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Acceleration methods are a critical area of research for MRI. Two of the most im-

portant acceleration techniques involve parallel imaging and compressed sensing.

These advanced signal processing techniques have the potential to drastically re-

duce scan times and provide radiologists with new information for diagnosing dis-

ease. However, many of these new techniques require solving difficult optimiza-

tion problems, which motivates the development of more advanced algorithms to

solve them. In addition, acceleration methods have not reached maturity in some

applications, which motivates the development of new models tailored to these

applications. This dissertation makes advances in three different areas of acceler-

ations. The first is the development of a new algorithm (called B1-Based, Adaptive

Restart, Iterative Soft Thresholding Algorithm or BARISTA), that solves a paral-

lel MRI optimization problem with compressed sensing assumptions. BARISTA

is shown to be 2-3 times faster and more robust to parameter selection than current

state-of-the-art variable splitting methods. The second contribution is the exten-

sion of BARISTA ideas to non-Cartesian trajectories that also leads to a 2-3 times

acceleration over previous methods. The third contribution is the development

of a new model for functional MRI that enables a 3-4 factor of acceleration of

effective temporal resolution in functional MRI scans. Several variations of the

new model are proposed, with an ROC curve analysis showing that a combination

low-rank/sparsity model giving the best performance in identifying the resting-

state motor network.

xiii



CHAPTER 1

Introduction

Acceleration methods are currently one of the foremost topics of research in MRI. This

dissertation discusses two forms of acceleration. One form of acceleration involves ac-

quiring less data and reconstructing an image of the same resolution. Another acceleration

involves reconstructing the images faster than existing methods for undersampled data once

the data is acquired. These two forms of acceleration are often intertwined. Acceleration

methods based on parallel imaging [1] or compressed sensing [2] can necessitate solving

complicated optimization problems. In some clinical settings such as DCE MRI [3], these

problems can be solved offline, but for many applications the images need to be available as

soon as possible while the patient is at the clinic. These optimization problems can involve

large system matrices and nondifferentiable functions, which precludes the use of many

standard optimization algorithms. When the cost function is quadratic, then the conjugate

gradient algorithm is often an excellent choice, but when compressed sensing is used the

optimization problem is no longer quadratic. In some cases, complicated system matrices

can make even a quadratic optimization problem difficult to solve efficiently [4]. These

considerations all motivate the development of advanced optimization algorithms.

The current state-of-the-art optimization algorithms for subsampled MRI are based on

variable splitting. These algorithms can be developed from the augmented Lagrangian [5]

or split-Bregman [6] perspective for compressed sensing problems, and they have been ex-

tended to the MRI setting [7]. Variable-splitting methods work by decomposing a compli-

cated optimization problem into simple subproblems. The subproblems often have closed-

form solutions that are simple to compute. However, a drawback in creating this decompo-

sition is the need to select penalty parameters that connect the subproblems. These penalty

parameters can greatly affect the convergence speed of variable-splitting methods, but are

difficult to tune for the fastest convergence rate. The best penalty parameters can change

depending on the data set, regularizer, or regularization parameter. As such, it can be diffi-

cult to assess the robustness of variable-splitting methods for clinical imaging.
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This work explores the development of momentum-accelerated majorize-minimize al-

gorithms as an alternative to variable splitting algorithms. The difficulty in designing

majorize-minimize algorithms is the derivation of a majorizer, a function whose minimiza-

tion guarantees a decrease in the function of the primary optimization problem. Procedures

for developing majorizers can vary greatly depending on the optimization problem. In this

dissertation we cover two cases specific to MRI: parallel MRI with Cartesian sampling [8]

and parallel MRI with non-Cartesian sampling. Both of these settings require careful con-

sideration of the MRI system matrix and the regularizer. In the Cartesian sampling setting,

we use coupling effects between the receive sensitivity coils and the spatial localization

property of the wavelet transform to get space-variant step sizes in a majorize-minimize

algorithm. In the non-Cartesian setting, we use coupling effects between the sampling den-

sity function of the k-space trajectory and the frequency localization property of the wavelet

transform to get frequency-dependent step sizes. Both of these approaches require mathe-

matical techniques for upper bounding positive semidefinite matrices, which are covered in

chapters 3 and 4. A parallel development is the extension of adaptive momentum restarting

techniques [9] and optimized momentum [10] to MRI [8, 11].

A further advance to acceleration methods is the development of new modeling tech-

niques to facilitate increases in temporal resolution for dynamic imaging. Low-rank models

have been proposed for a number of MRI applications such as cardiac MRI [12] and dy-

namic contrast-enhanced (DCE) MRI [3]. These models have also been extended to func-

tional MRI (fMRI) as well, although low rank methods in fMRI thus far have only included

strictly low rank regularizers [13]. Since fMRI data are not strictly low rank, large ranks

are necessary to represent the richness of functional activations [13]. Here we propose an

alternative hybrid model that blends low-rank methods with other regularizers that allow

more rich, full-rank reconstructions in chapter 5.
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CHAPTER 2

Background on MR Image Reconstruction

Here we give a basic overview on MRI physics and the corresponding reconstruction meth-

ods. We choose to derive these methods from a statistical signal processing perspective.

Although many of the described techniques were developed from perspectives other than

that of statistical signal processing, the benefit of this approach is that it is very general and

allows a streamlined treatment of a wide class of techniques used in MRI from the same

basic framework.

Throughout all of this, the source of our signal will be single proton nuclei in water

molecules. These are the most abundant nuclei that are detectable by nuclear magnetic

resonance in the human body, and as such the signal from them far outweighs that of all

other atomic species in MRI applications.

2.1 The MRI Signal Equation

We will assume there is a magnetic field, B0, that is aligned in the z-direction. When

placed in this magnetic field, the nuclear magnetic moments of the hydrogen nuclei (so-

called spins) precess around the z-axis at the Larmor frequency:

ω0 = γB0, (2.1)

where γ is the gyromagnetic ratio, a constant that changes depending on the atomic species.

The steady-state condition is for the spins to be aligned with the z-axis. To obtain a

signal, a radiofrequency (RF) pulse must be applied to tip the spins into the transverse

plane. This pulse effectively applies a torque to the net magnetization vector that can be

used to move it into the transverse plane. The degree to which the net magnetization vector

is rotated depends on the duration of the RF pulse.

When the spins are in the transverse plane, relaxation occurs. The return of the mag-

netization vector to its equilibrium state is governed by two time constants: T1 and T2. T1
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governs the recovery of the magnetization vector along the z-axis, i.e.

Mz(t) =Mz0

(

1− e−t/T1
)

(2.2)

for a 90-degree flip. T2 correspondingly governs the decay of the net magnetization vector

in the xy-plane, i.e.

Mxy(t) =Mz0e
−t/T2 (2.3)

for a 90-degree flip. Different tissues have different T1 and T2 values. As such, variations

in signal intensities in MR images result from differences in T1 and T2 in different tissues,

and these variations are the source of contrast in MRI. Functional MRI has an extra pa-

rameter of interest: T ∗
2 , which includes the effects of small variations in the magnetic field

due to the blood oxygenation level dependent (BOLD) effect. The BOLD effect creates

contrast between activated and deactivated brain regions. The BOLD effect is a vascular

phenomenon that occurs at frequencies slower than 0.1 Hz. A standard BOLD response is

shown in Figure 2.1. Due to the low-frequency aspect of the BOLD response, fMRI acqui-
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Figure 2.1: The canonical bold hemodynamic response function.

sitions with a repetition time as slow as 2 seconds are used in fMRI experiments. Typically,

the data acquisition window in MRI is short enough that these time constants (i.e., T1, T2,

and T ∗
2 ) do not drastically change the image contrast during the readout. As such, during

the data acquisition window we can typically model the magnetization in the scanner as

being in a static state.

After the spins are tipped into the transverse plane, the signal received in MRI comes

from the entire imaging volume. To achieve spatial localization, we apply gradients to

locally vary the magnetic field. Most MRI scanners are equipped with secondary magnets,
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called gradients, that linearly vary the field in the x, y, and z-directions, i.e.

B = B0 +Gxx+Gyy +Gzz = B0 +G · x, (2.4)

which then gives a location-dependent frequency of precession:

ω = γ(B0 +G · x). (2.5)

This location-dependent frequency of precession can then be exploited for imaging. Re-

calling that the spins in the magnetic field can be thought of as a number of localized

oscillators, each oscillator can be thought of as possessing a magnitude, m(x, t), and a

phase term, φ(x, t). If the signal receiver is uniform over the imaging volume, then the

received signal, y(t), is the integration of all the oscillators in the imaging volume:

y(t) =

∫

m(x, t)e−iφ(x,t)dx. (2.6)

Frequency is equal to the time rate of change in phase, so we can write

d

dt
φ(x, t) = ω(x, t) = γ(B0 +G · x). (2.7)

This implies that

φ(x, t) =

∫ t

0

ω(x, τ)dτ = γ

∫ t

0

B(x, τ)dτ

= ω0t+ k(t) · x,

(2.8)

where

k(t) =







2πγ
∫ t

0
Gx(τ)dτ

2πγ
∫ t

0
Gy(τ)dτ

2πγ
∫ t

0
Gz(τ)dτ






. (2.9)

We call k(t) the k-space trajectory. Plugging these expressions into (2.6) and demodulating

by the constant ω0t term shows that the MRI signal can be written as

y(t) =

∫

m(x)e−ik(t)·xdx. (2.10)

(2.10) is a Fourier-transform like operation on the magnetization, m(x). It acquires har-

monics of m(x), where the specific harmonic acquired is determined by k(t). (The time-

dependency in m(x) has been removed due to the demodulation.)
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2.2 MRI System Matrix Models

(2.10) cannot be used on a computer since it is not discretized. For the purpose of dis-

cretization, we will assume that samples are acquired at p ∈ [1, ..., P ] time points. We will

also approximate m(x) as being composed of a train of N evenly-spaced Dirac impulses:

m(x) =

N
∑

n=1

xnδ(x− xn). (2.11)

Thus, we could encode the magnetization in a vector, x ∈ CN×1, where the nth element

of x is xn. Lastly, due to thermal noise both from the induction coil used for detecting the

signal and the body of the subject, the received signal is corrupted by complex Gaussian

noise, ǫ. Thus, we collect P data points in a vector, y ∈ CP×1 where

y = Ax+ ǫ, (2.12)

and the pth, nth element of the A is e−ik(tp)·xn . When the k-space trajectory, k(t), gives

samples on a Cartesian grid, we compute Ax using a discrete Fourier transform (DFT)

implemented as a Fast Fourier Transform (FFT).

2.2.1 Beyond Cartesian Fourier Encoding

The DFT representation of A is sufficient when the k-space samples lie on a Cartesian grid.

However, many k-space sampling patterns use non-Cartesian trajectories that allow greater

coverage of k-space within the hardware constraints of MRI. This means the simple FFT

can no longer be used as an operator for A. To retain the efficiency of the FFT, non-uniform

fast Fourier transform (NUFFT) methods have been developed [14]. These methods apply

an FFT to x, yielding frequency samples that lie on an evenly-spaced grid. Then, they

interpolate to the off-grid locations specified by k(t).

Another aspect of MRI that can disrupt standard Fourier encoding is off-resonance. Off-

resonance occurs when the main magnetic field, B0, is not uniform throughout the object.

This causes the frequency demodulation used in receiving the signal to be non-ideal in

certain areas of the object. Since the magnetic field is related to frequency via the Larmor

equation in (2.1), we typically think of this off-resonance in terms of frequencies. The

frequency map of off-resonance, ω(x), can be measured by acquiring images at different

echo times and then applying a complex division. Methods have been developed for doing

this in a noise-robust manner [15]. When the signal is received in the presence of field
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inhomogeneities, the signal equation becomes

y(t) =

∫

m(x)eiω(x)te−ik(t)·xdx. (2.13)

The discretization of the system matrix, A, is now more complicated. At first sight, (2.13)

would seem to imply that we now need to apply a new Fourier transform for each data

point that we acquire since the magnetization has been perturbed by ω(x)t in a different

way. Fast methods for approximating this process have been developed [16, 17]. These

methods apply a Fourier operator on a small subset of the P time points and then fill in

the the other time points via interpolation. The approximation error in these techniques is

usually quite low when a sufficient number of terms are used in the approximation.

2.2.2 Parallel Imaging

When only one receive coil is used that has a uniform sensitivity profile, Fourier encoding

methods with appropriate NUFFT and field inhomogeneity approximations are all that is

necessary to specify A. However, when the response profile of the receive coil is non-

uniform or when there are multiple receive coils, further modifications to the signal equa-

tion are necessary. A straightforward modification for C receive coils is sensitivity encod-

ing (SENSE) [1], which yields the following signal equation:

yc(t) =

∫

m(x)sc(x)e
−ik(t)·xdx. (2.14)

yc(t) now specifies the received signal in coil c where c ∈ [1, ..., C]. Based on 2.14, the

sampled measurement y is now a vector of size PC × 1 and A can be formulated as

A =









F1

. . .

F1

















S1

...

SC









, (2.15)

where each of the Sc matrices has elements of sc(xn) on its diagonal. Each of the F1 are an

identical Fourier encoding operator based on k(t), which is common to all the coils. One

difficulty in using sensitivity encoding is calculation of the senstivity maps in S. These

maps can change from patient to patient. The standard method is to divide low-resolution

images from each sensitivity coil by another image of uniform sensitivity. The uniform-

sensitivity image can be obtained from the square-root sum-of-squares of all the coil images

or a separate body coil images. Since there is a division, this process can involve noise
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amplification. Methods for mitigating this noise amplification have been developed [4].

2.3 MRI Reconstruction

As mentioned previously, the noise in MRI is additive complex Gaussian:

y = Ax+ ǫ. (2.16)

From the Gauss-Markov Theorem, the best estimate of x is

x̂ = argmin
x

f(x)

f(x) =
1

2
‖y −Ax‖22

x̂ = (AHA)−1AHy.

(2.17)

When the noise is low and there is no subsampling, (2.17) provides an excellent estimate

of x. When A is a simple DFT matrix (as is the case in many MRI applications), x̂ is the

inverse DFT of y. When A has full, Cartesian sampling of k-space and multiple coils in a

SENSE setting (i.e., the formulation from Section 2.2.2), x̂ is sum of the coil images from

each coil with a phase compensation factor and a normalization by the sum-of-squares of

the sensitivity coil patterns.

However, in cases with low SNR or high k-space undersampling the inversion of AHA

can amplify the noise. In the case of subsampling, AHA might not even be invertible. (This

can clearly be shown when SENSE is not used.) Large noise levels may be present in certain

types of imaging, such as MR spectroscopy. Subsampling is a topic of significant interest

since it allows reductions in MRI scan times, so we will explore alternative estimators of x

for these settings.

A general approach for improving on the estimator in (2.17) is by incorporating prior

knowledge through regularization. These methods reduce variance typically at the price of

increased bias. This can be done by modifying the optimization problem in (2.17) to

x̂ = argmin
x

1

2
‖y −Ax‖22 + βR(x), (2.18)

where R(x) is a regularizing function that can be chosen based on prior information. A

few forms for R(x) are shown in the next sections.
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2.3.1 Quadratic Regularization

One way to incorporate regularization is through quadratic regularization, i.e.

R(x) = ‖Rx‖22 , (2.19)

where R is a matrix chosen by the user. One choice is R = I where I is the identity matrix.

A more common choice is where R is a first-order finite differencing matrix. Both of these

approaches have drawbacks. R = I undesirably lowers the average value in the signal

estimate x̂ below that of the true value. When R is a finite differencing matrix, the nature

of the quadratic penalty causes edges to be blurred out and smeared, also an undesirable

property in high-resolution images. Due to these factors, β is often kept to a small value

so as to not overregularize the reconstructed image. This limits the ability of quadratic

regularization to remove noise or mitigate subsampling effects. Generally, using R as a

finite-differencing matrix is superior to R = I.

2.3.2 Sparsity-Promoting Regularization

A drawback of quadratic regularization is that it more heavily penalizes large coefficients of

Rx than small ones. This is an unnatural feature for many MRI images when R is a finite-

differencing matrix. We expect the output of a finite-differencing matrix to be mostly near

zero in the flat regions of the image and large near edges. As such, a small number of large

coefficients of Rx are expected, which is not well-captured by the quadratic regularizer.

Under this assumption, we might consider the ℓ0 norm over the quadratic norm, i.e.

R(x) = ‖Rx‖0 . (2.20)

However, this form of R(x) is non-convex and makes the problem in (2.18) NP-hard. Non-

convex regularizers are often undesirable for imaging since the estimated image can change

drastically based on the measurements. Instead, what is more often used is the convex

relaxation of the ℓ0 norm: the ℓ1 norm:

R(x) = ‖Rx‖1 . (2.21)

Using the ℓ1 norm leaves the cost function in (2.18) convex while preserving desirable

sparsity-promoting properties of the ℓ0 norm. The ℓ1 norm penalizes large coefficients

far less than the ℓ2 norm-squared. Use of the ℓ1 norm in MR image reconstruction is a

frequently-studied topic.
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There are a number of regularizing matrices used with the sparsity-promoting regular-

izer. The finite-differencing matrix is one of them, as it was in the quadratic case. Sparsity-

promoting regularization with finite-finite differencing matrices is often called anisotropic

total variation due to its relation as the discrete version of the continuous-form total vari-

ation integral. Another class of matrices used with sparsity-promoting regularization in-

cludes discrete wavelet transforms. These transforms decompose the image into a large

number of localized coefficients that encode the high and low frequency information in

various patches of the image. Both orthogonal and overcomplete/undecimated discrete

wavelet transforms are used for imaging. Orthogonal transforms are useful since they are

mathematically simpler to work with, although overcomplete/undecimated wavelet trans-

forms are typically thought to provide better images.

2.3.3 Dynamic MRI and Low Rank Penalties

In dynamic MRI settings it is more natural to think of X, the object to be reconstructed,

as an N × T matrix where T indicates the number of time points rather than an N-length

vector. Thinking of X as a matrix allows the use of low-rank models, which are a natural

way to constrain dynamic image reconstruction. In dynamic MRI, it is natural to think of

the image series as being composed of a mostly-static background and a small dynamic

portion of the image. Mathematically, this implies that the time-evolution of magnetization

can be written as

m(x, t) =
R
∑

r=1

ur(x)vr(t), (2.22)

where R is the rank of the model. Discretizing (2.22) gives

X = UV, (2.23)

where U is N × R and V is R × T . Typically R ≪ N and R ≪ T , so the number of

free parameters with this model is far less than NT . When this model is assumed, it can be

encouraged via the nuclear norm penalty, i.e.

R(X) = ‖X‖∗ . (2.24)

An alternative way of promoting a low-rank model is by estimating U and V directly via a

two-step process.
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2.4 MM Algorithms for MR Image Reconstruction

The choice of regularizer significantly affects the choice of algorithm for obtaining the

estimator in (2.18). In the case where quadratic regularizers are used, the preconditioned

conjugate gradient algorithm is an excellent choice of algorithm. This algorithm is well-

studied and has been used extensively in MRI applications. When sparsity-promoting or

low rank regularizers are used, the algorithm must be more carefully considered due to the

nondifferentiability of these regularizers.

