
Algorithm and Architecture Co-design for High
Performance Digital Signal Processing

by

Jung Kuk Kim

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in the University of Michigan
2015

Doctoral Committee:

Assistant Professor Zhengya Zhang, Co-chair
Professor Jeffrey A. Fessler, Co-chair
Associate Professor Wei Lu
Associate Professor S. Sandeep Pradhan

c© Jung Kuk Kim 2015

All Rights Reserved

ACKNOWLEDGEMENTS

First of all, I sincerely thank my doctoral research co-advisor, Professor Zhengya

Zhang, for his advice and guidance. His insights into algorithm design and hardware

design influenced my research deeply. He always led me the way to higher standards

whenever I was complacent about my research. Because of his consideration and

constant encouragement, I have been able to focus on my Ph.D. studies, and now

move forward after I graduate. I would also like to thank my research co-advisor,

Professor Jeffrey Fessler for his generous advice and comments on my Ph.D. work.

I have benefited his insights into optimization algorithms to keep a balance between

algorithm research and hardware research. I would like to thank Professor Wei Lu for

his constructive comments on my research. His high standards have influenced my

research on neuromorphic hardware. I would like to thank Prof. Sandeep Pradhan for

reviewing my thesis proposal and dissertation. Furthermore, I would like to give my

sincere thanks to Phil Knag and Thomas Chen for hard work, ceaseless discussions,

and their contribution to the collaborative work on sparse coding.

My research was supported in part by DARPA. I enjoyed constructive discus-

sions in bi-weekly meetings with Dr. Wei Lu, Garret Kenyon, Michael Flynn and

Christof Teuscher, and my colleagues, Phil Knag, Patrick Sharidan, Thomas Chen,

Zelin Zhang and Steven Mikes. Each meeting has stimulated my progress on neuro-

morhpic hardware. My research was also supported in part by the Korean Foundation

of Advanced Studies scholarship and the Reithmiller fellowship. I also acknowledge

BEEcube, Xilinx and Intel Corporation for the generous equipment donations.

ii

I was fortunate to learn from many talented colleagues over the course of my

Ph.D. career. Firstly, I would like to thank members of MICL. I sincerely thank

Phil Knag and Thomas Chen for their contributions to the collaborative work in a

sparse coding chip design, Youn Sung Park for sharing his experience in chip designs,

Chia-Hsiang Chen, Shuanghong Sun, Shimming Song, Wei Tang, Chester Liu and

Dike Zhou for being patient to answer my questions about hardware design and

sharing many great memories. I would also like to thank Yejoong Kim and Seokhyun

Jeong for sparing their time to review tool setup for my chip design. I would like

to thank Taekwang Jang and Sunmin Jang for sharing their ideas and answering my

questions on VLSI circuits and building blocks. I would like to thank members of Prof.

Fessler’s optimization algorithm group, Yong Long, Janghwan Cho, Donghwan Kim

and Heung Nien for answering my questions about optimization algorithms for X-ray

CT, and Hao Sun, Madison McGaffin, Mai Le and Jean Young Kwon for constructive

discussions about various medical imaging applications.

I cannot imagine my graduate life without my friends. I especially thank Jaehun

Jeong for listening to any concern, and correcting me if I am wrong. I also thank Suy-

oung Bang, Jeffrey Fredenburg, Inhee Lee, Hyoguem Rhew, and Yonghyun Shim for

cheering me up when I had a difficult time. Thanks to Daeyon Jung, Jeongeun Kim,

Ju-hyun Song, Jihye Kim, Dongmin Yoon, Dongsuk Jeon, Taehoon Kang, Inyong

Kwon, Sinhyun Choi, Kihyuk Sohn, Jaeyoung Kim, Xuejing He, Yue Liu, Myungjoon

Choi, Yong Lim, Wanyoung Jung, Sechang Oh and Kyojin Choo for sharing great

memories in Ann Arbor. Special thanks to Seungha Baik, Chang-gyu Kim, Taewoo

Han and Changwook Chun for being great friends from youth and cheering me up

anytime wherever we are.

