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ABSTRACT

Topics in steady-state MRI sequences and RF pulse optimization

by

Hao Sun

co-chair: Jon-Fredrik Nielsen

co-chair: Jeffrey A. Fessler

Small-tip fast recovery (STFR) is a recently proposed rapid steady-state magnetic

resonance imaging (MRI) sequence that has the potential to be an alternative to the

popular balanced steady-state free precession (bSSFP) imaging sequence, since they

have similar signal level and tissue contrast, but STFR has reduced banding arti-

facts. In this dissertation, an analytic equation of the steady-state signal for the

unspoiled version of STFR is first derived. It is shown that unspoiled-STFR is less

sensitive to the inaccuracy in excitation than the previous proposed spoiled-STFR.

By combining unspoiled-STFR with jointly designed tip-down and tip-up pulses, a

3D STFR acquisition over 3-4 cm thick 3D ROI with single coil and short RF pulses

(1.7 ms) is demonstrated. Then, it is demonstrated that STFR can reliably de-

tect functional MRI signal using human experiments and test-retest reliably analysis,

and the contrast is driven mainly from intra-voxel dephasing, not diffusion, using

Monte Carlo simulation. Following that another version of STFR that uses a spec-

tral pre-winding pulse instead of the spatially tailored pulse is investigated, leading

to less T2* weighting, easier implementation compared to the spatial implementa-

tion. Multidimensional selective RF pulse is a key part for STFR and many other

MRI applications. Two novel RF pulse optimization methods are proposed. First,

a minimax formulation that directly controls the maximum excitation error, and

an effective optimization algorithm using variable splitting and alternating direction

method of multipliers (ADMM). The proposed minimax method reduced the maxi-

mum excitation by more than half in all the testing cases. Second, a method that

xx



jointly optimizes the excitation k-space trajectory and RF pulse is presented. In this

method, the k-space trajectory is parametrized using 2nd-order B-splines, and an

interior point algorithm is used to explicitly solve the constrained optimization. The

proposed method improves excitation accuracy for all the initializations being tested.

An effective initialization method is also suggested. The joint design reduced the

NRMSE by more than 30 percent compared to existing pulse designs in inner volume

excitation and pre-phasing problem, and the computation is fast enough for online

pulse design. Using the proposed joint design, rapid inner volume STFR imaging with

a 4 ms excitation pulse with single transmit coil on a clinical scanner is demonstrated.

Finally, a regularized Bloch-Siegert B1 map reconstruction method is presented that

can significantly reduce the noise in estimated B1 maps.
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CHAPTER I

Introduction

Magnetic resonance imaging (MRI) is a popular medical imaging modality for

its good soft tissue contrast, no ionizing radiation, and ability to detect functional

signal. MRI relies on a properly designed sequence of time varying RF and gradient

field (pulses) to excite the spins inside the object. Then the signal from the spins is

spatially encoded using gradient field waveforms for image reconstruction later. To

fully encode the excited spins in an object without aliasing artifacts, a relatively long

readout gradient waveform has to be transmitted. However, a long readout waveform

can lead to signal drop, geometric distortion, or blurring in the final image, due to T2

decay and B0 field inhomogeneity. Also, the object may be moving during the long

readout gradient in some applications (e.g., cardiac MRI). Therefore, it is desirable to

divide the readout gradient waveform into segments and only acquire one or several

segments after each excitation, so each readout time can be short. As the number

of segments increases, it is better to have shorter repetition time (TR) so the total

scan time can be relatively short. Therefore, sequences with TR even shorter than

T2 has been widely used in MRI. Spins can not fully recover to their equilibrium

with such a short TR, so there is signal oscillation in the beginning of the sequence.

After a several seconds, spins achieve steady state, and steady-state imaging is to

only acquire signal after spins enter steady state.

Balanced steady-state free precession (bSSFP) is one of the short TR steady-state

sequences that has been widely used in many applications, due to its high signal to

noise ratio, and useful tissue contrast. However, it suffers from off-resonance banding

artifacts [79]. Numerous methods have been proposed in the past decade for correcting

these artifacts, however, all of these methods sacrifice signal strength and/or imaging

time, and are not universally applicable to all bSSFP applications. My co-advisor

Jon Nielsen recently proposed a new steady-state imaging sequence named “small-tip
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fast recovery” (STFR) sequence, that can acquire bSSFP-like images in a single scan,

but with removed/reduced banding artifact.

However, it is challenging to implement STFR in practice, due to the need for

accurate tailored RF pulses, especially in 3D imaging since the required 3D tailored

pulse can be prohibitively long. In chapter III, I derive the steady-state signal equa-

tion of the unspoiled version of STFR and demonstrate that it is less sensitive to

excitation error than the previously proposed spoiled-STFR. I also propose to jointly

design the tip-down and tip-up pulse. With those two strategies, we demonstrate 3D

ROI imaging over a 3-4 cm thick volume using a standard quadratic transmit/receive

coil and short tailored 3D RF pulse of 1.7 ms duration [91, 87, 93].

The STFR sequence using a spatially tailored pulse has very similar image con-

trast to bSSFP, but with a key difference: it has some T2*-like contrast induced by

intra-voxel dephasing. Therefore, it is possible to be used in functional MRI (fMRI)

to detect the blood oxygenation level dependent (BOLD) signal. In Chapter IV, I

confirm this hypothesis using Monte Carlo Bloch simulation and in vivo experiment.

Our simulations suggest that the functional contrast is driven primarily by static

dephasing, not diffusion. Our in vivo experiments and test-retest reliability analysis

suggest that STFR can be used as a reliable fMRI sequence [97, 64, 90].

On the other hand, one may want to reduce the T2*-like weighting of STFR

images in some applications. In Chapter V, we propose another version of the STFR

sequence named spectral-STFR that has less T2* influence. In spectral-STFR, we use

a spectral pre-winding pulse instead of a spatially tailored pulse. The spectral-STFR

has the additional advantages that it can be pre-computed since no field map must

be acquired, and is easier to implement in practice [92, 89].

The key to successful STFR imaging is to design a short multidimensional selec-

tive excitation pulse that pre-phases spins in the object. In conventional selective

excitation pulse design, the k-space (gradient) trajectory is pre-defined, allowing the

RF waveform to be obtained using linear least-squares optimization, but leading to

suboptimal excitation accuracy. Designing the k-space trajectory jointly with RF

waveform poses a non-linear, nonconvex, constrained optimization problem with rel-

atively large problem size that is difficult to solve directly. Existing joint pulse design

approaches are therefore typically restricted to predefined trajectory types that in-

trinsically satisfy the gradient maximum and slew rate constraints. In Chapter VII,

I propose to use a 2nd-order B-spline basis that can be fitted to an arbitrary k-

space trajectory, and allows the gradient constraints to be considered explicitly and

efficiently. I investigate several constrained optimization algorithms and find the in-
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terior point algorithm to be the best choice in our setting. I also extend the existing

KT-points method to form a continuous RF pulse and demonstrate that it is a good

initialization to our algorithm. With our proposed joint design method, we are able

to achieve substantial improvement in excitation accuracy for a given pulse duration

compared to existing methods in both of our testing cases: inner volume excitation

and pre-phasing problem. The computation time is fast enough for online applica-

tions [88].

In addition to pre-phasing in the STFR sequence, the multidimensional selective

pulse can also be used in inner volume imaging (IVI). Existing 3D IVI method using

conventional RF pulse design needs a more than 12 ms RF pulse, even with 8 channel

parallel transmit coil. This pulse length can be too long for many rapid steady-

state imaging sequences, and also the parallel transmit hardware is not accessible to

every MRI scanner. In Chapter VIII, we propose to combine our joint pulse design

method with the STFR sequences for rapid steady-state IVI, that enables us to achieve

successful inner volume imaging with bSSFP-like image contrast, using a 4 ms RF

pulse and single transmit coil [94].

Existing pulse design methods typically regulate the l2 norm of the excitation

error instead of the maximum error, which may lead to dark or light spots in the

final image. In Chapter VI, we propose a pulse design formulation that directly

minimizes the maximum error. We also propose an optimization algorithm using

variable splitting and ADMM, that can efficiently solve this minimax problem. Our

proposed minimax pulse design reduces the maximum error by more than half, in all

our testing cases [96].

Transmit coil sensitivity mapping (B1 mapping) is an important step for pulse

design, especially in parallel transmission. The popular Bloch-Siegert B1 map recon-

struction method can have large noise in the low image magnitude region, significantly

affecting subsequent RF pulse designs. In Chapter IX, we propose a regularized es-

timation method for the Bloch-Siegert B1 map that significantly reduce the noise in

final estimate. We propose a marjorize-minimization method that essentially con-

verged in just 3 iterations within 0.1 sec [95].

The chapters after this introduction are organized as follows. Chapter II briefly

introduces the background about MRI physics, RF pulse design, steady-state imag-

ing, and functional MRI. Chapters III to Chapter V cover three projects related to

STFR: strategies for improving 3D STFR (Chapter III); functional MRI using the

STFR sequence (Chapter IV); and STFR using spectral pre-winding pulse (Chap-

ter V). Chapter VI describes the minimax pulse design method. In Chapter VII, I
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present our joint design of excitation k-space and RF pulse. Chapter VIII demon-

strates using joint RF pulse design and STFR for rapid steady-state IVI imaging.

Chapter IX presents the regularized Bloch-Siegert B1 map reconstruction method.

Finally, Chapter X summarizes future work.
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CHAPTER II

Background

2.1 MRI Physcis

2.1.1 Spin and bulk Magnetization

To understand the MRI physics, we begin with the object to be imaged. A

physical object can be broken down into its constituent molecules, then to atoms,

and then to nuclei and their orbiting electrons. A fundamental property of nuclei

is that those with odd atomic weights or odd atomic numbers possess an angular

momentum ~J ; such a nucleus is referred to as spin. Although the behaviour of spin

is characterized by quantum mechanics, it can also be viewed as a physical rotation

similar to the rotation of a top around its axis in a classical vector model. Similar

to other rotating charged bodies, spins can possess a magnetic moment, which is

represented as a vector quantity ~µ. To describe the collective behaviour of a spin

system, a macroscopic magnetization vector ~M is introduced as ~M =
∑Ns

n=1 ~µn, where

~µn represents magnetic moment of the nth nuclear spin and Ns is the number of spins

within a certain volume. ~M is a three dimensional vector [Mx,My,Mz] and the

detected signal strength is proportional to the transverse part |Mx+ ıMy|. Among all

the spins, Hydrogen(1H) is the most abundant in the body and produces the largest

signal, therefore, it is imaged in most of our studies in human MRI. It is worth noting

that in MRI field, people often use “spin” to refer the magnetization vector ~M , and

I will follow this convention in the proposal report.

2.1.2 Three Magnetic Fields

Three magnetic field are used in magnetic resonance imaging: the main field ( ~B0),

the radio-frequency (RF) field ( ~B1), and a field gradient (~G). Without an external

magnetic field, the spins in the body are randomly oriented resulting in a net magnetic
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moment of zero. However, in the presence of an external magnetic field, ~B0, the

spins align either parallel (spin up) or anti-parallel (spin down) to ~B0. By quantum

physics, the spin up state is in lower energy state and thus there are more spins in this

state. Also, although there is a microscopic transverse component for each magnetic

moment vector ~µ, the traverse component of the macroscopic magnetization vector ~M

is zero in equilibrium because the precessing magnetic moments have random phases.

Therefore the macroscopic effect of an external field ~B0 on an ensemble of nuclei with

non-zero spins is the generation of an observable bulk magnetization vector M along
~B0 direction. By convention, the direction of ~B0 is referred to as longitudinal or z

direction.

Figure 2.1: Magnetization vector precesses around B0 field at Larmor frequency

If ~M is tipped away from z-direction, it will precess around the z-direction at the

Larmor frequency, ω:

ω = γB

where γ is the gyromagnetic ratio and B is the magnetic field strength. For Hydrogen,

γ/2π = 42.58 MHz/T, which yield a Larmor frequency of 127.7 MHz for a field

strengh of 3T. Ideally, we want ~B0 to be uniform magnitude, but there is always

some field inhomogeneity ( ∆ ~B0(r) ) in practice, depending on the strength of main

field, the shimming, and the subject inside of the scanner. The resulting frequency

inhomogeneity in a 3T scanner is typically within -200 Hz to 200 Hz over a human

brain.

Establishment of a phase coherence among these randomly precessing spins in

a magnetized spin system is called resonance. By quantum model, we can achieve

resonance condition by applying another external magnetic field in xy-plane rotating

with frequency ωrf = ω. This magnetic field is often referred to as radio-frequency

(RF) field or ~B1 field. The magnitude of ~B1 is much weaker, which is in the order

of tens of µT , while ~B0 ranges from hundred of mT to tens of T . A typical ~B1 field
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takes the following form:

~B1(t, r) = S(r)Be
1(t)(cos(ωrf t+ φ)~x− sin(ωrf t+ φ)~y)

where, S(r) is the spatially varying transmit sensitivity, Be
1(t) is the complex number

pulse envelope, ωrf is the excitation carrier frequency, and φ is the initial phase angle.

S(r) is typically assumed to be uniform in the low field single coil excitation, but it

can spatially varying a lot in high field MRI and parallel excitation. The process of

measuring the actual transmit sensitivity is called B1 mapping [75].

Figure 2.2: RF field(B1) is rotating in xy-plane

In the presence of only ~B0, all the spins precess at the same frequency (ω0 = γ ~B0).

Thus there is no way to excite or detect a specific region of interest. To achieve spatial

localization, a spatially varying magnetization field with linear gradient is applied in

the same direction with ~B0, called gradient magnetic field. Thus, the total magnitude

field pointing to the longitudinal direction becomes: B0 +Gx(t)x+Gy(t)y +Gz(t)z,

where Gx(t), Gy(t), Gz(t) are the time varying spatial gradient in the x, y, and z

direction, respectively. The gradients are typically within the range (±50 mT/m),

and the time varying slew rate of the gradients are typically limited between -200

mT/m/s and +200 mT/m/s.
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2.1.3 The Bloch Equation

The behaviour of the magnetization vector ~M(~r, t) under a magnetic field ~B(~r, t)
is characterized by the Bloch equation:

d ~M(~r, t)

dt
= γ ~M(~r, t)× ~B(~r, t)− Mx(~r, t)x+My(~r, t)~y

T2
− (Mz(~r, t)−M0

z )~z

T1

= γ ~M(~r, t)× [ ~B0 + ∆ ~B0(~r) + ~B1(~r, t) + ~z(~G(~r, t) · ~r)]− Mx(~r, t)x+My(~r, t)~y

T2

− (Mz(~r, t)−M0
z )~z

T1
(2.1)

where ∆ ~B0 represents the field inhomogeneity of ~B0. T1 and T2 are the spin-lattice

and spin-spin relaxation parameters that described the recovery of Mz and the decay

of Mxy over time, respectively.

In MRI, it is more convenient to work with rotating frame of reference. A rotating

frame of reference is a coordinate system that rotates along z-axis clockwise with

angular frequency ω = γB0. Then, the precession due to ~B0 is not seen and the general

Bloch equation 2.1 becomes the following (for simplicity, we ignore the dependence

on ~r and t in the following equations):

d ~M

dt
= γ ~M × [δ ~B0 + ~B1 + ~z(~G · r̃)]− Mxx+My~y

T2

− (Mz −M0
z )~z

T1

(2.2)

We can rewrite the above equation in matrix vector form as follow:

d

dt

 ~Mx

~My

~Mz

 = γ

 −1/T2
~G · ~r + ∆ ~B0 −B1y

~G · ~r + ∆ ~B0 −1/T2 B1x

B1y −B1x −1/T1


 ~Mx

~My

~Mz

+

 0

0

M0/T1


(2.3)

2.2 RF Pulse Design

2.2.1 Excitation Pulse Design Problem

We can tip spin away from the longitudinal axis by applying a proper ~B1 mag-

netic field, and this process is called excitation. The pulse design problem is how to

determine both the RF pulse and linear gradient waveforms to achieve the desired

excitation pattern. This can be formulated as an optimization problem as follows.

• Unknown input

– RF pulse waveform: Complex valued B1(t).
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– Linear gradient waveform: Real valued Gx(t), Gy(t), Gz(t).

• Target output Magnetization pattern at the end of RF pulse: ~M(~r, T ). T is

the length of the RF pulse, and a shorter T is preferred.

• Input-output relationship

Bloch equation [2.3]. Initial condition of magnetization vector: ~M(~r, 0)

• Constraints

RF pulse: maximum magnitude is limited, and lower integrated power is pre-

ferred.

Linear gradients: maximum magnitude and slew rate are limited.

• Cost function

Difference between the actual excitation pattern ~M(~r, T ) and the desired exci-

tation pattern d(~r).

The above formulations target to a single frequency. In some cases, the desired

and actual excitation patterns are a function of off-resonance frequency and/or space.

Unfortunately, it is generally hard to solve this optimization problem for arbitrary

desired excitation and an arbitrary initial state, because either there may be no

analytical solution to the Bloch equation or it is too computationally intensive to

numerically solve the optimization problem. However, in some cases, the pulse design

problem becomes more tractable, and the small-tip-angle pulse design is one of them.

2.2.2 Small-tip-angle Approximation

When the initial magnetization vector is at equilibrium and the desired flip angle

is small (< 30o), we can linearize the Bloch equation using small-tip-angle (STA)

approximation [72]. The STA approximation assumes the longitude magnetization

is approximately equal to M0 during the whole excitation period (Mz(t) ≈ M0).

Ignoring T1/T2 terms in the Bloch equation, and define Mxy = Mx + ıMy, B1 =

B1,x + ıB1,y, leads to the following equation:

Ṁxy(~r, t) = −ıγ ~G(t) · ~r + ıγB1(t)M0 (2.4)
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Then using the initial condition ~M(~r, 0) = (0, 0,M0)T , we can solve this equation and

get the final magnetization at time T ,

Mxy(~r, T ) = ıM0

T∫
0

γ ~B1(t)e−ı
∫ T
t γ ~G(s)~r ds dt

This equation describes the relation between the excitation pattern and the applied

RF and gradient field. We can further change the form of this equation to get a

k-space interpretation. Defining:

~k(t) = −γ
T∫
t

~G(s)ds, (2.5)

we can rewrite equation 2.4 as:

Mxy(~r, T ) = ıγM0

T∫
0

~B1(t)ei~r·
~k(t) dt. (2.6)

Then if we define

p(~k) =

T∫
0

~B1(t)δ(~k(t)− ~k) dt

we can further express the above equation as [72]

Mxy(~r, T ) = ıγM0

∫
p(~k)ei~r·

~k(t) d~k. (2.7)

Now we can clearly see under small tip angle approximation, the transverse magne-

tization after excitation is just the Fourier transform of k-space weighting p(~k). This

is a very important property in RF pulse design. It allows us to design any target

excitation pattern Mxy(~r) by depositing energy in k-space according the the Fourier

transform of the excitation pattern. One example is called slice selective excitation, in

which we deposit energy in kz direction using a truncated sinc function or a Gaussian

function weighing. This allows us to excite only a slice in the z direction. The other

example is the tailored pulse design, in which we design a specific excitation pattern

in the xy plane using this relation. Although this relation is derived for flip angle

smaller than 30 degree, it has been shown in simulation that it holds well until 90

degree [72]. Most STA pulse design methods are based on this assumption.
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2.2.3 Iterative Small-tip-angle RF Pulse Design

An iterative small-tip-angle RF pulse design method is proposed by Yip et al. [103].

In that method, equation [2.6] is discretized and rewritten as follows:

m = Ab (2.8)

where m is a complex vector containing the transverse magnetization for Ns spatial

positions, b is a Nt long complex number vector containing the time samples of the

RF pulse, and A is the Ns x Nt system matrix with elements:

aij = ıγM0e
ı~k(tj)·~ri+ı∆ω(~ri)(tj−T ) (2.9)

Now we can set up the RF pulse design problems as follows:

b̂ = argmin
b∈CNs

||Ab− d||2W + βb′b

where W is diagonal matrix containing the user-selected error weighting, and β is the

regularization parameter. This problem can then be solved efficiently using conjugate

gradient algorithm. Ab can be efficiently computed using FFT or nonuniform FFT

(NUFFT) [18]

In the iterative pulse design framework, it is much easier to employ non-Cartesian

k-space trajectory than the previous density compensation methods [72]. Also, we can

easily incorporate a “don’t care region” in the weighting matrix W , which effectively

reduces the number of rows inA, and thus reduces the excitation error in this typically

overdetermined problem (Nt < Ns). Furthermore, we can set the regularization of

RF power here to reduce the specific absorption rate (SAR). Finally, it is much easier

than the Fourier based methods to consider the field inhomogeneity of B0 and B1,

and generalize the pulse design problem to parallel excitation [23].

The method described above is the conventional approach for small-tip-angle RF

pulse design nowadays. In this method, one designs the RF waveforms with a prede-

fined k-space trajectory, which leads to suboptimal pulses in terms of excitation accu-

racy for a given pulse duration. A joint optimization of RF pulse and the k-space tra-

jectory should be able to generate better result. Some works have been done to jointly

design the k-space trajectory and RF pulse, but most of them are limited to discrete k-

space trajectories like fast-kz/spoke pulse (discrete in x-y plane) [111, 53, 109, 10, 24],
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or KT-points method [11]. There are relative few works on the joint design of RF

pulse and continuous 3D k-space trajectory. I will briefly describe them in Ch.7, and

then propose my approach for the joint design.

2.3 Steady-state Imaging

Steady-state magnetic resonance imaging (MRI) is a fast MRI technique based

on the steady state of magnetization achieved by a series of RF pulses with relative

short interval (TR). In conventional MRI sequence, TR is the order of T1 (ranges from

hundred of milliseconds to a few second) to allow the full recovery of longitudinal

magnetization, while in steady-state imaging, the TR is usually less than T2. A

direct result of this short TR is that the Ernst formula used to describe the signal

level after excitation in conventional MRI sequence can no longer be used in steady

state imaging (except SPGR) since the transverse magnetization is non zero before

the RF pulse and can be refocussed and contributes to the following echos by the

subsequent RF pulse.

The sufficient and necessary condition to produce stationary states are given

by [78],

• The de-phasing of states between RF pulses must be constant.

• The time TR between RF pulses must be constant.

• The flip angle α of RF pulses must be constant.

• The phase of the RF pulses must satisfy the equation: Φn = a+ bn+ cn2.

Strictly speaking, a sequence is not a true steady state, but a pseudo - steady state if

the last condition has c 6= 0. It means each magnetization vector ~M is not in steady

state, but the integrated signal in a voxel achieves steady state. These conditions are

given for a typical MRI sequence with one RF pulse per TR. For a sequence with

multiple RF pulses per TR, we may need to group RF pulses and then apply those

conditions. To get an intuitive understanding of the behaviour of steady-state imag-

ing, we may think of the power iteration as an analogy: the behaviour of spins during

excitation, precession can be fully characterized by a rotation matrix operations. By

applying the same matrix operation again and again, ~M will finally converge to the

eigenvector of a certain matrix [31]. It usually takes about 4T1 time (4T1/TR cycles)

to achieve steady state.
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2.3.1 Phase Graph

The behaviour of a magnetization vector under RF and gradient waveform can be

described by the classical Bloch equation. The RF and gradient field simply rotate

the magnetization vector around different axis. We can calculate the steady state

signal by first calculating the steady state of each magnetization vector and then

integrating them across the voxel. This method is widely used to characterize the

signal property of steady-state imaging, and will be used to describe our proposed

steady-state imaging sequence in Ch. III. However, it was demonstrated that the

description of steady state imaging sequence using this method is not adequate for a

pictorial understanding of the simulated echo, and by no means able to illustrate the

appearance of all higher-order echoes [78]. To better understand the echo formation

in the steady state imaging, we can use the phase graph proposed by Hennig [33]. In

phase graph, we use the dephased states with zero net magnetization as a fundamental

building block instead of isolated magnetization vectors. A good summary of steady-

state imaging using phase graph interpretation is presented in Scheffler [78] (the first

MRI paper I have ever read).

2.3.2 RF Spoiling

RF spoiling is an important concept in steady state imaging. The goal of the RF

spoiling is to achieve a zero net transverse magnetization within a voxel before each

RF pulse. The RF spoiling technique contains two key parts: (1) a gradient crusher

is applied before each RF pulse; (2) the phase of the RF pulses varies quadratically

in each TR, or in other words, the phase increment between TR follows

φ(n+ 1)− φ(n) = cn. (2.10)

where n is the number of RF pulses, and c is a constant. It has be shown that, under

the above conditions, the integrated signal from a voxel forms a steady state [120].

However, there is no analytic relation between the steady state signal and the constant

c. In [120], Zur suggested that choosing c = 117o can effectively remove the net

transverse magnetization Mt before the RF pulse according to the simulation. When

we set c to be a different constant, we often refer the sequence as partial RF spoiling

Besides the RF spoiled GRE sequence (aka SPGR, FLASH, and T1-FFE), there

are two other basic types of steady state sequence: steady state free precession

(SSFP), and balanced steady state free precession (bSSFP, aka TureFISP, FIESTA,

b-FFE). The bSSFP sequence is similar to SSFP but with zero net gradient. The
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SSFP sequence has two basic variations: SSFP-FID (aka FISP, GRASS, FFE) if the

net gradient area is zero before read out, SSFP-ECHO (aka PSIF, SSFP, T2-FFE) if

the net gradient area is zero after the read out.

Figure 2.3: Comparing signal level between SPGR SSFP-ECHO and bSSFP

2.3.3 Balanced Steady-state Sequence (bSSFP)

bSSFP sequence is a popular steady-state sequence for clinical and research ap-

plication. It offers higher signal to noise ratio than SPGR and SSFP-FID/ECHO

(Figure [2.3]), and it has useful T2/T1-weighted image contrast. However, bSSFP

suffers from two main drawbacks. The first one is its transient signal fluctuations

during the initial approach toward steady-state. Without any catalyzing sequence

before the bSSFP sequence, it needs 3T1 to 4T1 time to achieve steady state [78], and

this time may be too long for some applications. However, this time can be effectively

reduced by using a catalyzing sequence before bSSFP [31]. The second drawback of

bSSFP sequence is the well known banding artifact, which means the signal level can

be quite low for some off-resonance, and therefore causes a dark band in the image

(illustrated in Figure 2.4).

