0

rF→S(r) − 1
T2,S(r)

− rS→F(r) 0 ω′
S(r, t)

−ω′
F(r, t) 0 − 1

T2,F(r)
− rF→S(r) rS→F(r)

0 −ω′
S(r, t) rF→S(r) − 1

T2,S(r)
− rS→F(r)



.

(6.24)

If A(r, t) is invertible, an exponential series solution to (6.23) exists and could be expressed

exactly using the Magnus expansion [165]. Here, we utilize a first-order Magnus expansion

that in chemical equilibrium yields a simple approximate7 solution for all t ≥ t0:

m′(r, t) ≈ e
∫ t
t0

A(r,t′) d t′
m′(r, t0) +

(
e
∫ t
t0

A(r,t′) d t′ − I6

)
m0(r). (6.27)

Higher-order expansions would better capture compartmental magnetization interactions

due to off-resonance effects and are not considered hereafter for simplicity.

7Approximation (6.27) is exact if commutation relation

A(r, t1)A(r, t2) = A(r, t2)A(r, t1)

holds for all t1, t2 ≥ t0, which in turn holds pointwise if and only if

rF→S(r)(ω
′

F(r, t1)− ω′

S(r, t1)− (ω′

F(r, t2)− ω′

S(r, t2))) = 0; (6.25)

rS→F(r)(ω
′

F(r, t1)− ω′

S(r, t1)− (ω′

F(r, t2)− ω′

S(r, t2))) = 0. (6.26)

Conditions (6.25)-(6.26) hold exactly in the special cases of a time-independent difference in compartmental

off-resonance frequencies (i.e., ω′

F(r, t1)−ω′

S(r, t1) = ω′

F(r, t2)−ω′

S(r, t2)∀r, ∀t1, t2 ≥ t0) or no exchange

(i.e., rF→S(r)← 0 and rS→F(r)← 0 ∀r).
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We next use (6.27) to develop a two-compartment DESS signal model. As before, let

m′(r, t0) denote the two-compartment magnetization at an initial time t0 selected well into

the steady-state and just prior to RF excitation. The DESS sequence first applies a fixed RF

excitation, which we again assume is of sufficiently short duration TP as to permit neglect

of within-pulse relaxation, off-resonance, and exchange effects. Further assuming that

each compartment experiences excitation with equal transmit field sensitivity, we model

RF excitation as a simple rotation operation by angle α(r):

m′(r, t0 + TP) = R⊗2
x′ (α(r))m

′(r, t0). (6.28)

The transverse components of m′(r, t0 + TP) contribute to a first acquired signal; dephase

(but do not spoil completely) due to gradient dephasing, and contribute again to a second

(smaller, but nonzero) acquired signal. We assume that the dephasing gradient is of suffi-

ciently small gradient area so as to contribute mainly to compartmental off-resonance phase

accrual and negligibly to compartmental magnetization attenuation due to self-diffusion.

Then, compartmental magnetization evolution during data acquisition and gradient dephas-

ing and until repetition time TR is reasonably described by (6.27):

m′(r, t0 + TR) ≈ e
∫ TR
t0+TP

A(r,t′) d t′
m′(r, t0 + TP) +

(
e
∫ TR
t0+TP

A(r,t′) d t′ − I6

)
m0(r).

(6.29)

Conveniently, approximation (6.29) depends on compartmental off-resonance effects en-

tirely through compartmental phase functions φ′
F(r) :=

∫ TR

t0+TP
ω′
F(r, t

′) d t′ and φ′
S(r) :=∫ TR

t0+TP
ω′
S(r, t

′) d t′, which will later aid intra-voxel integration.

In steady state, one cycle of excitation, first acquisition, gradient spoiling, second ac-

quisition, and partial recovery returns the compartmental magnetization back to its initial

state. We enforce this through the usual steady-state condition

m′(r, t0) = m′(r, t0 + TR) (6.30)

which yields an algebraic system of equations. The solution (if it exists) gives the steady-

state compartmental magnetization just prior to RF excitation:

m′(r, t0) =

(
I6 − e

∫ TR
t0+TP

A(r,t′) d t′
R⊗2

x′ (α(r))

)−1(
e
∫ TR
t0+TP

A(r,t′) d t′ − I6

)
m0(r). (6.31)

Substituting (6.31) into (6.28) would yield a similar expression for the steady-state com-

partmental magnetization immediately following RF excitation. Equivalently, one may
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substitute (6.30) into (6.28) before solving for m′(r, t0 + TP) directly, which gives

m′(r, t0 + TP) =

(
I6 −R⊗2

x′ (α(r))e
∫ TR
t0+TP

A(r,t′) d t′
)−1

×R⊗2
x′ (α(r))

(
e
∫ TR
t0+TP

A(r,t′) d t′ − I6

)
m0(r). (6.32)

Unlike the SPGR two-compartment magnetization (6.16), analogous DESS expressions

(6.31)-(6.32) depend strongly on transverse submatrix
∫ TP

t0
Axy(r, t

′) d t′. Consequently, it

remains challenging (even with computer solvers) to expand corresponding matrix expo-

nentials and thereby find explicit representations of (6.31)-(6.32) in general.

Frequently, the DESS signals are acquired at symmetric echo times TE before and after

the center of each RF pulse. Since no gradient dephasing occurs during intervals between

refocusing and defocusing echoes that contain excitations, we can reasonably assume linear

off-resonance phase accrual over these intervals and therefore use (6.9) (instead of (6.27))

to evolve the magnetization accordingly. Substituting (6.32) into (6.9) gives the magneti-

zation at the data acquisition time after RF excitation:

m′

(
r, t0 +

TP

2
+ TE

)
= e

(
TE−

TP
2

)
A(r)

m′(r, t0 + TP) +

(
I6 − e

(
TE−

TP
2

)
A(r)

)
m0(r).

(6.33)

To compute the magnetization at the acquisition time before excitation, we consider the free

precession, relaxation, and exchange that occurs between signal reception and excitation:

m′(r, t0) = e

(
TE−

TP
2

)
A(r)

m′

(
r, t0 +

TP

2
− TE

)
+

(
I6 − e

(
TE−

TP
2

)
A(r)

)
m0(r). (6.34)

Inserting (6.31) into (6.34) and rearranging gives an expression for m′
(
r, t0 +

TP

2
− TE

)
.

The received signal is approximately proportional to the integrated transverse magneti-

zation arising from both compartments. To derive expressions, we take assumptions very

similar to those used in Subsection 6.2.1 and append additional distributional assumptions

on the compartmental phase accrual functions φ′
F(r) and φ′

S(r):

1. We assume that the signal is localized to a scale over which there is within-voxel

variation of compartmental off-resonance effects, but minimal intra-voxel variation

of other space-varying parameters m0, fF, fS, T1,F, T1,S, T2,F, T2,S, α, rF→S, rS→F. This

assumption effectively fixes all compartmental properties other than φ′
F, φ′

S, ω′
F, and

ω′
S over the volume V of a sufficiently small voxel.

2. We assume that the dephasing gradient imparts a sufficiently large integral number
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ncyc of intra-voxel phase cycles such that full-repetition compartmental phase ac-

cruals φ′
F and φ′

S are distributed essentially uniformly as pφ′

F
← unif(0, 2πncyc) and

pφ′

S
← unif(0, 2πncyc), where ncyc ∈ {1, 2, 3, . . . }.

3. We again assume that compartmental off-resonance phase accrues linearly between

each excitation and its adjacent data acquisition periods, and that off-resonance fre-

quencies are independently distributed within a localized voxel with marginal dis-

tributions pω′

F
:= Cauchy

(
ω̄′
F, R

′
2,F

)
and pω′

S
:= Cauchy

(
ω̄′
S, R

′
2,S

)
, where ω̄′

F, ω̄
′
S

are median off-resonance frequencies and R′
2,F, R

′
2,S are broadening bandwidths.

4. We assume for short echo times TE that negligible exchange occurs between each

excitation and its adjacent data acquisition periods. This assumption facilitates ex-

pansion of the matrix exponentials explicitly visible in (6.33)-(6.34) and separates

off-resonance frequency broadening integrals by compartment.

With these assumptions, the noiseless two-compartment steady-state DESS signal models
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for a voxel centered at position r and with volume defined by V(r) are (to within constants):

sD

(
r, t0 +

TP

2
+ TE

)
∝
∫

V(r)

[1, 1, i, i, 0, 0]m′

(
r, t0 +

TP

2
+ TE

)
d3 r (6.35)

≈
(∫

R2

[1, 1, i, i, 0, 0]e

(
TE−

TP
2

)
A(r)

pω′

F
(ω′

F)pω′

S
(ω′

S) dω
′
F dω′

S

)

×
∫

R2

m′(r, t0 + TP)pφ′

F
(φ′

F)pφ′

S
(φ′

S) dφ
′
S dφ′

F (6.36)

=




e
−(1/T2,F(r)+R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

e
−(1/T2,S(r)+R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

)

ie
−(1/T2,F(r)+R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

ie
−(1/T2,S(r)+R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

)

0

0




T

×
∫

R2

m′(r, t0 + TP)pφ′

F
(φ′

F)pφ′

S
(φ′

S) dφ
′
S dφ′

F; (6.37)

sD

(
r, t0 +

TP

2
− TE

)
∝
∫

V(r)

[1, 1, i, i, 0, 0]m′

(
r, t0 +

TP

2
− TE

)
d3 r (6.38)

≈
(∫

R2

[1, 1, i, i, 0, 0]e
−
(
TE−

TP
2

)
A(r)

pω′

F
(ω′

F)pω′

S
(ω′

S) dω
′
F dω′

S

)

×
∫

R2

m′(r, t0)pφ′

F
(φ′

F)pφ′

S
(φ′

S) dφ
′
S dφ′

F (6.39)

=




e
+(1/T2,F(r)−R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

e
+(1/T2,S(r)−R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

)

ie
+(1/T2,F(r)−R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

ie
+(1/T2,S(r)−R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

)

0

0




T

×
∫

R2

m′(r, t0)pφ′

F
(φ′

F)pφ′

S
(φ′

S) dφ
′
S dφ′

F. (6.40)

Observe that (6.36) and (6.39) use Assumption 1 to separate the phase and frequency broad-

ening integrals respectively defined in Assumptions 2 and 3. Similar to SPGR calculations

in Subsection 6.2.1, (6.37) and (6.40) use Assumption 4 to evaluate the frequency broad-

ening integral compartment-wise. However, the phase broadening integrals in (6.37) and

(6.40) do not separate. Thus, even with the simple first-order Magnus expansion taken in
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(6.27), we find in DESS that exchange causes magnetization compartments to interact not

only via exchange rates but also through differences across compartments in off-resonance

phase accrual. In other words, additional assumptions on the relationship between com-

partmental off-resonance distributions (e.g., that they are the same) would affect the DESS

models even if the signal were received immediately following excitation (at TE ← TP

2
).