Finally, I would like to give many thanks to my parents, Kwangsung Kim and

Bunja Gu. Their unlimited support, kind considerations, dedication to everything

related to my life have helped me to study, and have motivated me to move forward.

iii

I would like to give special thanks to my brother, Jungmyoung Kim for caring about

my life and studies and being my best friend ever since I was born. I would also like

to thank Anwida Prompijit for cheering me up over the course of my Ph.D. studies

and helping me to be a better person. Again, I thank great individuals in University

of Michigan, sister institutions, government labs, colleagues, friends and family. They

all influenced me to write this doctoral thesis.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . viii

LIST OF TABLES . xiv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 CT image reconstruction . 2
1.1.1 Scope of work . 3
1.1.2 Related work . 4

1.2 Sparse coding . 5
1.2.1 Scope of work . 7
1.2.2 Related work . 8

1.3 Outline . 10

II. Background and simulation of CT image reconstruction . . . 13

2.1 Background of CT image reconstruction 14
2.1.1 Statistical iterative image reconstruction 14
2.1.2 Forward- and back- projection 16

2.2 Fixed-point quantization and CT geometry 19
2.2.1 Quantization errors investigation 20
2.2.2 Projection geometry 21

2.3 Summary . 25

III. Parallel forward-projection architecture 26

3.1 Custom architecture for acceleration 27
3.1.1 Loop-level parallelism 27
3.1.2 Water-filling . 29

3.2 Impact of fixed-point quantization 32

v

3.2.1 Perturbation-based analysis 32
3.2.2 Simulation results 39

3.3 Algorithm rescheduling . 39
3.3.1 Out-of-order scheduling 40
3.3.2 FPGA implementation 44

3.4 Summary . 46

IV. Background and simulation of sparse coding 48

4.1 Background of sparse coding 48
4.1.1 Sparse and Independent Local Network (SAILnet) . 51
4.1.2 Locally competitive algorithm (LCA) 58

4.2 Hardware implementation challenges 64
4.3 Simulation of spiking neurons 68

4.3.1 SAILnet . 68
4.3.2 Spiking LCA . 74

4.4 Summary . 78

V. Architecture for sparse coding 80

5.1 Neural network architectures 81
5.1.1 Bus Architecture 81
5.1.2 Ring Architecture 82

5.2 Impacts of scalable architectures 83
5.2.1 Arbitration-free bus 84
5.2.2 Spike collision analysis 85
5.2.3 Latent ring . 88

5.3 Hierarchical architecture . 90
5.3.1 Hybrid bus-ring architecture 91
5.3.2 Chip synthesis results 92

5.4 Summary . 94

VI. Sparse coding ASIC implementation 96

6.1 Simulation of hierarchical architecture 97
6.2 Architectural design . 100

6.2.1 Arbitration-free 2D bus 101
6.2.2 2-layer bus-ring architecture 102
6.2.3 Snooping core and approximate learning 103
6.2.4 Memory partition 106

6.3 Pipeline of inference and learning 108
6.4 Measurement results . 110
6.5 Summary . 113

VII. Neuromorphic object recognition processor 115

vi

7.1 Simulation of spiking LCA IM 115
7.2 Architectural design . 118

7.2.1 Spiking LCA IM . 119
7.2.2 Sparse event-driven classifier 121
7.2.3 Light-weight learning co-processor 123

7.3 Performance enhancement . 124
7.4 Measurement results . 125
7.5 Summary . 130

VIII. Conclusion . 132

8.1 Advances . 132
8.2 Future work . 134

APPENDIX . 136
A.1 Derivation of perturbation-based error bounds 137

BIBLIOGRAPHY . 142

vii

LIST OF FIGURES

Figure

2.1 Axial cone-beam arc-detector geometry for X-ray CT. 13

2.2 Block diagram of iterative image reconstruction. 16

2.3 (a) Mean absolute error and (b) root mean square error of iterative
image reconstruction using floating-point and fixed-point quantization. 19

2.4 Reconstructed images using (a) 32-bit floating-point quantization,
(b) fixed-point quantization, (c) absolute pixel-by-pixel differences
between the floating-point and the fixed-point quantization, and (d)
histograms of the differences in logarithm scale. Three slices in the
region of interest are shown: slice 17, 31 and 45 from left to right. . 22

2.5 Forward-projection of a single voxel. 23

2.6 Top view of the transaxial span of the forward-projection of one voxel. 23

2.7 Forward-projection of one axial column of voxels. 24

2.8 Side view of the axial span of the forward-projection of one voxel. . 24

3.1 High-level forward-projection architecture. 26

3.2 Parallel transaxial projection. 28

3.3 Pipeline bubbles inserted to resolve data dependencies in axial pro-
jections. 28

3.4 Water-filling buffer and partially-unrolled axial projection. 29

3.5 Example showing (a) n3 and l grid mismatch, and (b) the correspond-
ing water-filling buffering scheme. 30

3.6 Pipeline chart for the complete forward-projection module. 31

viii

3.7 Iterative image reconstruction with perturbed forward-projection, back-
projection and image update. 32

3.8 Theoretical bound and numerical simulation of standard deviation of
the image updates : (a) forward-projection with the quantization step
size of ∆fp = 27[HU×mm] (b) forward-projection, back-projection,
and image update with ∆fp = 27[HU×mm], ∆bp = 215[mm], ∆im =
2−3[HU]. 38