One strategy to avoid/reduce banding arfifact is to put the off-resonance frequency

of the target region to the pass band of the bSSFP frequency response by better

shimming [48]. However, even with better shimming, the pass band bandwidth can

still be too narrow to achieve a banding free image. Numerous other methods have

been proposed in the past decade for correcting these artifacts, including multi-TR

sequences that seek to widen the separation between bands [69, 13, 62, 49], multiple

phase-cycled acquisitions that are combined to produce uniform signal independent of

off-resonance. However, all of these methods sacrifice signal strength and/or imaging

time, and are not universally applicable to all bSSFP applications. Another drawback

of bSSFP is it is not compatible with many magnetization preparation sequence like

fat saturation.
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Figure 2.4: Demonstration of banding artifact in bSSFP

2.4 Functional MRI

2.4.1 Blood-oxygen-level-dependent (BOLD)

Functional MRI (fMRI) is a neural imaging technique that measures the brain

activity map by detecting the change of blood blow. Most of the current fMRI re-

lies on the “blood-oxygen-level-dependent(BOLD)” effect, discovered by Ogawa [68].

Through hemodynamic response, more blood flow into the active region of brain,

causes an increasing oxygenation blood level near active neurons. Since oxygen is

paramagnetic, the increasing oxygenation level will decrease the intra-voxel B0 field

inhomogeneity and therefore reduce the T ∗2 , leading to a higher signal in T ∗2 -weighted

MR images.

In most of the conventional fMRI sequences, a long echo time (TE) is required to

build up sufficient BOLD functional contrast, which makes the sequence susceptible

to background B0 inhomogeneity unrelated to oxygenation, leading to signal dropout

near air/tissue boundaries and geometric distortions or blurring. Several tailored RF

pulse design methods have been proposed to reduce the signal drop [104, 106] by

pre-phasing the spins such that they can be refocused at the echo time. However,

without parallel excitation, those pulses may be too long in practice. Our group has

been working on the implementation of signal recovery pulse using parallel excitation

hardware [34].

2.4.2 bSSFP fMRI

bSSFP fMRI based using segmented readouts can produce high resolution func-

tional maps with reduced geometric distortions. bSSFP fMRI falls in to two cate-

gories: transition-band fMRI [80, 57] and pass-band fMRI [8, 118, 59, 47, 58, 61, 45].
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In transition-band fMRI, people shim the off-resonance frequency of the target region

to the transition-band of bSSFP profile, and the neuron activity can cause a spreading

and a shift of the local off-resonance frequency, which causes 10% signal change [80].

While this technique can achieve relative high percent signal change, it suffers from

two main drawbacks: first, the signal level at the transition band is typically low,

which leads to a low signal to noise ratio (SNR); second, it is generally hard to shim

all the target region to the transition band since the transition band is typically very

narrow.

In pass-band fMRI, the diffusion effect can cause effective change of T2, and this

change is different during active and resting states, which leads to detectable signal.

While the pass-band fMRI is much easier to implement than its transition-band sibling

and generally have high SNR, it is susceptible to dark “banding” artifacts in regions of

high B0 inhomogeneity and generally has lower functional contrast than BOLD [118].

bSSFP with multiple phase-cycles may be used to reduce the banding artifact. We

note, however, that multiple acquisitions may not be preferred in fMRI, repeating runs

of a paradigm produces confounding effects from cognitive habituation to stimuli and

is not ideal [47, 57]. Alternating bSSFP that interleaves two phase-cycled bSSFP

imaging can potentially solve this problem [70], but it needs catalyzation pulses every

time the phase-cycling is changed, which reduces its SNR efficiency.

We proposed a new steady-state functional imaging method using the STFR se-

quence [97] and I will describe it in Ch. IV.
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CHAPTER III

Strategies for Improved 3D Small-tip Fast

Recovery Imaging

3.1 Introduction

1Balanced steady-state free precession (bSSFP) is a rapid imaging sequence that

has high signal-to-noise ratio (SNR) and useful tissue contrast, but suffers from off-

resonance banding artifacts and transient fluctuations [79]. Numerous methods have

been proposed in the past decade for correcting these artifacts, including multi-TR se-

quences that seek to widen the separation between bands [69, 12, 62, 49], and multiple

phase-cycled acquisitions that are combined to produce uniform signal independent of

off-resonance. However, all of these methods sacrifice signal strength and/or imaging

time, and are not universally applicable to all bSSFP applications.

Recently, our group proposed a new steady state imaging sequence called small-tip

fast recovery (STFR) [65], which is a potential alternative to bSSFP. There are two

key ideas in STFR: First, after excitation and readout, a tip-up radio-frequency (RF)

pulse tailored to the accumulated phase during free precession is transmitted to bring

spins back to the longitudinal-axis, which “fast recovers” the transverse magnetization

and preserves it as longitudinal magnetization for the next TR [32, 65]. Second, after

the tip-up pulse, it is necessary to play an unbalanced gradient to dephase residual

transverse spins. With accurate tailored pulses, STFR imaging may have many of the

benefits of bSSFP such as high SNR efficiency, good flow properties, and combined

T2/T1 weighting [79], but does not suffer from banding artifacts. STFR therefore

has the potential to provide an alternative to bSSFP for some applications, and may

obviate the need for special artifact-reduction techniques such as phase-cycled imaging

[4] or multiple-TR sequences [69, 12, 62, 49].

1This chapter is based on the publications [91, 87, 93]
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However, STFR is challenging to implement in practice, due to the need for accu-

rate tailored tip-up pulses. This is particularly true in 3D imaging, since the required

3D tailored pulses can be prohibitively long. Here we propose new strategies for im-

proved 3D STFR imaging, based on (i) unspoiled imaging, and (ii) joint design of

non-slice-selective tip-down/tip-up 3D tailored RF pulses.

We begin this chapter by deriving an analytic signal equation for the proposed

unspoiled STFR sequence, which is then used to compare the properties of unspoiled

and spoiled STFR. We then describe the proposed joint RF pulse design algorithm

that treats the tip-down and tip-up pulses as one combined RF pulse, which is in turn

designed using magnitude least-squares optimization. Next we describe our experi-

mental methods and results (phantom and in-vivo), demonstrating that the proposed

unspoiled STFR sequence is less sensitive to tip-up excitation error compared to the

spoiled sequence in [65] and hence is a promising candidate for 3D imaging. We

conclude with a discussion of limitations and future extensions of this work.

3.2 Theory

3.2.1 Unspoiled STFR

The proposed unspoiled STFR sequence and associated spin path are illustrated in

Fig. 3.1(a). The spin is first tipped down by a small tip angle pulse with flip angle α(r).

This tip-down pulse can be spatially tailored, i.e., the flip angle (magnitude and phase)

may vary with the spatial coordinate r. During the signal readout interval Tfree, the

spin precesses by an angle θf (r) = ∆ω(r)Tfree, where ∆ω(r) is the off-resonance

frequency (B0 inhomogeneity) at position r. A “tip-up”, or “fast recovery”, RF pulse

with flip angle β(r) tailored to the accumulated phase θf (r) is then transmitted to

bring the magnetization vector back toward the longitudinal axis. The purpose of the

tip-up pulse is to preserve as much longitudinal magnetization as possible prior to the

next sequence repetition interval (TR) and hence to maximize SNR efficiency, and to

introduce T2 weighting. Immediately after the tip-up pulse, an unbalanced gradient

g is played out, designed to dephase the residual transverse magnetization left over

after the tip-up pulse. This gradient causes a rotation θg of each spin isochromat,

with θg varying along the direction of g. We will see below that this unbalanced

gradient is necessary for banding-free imaging. Note that the RF phase offset from

TR-to-TR is held constant, i.e., we do not use RF-spoiling (quadratic phase cycling,

as was done in [65]) in the sequence proposed here.
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Figure 3.1: Proposed “unspoiled STFR” pulse sequence. (a) Steady-state path for a
spin isochromat. The spin is tipped back to the longitudinal axis by a tailored pulse
with flip angle −β(r) and phase φ(r). φ(r) is designed to be equal to the accumulated
free precession angle θf (r) = ∆ω(r)Tfree, where Tfree is the free precession time. (b)
Example pulse sequence diagram, using tailored pulses for both tip-down (red) and
tip-up (blue) excitations, and 3D Cartesian data readout.

3.2.2 Steady-state Magnetization for a Spin Isochromat

To obtain a signal equation for unspoiled STFR, we first develop an expression for

the steady state magnetization ~M1(θg) for a spin isochromat immediately after the

tip-down pulse (see Fig. 3.1(a)), and then integrate the resulting expression over all

isochromats within a voxel, i.e., we integrate over θg = [0, 2π]. For clarity, we drop

the explicit dependence on spatial position r in the following.

Without loss of generality, our derivation assumes the tip-down pulse to be aligned

with the x-axis (zero phase). We ignore the RF pulse duration (which can vary

depending on, e.g., excitation k-space trajectory), which is a common assumption

when deriving analytic models for steady state sequences, especially for RF pulses

that are short compared to TR [6]. We obtain the steady-state magnetization by

modeling each step of the spin path using the Bloch equation in matrix form. Details

of the derivation are provided in the Appendix. We obtain the following expression

for the steady-state transverse magnetization of a spin isochromat:

M1,t = M0
a cos (θg + φ) + b sin (θg + φ) + c

d cos(θg + φ) + e sin(θg + φ) + f
(3.1)

where M1,t is the transverse component of ~M1, M0 is the equilibrium magnetization
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and the factors a through f are defined as:

a = −iEg2(Ef2(−1 + Eg1 + (−1 + Ef1)Eg1 cosβ) cos(θf − φ) sinα+ (Ef1(−1 + Eg1)

+(−1 + Ef1) cosα) sinβ + iEf2(−1 + Eg1 + (−1 + Ef1)Eg1 cosβ) sinα sin(θf − φ))

b = Eg2(Ef2((−1 + Ef1)Eg1 + (−1 + Eg1) cosβ) cos(θf − φ) sinα− (−1 + Ef1

+Ef1(−1 + Eg1) cosα) sinβ + iEf2((−1 + Ef1)Eg1 + (−1 + Eg1) cosβ) sinα sin(θf − φ))

c = i((−1 + Eg1 + (−1 + Ef1)Eg1 cosβ) sinα+ Ef2E
2
g2(Ef1(−1 + Eg1)

+(−1 + Ef1) cosα) sinβ(cos(θf − φ) + i sin(θf − φ)))

d = Eg2(−Ef2(−1 + Ef1Eg1)(1 + cosα cosβ) cos(θf − φ) + (Ef1 − E2
f2Eg1) sinα sinβ)

e = Ef2(−1 + Ef1Eg1)Eg2(cosα+ cosβ) sin(θf − φ)

f = −1 + Ef1E
2
f2Eg1E

2
g2 + (Ef1Eg1 − E2

f2E
2
g2) cosα cosβ

+Ef2(Eg1 − Ef1E
2
g2) cos(θf − φ) sinα sinβ

In the above expression, the T1 and T2 relaxation exponentials during the free

precession and gradient dephasing intervals are denoted as Ef1 = e−Tfree/T1 , Ef2 =

e−Tfree/T2 , Eg1 = e−Tg/T1 and Eg2 = e−Tg/T2 .

Although Eq. (3.1) is only an intermediate expression needed to obtain the total

voxel signal, it is instructive to examine its dependence on θg when the tip-up pulse

is perfectly matched to the spin precession angle, i.e., φ = θf and β = α. Then

the θf terms in the coefficients a through f are canceled by φ, and these coefficients

therefore become independent of the local off-resonance. M1,t then depends on off-

resonance only through cos(φ+ θg) and sin(φ+ θg). Figure 3.2 plots Eq. (3.1) under

these conditions, for T1/T2 = 510/50 ms and α = β = 16o. The most striking feature

of Fig. 3.2 is the presence of narrow minima spaced 2π apart, which explains why

fully balanced (g = 0 and thus θg = 0) STFR imaging would be problematic, since

narrow bands would be present in regions of the image where φ (and θf ) equals an

integer multiple of 2π. The minima in Fig. 3.2 are reminiscent of dark signal bands

in bSSFP, except for one crucial difference: the neighboring “bands” in Fig. 3.2 are

in-phase. We therefore expect the total voxel signal for unbalanced STFR, obtained

by integrating over one full cycle (shaded region) in Fig. 3.2, to be high and contain

no such banding artifacts.

3.2.3 Signal Equation

To obtain the steady-state signal Mt from a voxel, we integrate M1,t(θg) over the

full distribution of spins:
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Figure 3.2: Steady-state magnetization (Eq. (3.1)) for a spin isochromat as a function
of φ+ θg, where φ is the phase of the tip-up pulse and θg is the precession induced by
the applied unbalanced gradient. Narrow bands are spaced 2π apart, and neighboring
bands are equal both in magnitude and phase. In the proposed unbalanced STFR
sequence, the signal from a voxel can be calculated by integrating over one full cycle
(shaded region). The result of this integration is given by Eq. (3.2).

Mt(φ, θf , α, β, T1, T2,Tfree, Tg) =
1

2π

2π∫
0

M1,t(φ+ θg) dθg

= M0
1

2π

2π∫
0

a cos (θg + φ) + b sin (θg + φ) + c

d cos(θg + φ) + e sin(θg + φ) + f
dθg

= M0

(
c√

f2 − d2 − e2
− ad+ be

d2 + e2

f −
√
f2 − d2 − e2√

f2 − d2 − e2

)
(3.2)

Here we denote the dependence on the various tissue and sequence parameters on

the left-hand side only. Equation (3.2) describes the signal from a voxel immediately

after the tip-down pulse, and must be multiplied by e−TE/T2−jTE∆ω to obtain the

signal at the echo time (TE). Equation (3.2) is valuable in several respects: First,

it provides a fast way to analyze the sequence properties and optimize the imaging

parameters. Second, it shows that the STFR signal is independent of off-resonance if

we have a perfectly tailored pulse (off-resonance induced phase θf is canceled out by φ

in coefficients a through f). Also, this expression can be used to describe the extended

Chimera sequence [7] that is similar to our unspoiled STFR except conventional RF
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pulses are used instead of tailored pulses. Finally, we propose to use this Equation 3.2

for simultaneous water-fat separation and band reduction using STFR [115].

Figure 3.3(a) plots Eq. (3.2) over a range of flip angles, for three different tissue

types. Here we assume that the tip-up pulse is ideal, i.e., φ = θf and β = α.

For comparison, the calculated signals for bSSFP and spoiled STFR are also shown,

using analytic results from [58] and [65], respectively. Notice we use twice the flip

angle of STFR sequences in the calculation of bSSFP signals. Figure 3.3(b) plots the

corresponding white/gray matter contrast. We see that unspoiled STFR produces

similar tissue signal and contrast as bSSFP, as desired.
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Figure 3.3: Predicted tissue signal for unspoiled STFR (Eq. (2)), spoiled STFR [65]
and bSSFP [58]. These calculations assumed T1/T2 = 4000/2000ms, 1470/71ms,
1110/56ms for CSF, gray matter, and white matter, respectively [85]. The bSSFP
curves were calculated using a flip angle of 2α, which is expected to produce similar
signal contrast as STFR using a flip angle of α. (a) STFR produces similar signal as
bSSFP, as desired. (b) STFR and bSSFP are predicted to have similar gray/white
matter contrast.

Figure 3.4(a) plots Eq. (3.2) as a function of the phase mismatch φ− θf between

the tip-up phase φ and the spin phase θf . Such a phase mismatch is unavoidable in

practice, since the tip-up pulse will never be perfectly accurate everywhere within the

imaging region of interest (ROI). For comparison, the corresponding plot for spoiled

STFR is also shown. In addition, experimentally observed signal curves are plotted,

obtained by applying a linear gradient shim and imaging with sinc (i.e., untailored)

tip-down and tip-up pulses (see Fig. 3.4(b)). The analytic curve was calculated based

on the actual T1, T2 values of the phantom (T1/T2 = 510/50 ms), which were

measured using inversion recovery and spin echo sequences, respectively. The signal

for both unspoiled and spoiled STFR depends on φ− θf , but unspoiled STFR decays
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less rapidly with increasing phase error. In other words, unspoiled STFR is less

sensitive to tip-up phase error compared to spoiled STFR. The difference in the rate

of signal drop versus phase mismatch varies with tissue relaxation parameters, as

shown in Fig. 3.5. Note that the CSF signal of spoiled STFR drops significantly

faster than for other tissues, and faster than the unspoiled STFR CSF signal.
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Figure 3.4: (a) Steady-state signal for unspoiled STFR and spoiled STFR as a func-
tion of phase mismatch φ−θf , using the analytic result from Eq. (3.2) and [65] (T1/T2
= 510/50 ms, Tfree/TR = 9/12 ms, α = β = 16o) and phantom observations. Note
that the rate of signal drop due to phase mismatch is smaller for unspoiled STFR. We
obtained the measured curves by applying a linear gradient shim in the x direction
and imaging a gel phantom (shown in (b)) with non-tailored (sinc) pulses. We stress
that the image in (b) was obtained for the sole purpose of obtaining the curve in
(a), and is not representative of a typical STFR image acquisition. In particular, the
goal in STFR is generally to design a tailored tip-up pulse that minimizes the phase
mismatch and hence maximizes the signal within a target ROI.

3.2.4 RF Pulse Design

The key to successful STFR imaging is to design accurate tailored tip-up pulses

that bring the magnetization close to the longitudinal axis. Here we consider 3D

imaging using unspoiled STFR, and we restrict our designs to non-slice-selective 3D

tailored pulses. (Although we could in principle use slice- or slab-selective 3D pulses,

such pulses would most likely be prohibitively long.) We propose two different ap-

proaches to RF pulse design in STFR: “Separate” and “Joint”.

In our first approach, we design the tip-down and tip-up pulses independently, as

follows: First, we tailor the tip-down pulse α(r) to a uniform magnitude excitation

pattern with phase −θf (r)/2, i.e., half the expected free precession angle. We then
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Figure 3.5: Steady-state signal for unspoiled STFR and spoiled STFR as a function of
phase mismatch φ− θf for different tissues: gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF). These calculations assumed T1/T2 = 4000/2000 ms,
1470/71 ms, 1110/56ms for CSF, GM, and WM, respectively [85], and Tfree/TR =
7/10 ms, α = β = 20o. The spoiled STFR sequence is more sensitive to phase
mismatch compared to unspoiled STFR for all three tissue types, and especially for
CSF.
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design an “intermediate” tip-down pulse βint(r) tailored to the expected spin phase

at the end of Tfree, i.e., ∠α(r) + θf (r). Finally, we obtain the tip-up pulse β(r) by

“rewinding” the intermediate pulse βint(r) as in [65], i.e., by time-reversing and negat-

ing βint(r). The advantage of this approach is that it is relatively easy to implement,

e.g., using existing methods for small-tip RF pulse design.

The second approach to RF pulse design in STFR is based on the observation

that the phase of tip-down pulse ∠α(r) does not in general need to be constrained

to a particular pattern, as long as it varies reasonably smoothly across the ROI. In

fact, the only requirement that should be imposed on the tip-down pulse is that the

magnitude |α(r)| should be as uniform as possible to avoid image shading. Using the

small-tip (Fourier) approximation in which the transverse component of the excitation

pattern is expressed as a linear transformation of the time-varying RF waveform [72],

this requirement can be stated as

sinα = |A1b1| (3.3)

where b1 is a discretization of the time-varying tip-down RF waveform b1(t), and

α is the desired (uniform) flip angle. A1 is a system matrix with elements aij =

ıγM0e
−ık(tj)ri−ı∆ω(ri)(tj−T ), where k(t) is the excitation k-space trajectory determined

by the gradient waveforms for tip-down part and T is the duration of tip-down pulse.

Similarly, we require that the magnitude of the magnetization after the tip-up pulse

be as small as possible:

|A2b1 + A3b2| = 0 (3.4)

whereA2 andA3 are blocks of Ã = [A2 A3] with elements ãij = ıγM0e
−ık̃(tj)ri−ı∆ω(ri)(tj−T̃ ),

where T̃ and k̃(t) are the duration and excitation k-space trajectory determined by the

gradient waveforms for the whole combined pulse, i.e., including tip-down excitation,

free precession, and tip-up recovery.

We propose to solve Eqs. (3.3)-(3.4) jointly using the following magnitude least-

squares formulation:

[
b̂1

b̂2

]
= argmin

b1,b2


∥∥∥∥∥
[

sin(α)

0

]
−

∣∣∣∣∣
[
A1 0

A2 A3

][
b1

b2

]∣∣∣∣∣
∥∥∥∥∥

2

2

+ µ‖b1‖2
2 + µ‖b2‖2

2

 ,

(3.5)
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where µ is a Tikhonov regularization parameter that constrains the total RF en-

ergy [103]. Although the joint formulation in Eq. (3.5) is more computationally

intensive than the Separate design, it may allow for improved tip-up accuracy for a

given RF pulse duration since we are removing the constraints on spin phase.

3.3 Methods

Table 3.1: Summary of phantom and human imaging experiments.

Object Sequence RF pulse Flip angle TR
Phantom spoiled gradient echo (SPGR, FLASH) sinc 20 10ms
Phantom SSFP-FID (GRASS, FISP) sinc 20 10ms
Phantom bSSFP (FIESTA, TrueFISP) sinc 40 7.6ms
Phantom spoiled STFR tailored (Separate) 20 10ms
Phantom unspoiled STFR tailored (Separate) 20 10ms
Phantom unspoiled STFR tailored (Joint) 20 10ms
Brain bSSFP (FIESTA, TrueFISP) sinc 40 7.6ms
Brain spoiled STFR tailored (Separate) 20 10ms
Brain unspoiled STFR tailored (Separate) 20 10ms
Brain unspoiled STFR tailored (Joint) 20 10ms

Table 3.2: Sequence timing.

Sequence Tip-down Readout Tip-up Gradient crusher
STFR 1.7ms 4.9ms 1.7ms 1.2ms
bSSFP 1.2ms 4.9ms n/a n/a

We performed imaging experiments on a GE 3T scanner equipped with a quadra-

ture transmit/receive head coil. Table 3.1 lists the various image acquisitions. The

phantom was a GE resolution phantom, and the human subject was a healthy volun-

teer.

Table 3.2 lists the sequence timing for STFR and bSSFP. All image acquisitions

used 256x256x65 matrix size, 24x24x24 cm field of view (FOV), and 62.5 KHz receive

bandwidth. We used a FOV along z that was large enough to eliminate aliasing from

untargeted slices, which in practice could be avoided by, e.g., aligning the frequency

encoding direction with the z direction [55]. The bSSFP acquisitions used twice the

flip angle as the STFR acquisitions, since our equation and simulations predict that

bSSFP will give the same (on-resonance) signal level with twice the flip angle of the

STFR sequence.
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For the STFR acquisitions, we tailored the RF pulses to a 3D ROI consisting of

a 3 cm axial slab. For this purpose we obtained a B0 map of the ROI using SPGR

with echo times 3 ms and 5 ms. For the tailored pulses (both tip-down and tip-

up), we used the spiral nonselective excitation k-space trajectory (SPINS) proposed

in [55]. For the Separate design, we calculated the B1 waveforms using the small-tip

iterative RF pulse design method in [103]. For the Joint design, we obtained the

B1 waveforms by performing the magnitude least-square minimization in Eq. (3.5)

using the method in [82]. Both designs were implemented with the MATLAB image

reconstruction toolbox (IRT) from University of Michigan (http://www.eecs.umich.

edu/~fessler). An example of the resulting B1 waveforms and SPINS gradients are

shown in Fig. 3.1(b).

3.4 Results

3.4.1 Phantom Observations

Figure 3.6 shows steady-state images of one of the target slices in the resolution

phantom acquired with several different sequences, displayed using the same gray

scale. For each image, the mean signal and standard deviation within the object are

indicated. We observe a characteristic banding artifact in the bSSFP image, which

is largely removed in the Joint unspoiled STFR acquisition. However, some non-

uniformity remains in the Joint unspoiled STFR image, due to the limited ability to

correct for B0 inhomogeneity over the ROI with the short (1.7 ms) RF pulses used

here. Furthermore, STFR and (on-resonance) bSSFP have similar signal levels, about

twice as high as SSFP-FID and significantly higher than SPGR, in agreement with

theory. We also observe that unspoiled STFR produces more uniform images than

spoiled STFR, as predicted. Finally, we note that Joint design produces a modest

improvement in mean signal level (1.41) compared to Separate design (1.36). Based

on this comparison experiment, we think the Joint unspoiled version is more suitable

than other STFR sequences for 3D imaging.

3.4.2 In-vivo Observations

Figure 3.7(a) shows steady-state images from the same slice obtained with bSSFP

(180o RF phase cycling) and STFR. Similar to Fig. 3.6, we observe a banding artifact

in the bSSFP image (arrow) that is not present in the unspoiled STFR image. Apart

from the banding region, unspoiled STFR and bSSFP have similar signal levels and
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Figure 3.6: Steady-state imaging, phantom results. Images are shown on the same
gray scale. For each image, the mean signal and standard deviation within the object
are indicated. Unspoiled STFR with the proposed “Joint” RF pulse design (right)
produces signal levels that are comparable to on-resonance bSSFP, and has improved
uniformity compared to bSSFP and spoiled STFR. Unspoiled STFR with the simpler
“Separate” RF pulse design approach (second from right) shows improved signal and
uniformity compared to spoiled STFR, but slightly lower overall signal compared
to the Joint design. Conventional SPGR and SSFP-FID images are included for
reference.

exhibit similar tissue contrast (e.g., bright cerebrospinal fluid (CSF)), as desired. The

unspoiled STFR images still have signal loss in some regions due to phase mismatch

(see Fig. 3.7(b)), but it is much more uniform than spoiled STFR, as predicted. We

observe significant CSF signal loss in the spoiled STFR image in some regions (see,

e.g., oval), which can be explained by comparing the phase mismatch in that region

and the phase mismatch sensitivity plot (Fig. 3.5). The Joint design slightly improves

image quality compared to the Separate design, i.e., Joint unspoiled STFR produces

a more uniform image with better contrast, and we think this improvement is due

to the decrease of phase mismatch using the Joint design. Finally, the high through-

plane vessel signal in bSSFP is suppressed in the STFR images (see, e.g., box), which

is generally desirable.

Figure 3.8(a) compares Joint unspoiled STFR and bSSFP in 5 adjacent slices

spanning a 4 cm FOV along z (S/I), and highlights the ability of the proposed sequence

to image a 3D ROI. The top two rows show bSSFP images obtained with 0o and 180o

RF phase cycling, while the bottom row shows the Joint unspoiled STFR images.