Here we briefly review a general derivation of a classic algorithm: the majorize-minimize

algorithm. This method forms quadratic surrogates for the cost function in (2.18) with de-

sirable mathematical properties. Majorize-minimize algorithms iteratively form surrogates

for the cost function and decrease the surrogate. We illustrate the approach here for a sim-

ple quadratic. Extensions of this derivation to include ℓ1 regularizers are a major topic of

the rest of this dissertation. We begin by recalling the form of a quadratic optimization

problem:

f(x) =
1

2
‖y −Ax‖22 (2.25)

If the surrogate at the kth iteration, φk(x), satisfies the conditions,

f(x(k)) = φk(x
(k)), (2.26)

f(x) ≤ φk(x), (2.27)

then iteratively decreasing φk(x) is guaranteed to decrease f(x). We form such a surrogate

by first rewriting f(x) around a current estimate, x(k), as

f(x) = f(x(k)) + ℜ
{

(AH(Ax(k) − y))H(x− x(k))
}

+
1

2
(x− x(k))HAHA(x− x(k)),

(2.28)

where ℜ{·} returns the real part of its argument and AH is the Hermitian transpose of A.

If we have AHA � Mf ∈ R
N×N for some matrix, Mf (where M � 0 implies that M is
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positive semidefinite), we can write

f(x) ≤ φk(x) ··= f(x(k))

+ ℜ
{

(AH(Ax(k) − y))H(x− x(k))
}

+
1

2

∥

∥x− x(k)
∥

∥

2

Mf

= ψ(x,x(k)) + ζ,

ψ(x,x(k)) ··=
1

2

∥

∥

∥
x− (x(k) −M−1

f AH(Ax(k) − y))
∥

∥

∥

2

Mf

,

(2.29)

where ζ is a constant that arises from completing the square and is independent of x. De-

creasing ψ(x,x(k)) causes φk(x) to decrease by the same amount. Standard majorize-

minimize procedures use Mf = LI, where L is the maximum eigenvalue of AHA. When

an MM method is used on a convex cost function, then Nesterov momentum can be used

for acceleration [18]. These methods can be further accelerated with adaptive momentum

restarting [9, 8].

The key step in designing a fast MM method is the calculation of Mf . There are two

desirable traits for Mf . The first is that M−1
f must have an efficient implementation since it

must be applied at every iteration. The second is that Mf be as small as possible such that

Mf � AHA. This makes the MM bound tighter and accelerates convergence. Methods

for designing Mf for MRI are a key contribution in this dissertation.
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CHAPTER 3

Fast Parallel MR Image Reconstruction Based

on Sensitivity Maps

3.1 Introduction

This chapter is based on work published in [8, 19]. Magnetic resonance imaging (MRI) is

an imaging modality where improving the resolution requires increased acquisition time.

As a result, the cost of MRI also increases with higher resolution since the cost is directly

proportional to the scan time. In addition to reducing the cost of high-resolution MRI,

scanning time reductions can also help accommodate pediatric and elderly patients that

have difficulty remaining motionless during long scans. Such scan time reductions are

facilitated by combining undersampling and advanced signal processing methods to remove

the associated aliasing artifacts. SENSitivity Encoding (SENSE) is an MRI technique that

undoes aliasing effects caused by undersampling by exploiting variations in the sensitivity

profiles (i.e., B1 maps) of multiple coils placed around the patient [1]. When the image

can reasonably be assumed to be sparse in some transform domain, compressed sensing

techniques can be applied to facilitate further accelerations [2].

Image estimation that leverages SENSE MRI and compressed sensing assumptions can

be mathematically formulated as an ℓ1-regularized optimization problem [20]. Since the ℓ1

term is non-differentiable, these problems are difficult to minimize using standard gradient-

based methods. Some methods convert such problems into a different form where fast mini-

mization techniques can be applied. One such class are variable splitting algorithms, where

one forms a constrained optimization problem and then proceeds within the augmented La-

grangian formalism to find the solution to the original ℓ1-regularized problem [6, 21, 22, 7].

A difficulty with applying these methods is the tuning of a constraint penalty parameter that

heavily affects convergence speed. Sufficient conditions for optimally choosing these pa-

rameters are unknown, so current practice is to resort to heuristics for setting these param-
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eters [7]. Since the optimal parameter can change from problem to problem (i.e., patient to

patient), robust performance of these methods can be difficult to ascertain.

Alternatives to variable splitting methods are majorize-minimize methods such as fast

iterative soft thresholding (FISTA) [18]. FISTA methods converge at a rate that depends on

the Lipschitz constant, a constant that upper bounds the eigenvalues of the Hessian of the

data fit term. This constant is on the order of the maximum of the sum of squared absolute

values of the sensitivity coils, which means that this constant can be very loose for low

signal regions that occur at the center of the object in SENSE MRI. As a result, majorize-

minimize methods such as FISTA have performed poorly relative to their variable splitting

counterparts in MRI applications [7].

We address the looseness of the Lipschitz bound by formulating tighter bounds that

vary spatially based on the sensitivity coil profiles. The approach requires finding a diago-

nal majorizer in the range of the regularizing matrix. In this paper we show that for several

regularizers of interest (including orthogonal wavelets, anisotropic total variation, and un-

decimated Haar wavelets), such diagonal upper bounds are simple to compute and give

large accelerations relative to FISTA with the Lipschitz constant. When combined with

adaptive momentum restarting [9], these methods outperform variable splitting methods in

all of these cases. The proposed methods also use parameters in the form of convergence

tolerances, but in numerical experiments we found that once a reasonable choice was made

for these parameters, further optimization was not necessary.

3.2 Problem Formulation and General Approach

From compressed sensing theory, one can recover a sparse signal by minimizing a convex

cost function with ℓ1 regularization [20]. Let C denote the number of sensitivity coils, D

denote the number of data points, and N denote the number of pixels to be estimated. The

ℓ1 minimization procedure for parallel MR image reconstruction can be mathematically

formulated as

x̂ = argmin
x∈M

{f(x) + βR(x)} ,

f(x) =
1

2
‖y −Ax‖22 , R(x) = ‖Rx‖1 ,A = FS,

(3.1)

where F ∈ CD×CN is a block diagonal matrix with each block having the same down-

sampled DFT operator and S ∈ CCN×N is a block column matrix with diagonal blocks.

We include a masking set, M, that constrains elements outside the mask to be zero. We

call f(x) the data fit term and R(x) the regularizer. Weighted quadratic data fit terms

used for noise correlations between coils can be converted to this unweighted form [7].
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The parameter β must be selected by the user to balance trade-offs between the data fit

term and the regularizer (Monte Carlo techniques have been developed for estimating these

parameters that perform well under mean-squared error metrics [23]). Defining A = FS,

we note that S gives A a highly shift-variant nature, a property that we will consider in our

algorithm design. R is a sparsifying transform. If R is left-invertible (i.e. NR = I for

some matrix, N), we say that (3.1) is a synthesis reconstruction problem since we can define

u = Rx and rewrite (3.1) as an optimization problem over u. We assume that R ∈ CM×N .

If R is not left-invertible, then we call (3.1) an analysis reconstruction problem and assume

that R ∈ RM×N . This restriction of R to be real-valued includes important classes of

analysis regularizers such as total variation [2] and undecimated Haar wavelets [7]. Each

of these regularization forms necessitates different algorithm considerations.

Although solving (3.1) allows one to obtain high-quality estimates of x with less data,

(3.1) is typically difficult to minimize. Most methods instead minimize a different prob-

lem related to (3.1). The related problem should be easy to minimize relative to (3.1),

but still offer information relevant to the solution of (3.1). Two procedures for defining

and minimizing related problems are majorize-minimize procedures and variable splitting

procedures. For completeness we note that “corner rounding” has also been proposed for

dealing with the non-differentiability of the ℓ1 regularizer [2], but this has been found to

yield algorithms slower than those of the variable splitting class [7]. Our method is of the

majorize-minimize class, but is different from previous majorize-minimize methods in that

it carefully considers any coupling of the structures of A and R. We outline the general

approach in the following section.

3.2.1 Separable quadratic surrogates

Majorize-minimize methods work by forming a surrogate cost function (i.e., a majorizer,

φk(x)) and then minimizing the surrogate each iteration to find the minimizer of the original

cost function. Any quadratic of the form 1
2
‖y −Ax‖22 can be majorized with a separable

quadratic surrogate (SQS), a procedure that we briefly review [24, 25]. If a surrogate,

φk(x), satisfies the following two conditions, then decreasing the surrogate will decrease

the original cost function [26]:

f(x(k)) = φk(x
(k)), (3.2)

f(x) ≤ φk(x). (3.3)
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We allow the surrogate to be indexed by k since it can vary with iteration. We form such a

surrogate for SENSE MRI by first rewriting f(x) around a current estimate, x(k), as

f(x) = f(x(k)) + ℜ
{

(AH(Ax(k) − y))H(x− x(k))
}

+
1

2
(x− x(k))HAHA(x− x(k)),

(3.4)

where ℜ{·} returns the real part of its argument and AH is the Hermitian transpose of A.

If we have AHA � Df ∈ RN×N for some diagonal matrix, Df (where M � 0 implies

that M is positive semidefinite), we can write

f(x) ≤ φk(x) = f(x(k))

+ ℜ
{

(AH(Ax(k) − y))H(x− x(k))
}

+
1

2

∥

∥x− x(k)
∥

∥

2

Df

= ψ(x,x(k)) + ζ,

ψ(x,x(k)) ··=
1

2

∥

∥

∥
x− (x(k) −D−1

f AH(Ax(k) − y))
∥

∥

∥

2

Df

,

(3.5)

where ζ is a constant that arises from completing the square and is independent of x. De-

creasing ψ(x,x(k)) causes φk(x) to decrease by the same amount. Standard majorize-

minimize procedures use Df = LI, where L is the maximum eigenvalue of AHA. We

instead use a more general Df that is a tighter bound for AHA. In the case where A = FS,

we have AHA = SHFHFS. In general FHF � F I, where F is the maximum eigenvalue

of FHF. In the case of Cartesian MRI with unitary DFT matrices, F = 1. One can esti-

mate F offline in the non-Cartesian case via power iteration since it does not depend on the

object. Noting this we have

Df ··= FSHS � AHA, (3.6)

where SHS is a diagonal matrix with the sum of the squared absolute values of the sensi-

tivity coils along its diagonal. We could use Df to upper bound any SENSE-type quadratic

data fit term with a separable quadratic surrogate. We will use this property in the following

sections. Furthermore, Df is easy to compute once one has determined the coil sensitiv-

ities, and with the recent development of fast algorithms for SENSE map estimation it is

quickly available in online settings [4].
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3.2.2 Proposed minimization algorithm

We note through the majorization conditions that solving the following problem will de-

crease the cost function in (3.1):

x(k+1) = argmin
x∈M

{

η(x,x(k)) ··= ψ(x,x(k)) + βR(x)
}

. (3.7)

The minimization problem in (3.7) is where synthesis and analysis regularizers differ. In

the synthesis case, η(x,x(k)) is either fully separable or it can be converted into a fully sep-

arable form. When η(x,x(k)) is fully separable, closed-form solutions exist via shrinkage

functions. In the analysis case, closed form solutions do not exist and we have to run a

few steps of an iterative algorithm to decrease η(x,x(k)). We discuss the synthesis case in

detail in Section 3.3 and the analysis case in Section 3.4.

Iteratively applying (3.7) qualifies as a majorize-minimize procedure, and as such it can

be accelerated with momentum techniques [18]. Momentum accelerations can be enhanced

with adaptive momentum restarting [9]. This gives a general algorithm, which we call B1-

based, Adaptive Restart, Iterative Soft Thresholding Algorithm, or BARISTA, since it has

step sizes that depend on the sensitivity or B1 maps. Fig. 3.1 shows the overall algorithm.

Variants of this general form are shown in Fig. 3.2 for the synthesis case and Fig. 3.3 for

Figure 3.1: BARISTA: B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithm

1: initialize k = 0, z(0) = x(0),Df , α
2: while k < K do

3: τ (k+1) = (1 +
√

1 + 4(τ (k))2)/2
4: x(k+1) = argmin

x∈M
η(x, z(k))

5: κ =
∥

∥z(k) − x(k+1)
∥

∥

2

∥

∥x(k+1) − x(k)
∥

∥

2

6: if ℜ
{〈

z(k) − x(k+1),x(k+1) − x(k)
〉}

> ακ then

7: z(k+1) = x(k+1)

8: τ (k+1) = 1
9: else

10: z(k+1) = x(k+1) + τ (k)−1
τ (k+1) (x

(k+1) − x(k))
11: end if

12: k = k + 1
13: end while

14: x̂ = x(K)

the analysis case. The tracking of the momentum is provided by the τ (k) parameter and

an auxiliary variable, z(k). If the algorithm takes a step in a certain direction, then z(k+1)

takes a larger step in the same direction where the size is determined by τ (k). The restart
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is shown with the “if” statement at the end of an algorithm step. If the cosine of the angle

between x(k+1) − z(k) and x(k+1) − x(k) is greater than α, then the momentum is wiped

away. This helps prevent the generalized gradient and the momentum term from taking the

algorithm in opposite directions. In our numerical experiments we found that good values

for α are negative and lie near 0; we used α = − cos(4π/9). As stated previously, one

challenge is in the minimization of η(x, z(k)). Another associated challenge is the design

of matrices similar to Df , but in the range of the regularizer for both synthesis and analysis

regularization. The following sections discuss these topics.

3.3 Synthesis Regularization

We use the term synthesis regularization when R is left-invertible, which allows rewrit-

ing the minimization problem in the basis of the regularizer. For notational simplicity in

this section we discuss R that forms a tight frame, i.e. RHR = I. Orthogonal wavelet

transforms for SENSE MRI and DFT/DCT regularizers for dynamic MRI are examples of

unitary matrices that might be used in synthesis problems in MRI. Defining u = Rx, we

can rewrite (3.1) as

û = argmin
u∈Msynth

{

1

2

∥

∥y −ARHu
∥

∥

2

2
+ β ‖u‖1

}

,

x̂ = RHû

(3.8)

where Msynth is a synthesis mask that restricts a subset of the synthesis coefficients to be

zero. It is less natural to use a mask for the synthesis approach than for analysis, so if

masking is desired we recommend using the algorithm outlined in Section 3.4. Now if we

find a diagonal matrix, DR, such that

DR � RDfR
H (3.9)

and defining B = ARH , the surrogate in (3.7) is

η(u,u(k))

=
1

2

∥

∥u− (u(k) −D−1
R BH(Bu(k) − y))

∥

∥

2

DR
+ β ‖u‖1 ,

(3.10)
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the constrained minimum of which is a shrinkage solution:

u(k+1) = argmin
u∈Msynth

η(u,u(k))

= PMsynth
(shrink(b(k), βd−1

R )),

(3.11)

where b(k) = u(k)−D−1
R BH(Bu(k)−y). d−1

R is a vector composed of the diagonal elements

of D−1
R and the shrinkage function is defined as shrink(b, β) = diag{sign(bi)}(|b|−β1)+.

In this case | · | denotes the absolute value function, (·)+ sets values less than zero to

zero, diag{·} takes the input elements and arranges them as a diagonal matrix, and sign(·)

returns the complex sign of its argument. The PMsynth
operator projects its argument on to

the set, Msynth, which in this case corresponds to setting all elements outside the mask to

zero. Fig. 3.2 shows the synthesis version of BARISTA. Our goal now is to design DR,

Figure 3.2: BARISTA for synthesis

1: initialize k = 0,u(0) = Rx(0), z(0) = u(0),Df , α
2: calculate DR � RDfR

H according to Theorem 1

3: while k < K do

4: τ (k+1) = (1 +
√

1 + 4(τ (k))2)/2
5: b(k) = z(k) −D−1

R BH(Bz(k) − y)
6: u(k+1) = PMsynth

(shrink(b(k), βd−1
R ))

7: κ =
∥

∥z(k) − u(k+1)
∥

∥

2

∥

∥u(k+1) − u(k)
∥

∥

2

8: if ℜ
{〈

z(k) − u(k+1),u(k+1) − u(k)
〉}

> ακ then

9: z(k+1) = u(k+1)

10: τ (k+1) = 1
11: else

12: z(k+1) = u(k+1) + τ (k)−1
τ (k+1) (u

(k+1) − u(k))
13: end if

14: k = k + 1
15: end while

16: x̂ = RHu(K)

which will allow us to take larger step sizes in step 5 of Fig. 3.2 and apply more aggressive

shrinkage in step 6.

3.3.1 Diagonal upper bounds in unitary bases

The challenge in designing DR is that it must be constructed in the basis of the regularizer,

while Df is in the basis of the image. For this purpose we will use Theorem 1, which gives

a means of constructing DR. Theorem 1 can be applied for any R, although it is most
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useful for unitary regularizing matrices with compact support. We will use it here since

orthogonal wavelets fall into this class.

Theorem 1. Let R ∈ CM×N be any matrix and let Df ∈ RN×N be diagonal with diagonal

elements dn,f . Let rm be the mth row of R and let Sm ⊂ {1, ..., N} be the support set

for rm. Define tm = maxn∈Sm
(dn,f) and dm,R =

∑M
l=1 min(tm, tl)| 〈rm, rl〉 |. Let DR be a

diagonal matrix with diagonal elements dm,R, then DR � RDfR
H .

To prove Theorem 1 we first define RH = [r1, ..., rM ], where rm denotes the mth

column of RH . We then recognize that the inner product of two compactly supported

vectors can be computed over either vector’s support, i.e.

〈rm, rl〉 =
∑

n∈Sm

rm,nr
∗
l,n =

∑

n∈Sl

rm,nr
∗
l,n. (3.12)

The entries in V ··= RDfR
H are weighted inner products of the form

vm,l = 〈rm, rl〉Df
, (3.13)

where vm,l is the mth, lth entry of V. We recall that if D1 � Df , then RD1R
H �

RDfR
H . One such D1 is a diagonal matrix where the diagonal entries are defined as

d1,n =







t1, if n ∈ S1

dn,f , otherwise
(3.14)

We also note that finding a DR � RDfR
H is equivalent to finding a DR such that

wHDRw ≥ wHRDfR
Hw for any vector w. To accomplish this, we make the parti-

tion RH = [r1,R
H
1 ] where RH

1 = [r2, ..., rM ]. We also make the partition w = [w1,w2].

We now have

wHRD1R
Hw = t1|w1|

2 ‖r1‖
2
2

+ t1

M
∑

m=2

2ℜ{w1w
∗
m 〈r1, rm〉}+wH

2 R1D1R
H
1 w2

≤ t1|w1|
2 ‖r1‖

2
2

+ t1

M
∑

m=2

(|w1|
2 + |wm|

2)| 〈r1, rm〉 |+wH
2 R1D1R

H
1 w2,

(3.15)
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which comes from applying (3.12) and (3.13). This implies that

RDfR
H �

[

t1
∑M

m=1 | 〈r1, rm〉 | 0

0 R1D1R
H
1

]

+













0

t1| 〈r1, r2〉 |
. . .

t1| 〈r1, rM〉 |













.