3.9 Top view of the forward-projection following an X-ray. 40

3.10 Illustrations showing (a) non-overlapping sectors, and (b) overlapping
sectors. 40

3.11 Illustration of run-length encoding of access schedule. 41

3.12 Architectures supporting sectored processing. 43

3.13 Complete selector-based forward-projection module supporting sec-
tored processing. 44

4.1 A spiking neural network for inference. 51

4.2 Integrate-and-fire neuron model. 52

4.3 Feed-forward connection between neuron and pixel, and feedback con-
nection between neurons. 52

4.4 Digital SAILnet neuron model. 54

4.5 (a) A digital neuron design, and (b) a fully connected network for
sparse coding. 65

4.6 (a) 256 randomly selected receptive fields (each square in the grid
represents a 16×16 receptive field), (b) whitened input image, and
(c) reconstructed image using sparse code. 67

4.7 Average spike rate at each time step across a network of 512 neurons
when performing inference with a target firing rate of p = 0.04. . . . 70

4.8 (a) CDF of neuron firing thresholds, and (b) CDF of feedback con-
nection weights for different η values. 71

ix

4.9 RMSE of image reconstruction by the linear generative model when
varying step size η. 72

4.10 Average spike rate at each time step across a network of 512 neurons
when performing inference with η = 2−5. 72

4.11 (a) CDF of neuron firing thresholds, and (b) CDF of feedback con-
nection weights for different p values. 73

4.12 (a) RMSE of image reconstruction by the linear generative model
when varing target firing rate p. (b) RMSE of image reconstruction
by the linear generative model when varying target firing rate p and
network size. 74

4.13 (a) Normalized Root mean square error in the reconstructed image
at each neuron update step in spiking LCA, and (b) the activities of
neurons. 75

4.14 (a) Normalized root mean square error in the reconstructed image at
each neuron update step size, and (b) the spike count or target fire
rate of neurons in the network. 76

4.15 (a) Activity of neurons at each neuron update step. (b) Root mean
square error in the reconstructed image with different neuron update
offsets. 77

4.16 NRMSE of spiking LCA and SAILnet with different target firing rate. 78

5.1 Neuron communication via AER protocol. 82

5.2 A ring architecture. 82

5.3 Neuron communication via arbitration-free bus. 84

5.4 (a) Collision probability in 256, 512, 768, 1024-neuron arbitration-
free bus with p = 0.09, 0.045, 0.03, and 0.0225, respectively, and (b)
corresponding RMSE of image reconstruction by the linear generative
model. 86

5.5 (a) Collision probability in a 512-neuron arbitration-free bus with p
= 0.04, and (b) corresponding RMSE of image reconstruction by the
linear generative model. 87

5.6 Average spike rate at each time step across a 512-neuron ring when
performing inference with a target firing rate of p = 0.04. 88

x

5.7 (a) Average spike rate of a 512-neuron ring with holding, and (b)
corresponding RMSE of image reconstruction by the linear generative
model. 89

5.8 (a) Average spike rate of a 512-neuron ring by changing update step
size η, and (b) corresponding RMSE of image reconstruction by the
linear generative model. 90

5.9 A 512-neuron 2-layer ring-bus architecture, consisting of 4 neuron
clusters. 91

5.10 (a) Collision probability in the arbitration-free bus in a different num-
ber of clusters, and (b) corresponding RMSE of image reconstruction
by the linear generative model. A 512-neuron network with p=0.045
and ns = 96 is considered. 92

6.1 Sparse coding mimicking neural coding in the primary visual cor-
tex. The input image can be reconstructed by the weighted sum of
receptive fields of model neurons. 96

6.2 (a) Receptive fields learned by model neurons through training, (b)
an input image presented to the sparse coding ASIC, and (c) the
reconstructed image based on the neuron spikes obtained by inference. 97

6.3 Collision probability of the hierarchical ring-bus architecture made
up of 256 spiking neurons. 98

6.4 (a) Q and W weight quantization for inference and (b) learning. . . 99

6.5 2D bus of a cluster of 64 neurons. Spike collisions are detected and
tolerated to save power. 100

6.6 RMSE of the reconstructed images for an arbitration-free 2D bus
design, an arbitration-free flat bus design, and fully-connected network.101

6.7 4-stage systolic ring connecting 4 2D local buses. A snooping core is
attached to the ring to record neuron spikes for learning. 102

6.8 Recording of NIDs and their spike counts during inference. The
snooping core stores NIDs and spike counts to the register file for
50 patch presentations. 103

6.9 Approximation of the Q update. Transmit a maximum count to each
ring node. 104

xi

6.10 Computation of correlations for W update. 105

6.11 Illustration of register files (RF) banks in the ring node 1 for the
inference. 106

6.12 Overall design of the hierarchical bus-ring architecture and a snooping
core that support inference and learning. 107