In the special case where exchange is altogether neglected (which is a stronger assump-

tion than Assumption 4, especially for longer TR), the phase broadening integrals in (6.37)

and (6.40) separate across compartments and admit the closed-form expressions

sD

(
r, t0 +

TP

2
+ TE

)
∝ +im0(r) tan

α(r)

2
(6.41)

×
(
fF(r)

(
1− ηF(r, TR − TP)

ξF(r, TR − TP)

)
e
−(1/T2,F(r)+R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

+ fS(r)

(
1− ηS(r, TR − TP)

ξS(r, TR − TP)

)
e
−(1/T2,S(r)+R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

))
;

sD

(
r, t0 +

TP

2
− TE

)
∝ −im0(r) tan

α(r)

2
(6.42)

×
(
fF(r)(1− ηF(r, TR − TP))e

+(1/T2,F(r)−R′

2,F(r)+iω̄′

F(r))
(
TE−

TP
2

)

+ fS(r)(1− ηS(r, TR − TP))e
+(1/T2,S(r)−R′

2,S(r)+iω̄′

S(r))
(
TE−

TP
2

))
,

where ηF, ηS, ξF, and ξS are intermediate variables defined as

ηF(r, t) :=

√
1− (exp (−t/T2,F(r)))

2

1− (exp (−t/T2,F(r))/ξF(r, t))
2 ;

ξF(r, t) :=
1− exp (−t/T1,F(r)) cosα(r)

exp (−t/T1,F(r))− cosα(r)
;

ηS(r, t) :=

√
1− (exp (−t/T2,S(r)))

2

1− (exp (−t/T2,S(r))/ξS(r, t))
2 ;

ξS(r, t) :=
1− exp (−t/T1,S(r)) cosα(r)

exp (−t/T1,S(r))− cosα(r)
.

Eqs. (6.41)-(6.42) naturally extend single-compartment models (2.41) and (2.43), and elu-

cidate the intuitive result that compartmental signals simply add if exchange is neglected.
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6.3 A Fast SS Acquisition for Precise Myelin Imaging

This section develops a new acquisition consisting of fast SPGR and DESS scans for pre-

cise myelin water imaging. Subsection 6.3.1 adapts acquisition design (introduced in Ch. 4)

to enable larger-scale scan optimization. Subsection 6.3.2 applies scalable acquisition de-

sign to design a fast SPGR/DESS acquisition that enables precise estimation of the faster-

relaxing signal fraction fF in two-compartment SPGR/DESS models. Subsequent sections

take fF as a quantitative measure of myelin water content in SS acquisitions.

6.3.1 Scalable Acquisition Design

Recall from Subsection 4.2.1 that the inverse of the Fisher information F(x;ν,P) ∈ CL×L

lower-bounds the covariance of unbiased estimates of L latent object parameters x ∈ CL,

given K known object parameters ν ∈ CK and A tunable acquisition parameters for each

of D datasets P ∈ RA×D. As before, we continue to focus on minimizing a weighted

average of the latent parameter variances and thus study the objective function

Ψ(x;ν,P) := tr
(
WF−1(x;ν,P)WT

)
, (6.43)

where W is a diagonal weighting matrix and tr(·) denotes the matrix trace operation. For

scan design, we seek to minimize Ψ with respect to acquisition parameters P.

In Subsection 4.2.2, we addressed the dependance of Ψ on space-varying object pa-

rameters x and ν through a min-max optimization problem. The associated “worst-case”

design criterion requires only weak assumptions on object parameter distributions but is

non-differentiable in P. For the relatively simple application described in Section 4.3, the

min-max criterion was studied through exhaustive search and so non-differentiability did

not matter. However, myelin water imaging requires estimation of several more latent pa-

rameters and thus necessitates scan parameter selection for a greater number of datasets and

thus over a larger search space. Since exhaustive search over this higher-dimensional search

space is prohibitively expensive computationally, we study here an alternate design crite-

rion that is differentiable in P and is thus amenable to gradient-based local optimization.

Specifically, we seek an acquisition parameter P̆ that minimizes the expected weighted

average of latent parameter variances over a search space P:

P̆ ∈
{
arg min

P∈P
Ψ̄(P)

}
, where (6.44)

Ψ̄(P) := Ex,ν(Ψ(x;ν,P)) (6.45)
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and Ex,ν(·) denotes joint expectation with respect to prior joint distribution px,ν on x,ν.

Unlike min-max cost (4.7), expected cost (6.45) is often differentiable in P. We next

construct the gradient matrix∇PΨ̄(P) ∈ RA×D and provide sufficient conditions for when

this gradient matrix exists. Our simple strategy involves first constructing ∇PΨ(x;ν,P)

element-wise for fixed x,ν and then relating ∇PΨ̄(P) to ∇PΨ(x;ν,P). Let ∂
∂pa,d

be the

(a, d)th element of matrix operator∇P. By standard matrix derivative identities, we have

∂

∂pa,d
Ψ(x;ν,P) =

∂

∂pa,d
tr
(
WF−1(x;ν,P)WT

)

= − tr

(
WF−1(x;ν,P)

∂

∂pa,d
(F(x;ν,P))F−1(x;ν,P)WT

)
. (6.46)

For image data corrupted by additive complex Gaussian noise with zero mean and covari-

ance Σ, the Fisher information (repeated from (4.3) for clarity) is given by

F(x;ν,P) = (∇xs(x;ν,P))HΣ−1∇xs(x;ν,P), (6.47)

where s := [s1, . . . , sD]
T

is the noiseless signal model. Furthermore, if elements of each

measurement vector are assumed independent (as is typical), Σ takes the diagonal structure

Σ← diag(σ2
1 , . . . , σ

2
D) and

∂

∂pa,d
(F(x;ν,P)) =

∂

∂pa,d

D∑

d′=1

1

σ2
d′
(∇xsd′(x;ν,pd′))

H∇xsd′(x;ν,pd′)

=
1

σ2
d

∂

∂pa,d

(
(∇xsd(x;ν,pd))

H∇xsd(x;ν,pd)
)
. (6.48)

Substituting (6.47)-(6.48) into (6.46) gives expressions in terms of signal model derivatives

for each element of ∇PΨ(x;ν,P). These expressions are well-defined if F is invertible

and if mixed partial derivatives ∇p1(∇xs1)
T, . . . ,∇pD

(∇xsD)
T

exist and are continuous

in x,P. Further assuming that∇PΨ(x;ν,P) remains bounded for all x,ν,

∇PΨ̄(x;ν,P) = ∇PEx,ν(Ψ(x;ν,P))

= Ex,ν(∇PΨ(x;ν,P)), (6.49)

which provides an expression for the gradient of the expected cost, as desired.

If (6.49) exists, one could solve (6.44) iteratively for convex search space P via updates

P(i) ← PP

(
P(i−1) −∇PΨ̄

(
P(i−1)

))
, (6.50)
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where PP(·) denotes projection onto P and i indexes iteration. Since Ψ̄ is non-convex in

P in general, such iterations achieve only locally optimal convergence in cost (further dis-

cussed in Subsection 2.2.1) and the locally convergent minimizer depends on initialization.

6.3.2 SPGR/DESS Scan Design Implementation Details

This subsection applies scalable scan design problem (6.44) to optimize fast scan profiles

consisting of SPGR and DESS scans for precise myelin water imaging. Intuitively, we

study SPGR/DESS scan profiles over previously studied SS scan combinations [121, 158,

101] because SPGR/DESS signals are relatively insensitive to off-resonance related non-

idealities, which as demonstrated in Section 6.2 can be difficult to model accurately in

multi-compartmental systems and in fact here (as in [158, 101]) are largely neglected.

For the feasibility studies discussed in the remainder of this chapter, we assumed that

signal arises from two non-exchanging water compartments (i.e., rF→S ← 0, rS→F ← 0,

and fF + fS = 1) with identical broadening distributions (i.e., R′
2,F ≡ R′

2,S and ω̄′
F ≡ ω̄′

S).

These simplifications provided closed-form expressions for the SPGR (6.22) and DESS

(6.41)-(6.42) signal models as well as their gradients. We used magnitude signal models for

scan design to reduce SPGR/DESS signal dependence on off-resonance effects, noting that

Rician distributed noise in corresponding magnitude image data is well-approximated as

Gaussian for sufficiently large SNR [30]. We fixed TP, TE across scans and thereby reduced

model dependencies to seven free object parameters per voxel: fF, T1,F, T2,F, T1,S, T2,S, κt,

and c3 := m0e
−R′

2,FTE ≡ m0e
−R′

2,STE; and two acquisition parameters per dataset: pd ←
[α0, TR]

T, ∀d ∈ {1, . . . , D}. We assumed prior knowledge of transmit field sensitivity

ν ← κt (which in practice can be estimated from separate fast acquisitions, e.g. [90]) and

collected the remaining L← 6 latent parameters as x← [fF, T1,F, T2,F, T1,S, T2,S, c3].

We took fast-relaxing compartmental fraction fF to be a quantitative measure of myelin

water content and tailored scan design cost (6.45) to encourage scan combinations that en-

able precise fF estimation. Specifically, we set weight matrixW← diag
(
(Ex,ν(fF))

−1, 05

)

to penalize only fF imprecision, thereby ignoring nuisance parameter imprecision. Here,

fast-fraction variance weight (Ex,ν(fF))
−1

assigns interpretable meaning to
√
Ψ̄(P) as a

unitless measure of the expected relative standard deviation (alternately, expected coeffi-

cient of variation) afforded by P in asymptotically unbiased estimates of fF.

We approximated expectations of form Ex,ν(·) by taking empirical averages using sam-

ples of x,ν drawn from a prior distribution. We used a coordinate-wise separable prior dis-

tribution, modeling fF ∼ unif(0.03, 0.21) to conservatively contain state-of-the-art MESE

MWF measurements in WM [159] and modeling T1,F, T2,F, T1,S, and T2,S to be Gaussian
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Optimized flip angles (deg) Optimized repetition times (ms)

SPGR – –

DESS [33.0, 18.3, 15.1]T [17.5, 30.2, 60.3]T

Table 6.1: SPGR/DESS flip angles and repetition times that comprise P̂, a scan parameter

matrix designed under total time budget
∑D

d=1 TR,d ≤ 108ms for precise fF estimation

in WM. For our noise variance measurements, this acquisition is expected to yield 42.5%

relative standard deviation in asymptotically unbiased fF estimates from two-compartment

signal models. Interestingly, the optimized scan profile omits SPGR scans entirely.

distributed with means 400ms, 20ms, 1000ms, and 80ms selected from literature measure-

ments [100, 158] and standard deviations that are 20% of corresponding means. Since W

placed zero weight on estimating c3, it sufficed to fix c3 ← 1 and to assign noise variance

Σ← (1.49× 10−7)I10 based on separate measurements in unit-normalized image data (cf.

Section 4.4.2.1 for acquisition details). Lastly, we modeled κt ∼ unif(0.9, 1.1) to account

for 10% flip angle spatial variation.

We constrained our search space P to reflect hardware, safety, and model-accuracy

limitations and to avoid undesirably long acquisitions. To control RF energy deposition,

we restricted DESS flip angles to range between 1◦ and 60◦. We further restricted SPGR flip

angles to be between 1◦ and 40◦ to avoid excessive model mismatch due to partial spoiling

effects [19]. To comply with other fixed pulse sequence timing requirements, we required

DESS and SPGR repetition times to be no less than 17.5ms and 11.8ms respectively. We

constrained each pair of DESS defocusing- and refocusing-echo datasets be assigned the

same flip angle and repetition time. Lastly, we imposed a somewhat aggressive total scan

time constraint
∑D

d=1 TR,d ≤ 108ms that ensured all feasible points described acquisitions

at least as fast as the state-of-the-art fast steady-state acquisition proposed in [158]. These

constraints together defined a convex search space over which we optimized Ψ̄.

We separately optimized (6.45) for each of the 36 nontrivial candidate SPGR/DESS

scan profiles that are feasible under the above time constraint. For a candidate profile

containing D datasets, we separately solved (6.44) with 200D initializations selected uni-

formly randomly within the feasible set. For each profile and each initialization, we solved

(6.44) using the built-in MATLAB® function fminconwith the active-set algorithm,

a cost function convergence tolerance of 10−7, a maximum of 500 iterations, and otherwise

default options. We performed scan optimization running MATLAB® R2017a with a pool

of 12 workers on two Xeon-X5650 2.67GHz hexa-core CPUs.