(3.16)

Without loss of generality, we can assume that t1 ≤ t2 ≤ ... ≤ tM . If this is not satisfied,

then the appropriate permutation can be applied to V to make it so. The procedure can again

be applied to R1D1R
H
1 , and then again recursively. Applying this procedure recursively

through M gives Theorem 1.

Theorem 1 states that any matrix of the form RDfR
H can be upper bounded with a

diagonal matrix by taking maximums over patches of Df and scaling those maximums by

sums of inner products. These inner product sums increase as R becomes less unitary, but

in our synthesis case we assume unitary R so dm,R = tm. We have found that this is an

effective majorizing matrix for unitary regularizing matrices, and we used Theorem 1 to

design DR for orthogonal Haar and Daubechies D4 wavelets in our numerical experiments

where we ran the algorithm in Fig. 3.2.

3.4 Analysis Regularization

In the analysis setting R is not left-invertible and we can no longer define u = Rx and

rewrite (3.1) as an optimization problem over u. As such, we must leave (3.1) in its original

form. The forms of R of this type that are of interest for SENSE MRI include anisotropic

total variation regularizers [2] and undecimated wavelets where the approximation coeffi-

cients are unregularized [27, 7]. However, we can still form a quadratic surrogate for the

data fit term. This gives the analysis denoising problem. Since we do not have a closed-

form expression for the solution of this problem, we run a few iterations of a denoising

procedure. Fig. 3.3 shows the overall analysis algorithm, while the denoising procedure is

shown in Fig. 3.4.

We must decide on a stopping criterion for the iterative algorithm used for the denoising

step. Previous methods have used a fixed iteration count for this step [7, 28], but we instead

use an ǫ(k) criterion. When large steps are being taken in the outer iterations, the denoising

step only needs to provide an approximate solution to progress the algorithm, whereas very
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Figure 3.3: BARISTA for analysis

1: initialize k = 0, z(0) = x(0),Df , α, ǫ
(0)

2: calculate DR � RD−1
f RT as outlined in Section 3.4.2

3: while k < K do

4: τ (k+1) = (1 +
√

1 + 4(τ (k))2)/2
5: Run Fig. 3.4 algorithm to ǫ(k) convergence to get x(k+1)

6: κ =
∥

∥z(k) − x(k+1)
∥

∥

2

∥

∥x(k+1) − x(k)
∥

∥

2

7: if ℜ
{〈

z(k) − x(k+1),x(k+1) − x(k)
〉}

> ακ then

8: z(k+1) = x(k+1)

9: τ (k+1) = 1
10: else

11: z(k+1) = x(k+1) + τ (k)−1
τ (k+1) (x

(k+1) − x(k))
12: end if

13: ǫ(k+1) = max(min(ǫdiff

‖x(k+1)−x(k)‖
2

‖x(k)‖
2

, ǫ(k)), ǫmin)

14: k = k + 1
15: end while

16: x̂ = x(K)

accurate solutions are beneficial for later iterations where the outer steps are small.

Fig. 3.3 shows a strategy for choosing ǫ(k) that was effective in our numerical experi-

ments. ǫ(k) is chosen to be ǫdiff times the norm difference of the previous iteration, restricted

between the upper and lower bounds of ǫ(k−1) and ǫmin. We choose ǫdiff to balance the cost

of solving the denoising problem and progressing the outer iterations. In all experiments

we used ǫdiff = 10−1. We choose ǫmin based on the precision level of the machine that runs

the algorithm; its primary purpose is to prevent the algorithm from stalling as a result of

numerical precision. For double precision, we observed that ǫmin = 10−12 gave agreeable

convergence in later iterations. We set ǫ(0) = 10−1. We decrease ǫ(k) monotonically, so that

the denoising subproblem is solved more accurately as the algorithm progresses toward the

solution.
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3.4.1 Analysis denoising subroutine

We now discuss the so-called analysis denoising problem that needs to be solved in step 6

of the algorithm in Fig. 3.3, which is formulated as follows:

x(k+1) = argmin
x∈M

η(x,x(k)),

η(x,x(k)) =
1

2

∥

∥b(k) − x
∥

∥

2

Df
+ β ‖Rx‖1 ,

b(k) = x(k) −D−1
f AH(Ax(k) − y).

(3.17)

This is equivalent to solving step 4 of the algorithm in Fig. 3.1. There are many potential

approaches to solving this step, including nonlinear CG [2] and split Bregman schemes

[6]. As mentioned in the previous section, our goal is to minimize the cost function in

(3.17) to some pre-specified numerical precision. As a result, whatever procedure is cho-

sen should perform well under all numerical precision environments, a property not sat-

isfied by nonlinear CG due to its corner-rounding parameter or split Bregman due to its

constraint penalty parameter. Instead, we choose to extend the results in [28] to general ℓ1

regularizers, adapt it to complex numbers, and reintroduce our diagonal majorizing matrix

in the range of the regularizer. This approach meets the numerical precision requirements

and gave agreeable convergence speed in numerical experiments. Our derivation requires

real-valued R, which includes interesting classes of anisotropic total variation and undec-

imated Haar wavelet regularizers. Fig. 3.4 shows the algorithm that arises from extending

the results in [28].

For the extension of the results in [28], we assume R ∈ RM×N , which includes the

classes of total variation and undecimated wavelet regularizers that are of interest to us.

The difficulty in minimizing (3.17) is the fact that R mixes different elements of x. To

decouple the mixing effects, we will introduce dual variables. Let γ ∈ R and ν ∈ R be two

variables and define P = {(γ, ν) ∈ R2 : γ2 + ν2 ≤ 1}. Then for any c ∈ C we have

|c| = max
(γ,ν)∈P

{

γℜ{c}+ νℑ{c}
}

, (3.18)

where ℑ{·} returns the imaginary part of its argument. Noting this, we now have

‖Rx‖1 = max
(γ,ν)∈PM

{

γTRℜ{x}+ νTRℑ{x}
}

, (3.19)

where PM is a Cartesian product of M sets of the form of P . Note that PM is the ℓ∞ unit
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ball in C
M . We also have

x(k+1) = argmin
x∈M

max
(γ,ν)∈PM

θk((γ,ν),x),

θk((γ,ν),x)

=
1

2

∥

∥b(k) − x
∥

∥

2

Df
+ β(γTRℜ{x}+ νTRℑ{x}).

(3.20)

To simplify notation, we will now drop the “arg” and implicitly take x from wherever the

critical point of the cost function is. Since M is a convex set, PM is a compact, convex set,

and (3.20) is convex in x and concave in (γ, ν), we apply Sion’s Theorem [29] to exchange

the order of maximization and minimization, which gives

max
(γ,ν)∈PM

min
x∈M

θk((γ,ν),x). (3.21)

Now we use the fact that since Df ∈ R
N×N and is diagonal, the weighted 2-norm squared

is separable into its real and imaginary parts, i.e.

∥

∥b(k) − x
∥

∥

2

Df

=
∥

∥ℜ{b(k)} − ℜ{x}
∥

∥

2

Df
+
∥

∥ℑ{b(k)} − ℑ{x}
∥

∥

2

Df
.

(3.22)

Defining q = γ+iν, the inner minimization in (3.21) has a solution where x = PM(b(k)−

βD−1
f RTq). As stated previously, the PM(·) operator simply sets elements outside the

mask to zero. Plugging this back into (3.21) reveals a new maximization problem:

max
q∈PM

{

−
1

2

∥

∥b(k) − βD−1
f RTq

∥

∥

2

Df

+
1

2

∥

∥PM(b(k) − βD−1
f RTq)− (b(k) − βD−1

f RTq)
∥

∥

2

Df

}

= min
q∈PM

{

1

2

∥

∥b(k) − βD−1
f RTq

∥

∥

2

Df

−
1

2

∥

∥PM(b(k) − βD−1
f RTq)− (b(k) − βD−1

f RTq)
∥

∥

2

Df

}

= min
q∈PM

{

1

2

∥

∥PM(b(k) − βD−1
f RTq)

∥

∥

2

Df

}

.

(3.23)

Since the target cost function is now a constrained minimization over a quadratic, we can

once again apply the separable quadratic surrogates techniques outlined in Section 3.2. We

choose to do this instead of developing other quadratic minimization routines due to the

presence of the constraint. Applying this procedure gives the minimization problem over a
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surrogate:

q(j+1) =argmin
q∈PM

{

1

2

∥

∥q− (q(j) − β−1D−1
R Rx(k,j+1))

∥

∥

2

DR

}

x(k,j+1) ··= PM(b(k) − βD−1
f RTq(j))

(3.24)

for DR � RD−1
f RT . This is obtained by recognizing that the PM(·) operator where M is

a masking set can be formulated as a projection matrix, M, where PM(·) = M(·). The Hes-

sian in (3.23) arising from the inclusion of this linear projection matrix is β2RD−1
f MTDfMD−1

f RT ,

which is upper bounded by β2RD−1
f RT . The majorize-minimize algorithm arising from

using this surrogate with momentum acceleration and adaptive momentum restart is shown

in Fig. 3.4.

Figure 3.4: Analysis denoising algorithm

1: initialize j = 0,q(0),v(0) = v(0),Df ,DR, ǫ, α
2: repeat

3: τ (j+1) = (1 +
√

1 + 4(τ (j))2)/2
4: x(k,j+1) = PM(b(k) − βD−1

f RTv(j))

5: q(j+1) = PPM (v(j) − β−1D−1
R Rx(k,j+1))

6: κ =
∥

∥v(k) − q(k+1)
∥

∥

2

∥

∥q(k+1) − q(k)
∥

∥

2

7: if ℜ
{〈

v(k) − q(k+1),q(k+1) − q(k)
〉}

> ακ then

8: v(k+1) = q(k+1)

9: τ (k+1) = 1
10: else

11: v(k+1) = q(k+1) + τ (k)−1
τ (k+1) (q

(k+1) − q(k))
12: end if

13: j = j + 1

14: until
‖x(k,j)−x(k,j−1)‖

2

‖x(k,j−1)‖
2

≤ ǫ

15: x(k+1) = PM(b(k) − βD−1
f RTq(j))

The PPM (·) operator in Fig. 3.4 projects its argument on to the set, PM , the ℓ∞ unit

ball. This set arises from our dual formulation discussed in the Appendix. In this case this

means that PPM (·) examines each element in its input vector and normalizes any elements

with an absolute value greater than 1 to an absolute value of 1, preserving the complex

sign. For this inner denoising step we include an ǫ stopping criterion, the choice of which

as discussed in Section 3.4 depends on the step sizes of the outer iterations of the algorithm

in Fig. 3.3. Although not noted in Fig. 3.4, we also included a maximum iteration num-

ber to prevent the algorithm from stalling. We did not observe that this was necessary in

our numerical experiments, but we wanted to ensure stable convergence in a variety of cir-

cumstances. We measure the convergence based on x(k,j+1), which is calculated from the
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momentum variable v(j), although the actual convergence would depend on the dual vari-

able, q(j). This simplification avoids making extra computations each iteration that would

be required to estimate x from q(j), and with the adaptive restart we expect v(j) to be a

good approximation for q(j) near the solution. Lastly, we note that we initialized the anal-

ysis denoising algorithm with the last value for q from the previous run of the algorithm.

This warm start greatly helps the convergence speed of the analysis denoising subroutine.

The algorithm in Fig. 3.4 requires computing a DR that satisfies the analysis majorizer

condition:

DR � RD−1
f RT , (3.25)

where RT is the transpose of R. We discuss DR for the cases of anisotropic total variation

and undecimated Haar wavelets.

3.4.2 Diagonal majorizers for analysis regularizers

One could use Theorem 1 to upper bound any matrix, including RD−1
f RT . However, in

practice we have found that bound somewhat loose for the analysis regularizing matrices

of anisotropic total variation and undecimated Haar wavelets. We discuss tighter bounds

for these two cases. For the case of anisotropic total variation, we choose

DR = diag{abs(R)D−1
f abs(RT )1}, (3.26)

where abs(·) returns a matrix that has entries that are the absolute value of the input matrix.

This is guaranteed to be a majorizer as it is a modification of the techniques of De Pierro

[30], and we have found it to be very tight for anisotropic total variation. Its calculation is

also simple.

For the case of undecimated Haar wavelets, we present a different approach that builds

on Theorem 1 via the polarization identity. The idea is to split up a non-orthogonal R into

orthogonal pieces for which Theorem 1 will provide tight diagonal majorizers. Consider R

of the form,

R =









R1

...

RQ









, (3.27)

where Q is the number of submatrices of R. Defining ci = D
−1/2
f RT

i wi for any arbitrary
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vector wH = [wH
1 , ...,w

H
Q ] (possibly different sized wi), we then have

wHRD−1
f RTw =

Q
∑

i=1

‖ci‖
2
2 +

Q
∑

i=1

Q
∑

j=i+1

2ℜ{〈ci, cj〉}

≤

Q
∑

i=1

‖ci‖
2
2 + (Q− 1)

Q
∑

i=1

‖ci‖
2
2

=

Q
∑

i=1

QwiRiD
−1
f RT

i wi,

(3.28)

where one proceeds from the first to the second step by applying the polarization identity,

2 |ℜ {〈ci, cj〉}| ≤ ‖ci‖
2
2 + ‖cj‖

2
2 , (3.29)

and collecting all inner product pairs. Thus, finding a majorizer for each RiD
−1
f Ri sub-

matrix will provide a majorizer for RD−1
f RT . Such a structure applies to the 2-level un-

decimated Haar wavelet case since a 2-level undecimated Haar wavelet can be written as a

cascade:

R = RBRA. (3.30)

In this case the first step of the cascade, RA, can be broken up into pieces:

RA =













RA,1

RA,2

RA,3

RA,4













, (3.31)

where each of the RA,i is an orthogonal 1-level Haar wavelet transform. We apply the in-

equality in (3.28) to majorize RAD
−1
f RT

A while using Theorem 1 to majorize each RA,iD
−1
f RT

A,i

term. We applied the procedure recursively to RB since it has a similar structure. In the un-

decimated Haar wavelet case each of the RA,1, ...RA,4 is a similar operation, so we expect

that each of the ci will be approximately linearly dependent and this inequality approach

will be fairly tight.
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3.5 Experiments

3.5.1 Experimental setup

In the interest of reproducible research, MATLAB code for implementing these methods

will be uploaded to the Image Reconstruction Toolbox at

web.eecs.umich.edu/˜fessler/

All experiments were run on a machine with an Intel Xeon E31230 Processor that had

four cores with each core running at 3.2 GHz. The machine had 16 GB of memory. All

experiments used α = − cos(4π/9).

We compared the convergence speed of BARISTA to state-of-the-art variable splitting

methods in several experiments on four data sets. We present in vivo brain results in the

main paper body and include results for a numerical brain phantom, a breast phantom, and

an American College of Radiology phantom in the supplementary material. The variable

splitting methods were each of the AL-P1 or split Bregman type [7]. The AL-P2 method

in [7] uses condition number heuristics to tune AL penalty parameters, but we found that

these condition number heuristics could change between different regularizers. Tuning AL-

P2 for each regularizer would have required setting multiple condition number parameters.

AL-P1 has only one constraint penalty parameter, µ, and it had comparable speed to AL-

P2, so we used AL-P1 with careful manual tuning of µ as a representative of AL-based

methods. We also investigated dynamically updating the µ parameter using update rules

proposed by Boyd (Section 3.4.1 of [31]), which helps mitigate tuning difficulties. We

initialized such AL methods with dynamic µ updates with one of the manually tuned µ

values. In the plots this method with dynamic µ updates is denoted as “AL, dynamic µ.”

We also introduced a diagonal preconditioner for the conjugate gradient (CG) subroutine in

step 4 of AL-P1. We used P = (SHS+µI)−1 for all wavelet regularizers and P = (SHS)−1

for the total variation regularizer. These preconditioners were not mentioned in [7], but we

observed that they accelerated AL-P1 on the order of 50% time to reach the same point of

convergence. The AL-P1 methods all used 5 preconditioned CG (PCG) iterations for step

4 of AL-P1.

To track convergence, we computed the following normalized residual as a function of

iteration:

ξ(k) = 20 log10

(

‖x(k)−x(∞)‖
2

‖x(∞)‖
2

)

, (3.32)

where x(∞) is a “converged” solution obtained by running many thousands of iterations of
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AL-P1. Note that even though R is not full column rank in the total variation case, the

AL-P1 method is still convergent [32]. In our convergence plot comparisons to AL-based

methods we set the lower bound for ξ(k) at −140 dB. We chose to do this for two reasons:

1) our raw MRI data were less precise than single precision and 2) BARISTA vastly outper-

formed all other methods in reaching double precision, so these parts of the plots were less

interesting. We also stored the time at which the kth estimate was computed and in our fig-

ures and we plot ξ(·) as a function of elapsed CPU time instead of iteration. We choose to

do this since iterations of the proposed majorize-minimize methods and the variable split-

ting methods have drastically different compute times due to the PCG subroutine and the

analysis denoising step in the proposed methods. All methods used identical subroutines

for matrix multiplications.

We selected regularization parameter, β, to give visually appealing solutions for each

regularizer. In practice the regularization parameter could be estimated via Monte Carlo

SURE methods [23].

In our plots we only show BARISTA from the classes of majorize-minimize algorithms

as opposed to other methods such as FISTA with Df = LI since BARISTA was always the

fastest majorize-minimize method. Fig. 3.5 shows an example of the relative convergence

speed of majorize-minimize methods in the case of orthogonal Haar wavelet regularization.

In this case, BARISTA was twice as fast as RFISTA (restart FISTA), three times as fast as
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Figure 3.5: Comparison of different majorize-minimize methods with orthogonal Haar

wavelet regularization. Markers are placed at 50 iteration intervals. FISTA used Df =
DR = LI while BARISTA and NRBARISTA (non-restart BARISTA) used the proposed

Df and DR. BARISTA is the fastest method; this was also observed for the other ex-

periments with varying degrees of acceleration. Both restart methods exhibit a stair step

pattern, where new “steps” arise when the momentum is restarted.
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NRBARISTA, (non-restart BARISTA) and over five times as fast as FISTA in reaching

-120 dB. Although RFISTA converges rapidly to double precision, in early iterations it

is not competitive with BARISTA or variable splitting methods. In a practical setting,

the algorithms may not even be run to convergence, so early-iteration convergence speed

is critical for general adoption of the proposed methods. Furthermore, negligible time is

required to use the majorizing matrices discussed in this paper, so the factor of two speed-up

over RFISTA more or less comes for free. We also observed the factor of two speed-up or

greater with the orthogonal Daubechies D4 regularizer and the undecimated Haar wavelet

regularizer. Speed-up of BARISTA vs. RFISTA in the anisotropic total variation case was

negligible. We are unsure why this occurred, but it may be that a shift-variant majorizer

makes the analysis denoising problem more difficult to solve in the total variation case.

For the in vivo experiment, a 3D data set was acquired on a GE 3T scanner with an

8-channel head coil with acquisition parameters TR = 25 ms, TE = 5.172 ms, and voxel

size 1 mm × 1.35 mm × 1 mm. The data matrix size was 256×144×128 uniformly spaced

samples. Sensitivity maps were estimated using a quadratic regularized least squares rou-

tine [4]. The data were retrospectively undersampled in the Fourier domain using a Poisson

disk sampling scheme [33] with a fully sampled center (32-by-32 block), which has been

demonstrated to be useful in compressed sensing MRI applications [34]. This sampling

pattern simulates one slice of a 3D MRI experiment where the sampling pattern in Fig.