6.13 Pipeline of inference (IN) and learning (LE) of 50-patch batches. . . 109

6.14 (a) Chip photograph. (b) Printed circuit board for the testing. . . . 110

6.15 (a) Measured inference power consumption and (b) learning power
consumption. 111

6.16 Measured normalized root-mean-square error (NRMSE) in inference
with increasing core memory bit error rate. The core memory supply
voltage is annotated. 112

7.1 Sparse neuromorphic object recognition system composed of the spik-
ing LCA inference module (IM) front-end and the task-driven classi-
fier back-end. A sparse set of features are extracted to represent the
input image. The weighted spiking rate is summed to vote the most
likely object class. 116

7.2 Errors in MNIST classification with different network sizes. 117

7.3 MNIST classification of the spiking LCA IM and the conventional
spiking LCA. 118

7.4 MNIST classification with different number of grids in the IM. . . . 119

7.5 Inference module (IM) implemented in a 64-neuron spiking neural
network. 120

7.6 Spiking LCA IM and spike event-driven classifier. 122

7.7 (a) Feature matrix and a 64-entry spike count vector multiplication
to support learning. (b) Simplified vector-matrix product by taking
advantage of sparsity. 123

xii

7.8 Object recognition processor with on-chip learning co-processor. (a)
Four image patches. (b) Four 64-neuron spiking LCA IM networks.
(c) Four event-driven sub-classifiers (d) Soft output of ten class nodes
(e) On-chip learning co-processor. 124

7.9 Chip microphotograph. 125

7.10 Measured power consumption of the object recognition processor. . 126

7.11 Classification error measured in different inference window. 127

7.12 (a) 100 input images (each square in the grid is a 28×28 image), and
(b) the reconstructed images using chip measurements. 127

7.13 Misclassification in digit recognition. (a) Input image, ‘9’, and (b)
the reconstructed image that is classified as ‘7’. 128

7.14 Measured power consumption of learning co-processor. 129

7.15 Measured energy efficiency of the object recognition processor by ex-
ploiting error tolerance. 129

7.16 Throughput and energy comparison with state-of-the-art neuromor-
phic ASICs for sparse coding. 130

xiii

LIST OF TABLES

Table

2.1 Fixed-Point Quantization of Iterative Image Reconstruction 20

2.2 Sample Helical Cone-beam CT Geometry Parameters 25

3.1 Pipeline Stall Rate versus Shift Register Length of the Water-Filling
Buffer . 29

3.2 FPGA Resource Utilization of a Forward-Projection Module based
on XILINX Virtex-5 XC5VLX155T Device 31

3.3 Moving Directions for Run-Length Encoding 42

3.4 Sector Choice for Out-of-Order Scheduling 42

3.5 FPGA Resource Utilization of a Forward-Projection Module Sup-
porting Sectored Processing based on XC5VLX155T Device 44

3.6 Architecture Metrics of a Forward-Projection Module Supporting
Sectored Processing . 45

3.7 FPGA Resource Utilization of Complete Forward-Projection Mod-
ules based on XILINX Virtex-5 XC5VLX155T Device 45

4.1 Pseudo-code for the SAILnet learning 59

4.2 Pseudo-code for the LCA learning 61

4.3 Pseudo-code for the spiking LCA learning 64

5.1 65nm CMOS Chip Synthesis Results 94

6.1 Mapping of a square of the spike count to a bitshift operation . . . 104

6.2 Chip summary . 112

xiv

6.3 Comparison with prior works . 113

7.1 Comparison with prior works . 130

xv

ABSTRACT

Algorithm and Architecture Co-design for High Performance Digital Signal
Processing

by

Jung Kuk Kim

Co-chairs: Zhengya Zhang and Jeffrey A. Fessler

CMOS scaling has been the driving force behind the revolution of digital signal pro-

cessing (DSP) systems, but scaling is slowing down and the CMOS device is ap-

proaching its fundamental scaling limit. At the same time, advanced DSP algorithms

are continuing to evolve, so there is a growing gap between the increasing complex-

ities of the algorithms and what is practically implementable. The growing gap can

be bridged by exploring the synergy between algorithm design and hardware design,

using the so-called co-design techniques.

In this thesis, algorithm and architecture co-design techniques are applied to X-ray

computed tomography (CT) image reconstruction. Analysis of fixed-point quantiza-

tion and CT geometry identifies an optimal word length, intrinsic parallelism, and a

mismatch between the object and projection grids. A water-filling buffer is designed

to resolve the grid mismatch, and is combined with parallel fixed-point arithmetic

units to improve the throughput. The effects of the fixed-point arithmetic on the

image quality are analyzed, and an analytical upper bound on the quantization error

variance of the reconstructed image is derived. This investigation eventually leads

xvi

to an out-of-order sectored processing architecture that reduces the off-chip mem-

ory access by three orders of magnitude, allowing for a throughput of 925M voxel

projections/s at 200MHz on a Xilinx Virtex-5 FPGA.