Table 6.1 summarizes the optimized scan parameter P̂ that minimizes (6.45) over all

profiles and all initializations. Interestingly, the optimized scan profile contains DESS scans
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only. We find that

√
Ψ̄(P̂) = 0.425, meaning that at a realistic noise level, the acquisition

defined by P̂ is expected to yield 42.5% relative standard deviation in asymptotically unbi-

ased fF estimates from non-exchanging two-compartment signal models. Similar calcula-

tions for previous SS myelin water imaging acquisitions [121, 158] found that fF relative

standard deviations frequently exceeded 100% [160].

6.4 Experimentation

This section demonstrates myelin water imaging using the precision-optimized SS acqui-

sition developed in Section 6.3 and fast PERK estimation (developed in Ch. 5). Subsec-

tion 6.4.1 describes implementation details common to both simulations and experiments.

Subsection 6.4.2 studies PERK and three other estimators’ statistics in two numerical simu-

lations. Subsection 6.4.3 compares PERK-based fF maps to MWF maps from conventional

MESE acquisitions through in vivo experiments.

6.4.1 Methods

In all simulations and experiments, we used data arising from the fast SS scan profile

described in Table 6.1. Since this scan profile consisted of three DESS scans and each

DESS scan generates two signals per excitation, this acquisition yielded D ← 6 datasets.

We assumed non-exchanging two-compartment DESS signal models (6.41)-(6.42) and took

the same assumptions as in Subsection 6.3.2 to reduce model dependencies to L← 6 latent

parameters x ← [fF, T1,F, T2,F, T1,S, T2,S, c3]
T

and K ← 1 known parameter ν ← κt per

voxel. We focused on precisely estimating fF in WM from this fast DESS acquisition.

We considered the other five latent parameters to be nuisance parameters and thus did not

evaluate the performance of their (possibly imprecise) estimators.

We estimated fF using the PERK estimator developed in Ch. 5. We trained, tuned, and

tested PERK in much the same way as in Subsection 5.7.1. We assumed a separable prior

distribution px,ν ← pfFpT1,F
pT2,F

pT1,S
pT2,S

pc3pκt . We set fast-relaxing fraction marginal

distribution pfF ← unif(−0.1, 0.4) and note that we sample negative values8 with nonzero

probability to ensure sampling bias does not contribute significantly to fF estimation bias,

especially in low-fF regions. We chose relaxation parameter marginal distributions pT1,F
←

logunif(50, 700)ms, pT2,F
← logunif(5, 50)ms, pT1,S

← logunif(700, 2000)ms, pT2,S
←

logunif(50, 300)ms similar to those used for scan design but with finite support. To match

8Our two-compartment signal models are linear in fF and are therefore well-defined for zero or even

negative fF values.
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the scaling of training and testing data, we set pc3 ← unif(2.2× 10−16, u), with u set as

10× the maximum value of magnitude test data. We estimated flip angle scaling marginal

distribution pκt from known κt map voxels via kernel density estimation (implemented

using the built-in MATLAB® function fitdist with default options) and then clipped

the support of pκt to assign nonzero probability only within [0.5, 2]. We assumed noise

covariance Σ of form σ2I6 and estimated the (spatially invariant) noise variance σ2 from

Rayleigh-distributed regions of magnitude test data, using estimators described in [137].

We sampled N ← 106 latent and known parameter realizations from these distributions

and evaluated two-compartment DESS signal models (6.41)-(6.42) to generate correspond-

ing complex noiseless measurements. After adding complex Gaussian noise realizations,

we concatenated the (Rician) magnitude of these noisy measurements with known pa-

rameter realizations to construct pure-real regressors. We used Gaussian kernel (5.12)

with bandwidth matrix Λ set based on test data scale via (5.25). We separately selected

and then held fixed bandwidth scaling parameter λ ← 20.3 and regularization parameter

ρ ← 2−19 via holdout. In particular, we optimized holdout cost function (5.26) with hold-

out weighting matrix W ← diag
([

1, 0T

5

]T)
set to focus only on fF estimation and with

T ← 105 holdout test points drawn from a distribution very similar to px,ν except with

pfF ← unif(0.03, 0.21) to avoid division-by-zero issues. All other holdout details were

identical to those described in Subsection 5.7.1.1. We sampled random feature realizations

v, s Z ← 103 times to construct approximate feature map z̃ via (5.20). For each lth latent

parameter where l ∈ {1, . . . , L}, we applied z̃ to training data; computed sample means

mxl
,mz̃ and sample covariances czxl

,Cz̃z̃; and evaluated approximate PERK estimator

(5.23) on test image data and the known flip angle scaling map on a per-voxel basis.

We compared PERK fF estimates from the aforementioned DESS acquisition to two

conventional MWF estimates from a MESE acquisition. The first conventional MWF esti-

mate [100] is related to the solution of a nonnegative least-squares (NNLS) problem [166]

x̂(y) ∈
{
arg min

x∈X
‖y −Ax‖22

}
, (6.51)

where y ∈ R
D denotes MESE echo amplitudes at D echo times; A ∈ R

D×L models the D

MESE signals as weighted sums of L discrete T2 component signals; X ⊂ RL is the non-

negative orthant; and x ∈ X denotes L component weights. Whereas solutions to (6.51)

tend to be sparse for L > D as is typical, researchers have suggested that spectral distri-

butions are more likely smooth in biological tissue [167]. For smoother in vivo spectrum

estimates and for improved problem conditioning, we also compared to a second MWF
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estimate [168] that is related to the solution of a regularized NNLS problem (RNNLS)

x̂(y) ∈
{
arg min

x∈X
‖y −Ax‖22 + β‖x‖22

}
, (6.52)

where β is positive regularization parameter. Similar to [100] or [168], each of the two

conventional MWF estimators are then respectively defined as f̂M :=
(
iTx̂(·)

)
/‖x̂(·)‖1,

where x̂(·) is given by (6.51) or (6.52) and i ∈ {0, 1}L is in both cases nonzero only in

entries corresponding to T2 ∈ [15, 40]ms. As recommended in recent MESE MWF imag-

ing literature [169], we computed MESE signal amplitudes using the extended phase graph

(EPG) formalism [170] to account for stimulated echo signal contributions that persist in

MESE due to non-ideal refocusing pulses. We accounted for non-ideal refocusing by as-

suming κt is known. We also partially accounted for incomplete recovery by assuming

bulk T1 is known. To circumvent separate EPG simulations for every voxel, we clustered

known κt, T1 map voxels into 100 clusters via k-means++ [93] and ran only 100 EPG

simulations using each of the cluster means. Iterating over clusters, we generated each

cluster’s system matrix and solved (6.51) and (6.52) for MESE image voxels assigned to

that cluster. We constructed NNLS and RNNLS MWF estimates by estimating L ← 100

spectral component images from D ← 32 MESE measurement images. We manually fixed

RNNLS regularization parameter β ← 2−13 as a small value that provided reasonable in

vivo results. We solved (6.51) and (6.52) using the MATLAB® function lsqnonneg with

default options.

We performed simulations and experiments running MATLAB® R2013a on a 3.5GHz

desktop computer with 32GB RAM. In the interest of reproducible research, code and data

will be freely available at https://gitlab.eecs.umich.edu/fessler/qmri.

6.4.2 Numerical Simulations

This subsection studies PERK and maximum likelihood (ML) fF estimator statistics as

well as NNLS and RNNLS fM estimator statistics in two increasingly realistic simulations.

Simulation 6.4.2.1 investigates estimator performance when voxel data is simulated to arise

from two water compartments that recover with the same bulk T1 time constant, in which

case none of the above estimators incur bias due to model mismatch. Simulation 6.4.2.2 in-

vestigates estimator performance when voxel data is more realistically simulated as arising

from three water compartments that recover with compartment-specific T1 time constants,

in which case any of the above estimators could incur bias due to model mismatch.
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6.4.2.1 Two-Compartment Simulation without Model Mismatch

We first simulated data to arise from two non-exchanging water compartments with differ-

ent fast T2,F ← 20ms and slow T2,S ← 80ms transverse relaxation time constants (selected

based on [100, 158]) but the same bulk longitudinal relaxation time constant T1 ← 832ms

in WM and T1 ← 1331ms in GM (selected based on [31]). With this two-compartment

ground truth, MWF fM and fast-relaxing fraction fF are equivalent and directly compara-

ble. We assigned fM ≡ fF ← 0.15 in WM and fM ≡ fF ← 0.03 in GM and constrained

corresponding slow-compartment fractions as 1 − fF. We prescribed these parameter val-

ues to the 81st slice of the BrainWeb digital phantom [34] to produce 217 × 181 ground

truth parameter maps. We generated κt to model 20% flip angle spatial variation. Using

extended phase graphs to model stimulated echo signal contributions due to non-ideal re-

focusing, we simulated noiseless single-coil 32-echo MESE image data with nominal 90

degrees excitation and nominal 180 degrees refocusing flip angles; TE ← 10ms echo inter-

val spacing; TR ← 600ms repetition time; and two cycles of gradient dephasing before and

after each refocusing pulse. We corrupted noiseless MESE images with additive complex

Gaussian noise to yield noisy complex datasets with SNR ranging from 17-868 in WM and

15-697 in GM, where SNR is defined

SNR(ỹ, ǫ̃) := ‖ỹ‖2/‖ǫ̃‖2 (6.53)

for image data voxels ỹ and noise voxels ǫ̃ corresponding to a region of interest (ROI)

within one image. We estimated fM from noisy magnitude MESE images and known

T1, κ
t maps by solving NNLS (6.51) and RNNLS (6.52) problems as explained in Subsec-

tion 6.4.1. NNLS and RNNLS respectively took 40.3s and 49.6s.

Using non-exchanging two-compartment models (6.41)-(6.42), we also simulated noise-

less single-coil DESS image data using the precision-optimized nominal flip angles and

repetition times presented in Table 6.1 and fixed symmetric defocusing and refocusing

echo times TE ← 5.29ms. We corrupted noiseless DESS images with additive complex

Gaussian noise to yield noisy complex datasets with SNR ranging from 22-222 in WM and

25-242 in GM, where SNR is computed via (6.53). We estimated fF from noisy magnitude

DESS images and known κt maps as detailed in Subsection 6.4.1. In simulations only,

we compared PERK fF estimates to ML fF estimates achieved via the variable projection

method [25] and grid search. The ML estimate utilizes 20 dictionaries each consisting of

nearly 8 × 106 signal vectors computed using finely spaced samples on an unrealistically

narrow feasible region consisting of a hypercube with boundaries set as [−0.1, 0.4] in fF

and ±20% away from the truth in other latent parameter dimensions. PERK training and
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Figure 6.1: NNLS/RNNLS MESE fM and ML/PERK DESS fF estimates alongside cor-

responding magnitude error images, in a two-compartment simulation where none of the

associated estimators incur bias due to model mismatch. Voxels not assigned WM- or

GM-like compartmental fractions are masked out in post-processing for display. Table 6.2

presents corresponding sample statistics.

testing respectively took 33.8s and 1.0s while ML estimation took 17726s (nearly 5h).

Fig. 6.1 compares NNLS and RNNLS fM estimates as well as ML and PERK fF es-

timates alongside magnitude difference images with respect to the ground truth fM ≡ fF

map. Unlike both fF estimates, both fM estimates visibly exhibit systematic error due to

flip angle spatial variation despite perfect knowledge of κt. The RNNLS fM estimate ex-

hibits greater error than the NNLS fM estimate in both WM- and GM-like voxels due to

regularization. The PERK fF estimate visibly exhibits less error in WM-like voxels than the

ML fF estimate, perhaps in part because PERK tuning parameters (λ, ρ) were optimized

via holdout for estimating WM-like fF values.

Table 6.2 compares samples statistics of NNLS and RNNLS fM estimates as well as

ML and PERK fF estimates, computed over 7810 WM-like and 9162 GM-like voxels.