3.6b is in the phase encode plane [34, 7] (this sampling pattern would be impractical for

2D MRI). Only 20% of the full DFT sampling was used for reconstruction. Fig. 3.6a shows

(a) (b)

Figure 3.6: Images corresponding to the in vivo experiments. (a) x estimated from fully

sampled data. Some residual noise is present at the center. (b) Sampling pattern for the in

vivo experiments with a densely sampled 32× 32 center.

x estimated from fully sampled data, while Fig. 3.6b shows the Poisson-disc sampling pat-
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tern with a densely-sampled center used in all the in vivo experiments.

3.5.2 Synthesis regularizer results

As stated earlier, we performed numerical experiments with orthogonal Haar and Daubechies

D4 wavelet regularizers to examine the convergence speed of the proposed method in the

synthesis setting. We set the regularization parameter to zero for the approximation coeffi-

cients since a sparse model does not fit these coefficients as well as the detail coefficients

[27]. Fig. 3.7a shows an example of the diagonal majorizing elements in the Haar wavelet

basis. Fig. 3.7b shows the majorizer for the Daubechies D4 wavelets. The majorizer for

(a) (b)

Figure 3.7: Examples of diagonal elements of DR for synthesis regularizers, rearranged

into an image. (a) Elements of the diagonal of DR in the Haar wavelet basis. Areas outside

the brain have been masked for presentation. (b) Elements of DR for the Daubechies D4

basis. Since the rows of a Daubechies D4 matrix have larger support than those of the

Haar, the majorizer is smoother. For both cases color bars are shown to give a sense of the

variation across the image caused by the sensitivity coils. The Lipschitz constant was 2.98,

while the maximum value of the squared absolute values of the sensitivity coils was 3.36.

Many of the entries in DR are smaller than the Lipschitz constant, which gives larger step

sizes in step 5 of the algorithm in Fig. 3.2

.

the Daubechies D4 wavelet case is smoother than the Haar case since it requires taking

maximums over larger patches.

Fig. 3.8a and Fig. 3.8b show the convergence results for Haar and Daubechies D4

wavelets, respectively. BARISTA converges faster than the other methods. The time po-

sitions when BARISTA undergoes restart are visible in the stair step pattern in the con-

vergence plots. Several AL parameters are shown to demonstrate the range of speeds of

AL-based methods, although we can make no theoretical guarantees on the optimal speed
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Figure 3.8: Summary of convergence results for two different synthesis regularizers. Mark-

ers are placed at 30 iteration intervals for all algorithms. (a) Convergence plot comparing

the proposed method to variable splitting methods for orthogonal Haar wavelets. The pro-

posed method with momentum restarting is faster than the other methods. (b) Another

convergence plot with orthogonal Daubechies D4 wavelets.

of AL-based methods since we do not know any theoretically optimal way to tune the

penalty parameter.

3.5.3 Analysis regularizer results

We performed numerical experiments with total variation and 2-level undecimated Haar

wavelet regularization to examine the convergence speed of the proposed methods in the

analysis setting. Our anisotropic total variation implementation took differences in vertical,

horizontal, and diagonal directions. We did not regularize the approximation coefficients of

the 2-level undecimated Haar wavelet transform [27]. Fig. 3.9 shows examples of elements

from DR for the analysis cases. Since for the analysis case we design DR � RD−1
f RT , the

sensitivity elements are now inverted relative to the synthesis case. Our analysis algorithm

formulation required setting the ǫdiff, ǫmin, and ǫ(0) parameters. We chose ǫmin = 10−12,

ǫdiff = 10−1, and ǫ(0) = 10−1. We note that although these convergence criteria parameters

require some tuning, we were able to use the same convergence criteria for all regularizers

in all experiments. Conversely, we had to tune the constraint penalty parameters for the

AL-P1 method each time when changing regularizers or data sets.

Fig. 3.10 shows results for the analysis regularizers. BARISTA matches the other meth-

ods in early iterations and outperforms all other methods in later iterations. As previously,

the time steps at which the algorithm restarts are shown in the stair step pattern in the

32



(a) (b)

Figure 3.9: Examples of diagonal elements of DR for analysis regularizers rearranged

into an image. (a) A subset of the elements of DR for the total variation case with areas

outside the brain masked for presentation. Since this matrix must upper bound RD−1
f RT ,

the sensitivity elements have been inverted. (b) A subset of the elements of DR for the

overcomplete Haar basis case.

convergence plots. We also observed that all algorithms converged slower with the total

variation regularizer than the other regularizers. Results with analysis regularizers with an

image domain mask were similar and are shown in the supplementary material. Notably,

BARISTA converged about twice as fast when using a mask than without a mask.

3.6 Discussion

3.6.1 Convergence speed of BARISTA vs. AL methods

BARISTA was observed to converge faster than the AL-based methods in both early and

late iterations. The early iteration speed of BARISTA is due to its tight approximation

of the Hessian of the cost function via the diagonal majorizers developed in this paper

and the use of Nesterov momentum acceleration. Nesterov momentum has been added

to AL algorithms in some cases [35], although these algorithms require an estimate of

the Lipschitz constant, so the diagonal majorizers presented here may be useful for these

methods.

The late-iteration speed of BARISTA is due to the use of adaptive restart. We are un-

aware of a means to apply adaptive restart to AL-based methods. We attempted to recover

some of the benefits of adaptive restart through the use of dynamic AL parameter updates,

but this did not give the same large convergence speed boost as adaptive restart.
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Figure 3.10: Summary of convergence results for two different analysis regularizers. (a)

Convergence plot comparing the proposed method to variable splitting methods for to-

tal variation regularization. Markers are placed at 100 iteration intervals. The proposed

method with momentum restarting is faster than the other methods. (b) Convergence plot

comparing BARISTA to variable splitting methods with undecimated Haar wavelet regular-

ization. Markers are placed at 30 iteration intervals. The proposed method with momentum

restarting is faster than the other methods, especially in later iterations.

3.6.2 Selection of AL penalty parameters

We attempted to manually optimize the AL penalty parameters for speed. For some cases,

such as total variation and 2-level undecimated Haar wavelet regularizers, we observed a

trade-off between early and late iteration convergence speed, with smaller parameters fa-

voring early iteration speed and larger parameters favoring late iteration speed. In our tests

we chose the small parameters that gave reasonable convergence to −120 dB; however,

this behavior suggests that changing the penalty parameter in a dynamic fashion may im-

prove the convergence speed of AL-based methods. The dynamic tuning method from [31]

helped in some cases, but not consistently, and we still observed faster convergence with

BARISTA in both early and late iterations.

From a theoretical point of view, analysis of AL-based methods considers static penalty

parameters [5]. The fact that AL theory considers static penalty parameters is considered

one of the primary motivations for using AL methods instead of penalty methods in the

first place [5, 7]; adaptively changing the parameter removes this advantage. Conversely,

our use of the ǫ(k) parameter falls within the MFISTA theory provided monotonicity checks

are used, and although [28] does not cover the case of adaptive restart we observed stable

convergence of BARISTA in all numerical experiments.
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3.6.3 Surrogate tightness and sensitivity coil smoothness

In our data set, the sum of squares of absolute values of the sensitivity coils exhibited high

variability across the object. As the sensitivity coils become more uniform, our proposed

Df and DR matrices will more closely approximate their Lipschitz counterparts (i.e., Df =

LI). In these cases, the advantages of BARISTA will diminish relative to that of RFISTA.

However, we typically expect RFISTA to be a lower bound for the speed of BARISTA.

Furthermore, as the sensitivity coils become smoother, the proposed surrogate functions

actually become better approximations to the original cost function in (3.1), so we expect

the speed of the proposed methods to be superior with smooth sensitivity coil profiles than

our case with large sensitivity coil variability.

3.6.4 Tuning the restart criterion

The restart criterion in [9] used α = 0 in all of their experiments. We found that this choice

led to too infrequent restarts because using α = 0 allows the momentum and generalized

gradient to begin to point in different directions before restarting. Instead, in our experi-

ments we used α = − cos(4π/9). We found that this choice gave very good early iteration

convergence in 24 numerical experiments with four different regularizers (see supplemen-

tary material).

3.6.5 Near monotonicity of BARISTA

In [28] it is stated that when an iterative procedure is applied to minimize the surrogate

cost function, one should apply a monotonicity check to ensure stable convergence of the

algorithm in the analysis total variation setting. The primary cause of non-monotonicity

with FISTA algorithms is when the momentum takes the algorithm in a bad direction near

the solution [9]. In our numerical experiments we observed that the combination of the

ǫ(k) parameter and adaptive restart made the monotonicity checks in [28] unnecessary and

the proposed method performed as a monotone algorithm. Nonetheless, the monotonicity

checks of [28] could be included in a practical setting if monotonicity is still deemed to be

an issue.

3.6.6 Relations to Proximal Newton Methods

The methods outlined in this paper have some relations to Proximal Newton methods (e.g.

[36]), which use alternative methods to approximate the Hessian. One issue with such

methods is that the memory storage requirements can be undesirably large for medical
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imaging problems. Low memory versions of these methods also exist (e.g. L-BFGS, see

[36, 37]). BARISTA can also be thought of as having a low memory approximation to

the Hessian due to its diagonal structure, which may be more accurate if the SENSE maps

dominate the behavior of the Hessian. Comparisons between our proposed method and

these more general Proximal Newton methods are an avenue for future investigation. One

could even potentially modify BARISTA to use an L-BFGS Hessian approximation update,

although Proximal Newton methods are often developed for real numbers and may require

adaptations for the complex numbers in MRI reconstruction.

3.6.7 Comparisons to Gradient-Based Methods

A further possible comparison could be to gradient-based methods where the ℓ1 regularizer

is modified slightly to make it differentiable. These methods were found previously to be

slower than methods from the AL class [7], possibly due to interaction effects between

the sensitivity maps and the regularizer. In principle, one could extend BARISTA to these

differentiable settings since a shrinkage operation can be calculated for these regularizers

as well [38]. We plan to investigate such approaches in future work.

3.7 Conclusion

We have introduced generalizations of the FISTA algorithm, which we call BARISTA, for

SENSE-type MR imaging with compressed sensing regularizers that compensate for the

shift-variant aspects of the sensitivity coils. The methods gave superior convergence speed

relative to state-of-the-art variable splitting methods in numerical experiments. Further-

more, the proposed methods avoid the penalty parameter tuning associated with variable

splitting methods, instead relying on unitless convergence tolerance parameters. We have

provided heuristics for selecting these parameters and found that the same values worked

well across 24 numerical experiments conducted with four different regularizers on four

different data sets. We expect that the proposed methods will give fast, high-quality re-

constructions across a wide variety of data sets and will aid in the adoption of compressed

sensing methods in a clinical setting.
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CHAPTER 4

Majorize-Minimize Algorithms for

Non-Cartesian MRI

4.1 Introduction

This chapter is based on work published in [39, 40]. Magnetic resonance imaging (MRI) is

a useful imaging modality for diagnosing disease. In MRI, increases in spatial resolution

require increases in acquisition time. Since the cost of MRI is proportional to scan time,

high resolution MRI images are expensive to obtain. Scanning time reductions can reduce

the cost of MRI as well as potentially increasing the temporal resolution in dynamic MRI

settings. There are a number of means for facilitating scan time reductions. Non-Cartesian

sampling patterns traverse the Fourier space in a way that is more efficient given the hard-

ware constraints of the scanner. These methods typically sample the center of k-space more

than the edges since most of the energy in k-space is located at the center. Another way to

accelerate MRI is with parallel imaging. SENSitivity Encoding (SENSE) is a parallel MRI

technique that undoes aliasing effects caused by undersampling by exploiting variations in

the sensitivity profiles (i.e., B1 maps) of multiple coils placed around the patient [1]. When

the image can reasonably be assumed to be sparse in some transform domain, compressed

sensing regularizers can be used to facilitate further acceleration [2].

When non-Cartesian trajectories, SENSE MRI, and compressed sensing are used, one

can estimate the image by solving an ℓ1-regularized optimization problem [20] where the

system matrix incorporates the effects of the multiple sensitivity coils and the non-Cartesian

trajectory. The ℓ1 optimization problem is difficult to solve since the ℓ1 regularizer is non-

differentiable. The nondifferentiability precludes the use of gradient-based optimization

algorithms. Nonetheless, there are many methods for minimizing objective functions with

ℓ1 terms. One class of methods is majorize-minimize methods with momentum accelera-

tion [18, 41, 8]. These methods generally work quite well, but they require the calculation

of a bound on the Hessian of the data fit term. The standard FISTA method for calculating
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this bound [18], which yields the Lipschitz constant that is equal to the maximum eigen-

value of the Hessian, is large due to the large density of samples near the center of k-space

for most non-Cartesian trajectories. As such, the Lipschitz constant is a loose bound for the

high frequencies of k-space, and these components of the image converge slowly with such

algorithms. This issue can be mitigated by more carefully formulating majorizers based

on the k-space trajectory and the regularizer [41]; however, previous methods only consid-

ered orthogonal wavelet regularizers in the context of single-coil MRI with an iteration-

dependent cost function. As such, it remains an open problem to extend these ideas to the

full parallel MRI setting with analysis regularizers, which are thought to provide higher

image quality [27].

Here we build on the ideas in [41] to build a new algorithm (called CIRCMAJ for “cir-

culant majorizer”) tailored to non-Cartesian MRI. Our methods are very similar to those

used previously in Chapter 3 [8], the main difference being that in this case we are con-

sidering coupling between the density of samples in k-space and the frequency localization

property of the wavelet transform rather than coupling between the sum of squares of the

sensitivity coils and the spatial localization property of the wavelet transform. Our new

algorithm is specifically designed for non-Cartesian imaging to better-capture the variation

in k-space sampling density. In numerical experiments we observe that this leads to faster

convergence of high-spatial frequency features (such as edges) in the images, as well as

convergence speed measured by the 2-norm.

4.2 Theory

Non-Cartesian MR image reconstruction with sparsity-promoting regularization can be for-

mulated as the following optimization problem:

x̂ = argmin
x

f(x) + βR(x)

f(x) =
1

2
‖y −Ax‖22 , R(x) = ‖Rx‖1

. (4.1)

We call f(x) the data fit term and R(x) the regularizer. As discussed in Chapter 2, we

assume that we are in the SENSE setting, so we have

A = FS, (4.2)

where F ∈ CNC×NC is a Fourier encoding operator and S ∈ CNC×N is a matrix with

sensitivity maps. N is the number of voxels in the image and C is the number of sensitivity

38



coils. F and S have the following block structures:

F =









F1

. . .

F1









,S =









S1

...

SC









, (4.3)

where each of the F1 is a non-Cartesian Fourier encoding operator and each of the Sc is

a distinct diagonal matrix with the sensitivity map of coil c along its diagonal. A similar

formulation with Cartesian sampling was studied in [8].

There are a number of potential approaches for solving (4.1). One would be to use

variable-splitting methods via the augmented Lagrangian (AL) [7, 42]. A drawback of us-

ing variable-splitting methods is that they require tuning penalty parameters. The main way

of setting the penalty parameters is to use heuristics such as looking at conditioning of vari-

ous subproblems of the AL algorithm. However, these heuristics are not guaranteed to give

optimal parameters, and in Chapter 3 we showed that momentum-accelerated algorithms

can be faster than AL algorithms even when the penalty parameter is manually tuned [8].

Furthermore, majorize-minimize methods are currently used in a number of non-Cartesian

MRI applications [3, 43]. For these reasons, we instead choose to develop a momentum-

accelerated algorithm by first developing a majorize-minimize method for minimizing the

cost function in (4.1) and then adding Nesterov momentum [18]. The standard momentum-

accelerated majorize-minimize algorithm is FISTA [18], but FISTA is slow in this setting

because the associated Lipschitz constant depends primarily on the density samples near

the center of k-space for most non-Cartesian trajectories. As a result, this Lipschitz bound

is loose for the samples far away from the center of k-space. We address this issue with

FISTA by carefully considering the structures of A and R. We develop an MM algorithm

for solving (4.1) in two steps similar to those used previously [28, 8]. In the first step we

develop a tight quadratic surrogate for f(x), which requires majorizing AHA with a circu-

lant matrix, Mf . In the second step we consider R(x) via a dual gradient ascent algorithm.

This requires developing a second bound involving careful consideration of the structure of

Mf and R.
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4.2.1 Bounding the Non-Cartesian System Matrix

We first recall from Chapter 2 that minimizing the following quadratic surrogate for f(x)

is guaranteed to decrease f(x) when Mf � AHA [26, 8]:

ψ(x,x(k)) ··=
1

2

∥

∥

∥
x− (x(k) −M−1

f AH(Ax(k) − y))
∥

∥

∥

2

Mf

(4.4)

This surrogate performs better when Mf is a tight bound for the Hessian, AHA. The

Hessian has two major components: the non-Cartesian Fourier encoder and the sensitivity

maps. In the non-Cartesian setting, the effects of F become more dominant due to the

wide variability of k-space sampling density in most non-Cartesian trajectories. As such,

the behavior of AHA can be loosely approximated by that of FHF. FHF is a matrix that

amplifies the low spatial frequencies of its input. We capture these effects by designing Mf

to be a circulant matrix. The frequency response of this circulant matrix will amplify low

frequencies proportional to the density of k-space samples.

If we constrain Mf to be circulant, then we can write

Mf = Q−1ΛfQ, (4.5)

where Q is a DFT matrix and Λf is the frequency response of Mf . Since Q is fixed, our

design for Mf only requires calculation of Λf . We calculate Λf in a three-step process

based on F1, the non-Cartesian k-space encoding matrix that is similar to one previously

used for non-Cartesian MRI [42].

Step 1: Find a close circulant approximation to FH
1 F1 by taking the DFT of an impulse

response. Let e0 ∈ CN×1 be a vector with a 1 at the center of the image. Then, Λf,1, the

first step of calculating Λf is

Λf,1 = ℜ
{

diag(QFH
1 F1e0)

}

, (4.6)

which yields a close circulant approximation to FH
1 F1.

Step 2: Increase the minimum entry in Λf,1 by κ2 where κ2 is the minimum eigenvalue of

Q−1Λf,1Q− FH
1 F1. This gives Λf,2.

Step 3: Calculate the final Λf as

Λf = Λf,2 + κ3I, (4.7)

where κ3 is the minimum eigenvalue of Q−1Λf,2Q−FH
1 F1 (calculated via power iteration).

Step 1 finds a good circulant approximation to FH
1 F1. Step 3 ensures that Mf � FH

1 F1.
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Step 2 is inserted between Steps 1 and 3 to ensure that the maximum entry in Λf,1, cor-

responding to the density of samples at the center of k-space, is not increased too much

in the majorizer calculation. We found empirically that Mf � AHA in numerical ex-

periments when the sensitivity maps were calculated with a sum-of-squares normalization.