Both bSSFP acquisitions suffer from banding artifacts. The Joint unspoiled STFR

sequence achieves similar signal level and tissue contrast as bSSFP over most of the

FOV, although we observe some non-uniformity (image shading) due to large phase

mismatch in some region, (see Fig. 3.8(b)). Note that the observation FOV (4 cm)

along z is larger than the target FOV (3 cm) of the tailored pulse; however we can

still get reasonably good images in the whole observation FOV because the excitation

pattern and free precession accumulated phase pattern are all relatively smooth here.
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Figure 3.7: (a) Comparison of bSSFP (left) with three different STFR acquisitions,
in the same slice. (b) field map and phase mismatch maps using separate and joint
design. Banding artifacts in the anterior part (arrow) of the bSSFP image are largely
absent in the unspoiled STFR images. Spoiled STFR is less uniform than unspoiled
STFR as predicted, and the signal drops more in the region with high phase mismatch.
Note that the CSF in the oval region in the spoiled STFR image drops significantly
more than the nearby tissue signal and the unspoiled STFR CSF signal, which agrees
with the phase mismatch map and sensitivity to phase mismatch plot in Fig. 3.5.
The Joint design has slightly smaller phase mismatch, which leads to improved signal
uniformity and tissue contrast compared to the Separate design. Also note that
the high through-plane vessel signal in the bSSFP image is suppressed in the STFR
images (see, e.g., box).
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Figure 3.8: (a) Proof-of-principle demonstration of 3D unspoiled STFR imaging,
using Joint 3D tailored RF pulses. Images are shown for Joint unspoiled STFR,
and bSSFP with different phase cycling schemes, in 5 adjacent axial slices spanning
4 cm: (Top) 0o phase cycled bSSFP; (Middle) 180o phase cycled bSSFP; (Bottom)
Joint unspoiled STFR. Both bSSFP acquisitions suffer from banding artifacts, which
are reduced with the 3D Joint unspoiled STFR sequence. (b) field map and phase
mismatch maps. The STFR signal drops more in the region with high phase mismatch
(See, e.g., arrows in (a)).
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3.5 Discussion

Our theory predicts that STFR has similar SNR as bSSFP (see Fig. 3.3), which

agrees with our measured results (44.2/45.3 dB and 31.6/32.4 dB for bSSFP/STFR in

phantom and gray matter ROIs, respectively). Therefore, the SNR efficiency (defined

as SNR/
√

total scan time) of STFR will be lower than on-resonance bSSFP, since

its TR is necessarily longer than the corresponding bSSFP sequence. Compared to

multiple phase-cycled bSSFP acquisitions, whether STFR is more SNR efficient or

not depends on the actual timing of the specific sequences and the method used to

combine the phase-cycled images. In our experiments, we use TR = 7.6 ms and 10

ms for bSSFP and STFR respectively. The TR of bSSFP is not optimized in our

experiment and can be as low as 6.8 ms given our scanner control code and the same

readout time (4.9 ms) as STFR. Assuming TR = 6.8 ms for bSSFP and TR = 10 ms for

STFR, the total scan time of STFR is 1/1.36 of two phase-cycled bSSFP and 1/2.04

of three phase-cycled bSSFP. On the other hand, the SNR increases by combining

the phase-cycled bSSFP images, and the amount of increase depends on the tissue

parameters, noise level and the combination method [4]. For simplicity, if we assume

maximum intensity combination, STFR as implemented in our experiments would

have similar SNR efficiency as two phase-cycled bSSFP, and better SNR efficiency

than three phase-cycled bSSFP. It is therefore possible that in applications where

image SNR is critical, bSSFP with two phase-cycles may be preferred over STFR. We

note, however, that multiple acquisitions may not be preferred in some applications.

For example, in bSSFP fMRI, repeating runs of a paradigm produces confounding

effects from cognitive habituation to stimuli and is not ideal [47, 57]. Alternating

bSSFP that interleaves two phase-cycled bSSFP imaging can potentially solve this

problem [70], but it needs catalyzation pulses every time the phase-cycling is changed,

which reduces its SNR efficiency.

Here we have shown that STFR and bSSFP image contrast is similar with respect

to T1 and T2 sensitivity, however we have performed preliminary work that indicates

that these sequences have different sensitivity to diffusion and intra-voxel B0 homo-

geneity [64]. In bSSFP, because of the relative flat magnitude and phase frequency

response curve in the passband, all the spins within a voxel typically have similar

magnitude and phase, therefore, there is no T ∗2 contrast. In STFR, because of the

low spatial resolution of the tailored pulse, the spins within one voxel may experience

different phase mismatch due to intra-voxel B0 field variation leading to a T ∗2 -like

contrast. This property of STFR can be used to detect blood-oxygen-level-dependent
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(BOLD) signal in functional imaging, which is reported in [64], and which will be

discussed in the next chapter.

We have proposed a joint RF pulse design method for STFR, which produced a

modest improvement over the Separate design. We expect that our Joint algorithm

can be improved in at least two ways. First, since the Joint approach formulates a

nonconvex magnitude least squares problem, it is possible that our solver gets “stuck”

in a local minimum. Specifically, at each iteration our algorithm solves a least squares

problem argmin
b
‖Ab − d‖ whereby the phase of the target excitation pattern d is

updated. We attempted several different initializations to the phase pattern of d

including all zero and random phase, and achieved similar results, suggesting we may

not gets “stuck” in a bad local minimum in our experiments. However, it is possible

that alternative solvers may improve the RF design. Second, in our Joint design

formulation, we used the small tip angle approximation but we enforced the spins

to be tipped down in the middle of the combined pulse. Although we are working

in the small tip regime (≤ 20o), this forced tip-down in the middle may still make

the small tip angle approximation method less accurate. It is possible that our Joint

design can be improved by borrowing ideas from large-tip-angle pulse design, e.g.,

the additive angle method [26] or designs based on perturbation analysis of the Bloch

equation [117].

In addition to improving the RF pulse design algorithm, other complementary

methods can be used to improve STFR imaging performance. One straightforward

approach is to reduce data acquisition time and hence Tfree, which reduces the spatial

inhomogeneity of the target phase pattern θf (r). This can be done by, e.g., employing

fast non-Cartesian readout trajectories. This approach may reduce the SNR but the

SNR efficiency may not decrease much because the tailored pulse length may be

shorter. In addition, high-order gradient shim systems can be employed to reduce

B0 inhomogeneity, which also makes θf (r) vary more smoothly across the ROI. This

approach would benefit bSSFP as well, but shimming itself may not be sufficient to

remove all the banding in bSSFP [48]. Alternatively, parallel RF transmission should

allow for improved RF pulse accuracy for a given pulse duration. Parallel excitation

has been an active research area in recent years, including by our group [34], and

commercial support for such systems is emerging.

A drawback of the proposed non-slice-selective imaging approach is that signal

from outside the ROI may alias into the FOV. Although slab selective 3D tailored

pulses could in principle be used, such pulses may be prohibitively long [104]. One

potential solution to this problem is to use Cartesian readout with frequency encoding
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in the S/I direction, i.e., using the data acquisition filter to remove signal from outside

the FOV, but this approach may require longer scan time since the A/P and R/L

directions must be fully phase encoded, and these directions typically have larger

matrix size. Another potential solution is to use surface coils near the region of

interest such that signal contribution from outside the ROI is minimized. Also, with

parallel excitation, it is possible that the fast-kz(spoke) slice selective 3D tailored

pulse [108] can be short enough to be used in STFR.

3.6 Conclusions

We have developed a new steady-state sequence, unspoiled STFR, and demon-

strated using analytic modeling and experiments that this sequence produces bSSFP-

like signal and tissue contrast but with reduced banding artifacts. Our analysis shows

that the proposed sequence is less sensitive to RF pulse inaccuracies than its spoiled

counterpart. We have also proposed a novel joint RF pulse design approach that for-

mulates the RF design problem in STFR as a magnitude least-squares minimization

problem, modestly improving image quality. With this approach, we have demon-

strated that brain imaging over a 3-4 cm thick 3D ROI is possible using a standard

quadrature transmit/receive head coil and short tailored 3D RF pulses of 1.7 ms dura-

tion. We expect that future improvements in high-order shimming or parallel transmit

systems will allow expanded 3D ROIs to be imaged with the proposed approach.
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CHAPTER IV

Steady-state Functional MRI Using Spoiled

Small-tip Fast Recovery Imaging

4.1 Introduction

1The majority of functional magnetic resonance imaging (fMRI) studies in the

brain use T2*-weighted gradient-echo sequences with single-shot readout (blood oxy-

gen level dependent (BOLD) fMRI) [68]. The long echo time (TE) required to build

up sufficient functional contrast makes BOLD fMRI susceptible to background B0

inhomogeneity unrelated to oxygenation, leading to signal dropout near air/tissue

boundaries and geometric distortions or blurring. Steady-state fMRI based on pass-

band balanced steady-state free precession (passband bSSFP) uses segmented read-

outs and can produce high resolution functional maps with reduced geometric dis-

tortions [8, 118, 59, 47, 58, 61, 45], but is susceptible to dark “banding” artifacts

in regions of high B0 inhomogeneity and generally has lower functional signal than

BOLD [118].

Small-tip fast recovery (STFR) imaging is a recently-proposed steady-state imag-

ing sequence [66, 93]. STFR relies on a tailored “tip-up”, or “fast recovery”, RF

pulse to align the spins with the longitudinal axis after each data readout segment,

such that the magnetization is preserved for the next TR and a T2 dependence is

introduced. The design of the tip-up pulse is based on the acquisition of a separate

B0 map. STFR can provide bSSFP-like image contrast, but with reduced signal

variations due to B0 inhomogeneity. However, it is not yet known whether STFR is

suitable for fMRI, and whether the functional contrast mechanism is the same as in

passband bSSFP.

1This chapter is based on the publications [97, 90]
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Here we investigate the possibility of using STFR for steady-state fMRI, using

Monte Carlo Bloch simulations and proof-of-concept in vivo functional imaging ex-

periments. We first review the STFR imaging concept, and discuss potential func-

tional contrast mechanisms. We then describe our steady-state Monte Carlo Bloch

simulations, which account for spin diffusion in a realistic microvascular environment.

We continue by describing our STFR functional experiments, including the design of

the tailored tip-up RF pulse. Our results indicate that STFR can produce reliable

functional contrast, and that diffusion plays only a minor role.

4.2 Theory

4.2.1 Small-tip Fast Recovery Imaging

The STFR imaging principle is illustrated in Fig. 4.1. As in most conventional

imaging sequences, a tip-down pulse α is first played out, and the signal is acquired

during a free precession interval of duration Tfree. During this interval, the spin

precesses in the transverse plane by an angle

θ(~r) = ω(~r) Tfree, (4.1)

where ω(~r) is the spatially varying local B0 off-resonance frequency. After data read-
out, spins within the desired imaging region are tipped back toward the longitudinal
axis (mz) by a spatially-tailored tip-up pulse β(~r) that depends on θ(~r). The resid-
ual transverse magnetization remaining after the tip-up pulse can be spoiled using
RF-spoiling, i.e., by inserting an unbalanced gradient area and cycling the RF phase
quadratically [120]. RF-spoiling has the additional benefit that it suppresses signal
from outside the field-of-view (FOV) in the slice-select direction, and hence allows
a thin slab (or slice) to be imaged by using a slab-selective tip-down pulse and a
non-slice-selective tip-up pulse [65]. The transverse magnetization for an isochromat
is [65]

MT = M0 sinα
e−Tg/T1(1− e−Tfree/T1) cosβ + (1− e−Tg/T1)

1− e−Tg/T1e−Tfree/T2 sinα sinβ cos(θf − φ)− e−Tg/T1e−Tfree/T1 cosα cosβ

(4.2)

where Tfree is the free procession time, Tg is the duration of the gradient crusher,

φ is the phase of the tip-up pulse, α and β are the flip angle of tip-down pulse and

tip-up pulse, respectively. Based on this equation, when there is no phase mismatch

(φ = θf ), the transverse magnetization would be close to passband bSSFP (see plot

in [65]). Note that even though STFR is a spoiled sequence, it still has T2 dependence
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since the transverse magnetization recovered by the tip-up pulse is a function of T2,

and this magnetization will contribute to the final steady-state signal.

4.2.2 Possible Functional Contrast Mechanisms in STFR: Diffusion and

“Static Dephasing”

Increased brain activation is generally assumed to be accompanied by reduced

B0 inhomogeneity within a voxel, due to increased oxy-hemoglobin concentration re-

sulting from overcompensatory arterial blood flow increases in response to increased

oxygen demand [68]. In conventional BOLD fMRI, these intra-voxel inhomogeneity

changes are detected as changes in T2* using single-shot imaging with long TE. In

passband bSSFP, on the other hand, functional contrast is believed to be driven at

least in part by the interaction between spin diffusion and intra-voxel B0 inhomo-

geneity: during activation, diffusion-related deviations in spin free precession angle

between RF excitations are reduced, leading to a signal change that can be modeled

as a change in “apparent” T2 [58, 45]. The functional contrast mechanism is therefore

(at least in part) decoupled from the choice of TE, which enables segmented readouts

and hence reduced geometric distortions. Given the similarity between STFR and

passband bSSFP [65], one might expect STFR to exhibit a similar diffusion-driven

functional contrast.

In addition to spin diffusion, STFR has a second possible source of functional con-

trast, which arises from the dependence of the steady-state transverse magnetization

on the mismatch between the spin phase after data readout (θf ) and the phase (φ) of

the tailored tip-up pulse (Fig. 4.1(a)). Fig. 4.1(b) plots the transverse magnetization

for a spin isochromat as a function of the phase mismatch θf − φ, using Eq. [4.2].

The tip-up pulse is tailored to the mean phase of spins within a voxel, therefore, dif-

ferent spins in a voxel experience different phase mismatch and the total voxel signal

must be obtained by weighted integration of the isochromat signal profile over the B0

distribution within a voxel (illustrated in Fig. 4.1(b)):

S(~r) =

∫
MT (θf − φ(~r))f~r(θf ) dθf

where ~r is the voxel position, f~r(θf ) is the intra-voxel phase distribution for a voxel

at ~r, which is often modeled as a Lorentzian distribution. It is therefore possible

that an activation-induced change in the distribution of intra-voxel phase can lead

to a measurable signal change in spoiled STFR imaging. We will refer to this signal

dependence as “static dephasing”.
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Figure 4.1: Proposed STFR functional imaging sequence. (a) Steady-state spin path
for a single spin isochromat. The tip-up pulse (blue) is tailored to the local free
precession angle. In general, there will be a mismatch θf − φ between the spin phase
at the end of the free precession interval (θf ), and the phase (direction) of the tip-up
pulse (φ). In STFR imaging, the goal is to design a tip-up pulse that minimizes
θf − φ within the ROI. (b) Steady-state STFR transverse magnetization for a single
spin isochromat as a function of phase mismatch θf − φ, calculated from Eq. [4.2].
The observed voxel-averaged signal is obtained by weighted integrating the signal
profile over the B0 distribution within a voxel (Eq. [4.3], illustrated with shaded gray
column). (c) Pulse sequence diagram for the STFR sequence used in the in vivo
functional experiments (spiral tip-up pulse). (d) fast-kz tailored tip-up pulse (only 5
subpulses are shown).
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It is not immediately clear (i) which of these mechanisms dominate, and (ii)

whether they are sufficient to produce detectable functional signal. In this chapter

we use numerical Bloch simulations and in vivo functional experiments to address

these questions.

4.3 Methods

4.3.1 Monte Carlo Bloch Simulations

To investigate the functional contrast behavior of STFR, we performed time-

resolved Bloch simulations similar to those in [58, 45]. We constructed a 1mm3

numerical 3D voxel model containing cylindrical vessels with random orientations.

The simulated vessel diameters were in the range 5.6-60 µm [84]. We assumed a con-

stant blood fraction fb = 7.3% [58], and venous oxygenation of 67% and 81% during

rest and activation, respectively [27]. We calculated the intra- and extravascular field

according to Eqs. [4-6] in [58]. To keep memory requirements manageable, only a 2D

plane through the 3D numerical voxel was simulated, as in [58]. Figure 4.2(a) shows

the resulting 2D intra-voxel B0 field map.

We simulated the steady-state signals for STFR, both with and without diffusion.

In each simulation, 2500 spins were randomly placed into the 2D numerical voxel.

Spins were assigned a 2D random walk using diffusion coefficient of 0.001 mm2/s with

50µs simulation step size [58]. We assumed circular voxel edge conditions (i.e., spins

leaving the voxel at one edge were allowed to enter the voxel through the opposite

edge). We used T1/T2=1470/71 ms in simulation [85]. In the non-diffusion case,

we fixed all spin locations and repeated the simulations. We simulated a range of

TRs (8–24 ms) and flip angles (16o–90o for bSSFP, 8o–45o for STFR). We assumed

non-selective 1.5 ms hard pulses, TE=1.8 ms for both bSSFP and STFR, and 1.2 ms

gradient crusher for STFR. We ran the simulations for a duration of 5.5×T1 prior to

“recording” the signal to establish a steady state.

For reference, we also simulated the bSSFP sequence with the same settings with

double flip angle, and spoiled gradient echo (GRE) BOLD with 16o flip angle, 44

ms TR, and 32 ms TE, which is matched to our experiments. For computational

efficiency, we assumed ideal RF spoiling for STFR and BOLD in the simulation,

in other words, the transverse magnetization is set to 0 prior to each tip-down

pulse. We implemented the Bloch simulator in Matlab using C-mex files, available

online (http://www.eecs.umich.edu/∼sunhao).
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Figure 4.2: Monte Carlo Bloch simulation results. (a) Calculated microscopic B0 in-
homogeneity (Hz) in the numerical voxel used in our Monte Carlo Bloch simulations.
A 2D cut through the 1x1x1 mm3 voxel is shown. (b,c) Percent (b) and absolute
(c) functional signal change for STFR and passband bSSFP over a range of TRs and
flip angles. Note that bSSFP used twice the flip angle indicated. These simulations
predict that STFR can produce a functional signal. The percent signal change in-
creases with increasing flip angle across the whole range while the absolute signal
change increases up to 20o. “Turning off” spin diffusion has a relatively small impact
on the functional signal, which indicates that diffusion is unlikely be the main source
of functional contrast in STFR. (d) The percent signal change when the mean phase
mismatch in a voxel is not 0 (obtained by weighted integrating over a narrow spec-
trum off the center in Fig. 4.1-b). The functional signal change is maximized when
mean phase mismatch for a voxel is 0.
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4.3.2 Functional Imaging

Table 4.1: Summary of fMRI experiments.

Subject A, Session 1 A, Session 2 B to E
Region Motor Motor Motor
Sequence(s) STFR/BOLD/bSSFP STFR STFR/BOLD
No. Repetitions 5 1 3 to 5
Tip-up pulse fast-kz (7 ms) spiral (4.5 ms) fast-kz (7 ms)
TR (ms) 20.2/43.4/11.2 18 24/44
Frame rate (s) 1.62/3.47/0.90 1.44 1.92/3.52
TE (ms) 1.8/32/1.8 1.8 1.8/32
Flip-angle (o) 16/16/32 16 and 8 16/16
Results Fig. 3, Fig. 4 Fig. 5 Fig. 4

Table 4.2: Simulated and measured percent functional signal change.

BOLD STFR bSSFP
Simulation 5.2 % 3.6 % 0.8 %

Measurement 4.1 % 3.1 % 0.7 %

To establish whether STFR can produce useful functional contrast, we performed

fMRI experiments in 5 healthy volunteers. Table 4.1 summarizes these experiments.

We performed all imaging experiments on two different GE 3T scanners equipped with

quadrature transmit/receive head coils. The subjects underwent visual checkerboard

stimulation and performed bilateral finger-tapping, using 5 cycles of a 20 second on,

20 second off, block paradigm.

We repeated the fMRI run 3-5 times for each subject, to quantitatively compare

STFR and BOLD in terms of test-retest reliability [22, 67]. The number of repeated

scans varied across subjects (from 3 to 5) depending on how long the volunteer could

comfortably stay in the scanner. One subject was scanned in a second session to

demonstrate: (1) the effect of varying flip angle, and (2) the use of an alternative

tip-up pulse design (spiral).

In one subject (Subject A) we additionally acquired bSSFP functional activation

maps (5 repetitions). This was done to compare the functional contrast between

STFR, BOLD, and bSSFP. We used twice the flip angle (32o) for the bSSFP exper-

iments, which is expected to produce similar image contrast as STFR using half the

flip angle [65]. Note that we used identical readout for STFR and bSSFP, which leads
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to a longer TR for STFR because of its tip-up pulse and gradient crusher. The other

subjects (B-E) were not scanned using bSSFP due to the long scan times needed for

the BOLD/STFR test-retest acquisitions.

We acquired time-series image volumes using the sequence shown in Fig. 4.1(c,d),

which consists of a 3 cm axial slab-selective Shinnar-Le Roux tip-down pulse [71], a

balanced 3D stack-of-spirals readout, and a tailored tip-up pulse. Other sequence pa-

rameters were: 5 cm FOV with 10 partitions in z; 8 spiral kx-ky segments supporting

128x128 matrix size; in-plane FOV 24 cm. To suppress out-of-slab steady-state signal

formation (primarily a concern when using non-slice-selective tip-up pulses such as

spiral), we used RF-spoiling with 117o linear phase increment, as described in [65].

To minimize the possible influence of eddy-currents on the steady-state, we min-

imized the frequency of large jumps in k-space (caused, e.g., by rotating the spiral

leafs) by acquiring all z partitions in linear fashion before moving to the next spiral

leaf, and by alternating the direction of kz-space traversal when jumping to the next

spiral leaf [5, 63].

We designed the tailored tip-up pulses using two different RF designs: fast-kz [77]

and spiral. The fast-kz (spoke) pulse is longer and can only be tailored to a relatively

smooth in-plane phase pattern, but it has the advantage that there is no out-of-slice

signal. The fast-kz tailored tip-up pulse duration was 7 ms, and consisted of 10 slice-

selective subpulses at different kx-ky locations. We designed the kx-ky locations and

RF waveform jointly using a greedy approach as in [109]. The spiral non-slice-selective

tailored tip-up RF waveform was 4.5 ms, designed as in [65]. We used the small-tip

(Fourier) approximation [72] and the discretized design method in [107], implemented

with the IRT Matlab toolbox (http://www.eecs.umich.edu/∼fessler).

In each scan session, we tailored the tip-up pulse to a 2D region-of-interest (ROI)

containing most of the central slice, but excluding regions with severe B0 inhomo-

geneity if present (such as the frontal sinus). To design the pulse, we acquired an

axial 2D B0 map ω(x, y) located at the center of the 3D fMRI image volume (z=0).

We calculated the 2D B0 map from two spoiled gradient-echo (SPGR) images with

echo time difference of 2.3 ms to minimize the contribution of fat to the measured

image phase difference (flip angle 16o; 64x64 matrix size).

We designed a 2D, rather than 3D, tip-up pulse to ensure accurate tip-up pulses in

the center slice with acceptable pulse duration. Hence, these functional experiments

were designed as proof-of-concept experiments, i.e., to investigate whether STFR can

in fact produce functional contrast; A true 3D functional experiment would require

a tip-up pulse tailored to a 3D ROI, which would extend the RF pulse duration
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significantly. We also note that we could in principle have performed single-slice

functional experiments for our purposes here; however this could have introduced

slice-profile errors and blood in-flow effects that could confound the results.

4.3.3 fMRI Processing and Analysis

We reconstructed 3D image volumes using iterative nonuniform fast Fourier trans-

form (NUFFT) [18, 17] in the axial plane, and FFT in the through-slab (z) direction.

We performed 2D image co-registration along the temporal dimension for each slice.

We then applied linear time drift removal for each pixel. We correlated the resulting

filtered time-series with the block stimulus to obtain a correlation value for each voxel.

We estimated test-retest reliability following [22, 67], and the method is described

here: this analysis is based on calculating activation maps using multiple activation

thresholds, and obtaining a maximum likelihood estimate (MLE) of sensitivity and

false positive rate at each threshold. These rates are then plotted to form a receiver

operating characteristic (ROC) curve for each subject, which gives a quantitative

reliability measure for each acquisition method (STFR and BOLD).

4.4 Results

4.4.1 Bloch Simulation Results

Figure 4.2 shows the simulated functional signal change for STFR (both with and

without diffusion) and passband bSSFP over a range of TRs (8 ms – 24 ms) and flip

angles (8o – 45o for STFR and 16o – 90o for bSSFP). Figure 4.2 (b) and (c) show

the percent signal change, i.e., as a fraction of the rest state signal, and absolute

signal change, i.e., as a fraction of M0, respectively, which predicts that STFR can

in fact produce a functional signal. The percent signal increases with increasing

flip angle across the whole simulated range, while the absolute signal change keeps

increasing until 20o. Both increase with increasing TR. “Turning off” spin diffusion

has a relatively small impact on the functional signal, indicating that functional

contrast in STFR is primarily driven by static dephasing (as illustrated schematically

in Fig. 4.1(b)). These simulations also predict that under ideal imaging conditions

(i.e., tip-up pulse is perfectly tailored to the mean phase for each voxel), STFR can

produce significant functional signal increase compared to passband bSSFP. As a

reference, the simulated percent and absolute functional signal change of the spoiled

GRE BOLD sequence (TR = 44 ms, TE = 32 ms, flip angle = 16o) is 5.24 % and
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0.0037 respectively. Note that the percent signal change of conventional BOLD is

40% higher than STFR with TR = 20 ms, flip angle = 16o, but the absolute signal

change is 20% lower.

The simulation was performed assuming the tip-up pulse perfectly matches the

mean accumulated phase of each voxel, which corresponds to a weighted integration

over a narrow spectrum located in the center of Fig. 4.1(b). We also simulated the

percent signal change when the mean phase mismatch is not 0 (that would correspond

to a weighted integration over a narrow spectrum off the center), and the result is

shown in Fig. 4.2(d), which predicts that the functional signal change is maximized

when mean phase mismatch is 0o.

4.4.2 Functional Imaging

Figure 4.3(a) shows the thresholded correlation maps of STFR, BOLD, and bSSFP

imaging for 5 scans in one subject (A, Session 1). Both STFR and BOLD show

high correlation in the motor cortex areas. Balanced SSFP imaging shows some

activation in the motor cortex area, but also displays correlations in other regions.

To quantitatively evaluate the functional signal, we first selected a region of interest

(ROI) by choosing all the pixels that show activations in at least 4 scans in both

STFR and BOLD (see Fig. 4.3(b)), and then obtained the mean signal time course

for voxels within that ROI (Fig. 4.3(c)). STFR shows slightly smaller signal change

than BOLD, but higher than bSSFP. The measured percent signal change is reported

in Table 4.2, and is in good agreement with simulation results, scaled by an arbitrary

factor (1.2 times). The absolute signal change is not reported because the receive

gain of the scanner changed between scans, which leads to different baseline image

intensity.

Figure 4.4 shows ROC curves for STFR and BOLD in 5 subjects (A-E). STFR

functional imaging shows good reliability in general, but slightly lower than conven-

tional BOLD. One BOLD curve had very low reliability, which may be due to motion

artifact (observed in the functional maps corresponding to that subject).