The co-design techniques are further applied to the design of spiking neural net-

works for sparse coding. Analysis of the neuron spiking dynamics leads to the optimal

tuning of network size, spiking rate, and neuron update step size to keep the neuron

spiking sparse and random. The resulting sparsity enables a bus-ring architecture to

address routing complexity. The bus and ring sizes are optimized to achieve both high

throughput and scalability. The architecture is demonstrated in a 65nm CMOS chip.

The test chip demonstrates sparse feature extraction at a high throughput of 1.24G

pixel/s at 1.0V and 310MHz. The error tolerance of sparse coding can be exploited

to further enhance the energy efficiency.

As a natural next step after the sparse coding chip, a neural-inspired inference

module (IM) is designed for object recognition. The object recognition chip consists

of an IM based on the spiking locally competitive algorithm and a sparse event-driven

classifier. A light-weight learning co-processor is integrated on chip to enable on-chip

learning. The throughput and energy efficiency are further improved using a number

of architectural techniques including sub-dividing the IM network and classifier into

modules and optimal pipelining. The result is a 65nm CMOS chip that performs

sparse coding at 10.16G pixel/s at 1.0V and 635MHz. The integrated IM and classifier

provide extra error tolerance for voltage scaling, allowing the power to be lowered to

3.65mW at a throughput of 640M pixel/s.

Algorithm and architecture co-design techniques have been demonstrated in this

work to advance the hardware design for CT image reconstruction, neuromorphic

sparse coding, and object recognition. The co-design techniques can be applied to

the design of other advanced DSP algorithms for emerging applications.

xvii

CHAPTER I

Introduction

High performance signal processing algorithms have shown a number of applica-

tions in medical imaging and machine learning. Model-based image reconstruction

algorithms provide high quality X-ray computed tomography (CT) [1, 2, 3, 4, 5] and

magnetic resonance imaging (MRI) images [6, 7, 8]. The emerging neural network

algorithms have demonstrated applications in image processing, including feature

extraction [9, 10, 11, 12, 13], object recognition [14, 15], as well as speech recogni-

tion [16, 17]. Conventional microprocessor based solutions are widely used to im-

plement high-performance signal processing algorithms. However, the architecture

is not tailored to the algorithms, limiting the achievable performance for practical

applications.

X-ray CT systems using model-based iterative image reconstruction algorithms

process a massive amount of high-resolution image data. Computations involved in

practical image data require 100 billion floating-point multiply-accumulate opera-

tions per iteration and 100Gb/s memory bandwidth, so the CT image reconstruction

algorithms are fundamentally memory-bound, presenting a severe challenge for von

Neumann based hardware. The memory challenge is also seen in the implementation

of neural network algorithms for machine learning applications. A 1000-neuron net-

work requires 1 million neuron-to-neuron connections, and needs to store 1 million

1

connection weights in distributed memory for high performance signal processing.

Customizing the hardware to target applications in a so-called application spe-

cific integrated circuit (ASIC) is a promising approach towards energy-efficient, high-

performance hardware implementation. However, most commercial ASICs have not

been designed in a systematic way. Mapping DSP algorithms to ASIC architecture

often results in some performance loss, and the impact of hardware architecture on

the DSP algorithm is not always known. This thesis explores efficient ASIC hardware

for high-performance signal processing using a co-design technique by following four

systematic steps: 1) analysis of intrinsic characteristics of an algorithm, 2) implemen-

tation of custom architectures, 3) analysis of the impacts of architecture optimization

on the algorithm performance, and 4) transformation of the algorithm to enhance

architecture performance.

As a proof of the concept, this work discusses the co-design of two state-of-the-

art signal processing systems: 1) iterative image reconstruction for X-ray CT and 2)

sparse coding for feature extraction and object recognition. Three custom hardware

accelerators are implemented through co-design techniques: 1) an FPGA-based for-

ward projection accelerator, 2) a 65nm CMOS neural network processor, and 3) a

65nm CMOS end-to-end neuromorphic object recognition processor.

1.1 CT image reconstruction

X-ray computed tomography (CT) is a widely used medical imaging method that

produces three-dimensional (3D) images of the inside of a body from many two-

dimensional (2D) X-ray images. A 2D X-ray image captures X-ray photons that

pass through a body. As different materials attenuate X-ray differently, they can be

effectively differentiated by their attenuation coefficients. Using many X-ray images

taken around an axis of rotation, the attenuation coefficient of each volume element

(voxel) can be reconstructed, providing high-resolution imaging for medical diagnosis.