Calculation of Mf in this fashion empirically gave a far tighter for AHA than the Lips-

chitz constant. Inserting this surrogate into the cost function in (4.1) gives the following

surrogate for the entire optimization problem:

η
(

x,x(k)
)

= ψ
(

x,x(k)
)

+ βR(x). (4.8)

Iteratively minimizing this surrogate would yield a majorize-minimize algorithm if Mf �

AHA. When a majorize-minimize algorithm is used, one can add Nesterov momentum to

speed the algorithm [18]. Here we choose to add a form of momentum related to Nesterov

momentum that has been proven to be faster for smooth, convex cost functions and veri-

fied to yield performance improvements in MRI [10, 11]. We also adapted this new brand

of momentum to use adaptive momentum restarting [9]. The addition of momentum to a

Figure 4.1: CIRCMAJ for Analysis

1: initialize k = 0, z(0) = x(0),Mf , α, ǫ
(0)

2: calculate Mf � AHA as outlined in Section 4.2.1

3: calculate DR � RM−1
f RT as outlined in Section 4.2.2

4: while k < K do

5: τ (k+1) = (1 +
√

1 + 4(τ (k))2)/2
6: b(k) = z(k) −M−1

f AH(Az(k) − y)

7: Run Fig. 4.2 algorithm to ǫ(k) convergence to get x(k+1)

8: κ =
∥

∥z(k) − x(k+1)
∥

∥

2

∥

∥x(k+1) − x(k)
∥

∥

2

9: if ℜ
{〈

z(k) − x(k+1),x(k+1) − x(k)
〉}

> ακ then

10: z(k+1) = x(k+1)

11: τ (k+1) = 1
12: else

13: z(k+1) = x(k+1) + τ (k)−1
τ (k+1) (x

(k+1) − x(k)) + τ (k)

τ (k+1) (x
(k+1) − z(k))

14: end if

15: ǫ(k+1) = max(min(ǫdiff
‖x(k+1)−x(k)‖

2

‖x(k)‖
2

, ǫ(k)), ǫmin)

16: k = k + 1
17: end while

18: x̂ = x(K)

standard majorize-minimize algorithm can be seen in the use of an additional z(k) variable

and the calculation of the gradient in Step 6 of the the algorithm in Fig. 4.1. The use of

adaptive momentum restarting is seen in the sequence of if/else statements at the end of
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each iteration. The adaptive momentum restarting resets the momentum when it is taking

the iterates in a direction away from that of the generalized gradient, which improves con-

vergence speed. The algorithm in Fig. 4.1 requires a method for decreasing the surrogate

in (4.8). There are a number of ways for doing this. We discuss a dual gradient ascent

algorithm as well as an additional matrix bound below.

4.2.2 Consideration of the Regularizer

Section 4.2.1 gives a means for calculating Mf , where we observe empirically that Mf �

AHA, which enables us to use ψ
(

x,x(k)
)

as a surrogate for f(x). We now need to develop

a method for decreasing the surrogate in (4.8):

η
(

x,x(k)
)

= ψ
(

x,x(k)
)

+ βR(x). (4.8)

This surrogate can be decreased with a shrinkage step if we use a synthesis model or via

a dual gradient ascent algorithm if we use an analysis model [8]. Both of these updates

require the calculation of a diagonal matrix, DR. For the shrinkage step, we must have

DR � RMfR
T . For the dual gradient ascent algorithm, we must have DR � RM−1

f RT .

Since Mf = Q−1ΛfQ and M−1
f = Q−1Λ−1

f Q, mathematical techniques used to develop

DR for either case are interchangeable. For this reason, we focus primarily on the analysis

case where DR � RM−1
f RT .

To calculate DR we will assume that R can be written as

R =









R1

...

RB









, (4.9)

where Rb = Q−1ΛbQ. This implies that R can be decomposed into the output of B filters

with periodic boundary conditions where the bth filter has frequency response Λb. This

includes many popular choices of R such as undecimated wavelets and finite differences.

When R takes on this form, we can write

RM−1
f RT =









Q−1

. . .

Q−1

















Λ1ΛfΛ
∗
1 · · · Λ1ΛfΛ

∗
B

...
. . .

...

ΛBΛfΛ
∗
1 · · · ΛBΛfΛ

∗
B

















Q

. . .

Q









, (4.10)

due to the interaction effects of the DFT matrices in R and M−1
f . Applying Gers̆gorin’s
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Theorem to the central matrix gives

RM−1
f RT � DR ··=









dR,1I

. . .

dR,BI









, (4.11)

where dR,b = max
n

(

∑B
p=1 |λn,bλ

∗
n,b/dn,f |

)

. Note: in the synthesis setting where we use

Mf we have dR,b = max
n

(

∑B
p=1 |λn,bλ

∗
n,bdn,f |

)

. This matrix can then be used in a shrink-

age step or a dual gradient ascent algorithm in the fashion described in Chapter 3 and [8].

This gives the algorithm in Fig. 4.2.

Figure 4.2: Analysis Denoising Algorithm for CIRCMAJ

1: initialize j = 0,q(0),v(0) = v(0),Mf ,DR, ǫ, α

2: repeat

3: τ (j+1) = (1 +
√

1 + 4(τ (j))2)/2

4: x(k,j+1) = b(k) − βM−1
f RTv(j)

5: q(j+1) = PPM (v(j) − β−1D−1
R Rx(k,j+1))

6: κ =
∥

∥v(k) − q(k+1)
∥

∥

2

∥

∥q(k+1) − q(k)
∥

∥

2

7: if ℜ
{〈

v(k) − q(k+1),q(k+1) − q(k)
〉}

> ακ then

8: v(k+1) = q(k+1)

9: τ (k+1) = 1

10: else

11: v(k+1) = q(k+1) + τ (k)−1
τ (k+1) (q

(k+1) − q(k)) + τ (k)

τ (k+1) (q
(k+1) − v(k))

12: end if

13: j = j + 1

14: until
‖x(k,j)−x(k,j−1)‖

2

‖x(k,j−1)‖
2

≤ ǫ

15: x(k+1) = b(k) − βM−1
f RTq(j)

PPM (·) is a projection operator that projects on to the set, PM , which is the ℓ∞ unit

ball [8]. The algorithm in Fig. 4.2 can be derived as a majorize-minimize algorithm if

Mf � AHA [8]. For this reason we have included momentum [18, 44] and adaptive

momentum restarting [9] here as well. The momentum can be seen in the use of an extra

v(j) variable and the adaptive momentum restarting can be seen in the sequence of if/else

statements at the end of each iteration.

43



4.3 Experiments

We compared the convergence speed of the proposed algorithm, CIRCMAJ, to that of

FISTA in numerical experiments. Instead of using the standard FISTA method [18], we

included all standard FISTA algorithm accelerations used with CIRCMAJ such as adaptive

momentum restarting [9] and optimal momentum calculation [44, 11]. As such, the FISTA

methods are equivalent to CIRCMAJ with Mf = LI, where L is the Lipschitz constant

or maximum eigenvalue of AHA. Both methods used adaptive momentum restarting rules

previously developed for MRI [8].

To track convergence, we computed the normalized residual as a function of iteration:

ξ(k) =

∥

∥x(k) − x(∞)
∥

∥

‖x(∞)‖
, (4.12)

where x(∞) is a “converged solution” obtained by running many thousands of iterations

of FISTA. We also stored the time at which the kth estimate was computed and in our

figures we plot ξ(k) as a function of time tk. We choose to do this since the iteration cost

of FISTA and CIRCMAJ are slightly different due to the DFTs in the circulant majorizer.

The regularization parameter, β, was selected to give visually appealing images for each

data set. Numerical experiments on synthetic data were run with both radial and spiral

trajectories. All numerical experiments used NUFFT routines with a min-max interpolator

and Kaiser-Bessel scaling coefficients [14, 17] for the Fourier encoder in each Fc.

4.3.1 Structure of the Majorizers

The result of the bounds in Section 4.2 depend on the structure of AHA. Since Mf is

designed based on F1 (which corresponds to a non-Cartesian Fourier encoder based on the

k-space trajectory), its frequency response is generally much larger where there are more

k-space samples. This can be seen in Fig. 4.3. Fig. 4.3a shows the density of samples in a

30-spoke radial trajectory (7.5% of fully-sampled data) while Fig. 4.3b shows the density

of samples in a 10-leaf spiral trajectory (21% of fully-sampled data). The magnitude of the

brightest spot in these images is on the order of the standard Lipschitz constant for non-

Cartesian trajectories. Fig. 4.4 shows the variation in the coefficients of Λf on a dB scale

normalized to the maximum value. The tighter circulant Mf bounds AHA much tighter

at higher frequencies than the Lipschitz constant. As such, we can expect the edges of the

image to converge faster with the non-Cartesian majorizer than with standard FISTA.

The structure of the DR matrices depend on the couplings between the frequency re-

sponses of different subbands of R. In our numerical experiments we chose to make R and
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(a) (b)

Figure 4.3: Examples of Λf for different trajectories in dB relative to the maximum en-

try. (a) shows Λf for a 30-spoke radial trajectory. (b) shows Λf for a subsampled spiral

trajectory.

undecimated Haar wavelet transform, so each Rb is a simple 2-by-2 high-pass filter. The

Gers̆gorin bound would be tighter if we used other wavelets where the frequency response

of each highpass filter overlaps less. Fig. 4.5 shows that the overlap from these various

high-pass filters is modest. Higher order Daubechies wavelets could be expected to have

even less overlap in their frequency responses, so the Haar wavelet example in Fig. 4.5 can

be thought of more as a worst-case example.

4.3.2 Radial Experiments

A BrainWeb phantom of size 256 × 256 was used to generate a synthetic data set from

a 30-spoke radial k-space trajectory. Eight sensitivity coils were simulated for the data

generation using a previous method [45] and Gaussian noise was added to the k-space

data. The sensitivity coils for reconstruction were calculated from this data set using a

sum-of-squares normalization and a model-based sensitivity map estimation scheme [4].

The image was then reconstructed using the cost function in (4.1) with both FISTA and

the proposed CIRCMAJ method to compare convergence speed. The regularizer, R, was

chosen to be an undecimated Haar wavelet transform and β was chosen to give visually

pleasing images by manually tuning over a log-2 scale.

Fig. 4.6 shows images from various stages of the reconstruction algorithms. Fig. 4.6a

shows x(∞), the converged image from the cost function in (4.1) with the manually-chosen

β. Fig. 4.6b shows x(5) from FISTA, which is blurry due to the looseness of the Lipschitz

bound for high spatial frequencies. Fig. 4.6c shows x(5) from CIRCMAJ, which has better-
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(a) (b)

Figure 4.4: Sorted plot of magnitude of coefficients in Λf for radial and spiral trajectories.

(a) shows the magnitude of coefficients from Λf from a 30-spoke radial trajectory. (b)

shows the magnitude of coefficients from Λf from a 10-leaf spiral trajectory.

defined edges due to the circulant majorizer. Although Fig. 4.6b and 4.6c look different at

iteration 5, both algorithms converge to the same x(∞) in Fig. 4.6a. Fig. 4.6 indicates that

the edges take longer to converge with FISTA.

Fig. 4.7 compares the convergence speed of CIRCMAJ to that of FISTA. CIRCMAJ

is about 2-3 times faster in 2-norm convergence. We note that the 2-norm is dominated

by the lower spatial frequencies, where the improvement of CIRCMAJ over FISTA is not

as dramatic. Nonetheless, Fig. 4.7 indicates that CIRCMAJ still provides a noticeable

improvement in 2-norm convergence speed. The stair-step pattern in the convergence plots

are where momentum restarting is taking place.

4.3.3 Spiral Experiments

The spiral numerical experiments were identical to the radial numerical experiments with

the exception that a 10-leaf spiral trajectory (undersampling factor of 21%) was used in-

stead of a radial trajectory. As such, the experiments also involved eight sensitivity coils

that simulated and then estimated from simulated data via a model-based routine [4]. Gaus-

sian noise was added to the simulated data. Fig. 4.8 shows the reconstructed image from

various stages of running the reconstruction algorithms. Fig. 4.8a shows x(∞), the “con-

verged” image after running many thousands of iterations of FISTA. Fig. 4.8b shows x(5)

after running FISTA for 5 iterations. Fig. 4.8c shows x(5) for CIRCMAJ. As in the radial

case, CIRCMAJ has better resolved the edges relative to FISTA in early iterations. There

46



Figure 4.5: Image of 2D frequency responses for various high-pass filters in a Haar wavelet

transform.

(a) (b) (c)

Figure 4.6: Images from various stages of the reconstruction algorithms. (a) shows x(∞),

the converged image after many thousands of iterations of FISTA. (b) shows x(5) after five

iterations of FISTA. (c) shows x(5) after five iterations of CIRCMAJ.

is more substantial aliasing in the spiral images than the radial images at early iterations.

This could possibly be due to the center of k-space being less densely-sampled for these

trajectories, as there are only 10 spiral lines near the center as opposed to 30 radial lines for

the radial trajectory. We observed that these aliasing artifacts resolved more quickly with

CIRCMAJ than FISTA. We also compared the algorithms in 2-norm convergence speed in

Fig. 4.9. As in the case with a radial k-space trajectory, CIRCMAJ provides a modest boost

in 2-norm convergence speed over that of FISTA.

47



0 50 100 150 200 250 300
-40

-35

-30

-25

-20

-15

-10

ξ
(k
)
(d
B
)

tk (seconds)

 

 
FISTA
CIRCMAJ

Figure 4.7: Convergence plot comparing FISTA to CIRCMAJ for a radial trajectory.

4.4 Discussion

4.4.1 Bounding the Sensitivity Maps

Here we derived Mf only from offline calculations based on FH
1 F1. This guarantees that

Mf is an upper bound for FH
1 F1, but it does not guarantee that Mf is an upper bound for

AHA. We found empirically that Mf is an upper bound for AHA when the sensitivity

maps are calculated using a sum-of-squares normalization. This essentially requires that

the sensitivity map squares add up to 1 at every location in the image, so the fact that we

observed that Mf is an upper bound for AHA makes sense from the perspective that AHA

can be thought of as a weighted combination of FH
1 F1 matrices. Nonetheless, we were

unable to prove this fact analytically, and further experimental validation may be necessary

before CIRCMAJ is used in a clinical setting.

Although we were unable to analytically bound AHA, this issue could be compensated

for by backtracking [18]. FISTA with backtracking in this setting would essentially give

the MFISTA algorithm, which still has a well-developed convergence theory [28]. The

incorporation of backtracking would add some computational cost, so determination of

whether this approach is useful in a practical setting would require further investigation.
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(a) (b) (c)

Figure 4.8: Images from various stages of the reconstruction algorithms with the spiral

trajectory. (a) shows x(∞), the converged image after many thousands of iterations of

FISTA. (b) shows x(5) after five iterations of FISTA. (c) shows x(5) after five iterations

of CIRCMAJ.

4.4.2 Convergence Speed of CIRCMAJ

The experiments on spiral and radial trajectories led to a modest acceleration in 2-norm

convergence as observed in Fig. 4.7 and Fig. 4.9. However, we note that the 2-norm is

dominated by the low frequencies. Our new formulation in CIRCMAJ is not substantially

different for low frequencies relative to FISTA; most of the benefit of our new approach

can be seen in Fig. 4.6 and Fig. 4.8, where the edges are more sharply resolved earlier

in the algorithm. Since the human visual system is better-tuned to interpret the edges in

the image, this may indicate that the 2-norm convergence plots underestimate the improve-

ments in early-iteration image quality given by the algorithm; however, confirmation of this

improvement would require analysis of the images by expert radiologists.

4.4.3 Use of a Mask

Previously in our analysis algorithm development we included a mask. The resulting algo-

rithm was easier to analyze since it resulted in a separable surrogate with box constraints

(the box constraints being a support mask). With a circulant majorizer, the resulting sur-

rogate is no longer separable and the algorithm becomes more complicated. As such, we

did not include a mask in our numerical experiments. Nonetheless, use of a mask may

not impact the algorithms drastically since most of the region outside the brain is close to

zero. The resulting algorithm would be similar to projected gradient descent, which has

been demonstrated to be useful in other applications. In the future we plan to run further

experiments to determine the effects of masking with a circulant, non-separable majorizing

function.
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Figure 4.9: Convergence plot comparing FISTA to CIRCMAJ for a spiral trajectory.

4.4.4 Extension to Dynamic Imaging

Here we considered static imaging, although the methods could possibly be extended to

dynamic imaging settings where the regularizer is space-time separable. An example of

this would be dynamic imaging settings that use a total variation penalty on the spatial

aspect of the reconstructed time series. For this case, one could majorize the data fit term

with the same circulant majorizer applied to each time point. Then, the step-sizes in the

dual gradient ascent algorithm could be decomposed to a form that resembles the static re-

construction problem discussed extensively in this work and the corresponding techniques

could be applied. We plan to investigate extensions to dynamic imaging in future work.

4.5 Conclusion

We have introduced a number of key improvements to previous methods [46]. The first

of these is an extension that allows the use of analysis regularizers (e.g., undecimated

Haar wavelets) in place of an iteration-dependent cost function used in [46]. This ex-

tension allows a more streamlined theoretical treatment of the properties of the images that

our algorithm yields. Secondly, we demonstrated that the trajectory-based majorizers that

we developed could be used for multicoil reconstruction, whereas previously only disjoint

single-coil reconstruction had been considered [46]. Finally, we have incorporated the ad-

vances of optimized momentum [10] and adaptive momentum restarting [9], which yield

further accelerations to the algorithm. In the future we plan to run more experiments to em-
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pirically verify that our matrix bound also applies when the sensitivity maps are calculated

with a sum-of-squares normalization. We also plan to incorporate further modifications to

CIRCMAJ, such as backtracking, to account for cases where our bound is insufficient. Fi-

nally, in the future we plan to explore whether the use of an object support mask is possible

with our circulant majorizer.
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CHAPTER 5

Acceleration of fMRI Scans

5.1 Introduction

Functional MRI (fMRI) is a powerful technique for studying brain function that relies on

changes in blood oxygenation levels that result from neuronal activity [47, 48, 49]. fMRI

has traditionally been used for research into brain function, and more recent advances have

proposed using fMRI as a biomarker for neurological disorders [50, 51]. One major fMRI

paradigm for use as a biomarker is resting-state fMRI; however, certain types of analy-

ses of resting-state data are hindered by the sampling rates of traditional fMRI acquisition

schemes. For example, temporal independent components analysis (ICA) is unstable with

small numbers of time samples [52]. However, temporal ICA can be a powerful way to

identify overlapping brain networks, so its use is desirable in resting-state experiments.

Others have suggested that there may be components of the blood oxygenation level de-

pendent (BOLD) present at frequencies higher than 0.1 Hz [53, 54]. These studies suggest

that accelerations in fMRI sampling rate beyond the standard 2-second repetition time (TR)

are necessary for the types of advanced analyses that neuroscientists want to perform.

The most common current acceleration method is multiband imaging [55, 56]. In this

method, multiple slices of the brain are excited simultaneously. The slices are then una-

liased using the receive coil sensitivity patterns. Multiband acceleration factors are typi-

cally limited to around 8 before sensitivity coils are no longer able to undo the associated

aliasing. Another limiting factor of multiband sequences is that they increase the power

requirements of the RF pulse and the heat energy deposited in the subject [55]. Also, using

receive coils to undo the aliasing patterns can lead to false correlations between voxels and

their aliases [57].