Finally, Fig. 4.5 shows STFR functional imaging results of one subject for two

different flip angles (8o and 16o). Imaging with 16o flip angle results in more active

voxels in the expected region compared to 8o. To quantitatively compare the results

for different flip angles, we plotted the mean time course over an ROI in Figs. 4.5(c)

and 4.5(d). The ROI is chosen by selecting the voxels that are classified as active in

both flip angle acquisitions. Higher flip angle has more absolute and percent signal

change, which agrees with the simulation.

43



STFR

BOLD

bSSFP

Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

(a)

(b) (c)

Figure 4.3: Repeated motor cortex imaging using STFR, BOLD and bSSFP in one
subject (A, Session 1). (a) Activation maps with correlation threshold 0.3 and cluster
size 10 [20]. All five scans demonstrate that STFR can produce similar activation
maps as BOLD, which are well localized to the motor cortex area. (b) ROI used to
calculate the mean time course for each sequence, obtained by selecting the pixels
showing activations in at least 4 scans in both BOLD and STFR. (c) One cycle of the
mean time course over the ROI (the rest state signal is normalized to be 1). STFR has
slightly lower functional contrast than BOLD, but higher than bSSFP. The calculated
percent functional signal change is reported in Table 4.2.
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Figure 4.4: Summary of test-retest reliability results for 5 different subjects (Subjects
A–E), calculated using the method in [22, 67] from motor cortex imaging data. The
ROC curves for STFR are generally slightly lower than BOLD, but still demonstrate
that it is a reliable sequence for detecting functional activity. One BOLD curve
is much lower than other curves, which is probably due to the motion artifact we
observed in that set of data.
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Figure 4.5: Effect of flip angle on functional signal in STFR. (a) Correlation map
obtained with STFR fMRI, using flip angles 16o and 8o. Threshold and cluster size
are 0.22/12 for both flip angle acquisitions. (b) ROI used to calculate the mean time
course for each flip angle, which includes pixels showing activation in both flip angle
acquisitions. (c,d) One cycle of mean time course within ROI. 16o flip angle produces
higher absolute and percent functional signal change compared to 8o flip angle, as
predicted in simulation (Fig. 4.2(b,c)).
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4.5 Discussion

The Bloch simulation results suggest that the STFR functional signal arises pri-

marily from interactions between the intra-voxel dephasing and the tip-up pulse. If

we ignore the relatively small diffusion effect, we can obtain the STFR functional sig-

nal by numerical weighted integration of the steady-state signal over the intra-voxel

frequency distribution as in Eq. [4.3], instead of performing a full Monte Carlo Bloch

simulation. Using this method, we predict a 3.3% signal change, which is close to the

Monte Carlo simulation result of 3.6%.

The dephasing effect in STFR is similar, but not exactly the same as the T2* effect

in the conventional BOLD sequence. We can not simply replace T2 in Eq. [4.2] with

a conventionally defined T2*, i.e., 1/T2* = 1/T2 + 2πγ, where γ is the half-width

at half-maximum (HWHM) of the intra-voxel Lorentzian distribution, to obtain the

voxel signal. Fitting a Lorentzian line shape to the simulated frequency distribution

with T2 = 71 ms [85] yields T2* values of 62 ms and 68 ms in rest and active condi-

tions, respectively (we have not found literature supporting those T2* values but we

believe T2* change of this size is reasonable, as it would produce a ∼ 4% BOLD func-

tional change assuming TE=30 ms, which is within the commonly observed range).

By replacing T2 with T2* in Eq. [4.2] we obtain a percentage signal change of 7.0%,

which is almost twice the contrast obtained from Monte Carlo simulation or numer-

ical integration, supporting the idea that the functional contrast mechanism is not

quite the same as T2* decay. In addition, from Eq. [4.2], we note that T2 is paired

with Tfree, not TE, which decouples the main source of functional signal from TE.

In our Monte Carlo Bloch simulations, we observed that the effect of diffusion

is to increase the image signal and decrease the functional contrast compared to

the result without diffusion (see Fig. 4.2). We think the reason for this change is

that with diffusion, spins effectively experience different frequencies during the free

precession interval, and that the accumulated phase therefore tends to be closer to the

mean phase of that voxel. This effectively narrows the line spread of the intra-voxel

distribution, which increases the image signal but decreases the functional contrast.

Flip angle and TE are two other variables that affect the signal contrast. We used

16 degrees in most of our experiments, which is approximately the Ernst angle for the

BOLD acquisitions (assuming a T1 of about 1.1 sec). According to the simulation

in Fig. 4.2(b), a flip angle around 20 degrees generates the maximum absolute signal

change. We used the minimum available TE for STFR in our experiments, but we

found later in simulation that the functional signal increases with increasing TE (not
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shown here), probably due to the normal T2* effect. This suggests that a spiral-in

readout rather than a spiral-out readout could be used to increase the effective TE

and therefore the functional signal.

Physiological fluctuations in B0 (e.g., due to respiration) would shift the voxel

signal as a whole along the curve in Fig. 4.2(d), which would reduce the functional

contrast. We expect the B0 shift due to respiration to be of order 1-2 Hz at 3T

(fluctuations of 1.45-4 Hz have been reported at 7T [60]), which would not shift the

voxel signal significantly (e.g., 5-11 degrees assuming Tfree = 15 ms) along the curve

in Fig. 2(d). In the experiments presented here we have not observed significant

physiological noise increases in STFR compared to BOLD.

A potential advantage of STFR compared to BOLD is that it can achieve high reso-

lution segmented 3D imaging with reduced signal loss and image distortion. However,

to achieve this across the whole brain, a 3D tailored tip-up pulse would be necessary,

which may be prohibitively long. We have suggested methods for improving 3D tai-

lored pulse design [93], but it is still challenging to tailor to the whole brain including

regions with high field inhomogeneity (e.g., near frontal sinus). A potential solution

is to use parallel transmission to reduce the pulse duration, and we plan to explore

the feasibility of 3D STFR functional protocol using an 8-channel parallel transmit

head array [34].

4.6 Conclusions

Taken together, the work presented here indicates that STFR has the potential to

become a sensitive functional imaging modality. The functional contrast mechanism

is decoupled from the echo time, enabling segmented readouts and high image quality.

Our Monte Carlo Bloch simulations indicate that STFR fMRI can produce observable

functional contrast, and proof-of-concept in vivo STFR fMRI observations using a

2D tailored tip-up pulse support this prediction. Our simulations also indicate that

the functional contrast in STFR is driven primarily by “static dephasing”, and that

diffusion plays a relatively minor role. In the future, we plan to evaluate the feasibility

of whole-brain STFR fMRI, using 3D tailored tip-up pulses. We expect the design

of such 3D pulses to benefit greatly from parallel transmission systems, high-order

gradient shimming, and novel RF pulse design approaches.
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CHAPTER V

Small-Tip Fast Recovery Imaging Using Spectral

Tailored Pre-winding Pulse

5.1 Introduction

1In chapter III and chapter IV, we proposed a new steady-state imaging sequence

named Small-tip fast recovery (STFR), which relies on a tailored tip-up RF pulse

(Fig. 5.1) and a gradient crusher to achieve comparable signal level as bSSFP, but

with potential for reduced banding artifacts and transient oscillations. In addition,

unlike bSSFP, STFR is compatible with magnetization preparation pulses, such as

fat saturation or magnetization transfer pulses [114].

However, previous STFR implementations used spatially tailored pulses that in-

troduce some T2* weighting [97], unlike bSSFP that refocuses microscopic B0 in-

homogeneities and therefore produces more pure T2 (and T1) tissue contrast. Here

we propose to modify the STFR sequence using a spectral tip-up pulse, specifically

the “pre-winding” RF pulse proposed recently by Asslander et al. [2]. This modi-

fication removes the intra-voxel dephasing-induced T2* weighting in spatial-STFR,

making the contrast more similar to bSSFP, and has the additional advantage that

tip-up pulses can be precomputed to a target frequency range and do not rely on

detailed patient-specific fieldmap (B0) information. This chapter compares this new

“spectral-STFR” sequence with bSSFP in terms of (1) signal level, (2) brain tissue

contrast, and (3) off-resonance signal (banding) profile, using Bloch simulations and

phantom and in vivo imaging experiments.

1This chapter is based on the publications [89, 92]
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Figure 5.1: Proposed spectral-STFR pulse sequence. Spectral pre-winding pulses
are used for both tip-down and tip-up excitations in this work. (a) Steady-state spin
path. The tip-down pulse “prephases” the spins to have a phase equal to the negative
of half the accumulated free precession phase −θf/2 = ωTfree/2, where Tfree is the free
precession time. After readout, the spin is tipped back to the z-axis by a pulse tailored
to the phase θf/2. (b) Pulse sequence timing diagram.

5.2 Theory

In [66, 93], we described the theory and implementation of STFR in detail. There

are two key ideas in STFR: First, after readout, a tip-up radio-frequency (RF) pulse

tailored to the accumulated phase during free precession is transmitted to bring spins

back to the longitudinal-axis, which “fast recovers” the transverse magnetization and

preserves it as longitudinal magnetization for the next TR. Second, after the tip-up

pulse, an unbalanced gradient is played out to dephase residual transverse spins [93].

Figure 5.1 shows the spin path and an example sequence diagram of the proposed

spectral-STFR sequence, where α (red waveform) and -β (blue waveform) correspond

to the tip-down and tip-up parts, respectively. The pulse diagram is similar to its

spatial sibling, but with the gradient waveforms during the RF pulse duration set to

zero. We use an unspoiled sequence (constant RF phase over time) here since it is

less sensitive to phase mismatch between pre-winding pulse and actual accumulated

phase than RF-spoiled STFR [93].

Unlike bSSFP, which typically has short slice-selective RF pulses that can be

approximated by instantaneous rotations, the relatively long RF pulses in spectral-

STFR can incur significant signal decay (“finite RF pulse effects” [6]). This T2 decay

mechanism is exacerbated by the fact that the instantaneous flip angle during RF
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excitation can go well beyond the final target angle. Since the detailed shape of the

spectral RF pulse will vary depending on, e.g., target bandwidth and details of the

pulse design implementation (as described below), we did not derive an analytic signal

model for spectral-STFR but instead rely on Bloch simulations for steady-state signal

calculations.

Beside the steady state signal level, it is important to note that spectral-STFR

may not have the T2*-like contrast in spatial-STFR. In spatial-STFR, intravoxel spins

may experience different spin/tip-up phase mismatch because the phase of the spa-

tially tailored pulse is relatively smooth (we can assume it is a linear for a voxel). The

mismatch between the phase of the tip-up pulse and the intravoxel field inhomogene-

ity leads to T2*-like contrast, which can be used to detect blood oxygenation level

dependent (BOLD) functional signal [97]. Spectral-STFR, on the other hand, does

not have this property since ideally the phase of all spins match their off-resonance

frequency regardless of spatial position.

5.3 Methods

5.3.1 Spectral RF pulse design

We use spectral pre-winding pulses for both tip-down and tip-up excitations in our

current implementation. The tip-down pulse is tailored to the following spectrum:

d(∆ω) = sinαe(i∆ωTfree/2) where α is the flip angle (uniform for all spins), ∆ω is a

vector containing the range of target off-resonance frequencies 2, and Tfree is the free

precession time between tip-down and tip-up excitations. After readout, the spins will

have phase −∆ωTfree/2, and a tip-up pulse is tailored to this to bring all spins back to

the longitudinal axis. The tip-up pulse is designed by first designing an intermediate

tip-down pulse with negative B0 field map, and then negating and time-reversing this

intermediate pulse [66]. The target excitation pattern for this intermediate pulse is

determined by Bloch simulation of the tip-down and free precession. The effective

flip angle of the tip-up pulse is usually smaller than the tip-down pulse in STFR due

to T2 decay during the free precession, leading to a lower RF power for the tip-up

pulse. Note that in previous spatial designs, d is a function of position, but here d is

a function only of off-resonance frequency.

We compute the RF waveform under the small tip angle approximation [72, 103];

specifically, we solve b̂ = argmin
b∈CNs

||Ab − d(ω)||22 + µb′b, where µ is the Tikhonov

2We use the convention ω = γB in our work. Since the free precession is rotate clockwise with a
positive B field, the accumulated phase is in the negative direction: θf = −ωTfree
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Regularization parameter controlling the tradeoff between RF power and excitation

accuracy. A is the small tip system matrix with aij = ıγM0e
ı∆ωi(tj−T )). Unlike the

conventional small tip angle system matrix [103], there is no phase encoding term

ıkj · rj in A here since all gradients are set to zero for spectral selectivity.

5.3.2 Simulations

We designed spectral pre-winding RF pulses with 10o flip angle and +/-75 Hz

target bandwidth. We evaluated the RF pulse design for different Tikhonov regu-

larization parameters. We also simulated the steady-state signals for spectral-STFR

and bSSFP using T1/T2 values for gray matter (GM), white matter (WM), and cere-

brospinal fluid (CSF) [85], over a 300 Hz bandwidth with 4.9 ms readout time to

compare the banding profile and tissue contrast.

5.3.3 Imaging experiments

To evaluate the steady state signal level and demonstrate the banding reduction

of STFR, we acquired RF-spoiled gradient echo (SPGR), bSSFP and spectral-STFR

images of a GE resolution phantom using a GE 3.0 T scanner and a birdcage T/R

headcoil. We designed a spectral-STFR pulse covering the B0 bandwidth (BW) in

the target slices (-75 Hz to 75 Hz). Spectral-STFR used a 10o flip angle, which is

expected to produce similar signal as bSSFP with 20o flip angle [93]. The pulse lengths

were 2 ms for each RF pulse, and a 3D readout was used with 256x256x65 sampling,

24x24x32 cm field of view (FOV), and 62.5 KHz receive bandwidth, resulting in a

4.9 ms readout time, including dephasing, rephasing, and phase encoding gradients,

and 10 ms TR, which also includes a crusher after the tip-up pulse. We used a large

readout FOV in z to eliminate aliasing from untargeted slices since the spectral pre-

winding pulse is not spatially selective. For comparison, SPGR/bSSFP images were

acquired with the same resolution, 10o/20o flip angle, and 10 ms/7 ms TR.

A healthy volunteer was imaged with the same hardware setup as the phantom

experiments. We acquired a low resolution 3D B0 map solely to estimate and specify

the target off-resonance range. We designed a spectral-STFR sequence (10o flip an-

gle) targeted to -120 to +50 Hz. The pulse lengths were 2 ms for each RF pulse. We

determined that the specific absorption rate (SAR) of our sequence was moderate;

specifically the integrated total RF power of our spectrally tailored pulse was approx-

imately equal to a 35o sinc pulse of time-bandwidth 6 and duration 1.2 ms. The 3D

readout was the same as in the phantom experiment. For comparison, bSSFP images
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Figure 5.2: Effect of regularization parameter µ on spectral pre-winding RF pulse
waveforms. (a) Large µ (0.6) can suppress the b1 magnitude and keep the small tip
angle approximation accurate (i.e., small difference between the small tip angle ap-
proximation and Bloch simulation). (b) With small µ (0.02), the excitation predicted
by the small tip model matches the target, but the actual excitation pattern has large
deviations from the target since the small tip approximation does not hold for the
entire RF transmission window. (c) Actual flip angle of a spin during the RF pulse
can be larger than the final target flip angle. Small regularization leads to higher
intermediate flip angle and therefore less accurate excitation. We designed pulses
with µ = 0.6 in this study.

were acquired with the same resolution, 20o flip angle, and 7 ms TR.

5.3.4 Results

Figure 5.2 demonstrates the impact of regularization parameter choice on the

spectral pulse. Although the final excitation flip angle is small in our implementation

(e.g., 10o in this simulation), the instantaneous flip angle during RF transmission can

be large (Fig. 5.2 (c)). Therefore, the small tip approximation can be inaccurate for

this pulse design. To keep the small tip approximation accurate, we used a large

regularization parameter that keeps the flip angle relatively small during the whole

excitation process. With relatively large regularization (a), the small tip approxima-

tion matches the Bloch simulation very well, but both deviate somewhat from the

target. With small regularization (b), the small tip prediction matches the target,

but the actual excitation does not match the target. All experiments in this study

used µ = 0.6.

Figure 5.3(a) shows the simulated steady-state signal for spectral-STFR and bSSFP

for gray matter (GM), white matter (WM), and CSF over a 300 Hz bandwidth with

4.9 ms readout time. In this figure, the sequence was designed for 150 Hz target band-

width, with µ = 0.6. The flip angles are 10o and 20o for spectral-STFR and bSSFP,

respectively. Both sequences have high CSF signal, as expected. Spectral-STFR has
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Figure 5.3: Simulated steady-state banding profile of (a) spectral-STFR and bSSFP
for WM, GM, and CSF, using T1 and T2 values from [85], and (b) spectral-STFR
for fat with T1 and T2 values from [28]. RF pulses were designed for 150 (+/-75)
Hz target bandwidth, 4.9 ms Tfree, and β = 0.6. In general, spectral-STFR and
bSSFP have similar tissue contrast (e.g., high CSF signal). Spectral-STFR has wider
passband than bSSFP. The banding shape for spectral-STFR is similar for different
tissue types, indicating a relatively consistent tissue contrast across the frequency
band. Fat can have high signal in spectral-STFR.

wider passband (≈ 50% increase in FWHM). The banding shape of spectral-STFR is

more consistent across different tissues, e.g., the CSF signal near the band edge is less

hyperintense relative to the corresponding bSSFP curve. Figure 5.3(b) shows the sim-

ulated banding profile for fat. Fat can have high signal depending on its off-resonance,

which is a potential drawback of spectral-STFR. Potential ways to suppress the fat

signal are discussed further below.

Figure 5.4 shows the field map, SPGR, bSSFP, and the spectral-STFR image for

4 slices spanning 4 cm in the phantom. As predicted from simulation, the banding

artifacts observed in bSSFP are successfully reduced in the STFR images, and the

STFR signal is relatively uniform across the passband.

Finally, Fig. 5.5 shows the field map, bSSFP image, and spectral-STFR image for

10 slices spanning 7 cm in a volunteer. The banding artifacts observed in bSSFP that

are within our target frequency range have been successfully removed in the STFR

images. As off-resonance goes beyond the target range, signal drop occurs (e.g., blue

arrow), but the rate of this drop across the object is smaller than the bSSFP signal

drop, agreeing with our simulations (Fig. 3). The fat signal in spectral-STFR varies

more across the object compared to bSSFP, also in agreement with simulations.
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Figure 5.4: Comparison of SPGR, bSSFP, and spectral-STFR imaging in a phantom.
(a) B0 map. (b) Steady-state images, displayed on a common grayscale. Spectral-
STFR (bottom row) reduces the banding artifact seen in bSSFP (middle row), and
has a relatively uniform signal with varying off-resonance. Both bSSFP and STFR
generally achieve higher signal than SPGR (top row).
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Figure 5.5: Comparison between bSSFP and spectral-STFR imaging: representative
human volunteer imaging results. (a) B0 field map, and (b) bSSFP and (c) spectral-
STFR images. Spectral-STFR has similar image contrast as bSSFP, but no hyperin-
tense CSF signal near the edge of the bands. In addition, spectral-STFR successfully
reduces the banding artifacts (e.g, red circle) within the target frequency range. Signal
drop-out occurs when off-resonance goes beyond the target range (e.g., blue arrow).
(d-g) Plots of signal level versus off-resonance frequency in CSF and WM/GM ROIs
(segmented manually from slices 6-8). The center of target bandwidth is -35 Hz and
0 Hz for spectral-STFR and bSSFP, respectively. Balanced SSFP shows signal drop
near -70 Hz, which is corrected at the corresponding frequency (-105 Hz) in spectral-
STFR. The CSF signal variation of spectral-STFR is much smaller than bSSFP near
the edge, agreeing with the simulation in Fig. 5.3. The fat signal near the skull shows
high variability in the spectral-STFR images, as expected from the simulation results
in Fig. 5.3(b).
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5.3.5 Discussion

The key to the proposed spectral-STFR sequence is to design a spectral pre-

winding pulse that can successfully prephase the spins over a wide bandwidth. Based

on our simulations using the small-tip pulse design method, we find it is hard to

achieve bandwidth wider than 1/(2Tfree). Therefore, with the same pulse design

method, the only way to increase the target bandwidth is to reduce the readout time,

leading to lower resolution, lower SNR, or increased number of TRs. There are several

potential improvements of the pulse design method. As shown above, the actual flip

angle during RF transmission can be large enough to significantly violate the small tip

angle approximation, so a large tip design may therefore generate better results. We

have evaluated the large tip design method proposed by Grissom [25] that combines

optimal control with a linearization of the Bloch equation. Using this method, we

can design pulses that have bandwidths wider than 1/(2Tfree) (Figure 5.6); However

we found that the final pulse is sensitive to how the algorithm is initialized (initial

pulse). In [25], a scaled small tip design pulse was used as the initial pulse. We have

found that if we use a large regularization parameter in designing the initial pulse,

the resulting large tip design does not improve the result significantly compared to

the initial pulse. If we use a small regularization parameter, the large tip design step

can significantly improve the result and perfectly match the target phase pattern, but

leads to high RF power and low steady-state signal (not shown). The fact that a high

power pulse leads to a lower steady-state signal for short T2 species may be useful

to enhance image contrast (e.g., increase the contrast between CSF and WM/GM,

or between CSF and cranial nerves). However, the general problem of enforcing the

RF power constraint while designing a pulse that matches the target phase remains

an open problem.

In this work we used non-spatially-selective RF pulses for both tip-down and tip-up

excitations, however it is possible to limit the FOV by using a spatially selective tip-

down excitation (e.g., a conventional slice-selective RF pulse) followed by a spectral

tip-up pulse. In this case it is necessary to use RF-spoiling to suppress unwanted

SSFP-echo signal created by the non-spatially-selective tip-up pulse [66]. Another

way to limit the FOV may be to use a slab saturation pulse between time-points (3)

and (4) in Fig. 1(b). Thirdly, in Cartesian imaging sequences (e.g., spin-warp or EPI)

the FOV in the frequency encoding direction is limited by the readout bandwidth.

This work considered the excitation accuracy following a single shot only, however

it may be possible to design the RF pulses for optimal steady-state signal across the

target off-resonance bandwidth. For example, in [66, 93] we showed that the steady-
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state signal is relatively insensitive to flip angle over a certain range (e.g., 10o to 25o

for gray matter and white matter). We can therefore partially relax the magnitude

(flip angle) constraint or limit the maximum deviation [96] in the pulse design, which

may improve steady-state accuracy. Also, a joint pulse design that considers both

tip-down and tip-up pulses in one RF pulse design step may be helpful [93].

We observed in our simulations (Fig. 5.3(b)) and our in vivo experiments (Fig. 5.5)

that fat signal varies significantly with off-resonance, which is a potential disadvantage

of our sequence. However, since a key advantage of STFR is the ability to incorporate

magnetization-preparation pulses (between time-points (3) and (4) in Fig. 1(b)), as

demonstrated in [114], we can incorporate fat-suppression pulses to suppress the fat

signal. In our in vivo experiment, the peak of the measured 10 second SAR average

is 0.8 W/Kg on our GE scanner, which is well below the 6.4 W/Kg limit. The

integrated RF power of a 6 ms SLR fat saturation pulse is only half the integrated

power of our spectral-prewinding pulses. So adding this fat saturation pulse to our

sequence will not violate the SAR limit. However, adding magnetization preparation

pulses can increase the length of the sequence and therefore reduce the SNR efficiency.

Alternatively, we may change the readout time to shift fat to the null of its banding

profile, but it may be difficult to place fat in a signal null over the whole brain imaging

due to B0 inhomogeneity.

Some differences between spectral-STFR and bSSFP should be noted. First, for a

given readout duration and acquisition matrix, the total acquisition time for spectral-

STFR will be longer, due to the tip-up RF pulses. Second, we observe in our in vivo

results that blood signal in large vessels is suppressed in spectral-STFR relative to

bSSFP. One possible cause for this is that the phase of flowing blood spins at the

beginning and end of the free precession interval may not be consistent, i.e., the phase

at end of Tfree may deviate from the predicted phase based on the local off-resonance

frequency at the position of the spin at the beginning of the readout interval. Another

possibility is that the imaging gradients induce flow-related spin phase due to non-

zero gradient first moments, also causing the spin phase at end of Tfree to deviate

from the tip-up target excitation phase. This may be problematic for applications

that rely on bright blood signal, such as cardiac functional imaging or phase-contrast

velocity mapping.

Although the spectral pre-winding pulse does not need spatial off-resonance in-

formation, a B0 field map may still need to be acquired in practice to estimate the

center of target off-resonance frequency. However, this field map can be in very low

resolution. Also, if the scanner can auto-shim the center off-resonance close to 0 in
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Figure 5.7: The phase of the pre-winding pulse is constant except a few π changes.

the target region, the B0 field map acquisition step can be avoided.

We note that the GRASS sequence can also be an alternative to bSSFP in some

applications, and produces bright CSF like bSSFP. However, since GRASS relies

on multiple-TR echo pathways to form its T2 and T1-weighted steady-state signal,

we expect that GRASS is generally less compatible with magnetization preparation

compared to STFR. In addition, GRASS is relatively sensitive to flow and motion,

which limits its applications. Also, we observed in simulation that for the sequence

used in this work, spectral-STFR has 30% higher signal than GRASS.

The behavior of spins under the spectral pre-winding pulse is investigated in [3].

The spins are first tipped down to one direction with a relative large flip angle. After

some phase accumulation, the spins are tipped back to the other side of the z-axis.

The Euclidean distances between spins are kept constant when tipped back, but the

phase differences are amplified if the final flip angle is smaller than the flip angle in

the initial direction. Their explanation agrees with our observation that there is a π

phase change in the spectral pre-winding pulse(Figure 5.7 (left)). Moreover, we find

that the number of direction changes of the pulse can be more than once when the

target bandwidth is large (Figure 5.7 (right)).

Finally, we can try spectral-spatial (SPSP) pulse design instead of pure spectral

pre-winding pulse. In SPSP pulse, the target excitation pattern spans a small BW for

each pixel, and the BW is centered at the local off-resonance of that pixel. The pure

3D spatial pulse design can be viewed as a SPSP pulse with target frequency only

at zero, which is typically a over-determinant problem. So adding more frequency

constraints leads to a more over-determinant problem. Therefore, the excitation error

at the local off-resonance frequency of each pixel will increase compared to pure spatial
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design. So we have to reduce the design resolution in spatial domain compared to the

pure spatial pulse to obtain better excitation accuracy.

5.4 Conclusion

We have proposed a new steady-state MRI imaging sequence that combines STFR

and a spectrally tailored pulse, and that may offer an alternative to bSSFP in some

applications. We have demonstrated that the resulting spectral-STFR sequence has

similar tissue contrast as bSSFP but has increased passband width, and more consis-

tent CSF/brain tissue contrast across the passband.