With the exception of the MESE-RNNLS GM fM estimate, all other estimates agree with

true values to within one standard deviation. The MESE-NNLS WM and GM fF estimates

achieve the least root mean-squared errors (RMSEs) overall. The RNNLS fM estimate

is more precise but less accurate than the NNLS fM estimate due to regularization. The

PERK fF estimate is more precise but less accurate than the ML fF estimate, perhaps also

due to regularization. PERK fF estimates exhibit better WM RMSE and slightly worse GM

RMSE than ML fF estimates.
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WM GM

True fM ≡ fF 0.15 0.03

MESE-NNLS f̂M 0.1375± 0.0187 (0.0225) 0.0203± 0.01296 (0.0162)

MESE-RNNLS f̂M 0.1285± 0.0146 (0.0260) 0.00207± 0.00524 (0.02841)

DESS-ML f̂F 0.1590± 0.0433 (0.0442) 0.0334± 0.0272 (0.0274)

DESS-PERK f̂F 0.1352± 0.0267 (0.0305) 0.0436± 0.0267 (0.0299)

Table 6.2: Sample means± sample standard deviations (RMSEs) of NNLS/RNNLS MESE

fM estimates and ML/PERK DESS fF estimates in a two-compartment simulation where

none of the associated estimators incur bias due to model mismatch. Sample statistics are

computed over 7810 WM-like and 9162 GM-like voxels. Each sample statistic is rounded

off to the highest place value of its (unreported) standard error, computed via formulas in

[3]. Fig. 6.1 presents corresponding images.

6.4.2.2 Three-Compartment Simulation with Model Mismatch

We next simulated data to arise from three non-exchanging water compartments with myelin

water-like (500, 20)ms, cellular water-like (1000, 80)ms, and free water-like (3000, 3000)ms

(longitudinal, transverse) relaxation time constants selected based on [100, 158]. With this

three-compartment ground truth, the aforementioned MESE MWF estimators could incur

bias due to their bulk-T1 assumption and the aforementioned DESS fast-fraction estimators

could incur bias due to their two-compartment assumption. Thus fM and fF are not equiv-

alent here and their estimates need not necessarily be comparable. We assigned (myelin,

cellular, free) water-like fractions of (0.15, 0.82, 0.03) in WM, and (0.03, 0.94, 0.03) in

GM. We simulated data otherwise exactly as detailed in Simulation 6.4.2.1 to yield MESE

image datasets with SNR ranging from 24− 795 in WM and 29− 862 in GM and to yield

DESS image datasets with SNR ranging from 24−221 in WM and 30−241 in GM, where

SNR is computed via (6.53). We estimated fM from noisy magnitude MESE images and

known bulk T1 and κt maps by solving NNLS (6.51) and RNNLS (6.52) problems as ex-

plained in Subsection 6.4.1. We estimated fF from noisy magnitude DESS images and

known κt maps using PERK and ML estimators, as explained in Subsections 6.4.1-6.4.2.1

respectively. NNLS and RNNLS respectively took 42.7s and 69.2s. PERK training and

testing respectively took 34.2s and 1.1s while ML estimation took 17681s (nearly 5h).

Fig. 6.2 compares NNLS and RNNLS fM estimates as well as ML and PERK fF esti-

mates alongside magnitude difference images with respect to the ground truth MWF. The

PERK fF estimator achieves the lowest errors in WM but overestimates in GM (as does

the ML fF estimator), causing reduced WM/GM contrast relative to other estimators. Un-

like both fF estimates, both fM estimates visibly exhibit systematic error due to flip angle

spatial variation, despite perfect knowledge of κt. All estimates are higher (though to vary-
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Figure 6.2: NNLS/RNNLS MESE fM and ML/PERK DESS fF estimates alongside cor-

responding magnitude error images, in a three-compartment simulation where any of the

associated estimators could incur bias due to model mismatch. Voxels not assigned WM- or

GM-like compartmental fractions are masked out in post-processing for display. Table 6.3

presents corresponding sample statistics.

WM GM

True fM ≡ fF 0.15 0.03

MESE-NNLS f̂M 0.1910± 0.0463 (0.0618) 0.0349± 0.0192 (0.0198)

MESE-RNNLS f̂M 0.1699± 0.0354 (0.0406) 0.00272± 0.00673 (0.02809)

DESS-ML f̂F 0.1987± 0.0275 (0.0559) 0.0632± 0.0280 (0.0434)

DESS-PERK f̂F 0.1576± 0.0243 (0.0254) 0.0754± 0.0231 (0.0510)

Table 6.3: Sample means± sample standard deviations (RMSEs) of NNLS/RNNLS MESE

fM estimates and ML/PERK DESS fF estimates in a three-compartment simulation where

any of the associated estimators could incur bias due to model mismatch. Sample statis-

tics are computed over 7810 WM-like and 9162 GM-like voxels. Each sample statistic

is rounded off to the highest place value of its (unreported) standard error, computed via

formulas in [3]. Fig. 6.2 presents corresponding images.

ing degrees) than corresponding estimates presented in Fig. 6.1, indicating some sensitivity

to model mismatch. Except for PERK fF estimates in WM and RNNLS fM estimates in

GM, all estimates exhibit greater error than corresponding estimates presented in Fig. 6.1,

indicating that in most cases model mismatch is detrimental to estimation performance.

Table 6.3 compares sample statistics of NNLS and RNNLS fM estimates as well as

ML and PERK fF estimates, computed over the same WM-like and GM-like ROIs as in
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Table 6.2. Several estimates now differ from true values by more than one standard de-

viation, indicating significant bias due to model mismatch in these cases. The PERK fF

estimator is most accurate and achieves the lowest RMSE in WM, but also suffers from the

highest RMSE in GM. The NNLS fM estimator is most accurate and achieves the lowest

RMSE in GM, but also suffers from the highest RMSE in WM. RNNLS fM (PERK fF)

estimates are now both more accurate and more precise than NNLS fM (ML fF) estimates

in WM, suggesting that regularization may be beneficial in cases of model mismatch. Per-

haps surprisingly, RNNLS fM and PERK fF estimates do not differ significantly in WM

(but do differ in GM) suggesting that these WM estimates may be comparable even when

characterizing 3-compartment systems, at least for the nominal values selected here.

6.4.3 In vivo Experiments

We acquired in vivo data using a GE Discovery™ MR750 3.0T scanner with a 32-channel

Nova Medical® receive head array. In a single scan session involving a healthy volunteer,

we collected the DESS acquisition described in Subsection 6.3.2; a MESE acquisition for

validation; an SPGR acquisition for separate bulk T1 estimation; and a Bloch-Siegert (BS)

acquisition for separate κt estimation. Each of these acquisitions is described next in turn.

We acquired DESS data by prescribing the optimized nominal flip angles and repetition

times presented in Table 6.1 and holding all other scan parameters fixed across DESS scans.

We achieved desired nominal flip angles by scaling a 9.0mm slab-selective Shinnar-Le

Roux (SLR) pulse [89] of duration 3.0ms and time-bandwidth product 6. We interleaved RF

excitations with 2 gradient dephasing phase cycles over a 3mm slice thickness to distinguish

the DESS echoes. We acquired DESS data with a 200×200×8 matrix over a 240×240×
24mm3 field of view (FOV). Using a 31.25kHz readout bandwidth, we acquired 3D axial

DESS data at minimum TE ← 5.29ms before and after RF excitations. To avoid slice-

profile effects, we sampled k-space over a 3D Cartesian grid. Including time to reach

steady-state, the DESS acquisition took 3m15s scan time.

We acquired MESE data with nominally 90◦ excitation flip angles, achieved by scaling

the same SLR pulse shape as above. A sequence of 32 identical nominally 180◦ refocusing

pulses succeeded each excitation, where the time between excitation and first refocusing

pulse peaks was fixed to the minimum possible TE

2
← 4.6ms and subsequent refocusing

pulse peaks were separated by echo spacing TE ← 9.2ms. We designed each refocusing

pulse as a 21.0mm slab-selective SLR pulse of duration 2.0ms and time-bandwidth prod-

uct 2. We elected to use shaped refocusing pulses instead of shorter hard pulses to suppress

unwanted signal outside the excitation slab due to imperfect refocusing. To suppress stimu-
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lated echo signal contributions, we flanked each refocusing pulse with a symmetric gradient

crusher pair, where each crusher imparted 14 phase cycles across the 21.0mm refocusing

slab. Immediately following the refocusing pulse train, we imparted 8 gradient dephasing

phase cycles over a 3mm slice thickness to suppress residual transverse magnetization. To

reduce scan time, we used a repetition time TR ← 600ms that is shorter than those used

in recent works (e.g., [154, 159]) and used separate bulk T1 estimates to account for in-

complete recovery. We acquired 3D MESE data over the same imaging volume and with

the same resolution, readout bandwidth, and k-space trajectory as was used for the DESS

acquisition. We repeated the MESE scan twice to permit averaging in postprocessing for

increased SNR. Including three prepended repetitions to approach steady-state, each MESE

scan took 16m2s for a total MESE acquisition time of 32m4s.

We acquired SPGR data for separate bulk T1 estimation. We varied across nine scans

nominal flip angles from 5◦ to 45◦ with even increments and fixed all other scan parameters

across scans. We achieved desired nominal flip angles by scaling the same SLR pulse

shape used in the DESS acquisition. We acquired 3D data at minimal echo time TE ←
5.1ms over the same imaging volume and with the same resolution, readout bandwidth,

and k-space trajectory as was used in the DESS acquisition. We implemented RF spoiling

by imparting 8 gradient dephasing phase cycles over a 3mm slice thickness immediately

following each readout and by RF phase cycling with an RF phase increment that increases

by 117◦ each TR ← 13.1ms-long repetition [19]. Including time to reach steady-state, the

SPGR acquisition took 3m32s scan time.

We acquired a pair of BS-shifted SPGR scans [90] for separate flip angle scaling κt

estimation. We modified the 3D SPGR sequence just described by inserting a ±4kHz

off-resonant Fermi pulse (of 9.0ms duration and with 0.05G peak amplitude) immediately

following on-resonant excitation and immediately prior to readout. This extended the echo

time to TE ← 15.0ms. We also conservatively extended the repetition time to TR ← 300ms

to prevent excess RF heating. We used a small 5◦ nominal excitation flip angle for reduced

contrast in BS images and thereby smoother κt estimates. We acquired BS data with a

reduced 200 × 50 × 8 matrix. All other scan parameters were the same as for the SPGR

acquisition. Including time to reach steady-state, the BS acquisition took 4m30s scan time.

We reconstructed all raw coil images via 3D Fourier transform and subsequently pro-

cessed only one image slice centered within the excitation slab. We upsampled BS coil

images along the phase-encoding direction to the same image size as other coil images,

using intermediate zero-padding to suppress ringing. We jointly coil-combined all coil im-

ages within each of the four acquisitions using a natural extension of [92] for the case of

multiple datasets, detailed in Appendix A; however, we did not coil-combine sharing coil
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Figure 6.3: Representative NNLS and RNNLS fM estimates from a MESE acquisition

alongside a PERK fF estimate from a precision-optimized DESS acquisition, in the brain

of a healthy volunteer. Using similar signal reception imaging parameters, MESE fM esti-

mates required 40m6s total scan time while DESS fF estimates required 7m45s total scan

time. PERK fF estimates exhibit less WM variation and more clearly delineate cortical

WM/GM boundaries than MESE fM estimates. Table 6.4 presents corresponding sample

statistics computed over manually selected WM and GM ROIs.

data across acquisitions. We estimated flip angle spatial variation κt maps by normaliz-

ing and calibrating regularized transmit field estimates [91] from complex coil-combined

BS images. We estimated bulk T1 maps from magnitude coil-combined SPGR images and

κt maps using variable projection method [25] and grid search (the one-dimensional grid

search used 50 dictionaries, each computed using 1000 logarithmically-spaced T1 samples

between 10ms and 3000ms). To address bulk motion between acquisitions, we rigidly regis-

tered coil-combined MESE and DESS images as well as κt, T1 maps to one coil-combined

MESE first-echo image. After registration, we averaged MESE images voxel-by-voxel

across scan repetitions to increase effective SNR. We estimated fM from magnitude aver-

aged MESE images and κt, T1 maps by solving NNLS (6.51) and RNNLS (6.52) problems

as explained in Subsection 6.4.1. We estimated fF from magnitude DESS images and κt

maps by applying PERK as explained in Subsection 6.4.1. NNLS and RNNLS respectively

took 57.4s and 122.9s. PERK training and testing respectively took 37.1s and 1.0s.