Advanced regularization and reconstruction techniques could potentially facilitate ac-

celerations complementary to those from multiband imaging. Low-rank models have been

applied extensively in other dynamic MRI applications, such as dynamic contrast-enhanced
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(DCE) and cardiac MRI [58, 12, 3]. These methods can be applied under normal scanner

operating conditions and do not suffer from hardware limitations such as gradient or slew

rates. Low-rank methods with strict low-rank constraints have been extended to fMRI

[13, 59]. However, these strictly low-rank methods require very high ranks (on the order of

128) to successfully reconstruct fMRI time series. These high ranks potentially run close

to the upper limit of those theoretically recoverable [60] and suggest that fMRI data are

not truly low rank. Instead, we opt for a hybrid model closer to that of the robust PCA

class [60, 3] where the data are allowed to be an additive combination of a low-rank com-

ponent and a full rank component that uses a different regularity condition. The low-rank

component fits many of the high-temporal frequency components in fMRI data sets such

as the B0 fluctuation due to the respiratory rhythm. We estimate this part first. Then, we

estimate the full-rank component by solving a regularized optimization problem that fits

the residual data. This hybrid model is able to better adapt to the many features of fMRI

data sets that are more approximately full rank while still allowing for compressed-sensing

style accelerations independent of the sensitivity coils.

5.2 Methods

We begin by outlining our model and reconstruction approach. Then, we describe two

sets of experiments to test the efficacy of our hybrid low-rank model. The first experiment

was a simulation experiment where a high temporal resolution echo-planar imaging (EPI)

scan was retrospectively undersampled. We then applied the hybrid low-rank model and

compared the statistical parameters of interest to those from the original full data. The

second experiment consisted of a prospectively undersampled 3D sequence with a finger

tapping task with a hybrid low-rank model compared to a standard multislice acquisition.

5.2.1 General Reconstruction Model

We begin by recalling that a function, m(x, t) is partially-separable if it can be written as

m(x, t) =
R
∑

r=1

ur(x)vr(t) (5.1)

where the collection of functions ur(x) and vr(t) are called basis functions. If we consider

m(x, t) as the magnetization fluctuations in the brain that arise to cardiac and respiratory

effects, we could consider an approximation with R = 2, where v1(t) would contain the

respiratory time course and v2(t) would contain the cardiac time course. u1(x) would a
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be a spatial map encompassing the entire brain (since the respiratory fluctuations affect the

brain globally [61]), while u2(x) would outline the arteries and sinuses of the brain. Due to

delays in blood flow reaching the periphy of the brain and higher-order respiratory effects,

in reality one would need R > 2 to accurately model these physiological processes. If

we also consider fMRI BOLD activations, then a larger R would be necessary, but since

in many cases the different voxels within a brain region activate concurrently, we could

still assume a small R. The sum of these effects small effects mean that although fMRI is

approximately low rank, it is not actually low rank.

Due to the structure of the functional signals and physiological noise in fMRI, we opt

for a hybrid model that combines low rank and full rank assumptions:

X = L + F, 1 (5.2)

where X ∈ CM×N is the fully-sampled fMRI time series, L is the low rank part, and F is

the full rank part. To make (5.2) a feasible model for reconstruction, further constraints are

necessary for F. Previous dynamic MRI techniques have used sparsity assumptions [3], but

it is not clear that this can be extended to the fMRI setting since fMRI data are not strictly

sparse [62]. Instead, we assume that F has only low temporal frequencies since the BOLD

response itself is slow. We implicitly assume that the physiological effects of the respiratory

and cardiac rhythms are captured in L. Since the physiological rhythms are typically large

in amplitude and cover the whole brain, they should be the first components recovered with

low-rank approximations. Meanwhile, the remaining functional MRI signals are better

approximated as low-frequency fluctuations rather than low-rank approximations, since

they exhibit a number of shifts and drifts across the brain that are not well-approximated

by a strictly low-rank model.

5.2.2 Sampling Pattern

We consider sampling patterns that have one degree of freedom in the kz dimension. Within

this one degree of freedom, we densely sample the center of k-space at every frame to

acquire a navigator data set. This navigator data is used to estimate the temporal basis, V,

in a fashion similar to that done in cardiac MRI [12], which is then used to reconstruct L.

Between acquisitions of the navigator data, points are acquired randomly away from the

k-space center using a Poisson-disk sampling density. Fig. 5.1 shows an example of this

sampling pattern. We chose this pattern since it prevents clumping of samples, which we

1Note that our use of F here denotes a full-rank matrix rather than a Fourier encoder as in Chapters 3 and

4.
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Figure 5.1: Plot of which kz samples are acquired in the suggested sampling pattern.

believe is desirable both from the standpoint of reconstructing with multiple receive coils

(which are smooth and thus only interpolate over small distances in k-space) and from the

standpoint of evenly covering k-space across time frames.

5.2.3 Reconstruction Approach

Based on the model in (5.2), we formulate a two-stage reconstruction approach that blends

some of the ideas from previous low-rank methods. First, we estimate a temporal basis, V,

from data sampled at a high temporal frequency at the center of k-space. Then, we use this

temporal basis to estimate a spatial basis, U, and set L = UV. We use the residual of this

process to reconstruct F using a different constraint. Defining u = vec(U), f = vec(F)

and l = vec(L), this process can be mathematically formulated as:

1. Estimate R-component V using densely-sampled center of k-space.

2. û = argmin
u

1
2
‖y −AVu‖

2
2

3. L̂ = ÛV̂

4. ỹ = y −AVu

5. Calculate f̂ from ỹ using a different constraint.

6. X̂ = L̂+ F̂
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where y is the sampled k-space data and AV is a system matrix incorporating the effects

of field inhomogeneity [16, 17], multiple sensitivity coils [1], and the partially-separable

model with temporal basis, V [12].

Since most of the high-frequency components are naturally high-energy and low-rank,

they should be captured in the low rank estimate in Step 2. As such, the residual signal

should be dominated by noise and low-frequency BOLD effects. We examined three dif-

ferent methods for the alternative constraint in Step 5. The first (SLIDING) was a simple

sliding window reconstruction from ỹ. The second (HYBRID) solved the following opti-

mization problem:

f̂ =
1

2

∥

∥

∥
ȳ − Ã

∥

∥

∥

2

2
+
β

2
‖Chybridf‖

2
2
, (5.3)

where Ã is a system matrix with the effects of field inhomogeneity and sensitivity coils

with no partially-separable model and Chybrid is a temporal finite-differencing operator.

The third (SPARSE) solved the following optimization problem:

f̂ =
1

2

∥

∥

∥
ȳ − Ã

∥

∥

∥

2

2
+ β ‖Csparsef‖1 , (5.4)

where Csparse is a temporal DFT.

The first step of this procedure can be completed by first compressing the data from

all parallel receive coils to one virtual coil using an SVD-based compression method [63]

and then applying a standard SVD procedure to get the R-component V. The remaining

steps are least-squares problems that can be solved via routines such as conjugate gradient

descent. The algorithm for step 2 was initialized with a rank-1 U, where the first component

was an image volume calculated from data that were averaged across time. Step 5 was

initialized with a sliding window, gridding-based reconstruction that involved a density-

compensation function [64] and a time-segmented approximation for field inhomogeneity

[16, 17].

5.2.4 Simulation Experimental Methods

A high temporal resolution EPI scan with a 200 ms repetition time and a 64 × 64 × 3 data

matrix size was acquired with an eight-channel receive coil and a resting-state paradigm for

10 minutes. The imaging planes were selected to encompass the motor cortex. A synthetic

data set was generated by taking taking 7 of the total 64 ky k-space lines from each time

frame in a fashion similar to that in Fig. 5.3. For each ky location that we specify in the

sampling pattern, kx and kz samples associated with that ky location are also acquired.

For reconstruction, 3 of these 7-line acquisitions were grouped together, so the temporal
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sampling period of the reconstructed data was 600 ms with a 21/64 undersampling rate.

The sampling pattern was designed to acquire 4 of these 21 lines near the center of k-space

for every reconstruction frame. This allows us to accurately estimate the high-frequency

respiratory signal (about 0.3-0.6 Hz).

After reconstruction, we applied standard fMRI processing methods. We applied the

magnitude operation to all images and detrended by regressing out the first five bases of

the DCT transform. Then, we applied a low-pass FIR filter (Parks-McClellan, 0.08-0.15

Hz transition band) and truncated the beginning and the end of the time series of images,

removing the same number of time points as the length of the FIR filter. The final prepro-

cessing step was convolving with a 5 mm × 5 mm Gaussian blur kernel. The average of

eight voxels in the right motor cortex was used to form a “seed time course.” We calcu-

lated correlation coefficients between this seed time course and the time courses of all other

pixels in the imaging area, generating a map of correlation coefficients that corresponds to

the motor network [65]. The resting-state motor network estimate using the proposed low-

rank method applied on retrospectively undersampled data was compared to that from the

original high temporal resolution data. All correlation maps used a correlation coefficient

threshold of 0.6 for display.

We performed an ROC curve analysis between the three methods for the constrained

reconstruction of F by assuming that an activation map from fully-sampled data was the

ground truth. This enabled us to exactly calculate true and false positive rates as a function

of activation threshold. Although we’ve performed an ROC curve analysis, we still chose

to keep our correlation threshold at 0.6 since in prospectively undersampled settings we do

not know the true false positive rate.

5.2.5 In Vivo Experimental Methods

To validate the methods on prospectively undersampled data, one subject was recruited and

trained in a one-handed finger tapping task (20 seconds on, then 20 seconds off, total of 6

on/off repetitions) that is expected to activate the primary motor cortex, the sensorimotor

cortex, and the supplementary motor area. For all functional scans, we used a 3D stack-

of-spirals sequence. An example of a 3-platter stack-of-spirals sequence is shown Fig. 5.2.

The experimental 3D sequences had 39 platters. First, we acquired calibration data for

sensitivity map estimation using a 5 ms TE spiral-out version of the 3D spiral sequence.

Then, we acquired two calibration volumes for field map estimation using a spiral-in se-

quence with TEs of 28 and 30 ms. The actual functional scan used a 30 ms TE 3D spiral-in

sequence with randomly-acquired kz platters.
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Figure 5.2: Example of a 3-platter stack-of-spirals sequence used in the in vivo experi-

ments.

The sensitivity maps were estimated using a model-based method that had previously

been developed [4]. The original coil array had 32 channels with 4 rings of 8 coils. To

preserve the z variation, we compressed each ring of 8 coils to 2 coils using a coil com-

pression method [63], for a final array of 8 virtual coils. The field map was estimated from

the field map calibration data in a two-stage process. First, we applied a phase subtraction

with the image volumes and then convolved with a 5× 5× 5 rect function to get an initial

estimate of the field map. Then, the 28 and 30 ms TE images were reconstructed with this

initial field map and a second field map was estimated from the new image volumes via

phase subtraction and convolution with the same rect function. This second field map was

the one used for final reconstruction of the functional time series.

During the functional scan, one of the 39 spiral k-space platters was selected and sam-

pled at random after each excitation (as opposed to a standard 3D spiral sequence where

would would coherently sample a platter). 12 platters were combined for each reconstruc-

tion frame. The sampling pattern was designed such that the three central platters were

sampled for each reconstruction frame to estimate the temporal basis, V [12]. Fig. 5.3

shows the division of frames among the spiral platters while Fig. 5.1 outlines the data used

to reconstruct V. This reconstruction procedure resulted in an effective temporal resolu-

tion of 0.615 seconds. We reconstructed the images using the SLIDING low-rank method

described in the Methods section. Although this was not the best method based on sim-

ulation experiments, it did give similar activations patterns to HYBRID and required far

less computation time. In addition to the random 3D acquisition, we also acquired a 39-

slice image volume with a standard 2D sequence with the same finger tapping paradigm
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Figure 5.3: Several frames showing which kz platters are selected in the random 3D stack-

of-spirals sampling pattern. Each red line denotes a reconstruction frame boundary.

for comparison.

We processed the time series of magnitude images from both the standard 2D acquisi-

tion and the random 3D acquisition in SPM software for statistical analysis. The processing

pipeline consisted of motion correction, coregistration with an anatomical acquisition, and

smoothing with a 5× 5 × 5 mm Gaussian blur. Then, we applied GLM analysis and com-

pared the resulting activation maps.

5.3 Results

5.3.1 Simulation Results

Our acquired data size for reconstruction was 64 kx points × 21 ky locations per frame × 3

kz points × 1000 frames × 8 coils. The number of coefficients required to estimate U and

V was 64 × 64 × 3 × R for U and R × 1000 for V, where R was 30 for HYBRID, 20 for

SPARSE, and 50 for SLIDING. Thus, the low-rank reconstruction was about 1.2% of the

size of the original data for HYBRID, 0.8% the size of the original data for SPARSE, and

2.1% of the size of the original data for SLIDING. The most natural high-frequency signal

for the low-rank model is the respiratory signal, which affects the brain globally. We use

the phase of the center of k-space as a proxy for the respiration signal and plot the phase

from the original, high-temporal resolution simulation data and the three reconstruction

methods (HYBRID, SPARSE, and SLIDING) in Fig. 5.4. Fig. 5.4 shows that the period of

the respiration signal is accurately reconstructed with all three methods. As such, we expect
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Figure 5.4: Respiration signals from original and reconstructed data.

that features that arise from the respiratory signal in the reconstruction can be removed via

simple low pass filtering in a subsequent preprocessing step before functional analysis.

The results from the simulations show that all methods reasonably reproduced the ac-

tivations of interest while SPARSE and SLIDING introduced more false positives into the

data sets. We found in numerical experiments that the different methods required different

ranks for optimal reconstructions. In our figures below we only present results from each

method after optimizing the rank for that method. This resulted in HYBRID using a rank

R = 30, SLIDING using a rank R = 50, and SPARSE using a rank R = 20. The SLIDING

method required a particularly high rank since the sliding-window reconstruction of F was

inherently less stable relative to the regularizers used in SPARSE or HYBRID. Fig. 5.5

shows the time courses from the seed region for all three methods compared to the fully-

sampled case. All three methods generally recreate most of the features of the seed time

course, although SPARSE and SLIDING seem to overshoot peaks and troughs more than

HYBRID.

Fig 5.6 compares the resting-state motor network from the three reconstruction methods

with the seed region indicated in green. All of the methods recreate the primary activations

of interest, although SLIDING and SPARSE also introduce false activations outside the

region of interest. HYBRID yields a more conservative activation map than SLIDING due

to the temporal smoothness regularizer included in Step 5 of the proposed method. We

compared the consistency of the operators in an ROC plot in Fig. 5.7. Contrasting with the

results in Fig. 5.6, SPARSE was the best method according to ROC analysis. The areas
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Figure 5.5: Seed time courses from the proposed reconstruction methods.

under the curve for the three methods was 0.9650 for HYBRID, 0.9672 for SLIDING, and

0.9681 for SPARSE. We chose an identical correlation threshold for the activation maps in

Fig. 5.6, but the ROC curve analysis indicates that different thresholds may be necessary

for the different methods.

5.3.2 In Vivo Results

Our in vivo experiments collected a random 3D stack-of-spirals sequence where the kz

spiral platters were selected according to the sampling pattern shown in Fig. 5.1. Our

acquired data size for reconstruction was 8092 spiral points × 12 spiral platters per frame

× 386 frames × 8 virtual coils. The number of coefficients required to estimate a 50-

rank U and V was 64 × 64 × 39 × 50 for U and 50 × 386 for V. Thus, the low-rank

reconstruction was about 2.7% the size of the original data. As surrogate for comparing

the respiratory signal, we compare the original center of k-space phase to the reconstructed

in Fig. 5.8. The SLIDING method is able accurately reconstruct the center of k-space

respiratory time course, which is in agreement with the results from Fig. 5.4. Fig. 5.9

compares the activation maps between the proposed 3D method and a standard multislice

acquisition. The activation threshold was set to the same value (0.05 with familywise error

rate) with both methods, although we note that T-scores were much higher with the standard

multislice acquisition. The activation map from the SLIDING method was cleaner with

fewer false activations. However, SLIDING appeared to have a different sensitivity level,
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(a) (b)

(c) (d)

Figure 5.6: Examples of correlation maps from a resting-state task with different recon-

structions. The seed region is indicated in green. (a) correlation map calculated from the

original, high-temporal resolution data. (b) HYBRID, rank R = 30. (c) SLIDING, rank

R = 50. (d) SPARSE, rank R = 20.

as we also observed that cerebellum activation was not significant with SLIDING even

though it was significant with a standard acquisition. This can be seen in Fig. 5.10. We

note that the two data sets came from different runs of the same task.

5.4 Discussion

5.4.1 Model Comparisons for Estimating the Full-Rank Component

We compared three different methods for reconstruction F on simulation data: one with a

temporal roughness penalty, one with a temporal Fourier sparsity penalty, and that used a

simple sliding window reconstruction. All three of the methods generally performed well

for estimating the activations of interest. A major reason for the success of the methods is
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Figure 5.7: ROC Curve Comparing Reconstruction Methods.

the slowness of the BOLD hemodynamic response function (HRF). Since global physiolog-

ical effects like the respiratory rhythm are reconstructed in the estimate for L, the residual

from this initial low-rank procedure should only have low frequency signals present in it.

Conversely, the introduction of false activations by the SPARSE method indicates that

fMRI data are not exactly sparse. The low-rank plus sparse model appears to introduce too

much structure to the data for standard resting-state analysis. On the other hand, the sliding

window method may not be sophisticated enough to model all frame-to-frame temporal

features, which would be a reason for the larger number of false activations in SLIDING

vs. those of HYBRID.

The final result is that it is currently inconclusive what the best method is for con-

straining the full-rank component. It appears that SPARSE is the most sensitive method,

although it more quickly inserts false activations. This later seemed to be apparent in the

in vivo data where the reconstructions did not identify cerebellar activations and T-scores

were lower in general. We are not sure why we observed losses in the cerebellum, but it

could be that much of the information remaining the residual is noise and the SLIDING

method primarily decreases structure by adding noisy signal to the reconstruction. This

would serve to suppress activation. In the future we plan to further investigate other means

for constraining the full-rank part of the reconstruction that more carefully consider the

residual noise.
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Figure 5.8: Comparison of the normalized k-space center phase between the original and

reconstructed data as a surrogate for reconstructing the respiratory signal.

5.4.2 Development of New Statistical Analysis Methods

The use of a low-rank model effectively changes the number of degrees of freedom of

the data in a nonlinear fashion. This means that standard statistical assumptions (i.e., iid

Gaussian processes) are no longer satisfied. In this setting, it can be difficult to accurately

assess the degrees of freedom. As Figure 5.6 shows, the false positive rate can change

for different regularizers. In the future we plan to investigate the development of new

statistical analysis techniques that synthesize estimates of false positive rates from the data

itself. Nonparametric methods have previously been developed for fMRI [66], and we plan

to build on these previous methods for our own reconstruction technique.

5.4.3 Estimating the Cardiac Signal

Here we used a strictly low-rank assumption to reconstruct the high temporal frequency

effects in the fMRI signal. This assumption is very natural for the respiratory signal as

shown in Fig. 5.4. It is less clear that this model is effective for the cardiac signal. The

cardiac signal reaches vessels in the superior part of the brain later than those in the inferior.