61



CHAPTER VI

Pulse Design using Minimax Algorithm

6.1 Introduction

1 All previous RF pulse design methods attempt to minimize the l2-norm of exci-

tation error, which does not strictly enforce a maximum deviation (l∞-norm) between

the desired and actual excitation patterns. This can result in undesired image arti-

facts such as bright or dark spots that may decrease the diagnostic utility of the image.

Therefore, in this chapter, we propose to minimize the l∞-norm instead of l2-norm

to potentially reduce these artifacts. This chapter starts from a special type of k-

space trajectory: fast-kz trajectory (also know as spoke or echo volumnar). Then, we

extend our method to pulse design with arbitrary k-space trajectories in section 6.6.

The fast-kz trajectory is an important pulse type because it can achieve both

slice selection and in-slice modulation, which is widely used in B1 shimming [24].

Figure 6.1 shows an example pulse diagram of a fast-kz RF pulse, which consists of

a train of short (<1 msec) sinc subpulses. A through-plane gradient is transmitted

simultaneously with the RF subpulses to achieve slice selection, and gradient blips

in the kx and ky directions are interleaved between subpulses to achieve within-slice

modulation. The gradient blips determine the in-plane k-space locations of those

subpluses, which is referred to as phase encoding location.

In practice, only a small number of subpulses can be transmitted due to time

constraints on the whole RF pulse. Therefore, it is desirable to select only a few

in-plane phase encoding locations. These locations are not selected a priori but are

chosen as part of the fast-kz pulse design. In other words, the k-space trajectory

and RF pulse weights should be designed jointly. This problem can be solved by

exhaustively searching all the possible phase encoding locations and selecting the

1This chapter is extended from the conference paper [96]
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Figure 6.1: Example pulse diagram of a fast-kz pulse. It consists of a train of short
sinc subpulses, and gradient blips in the kx, ky directions are applied to achieve
in-slice modulation.

best, but this will lead to a combinatorial problem, which is hard to solve online

while the subject is in the scanner. Recently, several approaches using orthogonal

matching pursuit (OMP) [99] or modified OMP have been proposed, which achieve

good approximations with much less computation time[53, 109, 10, 111, 24]. However,

as I mentioned, all of these approaches attempt to minimize the l2-norm of excitation

error instead of directly controls the maximum error, which may result in undesired

image artifacts such as bright or dark spots in the image. Therefore, in the first half of

this chapter, we modelled the fast-kz pulse design problem as a sparse approximation

problem with minimization of the l∞-norm to potentially reduce these artifacts. We

also proposed a greedy-like algorithm to solve it.

6.2 Theory

A typical spoke RF pulse design problem is solved as follows:

min
x∈CN

‖d− Fx‖2, such that ‖x‖0 = k, (6.1)

where d ∈ CN is the desired excitation pattern, F ∈ CN×N is the system matrix

under the small tip angle approximation[72]. N is number of pixels in desired exci-

tation pattern. To begin with, we ignore B0 inhomogeneity, which is a reasonable

approximation to short RF pulse. Under this assumption, F is a (inverse) discrete

Fourier transform matrix multiplied by the coil sensitivity, and x is a vector of the

RF pulse weights to solve for. The l0-(semi)norm in (6.1) ensures k-sparsity of x,

i.e., the number of “phase encoding” locations (subpulses) is k. This problem can be
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solved using OMP.

The above modelling does not regulate spikes that can occur in d − Fx, which

may lead to dark or light spot artifacts in the result image, and we therefore propose

the following slightly different problem:

min
x∈CN

‖d− Fx‖∞, such that ‖x‖0 = k. (6.2)

This problem explicitly minimizes the maximum absolute value of the entries in d−
Fx, so that the previously mentioned artifacts are reduced. Sparsity is again enforced

using the l0-(semi)norm of x.

To solve the problem in (6.2), we propose the following greedy selection algorithm,

Algorithm 1, shown below.

Algorithm 1 Greedy Algorithm.

1: Input: F , d, and k.

2: Output: x

3: Initialize: Λ = ∅
4: for j = 1 to k do

5: λj = arg min
l /∈Λ

min
x̃
‖d− F (:, l ∪ Λ)x̃‖∞

6: Λ = Λ ∪ {λj}
7: end for

8: x = arg min
x
‖d− F (:,Λ)x‖∞ {Calc coeffs.}

The inputs to Algorithm 1 are the coil-sensitivity modulated inverse DFT matrix

F , the desired excitation pattern d, and the desired sparsity level k. The output is a

vector of pulse weights x. The set Λ is a set of indices of the atoms in F that we use

to approximate d. In each iteration, the algorithm finds the index l of an atom of F

that results in the minimum possible l∞-norm approximation (in Line 5). The index

is then added to the set Λ, and the pulse weights x are calculated by minimizing the

l∞-norm in line 8 using the atoms specified by Λ.

Lines 5 and 8 in Algorithm 1 both involve solving the following unconstrained

l∞-norms minimization problem, where A are the columns of of F in line 5 of Algo-

rithm 1.

min
x∈Ck

‖d−Ax‖∞ (6.3)

We propose an efficient algorithm to solve this unconstrained l∞ norm minimiza-
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tion problem, which is described in detail in section 6.3. However, algorithm 1 can

still be slow in practice because of line 5. Almost every single column in F has to be

used for solving an unconstrained l∞ norm minimization problem. A typical target

excitation pattern is 64x64 pixels (e.g., slice selective excitation), which results in F

having 4096 columns, and it would be very time consuming to run our unconstrained

l∞ norm minimization 4096 times at each iteration of algorithm 2. It it therefore

desirable to use fewer candidate atoms in this step. One way to do this is to try only

the q atoms (e.g. q = 10) that have the q largest dot products with the residual. This

algorithm is shown below as Algorithm 2, and is called “greedy-like” because it is not

strictly guaranteed to pick the best l∞-norm minimization vector at each iteration.

Algorithm 2 Greedy-like Algorithm.

1: Input: F , d, k, and q.

2: Output: x

3: Initialize: a = 0, Λ = ∅
4: for j = 1 to k do

5: r = d− a {Update residual.}
6: p = F ′r {Dot products.}
7: S = { set of (indices /∈ Λ) of max q elements of p }
8: λj = arg min

l∈S
min
x̃
‖d− F (:, l ∪ Λ)x̃‖∞

9: Λ = Λ ∪ {λj}
10: x = arg min

x
‖d− F (:,Λ)x‖∞ {Calc coeffs.}

11: a = F (:,Λ)x {Update approximation.}
12: end for

In line 6 of Algorithm 2, the dot product of the residual with each atom in F is

computed. In line 7, indices of the q candidate atoms not in Λ that have the q biggest

dot products are saved in the set S. Finally, in line 8, the algorithm picks the atom in

S that when added to the set Λ, results in the minimum l∞-norm approximation to

d. The l∞-norms in lines 8 and 10 are again solved using the proposed unconstrained

l∞ norm minimization algorithm, to be described below.

Algorithm 2 uses the dot products, F ′r, to eliminate the need for trying every

atom with the relatively slow procedure of unconstrained l∞ norm minimization al-

gorithm. This shortcut does not guarantee that the q candidate atoms with largest

dot product will generate the lowest l∞-norm out of all possible atoms. Thus, the

choice of q presents a tradeoff between algorithm speed and “greediness.”
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6.3 Solving the Unconstrained L∞ Minimization Problem

This section describes our algorithm to solve (6.3). We propose to use variable-

splitting to transform this unconstrained problem into the following equivalent con-

strained problem:

min
x,v
‖v‖∞, such that v = Ax− d. (6.4)

Then we form the augmented Lagrangian function:

L(x,v,y) = ‖v‖∞ +
µ

2
‖Ax− v − d+ y‖2

2 (6.5)

where y is the scaled dual variable and µ is a penalty parameter. We then solve the

min
x,v,y

L(x,v,y) problem using the following alternating direction method of multipliers

(ADMM) update [9]

xk+1 = argmin
x

L(x,vk,yk) (6.6)

vk+1 = argmin
x

L(xk+1,v,yk) (6.7)

yk+1 = yk + (Axk+1 − vk+1 − d) (6.8)

The update of x is easy, which is xk+1 = A+(vk + d+ yk), where A+ is the pseudo-

inverse of A. The update of y is trivial, which consists of adding the primal error to

the current y. To solve (6.7) and update v, we propose the following method. The

derivation is similar to the approach for deriving the soft-thresholding method.

Let c = Axk − d− yk, and equation (6.7) now becomes:

min
v

(‖v‖∞ +
µ

2
‖v − c‖2

2) (6.9)

To solve the problem of this form, we divide it to two steps: first consider minimizing

the function h(v) = u + µ
2
‖v − c‖2

2 over complex v that satisfies ‖v‖∞ ≤ u for fixed

u; then minimize this minimum value, which is a function of u, over u. In the first

step, the objective h(v) is obviously separable in v = [v1, . . . , vM ]T , so each vi can

be chosen independently. Consider the corresponding element of c = [c1, . . . , cM ]T : if

|ci| ≤ u, then setting vi = ci obviously minimizes |vi − ci|2 while satisfying |vi| ≤ u.

Otherwise, the closest vi to ci lies on the boundary |vi| = u, and at the phase closest
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to ci: vi = ci
u
|ci| . Putting these together yields the thresholding-like solution

v̂i(u) = ci
min{u, |ci|}
|ci|

. (6.10)

Then, if we plug our optimal vi’s into h(v), we get

h(v̂(u)) = u+
µ

2

M∑
i=1

max{|ci| − u, 0}2 (6.11)

Let φi(u) = 1
2

max{|ci| − u, 0}2; this function is convex over all u and strictly convex

when u < |ci|. Then, re-parameterizing h(·) in terms of distance u yields

h(u) = u+ µ
M∑
i=1

φi(u). (6.12)

Since the sum of convex functions is strictly convex as long as one is strictly convex,

we see that h(u) is strictly convex for u < ‖c‖∞, which is the maximum distance

we would consider (since its boundary contains v = c). The derivative of φi(u) is

min{u− |ci|, 0}, so the derivative

ḣ(u) = 1 + µ
M∑
i=1

min{u− |ci|, 0}. (6.13)

The extremum u∗ ∈ (0, ‖c‖∞) must satisfy

1

µ
=

M∑
i=1

max{|ci| − u∗, 0} =
∑

i:|ci|>u∗
(|ci| − u∗). (6.14)

Finding this extremum is easy: denote c̃ = [c̃1, . . . , c̃M ]T the vector c sorted by

magnitude largest to smallest, and find the largest value of I such that
∑I

i=1(|c̃i| −
|c̃I |) ≤ 1/µ. Then, u∗ lies between |c̃I | and |c̃I+1| (or between |cM | and zero, for

I = M); in particular, u∗ = |c̃I | − (1/µ−
∑I

i=1(|c̃i| − |c̃I |))/I. It is possible if I = M

that u∗ becomes less than zero for µ is small enough, in which case the optimal u∗ = 0.

Plugging in u∗ into Eq. (6.10) yields the non-iterative solution v for the sub-problem

(6.9) which is used in the update in (6.7).
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6.4 Simulation Results

The simulation contains two parts. First, we demonstrate that our algorithm

can solve the unconstrained l∞ norm minimization problem shown in equation (6.3).

Second, we simulate our algorithms for the overall l∞ norm sparse approximation

problem defined in equation (6.2). In the first simulation, we first create a 2D DFT

matrix with size n by n and modulate it by the sensitivity map. Then we randomly

pick m (=n/2) columns from this matrix to form matrix A in (6.3). We randomly

create a vector b with length n, and feed them into our code and plot ‖Ax−b‖∞ versus

number of iterations, The simulation result is shown in Fig. 6.2. The coefficient x is

initialized by obtaining the least square solution to (6.3), and µ is set to 2 in (6.5) for

ADMM. As we can see, the cost converges after about 40 iterations. The decrease of

the cost function is not monotonic, which is reasonable since the ADMM method does

not guarantee monotonic convergence. To test whether it converges to the optimal

solution, we used the output of our algorithm as an input to the MATLAB fminsearch

function and observed no improvement in the cost function. This suggests that our

algorithm finds a local minimum, which should be the global minimum since the cost

function is convex.

0 20 40 60
0.3

0.35

0.4

0.45

number of iterations

||
A
x
−

b
||
∞

Figure 6.2: test of unconstrained l∞ norm minization

In the second simulation, we investigated our proposed method in the context of

RF shimming. RF shimming is an important application of spoke RF pulse design,

especially in high field or parallel excitation, with the goal of uniformly exciting a

region with non-uniform transmit sensitivities. This problem is typically modelled as a

68



10 20 30 40 50 60

10

20

30

40

50

60

(a) Desired pattern

10 20 30 40 50 60

10

20

30

40

50

60

(b) Sensitivity map

0 5 10

10
−2

10
0

k

L 
in

fin
ity

 N
or

m
 o

f R
es

id
ua

l

 

 OMP
Modified OMP
Proposed

(c) l∞ norm of residual

0 20 40 60
0

0.01

0.02

0.03
A

bs
ol

ut
e 

ex
ci

ta
tio

n 
er

ro
r

 

 OMP
Modified OMP
Proposed

(d) cross line in image

 

 

0

0.01

0.02

(e) Difference between excitation patterns and desired pattern
(left: OMP; middle: modified OMP; right:proposed)

Figure 6.3: Comparing OMP and proposed algorithm
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sparse approximation problem as shown in (6.1). OMP is one conventional algorithm

to solve problem (6.1) and there are many modifications to OMP to improve its

performance fast-kz pulse design [53, 109, 10, 111, 24]. In our simulation, we compared

our algorithm to a modified OMP with exactly the same structure as our proposed

Algorithm 2 except that the l∞ norm minimization of lines 8 and 10 are replaced

with l2 norm minimization. We choose this algorithm for comparison for two reasons:

first, keeping the structure the same provides a common ground for the choice of the

norm between l∞ and l2 norm; second, there are many variations of OMP, and it

is not practical to compare all of them. As a reference, we also include the classical

OMP in our simulation. In the simulation, the desired excitation pattern is a uniform

circle shown in Fig.6.3-a, which is then reshaped to a column vector d (4096 by 1).

The region outside the circle is not in our region-of-interest. We create the system

matrix F by multiplying a 2D DFT matrix (4096 by 4096) with the nonuniform coil

sensitivity map shown in Fig.6.3-b. The comparison of l∞ norm versus number of

phase encoding locations (k) is shown in Fig. 6.3-c for OMP, modified OMP and the

proposed Algorithm 2. We set our simulation range of k to be 1 to 10 since we usually

want a small number of spokes in practice to reduce overall pulse length. We can

see in Fig.6.3-c that OMP fails to significantly decrease the l∞ norm of the residual

after k = 2, while modified OMP can decrease l∞ norm further, but still has higher

(about twice) l∞ norm compared to our proposed algorithm. The difference between

desired and true excitation patterns is shown in Fig.6.3-e. It demonstrates that the

excitation pattern of our proposed algorithm is much closer to the desired pattern

than the OMP algorithm and modified OMP algorithm. We also plot the cross section

line of excitation error for all three methods in Fig. 6.3-d, and the proposed method

has the smallest ripples.

6.5 B0 inhomogeneity and parallel excitation

6.5.1 Include B0 Map in the Model

Like most of current greedy fast-kz pulse design algorithm, the proposed method

above doesn’t consider B0 map in the design. The main obstacle to consider the B0

map in the greedy algorithm is we don’t know the corresponding time for each columns

in the dictionary matrix since we don’t know whether those phase encoding locations

will be visited or not, and when they will be visited. To solve this problem, Yoon [109]

proposed an algorithm that visits the selected phase encoding locations in a reverse

order, and updates the target excitation patter after each selection. In other words,
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we first select the last phase encoding location (in time) using the target excitation

pattern for the whole RF pulse, and then back calculate the excitation pattern before

the last subpulse based on the final pattern, the duration of this subpulse and the B0

map, and then use this excitation pattern to get the second-to-last subpulse. I adapt

the same idea into our above algorithm.

6.5.2 Extend to Parallel Excitation

In parallel excitation, the system matrix A need to be modified to include all the

coils as following:

A = [S1F , S2F , ...SLF ] (6.15)

where L is the total number of coils and Sl is sensitivity of the lth coil. Each time we

select the phase encoding location, we have to consider the cumulative inner product

defined as the following to preselect candidates l before calculate ‖d−A(:, l∪Λ)x‖∞.

When calculating ‖d−AΛx‖∞, we have to redefine AΛ as the following:

AΛ = [S1F (:,Λ), S2F (:,Λ), ..., SLF (:,Λ)].

Then the x that minimized ‖d − AΛx‖∞ will be the coefficients of L coils corre-

sponding to the phase encoding locations in Λ. We run our greedy algorithm for k

iterations and we will obtain k phase encoding locations with kL non-zero coefficients

in x.

6.5.3 Simulation Results Considering B0 Map and Parallel Excitation

Figure 6.4 shows the simulation results for OMP, modified OMP and the proposed

method with measured B0 map (a) and simulated transmit coil sensitivity map (b).

In all three methods, we treat the B0 map and parallel excitation as suggested above.

The proposed method leads to less maximum excitation error for all number of sub-

pulses. Although we do not directly target the l2 norm of the excitation error in

the minimax formulation, we find that it actually achieve similar error in l2 norm

compared with the modified OMP approach. This is probably because the sparse

approximation is a non-convex problem and both methods are greedy algorithms, so

the l2 norm based OMP is not guaranteed to have less l2 norm than the minimax

method. Using 3 subpulses, the proposed method reduces the maximum excitation

error by more than half.
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(a) B0 map (b) Coil sensitivity map
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Figure 6.4: Simulation results with B0 map and parallel excitation. The proposed
method leads to less maximum excitation error for all number of subpulses. The l2
norm of excitation error is similar between the minimax method and modified OMP
approach. Using 3 subpulses, the proposed method reduces the maximum excitation
error by more than half.
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6.6 Minimax for general pulse design

In previous sections, we proposed a greedy minimax algorithm for fast-kz (spoke)

pulse design. In this section, we investigate the minimax algorithm for the design of

general RF pulse.

6.6.1 Formulation

The conventional small-tip RF pulse design is to solve the following problem [103].

min
b∈CNt

‖d−Ab‖2 +R(b) (6.16)

where A is the small-tip system matrix, b is the discretized RF pulse. R(b) is a

regularization term to limit the RF power. As mentioned in previous chapters, we

may want to limit the maximize error instead of the L2 norm in some applications,

by solving the following problem:

min
b∈CNt

‖d−Ab‖∞ +R(b) (6.17)

This is similar to Equation 6.3, but directly solving the actual RF pulse instead

of the weightings of subpulses in the fast-kz pulse. Therefore, the problem size of

this optimization is larger than the optimization in 6.3, and it is unclear whether

our proposed ADMM-based minimax algorithm would still be fast enough for online

pulse design.

Another difference between Equation 6.17 and Equation 6.3 is the additional reg-

ularization term in 6.17. In the conventional pulse design, we typical choose simple

β‖b‖2
2 as the regularizer. Here for minimax pulse design, we use the same regular-

izer. We will demonstrate the modifications to our ADMM updates 6.66.76.8 and the

simulation result using this regularizer.

6.6.2 Modifications to our ADMM updates after including the regularizer

If we choose β‖b‖2
2 as the regularizer, then the problem becomes:

min
b∈CNt

‖d−Ab‖∞ + β‖b‖2
2 (6.18)

Similar to before, we use variable-splitting to transform this unconstrained prob-

73



lem into the following equivalent constrained problem:

min
b,v
‖v‖∞ + β‖b‖2

2, such that v = Ab− d. (6.19)

We form the augmented Lagrangian function:

LR(b,v,y) = ‖v‖∞ + β‖b‖2
2 +

µ

2
‖Ab− v − d+ y‖2

2. (6.20)

Then we alternative update b, v, and y. The updates of v and y are the same as

before. To update b, we have the following close form solution:

b = (A′A+
2β

µ
Id)−1A′(v + d− y) (6.21)

With varying regularization parameter µ as we used in previous sections, the least

square problem to update b would also change over iterations. Therefore, we can not

pre-compute (A′A + 2β
µ
Id)−1A′, and just multiply it to v + d− y to get the result.

Directly solving Equation 6.21 or using MATLAB backslash in each iteration can be

relatively slow. To solve it efficiently, we pre-compute the SVD of A = UΣV , and

update b in each iteration by back calculating the following formula:

b = V (Σ2 +
2β

µ
Id)−1ΣU ′(v + d− y) (6.22)

6.6.3 Simulation results

We simulated a pre-phasing problem, where we want to achieve the following

excitation pattern: d(∆ω(r)) = eı∆ω(r)Tfree sinα, where α is the flip angle (uniform

for all spins), ∆ω(r) is the B0 field map, and Tfree is the free precession time. The goal

is to achieve refocusing Tfree after the excitation. Prephasing pulses may be used to

compensate for susceptibility (T2*) signal loss, and are needed in the “small-tip fast

recovery” steady-state imaging sequence being developed by our group [104, 65, 93].

We designed a prephasing pulse with 10 degree flip angle, 2.5 ms Tfree, and measured

B0 field map from a human brain. We used a 4.7 ms SPINS [55] k-space trajectory

in the pulse design. We simulated with 64x64x8 matrix size and 24x24x4 cm3 FOV.

We started from a µ = 0.5 in our ADMM algorithm, and updated it over iterations

following the rule in [9]. The plot of µ over iterations is shown in 6.6, where µ kept

unchanged after approximately 70 iterations.

The convergence plot of our ADMM-based minimax algorithm is shown in Fig-
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Figure 6.5: Cost function value and maximum error over iterations using our ADMM-
based minimax algorithm. The cost function is monotonic decreased, but the maxi-
mum error has small oscillations. The cost function converges faster than the maxi-
mum error.

ure 6.5. The cost function almost converged after 100 iterations. The maximum error

converged slower, reached to its minimum after 150 iterations. The total computation

time (300 iterations) was 33 sec in our setting.

Figure 6.7 shows the simulated excitation error using the conventional l2-norm

based design and the proposed minimax algorithm (after 150 iterations). Using our

minimax design, the excitation error does not have a high error spot as shown in the

conventional design result. The maximum excitation error using the minimax design is

0.34 of the maximum error in the conventional design. We used β = 0.01 and β = 8

for the minimax design (Equation 6.18) and conventional design (Equation 6.17)

respectively, resulting in approximately the same RF power (the RF power (‖b‖2
2)

using the minimax design is 0.92 of the conventional design).

6.6.4 Magnitude minimax algorithm

The phase of the target excitation pattern is not important in many MRI appli-

cations, and therefore pulse design methods based on the following magnitude least

square [82, 35] problem were proposed:

min
b∈CNt

‖|d| − |Ab|‖2 +R(b) (6.23)
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The variable exchange method (also called Gerchberg-Saxton) [41] is used widely in

solving the above problem, and its convergence can be shown using the optimization

transfer principle (majorize-minimization).

Here we proposed to solve the following magnitude minimax problem for pulse

design:

min
b∈CNt

‖|d| − |Ab|‖∞ +R(b). (6.24)

We derived an algorithm for solving problem 6.24 using the majorize-minimization

method as follows.

min
b
‖|Ab| − d‖∞

⇔ min
b∈CNt

max
i
| |Aib| − di|

⇔ min
b∈CNt

max
i

min
zi∈C,|zi|=1

|Aib− dizi|

,where Ai is the ith row vector of A. Define z̃
(n)
i = argmin

zi∈C,|zi|=1

|Aib
(n)− dizi|, then since

max
i

min
zi∈C,|zi|=1

|Aib
(n) − dizi| = max

i
|Aib

(n) − diz̃(n)
i |

and

max
i

min
zi∈C,|zi|=1

|Aib− dizi| ≤ max
i
|Aib− diz̃i(n)| ∀b,
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Figure 6.7: Simulated excitation error in the pre-phasing problem using the conven-
tional l2-norm based design and our minimax pulse design. The high error spot in the
conventional design result is removed by our minimax optimization. The maximum
excitation error using minimax pulse design is 0.33 of the error using the conven-
tional design, at the expense of root mean square error (RMSE). The RMSEs for the
conventional design and minimax design are 0.02 and 0.04, respectively.
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max
i
|Aib − diz̃

(n)
i | is a surrogate function of max

i
min

zi∈C,|zi|=1
|Aib − dizi|. Therefore

max
i
|Aib − diz̃(n)

i | + R(b) is also a surrogate function of max
i

min
zi∈C,|zi|=1

|Aib − dizi| +

R(b). Then the following alternating update is a majorize-minimization algorithm

and guaranteed to converge.

z̃
(n)
i = argmin

zi∈C,|zi|=1

|Aib
(n) − dizi| = eı∠Aib

(n)

b(n+1) = argmin
b∈CNt

max
i
|Aib− diz̃i(n)|+R(b) = argmin

b∈CNt

‖Ab− d(n)‖∞ +R(b)

To solve the first update, we just assign the phase ofAib to the phase of zi. To update

b(n+1), we use the algorithm we proposed in previous sections for solving problem 6.17.

6.7 Discussion

The joint design of phase encoding locations and RF weighing in the fast-kz tra-

jectory is a non-convex problem and our greedy approaches are not guaranteed to

find the global minimum. Therefore, it is possible to obtain lower or similar l2-norm

excitation error using the minimax formulation compared to the l2-norm formulation,

as we demonstrated in Figure 6.4. On the other hand, it is also possible to obtain

lower maximum error using the l2 based approach in the fast-kz pulse design. How-

ever, if we use the same method in finding the phase encoding locations, but obtain

the RF weights using minimax formulation, then the minimax method should be able

to always achieve lower or equal maximum error.

The lower maximum error of the proposed method comes at a possible expense

of the average error, as we observed in Figure 6.7. In practice, we may want to use

some adaptive scanning strategies. For example, we may want to use the minimax

designed pulse to do the first scan and select some ROI, and then use a weighted

minimax or weighted conventional design with larger weight in the ROI to reduce the

error in that region, so we can have a better image for the ROI.