2

Among various image reconstruction algorithms for X-ray CT, this thesis primarily

focuses on state-of-the art statistical iterative image reconstruction algorithms [1, 2].

The statistical methods incorporate measurement statistics in the image reconstruc-

tion problem and improve the image quality over iterations [3, 4, 5]. Current commer-

cial CT systems using the iterative methods take on the order of an hour to reconstruct

one patient CT scan, so it is crucial to accelerate image reconstruction for X-ray CT.

An iterative method evaluates forward- and back- projection and regularization (if

necessary) in each iteration, and finds a solution to minimize reconstruction errors

through iterations. Since large data set and intensive computation involved in each

iteration require a long computation time, it is necessary to accelerate the iterative

methods for clinical use [18] including real-time image-guided surgery.

This work demonstrates algorithm and architecture co-design for fast iterative

image reconstruction. General-purpose CPUs and GPUs are widely used hardware

accelerators for high-performance CT image reconstruction, but it still takes a few

minutes to obtain high quality 3D images, so there is a gap between their practical use

and the performance of image reconstruction. Fixed-point datapath customized to the

CT geometry enables highly parallel processing for a high effective throughput. The

effects of fixed-point arithmetic are analyzed to quantify errors in the reconstructed

images.

1.1.1 Scope of work

This work implements highly parallel forward-projection architectures for itera-

tive CT image reconstruction through the co-design techniques [18, 19] in a sequence

of four steps. 1) A study of CT geometry uncovers the relationship between geometry

parameters and the range of a voxel projection, and the mismatch between the 3D

object grid and the 2D projection grid. 2) Based on the study of CT geometry, a

water-filling buffer is designed by resolving data dependency caused by the grid mis-

3

match, and parallel multiply-and-accumulate units are implemented to increase the

throughput. 3) The effects of fixed-point quantization on image reconstruction are

simulated using an iterative method to confirm the feasibility of fixed-point quantiza-

tion. 4) An out-of-order sectored processing algorithm is developed to reduce off-chip

memory bandwidth by up to three orders of magnitude, enabling highly parallel

forward-projection processing.

This work analyzes the effects of fixed-point quantization to the CT image re-

construction [20]. This work applies a floating-point to fixed-point conversion to the

iterative image reconstruction algorithm in order to reduce hardware costs. The effect

of fixed-point quantization is modeled as a perturbation of floating-point arithmetic

by injecting uniform white noise after the arithmetic. This work derives an analyti-

cal upper bound on the quantization error variance of the reconstructed image and

shows that the quantization step size can be chosen to meet a given upper bound.

The analytical results are confirmed by numerical simulations.

1.1.2 Related work

High-performance computing platforms have been proposed to accelerate image

reconstruction. For example, graphics processing unit (GPU) has recently been

demonstrated to achieve 10 to 100 times speedup over a microprocessor for image

reconstruction [21, 22]. As a vector processor, GPU can be programmed for efficient

parallel processing [23]. Provided with sufficient memory bandwidth, GPU accom-

plished a 30 times speedup of cone-beam Feldkamp (FDK) back-projection over a

system based on 12 2.6-GHz dual-core Xeon processors [21], and a 12 times speedup

of algebraic reconstruction [22]. Field-programmable gate array (FPGA) is another

family of hardware platforms that enable more flexibility in mapping parallel compu-

tation with an improved efficiency. It was shown to accomplish a 6 times speedup of

the cone-beam Feldkamp (FDK) back-projection [21], [24]. However, existing GPU

4

and FPGA implementations are tailored to analytical reconstruction algorithms or

algebraic reconstruction methods [21, 22, 24, 25], and challenges still remain in map-

ping statistical iterative algorithms.

In comparison with prior work, this work performs algorithm and architecture co-

design for fast iterative image reconstruction. CT geometry is investigated to identify

intrinsic parallelism and data access sequence. A water-filling buffer is proposed to

resolve pipeline stalls and support the average voxel consumption rate. This work

adopts the fixed-point quantization in the hardware implementation, and the quan-

tization effects are analyzed to quantify the image fidelity. An out-of-order sectored

processing is proposed to improve the performance of the hardware architecture.

1.2 Sparse coding

Better understanding of the mammalian primary visual cortex has led to advances

in computer vision [26, 27]. The visual cortical neurons respond to visual stimuli with

spikes. The visual feature or region that stimulates a cortical neuron in visual cortex

is known as the receptive field of the neuron [28, 29, 30]. The receptive fields of

the visual cortical neurons can be compared to the basis functions that form the

natural images we see, and are closely related to the intrinsic structures of natural

images. Learning the receptive fields and neuron activities allows us to carry out many

complex vision processing tasks, including efficient encoding of images and detecting

features and objects [9, 10].