This timing delay effectively requires a higher rank. Although the ranks we used were

well-above the simpleR = 1 that would be in principle necessary for respiratory, it may be

beneficial to develop a more rich model that explicitly handles cardiac.

Since the cardiac heartbeats are at fairly regular frequencies, one potential approach

would be to use a strictly Fourier sparse assumption that assumes the cardiac signal is
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(a) (b)

Figure 5.9: Examples of motor cortex activation patterns from a finger-tapping task. The

cursor is centered on the primary motor cortex. (a) shows activation from a standard mul-

tislice acquisition, while (b) shows the activation from a SLIDING reconstruction.

strictly localized to a small number of temporal frequencies. These frequencies could then

be estimated using a greedy algorithm such as orthogonal matching pursuit (OMP) [67].

Greedy algorithms have been explored loosely in fMRI previously [68, 69] and a summary

of greedy methods for MRI is given in Appendix A.

The basic idea behind a greedy algorithm is to perform a sequence of locally optimal

steps. In this case, the algorithm would begin with a set of candidate frequencies. Then, the

algorithm finds which frequency optimally fits the data in a least-squares sense, and this fit

to the data is subtracted from the data to create the residual. The procedure is then repeated

on the residual in a recursive manner until a stopping criterion is reached. For estimating

the cardiac signal, one could subtract the low-rank signal from the data first and then run a

greedy algorithm with candidate frequencies chosen to be common heart rate frequencies.

Since cardiac frequencies rarely overlap with those for respiratory or the BOLD activations

of interest, this procedure would be able to specifically target the cardiac signal.

5.4.4 Reconstruction Algorithms

Step 5 of the reconstruction process was typically the bottleneck for reconstruction speed

since it requires and a forward and a backward NUFFT operation for every time point,

coil, and iteration. In our reconstruction problem this requires 3072 forward and backward

NUFFT operators at each iteration, a prohibitive cost. This motivates the development of

more sophisticated reconstruction algorithms for this step.

The conjugate gradient algorithm currently used for step 5 is generally very good for
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(a) (b)

Figure 5.10: Examples of cerebellar activation patterns from a finger-tapping task. The cur-

sor is centered on the primary motor cortex. (a) shows activation from a standard multislice

acquisition, while (b) shows the activation from a SLIDING reconstruction.

quadratic problems; however, the computation of the gradient itself is prohibitively expen-

sive. One potential alternative is to use incremental gradient methods (also called ordered

subsets for PET and X-Ray CT imaging). These methods work by using a random subset of

the data to compute the gradient at each step of the algorithm. If the gradient is incoherent

across the data divisions, then the gradient computed from the subset of the data will be in

the same direction as the gradient from the entire data set. This approach was previously

explored for splitting up MRI data by coil in parallel imaging settings [70], but in this case

a more natural approach would be to take subsets of time points for the reconstruction.

5.4.5 Further Applications

Although we have presented acceleration of resting-state fMRI scans as the primary moti-

vation for the low-rank-plus-sparse model, other applications such as real-time fMRI [71]

may benefit from low-rank accelerations. These applications typically use fMRI data to

present the subject or patient with information on their brain state. The subject or patient is

then asked to modulate their brain state in response to this information. Low-rank accelera-

tions would improve these techniques since they would improve the contrast-to-noise ratio.

However, the low-rank methods outlined in this document typically had long reconstruc-

tion times (from 10 minutes for the simulation results to over a day for the in vivo results).

As such, an extension to real-time fMRI applications may require alterations of current

online low-rank algorithms (e.g., GRASTA [72]). These online low-rank algorithms can

give performance on par with those of offline algorithms, but require far less computation
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[73]. They typically require taking an alternative manifold-based approach to low-rank al-

gorithms that allows a more direct approach to low-rank modeling. We plan to investigate

such approaches in the future.

5.5 Conclusion

We have shown the efficacy of a hybrid low-rank model for use in fMRI. The hybrid model

estimates the effects of high-frequency signals, such as the respiratory signal, in addition

to accurately reproducing the functional BOLD signals of interest in fMRI. A tradeoff is

that the more sophisticated model may be less sensitive to certain activations. In the future

we plan to investigate further model advances, such as more advanced design of the high

pass filter used in Step 5 of the proposed reconstruction procedure, further comparison of

sampling patterns, and the incorporation of further modeling assumptions to remove the

cardiac signal.
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CHAPTER 6

Discussion and Future Work

This dissertation made a number of advances in the area of accelerating MRI scans. Chap-

ter 3 showed that when careful consideration of the sensitivity maps can lead to very fast

majorize-minimize algorithms for the ℓ1-regularized problems that are present in MRI with

compressed sensing. The resulting majorize-minimize algorithm takes step sizes that de-

pend on the sum of squares of the sensitivity maps. This means that BARISTA is best-used

in cases where the sensitivity maps are calculated by using a body coil normalization, since

the sum of squares will be relatively flat when normalizing by a coil image sum. Normal-

ization by a body coil may be a better way to calculate sensitivity maps in the compressed

sensing setting, since the optimization problem will naturally regularize more in low-signal

reasons. Conversely, coil image normalization would lead to an implicit assumption of

higher signal near the center of the brain, which would decrease regularization to a level

below what might be needed.

BARISTA only considered static majorizing functions based on the sensitivity maps,

but it may be possible to gain further accelerations by using information from each step

of the algorithm to update the majorizer. One possible way to do this would be by using

line search methods [74]. Another method previously discussed was to examine whether

proximal Newton methods (e.g. [36]) could also be used to speed convergence.

An alternative to the sensitivity map-based approach of BARISTA is to consider the

properties of the k-space sampling trajectory. Chapter 4 gave a mathematical framework

for designing a circulant majorizer based on the k-space trajectory and then designing an

algorithm that considered coupling between this circulant majorizer and the frequency lo-

calization property of the wavelet transform. This gave a 2-3 factor of acceleration in

2-norm convergence in the non-Cartesian setting, although we note that the main benefit

of this new approach was to speed convergence of the edges in the image. The 2-norm

mostly depends on the low frequency content of the image, so the benefits of CIRCMAJ

are underestimated by this metric and better-shown in Figs. 4.6 and 4.8.
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One difficulty is mathematically guaranteeing that the circulant majorizer routine out-

lined in Chapter 4 guarantees a majorizer when also considering the sensitivity maps. For

this setting, we considered sensitivity maps calculated with a sum of squares normalization.

This gave system matrices that could be thought of weighted averages of non-Cartesian

Fourier operators, so it seems natural that a majorizer designed solely based on the k-space

trajectory would remain valid with sensitivity maps. Nonetheless, further test cases are

necessary to fully-confirm this, and in the future we may investigate the use of backtrack-

ing [18] or monotonocity checks [28] to ensure stable performance of the algorithm in

a wide array of applications. Another application is to standard quadratic reconstruction.

Non-Cartesian SENSE reconstructions with subsampled data can be slow with the standard

conjugate gradient algorithm. CIRCMAJ represents a potential acceleration here, although

one would need to ensure that the conjugate gradient algorithm is properly preconditioned

when making comparisons.

In Chapter 5 we developed a new model for the purpose of accelerating fMRI scans.

The new model allows a richer class of signals than previous strictly low-rank methods

[13]. The in vivo experiments also showed that this method reproduced the activations of

interest in a motor task with suppressed noisy activations, although the sensitivity of the

method appeared to be less than that of a standard multislice method.

Our hybrid low-rank model required very long reconstruction times (on the order of a

few hours) in order to produce images. One potential way to speed the algorithm would

be to use incremental gradient techniques that have been explored already in PET [75],

X-Ray CT [24], and machine learning [76]. Convergence theory has been developed for

accelerating these methods with Nestov momentum [76] and applied in X-Ray CT [77].

In the future we would explore taking subsets of the time points for the reconstruction of

the full-rank component and applying these stochastic descent methods. Other extensions

to the fMRI model would be a more explicit modeling of the cardiac effects as outlined

in Section 5.4.3 and the addition of motion correction. Motion correction methods could

potentially be built into the forward model and then used in a conjugate gradient algorithm.

This has previously been applied in X-Ray CT with a similar cost function [78]. The

motion parameters themselves could be estimated using our center-of-k-space navigator

acquisition [79].

Another extension could include modification of the acquisition scheme. Currently,

multiband imaging techniques excite a sequence of slices and then apply a coherent 3D

readout to unalias the slices. This coherent 3D readout could be replaced with an incoherent

readout as described by us for our kz spiral samplign scheme. We could then apply the low-

rank reconstruction to each collection of simulatneously-excited slices. In our lab we have
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observed artifacts for multiband factors of 8 or more; this approach could potentially be

used to mitigate these artifacts rather than as an explicit acceleration scheme.
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APPENDIX A

Mathematical Tools For Partially-Separable

Models

A.1 Partially separable models and MRI

This appendix includes material from [80, 81]. This section begins with an overview of

partially separable models and how they define the structure of the system matrices AU and

AV when used in the context of the MR signal equation. Most of the formalism described

here is inspired by the papers of Liang [82] and Haldar [83].

A.1.1 The signal equation in the absence of multiple coils or field in-

homogeneity

We begin by recalling the partially separable model for the time evolution magnetization

in an MRI experiment. We consider magnetization evolutions that are piecewise constant

in time to simplify notation (specifically we do this so we can use t to denote time from

excitation at a later point). This assumption is implicit in other dynamic imaging stud-

ies [82, 84], although we note that magnetization evolutions over non-piecewise constant

time bases are a potential avenue for future investigation. Assuming piecewise constant

magnetization evolution, the partially separable model gives

m(x, n) =

R
∑

r=1

ur(x)vr(n), (A.1)

where n is a discrete time variable, {ur(x)}
R
r=1 is a set of spatial basis functions, and

{vr(n)}
R
r=1 is a set of temporal basis functions. Ignoring the effects of multiple coils and
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field inhomogeneity, the signal equation becomes

s(t, n) =

∫

m(x, n)e−ikn(t)·xdx

=

∫ R
∑

r=1

ur(x)vr(n)e
−ikn(t)·xdx

=
R
∑

r=1

vr(n)

∫

ur(x)e
−ikn(t)·xdx

=

R
∑

r=1

vr(n)ũr(kn(t)),

where ũr(kn(t)) is the spatial Fourier transform of ur(x). The set of functions {kn(t)}
N
n=1

specify which Fourier samples (k-space locations) are sampled at each time point. Suppose

there are M k-space locations of interest, then the samples of the signal ignoring noise can

be written as

s(km, n) =

R
∑

r=1

vr(n)ũr(km). (A.2)

This is possible since in the absence of field inhomogeneity and multiple coils, the partial

separability is maintained between the image domain and k-space domain since the signal

equation applies the spatial Fourier transform. Consider C̃ ∈ CM×N , the matrix formed by

from the elements of s(km, n):

C̃ =









s(k1, 1) . . . s(k1, N)
...

. . .
...

s(kM , 1) . . . s(kM , N)









. (A.3)

From the partially separable model, rank(C̃) ≤ R. We use the cumbersome notation, C̃, to

differentiate from the analogous matrix, C that can be formed in the image domain:

C =









m(x1, 1) . . . m(x1, N)
...

. . .
...

m(xM , 1) . . . m(xM , N)









. (A.4)

In reality we cannot sample all M Fourier coefficients at every time point, so we must

recover C̃ with only a subset of the data points. This is the so-called matrix completion

problem. In the absence of multiple coils or field inhomogeneity, recovery of C̃ or C are

equivalent problems; one can be converted into the other by a simple 2D or 3D Fast Fourier
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Transform (FFT) of the columns. Note that this is only true given images that are made up

of Dirac delta functions; it may be useful in the future to consider more realistic images.

However, the presence of multiple coils and field inhomogeneity typically necessitates the

recovery of C due to the fact that it is our ultimate object of interest. In the presence of field

inhomogeneity and multiple coils we have the so-called “matrix sensing problem.” System

models for this case are presented, although full development of associated algorithms

will take place over the proposed time period of the project. Since our ultimate object of

interest is C, we also have a matrix sensing problem in the absence of field inhomgeneity

and multiple coils, but to simplify computation we will just consider matrix completion for

C̃ for these cases.

A.1.2 Forward and adjoint operations under the partially separable

model

We will now consider the structures of the system matrices AŨ and AV. We begin with

the following definitions:

Ũ ∈ C
M×R, Ũm,r = ũr(xm)

ũ ∈ C
MR×1, ũ = vec(Ũ)

V ∈ C
R×N ,Vr,n = vr(n)

v ∈ C
NR×1,v = vec(V)

Y ∈ C
P×N ,Yp,n =

R
∑

r=1

ur(kbp,n)vr(n)

y ∈ C
D×1,y = vec(Y), D = PN

In the above definitions, bp,n 7→ m ∈ [1,M ] is an index variable that indexes the k-space

samples of choice according to the set of functions {kn(t)}
N
n=1. Noting that in practical

settings our data vector, y will be samples from C̃, we define the sampling operator, S(·),

such that y = S(ŨV). Alternatively, y can be written as matrix operations on ũ and v.

We define AV such that AVũ = y and AŨv = y. In practice AV and AŨ are too large

to store on many computers. In addition, these matrices are sparse, so it is inefficient to

implement them as actual matrices in a programming environment. As such, it is desirable

to describe the forward operation and the adjoint of each one of these matrices for practical

implementation purposes.

First, we will consider the matrix, AV. Consider the forward operation, y = AVũ.
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Under the definitions above, we have

Yp,n =
R
∑

r=1

ũr(kbp,n)vr(n). (A.5)

The adjoint, AH
V, satisfies

〈AVũ,y〉 =
〈

ũ,AH
Vy

〉

. (A.6)

Using the relations in (A.5) and (A.6), we can write

〈AVũ,y〉 =

N
∑

n=1

P
∑

p=1

(

R
∑

r=1

ũ(kbp,n)vr(n))(Yp,n)
∗

=
N
∑

n=1

P
∑

p=1

(
R
∑

r=1

vr(n)(
M
∑

m=1

ũr(km)1{bp,n=m}))(Yp,n)
∗

=

M
∑

m=1

R
∑

r=1

ũr(km)(

N
∑

n=1

P
∑

p=1

v∗r(n)1{bp,n=m}Yp,n)
∗

=
〈

ũ,AH
Vy

〉

,

where 1{·} denotes the indicator function and (·)∗ denotes the complex conjugate operation.

So the adjoint operation applied to y, AH
Vy, can be computed as

∑N
n=1

∑P
p=1 v

∗
r(n)1{bp,n=m}Yp,n,

which is essentially what MATLAB’s accumarray command does. This is useful for the

implementation of iterative algorithms.

An analogous relation exists for AŨ. Consider the forward operation, y = AŨv. This

can also be written as

Yp,n =
R
∑

r=1

ũr(kbp,n)vr(n). (A.7)

The adjoint operation, AH
Ũ
y satisfies

〈AŨv,y〉 =
〈

v,AH
Ũ
y
〉

. (A.8)
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Using the relations in (A.7) and (A.8), we can write

〈AŨ,y〉 =

N
∑

n=1

P
∑

p=1

(

R
∑

r=1

ũr(kbp,n)vr(n))(Yp,n)
∗

=

N
∑

n=1

R
∑

r=1

vr(n)(

P
∑

p=1

ũ∗r(kbp,n)Yp,n)
∗

=
〈

v,AH
Ũ
y
〉

,

so the adjoint operation applied to y, AH
Ũ
y, can be computed as

∑P
p=1 ũ

∗
r(kbp,n)Yp,n.

A.1.3 Matrix structure in least squares problems under the partially

separable model

We will now consider least squares problems involving the matrices AŨ and AV. We will

begin with the following minimization problem:

v̂ = argmin
v

1

2
‖y −AŨv‖

2
2 . (A.9)

From the normal equations, (A.9) has the solution,

v̂ = (AH
Ũ
AŨ)

−1AH
Ũ
y, (A.10)

assuming that AŨ has full column rank such that AH
Ũ
AŨ is invertible. Under the definitions

in Section A.1.2, AŨ has a block diagonal structure with N blocks of size P × R. This

structure provides a useful method for solving the minimization problem in (A.9). Since

AŨ is block diagonal, AH
Ũ
AŨ is also block diagonal with N blocks of size R × R. Thus,

the inverse of AH
Ũ
AŨ can be computed by finding the inverse of each individual block.

This technique is amenable to parallelization and leads to fast, accurate solutions of the

minimization problem in (A.9).

An analogous case exists for the matrix, AV, although it requires a permutation and a

definition of a new matrix. This is described in [85]. LetGm be the number of times k-space

location km is sampled such that Gm =
∑N

n=1

∑P
p=1 1{bp,n=m}. Define Wm ∈ NGm×N as

a matrix with 1s and 0 such that Wm has a 1 if the k-space location, km is sampled at time

n and a 0 otherwise. We avoid more formally defining this Wm since it would require even

more notation for low marginal benefit. Now consider the permutation of AV that arises

when we re-define ũ = vec(ŨT ), that is, we “group” all R components corresponding to
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k-space locationm together in the ũ vector. Consider a similar permutation on y, where the

entries in y are ordered first by k-space location and then by time. Lastly, let vr ∈ CN×1

correspond to the vector of samples obtained from vr(n). Then we have

AV =













W1v1 . . . W1vR 0

W2v1 . . . W2vR

. . .

0 WMv1 . . . WMvR













.

(A.11)

The matrix, AH
VAV, now has a block diagonal structure with M blocks. The mth block

has the form,

[AH
VAV]block m =









vH
1 W

H
mWmv1 . . . vH

1 W
H
mWmvR

...
. . .

...

vH
RW

H
mWmv1 . . . vH

RW
H
mWmvR









. (A.12)

So the least squares minimization problem,

ˆ̃u = argmin
ũ

1

2
‖y −AVũ‖

2
2 , (A.13)

can be solved via block inversion as was the case previously with AŨ.

A.1.4 Partially separable models in the presence of field inhomogene-

ity and multiple coils

When field inhomogeneity and multiple coils are considered, the signal equation at the lth

coil at time t from the nth excitation becomes

sl(t, n) =

∫

hl(x)m(x, n)e−iω(x)te−ikn(t)·xdx, (A.14)
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where hl(x) is the sensitivity map for the lth coil and ω(x) is the off-resonance field map.

Under the partially separable model, we have

sl(t, n) =

∫

hl(x)m(x, n)e−iω(x)te−ikn(t)·xdx

=

∫

hl(x)

R
∑

r=1

ur(x)vr(n)e
−iω(x)te−ikn(t)·xdx

=

R
∑

r=1

vr(n)

∫

hl(x)ur(x)e
−iω(x)te−ikn(t)·xdx

=
R
∑

r=1

vr(n)ũr(kn(t), t)

where the set of basis functions {ũr(kn(t), t)}
R
r=1 are no longer simply the Fourier trans-

forms of the basis functions, {ur(x)}, so in general partial separability is not preserved

between the image domain and the domain of the signal in these settings. Under certain

conditions, partial separability can be maintained. One such condition would be when the

same k-space location is not sampled at two different post excitation time points through-

out the experiment. This condition also requires an assumption that the field map, ω(x),

does not change during the experiment. To otherwise take advantage of partial separability,

image reconstruction problems in these settings must be formulated in the image domain.