In the minimax pulse design, a weighting matrix or a mask can be incorporated

to our formulation and algorithm easily by pre-multiplying a weighting matrix to the

system matrix and the target excitation pattern.
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6.8 Conclusion

In this chapter, we proposed a novel method to model the spoke RF pulse design

problem in MRI: instead of modelling it as a sparse approximation problem with a l2

norm cost function, we use l∞ in the cost function to limit the maximum error. To

solve this new problem, we proposed a greedy algorithm. The core part of that greedy

algorithm is an unconstrained l∞ norm minimization in the complex domain (6.3),

and that is solved using variable-splitting and ADMM. A non-iterative solution is

derived to solve the most difficult part in the ADMM update (6.9) efficiently. To

our knowledge, this is also novel. Our simulation results show that our proposed

model and algorithm yields a much smaller maximum error than the classical OMP

and the modified OMP (i.e., the l2 norm counterpart of proposed algorithm) for the

spoke RF pulse design problem. We extended our proposed method by including the

B0 imhomogeneity effect and considering parallel excitation. We also extended our

minimax algorithm to more general pulse design with arbitrary k-space trajectory and

a Tikhonov RF power regularization term. For applications where only the magnitude

of excitation pattern is of interest, we formulated a “magnitude minimax” problem

and derived an algorithm based on the majorize-minimization principle.
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CHAPTER VII

Joint Design of Excitation k-space Trajectory and

RF pulse for Small-tip 3D Tailored Excitation in

MRI

7.1 Introduction

1Spatially tailored RF excitation has a range of applications in MRI, including B1

shimming [15, 76, 77, 111, 11, 55], reduced FOV excitation [74, 116, 14, 81, 54, 52],

susceptibility artifact correction [104, 65, 93, 97], and fat suppression [113, 114]. The

task of designing time-varying RF and gradient waveforms for a desired target ex-

citation pattern poses a non-linear, non-convex, constrained optimization problem

with relatively large problem size that is difficult to solve directly. In conventional

tailored excitation pulse design, the k-space (gradient) trajectory is pre-defined, al-

lowing the RF waveform to be obtained using linear least-squares optimization [103].

However, for a given pulse duration, using a pre-determined k-space trajectory leads

to suboptimal excitation accuracy.

Several methods have been proposed for jointly designing the k-space trajectory

and RF pulse, achieving improved tailored excitation accuracy compared to pre-

defined gradient approaches. These methods can be classified into two categories:

sparse approximation and parametrization approaches. In the sparse approximation

approach, a complete dictionary A based on the small-tip-angle approximation [72]

is defined, and the joint pulse design task is reduced to selecting a few k-space phase

encoding locations (i.e., columns in A, typically less than 20) by either thresholded

Fourier transform or greedy algorithms. The output of those methods are discrete

k-space trajectories like fast-kz/spoke pulses (discrete in kx-ky plane) [111, 53, 109,

1This chapter is based on the publications [88]
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10, 96], or KT-points (discrete in 3D) [11]. Grissom [24] recently combined sparse

approximation with local optimization in fast-kz pulse design to improve the result

and incorporate B0 inhomogeneity information. However, complex target excitation

patterns require more than a few phase encoding locations, so sparse approximation

approaches are typically used only for B1 shimming, and they would be difficult to

use for other applications needing non-smooth target excitation patterns (especially

in 3D).

In parametrization approaches to RF pulse design, the k-space trajectory is ap-

proximated by a linear combination of basis functions, and the joint pulse design task

is then to optimize the basis function coefficients as well as the RF waveform. Hardy

expressed the k-space trajectory and RF pulse as Fourier series and then optimized

the coefficients using simulated annealing [29] for 2D tailored excitation, but it is

computationally too expensive for real-time tailored RF pulse design. Levin approx-

imated the spiral trajectory by concentric rings and then optimized the radius of

those rings [50]. Yip proposed a general approach for selecting basis coefficients, and

applied it to the optimization of an EPI trajectory [105]. Shao optimized the extent

of the stack-of-spiral trajectory and the fast-kz trajectory [83]. Davids optimized the

extent of a 3D cross trajectory in kx, ky, kz for its different shells/segments [14]. By

parametrization, those methods reduced the problem dimension, and the computa-

tion complexity. However, these methods (except [29, 14]) did not explicitly consider

the maximum gradient and slew rate constraint in the optimization, instead avoiding

this constrained minimization problem by limiting solutions to a certain type of tra-

jectory (e.g., EPI, spiral, stack-of-spiral). Hardy and Davids [29, 14] considered the

constraint, but their methods require large computation time, making it impractical

for online pulse design problems. Also, all the parametrization methods do not choose

the trajectory type based on the information of the excitation pattern.

In this work, we present a general approach for jointly optimizing the k-space tra-

jectory and RF waveforms in 3D tailored excitation. Our method starts with some

initial k-space trajectory (e.g., such as those obtained with any of the approaches

described above), parametrizes the trajectory using 2nd-order B-spline functions, and

optimizes the basis coefficients and RF waveform using constrained optimization. The

peak gradient and slew rate are directly included in the optimization, and the trajec-

tory is not limited to a pre-defined type such as concentric rings or EPI. We demon-

strate our approach using four different k-space initializations: stack-of-spirals(SoS),

spiral nonselective (SPINS) [55], kT-points, and a new proposed initialization which

we refer to as “extended kT-points”. We demonstrate our method in two differ-
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ent applications: 3D reduced FOV excitation, and spin pre-phasing. In all cases,

our optimized k-space trajectories achieve improved excitation accuracy compared to

the initial trajectory, and our proposed extended KT-points method provides good

initialization.

7.2 Theory

7.2.1 Problem Formulation

In joint design of k-space trajectory and RF pulse, we want to solve the following

optimization problem [105]:

min
b∈CNt ,kx,ky ,kz∈RNt

‖SA(kx,ky,kz)b − d‖2
2 +R(b)

s.t. ‖D1kx‖∞ ≤ γ∆t gmax, ‖D2kx‖∞ ≤ γ∆t2 smax,

‖D1ky‖∞ ≤ γ∆t gmax, ‖D2ky‖∞ ≤ γ∆t2 smax,

‖D1kz‖∞ ≤ γ∆t gmax, ‖D2kz‖∞ ≤ γ∆t2 smax,

kx(Nt) = 0, ky(Nt) = 0, kz(Nt) = 0, (7.1)

where kx,ky,kz are Nt-length vectors containing 3D k-space trajectory locations,

and b is an Nt-length vector containing the complex RF pulse values. R(b) is a

regularizer to limit the RF power, and we use γ‖b‖2
2 with γ = 8 in our study. D1

and D2 are the first and second order difference matrices, A is the small-tip-angle

approximation system matrix with aij = ıγ ~M0e
ı(kxjxi+kyjyi+kzjzi+∆ω(tj−T )), where i is

the spatial index from 1 to Ns and j is the time index from 1 to Nt. A is similar to an

inverse DFT matrix, but with an additional term due to B0 inhomogeneity ∆ω. The

problem size varies in practice depending on the pulse length and the resolution of the

target excitation pattern, but A is typically a tall matrix (Ns typically ranges from

3000 to 36000, and Nt ranges from 250 to 1500). S is the transmit coil sensitivity

matrix; often it is simply chosen to be the identity matrix. The first and second order

derivative constraints correspond to the maximum gradient (gmax) and gradient slew

rate (smax) limits of the MR scanner. The equality constraints mean the k trajectory

must end at zero, by definition.

7.2.2 k-space parametrization

Problem (7.1) is a nonlinear, nonconvex, and constrained problem that is difficult

to solve. Following [105], we simplify this problem by parametrizing the k-space

82



trajectory using basis functions:

kx(cx) = Hxcx,

ky(cy) = Hycy,

kz(cz) = Hzcz. (7.2)

where Hx, Hy, Hz are Nt × L matrices containing L basis vectors as columns, and

cx, cy, cz are the basis coefficients. Now the joint trajectory/RF design problem (7.1)

becomes

min
b∈CNt , cx,cy ,cz∈RL

‖SA(cx, cy, cz)b − d||22 +R(b)

s.t. ‖D1Hxcx‖∞ ≤ γ∆t gmax,

‖D2Hxcx‖∞ ≤ γ∆t2 smax,

‖D1Hycy‖∞ ≤ γ∆t gmax,

‖D2Hycy‖∞ ≤ γ∆t2 smax,

‖D1Hzcz‖∞ ≤ γ∆t gmax,

‖D2Hzcz‖∞ ≤ γ∆t2 smax,

kx(Nt; cx) = 0, ky(Nt; cy) = 0,

kz(Nt; cz) = 0. (7.3)

Unlike previous joint pulse design approaches that are based on predefined trajectory

types (e.g., EPI or spiral) that intrinsically satisfy the gradient constraints, here we

aim to solve the constrained optimization problem (7.3) directly. In our approach, we

do not predefine the trajectory type to form the basis, but instead use a 2nd-order

B-spline basis that can closely approximate an arbitrary trajectory. In particular,

for a given k-space trajectory initialization, we first approximate the trajectory using

a B-spline basis, and then optimize the corresponding coefficients. A second rea-

son for choosing a 2nd-order B-spline basis is that the gradient constraints can be

implemented efficiently, as shown next.

7.2.3 Efficient implementation of constraints

To satisfy the maximum gradient and slew rate constraints, we would in general

need to consider Nt time points. However, by using 2nd-order B-splines, the extreme

points of the gradient and slew rate can occur only at a limited number of time points,
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greatly reducing the number of constraints.

Define β(m)(t) as the B-spline basis function of order m. The x component of the

k-space trajectory parametrized by L such basis functions is:

kx(t) =
L∑
l=1

cxlβ
(m)(t− τl). (7.4)

The gradient and slew rate are:

gx(t) =
∂kx(t)

∂t

=
L∑
l=1

cxl(β
(m−1)(t− τl + 1/2)

−β(m−1)(t− τl − 1/2)) (7.5)

sx(t) =
∂gx(t)

∂t

=
L∑
l=1

cxl(β
(m−2)(t− τl + 1)

−2β(m−2)(t− τl) + β(m−2)(t− τl − 1)).

(7.6)

The extreme points of gx(t) occur only at the zero-crossing point of sx(t), as illustrated

in Figure 7.1. The slew rate sx(t) is linear combination of rect functions, and its

extreme points also occur at a limited number of points. Higher order B-splines do not

have this property. Define P1 and P2 as the matrices that pick the rows corresponding

to the candidate extreme points of gradient and slew rate, respectively. Then we can

rewrite the inequality constraints for the x gradient in the following form (only one

term is shown for simplicity):

||P1DHxcx||∞ ≤ γ∆t gmax. (7.7)

Therefore, the total number of inequality constraints is reduced from 12Nt to 12L

(L � Nt). To provide a compact notation, we combine all inequality constraints as

follows:

Uc− v � 0 (7.8)
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Figure 7.1: 2nd-order B-spline function basis, and its 1st, 2nd-order derivative. The
gradient and slew rate are linear combination of the 1st, 2nd-order derivative, respec-
tively. Their extreme values can occur at only a limited number of points, greatly
reducing the number of inequity constraints.
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where

U =



P1D1Hx 0 0

−P1D1Hx 0 0

0 P1D1Hy 0

0 −P1D1Hy 0

0 0 P1D1Hz

0 0 −P1D1Hz

P2D2Hx 0 0

−P2D2Hx 0 0

0 P2D2Hy 0

0 −P2D2Hy 0

0 0 P2D2Hz

0 0 −P2D2Hz



, (7.9)

c =

 cxcy
cz

 , (7.10)

v =



γ∆tgmax

...

γ∆tgmax

γ∆t2 smax

...

γ∆t2 smax


. (7.11)

The B-spline basis are properly shifted to end with 0, so the k-space trajectory always

ends with 0, and the equality constraint can be ignored.

7.2.4 Gradient and Hessian

The optimization algorithms we investigated (see Section E) involve calculating

the gradient and Hessian of the cost function (7.3) with respect to the coefficients

(cx). Denoting the cost function as f , it can be shown that the gradient is[105]:

∇cxf = 4πRe{ıH ′B′A′XS′We} (7.12)

where H is the basis function, B is a diagonal matrix with the RF pulse b on the

diagonal, A is the small-tip-angle system matrix, X is a diagonal matrix containing

the x spatial coordinates, S is the diagonal coil sensitivity matrix, W is a diagonal
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weighting matrix, and e is the excitation error. Denote the Jacobian matrix as:

Jx =
de

dcx
= SXABH . (7.13)

The gradient can then be written as:

∇cxf = Re{J ′We}. (7.14)

∇cyf and ∇czf have the same form except X is replaced with Y and Z, respectively.

The Hessian with respect to k is calculated to be (see Appendix B):

∂2

∂kxi∂kxj
f = 8π2Re{b∗ja′jXS′WSXaibi}, i 6= j

∂2

∂kxi∂kxj
f = 8π2Re{b∗ja′jXS′WSXaibi}

−2Re{e′WSXXaibi}, i = j (7.15)

The second term in (7.15) is usually much smaller than the first term since e is close

to zero. We therefore ignore the second term and use the following approximation

(with respect to cx):

∇2
cxf = 2Re{J ′xWJx} (7.16)

The overall 3L× 3L Hessian matrix for the x, y, z coordinates is:

∇2
cf = 2Re {J ′WJ} , (7.17)

where J = [Jx, Jy, Jz] is typically a tall matrix since the number of spatial locations

Ns is much larger than the number of basis function 3L, so the Hessian matrix J ′WJ

can be easily stored (3Lx3L), and efficiently calculated (O(NsL
2)).

7.2.5 Optimization algorithms

To minimize the cost function (7.3), we alternate between optimizing the RF

waveform b and k-space trajectory coefficients c, as shown in Algorithm 3. We use

conjugate gradient (CG) for the update of b, implemented using [19]. For the update

of c, we want the optimization algorithm to be monotonically decreasing and feasible

in each iteration. This ensures that the optimization can be terminated at any point,

which is useful in practical “online” settings where patient-tailored pulses must be

designed quickly. We investigated four different algorithms that are both monotone
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and feasible: (1) projected gradient descent algorithm with backtracking line search,

(2) projected Levenberg-Marquardt (LM) algorithm [40], (3) interior point algorithm

with backtracking line search, and (4) MATLAB ‘fmincon’ function using an active-

set solver. We implemented the algorithms and compared their speed in MATLAB

on an Intel Xeon 3.3.GHz desktop.

Algorithm 3 Alternative minimization

1: Initialize: Calculate c(0) by B-spline curve fitting to some initial k. Obtain b

using CG. Set Niter = 20.

2: for i = 1 to Niter do

3: Approximately optimize c.

4: Run 20 iterations CG to optimize b.

5: end for

In the projected LM algorithm, the projection is a quadratic programming problem

that we solved using MATLAB function “quadprog”. Instead of finding the exact

minimizer over c, we ran the algorithms for only 3 iterations before updating b again.

The projected LM algorithm is shown in Algorithm 4. It is similar to the normal

LM algorithm but with two differences: (1) the update are projected to the feasible

set in each iteration, (2) if the cost function does not decrease in the current iteration,

we run one iteration of the gradient descent algorithm. The projection is a quadratic

programming problem, can be efficiently computed using MATLAB function ‘quad-

prog’. We do not solve for exact solution of c, but only run the algorithm for 3

iterations before update b again.

Algorithm 4 Projected LM[40]

1: Initialize: c(0) from the last outer iteration, µ = 0.05, Niter = 3

2: for i = 1 to Niter do

3: Set λ = µf(c(i))

4: Compute δ from (J ′(c(i))J(c(i)) + λI)δ = ∇f(c(i))

5: if f(PC(c(i) + δ)) < f(c(i)) then

6: Set c(i+1) = c(i) + δ

7: else

8: Run one iteration of projected gradient descent with backtrack line search.

9: end if

10: end for

The interior point algorithm used in our work is shown in Algorithm 5. In each
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iteration, we minimize the following cost function Φ that combines a scaled original

cost function and a log barrier function, using Newton’s method

Φ = tf + Ψ (7.18)

where Ψ = −
∑12L

i=1 log(uTi c− vi). The gradient and Hessian of Ψ are:

∇Ψ(c) =
12L∑
i=1

ui
vi − uTi c

= UTw, (7.19)

∇2Ψ(c) =
12L∑
i=1

uiu
T
i

(vi − uTi c)2
= UTdiag(w2)UT , (7.20)

where wi = 1/(vi − uTi c). We use approximated Hessian instead of true Hessian

in our implementation (line 4). α is a parameter ensuring enough decrease of the

cost function, and we set it to 0.01 in our implementation (line 5). Strictly feasible

condition is enforced in our implementation (line 5).

Algorithm 5 Interior point

1: Initialize: c(0) from the last outer iteration, t = 20, Niter = 2

2: for i = 1 to Niter do

3: for j = 1 to NNewton do

4: Compute δ from (J ′(c(i))J(c(i)))δ = ∇Φ(c(i))

5: if Φ(c(i) + sδ) < Φ(c(i))− αδ′∇Φ AND c(i) + sδ is feasible then

6: Set c(i+1) = c(i) + sδ

7: else

8: s = 0.5s

9: end if

10: end for

11: t = 2t

12: end for

7.2.6 Initialization

The above algorithms are local optimization algorithms that require good initial-

ization. To demonstrate that our method can be applied to any initial k-space trajec-

tory, we evaluated four different initial 3D trajectories: (1) stack-of-spirals (SoS) [83],

(2) spiral nonselective (SPINS) [55], (3) KT-points [11], and (4) a novel trajectory

design initialization approach which we will refer to as “extended KT-points” [88].
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The KT-points method models the joint design problem as the following sparse

approximation problem:

min
x∈CNt

‖SFx− d‖2, such that ‖x‖0 = Nk. (7.21)

F is a complete DFT matrix and x is the RF weighting vector. This minimization

problem tries to select Nk phase encoding locations from a total Ns possible locations

that best approximate d, and the non-zero term in x corresponds to the RF pulse

weighting at those phase encoding locations. The B0 field inhomogeneity term in A

in (7.1) is ignored. The reason is that the actual visiting time for each phase encoding

location is undetermined when constructing the dictionary. The sparse approximation

problem can be solved by either thresholding the inverse discrete Fourier transform or

using greedy algorithms. We choose a modified OMP [109] method since it can easily

model the region of interest and transmit sensitivities in the system matrix. KT-points

method produces initial are 3D k-space phase encoding locations and RF weights at

those locations. Those phase encoding locations are traversed using gradient blips.

This conventional KT-point method is inefficient in 3D excitation since moving

between phase encoding locations takes a large portion of the pulse duration but no

RF is transmitted during this time. A natural extension is to use the k-space trajec-

tory from KT-points but transmit continuous RF during the whole pulse duration.

This is our third initialization method.

However, this simple extension may also be inefficient since the visiting order

and the gradient waveform is not optimized. We therefore propose to order those

phase encoding points before generating the gradient waveform. We treat this as a

traveling salesman problem, and use a genetic algorithm to solve it [46]. We then

generate the fastest gradient waveform to transverse those optimally ordered points

using the method in [51, 100]. This “extended KT-points” intialization is summarized

in Algorithm 7. Our extension is similar to [10], but [10] does not optimize the

visiting order of phase encoding locations, and was demonstrated only for 2D tailored

excitation.

Algorithm 6 Extended KT-points

1: Find phase encoding locations using method [109].

2: Find the optimal visiting order using traveling salesman algorithm [46].

3: Generate the fastest gradient waveform using [51].
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7.3 Methods

We applied our method to two pulse design problems: 3D inner-volume excitation

and spin prephasing. For inner-volume excitation, we excited a 6x6x6 cm3 cube with

10 degree flip angle using an RF pulse of approximate duration 4 ms transmitted on

a single transmit coil. We simulated the excitation results for a 64x64x8 matrix over

a 24x24x16 cm3 FOV. To reduce computation time, we down sampled the matrix

to 32x32x8 for optimization. We used a measured B0 field map from an Agar ball

phantom in the simulation. We measured the B0 field map by acquiring spoiled

gradient-echo (SPGR) images with two different echo times (3 ms and 5.3 ms), and

taking the phase difference on a voxel-by-voxel basis. We assume uniform coil transmit

sensitivity.

For spin prephasing [104], we want to achieve the following excitation pattern:

d(∆ω(r)) = eı∆ω(r)Tfree sinα, where α is the flip angle (uniform for all spins), ∆ω(r)

is the B0 field map, and Tfree is the free precession time. The goal is to achieve

refocusing Tfree after the excitation2. Prephasing pulses may be used to compensate for

susceptibility (T2*) signal loss, and are needed in the “small-tip fast recovery” steady-

state imaging sequence being developed by our group [104, 65, 93]. We designed a

prephasing pulse with 10 degree flip angle, 2.5 ms Tfree, and measured B0 field map

from a human brain. We simulate with 64x64x8 matrix size and 24x24x4 cm3 FOV.

We evaluated four different algorithms for parametric optimization, and four ini-

tializations, but we did not compare all 16 combinations. Instead, we first compare

the speed of optimization algorithms for inner-volume excitation using the extended

KT-point initialization. After finding the fastest algorithm, we compared the exci-

tation accuracy using different initializations. The 8 methods that are compared are

summarized in Table 1.

Figure 7.2 shows the four different k-space trajectory initializations used in the

inner-volume excitation. The prephasing problem uses the same SoS and SPINS ini-

tialization, but different KT-points and extended KT-points initialization since they

are excitation pattern dependent. The parameters for SoS and SPINS trajectories

were manually tuned to achieve good initial excitation results. For SoS, we used 5

spiral stacks with 17 cm excitation FOV in z direction, and each spiral has 6 cycles

with 24 cm excitation FOV in the x-y plane. For SPINS, we set the maximum extent

of k-space to 0.48 cycles/cm, polar angular velocity to 3π/ms, azimuthal angular ve-

2I use the convention ω = γB in my thesis. Since the free precession is rotated clockwise with a
positive B field, the accumulated phase is in the negative direction: θf = −ωTfree
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Figure 7.2: Different k-space trajectory initializations for the inner-volume excitation:
stack-of-spirals (SoS); SPINS; KT-points; and “extended KT-points”. KT-points and
extended KT-points selectively traverse the k-space based on the target excitation
pattern. The extended KT-points method manages to traverse a larger k-space region
than the simple KT-points because of the improved visiting order and the use of a
time-optimal gradient waveform.

locity to 2π/ms, and speed and position of transition between slow and radial phase

to 10 and 0.5 [55]. The resulting SPINS trajectory is accelerated using the fastest

gradient waveform [100]. There are small variations in the pulse length since it can

not be directly constrained when generating different initializations. For fair compar-

ison, we tuned the parameters to generate initial trajectories around 4 ms, and then

cut all of them to the same length as the shortest one, resulting 3.9 ms for all initial

trajectories (Figure 7.2).

Table 7.1: Pulse design methods

SoS SPINS KT-points extended KT-points
SoS+IP SPINS+IP KT-points+IP extended KT-points+IP
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7.4 Results

Figure 7.3 shows the cost function value and normalized root mean square error

(NRMSE) of the excitation versus computation time for different algorithms in solv-

ing the parametrized constrained optimization (7.3) in the inner-volume excitation

case using extended KT-points as the initialization. NRMSE is defined as ‖SAb−d‖2√
Ns sinα

,

where α is the target excitation angle, and the transmit sensitivity matrix S is set

to identity matrix. The interior point and projected LM algorithms are much faster

than the simple projected GD and MATLAB ‘fmincon’. Compared to projected LM,

the interior point algorithm is slightly faster and its final k-space trajectory has lower

slew rate (not shown). We use the ‘active-set’ solver for the MATLAB ‘fmincon’

function. There is an ‘interior-point’ solver for the MATLAB ‘fmincon’ function,

but it is not strictly feasible in each iteration and its speed is slower than our pro-

jected LM and interior point implementations. The shapes are similar between the

NRMSE plot and the cost function value plot. There is a small increase in the first

iteration for projected GD. This is because the first point in the plot corresponds to

the initial k-space trajectory, not the initial approximation using B-spline basis, and

applying the approximation can lead to a potentially higher cost and/or NRMSE in

the first iteration. Based on these results we chose the interior point algorithm for all

subsequent simulations.

Figure 7.4 shows the k-space trajectory before (dashed line) and after (solid line)

the interior point optimization using an extended KT-point initialization for reduced

FOV excitation. There is noticeable deviation between the final k-space trajectory

and the initialization, but they have similar shape. The peak gradient is well below the

4 G/cm limit we set, while the slew rate is close to the imposed limit of 15 G/cm/ms.

Figure 8.4 shows inner-volume excitation results. Four different methods are used

as initialization to the parametrized optimization (7.3). Bloch simulation results

before and after initialization are show in the left and right column, respectively.

Without parametrized optimization, our extended KT-points method generates the

least excitation error with the shortest pulse. With parametrized optimization, all

methods are improved by 20∼40%. Using SPINS or extend KT-points as initialization

generate the best final results. The peak RF is 0.012 gauss, well below the limit of

our GE scanner. The measured 10 sec average SAR (or the integrated RF power) is

below 0.3 W/Kg, much lower than the 6.4 W/Kg limit for human brain.

Figure 7.6 shows the excitation error of the prephasing problem using the same 8

methods. Similar to the reduced FOV excitation case, optimization greatly reduced
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Figure 7.3: Convergence speed of different algorithms used to solve the parametrized
constrained optimization problem (7.3): (Left) Cost function value versus time.
(Right) NRMSE versus time. There are two data points at time 0: the lower one
is using the initialized k-space trajectory and the higher one is using the k-space
trajectory after B-spline fitting. The fitting at the beginning of optimization slightly
increases the NRMSE and the cost function value. The interior point and projected
LM algorithms converge much faster than the other two, with the interior point al-
gorithm slightly faster.

the excitation error for all initializations. Without interior point optimization, the

SPINS generates the best result. The extended KT-points generates good result, but

not as good as in the reduced FOV case, probably because the energy in k-space is

more uniformly distributed in this case than the reduced FOV excitation case.

7.5 Extension to parallel transmission

Parallel transmission (Ptx) has been developing for several years as a means of

improving the tailored excitation accuracy using multiple coils. We demonstrated our

proposed method only for single coil excitation in previous section, but it should be

easily extend to parallel excitation using the spatial domain pulse design method [23],

as we will briefly illustrated in this section. First of all, in PTX, the pulse design
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Figure 7.4: Example k-space trajectory, gradient waveform, and slew rate. The
extended KT-points k-space trajectory before (dashed line) and after 20 iterations
of alternating optimization with interior point algorithm (solid line) have similar
shape. Both gradient and slew rate are within our constraint, but the slew rates are
closer to the limit.