Sparse coding algorithms have successfully reproduced key features of the biologi-

cal receptive fields. Sparse coding is inspired by biology as implementing a network of

computational neurons and regularizing the activities of the neurons in the network.

One unique feature of the network is that the activities of the neurons are sparse.

Sparsity is appealing, but sparse coding faces challenges in hardware implementation.

The number of interconnects between neurons grows quadratically with the number

5

of neurons in the network. Massively connected neurons require all-to-all commu-

nication for sparse coding and enormous on-chip memory bandwidth. Because of

massive interconnects and high memory bandwidth, the conventional von Neumann

architecture is ill suited for the sparse coding problem.

This work presents efficient hardware architectures for sparse coding. Hardware

architecture determines the neuron spiking dynamics, which in turn determine the re-

construction error. The relationship between neuron spiking dynamics and hardware

performance and complexity are not well understood. There are existing architectures

for artificial neural networks. However, a direct mapping of sparse coding onto these

architectures degrades hardware efficiency, because they are not tailored to sparse

coding. Co-design techniques contribute to a better understanding of the spiking dy-

namics, and show how the spiking dynamics are affected by hardware architectures.

These insights lead to custom hardware designs to achieve higher throughput and

better energy efficiency.

Object recognition is one primary application of sparse coding. Recognizing ob-

jects in an image or video can be accomplished by first extracting features from the

image using an inference module (IM), and then classifying the object based on the

extracted features using a classifier. Both feature extraction and object classification

can be computationally intensive, and their power consumption is high. Sparse fea-

ture extraction is advantageous as it performs sparse feature extraction and it reduces

the workload of the classifier.

This work presents an end-to-end neuromorphic object recognition processor. An

efficient sparse coding IM is realized by co-optimizing hardware and the accuracy of

classification. The sparse outputs of the sparse coding IM are exploited in the design

of an efficient classifier to accomplish object recognition.

6

1.2.1 Scope of work

This work develops custom digital hardware architecture for sparse coding by co-

optimizing neuron spiking dynamics and high-performance network architectures [31].

Similar to the CT image reconstruction, this work was conducted in four steps. 1) A

study of neuron spiking dynamics uncovers design considerations involving the net-

work size, the neuron update step size and firing rate. An optimal tuning of these

parameters keeps the neuron spikes sparse and random over the inference window,

and reduces reconstruction errors. 2) Two practical hardware architectures are in-

vestigated to address routing complexity and scalability. A bus architecture provides

efficient communications, but results in spike collisions. A ring architecture is more

scalable than the bus, but causes neuron misfires. 3) Spike collision is reduced by

leveraging sparsity, so an arbitration-free bus is designed to tolerate collisions with-

out the need of arbitration. To reduce neuron misfires, a latent ring architecture is

designed to damp the neuron responses. 4) The bus and the ring are combined in a

hierarchical architecture to achieve both high throughput and scalability, and to keep

the reconstruction error low.

Based on the co-design, this work implements a sparse coding ASIC for feature

extraction [32, 33]. Routing complexity and scalability are addressed by building a

2-layer bus-ring hierarchy. Neurons in a cluster are connected in a 2D bus to improve

the communication delay over a 1D bus, and the roots of neuron clusters are linked

in a short systolic ring to reduce latency. To save power in inference, memory is

divided into a core section to support inference, and an auxiliary section that is only

powered on for learning. An approximate learning scheme tracks only significant

neuron activities to complete on-chip learning in seconds. Error tolerance of a soft

sparse coding algorithm is exploited to reduce supply voltages, improving energy

efficiency.

Continuing with the design of a sparse coding ASIC, this work advances a ca-

7

pability of sparse coding by demonstrating a state-of-the-art neuromorphic object

recognition processor through a number of co-design techniques [34]. In particular, 1)

a convolutional sparse coding based inference module (IM) is developed to infer large

input images with feature dictionary that does not depend on the input size. 2) An

event-driven classifier is designed, and it is activated by sparse neuron spikes, reduc-

ing its power and simplifying its implementation by removing all multiplications. 3)

A 2-stage pipelined neuron is designed in a 2-layer bus-ring architecture to achieve a

very high throughput. 4) To further enhance the throughput, neurons are organized

in multiple IM networks, and the classifier is divided into multiple sub-modules to

process multiple image patches in parallel. Integrated IM and classifier provides extra

error tolerance for voltage scaling to improve the energy efficiency.

A part of this work was done by my co-workers Phil Knag and Thomas Chen.

They have contributed to the design and implementation of the sparse coding ASIC

chip.

1.2.2 Related work

To implement neural networks, many hardware architectures have been developed.