A.2 Greedy algorithms with partially separable models

In this section we will consider the greedy pursuit algorithm presented in this work. We

will begin with the simple cases without multiple coils or field inhomogeneity outlined

in Section A.1.1 and then note possible extensions and relevant literature for formulating

these extensions.

A.2.1 DCS-SOMP introduction

We assume that the temporal basis vectors {vr(n)}
R
r=1 are elements from a dictionary, Φ. In

another way, it only requires R elements from Φ to completely describe the time evolution

of all fMRI images. Given this assumption, the reconstruction problem can be formulated

as a minimization problem. Let Λ be an index set that indexes elements from Φ and let the

| · | operator denote the cardinality of a set. Then, we would like to solve the following
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problem:

Λ̂ = argmin
Λ⊂Ω

|Λ| such that

∥

∥

∥
y − S( ˆ̃CΛ)

∥

∥

∥

2

2
< ǫ . (A.15)

At the end of solving this problem, we would form
ˆ̃
CΛ̂, the optimal least squares approx-

imation to C̃ using the elements from Φ selected by Λ̂. The problem described by (A.15)

is generally an NP-hard problem, so we resort to greedy methods. The greedy algorithm

described here is based on orthogonal matching pursuit (OMP) [86, 67]. Many OMP al-

gorithms are designed for a single measurement vector. Under the conditions of multiple

measurement vectors, if these vectors are assumed to be jointly sparse then simultaneous

orthogonal matching pursuit can be used [87]. If the dictionary changes for each mea-

surement vector, DCS-SOMP can be used [88]. Algorithm A.1 describes a DCS-SOMP

algorithm for dynamic MR image reconstruction. In Algorithm A.1, Rj denotes the resid-

Figure A.1: DCS-SOMP

1: initialize Λ0 = ∅, ˆ̃C0 = 0,S = 0

2: while ‖Rj‖
2
F > ǫ do

3: λj = argmax
λ∈Ω,λ/∈Λj

∑M
m=1

|〈Rj−1em,φλ〉Wm
|2

〈φλ,φλ〉WH
mWm

4: Λj = Λj−1 ∪ {λj}
5: Vj = ΦΛj

6: ũj = argmin
ũ

1
2

∥

∥y −AVj
ũ
∥

∥

2

2

7:
ˆ̃
Cj = ŨjVj

8: Rj = Y − S( ˆ̃Cj)
9: j = j + 1

10: end while

ual at iteration j, λ denotes a single element from an index set, Ω is the set of all possible

indices for elements from Φ, φλ denotes a single element from Φ indexed by λ, and ΦΛ re-

turns all the elements from Φ indexed by Λ. Intuitively, at each iteration DCS-SOMP finds

the element from Φ that best spans the residual, Rj . “Best” in this sense means “minimizes

the mean squared error of approximation,” and in this case is accomplished by taking a

maximum over the inner products in Step 3. The residual is updated in Step 6, which can

be solved using the fast methods described in Section A.1.3. A proof that the maximization

over the inner products finds the optimal element from Φ is given in the next section.
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A.2.2 Finding the Optimal Element From the Dictionary

More notation is necessary for this section. Let rj = vec(Rj), and we will assume that it

is ordered as described in the second part of Section A.1.3. At the jth step, we would like

to solve the following problem:

λj = arg min
λ∈Ω,λ/∈Λj

min
ũ

1

2
‖rj −AVλ

ũ‖22 (A.16)

We use the normal equations to find the solution to the inner minimization problem such

that ũ = (AH
VAV)

−1AH
Vrj . Substituting for ũ and expanding for the second minimization

gives

λj = argmin
λ∈Ω,λ6∈Λj

1

2
rHj rj − rHj AVλ

(AH
Vλ

AVλ
)−1AH

Vλ
rj

+
1

2
rHj AVλ

(AH
Vλ

AVλ
)−1AH

Vλ
AVλ

(AH
Vλ

AVλ
)−1AH

Vλ
rj.

(A.17)

By recognizing that the minimization does not depend on sHj sj and applying the appropriate

simplifications, we can convert the problem to

λj = argmax
λ∈Ω,λ6∈Λj

rHj AVλ
(AH

Vλ
AVλ

)−1AH
Vλ

rj. (A.18)

Since λ selects a single element from Ω, the matrices, {AVλ
}λ∈Ω,λ/∈Λj

have a special form.

Specifically, they have the form described in the second part of Section A.1.3 for the case

where R = 1 and v1 = φλ. This means that the term, AH
Vλ

AVλ
, is diagonal and the term

AH
Vλ

rj consists of inner products between parts of the residual and the element of the dic-

tionary selected by λ. Applying these definitions gives the final form for this optimization

step:

λj = argmax
λ∈Ω,λ/∈Λj

M
∑

m=1

| 〈Rj−1em, φλ〉Wm
|2

〈φλ, φλ〉WH
mWm

. (A.19)

This formulation is useful particularly for the DFT dictionary, since the inner products

can be computed using FFTs and the normalization factor is simply the number of times

k-space location m is sampled during the experiment.

A.2.3 DCS-SOMP with field inhomogeneity and multiple coils

In the presence of field inhomogeneity the signal equation takes on the form described in

Section A.1.4. However, as shown in Section A.1.4 the field inhomogeneity and multiple

coils do not change the fact that the k-space samples still lie in the span of a small set
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of complex exponentials. This would suggest that we can leave Step 3 of the DCS-SOMP

algorithm unchanged; however, this step was derived assuming some sort of “grouping” be-

ing applied to the k-space samples of {ũr(kn(t))}
R
r=1 that can be done when partial separa-

bility is preserved between the image and signal domains, but in general kn(t) can change

with each time point we cannot assume preservation of partial separability for the proof

in Section A.2.2 to show that the optimization over the inner products yields the optimal

complex exponential at iteration j. However, if the alterations made by coil sensitivities

and field inhomogeneity are small, then the inner product optimization may still yield the

correct set of complex exponentials. In addition, the approximation routine in Step 6 of the

DCS-SOMP algorithm can be done while considering field inhomogeneity and multiple

coils. For now, we will ignore field inhomogeneity in this step while accounting for the

multiple coils, with the possibility of considering more sophisticated methods of selecting

the basis in the future.

Considering the assumptions outlined above, the only new consideration is the approxi-

mation routine in Step 6. We will rely on the results of Pruessman [1] to modify the system

matrix and solve this step. Essentially, the presence of multiple coils necessitates a new

system matrix, A. This matrix contains elements of coil sensitivities and the partially sep-

arable model. The final approximation would also include field inhomogeneity; we will

rely on the results of Sutton [16] for solving this step. As shown in Section A.1.4, ex-

pansions along each of these variables can be permuted in different orders. When using

iterative algorithms such as conjugate gradient to solve Step 6, the system matrix should

be designed such that the order of operations is optimized for speed. Alternatively, since

reconstructions considering field inhomogeneity, partial separability, and coil sensitivities

separately are computationally more simple, a variable splitting approach may yield sig-

nificant speed-up time for this step [7]. We will explore using both conjugate gradient and

variable splitting algorithms for optimizing the speed of this step.
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APPENDIX B

Supplementary Results for BARISTA

This appendix includes material from [8]. This section shows convergence results from a

numerical brain phantom, a real breast phantom, and an American College of Radiology

(ACR) phantom to supplement those shown in “Fast Parallel MR Image Reconstruction via

B1-Based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA),” IEEE

Transactions on Medical Imaging.

B.1 Experiment with synthetic data

The synthetic data set was generated by downloading an image from the BrainWeb data

base [89] and simulating eight receive sensitivity coils using the methods from [45]. The

data were sampled using a Poisson-disc sampling pattern with a densely sampled 32-by-32

center similar to Fig. 6b in the main paper body. Sensitivity coil profiles were estimated

from noisy, simulated data using a central 32-by-32 block of kspace via the methods in [4].

About 20% of the fully-sampled data were used for reconstruction. Reconstructions were

then run using orthogonal Haar wavelets, orthogonal Daubechies D4 wavelets, anisotropic

total variation, and 2-level undecimated Haar wavelets as regularizers. Regularization pa-

rameters were chosen to give visually appealing images. Fig. B.1 shows the true simulation

image and reconstructions using orthogonal Haar (Fig. B.1c), orthogonal Daubechies D4

(Fig. B.1d), total variation (Fig. B.1e), and 2-level undecimated Haar wavelet (Fig. B.1f)

regularizers. Fig. B.1a shows the sum of squared absolute values of the sensitivity coils. We

show the sum of squares instead of the square root sum of squares since the sum of squares

is more relevant to the behavior of AHA. Fig. B.2 shows convergence results for the four

regularizers on this synthetic data set. We plot the normalized residual, ξ(k), defined as

ξ(k) = 20 log10

(

‖x(k)−x(∞)‖
2

‖x(∞)‖
2

)

, (B.1)
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where x(∞) is a “converged solution” obtained by running many thousands of iterations of

the AL-based methods.

Figures B.2a and B.2b are similar to those in Figures 2c and 2d in [19]. Figures B.2c

and B.2d show some acceleration of AL methods with optimal tuning in early iterations

with anisotropic total variation and 2-level undecimated Haar wavelet regularizers, but

BARISTA reaches single precision faster than the AL-based methods. BARISTA used

the exact same parameters as in the in vivo experiments in [8], whereas extensive time was

spent re-tuning the AL-based methods to achieve the results shown. Of particular interest

is the AL method with the dynamic µ updates with parameters from [31], which stalls in

early iterations. The AL method with dynamic µ updates was initialized with one of the

good, manually-tuned parameters, but the µ update heuristics quickly increased the magni-

tude of µ. This data set required rather small µ parameters compared to the other data sets,

which may be due to the fact that the true image and SENSE maps were orders of magni-

tude different in intensity. Such issues could be mitigated by always ensuring appropriate

normalizations of the SENSE maps and data, but the convergence speed results here also

show that BARISTA is robust when such normalizations are not performed.

B.2 Experiment with breast phantom data

We also obtained a SENSE breast phantom imaging data set for numerical experiments that

had been used for a previous paper [4]. The breast phantom consisted of two containers

plastered with vegetable shortening and filled with “Super Stuff” bolus material (Radiation

Products Design Inc. Albertville, MN). Four surface coils were used in the experiment.

The data were sampled using a Poisson-disc sampling pattern similar to that in Fig. 6b

in [8] with a densely-sampled 32-by-32 center in the orthogonal wavelets case and a 32-

by-16 center in the anisotropic total variation and undecimated Haar wavelets case. The

sensitivity coil profiles were estimated using the data from the densely-sampled center

using the methods described in [4]. About 20% of the fully-sampled data were used for

reconstruction. Fig. B.3 shows reconstructed images of real breast phantom data for each

of the four regularizers of interest (orthogonal Haar, orthogonal Daubechies D4, anisotropic

total variation, and 2-level undecimated Haar wavelets). Figure B.4 shows the convergence

speed results for the breast phantom imaging data set. Figures B.4a and B.4b are similar

to those in Figures 2c and 2d in [19]. BARISTA was the fastest method for all four of the

regularizers of interest for this data set.
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B.3 Experiment with ACR phantom data

We also obtained a new SENSE ACR phantom data set for numerical experiments. The

phantom was scanned with a GE MR 750 scanner with a 32-channel receive array (Nova

Medical Group). The phantom was scanned with a 256-by-256 grid and then retrospec-

tively downsampled with a Poisson-disc sampling pattern similar to that in Fig. 6b in [8]

with a densely-sampled 32-by-32 center. The sensitivity coil profiles were estimated using

the data from the densely-sampled center using the methods described in [4]. About 20%

of the fully-sampled data were used for reconstruction. Since our previous experiments in-

dicated that BARISTA and AL methods were converging to the same solution, in this case

we calculated x(∞) with BARISTA to minimize the time to run the numerical experiments.

The SENSE maps from this experiment and the reconstructed x(∞) for each regularizer are

shown in Fig. B.5.

Fig. B.6 shows convergence speed results for the ACR phantom data set. Figures B.6a

and B.6b are similar to those in Figures 2c and 2d in [19]. BARISTA was the fastest method

for all four of the regularizers of interest for this data set.

B.4 Experiments with masking

We also compared convergence speed between BARISTA and the AL-based methods with

image-domain masks for total variation and 2-level undecimated Haar wavelet regularizers

for each data set. “Converged” images were calculated using BARISTA. All other experi-

mental parameters were the same as run previously. Masks were calculated by first thresh-

olding the x(∞) image magnitude at 10% of the maximum magnitude, then performing a

10-by-10 dilation of the mask (20-by-20 dilation for the ACR phantom). Our goal is not to

propose a method for doing masked SENSE, but to simply examine algorithm performance

with a mask. Examples of image-domain masks for each data set are shown in Fig. B.7.

Fig. B.8 shows convergence results using an image domain mask for each of the four data

sets. Figs. B.8a and B.8b are similar to Fig. 10 in the main paper body. Figs. B.8c and

B.8d are similar to B.2c and B.2d, respectively. Figs. B.8e and B.8f are similar to B.4c and

B.4d, respectively. Figs. B.8g and B.8h are similar to B.6c and B.6d, respectively. Also of

note is that BARISTA converged at least twice as fast when using an image domain mask,

so masking appears to be desirable both from an image quality and a convergence speed

perspective.
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Figure B.1: Examples of true and reconstructed images from the simulated data set. (a)

Sum of squared absolute values of the estimated sensitivity coil profiles for the numerical

phantom experiment with areas outside the brain masked for presentation. (b) The ground

truth x used for the numerical simulations. (c) The reconstructed x(∞) using orthogonal

Haar wavelet regularization, NRMSE of 2.6%. (d) The reconstructed x(∞) using orthogonal

Daubechies D4 wavelet regularization, NRMSE of 2.6%. (e) The reconstructed x(∞) using

total variation regularization, NRMSE of 2.9%. (f) The reconstructed x(∞) using 2-level

undecimated Haar wavelet regularization, NRMSE of 2.7%.
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Figure B.2: Convergence speed results from fully synthetic data. Markers are placed at

30-iteration intervals for all algorithms. (a) Orthogonal Haar wavelet regularizer. (b) Or-

thogonal Daubechies D4 wavelet regularizer. (c) Anisotropic total variation regularizer. (d)

Undecimated Haar wavelet regularizer.
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(a) SENSE Map Sum of Squares

(b) Orthogonal Haar Regularizer

(c) Orthogonal D4 Regularizer

(d) Total Variation Regularizer

(e) Undecimated Haar Regularizer

Figure B.3: Examples of reconstructed images from the breast phantom imaging data set.

(a) Sum of squared absolute values of the estimated sensitivity coil profiles for the real

breast phantom. (b) The reconstructed x(∞) using orthogonal Haar wavelet regularization.

(c) The reconstructed x(∞) using orthogonal Daubechies D4 wavelet regularization. (d)

The reconstructed x(∞) using total variation regularization. (e) The reconstructed x(∞)

using 2-level undecimated Haar wavelet regularization.

86



0 10 20 30 40 50 60
-140

-120

-100

-80

-60

-40

-20

0

tk (seconds)

ξ(
k
)
(d
B
)

 

 
AL, µ = 20

AL, µ = 22

AL, dynamic µ
AL, µ = 21

BARISTA

(a) Orthogonal Haar Regularizer

0 10 20 30 40 50 60 70 80
-140

-120

-100

-80

-60

-40

-20

0

tk (seconds)
ξ(
k
)
(d
B
)

 

 
AL, µ = 22

AL, µ = 20

AL, dynamic µ
AL, µ = 21

BARISTA

(b) Orthogonal D4 Regularizer

0 20 40 60 80 100 120 140 160 180
-140

-120

-100

-80

-60

-40

-20

0

tk (seconds)

ξ(
k
)
(d
B
)

 

 
AL, dynamic µ
AL, µ = 23

AL, µ = 24

AL, µ = 25

BARISTA

(c) Total Variation Regularizer

0 50 100 150 200 250 300
-140

-120

-100

-80

-60

-40

-20

0

tk (seconds)

ξ(
k
)
(d
B
)

 

 
AL, dynamic µ
AL, µ = 23

AL, µ = 24

AL, µ = 25

BARISTA

(d) Undecimated Haar Regularizer

Figure B.4: Convergence speed results from breast phantom imaging data. Markers are

placed at 50-iteration intervals. (a) Orthogonal Haar wavelet regularizer. (b) Orthogonal

Daubechies D4 wavelet regularizer. (c) Anisotropic total variation regularizer. (d) Undeci-

mated Haar wavelet regularizer.
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Figure B.5: Examples of sum of SENSE maps and reconstructed images from the ACR

phantom data set. (a) Sum of squared absolute values of the estimated sensitivity coil

profiles for the ACR phantom data set. (c) The reconstructed x(∞) using orthogonal

Haar wavelet regularization. (d) The reconstructed x(∞) using orthogonal Daubechies D4

wavelet regularization. (e) The reconstructed x(∞) using total variation regularization. (f)

The reconstructed x(∞) using 2-level undecimated Haar wavelet regularization.
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Figure B.6: Convergence speed results from ACR phantom imaging data. Markers are

placed at 30-iteration intervals. (a) Orthogonal Haar wavelet regularizer. (b) Orthogonal

Daubechies D4 wavelet regularizer. (c) Anisotropic total variation regularizer. (d) Undeci-

mated Haar wavelet regularizer.

89



(a) In vivo brain mask (b) BrainWeb numerical phantom mask

(c) Breast phantom mask (d) ACR phantom mask

Figure B.7: Examples of image-domain masks for each of the four data sets. (a) Mask for

the in vivo brain data set. (b) Mask for the BrainWeb numerical phantom. (c) Mask for the

breast phantom. (d) Mask for the ACR phantom.
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wavelets

0 20 40 60 80 100 120
-140

-120

-100

-80

-60

-40

-20

0

tk (seconds)

ξ(
k
)
(d
B
)

 

 
AL, dynamic µ
AL, µ = 23

AL, µ = 24

AL, µ = 25

BARISTA

(e) Breast phantom, total variation

0 20 40 60 80 100
-140

-120

-100

-80

-60

-40

-20

0

tk (seconds)

ξ(
k
)
(d
B
)

 

 
AL, dynamic µ
AL, µ = 23

AL, µ = 24

AL, µ = 25

BARISTA

(f) Breast phantom, undecimated

wavelets
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(g) ACR phantom, undecimated

wavelets
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Figure B.8: Convergence speed results from the algorithms using a mask. Markers are

placed at 30-iteration intervals, except for the in vivo brain data set where they are placed

at 100-iteration intervals.
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“Multiband multislice ge-epi at 7 tesla, with 16-fold acceleration using partial parallel

imaging with application to high spatial and temporal whole-brain fmri,” Mag. Res.

Med., vol. 63, no. 5, pp. 1144–1153, 2010.

[56] S. M. Smith, C. F. Beckmann, J. Andersson, E. J. Auerbach, J. Bijsterbosch,

G. Douaud, E. Duff, D. A. Feinberg, L. Griffanti, M. P. Harms, M. Kelly, T. Lau-

mann, K. L. Miller, S. Moeller, S. Petersen, J. Power, G. Salimi-Khorshidi, A. Z.

Snyder, A. T. Vu, M. W. Woolrich, J. Xu, E. Yacoub, K. Uğurbil, D. C. V. Essen, and
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