95



target excitation pattern

 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

B0 field map 

 

 

−30

−20

−10

0

10

20

30

40

nrmse: 0.155

S
o

S

 

 

0

0.05

0.1

0.15

nrmse: 0.145

 

 

0

0.05

0.1

0.15

nrmse: 0.169

S
P

IN
S

 

 

0

0.05

0.1

0.15

nrmse: 0.116

 

 

0

0.05

0.1

0.15

nrmse: 0.177

K
T

−
p

o
in

ts

 

 

0

0.05

0.1

0.15

nrmse: 0.152

 

 

0

0.05

0.1

0.15

nrmse: 0.134

initialization

e
x
te

n
d

e
d

 K
T

−
p

o
in

ts

 

 

0

0.05

0.1

0.15

nrmse: 0.104

after interior−point optimization
 

 

0

0.05

0.1

0.15

Figure 7.5: Inner-volume excitation, simulation results. Target pattern (top left) and
field map in Hz (top right) used in the simulation. Row 2 to 5: results for different
pulse design methods: left column contains the results of initialization pulse, right
column contains the results after optimization using interior point algorithm. Four
initialization methods were investigated: from top to bottom: SoS, SPINS, KT-points,
our extended KT-points. All pulses have 3.9 ms pulse length. Optimization always
improve the excitation results, reducing the NRMSE by 10 to 30% depending on the
initialization method. Using extended KT-points as the initialization gave the best
results.
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Figure 7.6: Prephasing excitation, simulation results. The B0 field map is acquired
from a human brain scan, shown in Hz. The excitation error for different initializations
are ordered in the same way as Figure 8.4, and the pulse lengths are 3.9 ms for all.
We want small error (dark blue) in the whole image. Without optimization, SPINS
performs the best in this case. Interior point optimization substantially reduces the
excitation error for all initializations, and SPINS and extended KT-points produce
final results with similar accuracy in this prephasing case.
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optimization problem in (7.3) becomes:

min
b∈CNt , cx,cy ,cz∈RL

‖
Nc∑
n=1

SnA(cx, cy, cz)b − d||22 +R(b)

s.t. ‖D1Hxcx‖∞ ≤ γ∆t gmax,

‖D2Hxcx‖∞ ≤ γ∆t2 smax,

‖D1Hycy‖∞ ≤ γ∆t gmax,

‖D2Hycy‖∞ ≤ γ∆t2 smax,

‖D1Hzcz‖∞ ≤ γ∆t gmax,

‖D2Hzcz‖∞ ≤ γ∆t2 smax,

kx(Nt; cx) = 0, ky(Nt; cy) = 0,

kz(Nt; cz) = 0. (7.22)

We can still use the same interior point algorithm with 2nd-order B-spline parametriza-

tion we did in the single case, but we need to update the formulas for gradient, Hessian

matrix, and Jacobian matrix. The Jacobian matrix in PTx is:

Jx =
de

dcx
=

Nc∑
n=1

SnXABH . (7.23)

Then, the gradient has the following form:

∇cxf = Re{J ′We}. (7.24)

The Hessian in PTx case is calculated to be (see Appendix B):

∂2

∂kxi∂kxj
f = 8π2Re{

Nc∑
m=1

Nc∑
n=1

b∗mja
′
jXS

′
mWSnXaibni}, i 6= j;

∂2

∂kxi∂kxj
f = 8π2Re{

Nc∑
m=1

Nc∑
n=1

b∗mja
′
jXS

′WSXaibni}

−2(2π)2Re{
Nc∑
n=1

e′WSXXaibni}, i = j.
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7.6 Experimental validation of the extended KT-points method

We did not acquire experimental data after we fully developed our 2nd-order B-

spline based optimization algorithm. We have experimental validation that using

SPINS and extended KT-points without further optimization [88]. Those experimen-

tal results agree well with our simulation, suggesting our proposed method can be

successfully used in MRI scanner.

Figure 7.7 compares the measured trajectory and nominal trajectory for an ex-

tended KT-points design output. Both trajectories match very well, indicating that

eddy currents distortion may not be a problem for our implementation (in our MR

scanner).

Figure 7.8 shows Bloch simulation and experimental results in 6 slices spanning

24x24x20 cm3 FOV for three different methods: extended KT-points joint design, ex-

tended KT-points with local optimization over the KT-points, and predefined SPINS

trajectory. The extended KT-points with local optimization has a step that locally

optimizes the phase encoding locations before connecting them and forming the con-

tinuous trajectory [88]. It can reduce the NRMSE by 10 % compared with the simple

extended KT-points method, both have less excitation error than the SPINS trajec-

tory. We did not use this extended KT-points with local optimization as initialization

in our proposed method, since it may not be worth the extra time of running local

optimization if it is just for initialization. The experimental results agree well with

simulation.

7.7 Discussion

For the examples shown here, the computation time for the parametric optimiza-

tion step is typically less than 1 minute. Using KT-points or extended KT-points

requires additional optimization to form the initial pulse, which takes less than 1

minute. The overall computation time for all methods tested in this study is less

than 2.5 minutes, fast enough for normal online pulse design, particularly with a

faster computer.

We conclude that both SPINS and extended KT-points provide good initializa-

tions. SPINS initialization has shorter computation time (no sparse approximation

step). However, it has the disadvantage that more parameters (e.g., k-space ex-

tent, rotation speeds) need to be manually tuned in the design, while the extended

KT-points method generates a trajectory automatically without manual parameter
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Figure 7.7: A example pulse diagram from the extended KT-points. The measured
trajectory matches well with the nominal trajectory, indicating the distortion caused
by eddy current may not be a problem for our implementation.
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(a) SPINS (simulation) (b) SPINS (experiment)

(c) extended KT-points (simulation) (d) extended KT-points (experiment)

(e) extended KT-points2 (simulation) (f) extended KT-points2 (experiment)

Figure 7.8: Comparison between extended KT-points designs and design using pre-
defined SPINS trajectory: simulation and experimental result of extended KT-points
design with local optimization of phase encoding points (e, f); extended KT-points (c,
d); SPINS trajectory (a, b). Both extended KT-points methods achieve higher exci-
tation accuracy than SPINS (NRMSE: 0.15/0.17 vs 0.21) with a shorter pulse length,
and adding local minimization to the phase encoding locations reduces the NRMSE
by 10% compared with the design without local minimization. Notice the local op-
timization here is not the optimization to the 2nd-order B-spline as we proposed in
this chapter, it is just performed on the discrete phase encoding locations [88].
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tuning.

We use 2nd-order B-spline functions to represent the k-space trajectory since it is

widely used in parametrization of curves and it can significantly reduce the number of

inequality constraints. We used 100 basis functions to represent a trajectory around

3.9 ms (corresponding to 981 time points), and we found that the resulting fits are

quite good for all four k-space initializations. We also simulated using different num-

ber of basis functions (L = 20 to 200), and observed that the final NRMSEs are quite

similar for L = 50 to 200 (not shown). The computational time increased from 20 sec

(L = 20) to 50 sec (L = 200). We obtained good results using this basis, but we do

not claim this is the optimal choice.

In Figure 7.4, we note that neither the gradient nor the slew rate reached their

limits, indicating a suboptimal pulse since it means the pulse can be faster or we

can cover more k-space with the same pulse length. We think the reason for this

relatively low gradient/slew rate is because we only run a limited number of interior

point iterations for updating k-space trajectory, before switched to updating RF, so

the k-space trajectory was not fully optimized. We tried to increase the number

of interior point iterations for the inner-volume excitation, which did push the slew

rates to their limits Figure 7.9. However, the final NRMSE was only reduced slightly

from 0.103 to 0.102. We think this small improvement did not qualify the extra

computation time (changed from 30 sec to 400 sec).

We observed that the optimized gradient waveform is usually well below the max-

imum gradient limit. So we tried to relax the gradient constraints and only kept the

slew rate constraints. The computation time was slightly reduced, but the excitation

accuracy was not improved.

7.8 Conclusions

We have proposed a new joint design method for 3D tailored excitation, that can

improve excitation results for arbitrary k-space trajectory initializations. We also

proposed a new k-space initialization method, extended KT-points, that appears to

be better or at least as good as several existing 3D trajectory choices, even for slightly

shorter RF pulse length.
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Figure 7.9: k-space trajectory, gradient waveform, and slew rate if we run more
iterations of interior point algorithm. Compared to Figure 7.4, the slew rates are
pushed much harder to their limits.
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CHAPTER VIII

Rapid Inner-volume Imaging in the Steady-state

with 3D Selective Excitation and Small-tip Fast

Recovery (STFR) Imaging

8.1 Introduction

1

In inner-volume imaging (IVI), a 2D or 3D sub-volume is excited within the object

such that only a reduced field-of-view (rFOV) needs to be encoded. Ideally, one wants

to directly excite the desired 3D rFOV using a single radiofrequency (RF) pulse of

short duration, and choose a “tight” readout trajectory that matches the rFOV.

However, a 3D selective excitation pulse with non-smooth target pattern (e.g., a

cube) can be prohibitively long. Therefore, most existing IVI methods are only 2D

selective, using either spin echo or 2D excitation pulses. A typical spin echo IVI

method is proposed in [16], where a 90 degree slice-selective pulse is followed by a

180 degree slice-selective pulse in the perpendicular direction. Only spins inside the

“pencil beam” region that is excited by both RF pulses are refocused and generate

detectable signal. In this case the field of view in the unrestricted dimension can

be limited by using a cartesian readout with frequency encoding along the pencil

beam direction in combination with a low pass filter. In some other methods, a

2D selective pulse is transmitted to directly excite a column, with the FOV in the

third dimension restricted with frequency encoding or other special readout encoding

techniques [30, 116, 86, 110, 56].

Parallel transmit methods have been proposed recently for IVI with 3D selective

excitation [81, 54, 52]. In [81], a 3.2 ms pulse for IVI was demonstrated with an

1This chapter is based on the publications [94]
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8-channel parallel excitation system, but it used a preclinical scanner with gradient

specs (660 mT/m maximum amplitude; 5600 T/m/s maximum slew rate) that far

exceed the capability of clinical systems. Parallel excitation experiments on human

scanners have reported IVI RF pulses of duration 12–14.89 ms [54, 52] that are un-

desirably long for some applications such as rapid steady-state imaging. Moreover,

parallel excitation requires specialized hardware that is not widely available.

Here we propose a novel implementation of IVI imaging, based on (1) 3D selec-

tive excitation using a recently proposed joint RF/gradient pulse design approach [88],

and (2) the small-tip fast recovery (STFR) steady-state imaging sequence [66, 93, 97].

With this approach we demonstrate that steady-state imaging with 3D IV excitation

using a short (4 ms) RF pulse is possible on a standard clinical scanner equipped

with single-channel excitation. We show that STFR achieves a higher inner- to

outer-volume signal ratio compared to spoiled gradient-echo imaging (FLASH/T1-

FFE/SPGR) or balanced steady-state free precession (bSSFP). The proposed method

may allow for rapid IV imaging in the steady-state with 3D IV excitation and non-

cartesian readouts optimized for the rFOV.

Theory

RF pulse design

The parallel excitation IVI experiments reported in [81, 54, 52] employed 3D se-

lective RF pulses with a pre-defined gradient trajectory such as concentric shells and

stack of spiral. Ideally, however, one would want to optimize both the gradients

and the RF pulse for a given target excitation pattern. Unfortunately, this joint

RF/gradient design task poses a difficult non-convex and non-linear optimization

problem, and the gradient waveforms are therefore typically chosen a priori, indepen-

dently of the target pattern.

In [88], we proposed a method for the joint design of RF waveform and excitation

k-space trajectory that achieved improved accuracy compared to several existing 3D

selective excitation designs [11, 55]. In particular, we were able to accurately excite

a cube using a 4 ms RF pulse and single-coil transmission. Our joint design is an

extension of the KT-points method [11], and is summarized in Algorithm 7. Briefly,

we first obtain a KT-points trajectory (discrete “phase-encoding” locations in kx-ky-

kz) using a modified orthogonal matching pursuit (OMP) approach [109]. We then

locally optimize the encoding locations using gradient-based algorithms. We then

determine the optimal visiting order for those phase encoding locations using a trav-
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eling salesman algorithm [46]. Finally, we generate a continuous gradient waveform

that traverses those points using the method in [51], and design the RF pulse on this

optimized k-space trajectory using iterative small-tip selective pulse design [103].

Algorithm 7 Extended KT-points

1: Find phase encoding locations using method [109].

2: Locally optimize those phase encoding locations using Levenberg-Marquardt al-

gorithm [73].

3: Find the optimal visiting order using traveling salesman algorithm [46].

4: Generate the fastest gradient waveform using [51].

STFR

The second component of our IVI method is small-tip fast recovery (STFR) imag-

ing, a recently proposed steady-state sequence that can achieve similar signal level

and tissue contrast as bSSFP, but with reduced banding artifacts. STFR relies on

a “tip-up” (or fast recovery) RF pulse to preserve the magnetization in the longi-

tudinal direction after the readout, and a gradient crusher after the tip-up pulse to

remove the banding artifact. The tip-up pulse requires either a spatially tailored RF

pulse [66, 93] or a spectrally pre-winding RF pulse [92, 101].

The main challenge in STFR is to design an accurate 3D tailored tip-up pulse

that recovers all spins within the imaging volume. In particular, whole-brain STFR

imaging in a single scan is currently not practical on clinical scanners. Fortunately,

the tip-up pulse design task generally becomes easier as the inner-volume decreases in

size, since a local shimming can be more effective than a shimming of the whole object,

and therefore our tip-up pulse need to target only a narrow off-resonance bandwidth.

This property, together with the fact that the tip-up pulse in STFR acts to suppress

the steady-state outer-volume signal relative to SPGR or bSSFP IV acquisitions as

shown here, makes STFR a very attractive candidate for rapid IV imaging.

Figures 8.1(a) and (b) show the inner- and outer-volume spin paths, respectively,

for a idealized STFR sequence, i.e., assuming tip-down and tip-up pulses of negligible

duration that are perfectly matched to the local off-resonance. Consider first the

inner-volume spins. First the IV excitation pulse tips the spins down toward the

transverse plane, after which the spin precesses with off-resonance frequency ω. After

data readout, a non spatially selective tip-up pulse is played out, whose phase is

nominally equal to the spin phase θ = ωT such that the spin is tipped back up toward

the longitudinal axis. The resulting steady-state signal is bSSFP-like, as described in
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detail in [66, 93].

Consider next the outer-volume spins; these mainly experience the non spatially

selective tip-up pulse (2→3). Since RF-spoiling is used, the non-selective tip-up pulse

does not directly contribute to the signal at the time of data acquisition (TE) [66].

However, since the IV excitation pulse can never be perfect, some direct outer-volume

excitation from the tip-down pulse (4→1) is inevitable. This small unwanted exci-

tation leads to a detectable outer-volume signal at the echo, which of course is un-

desirable. However, the central point here is that the tip-up pulse helps to partially

saturate outer-volume spins, such that the steady-state outer-volume signal resulting

from non-ideal IV excitation is relatively small in STFR compared to the correspond-

ing SPGR or bSSFP sequence (using the same IV excitation pulse).

Methods

To evaluate the ability of STFR to improve the inner- to outer-volume signal

ratio relative to SPGR and bSSFP, we first performed simulations using a range of

tip-down and tip-up angle combinations (1–60 degrees). TR is set to 10 ms, and

T1/T2 values are set according to the values of white matter (1.1/0.06 sec [85]).

Based on simulations of our 3D IV pulses (not shown), we assumed that the 3D IV

excitation pulse produced a maximum residual (unwanted) transverse magnetization

in the outer-volume that equaled 15% of the inner-volume transverse magnetization.

We then evaluated the inner- to outer-volume signal ratio in vivo, by acquiring

steady-state brain data in a volunteer with 3D inner-volume excitation (IVex) using

STFR, SPGR, and bSSFP (Table 1). Imaging experiments were done on a GE 3T

scanner equipped with a quadrature transmit/receive head coil and standard gradi-

ents (50 mT/m amplitude and 150 mT/m/ms slew rate limits). We also acquired

a conventional bSSFP data set for reference. Except for the conventional bSSFP

sequence, all sequences used a 4 ms 3D RF pulse designed to excite a 6x6x3 cm3

inner-volume. All sequences used the same 3D spin warp readout (192x192x42 ma-

trix; 24x24x21 cm3 FOV). The IVex-STFR sequence, shown in Figure 8.1(c), used

a spectral pre-winding “tip-up” pulse targeted to -30 to 30 Hz [2, 89]. We did not

measure the field map to determine the off-resonance of inner volume but used auto-

prescan to properly shim the inner volume to be near center frequency. The shimming

here is easier than a global whole field shimming.

Finally, to invested the effect of aliasing of OV signals into the images, we simu-

lated a series of reduced FOV acquisitions with stack-of-spirals readout trajectories
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by retrospectively sub-sampling the fully sampled Cartesian in vivo data. We first

reconstructed the image from the fully sampled Cartesian k-space data, and then

simulated the k-space data on stack-of-spiral trajectories using NUFFT [18], and fi-

nally we reconstructed the image using iterative reconstruction [98]. We simulated

different undersampling factors (FOV) and tabulated the error for each reconstructed

image, relative to the fully sampled Cartesian ground truth images. The relative error

is defined as: ‖r − c‖2/‖c‖2, where r and c are vectors contain the pixel values in

the 6x6x3 cm3 ROI of the rFOV image and cropped full FOV image, respectively.

The simulated FOV were 24, 12, 10, and 8 cm in-plane; and 21, 10.5, 7, and 3.5 cm

through-plane (the full FOV is 24x24x21 cm3). The number of spiral leafs and time

length of each leaf are 72/36/30/24, and 2.9/2.6/2.6/2.6 ms for 21/10.5/7/3.5 cm

FOVxy, respectively.

8.2 Results

Figure 8.2 shows the inner/outer volume signal and their ratio for SPGR, bSSFP

and STFR. We assume the outer volume excitation is 15% of the inner volume ex-

citation, so an IV/OV steady-state signal ratio larger than 6.7 (1/0.15) means the

sequence can suppress the relative outer volume excitation in steady-state, while a

ratio smaller than 6.7 means an amplification. STFR can achieve effective outer vol-

ume suppression when the tip-down and tip-up angles are similar, with a peak IV/OV

ratio of 15.5 at tip-down/tip-up flip angle 15o/17o. The IV/OV ratio is 10.5 for the

tip-down/tip-up angle used in our experiment (10o/10o). In contrast, both bSSFP

and SPGR has lower IV/OV ratio, showing amplification of the relative outer volume

signal. With the flip angles used in our experiment, the IV/OV ratios are 4.3 and 2.2

for bSSFP and SPGR, respectively.

Figure 8.3 shows the in vivo experimental results for IVex-SPGR, IVex-bSSFP,

IVex-STFR, and non-selective bSSFP. Eight representative slices spanning the 21 cm

FOV in z are shown. The gray scale is normalized by the maximum image value

of each acquisition. The inner volume in bSSFP and STFR shows similar tissue

contrast, consistent with previous reports [66, 93]. However the IVex-bSSFP images

have undesired outer volume signal, especially near banding regions. This may be

due to the fact that bSSFP can have hyperintense signal near the banding edge

even for low flip angles. The outer volume in IVex-STFR is effectively suppressed.

We think there are two reasons for this: first, the outer volume spins are partially

suppressed by the tip-up pulse and RF spoiling, as demonstrated in the simulation
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(Figure 8.2); second, STFR does not have the hyperintense signal behavior near band

edges [89]. The IVex-SPGR images show very strong relative outer volume signal.

The mean relative outer volume signal is 0.42/0.25/0.08 for IVex-SPGR, IVex-bSSFP,

and IVex-STFR, respectively, consistent with our simulation (Figure 8.2).

Figure 8.4 shows the simulated rFOV acquisition results for two reduction factors:

one with 10x10 cm2 FOV in plane and 7 cm FOV in z; the other one with 8x8 cm2

FOV in plane and 3.5 cm FOV in z. We also show the cropped full FOV Cartesian

acquisition images and the differences images (multiply by 5) for comparison. With

10x10 cm2 FOVxy and 7 cm FOVz, the rFOV acquired results are quite close to

the true images. We see more artifacts with 8x8 cm2 FOVxy and 3.5 cm FOVz

acquisition.

Table 8.1 shows the relative errors for different reduction factors. The relative

error increases as the acquisition FOV decreases.

8.3 Discussion

There may be several ways to reduce the direct outer-volume excitation without

compromising IV excitation accuracy significantly. First, since the steady-state signal

is relatively insensitive to flip angle in our operating region (e.g., 10–15o) compared to

the low flip angle region, we can partially relax the excitation requirement for the IV

by using a smaller weighting for the IV and a larger weighting for the OV in the pulse

design cost function. Another possibility is to limit the maximum excitation error

instead of the L2 norm of the error in the OV, by generating an RF pulse using the

method in [96]. Second, most of the excitation error occurs at the boundary between

IV and OV, where target excitation changes sharply, so the optimization algorithm

may put more effort to minimize error in this region. However, the error near the

boundary is actually not important since we can slightly increase our imaging FOV

to cover this region. Therefore, we can exclude the boundary region from the pulse

design cost function [103], so the optimization can focus more on the interior of IV

and OV. Alternatively, one could smooth the target excitation pattern so the cost

function is less dominated by the error in the boundary region. Furthermore, one

could use parallel excitation to further improve the excitation accuracy. Finally, in

our work, we use 10o flip angle, to match the 10o Ernst angle of SPGR acquisition.

However, as our simulation suggested, a higher flip angle around 15o may lead to

better relative OV signal suppression.

In addition to improving the 3D selective pulse itself to reduce OV signal, we can
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also incorporate a slab-selective OV suppression pulse between the tip-up pulse and

the gradient crusher to further suppress the OV signal.

8.4 Conclusion

By combing the recently proposed joint pulse design method and the STFR se-

quence, we were able to achieve successful inner volume imaging with bSSFP-like

image contrast, using a 4 ms RF pulse and single transmit coil.

Table 8.1: Relative percent error with different readout FOV

24 cm FOVxy 12 cm FOVxy 10 cm FOVxy 8 cm FOVxy
21 cm FOVz 1 % 6 % 8 % 12 %

10.5 cm FOVz 3 % 7 % 9 % 13 %
7 cm FOVz 4 % 8 % 10 % 14 %

3.5 cm FOVz 6 % 10 % 13 % 18 %
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Figure 8.1: Proposed ‘IVex-STFR’ sequence with 3D selective tip-down pulse and
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Figure 8.2: Inner volume, outer volume signal and their ratio for STFR, bSSFP and
SPGR. The top row shows STFR results with different tip-down and tip-up angles.
The bottom row shows SPGR, bSSFP results, and STFR result with tip-down angle
equal to tip-up angle. We assume the one shot excitation in the outer volume is 15%
of the inner volume, so a IV/OV steady state signal ratio larger than 1/0.15 means
the sequence can suppress the relative outer volume signal, such as STFR with similar
tip-down and tip-up angle. In contrast, bSSFP and SPGR can amplify the relative
outer volume signal. With the flip angles used in our experiment, the IV/OV ratios
are 10.5, 4.3, 2.2, for STFR, bSSFP, and SPGR, respectively.

112



0.01
0.02
0.03
0.04
0.05

0.02

0.06

0.1

0.14

0.04

0.08

0.12

0.05
0.1
0.15
0.2
0.25

(a) IVex-SPGR

(b) IVex-bSSFP

(c) IVex-STFR

(d) bSSFP-reference

Figure 8.3: Steady-state brain imaging without and with inner volume excitation. (a)
IVex-SPGR, (b) IVex-bSSFP, (c) IVex-STFR, (d) Conventional bSSFP. Images are
windowed to the maximum intensities of the corresponding acquisitions. As desired,
bSSFP and STFR show similar tissue contrast for inner volume spins. STFR has
good outer volume suppression. The IV/OV ratio are 12.5/4/2.4 for IVex-STFR,
IVex-bSSFP, and IVex-SPGR, respectively, consistent with our simulation. The SNR
of bSSFP and STFR are similar, about twice as SPGR according to our theory [93]

113



FOVxy: 10 cm; FOVz: 7.0 cm

1 100
0

0.05

0.1

0.15

c
ro

p
p
e
d

rF
O

V
d
i

e
re

n
c
e

  
  

 (
x
5

)

FOVxy: 8 cm; FOVz: 3.5 cm

1 80
0

0.05

0.1

0.15

c
ro

p
p
e
d

rF
O

V
d
i

e
re

n
c
e

  
  

 (
x
5

)

Figure 8.4: Simulated rFOV acquisition with different reduction factors. Cropped full
FOV images (top row) and difference images (bottom row) are also shown for com-
parison. The difference images are multiplied by 5 to better observing the artifacts.
We can obtain good results when FOVxy/FOVz = 10 cm/7 cm. When the acquisition
FOV approximately equal to the excitation region, we observe more aliasing artifacts,
but the images may be still usable for some applications.
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CHAPTER IX

Regularized Estimation of Bloch-Siegert |B+
1 | Maps

in MRI

9.1 Introduction

1Mapping the magnitude of the RF transmit magnetic field (|B+
1 |) is important for

a variety of applications in MRI, such as parallel transmission [42, 119, 23], electrical

property tomography [43]. Various methods have been proposed for |B+
1 |mapping,

like double-angle method [37], actual flip-angle imaging (AFI) [102]. Recently Sacolick

et al. [75] proposed using the Bloch-Siegert (BS) shift for |B+
1 | mapping. The method

has the advantages of speed, relatively large dynamic range, and robustness to re-

laxation and off-resonance. However, the conventional method of moments (MOM)

estimator proposed in [75] can be inaccurate in regions with low image magnitude,

because the BS method relies on the phase difference between two acquisitions, and

the phase difference calculation can be quite noisy in those regions. Also, because

the image magnitude is proportional to the tissue properties and the flip angle of

the excitation pulse in the BS mapping sequence, and is not influenced by the BS

encoding pulse itself, it is possible that those low magnitude regions will coincide with

high |B+
1 | values, resulting in noisy |B+

1 | estimates where it is important for subse-

quent pulse design. This chapter proposes a penalized likelihood estimator that is

less sensitive to this type of problem, and develops and compares several optimization

algorithms. We compare our methods to the conventional |B+
1 | estimator using both

simulation and experimental data sets.

1This chapter is based on the publications [95]
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9.2 Model

9.2.1 Bloch Siegert B1 Mapping

A Bloch-Siegert |B+
1 |mapping sequence acquires two images; each one is a gradient

echo image with an excitation pulse followed by an off-resonance pulse (Fermi pulse

is often used [75]. The off-resonance frequency of the Fermi pulses in those two

acquisitions are often set to be opposite in practice to eliminate the first-order Bloch-

Siegert phase shift dependence on the B0 effect [75]. Define b = [|B+
1,1|, ..., |B+

1,N |]T to

be the vector of unknown |B+
1 | map values, and f = [f1, ..., fN ]T to be the unknown

complex-valued image in the absence of a Fermi pulse, where N is the number of

pixels. The mathematical model for the complex signal at spatial location j in these

two images is:

y1
j = fje

ikb2j + ε1j

y2
j = fje

−ikb2j + ε2j (9.1)

where k is a known constant determined by the pulse shape and off-resonance fre-

quency of the pulse, and εj is the complex Gaussian noise. The method of moments

estimator in current use is given by:

|B̂+
1,j| =

√
∠(y1

j y
2∗
j )

2k
(9.2)

The phase calculation can be dominated by noise when fj is small, leading to

inaccurate estimation.