Fig. 6.3 compares NNLS and RNNLS fM estimates from MESE scans as well as PERK

fF estimates from optimized DESS scans. PERK fF estimates exhibit less WM variation

and more clearly delineate cortical WM/GM boundaries than MESE fM estimates. RNNLS

fM estimates are visibly lower than NNLS fM estimates due to regularization but exhibit

reduced WM variation, somewhat improving visualization of WM tracts. RNNLS fM and

PERK fF estimates appear visually similar in lateral WM regions, but both NNLS and
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ROI MESE-NNLS f̂M MESE-RNNLS f̂M DESS-PERK f̂F
AR WM 0.09 ± 0.096 0.074 ± 0.055 0.117 ± 0.019
AL WM 0.066 ± 0.086 0.054 ± 0.041 0.100 ± 0.0119
PR WM 0.047 ± 0.074 0.044 ± 0.041 0.093 ± 0.019
PL WM 0.116 ± 0.098 0.075 ± 0.050 0.0870 ± 0.0114
IC WM 0.211 ± 0.133 0.178 ± 0.083 0.111 ± 0.0241
AC GM 0.007 ± 0.024 0.010 ± 0.017 0.019 ± 0.045

Table 6.4: Left: WM/GM ROIs, overlaid on a representative anatomical MESE first-echo

image. Separate lateral WM ROIs are distinguished by anterior-right (AR), anterior-left

(AL), posterior-right (PR), and posterior-left (PL) directions and are respectively comprised

of 90, 79, 182, and 201 voxels. Two internal capsule (IC) polygons are pooled into a single

medial WM ROI comprised of 347 voxels. Three small anterior cortical (AC) GM polygons

are pooled into a single GM ROI comprised of 78 voxels. Right: Sample means ± sample

standard deviations of NNLS/RNNLS fM estimates from a MESE acquisition as well as

PERK fF estimates from an optimized DESS acquisition, computed over WM/GM ROIs.

Each sample statistic is rounded off to the highest place value of its (unreported) standard

error, computed via formulas in [3]. Fig. 6.3 presents corresponding images.

RNNLS fM estimates are elevated in medial regions. MESE f̂M overestimation in internal

capsules (IC) has been attributed to overlap in NNLS T2 spectrum estimates of the myelin

water and cellular water T2 peaks [159]. We additionally observe that MESE fM estimates

exhibit similar spatial variation here versus in simulations (cf. Figs. 6.1-6.2) suggesting

that some WM spatial variation in MESE fM estimates may be attributable to flip angle

variation, despite compensation for transmit field inhomogeneity.

Table 6.4 summarizes sample statistics of NNLS/RNNLS fM estimates from MESE

scans and PERK fF estimates from optimized DESS scans, separately computed over four

lateral WM ROIs containing 90, 79, 182, and 201 voxels; one pooled medial IC WM ROI

containing 347 voxels; and one pooled anterior cortical (AC) GM ROI containing 78 vox-

els. PERK fF estimates exhibit the lowest variation within WM ROIs and the most similar

sample means across WM ROIs. NNLS and RNNLS fM sample means are significantly

higher in the IC WM ROI than in lateral WM ROIs, possibly due to overlap in NNLS T2

spectrum peaks and/or to flip angle spatial variation (as described in the previous para-

graph). PERK fF sample means differ significantly from RNNLS fM sample means in

several WM ROIs, though PERK WM fF sample means are consistently comparable with

literature MESE measurements (e.g., see [156] for a review). Neither the NNLS/RNNLS

f̂M nor PERK f̂F estimators measured significant myelin water content in AC GM.
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6.5 Discussion

Simulations and experiments demonstrate the feasibility of myelin water content quantifi-

cation from a fast precision-optimized DESS MR acquisition. It remains challenging to

assess whether DESS fF estimates are comparable to MESE fM estimates in vivo because

of high MESE fM estimation variation. For greater confidence in comparisons, future ex

vivo studies in excised brain tissue would allow for longer MESE scans without increasing

motion-induced errors and would thereby enable more precise MESE fM estimation. Stud-

ies at higher field strengths would also enable more precise estimation due to higher SNR.

Nevertheless, the experiments described herein are the first to demonstrate in vivo lateral

WM myelin water content estimates from a fast SS MR acquisition that are at all similar to

conventional MWF estimates from a slower MESE MR acquisition.

Taken together with the results presented in Ch. 5, experiments herein also provide ev-

idence that the PERK estimator [8] can maintain reasonable accuracy while scaling grace-

fully with the number of latent parameters per voxel. In simulations, PERK consistently

took at least 500× less time and consistently achieved lower WM RMSE than an ML

estimator achieved via unrealistically narrow grid search around the ground truth. In pre-

liminary experiments on other precision-optimized in vivo datasets from the same healthy

volunteer, PERK took comparable time and produced similar fF estimates as reported here

while a more realistically constrained grid search took about 68 CPU-days running on 24

nodes of a computing cluster and did not produce reasonable fF estimates. To avoid the

confounding possibility of in vivo ML errors due to multiple global minima, we included

narrowly constrained ML grid search estimates from a 3-compartment simulation here and

from poor ML accuracy conclude that the ML estimator is likely more sensitive to model

mismatch than the PERK estimator for this application. These results suggest that PERK

scales much better than grid search with the number of latent parameters per voxel and that

PERK may be more robust than grid search to multi-compartmental modeling errors.

Despite freedom to design arbitrary combinations of SPGR and DESS scans, the opti-

mized acquisition used here as well as several other unreported acquisitions designed under

different total time constraints consisted either entirely or mostly of DESS scans. Since the

two-compartment SPGR signal models used in acquisition design depend on T1,F, T1,S but

not T2,F, T2,S, DESS-dominated scan designs suggest that multi-compartmental T2 effects

give rise to fF sensitivity in SS sequences more so than multi-compartmental T1 effects.

Somewhat surprisingly, reported and unreported precision-optimized acquisitions also ex-

hibit substantial TR variation across scans, even at the expense of fewer scans than possible

under time constraints. In further unreported studies, we investigated this phenomenon by
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repeating scan optimization while implicitly constraining repetition times to be minimal.

We consistently observed substantial (∼10-20%) degradation in expected fF relative stan-

dard deviation, suggesting that TR variation (in addition to flip angle variation) is important

for designing acquisitions that enable precise fF estimation.

Though Subsection 6.2 modeled the effects of first-order physical exchange in two-

compartment SPGR and DESS models, experiments thereafter used non-exchanging mod-

els to work with closed-form signal models and signal gradients during acquisition design

and to keep consistent with standard MESE model assumptions. There is growing evidence

however that some significant physical exchange across the myelin bilayers likely persists

in cerebral WM (see [157] for a very recent review). A thorough investigation of the sen-

sitivity of fF estimates from non-exchanging two-compartment SPGR/DESS models to

realistic physical exchange rates is a topic for further research.

Even with high SNR, differences in model assumptions, objective functions, and esti-

mation algorithms may limit the quantitative comparability of DESS fF imaging as imple-

mented here and MESE fM imaging as implemented here and in original works [100, 168].

For more similar model assumptions, one could attempt to estimate from a suitably opti-

mized DESS acquisition a T2 (or joint (T1, T2)) distribution using two-, three-, or higher-

compartment models and correspondingly estimate from MESE data a more coarsely sam-

pled T2 (or joint (T1, T2)) distribution. If κt, T1 maps are known and non-exchanging addi-

tive models are employed, one could estimate T2 distributions from both MESE and DESS

data using NNLS or RNNLS objective functions. With weaker model assumptions that

cause signal models to be nonlinear in unknowns, one could estimate distributions using

PERK. This work focused on demonstrating the feasibility of myelin water quantification

using a simple two-compartment model of a fast DESS acquisition; estimating more un-

knowns from more complicated (MESE or DESS) models will at least necessitate more

scans and may still prove challenging in practice.

6.6 Conclusion

This chapter has introduced a fast SS MRI acquisition for precise myelin water imaging.

The acquisition consists of three DESS scans whose flip angles and repetition times have

been optimized under an aggressive time constraint to enable precise estimation of the

faster-relaxing signal fraction fF in a simple two-compartment DESS model. Simulations

without model mismatch demonstrate that PERK and ML fF estimates from the proposed

DESS acquisition exhibit comparable RMSEs, but PERK is more than 500× faster. Sim-

ulations with modest levels of model mismatch demonstrate that conventional MESE fM
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estimates are sensitive to unaccounted variable T1-recovery rates across compartments and

accounted flip angle spatial variation while DESS fF estimates are sensitive to relaxation in

an unaccounted third compartment, suggesting limited quantitative comparability of MESE

fM and DESS fF WM estimates. In vivo experiments are nevertheless the first to demon-

strate lateral WM myelin water content estimates from a fast (3m15s) SS acquisition that

are similar to conventional MWF estimates from a slower (32m4s) MESE acquisition.
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CHAPTER 7

Future Work

This chapter suggests avenues for further QMRI research, focusing on relatively broad

future directions that this thesis has not explored. Discussion sections within main body

chapters offer more focused ideas for topic-specific extensions, whereas the appendices

organize partially investigated but still immature topics that are less related to QMRI.

7.1 Combine PERK with Image Reconstruction

This thesis has considered parameter estimation to be separate from image reconstruction.

This separation affords fast data processing but may leave room for improved estimation

performance, especially when raw data is undersampled. One could instead seek to esti-

mate parameters directly from raw data. One approach to combining image reconstruction

with PERK-based estimation might seek to solve the joint optimization problem

(
X̂, Ŷ

)
∈



arg min

X∈CL×V

Y∈CD×V

‖D−YA‖2F + β

V∑

v=1

‖h(yv,νv) + b− xv‖22



, (7.1)

where X := [x1, . . . ,xV ] ∈ CL×V and Y := [y1, . . . ,yV ] ∈ CD×V respectively collect L

latent parameters and D image datasets at V voxels; h : CD+N 7→ CL and b ∈ CL together

denote a pre-trained PERK regression function with offset; D ∈ CD×K collects D raw k-

space datasets each acquired with K samples; A ∈ CV×K denotes the MRI system matrix

(that models receive coil sensitivity spatial variation and k-space sampling); νv denotes

a known parameter at the vth voxel; and β is a free parameter that balances cost function

terms. Here, the first term enforces image fidelity to raw data and the second term entangles

image reconstruction and parameter estimation.

For continuously differentiable kernels, (7.1) is amenable to iterative local optimization
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via alternating minimization. One simple algorithm iterates the following updates:

X(i+1) ←
[
h
(
y
(i)
1 ,ν1

)
+ b, . . . ,h

(
y
(i)
V ,ν1

)
+ b

]
(7.2)

Y(i+1) ← arg min
Y∈CD×V

‖D−YA‖2F + β

V∑

v=1

∥∥h(yv,νv) + b− x(i+1)
v

∥∥2
2

(7.3)

where (·)(i) denotes the ith iterate. Latent parameter update (7.2) applies PERK voxel-wise

at the current image iterate. Image update (7.3) enforces consistency not only with data

but also with latent parameter iterates. Locally solving the inner problem within (7.3) via

gradient-based optimization requires (often simple) kernel gradients but does not require

signal model gradients. Thus, (7.1) or similar variations may be useful even when analytical

signal models are cumbersome or altogether unavailable.

7.2 Exploit Off-Resonance for Myelin Water Imaging

Though early sections in Chapter 6 provided a simple model of off-resonance distribu-

tion variation across intravoxel compartments, experiments therein ultimately used simpler

magnitude signal models that neglected off-resonance effects. However, off-resonance dis-

tributions do often differ significantly across compartments in cerebral tissue [163, 164], so

accounting for compartment-specific off-resonance effects could aid in better distinguish-

ing compartments and could thereby enable further-improved myelin water imaging. For

designing off-resonance-informed myelin water imaging acquisitions, it is reasonable to

consider pulse sequences whose acquisition parameters can strongly influence signal sen-

sitivity to off-resonance effects. In this respect, the small-tip fast recovery (STFR) sequence

[171] may be well-suited for off-resonance-informed myelin water imaging because its tip-

up pulse magnitude and phase provide additional degrees of freedom by which to sensitize

acquisitions to compartmental off-resonance effects. Off-resonance-informed myelin water

imaging using (spoiled) STFR sequences is an active area of research in our group.

7.3 Correlate with Other Myelin Biomarkers

As discussed in Section 6.5, fundamental differences between DESS fF and MESE MWF

imaging may limit their quantitative comparability. To build evidence that DESS fF imag-

ing is nevertheless a specific biomarker for intact myelin content, we are also interested in

how fF correlates with other myelin biomarkers. One contending noninvasive marker arises

from MR pulse sequences sensitized to the inhomogeneous magnetization transfer (ihMT)
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effect [172], which has recently been shown to be specific to the large membrane lipids

that comprise much of myelin [173, 174]. Multi-compartmental and ihHT MRI markers

could be successively compared through ex vivo, healthy volunteer, and patient studies.

Outside MRI, invasive measurements from histology have been used to study myelin (as in

e.g., [149, 150]) and could serve as a gold-standard in situ marker. MRI and histological

markers could be compared by correlating respective ex vivo and in situ studies.

7.4 Translate into a Clinical Setting

Moving towards clinical translation of PERK-based DESS myelin water imaging would

first require building greater evidence that fF is a specific biomarker for intact myelin con-

tent. This would require in situ studies to more definitively establish whether or not fF

estimates correlate with gold-standard histological markers. Repetition studies in one or

more healthy volunteers would provide evidence of fF reproducibility. Longitudinal re-

search studies in infants or patients would respectively provide evidence of whether DESS

fF images are specifically indicative of myelination or demyelination.

Enabling clinical studies would require packaging PERK into a streamlined and auto-

matic workflow. At least with fully sampled acquisitions, PERK could be implemented to

separately follow image reconstruction and transmit field mapping, taking coil-combined

images and flip angle maps as inputs and giving fF (and possibly other parameter) estimates

as outputs. Though the experiments herein used fast (less than 1m) online training, PERK

could be trained offline with minor implementation modifications detailed in Section 5.9,

so long as approximate prior knowledge of noise statistics is available.
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APPENDIX A

Multiple-Dataset Complex Coil Combination

A.1 Introduction

This appendix introduces an unpublished algorithm for simultaneously coil-combining a

collection of MR coil image datasets without prior knowledge of coil sensitivity maps. The

algorithm expects that MR coil datasets arise from a single acquisition with little inter-scan

motion but allows for variable MR contrasts across datasets. Such multiple contrast, multi-

ple receive coil acquisitions arise naturally in many QMRI applications, including the ones

studied in Chapters 4-6. The algorithm extends a similar sensitivity-blind method for coil-

combining a single dataset [92] to exploit coil sensitivity redundancy across datasets and

thereby improve problem conditioning over coil-combining multiple datasets separately.

A.2 Problem Formulation

Suppose that we are presented image-domain coil data from C receive coils, D contrasts,

and V voxel locations. A simple model for each single-coil, single-contrast image reads

yc,d = diag(κr
c)xd + ǫc,d, (A.1)

where yc,d ∈ CV denotes a noisy image dataset at the cth coil and dth contrast; κr
c ∈ CV

denotes the unknown sensitivity of the cth receive coil; xd ∈ C
V denotes the unknown

magnetization of the dth contrast; ǫc,d ∈ CN (0V ,Σ) is complex Gaussian noise; c ∈
{1, . . . , C}; and d ∈ {1, . . . , D}. This model allows for spatial correlations but for ease of

exposition ignores correlations across coils and correlations across contrasts.

We seek to estimate x1, . . . ,xD from y1,1, . . . ,yC,D without knowledge of κr
1, . . . ,κ

r
C .

We utilize a cost function that not only penalizes data inconsistency but also encourages
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spatially smooth sensitivity profiles through quadratic regularization:

Ψ(κr
1, . . . ,κ

r
C ,x1, . . . ,xD) :=

C∑

c=1

(
D∑

d=1

‖yc,d − diag(κr
c)xd‖2Σ−1 + βc‖Dκ

r
c‖22,

)
(A.2)

where D is a pure-real first-order finite differencing matrix and βc is a regularization pa-

rameter. Observe that Ψ is not coercive in x1, . . . ,xD: scaling each x1, . . . ,xD by α while

scaling each κ
r
1, . . . ,κ

r
C by 1

α
only reduces Ψ for arbitrarily large scale factor α. To resolve

this scale ambiguity, we seek to minimize (A.2) under constraints:

(κ̂r
1, . . . , κ̂

r
C , x̂1, . . . , x̂D) ∈




arg min

κ
r
1,...,κ

r
C∈CV

x1,...,xD∈CV

Ψ(κr
1, . . . ,κ

r
C ,x1, . . . ,xD)





such that 1T

V xd = cd ∀d ∈ {1, . . . , D}, (A.3)

where 1V is length-V vector of ones and cd ∈ C is a fixed constant.

A.3 Alternating Minimization Algorithm

We solve (A.3) by alternating between updating coil sensitivity variables while holding

contrast variables fixed and updating contrast variables while holding coil sensitivity vari-

ables fixed. We next describe each of these updates in turn.

Because we assumed for simplicity that noise is uncorrelated across receive coils, each

of the C coil updates can be updated in parallel. We update the cth coil variable by mini-

mizing a quadratic cost function:

κ
r
c
(i+1) ← arg min

κr
c∈C

V

D∑

d=1

∥∥yc,d − diag
(
xd

(i)
)
κ

r
c

∥∥2
Σ−1 + βc‖Dκ

r
c‖22. (A.4)

where (·)(i) denotes the ith iterate. For moderate V , (A.4) can be solved directly:

κ
r
c
(i+1) ←

(
diag

(
xd

(i)
)H
Σ−1 diag

(
xd

(i)
)
+ βcD

HD
)†

diag
(
xd

(i)
)H

Σ−1yc,d. (A.5)

For larger V with non-diagonal Σ, more sophisticated inner updates may be necessary.

Because we assumed that noise is also uncorrelated across contrasts, each of the D

contrast variables can be updated in parallel. We update the dth contrast variable at the
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(i+ 1)th iteration by solving a constrained problem:

x
(i+1)
d ← arg min

xd∈CV

C∑

c=1

∥∥∥yc,d − diag
(
κ

r
c
(i)
)
xd

∥∥∥
2

Σ−1
such that 1T

V xd = cd. (A.6)

We solve (A.6) using the method of Lagrange multipliers. The Lagrangian is

Λ(xd, λd) :=
C∑

c=1

∥∥∥yc,d − diag
(
κ
r
c
(i)
)
xd

∥∥∥
2

Σ−1
+ 4Re

(
λ̄d

(
1T

V xd − cd
))
, (A.7)

where λd ∈ C is a Lagrange multiplier; Re(·) extracts the real component of its argument;

and (̄·) denotes complex conjugate. Setting∇xd
Λ(xd, λd) = 0V yields the update

x
(i+1)
d ←

(
C∑

c=1

diag
(
κ

r
c
(i)
)H

Σ−1 diag
(
κ

r
c
(i)
))†( C∑

c=1

diag
(
κ
r
c
(i)
)H

Σ−1yc,d − λd1V

)

(A.8)

where (·)† denotes pseudoinverse and λd is at each iteration updated such that the constraint

remains satisfied:

λ
(i+1)
d ←

1T

V

(∑C
c=1 diag

(
κ
r
c
(i)
)H

Σ−1 diag
(
κ

r
c
(i)
))†(∑C

c=1 diag
(
κ

r
c
(i)
)H
Σ−1yc,d

)
− cd

1T

V

(∑C
c=1 diag

(
κr
c
(i)
)H

Σ−1 diag
(
κr

c
(i)
))†

1V

.

(A.9)

Observe that matrix divisions required to implement (A.9) need not depend on contrast

index d. Thus D contrast updates require D + 1 matrix division subproblems per iteration,

of which D divisions are amenable to parallelization.

Since (A.3) is non-convex, solutions will depend on initialization. We initialize each

contrast separately using the square root of the sum over that contrast’s magnitude coil

images squared, a popular conventional estimator:

x
(0)
d ← diag




√√√√
C∑

c=1

|yc,d|2

ej∠y1,d, (A.10)

where
√·, |·|, and ∠(·) respectively denote element-wise square root, absolute value, and

phase angle operators. Here, assigning phase to xd
(0) using the phase of the first coil’s data

causes the phase of coil sensitivity estimates to be relative to the first coil’s phase.

127



APPENDIX B

SS-Informed RF Pulse Design

B.1 Introduction

Modern radiofrequency (RF) pulse design methods often relate a desired magnetization

pattern to the underlying RF pulse and excitation gradients. Conventional techniques as-

sume negligible residual transverse magnetization immediately prior to excitation to show

that under the small-excitation approximation, this relation is linear with respect to the RF

pulse [175]. For fixed gradients, this facilitates rapid pulse design algorithms using lin-

ear filter design principles [176, 89] or iterative algorithms [177, 178]. In practice, pulse

designers can realize near-complete transverse relaxation prior to excitation with long rep-

etition times, large unbalanced spoiler gradients, or tip-up pulses [171]. However, all of

these methods require additional scan time beyond excitation and data acquisition.

This appendix investigates the small-excitation RF pulse design problem when the usual

assumption of near-complete decay of residual transverse magnetization is not taken. Omit-

ting this assumption reveals the influence of RF pulses on the steady-state (SS) transverse

magnetization rather than on the conventionally modeled single-repetition transverse mag-

netization. Because the former is more directly related to the received signal, such SS-

informed RF pulse design might allow for more accurate excitation patterns.

B.2 Signal Model

We begin with the Bloch equations in a non-inertial reference frame rotating clockwise

about the z-axis at the Larmor frequency:

∂

∂t
m′

xy(r, t) = iγ
(
m′

z(r, t)b
′
xy(r, t)−m′

xy(r, t)b
′
z(r, t)

)
− m′

xy(r, t)

T2(r)
; (B.1)

∂

∂t
m′

z(r, t) = γ
(
m′

x(r, t)b
′
y(r, t)−m′

y(r, t)b
′
x(r, t)

)
− m′

z(r, t)−m0(r)

T1(r)
. (B.2)
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Here, m′
xy(r, t) ≡ m′

x(r, t) + im′
y(r, t) and m′

z(r, t) are respectively the rotating-frame

transverse and longitudinal magnetization at position r ∈ R3 and time t ≥ 0; b′xy(r, t) ≡
b′x(r, t) + ib′y(r, t) and b′z(r, t) are respectively the apparent transverse and apparent longi-

tudinal magnetic field; T1(r) and T2(r) are spin-lattice and spin-spin relaxation time con-

stants; m0(r) is the equilibrium magnetization; γ is the gyromagnetic ratio; and i :=
√
−1.