9.2.2 Penalized Likelihood Estimation

To improve the |B+
1 | mapping, we propose a penalized-likelihood estimator. The

joint maximum likelihood estimate of b and f is the minimizer of the following cost

function subject to b ≥ 0:

ΨML(b,f) =
1

2

N∑
i=1

|y1
j − fjeıkb

2
j |2

+
1

2

N∑
i=1

|y2
j − fje−ıkb

2
j |2 (9.3)

This function is quadratic and separable in fj and the ML estimate for fj (given b)
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Surrogate function

Potential function

Figure 9.1: Illustration of the potential function and its surrogate.

is:

f̂j =
1

2
(y1
j e
−ıkb2j + y2

j e
ıkb2j ) (9.4)

Substituting this into the cost function (9.3) yields

ΨML(b) =
N∑
j=1

|y1
j y

2
j |[1− cos(2kb2

j − ∠y1
j + ∠y2

j )]. (9.5)

The ML estimator of b ignores the prior knowledge that the |B+
1 | map tends to be

spatially smooth due to the physical nature of the transmit field. A natural approach

to incorporating this characteristic is to add a roughness penalty to form the following

penalized-likelihood cost function:

Ψ(b) =
N∑
j=1

|y1
j y

2
j |[1− cos(2kb2

j − ∠y1
j + ∠y2

j )] +R(b) (9.6)

We estimate the |B+
1 | map b by solving the following minimization problem:

b̂ =arg min
b∈RN;b≥0

Ψ(b) (9.7)

The non-negativity constraint can be relaxed in practice since a pixel with negative

estimated value typically has very low B+
1 magnitude and can be set to 0 after solving

the unconstrained problem.
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Simulated Image Data |y| true b1

MOM MOM+Gaussian Filter Regularize 
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Figure 9.2: Results for the simulated data set. (a) simulated image data (magnitude).
(b) Estimated |B+

1 | maps. The RMSE in Gauss for all methods are shown in the
parentheses. Both PL estimators generate more accurate |B+

1 | maps than the MOM
and MOM+smoothing approach.
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Figure 9.3: Plots of RMSE in Gauss compared to the converged estimation with
respect to iteration (a) and time (b). Plots of RMSE compared to the true |B+

1 |
with respect to iteration (c). Using true Hessian for the regularization term instead
of SQS greatly improves the convergence rate. Using cost function (9.16) and its
optimal curvature converges the fastest.

9.3 Minimization Algorithms

This section proposes to solve the optimization problem (9.7) using optimization

transfer methods [38]. We consider several possible surrogate function designs.

9.3.1 Maximum Curvature for the ML Term

Let t2j = 2kb2
j and γj = −∠y1

j + ∠y2
j , then the maximum likelihood data fitting

term can be expressed as

ΨML(t) =
N∑
j=1

|y1
j y

2
j |ψ(tj). (9.8)
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where ψ(t) = 1− cos(t2 + γ). The first order derivative of ψ(t) is

ψ̇(t) = 2t sin(t2 + γ), (9.9)

which does not satisfy the Huber’s conditions [36, P.184] because ψ̇(t)/t is not non-

increasing for t > 0. Furthermore, the second order derivative is

ψ̈(t) = 4t2 cos(t2 + γ) + 2 sin(t2 + γ)

= 2
√

4t4 + 1 cos(t2 + γ − arctan(
1

2t2
)).

which is unbounded as t goes to ∞, so a “maximum curvature” approach is also

infeasible in theory. However, the |B+
1 | field is typically bounded in practice; therefore,

t is also bounded and we can design a “maximum curvature” by assuming a upper

bound of t. Assuming t ∈ [0, tmax], then ψ̈(t) ≤ 2
√

4t4 + 1 ≤ 2
√

4t4max + 1, so we can

use quadratic surrogate function with the following curvature:

c̆ = 2
√

4t4max + 1 (9.10)

In this approach, we must consider the box constraint [0, tmax]; we can either project

the solution to the feasible set in each iteration if using separate quadratic surrogate,

or set a relative large tmax such that the estimated value in each iteration is always

smaller than tmax in practice.

However, this maximum curvature approach may lead to slow convergence. Fig. 1

shows that the potential function ψ is an oscillating function with the same upper and

lower bound in each cycle; a quadratic surrogate in one cycle is guaranteed to be a

surrogate over the entire feasible domain, leading to the following quadratic surrogate

design.

The function ψ(t) has a local maximum at every tmax
n =

√
2πn+ π − γ if γ < π,

tmax
−1 = 0 if γ > π. For any s ≥ tmax

1 , let n(s) = b s2+γ−π
2π
c, then s is in the interval

[tmax
n(s), t

max
n(s)+1], and therefore an upper bound on the curvature over this cycle containing

s is

c̆(s) = 2
√

4(tmax
n(s)+1)4 + 1. (9.11)

Thus we create a separable quadratic surrogate for the negative log-likelihood based

on this upper bound.
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9.3.2 Minimization of the Surrogate Function

Because |B+
1 | maps are smooth, we use the following quadratic roughness penalty:

R(b) =
1

2
β||Cb||2 (9.12)

where β is the regularization parameter, and C is the first-order 2D finite difference

matrix. Combining with the surrogate function for the ML term, we get the following

surrogate function for the cost function:

Φ(b; b(n)) = Ψ(b(n)) +∇Ψ(b(n))(b− b(n))

+
1

2
(b− b(n))′D(b− b(n)) +

1

2
βb′C′Cb (9.13)

where D is the diagonal matrix with elements d
(n)
j = 2k|y1

j y
2
j |c̆(
√

2kb
(n)
j ), where c̆(·)

is defined in (9.10).

The Hessian matrix of the surrogate is H(n) = D(n) + βC′C. We investigate two

ways to deal with this Hessian. First, we can design a diagonal majorizor for C′C,

namely C′C ≤ 4I, leading to the following algorithm:

b(n+1) = b(n) − diag{ 1

d
(n)
j + 4β

}∇Ψ(b(n)) (9.14)

Alternatively, since C′C has a sparse banded structure, we can calculate H−1∇Ψ(b(n))

efficiently by sparse Cholesky factorization techniques [1], leading to the following

Huber’s algorithm:

b(n+1) = b(n) −H(n)−1∇Ψ(b(n)) (9.15)

9.3.3 Alternative Formulation

In the above approach, the curvature for the data fitting term is suboptimal, and

it is not straight forward to find the optimal curvature. Alternatively, we can change

the regularization term in (9.7) to a roughness penalty on b2 instead of b. Letting

x = b2, the problem to solve becomes:

x̂ =arg min
x∈RN;x≥0

N∑
j=1

|y1
j y

2
j |

[1− cos(2kxj − ∠y1
j + ∠y2

j )] +R(x) (9.16)
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(b) MOM MOM+Gaussian Proposed Gauss(a)

Figure 9.4: Results for the in vivo data set: (a) acquired image with BS encoding
from one of 8 channel transmit coil (red ellipse), (b) estimated |B+

1 | map from the
method of moments and the proposed penalized likelihood method (9.16). Artifact
(arrow) due to T2* signal drop is greatly reduced in the proposed method. Also, our
method removes the popcorn noise observed around the periphery of the head, and
that noise can significantly affect subsequent RF pulse designs.

where R(·) is the same quadratic roughness penalty defined in Eq. (9.12). The data

fitting term in this formulation satisfies Huber’s condition [21], and we can therefore

design a SQS with optimal curvature as in [21]:

c̆(xj) = 4k2|y1
j y

2
j |

sin(s
(n)
j )

s
(n)
j

(9.17)

where s
(n)
j = (2kxj−∠y1

j +∠y2
j ) mod π ∈ [−π, π]. Then we get the following Huber’s

algorithm:

x(n+1) = x(n) −H(n)−1∇Ψ(x(n)) (9.18)

where H(n) = D(n) +βC′C, and where D(n) is a diagonal matrix with element D
(n)
jj =

c̆(x
(n)
j ).

This formulation differs from Eq. (9.7) in the sense that we are regularizing the

spatial variation of b2 instead of b, so now R(b2) = β
N∑
j=1

(b2
j − b2

j−1)2 = β
N∑
j=1

(bj +

bj−1)2(bj−bj−1)2. Compared to R(b), we are putting more regularization in the region

with high transmit field strength, which may be undesired. One could compensate

for this effect by adding a weighting matrix in the regularization if needed.

9.4 Simulation and Experimental Results

We compared the penalized likelihood methods with the method of moments with

both simulated and measured data. The simulated data were synthesized for one
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channel of a 8-channel transmit array in the image domain by applying the sin |B+
1 (~r)|

magnitude weighting and BS phase shift to an uniform ball phantom image and then

adding Gaussian white noise with 60 dB SNR. Figure 2(b) shows the simulated true

|B+
1 | map and reconstruction maps using different methods. The MOM estimate suf-

fers from large noise, especially in the region with low transmit magnitude. Applying

Gaussian low pass filter to the MOM estimate is a conventional way to improve the

result in practice, but still shows mismatch in the region with low transmit magni-

tude. Both PL estimates using formulation (9.7) and (9.16) generate more accurate

maps. Figure 3 shows convergence plot using different minimization methods with

respect to iteration (a) and time (b). In the maximum curvature approach (9.10),

we assume maximum |B+
1 | = 0.2 Gauss, which is larger than the maximum |B+

1 | in

this simulated data and a reasonable upper limit in practice. Using the local max-

imum curvature (9.11) has faster convergence rate than using the global maximum

curvature (9.10). The Cholesky approach is implemented in MALTAB using “\”,

which converges faster than the SQS approach, with respect to iteration and time.

The fastest algorithm is using formulation (9.16) with the optimal curvature and the

Cholesky factorization, which converges in just 3 iteration. Figure 2 (c) shows the

error plot compared to the true |B+
1 | map for each method.

The proposed methods were also validated with real experiment data. Data were

acquired with a 8 channel transmit/receive array in a GE 3.0 T scanner. A 12 ms,

± 4KHz Bloch-Siegert encoding pulse was transmitted in one of the 8 coil (see, red

ellipse in Fig. 4(a)). We used 64x64 spin warp readout, 24 cm FOV, TE = 15 ms.

The acquired image is shown in Fig. 3(a), which shows a dark hole due to large

T2* signal drop. Figure 4(b) shows the |B+
1 | estimates using the MOM, MOM with

Gaussian low pass filter, and the proposed method (9.16). We observe a steep |B+
1 |

drop in the frontal sinus region from the MOM based estimation (see the arrow),

which is unexpected because the |B+
1 | should change relatively smoothly in brain in

3T. The proposed approach greatly reduced this artifact. Also, our method removes

the popcorn noise observed around the periphery of the head, and that noise can

significantly affect subsequent RF pulse designs. We tried adding weighting matrix to

the regularization in (9.16) to compensate the difference between R(b2) and R(b), but

it made little difference in both simulation and experimental data sets (not shown).
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9.5 Discussion

During the writing of this chapter, we noticed [112] also proposed a regularized

Bloch-Siegert |B+
1 | mapping method that uses similar formulation as our proposed

method. However, in [112], a simple gradient descent (GD) method is used, which is

much slower than our proposed optimization method.

In the future, we plan to combine the proposed estimation method with lower

energy Fermi pulses to reduce the specific absorption rate (SAR) without sacrificing

the B1 mapping accuracy. Also, we will try to extend our method to the optimized

Bloch-Siegert encoding pulses [44, 39].

9.6 Conclusion

We proposed a penalized likelihood estimator for Bloch-Siegert |B+
1 | mapping in

the image domain, and compared several optimization algorithms to solve this prob-

lem. By penalizing |B+
1 |2 instead of |B+

1 |, we can find an optimal curvature quadratic

surrogate and solve the problem efficiently using Huber’s algorithm with Cholesky

factorization technique. The proposed method is validated in both simulated data

set and in vivo data, showing reduced noise and artifact compared to the conventional

MOM based methods.
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CHAPTER X

Future Work

Whole brain STFR is still a challenging problem. There are some possible ways

to improve it. First, the proposed joint design of k-space trajectory and RF pulse

method should lead to improved result. Second, parallel excitation may improve the

excitation accuracy dramatically. In practice, a difficulty in whole brain STFR is

that it is harder to design a prephasing pulse with slice/slab selectivity compared

with a non-slice/slab selective tailored pulse. Without the slice/slab selectivity, full

brain encoding is typically necessary to avoid the aliasing artifacts in the z-direction,

leading to long total acquisition time. One way to avoid the full FOV acquisition in z

is to use frequency encoding in the z-direction, but it may also lead to long acquisition

time since the total number of TR can be large due to phase encoding in both x and y

directions. Parallel imaging may be necessary here to limit the total acquisition time.

Another possible way to limit the FOV in z is to apply a slab saturation pulse before

the gradient crusher. We may also want to try STFR with different phase cycling

and then combine the images to remove the signal drop.

Inner-volume STFR is a very promising research direction, since STFR suppresses

the outer volume excitation in our 3D excitation, and the 3D inner-volume excitation

pulse reduces the target bandwidth of STFR. There are several ways to improve the

inner-volume STFR. First, the STFR steady-state signal is relatively insensitive to

flip angle in our operating regime compared to the low flip angle regime. A simple

way to utilize this property is to partially relax the excitation requirement for the

IV by using a smaller weighting for the IV and a larger weighting for the OV in the

pulse design cost function. A more sophisticated way is to directly put the steady-

state signal into the cost function, instead of the one shot excitation. Since the

steady-state signal equation is not a linear function of the RF pulse, we may have to

use some non-linear optimization methods to solve this problem. This “steady-state

pulse design” idea may be applied to other steady-state sequences as well, since most
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steady-state sequences have a operating regime that is relatively insensitive to flip

angle. Second, if we know the readout gradient in advance, we can directly consider

the image from reduced FOV acquisition instead of the full excitation pattern. In

this way, we can relax the excitation requirement since outer volume excitation is

allowed as long as it is not aliased into our ROI. Finally, some target patterns other

than the sharp-edge cube used in our current work may be easier to achieve for the

RF pulse. We may also want to evaluate inner volume STFR in more applications,

like high speed functional MRI, or MR microscopy in body.

For the spectral-STFR work in Chapter V, there are many possibilities in the pulse

design side and the application side. Large-tip-angle pulse design method is capable of

targeting a larger bandwidth, but leads to lower steady-state signal and higher SAR.

It is worth a real scan to see if it satisfies the SAR limit and if there is unknown image

contrast due to finite RF effect. We may need to develop a SAR constrained approach.

Using spectral-spatial pulse instead of pure spectral pre-winding pulse can potentially

be beneficial, as demonstrated in [101]. To further improve the spectral-spatial pulse,

k-space trajectory should also be optimized, where the joint design method from

Chapter VII may be applied. Also, we could also try to exploit the property that the

final steady-state signal is insensitive to the flip angle over a certain range (e.g., 16o

to 25o). We can also incorporate fat-suppression pulses into the sequence and test it

for cranial nerve imaging. The flow effect in STFR has not been well investigated yet

and is worth studying.

For the joint design of RF pulse and k-space trajectory in Chapter VII, we can

explore other possible basis functions and optimization methods, like higher-order B-

spline and ADMM algorithm. It is possible that a non-monotone decreasing algorithm

can lead to lower cost function than our current algorithm with the same amount of

time. Also, the algorithms evaluated are all local optimization algorithms, and we

can try random perturbations to the initialization to find a better local minimum, or

try some global optimization algorithms like simulated annealing. Another possible

future work is to extend our algorithm to parallel excitation. The modifications

to equations are easy, as I presented in Chapter VII. However, I have not finished

modifying the code for simulation, and there may be some computational issues as

the size of the system matrix increases due to the increasing number of coils. In our

method, we do not directly control the pulse length when generating the extended

KT-points initialization, since the pulse length varies case by case even with the same

number of KT-points. It may be desirable to have some initialization methods where

the pulse length is directly constrained, or formulate the pulse design problem by
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putting the excitation error into constraints and minimizing the total pulse length in

the cost function.

For the minimax pulse design work in Chapter VI, we may want to evaluate its

performance in applications other than the B1 shimming, like STFR or reduced FOV

imaging. We may find that a combination of l∞ norm and l2 norm, or some higher-

order lp norm is more beneficial in practice. I proposed an algorithm for magnitude

minimax pulse design, but have not implemented and tested it yet. Also, the RF

power is regularized using its l2 norm, and an explicit RF/SAR constraint may be

desirable.

Our regularized B1 mapping method in Chapter IX can be combined with a fast

readout trajectory (e.g., spiral) for reduced acquisition time and SAR. Also, extension

to B1 encoding pulses other than Fermi pulse [44, 39] is worth investigating.
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APPENDIX A

Derivation of the steady-state signal equation of

unspoiled STFR

Referring to Fig. 3.1, we model each spin path segment as follows:

1. M1 to M2 : Free precession and T1, T2 relaxation.

Define ∆ω as the local off-resonance frequency, and Tfree as the free precession time.

The free precession phase is then θf = ∆ωTfree. The Bloch equation in matrix form

for this rotation is:

M2 = PCfM1 + Df

where Cf =


e
−Tfree

T2 0 0

0 e
−Tfree

T2 0

0 0 e
−Tfree

T1

 ,Df = (I−Cf )

 0

0

M0

 ,

P =

 cos θf sin θf 0

− sin θf cos θf 0

0 0 1

 .
2. M2 to M3 : “Tip-up” RF pulse with phase φ and flip angle β.

M3 = RuM2

where Ru =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1


 1 0 0

0 cos β − sin β

0 sin β cos β


 cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 .
3. M3 to M4 : Unbalanced gradient g rotates M about z axis by θg. Also in-

clude T1, T2 relaxation.

M4 = GCgM3 + Dg
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where G =

 cos θg sin θg 0

− sin θg cos θg 0

0 0 1

 ,Cg =


e
−Tg

T2 0 0

0 e
−Tg

T2 0

0 0 e
−Tg

T1

 ,

Dg = (I−Cg)

 0

0

M0

 .
4. M4 to M1 : The tip-down pulse rotates M about the x axis by α.

M1 = RdM4

where Rd =

 1 0 0

0 cosα sinα

0 − sinα cosα

 .

Combining these steps and requiring that the magnetization reaches a steady-state,

we obtain:

M1 = Rd(GCg(Ru(PCfM1 + Df )) + Dg)

⇒M1 = (I−RdGCgRuPCf )
−1(RdGCgRuDf + RdDg)

We obtain an expression for the transverse part of M, i.e., Eq. (3.1), by simplifying

the above expression using symbolic math software (MATHEMATICA 8, Wolfram,

Champaign, Illinois, USA). The MATHEMATICA code is available on our website

(http://www.umich.edu/~sunhao)
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APPENDIX B

Derivation of Hessian matrix with respect to

k-space trajectory

We derived the Hessian of the cost function (7.1) with respect to k here. Let us

define the excitation error term e = d − SA(kx,ky,kz)b. and the Nt × 1 temporal

vector:

px = ∇kxf = ∇kx‖e‖2
W , (B.1)

then the jth element of px is

pxj = 2Re {e′Wqxj} (B.2)

where

qxj =
∂e

∂kxj
= −ı2πSXajbj (B.3)

Then, the (i, j)th elements of the Hessian matrix are:

∂2f

∂kxikxj
=

∂pxj
∂kxi

= 2Re

{
∂e′

∂kxi
Wqxj + e′W

∂qxj
∂kxi

}
= 2Re

{
q′xiWqxj + e′W

∂qxj
∂kxi

}
(B.4)
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For the second term, when i 6= j,

∂qxj
∂kxi

= 0. (B.5)

When i = j,
∂qxj
∂kxi

= ı2πSXXajbj. (B.6)

Then we substitute equation (B.3) (B.5) (B.6) into (B.4), and obtain the elements of

the Hessian matrix

∂2

∂kxi∂kxj
f = 8π2Re{b∗ja′jXS′WSXaibi}, i 6= j;

∂2

∂kxi∂kxj
f = 8π2Re{b∗ja′jXS′WSXaibi}

−2(2π)2Re{e′WSXXaibi}, i = j.

In the parallel transmission case, we can modified the above derivation and obtain

the following results. Equation B.3 is changed to:

qxj =
∂e

∂kxj

= −ı2π
R∑
r=1

SXajbjr, (B.7)

where Nc is the number of coils. Then Equation B.6 becomes:

∂qxj
∂kxi

= ı2π
Nc∑
m=1

SXXajbj. (B.8)

Then we substitute equation (B.7) (B.5) (B.8) into (B.4), and obtain the elements of

the Hessian matrix for parallel transmit case:

∂2

∂kxi∂kxj
f = 8π2Re{

Nc∑
m=1

Nc∑
n=1

b∗mja
′
jXS

′
mWSnXaibni}, i 6= j;

∂2

∂kxi∂kxj
f = 8π2Re{

Nc∑
m=1

Nc∑
n=1

b∗mja
′
jXS

′WSXaibni}

−2(2π)2Re{
Nc∑
n=1

e′WSXXaibni}, i = j.
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APPENDIX C

Instructions for STFR experiments

The STFR experiments are not trivial, since there are so many combinations in

the settings of RF and gradients. Here are some introductions.

Epic file

For most of my STFR experiments, I used stfr*.e, where * means number 1 to 5.

Recently, I started using sos3d.e. The settings on the console are quite conventional.

I used Left/Right as my acquisition direction, to be consistent with my field map and

pulse design code, otherwise, the x and y gradients may need to be switched.

B0 field map

We used two SPGR acquisitions with different TEs to obtain the field map. I

usually set the TE difference to be 2.3 ms, so the on-resonance fat spins have the

same phase for those two scans. If using different TE differences, the B0 field map

reconstruction code has to be checked since I hard code the difference to be 2.3 ms

in some of my reconstruction code. Also, Feng Zhao mentioned the B0 map acquired

using Doug’s sequence and code is negative to the B0 map from Jon’s code, so check

the source of your code.

Tailored pulse design

I have three main files for STFR pulse design in the pulseDesign/stfr/ directory:

m1_main.m, bt_main.m, and joint_main.m.

‘m1’ stands for method 1, meaning only the tip-up pulse is pre-phasing pulse, and

the tip-down pulse is just a slice/slab selective pulse. This code was not often used in

my work, since most of my work used pre-phasing pulse for both tip-down and tip-up

to increase the target BW.

‘joint’ stands for joint design of tip-down and tip-up (Chapter III).
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‘bt’ stands for both tailored. This code is the mostly used code for both spatial-

STFR and spectral-STFR. I implemented 7 different pulse design methods for tip-

down and tip-up as listed below.

spinsrf.m: spatial-STFR using SPINS trajectory; used in III.

spectralRF.m: spectral-STFR using small-tip-angle pulse design; used in V.

spectralRF_large.m: spectral-STFR using large-tip-angle pulse design.

spectralRF_spsp.m: spectral-STFR using spatial spectral pulse; my old code,

not Sydney’s code used in [101].

ktpointsRF.m: spatial-STFR using KT-points method for tailored pulse.

ktpoints_contRF.m: spatial-STFR using KT-points method with continuous tra-

jectory and RF.

ktContRF_greedy2.m: spatial-STFR using my proposed joint design of excitation

k-space and RF VII.

The last 5 code in the list worked correctly for single shot excitation, but have

not been fully evaluated and compared to the first two in STFR.

When writing the output gradient waveform from my pulse design code to .wav

file, gx has to be negated.

Data processing The in vivo experiment data used in Chapter III and corresponding

processing code can be found in lab/SPINS_data/.
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APPENDIX D

Bloch simulations for steady-state sequences

The core of my Bloch simulation is a mex file blochCim.c, that can be found

in mtools/others/BlochSimulator directory, and can be used directly. I had an

interface file named parallel_blochCim.m that may be more convenient to use. The

blochCim function has a steady-state simulation mode that can fast simulate the

steady-state. However, this mode is not applicable to pseudo steady-state (e.g., RF

spoiled).

The main script for STFR Bloch simulation is in simulations/ssfp_cim, named

main_stfr_blochCim.m. It can simulate spoiled/unspoiled STFR with different pulse

and tissue parameters. You can use the same code to simulate bSSFP and SPGR by

simply setting proper tip-up angle, gradient crusher cycle, and RF phase increment.
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APPENDIX E

Data and code for STFR-fMRI

Simulations of STFR, BOLD and bSSFP in fMRI

The following 3 main files for simulating STFR, bSSFP, and BOLD in fmri (Chap-

ter IV) can be found in my simulations/stfr_fmri/ directory.

monte_carlo_parfor.m: STFR in fmri.

bssfp_fmri_parfor.m: bSSFP in fmri.

BOLD_SteadyState_parfor.m: Conventional long TE BOLD in fmri.

generate_voxel_2d.m generated the field map of the simulated voxel.

makefigure_simu.m generated the plots in Chapter IV.

Experimental data and processing

The data and processing code are in my lab/fmri/resubmission/data/ directory.

See README file there for more detail.
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APPENDIX F

Selected source code for Chapter VI to IX

In this appendix, I summarized the main files for generating the results in min-

imax pulse design (Chapter VI), joint design of k-space trajectory and RF pulse

(Chapter VII), inner volume STFR imaging (Chapter VIII), and regularized B1 map

estimation (Chapter IX). Only main files are listed here, and supporting functions can

be found in the corresponding folder. Jeffrey Fessler’s image reconstruction toolbox

must be installed (http://www.eecs.umich.edu/~fessler). All other supporting

utility functions can be found in my mtools folder.

Minimax pulse design

The code can be found in pulseDesign/minimax. The main files are:

main_compare.m: compare minimax design with l2 norm based design for single

coil and fast-kz trajectory.

main_b0_ptx.m: minimax pulse design with B0 field map, parallel transmit, and

fast-kz trajectory.

main_minimax_general.m: minimax pulse design for arbitrary k-space trajectory.

RF power is regulated using Tikhonov regularization.

Joint design of excitation k-space trajectory and RF pulse

The code can be found in pulseDesign/kTraj. The main files are:

main_ktpoints.m: main script for KT-points pulse design.

main_ktCont.m: main script for my proposed joint design.

main_compareAll.m: main script for comparing all the initialization methods.

main_makeFigurePaper_compareAll.m main script for generating the figures in

Chapter VII.
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Inner-volume STFR imaging

The code to generate inner volume excitation pulses are in pulseDesign/kTraj,

as mentioned above. The code to simulate the stack-of-spiral rFOV acquisition is

simuRFOV.m, which can be found in pulseDesign/kTraj/rFOV. There are three files

to simulate the steady-state inner/outer volume signal in simulations/rFOV folder:

STFR_IV_OV_blochCim.m, bSSFP_IV_OV_blochCim.m, SPGR_IV_OV_blochCim.m

Regularized Bloch-Siegert B1 mapping

The code can be found in b1PL. The code to generate B1 encoding pulses (e.g., Fermi

pulse) are in pulseGenCode subdirectory.

The reconstruction code are in reconCode subdirectory:

main_b1PL_demo.m: demo code for the proposed regularized B1 mapping.

main_figures.m: generates simulation results in Chapter IX.

main_figures_allCoil_human.m: generates figures based on human experimen-

tal data using parallel transmit coil in Chapter IX.
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