These coupled differential equations are challenging to solve outright. To proceed, we take

two simplifying assumptions:

• We assume that RF pulses do not strongly perturb the longitudinal magnetization

from its initial state at time t ← t0, i.e. m′
z(r, t)b

′
xy(r, t) ≈ m′

z(r, t0)b
′
xy(r, t) for all

t ∈ [t0, t0 + TP] where TP ≥ 0 denotes RF pulse duration. This small-excitation

assumption differs from the conventional small-excitation assumption [175] (that in-

stead approximates m′
z(r, t) ≈ m0(r) for all t ∈ [t0, t0 + TP]) in that it allows for

memory of the longitudinal magnetization prior to excitation.

• We assume that the apparent transverse magnetic field separates in position and time,

i.e. b′xy(r, t) ≈ κt(r)b1(t) where κt(r) ∈ C is the RF coil spatial variation and

b1(t) ≡ b1,x(t) + ib1,y(t) is the RF excitation envelope.

With these assumptions, the rotating-frame Bloch equations read

∂

∂t
m′

xy(r, t) = iγ
(
m′

z(r, t0)κ
t(r)b1(t)−m′

xy(r, t)b
′
z(r, t)

)
− m′

xy(r, t)

T2(r)
; (B.3)

∂

∂t
m′

z(r, t) = γ
(
Re
(
κ̄t(r)m′

xy(r, t)
)
b1,y(t)− Im

(
κ̄t(r)m′

xy(r, t)
)
b1,x(t)

)
− m′

z(r, t)−m0(r)

T1(r)
,

(B.4)

where Re(·) and Im(·) respectively extract real and imaginary components and (̄·) de-

notes complex conjugation. Expressing (B.3)-(B.4) in terms of m̃′
xy(r, t) ≡ m̃′

x(r, t) +

im̃′
y(r, t) := κ̄t(r)m′

xy(r, t) allows further simplification:

∂

∂t
m̃′

xy(r, t) = iγ
(
m′

z(r, t0)
∣∣κt(r)

∣∣2b1(t)− m̃′
xy(r, t)b

′
z(r, t)

)
− m̃′

xy(r, t)

T2(r)
; (B.5)

∂

∂t
m′

z(r, t) = γ
(
m̃′

x(r, t)b1,y(t)− m̃′
y(r, t)b1,x(t)

)
− m′

z(r, t)−m0(r)

T1(r)
. (B.6)

The small-excitation assumption above decouples (B.5) from (B.6). Thus we can solve

directly for m̃′
xy(r, t) and then obtain an expression for m′

z(r, t) via substitution into (B.6).
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We solve (B.5) using the method of integrating factors. The solution for times t ≥ t0 is

m̃′
xy(r, t) = m̃′

xy(r, t0)e
iφ(r,t;t0)e−(t−t0)/T2(r)

+ iγm′
z(r, t0)

∣∣κt(r)
∣∣2
∫ t

t0

b′xy(t
′)eiφ(r,t;t

′)e−(t−t′)/T2(r) d t′, (B.7)

where φ(r, t; t′) := −γ
∫ t

t′
b′z(r, τ) d τ denotes the phase accumulation from t′ to t due to

off-resonance effects. Note that if one assumes negligible transverse magnetization from

prior excitations (i.e., m̃′
xy(r, t0) ≈ 0) and complete longitudinal recovery (i.e., m′

z(r, t0) ≈
m0(r)), one recovers the conventional linear relation between magnetization and RF field

for small excitations [175]. Without these assumptions, the longitudinal magnetization

must also be considered. The solution to (B.6) expressed in terms of (B.7) for t ≥ t0 is

m′
z(r, t) = m′

z(r, t0)e
−(t−t0)/T1(r) +m0(r)

(
1− e−(t−t0)/T1(r)

)

+ γ

∫ t

t0

e−(t−t′)/T1(r)
(
m̃′

x(r, t
′)b′y(t

′)− m̃′
y(r, t

′)b′x(t
′)
)
d t′. (B.8)

We next impose a steady-state condition to solve for the magnetization at an initial time

t0 selected well into the steady-state. After many periodic repetition cycles, the magneti-

zation following one full repetition will equilibrate under certain mild assumptions [17] to

the initial magnetization. We specifically assume that t0 marks the beginning of a steady-

state repetition interval of length TR ≥ TP during which RF excitation may be nonzero for

t ∈ [t0, t0 + TP] but b′xy(r, t) = 0 for free precession period t ∈ (t0 + TP, t0 + TR). Under

these assumptions, the steady-state relations

m̃′
xy(r, t0 + TR) = m̃′

xy(r, t0) (B.9)

m′
z(r, t0 + TR) = m′

z(r, t0) (B.10)

provide an algebraic system of equations for the initial magnetization components. With

some algebra and after reversion from intermediate variable m̃′
xy(r, t0) to apparent trans-

verse magnetization m′
xy(r, t0), we find that steady-state initial magnetization is

m′
xy(r, t0) =

iγm0(r)κ
t(r)(1−E1(r, TR))

∫ t0+TP

t0
b1(t

′)eiφ(r,t0+TR;t′)e−(t0+TR−t′)/T2(r) d t′

(1− E2(r, TR)eiφ(r,t0+TR;t0))((1− E1(r, TR)) + q(r))
;

(B.11)

m′
z(r, t0) =

m0(r)(1− E1(r, TR))

(1−E1(r, TR)) + q(r)
, (B.12)
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where E1(r, t) := e−t/T1(r); E2(r, t) := e−t/T2(r); and

q(r) = γ2
∣∣κt(r)

∣∣2
∫ t0+TP

t0

∫ t′

t0

e−(TR+t0−t′)/T1(r)e−(t′−τ)/T2(r)Re
(
b1(t

′)b′∗xy(τ)e
−iφ(r,t′;τ)

)
d τ d t′

=
γ2|κt(r)|2

2

∫ t0+TP

t0

∫ t0+TP

t0

b1(t
′)b′∗xy(τ)e

−(TR+t0−max (τ,t′))/T1(r)e−|t′−τ |/T2(r)e−iφ(r,t′;τ) d τ d t′.

(B.13)

It is intuitive to design RF excitations that achieve a desired magnetization pattern at echo

time TE ≥ TP following the start of excitation. We obtain the magnetization at echo time

by substituting (B.11)-(B.12) into (B.7) and evaluating at time t← t0 + TE:

m′
xy(r, t0 + TE) =

iγm0(r)κ
t(r)(1− E1(r, TR))

∫ t0+TP

t0
b1(t

′)eiφ(r,t0+TE;t
′)e−(t0+TE−t′)/T2(r) d t′

(1−E2(r, TR)eiφ(r,t0+TR;t0))((1−E1(r, TR)) + q(r))
.

(B.14)

Comparing with (B.11), we reassuringly recover the SS condition as TE approaches TR:

lim
TE→TR

m′
xy(r, t0 + TE) = m′

xy(r, t0 + TR) = m′
xy(r, t0). (B.15)

The received signal is approximately proportional to the integrated transverse mag-

netization over a voxel volume V. Further approximating the received signal as directly

proportional to the steady-state magnetization (as is typical in RF pulse design) requires

both standard and nonstandard additional assumptions:

• We first assume that the signal is localized to a scale over which there is minimal

variation of m0(r), T1(r), and T2(r), a common assumption in RF pulse design.

• We next assume that φ(r, t′; τ) is a slowly-varying function with r over the voxel

volume for all fixed time point pairs (τ, t′) ∈ {(τ, t′)|t0 ≤ τ ≤ t′ ≤ t0 + TP}. In

regions where through-voxel field-inhomogeneity gradients are reasonably small, this

can be accomplished by restricting excitation gradient amplitudes from being too

large and by balancing the excitation gradients to have zero net area.

• We last assume that φ(r, t0+TE; t0+TP) and φ(r, t0+TR; t0) also exhibit slow spa-

tial variation. If excitation gradients are balanced, the former condition only further

requires imaging gradients to balance at the echo time as is typical. However, the

latter condition requires all gradients to be balanced, and thus restricts the analysis

hereafter to unspoiled or weakly spoiled sequences.
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With these additional assumptions, the received steady-state signal for a typically sized

voxel centered at position r is (to within constants):

s(r, t0 + TE) ∝
∫

V(r)

m′
xy(r, t0 + TE) d

3 r′ (B.16)

≈ |V(r)|m′
xy(r, t0 + TE), (B.17)

where |·| here denotes the volume of a set. By including the contributions of previous

(unspoiled) excitations, we have derived a nonlinear dependence of SS signal on small-

excitation RF fields. Exploiting this nonlinear dependence will require specialized algo-

rithms to efficiently design SS-informed RF pulses and/or excitation gradients.

Conventional small-excitation RF pulse design utilizes an assumption that off-resonance

phase grows linearly in time to develop convenient Fourier-type relations between the

excited magnetization and the excitation k-space trajectory. Because the SS magnetiza-

tion’s dependence on off-resonance phase is nonlinear, a direct Fourier-type relation no

longer applies. However, the integrals within SS magnetization (B.14) may individually

be expressed as Fourier-type relations, so the possibility remains for signal model imple-

mentation using multiple Fourier transforms. With the affine off-resonance assumption

b′z(r, t) ≈ ω′(r)
γ

+ r · g(t) the integral in the numerator of (B.14) describes the conventional

Fourier-type relation [175], where ω′(r) denotes off-resonance frequency and g(t) denotes

a linear excitation gradient trajectory. We next focus on developing a Fourier-type rela-

tion for the integral in the denominator of (B.14), contained within q(r). Defining k-space

trajectory k(t) := − γ
2π

∫ t

t0
g(t′) d t′, phase accrual φ(r, t′; τ) can be approximated as

φ(r, t′; τ) ≈ −ω′(r)(t′ − τ) + 2πr · (k(t′)− k(τ)). (B.18)

Substituting (B.18) into (B.13) and simplifying yields

q(r) ≈ γ2|κt(r)|2
2

∫ t0+TP

t0

∫ t0+TP

t0

b1(t
′)b′∗xy(τ)ζ(r, t

′; τ)e−2πir·(k(t′)−k(τ)) d τ d t′ (B.19)

=
γ2|κt(r)|2

2

∫

R3

∫

R3

p(r,k1,k2)e
2πir·(k1+k2) dk1 dk2, (B.20)

where ζ(r, t′, τ) abbreviates relaxation and constant off-resonance effects as

ζ(r, t′; τ) := e−(TR+t0−max (τ,t′))/T1(r)e−|t′−τ |/T2(r)e+iω′(r)(t′−τ) (B.21)
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and p(r,k1,k2) defines a path in a six-dimensional k-space:

p(r,k1,k2) :=

∫ t0+TP

t0

∫ t0+TP

t0

b1(t
′)b′∗xy(τ)ζ(r, t

′; τ)δ3(k(t
′) + k1)δ3(k(τ)− k2) d τ d t′,

(B.22)

where δn(·) denotes an n-dimensional Dirac delta function. Eq. (B.20) is not a true Fourier

relation because p(r,k1,k2) depends on r. In the special case where relaxation and spatial

variation in ω′(r) are neglected, ζ(r, t′; τ) separates in t′, τ and (B.20) simplifies to a true

Fourier transform for which fast methods (e.g., [177]) to separately evaluate integrals over

k1,k2 are available. In the general case, a similar Fourier relation could be constructed if

ζ(r, t′; τ) were approximated with a “rank”-L tensor-product expansion of the form

ζ(r, t′; τ) ≈
L∑

l=1

ul(r)vl(t
′)v̄l(τ), (B.23)

where ul(r) ∈ R and vl(t) ∈ C are the lth spatial and temporal basis functions. Inserting

(B.23) into (B.19) would then yield a true Fourier relation similar to the one in [179]:

q(r) ≈ γ2|κt(r)|2
2

L∑

l=1

ul(r)

∣∣∣∣
∫ t0+TP

t0

vl(t
′)b1(t

′)e−2πir·k(t′) d t′
∣∣∣∣
2

=
γ2|κt(r)|2

2

L∑

l=1

ul(r)

∣∣∣∣F−1
3,k

[∫ t0+TP

t0

vl(t
′)b1(t

′)δ3(k(t
′) + k) d t′

]
(r)

∣∣∣∣
2

, (B.24)

where F−1
3,k[·](r) denotes an 3-dimensional inverse Fourier transform with respect to k and

whose output is a function of r. Unfortunately, (B.23) is a partially-complex tensor-product

expansion, and would require a tailored decomposition algorithm. Alternately, we could

expand the pure-real relaxation and complex off-resonance terms of ζ(r, t′; τ) separately:

ζ(r, t′; τ) =: ξ(r, t′; τ)e+iω′(r)t′e−iω′(r)τ (B.25)

≈
(

L∑

l=1

ul(r)vl(t
′)vl(τ)

)(
K∑

k=1

u′
k(r)v

′
k(t

′)

)(
K∑

k′=1

ū′
k′(r)v̄

′
k′(τ)

)
, (B.26)
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where now ul(r), vl(t) ∈ R and u′
k(r), v

′
k(t) ∈ C. Inserting (B.26) into (B.19) would yield

q(r) ≈ γ2|κt(r)|2
2

L∑

l=1

ul(r)

∣∣∣∣∣

K∑

k=1

u′
k(r)

∫ t0+TP

t0

vl(t
′)v′k(t

′)b1(t
′)e−2πir·k(t′) d t′

∣∣∣∣∣

2

=
γ2|κt(r)|2

2

L∑

l=1

ul(r)

∣∣∣∣∣

K∑

k=1

u′
k(r)F−1

3,k

[∫ t0+TP

t0

vl(t
′)v′k(t

′)b1(t
′)δ3(k(t

′) + k) d t′
]
(r)

∣∣∣∣∣

2

.

(B.27)

Though (B.25) simplifies the tensor product to work over R only, its tensor decomposition

of ξ(r, t′; τ) may still be challenging in practice. For ease of exposition in this early work,

we revert to partially-complex expansion (B.23) and choose convenient (complex) temporal

basis functions vl(t) for l = 1, . . . , L, as in prior works [180, 181]. We then propose to

estimate pure-real spatial basis functions ul(t) for l = 1, . . . , L via linear least-squares.

We next discretize SS signal model (B.14) for computer-aided SS-informed RF pulse

design. Let b := [b1(T1), . . . , b1(tJ)]
T ∈ CJ discretize the excitation waveform into J

timepoints from t← t0 to t← t0 + TP. Let

m :=

[
s(r1, t0 + TE)

m0(r1)|V(r1)|
, . . . ,

s(rN , t0 + TE)

m0(rN)|V(r1)|

]T
∈ C

N (B.28)

discretize the (unitless) relative magnetization into N voxels, respectively. Let

anj :=
i(γκt(rn)∆t)(1−E1(rn))e

iφ(rn,t0+TE;tj)e−(t0+TE−tj)/T2(rn)

(1− E2(rn)eiφ(t0+TR;t0))
; (B.29)

dnn′ := δ[n− n′](1− E1(rn)); (B.30)

sjj′n :=
|γκt(rn)∆t|2

2
ζ(rn, tj , tj′)e

−2πirn·(k(tj′ )−k(tj))

≈ |γκ
t(rn)∆t|2
2

L∑

l=1

ul(rn)vl(tj′)v
∗
l (tj)e

−2πirn·(k(tj′ )−k(tj )), (B.31)

respectively denote scalar elements of the matrices A ∈ CN×J ; D ∈ RN×N ; and tensor

S ∈ C
J×J×N . Here ∆t := TP/J denotes the RF pulse sampling interval and δ[·] denotes

the Kronecker delta function. Then the noiseless discretized signal model reads

m =
(
D + diag

([
bHS1b, . . . ,b

HSNb
]T))−1

Ab, (B.32)

where Sn ∈ C
J×J denotes the nth layer of S for each n ∈ {1, . . . , N}.
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B.3 Two Iterative Algorithms

This section develops two iterative algorithms for designing SS-informed RF pulses. Sub-

section B.3.1 employs a perturbative expansion approach that takes inspiration from a sim-

ilar algorithm for large-tip angle RF pulse design [182]. Subsection B.3.2 employs an

optimization approach that uses variable splitting and the alternating direction method of

multipliers (ADMM) algorithm [183]. Both subsections focus on designing the RF pulse

only and assume the excitation gradient trajectory is fixed.

B.3.1 Perturbative Expansions

Given an RF pulse design at the ith iteration b(i), one can predict the magnetization m(i)

via either (B.32) or Bloch simulations. If the deviation ∆m(i+1) := m −m(i) from the

desired pattern is small, it should be possible to reduce the subsequent deviation with small

perturbation ∆b(i+1) to b(i). We can then iteratively improve the RF pulse by accumulating

small perturbations, i.e. b(i+1) ← b(i) +∆b(i+1) ≡ b(0) +
∑i+1

ι=1∆b(ι).

Here we apply a first-order perturbative expansion to approximate how the (i + 1)th

incremental excitation ∆b(i+1) relates to the (i+ 1)th pattern deviation ∆m(i+1):

A
(
b(i) +∆b(i+1)

)
=
(
D+ diagn

((
b(i) +∆b(i+1)

)H
Sn

(
b(i) +∆b(i+1)

)))(
m(i) +∆m(i+1)

)

(B.33)

≈
(
D+ diagn

(
(b(i))HSnb

(i)
))(

m(i) +∆m(i+1)
)

+ 2diagn
(
Re
(
(b(i))HSn∆b(i+1)

))
m(i), (B.34)

where diagn
(
bHSnb

′
)
:= diag

([
bHS1b

′, . . . ,bHSnb
′
]T)

and the approximation drops all

higher-order terms. Canceling out zeroth-order terms

Ab(i) ≈
(
D+ diagn

(
(b(i))HSnb

(i)
))
m(i) (B.35)

that either are exactly equal (if m(i) is computed via (B.32)) or nearly equal (if m(i) is

computed via Bloch simulations) and rearranging yields the update

Re
(
∆b(i+1)

)
←
(
A− 2 diag

(
m(i)

)
Re
(
Γ(i)
))†(

D+ diagn
(
(b(i))HSnb

(i)
))
∆m(i+1);

Im
(
∆b(i+1)

)
←
(
iA+ 2diag

(
m(i)

)
Im
(
Γ(i)
))†(

D+ diagn
(
(b(i))HSnb

(i)
))
∆m(i+1),

(B.36)
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where Γ(i) :=
[
S1b

(i), . . . ,Snb
(i)
]H ∈ CN×J . Each perturbative correction update requires

solving two size-J linear least-squares problems.

B.3.2 Variable Splitting and ADMM

Alternately, we can approach SS-informed RF pulse design by solving a suitable optimiza-

tion problem. We would like to solve the non-convex optimization problem

b̂ ∈
{
arg min

b∈CJ

∥∥∥
(
D+ diagn

(
bHSnb

))−1
Ab−m

∥∥∥
2

W
+ β‖Cb‖22

}
(B.37)

where W ∈ RN×N denotes a spatial weighting matrix; C is a pure-real first-order finite

differencing matrix; and β ∈ R is a regularization parameter. Since solving (B.37) is

challenging, we instead study a related constrained problem:

(
b̂, ẑ1, ẑ2

)
∈
{
arg min

b,z1,z2∈CJ
Ψ(b, z1, z2)

}
subject to (B.38)

z1 = f(b, z2) + d and

z2 = b, where

Ψ(b, z1, z2) := ‖Ab− diag(m)z1‖2W + β‖Cb‖22; (B.39)

f(b,b′) :=
[
bHS1b

′, . . . ,bHSNb
′
]

evaluates f : CJ × CJ 7→ CN for arbitrary b,b′; and

d := D1N ∈ RN . We solve (B.38) via ADMM [183]. The augmented Lagrangian is

Λ(b, z1, z2,ν1,ν2) := Ψ(b, z1, z2) + Re
(
ν
H

1 (f(b, z2) + d− z1)
)
+

ρ1
2
‖f(b, z2) + d− z1‖22

+ Re
(
ν
H

2 (b− z2)
)
+

ρ2
2
‖b− z2‖22, (B.40)

where ν1 ∈ CN and ν2 ∈ CJ are dual variables and ρ1, ρ2 > 0 are constraint penalty

parameters. Rescaling the dual variables as u1 := ν1

ρ1
and u2 := ν2

ρ2
, completing the

square, and dropping constants reveals an alternate but equivalent form of the augmented

Lagrangian that leads to simpler variable updates:

Λ′(b, z1, z2,u1,u2) := Ψ(b, z1, z2) +
ρ1
2
‖f(b, z2) + d− z1 + u1‖22 −

ρ1
2
‖u1‖22

+
ρ2
2
‖b− z2 + u2‖22 −

ρ2
2
‖u2‖22. (B.41)

ADMM cycles through updating the primal variables b, z1, z2 followed by gradient ascent

on the scaled dual variables u1,u2, holding other variables fixed from previous iterations.
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Though ρ1 and ρ2 influence (local) convergence rates, they do not affect the solution. We

next describe each of these updates.

1. The b update involves a size-J linear least-squares subproblem:

b(i+1) ← arg min
b∈CJ

Λ′(b, z
(i)
1 , z

(i)
2 ,u

(i)
1 ,u

(i)
2 )

= arg min
b∈CJ

Ψ
(
b, z

(i)
1 , z

(i)
2

)
+

ρ1
2

∥∥∥∥f(b, z
(i)
2 )−

(
z
(i)
1 − d− u

(i)
1

)2
2

∥∥∥∥

+
ρ2
2

∥∥∥b−
(
z
(i)
2 − u

(i)
2

)∥∥∥
2

2
. (B.42)

2. The z1 update involves a trivial linear least-squares subproblem:

z
(i+1)
1 ← arg min

z1∈CN
Λ′(b(i+1), z1, z

(i)
2 ,u

(i)
1 ,u

(i)
2 )

= arg min
z1∈CN

∥∥diag(m)z1 −Ab(i+1)
∥∥2
W

+
ρ1
2

∥∥∥z1 −
(
f(b(i+1), z

(i)
2 ) + d+ u

(i)
1

)∥∥∥
2

2
.

(B.43)

3. The z2 update involves another size-J linear least-squares subproblem:

z
(i+1)
2 ← arg min

z2∈CJ
Λ′(b(i+1), z

(i+1)
1 , z2,u

(i)
1 ,u

(i)
2 )

= arg min
z2∈CJ

ρ1
2

∥∥∥f(b(i+1), z2)−
(
z
(i+1)
1 − d− u

(i)
1

)∥∥∥
2

2
+

ρ2
2

∥∥∥z2 −
(
b(i+1) + u

(i)
2

)∥∥∥
2

2
.

(B.44)

4. The scaled dual variables u1,u2 are updated via one gradient ascent iteration:

u
(i+1)
1 ← u

(i)
1 + ρ1

(
f(b(i+1), z

(i+1)
2 ) + d− z

(i+1)
1

)
; (B.45)

u
(i+1)
2 ← u

(i)
2 + ρ2

(
b(i+1) − z

(i+1)
2

)
. (B.46)

If a saddle point local to the initialization exists, ADMM will converge to that saddle point

and the solution will correspond to a local solution to constrained problem (B.38).
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