The direct mapping of neural networks onto VLSI hardware [35] is not scalable due

to the overwhelming interconnect and memory bandwidth necessary to support the

full connectivity between neurons and the access to synaptic weights. More scalable

architectures including bus [36], ring [37] and array [38] solved the interconnect bot-

tleneck, and the invention of address-event representation (AER) [39, 40] enables the

efficient time-multiplexing of sparse neuron spikes on a shared bus. Since then, much

progress has been made in the key challenging areas of compact synaptic weight stor-

age [41, 42, 43], efficient neuron and synapse circuits [44, 41, 42, 43, 45], and scalable

synaptic connections [42, 43, 46, 45, 47, 48].

The latest wave of hardware designs for neural networks has demonstrated in-

8

creasing capabilities, from simulating real-time spike-timing-dependent plasticity [44]

and cortical circuits [41] to digit recognition [42] and pattern recognition [43], from

multilayer vision sensing and actuation [46] to performing arbitrary mathematical

computations [45] and simulating neuroscience experiments [47]. At the same time,

the integration scale has gone from tens of neurons [44] to over 10K neurons [46] and

over 10M synaptic connections [45], and the power consumption has been lowered

to mW level [43] and the energy reduced to tens of pJ/spike [42]. However, some

of the latest works are not directly applicable to sparse coding due to the mismatch

of learning rules and our requirement of entirely on-chip learning capability. The

general-purpose solutions are applicable, but they are not tailored to sparse coding

algorithm, thus the energy and area efficiency will be sacrificed. In comparison, this

work proposes a custom hardware accelerator for sparse coding, and we focus on a

synchronous digital implementation which exhibits robust deterministic logical be-

havior at nominal operating conditions [43]. Alternative designs including analog

and asynchronous approaches offer unique advantages and are also expected to affect

algorithm dynamics. They remain our future work and will not be discussed in this

thesis.

High performance and energy efficient object recognition processors are designed

by implementing cellular neural network based IM [49], SIFT based IM [50], and

neural-fuzzy logic or algorithm based IM [51, 52]. The processors are used for visual

attention and real-time object database matching. The object recognition processors

achieve a high throughput of 100 to 200 GOPS [49, 51], and the power consumption

can be enhanced to 50mW for mobile object recognition [52]. In comparison, this

work is motivated by sparse coding, and implements spiking neurons in the IM for

sparse feature extraction and a sparse spike-event driven classifier that are dedicated

to enhance energy efficiency to 5.7pJ/pixel at 40MHz, dissipating 3.65mW.

Past work on sparse coding IM design has produced an 18-neuron spiking LCA

9

based analog IM [53], but the small scale is not suitable for practical problems. A

256-neuron digital IM using SAILnet [32] is scalable and achieved a much higher

throughput, but the design was dominated by memory and it is not capable of ob-

ject classification. Digital 256-neuron networks using crossbar architecture [43, 42]

and a scalable deep learning processor [54] have implemented neuromorphic IMs such

as spike-timing-dependent plasticity (STDP) [55] and variations of Restricted Boltz-

mann Machine (RBM) [56, 57], but the designs ignore sparsity, missing the opportu-

nity to reduce power consumption and hardware cost [33, 58]. Furthermore, compared

to deep learning approaches, the neuromorphic networks considered in this work use

not only feed-forward but also inhibitory feedback connections to reducing firing rate,

resulting in sparse spiking. This work demonstrates on-chip object recognition by im-

plementing a spiking LCA based digital IM. The IM uses the ideas of convolutional

neural networks to reduce the size of on-chip memory for area- and power-efficient

implementation.

1.3 Outline

Chapter II discusses the background of statistical image reconstruction for X-ray

CT. Model-based penalized weighted least square formulation is presented for CT im-

age reconstruction, and particularly the separable footprint (SF) forward- and back-

projection method is provided for fast image reconstruction. To reduce hardware

cost, fixed-point quantization is applied to the iterative method. The cone-beam CT

geometry is analyzed for efficient hardware implementation of the SF projector.

Chapter III describes a parallel forward-projection architecture for fast CT image

reconstruction. A study of the CT geometry allows for loop-level parallelism by taking

advantage of SIMD architecture and stall-free pipelined architecture by making use

of a water-filling buffer. The effects of fixed-point arithmetic used in the projector are

investigated in a diagonally preconditioned gradient descent method. An analytical

10

upper bound on the quantization error variance of the reconstructed image is derived.

Finally, this chapter proposes an out-of-order voxel scheduling to reduce the off-

chip memory bandwidth by 3 orders of magnitue. As a proof of the concept, this

chapter summarizes the implementation results of a 5-stage pipelined, 55-way parallel

projector on a Xilinx Virtex-5 FPGA.

Chapter IV provides the background of sparse coding that models the activities

of cortical neurons in the human brain and encodes input signals into sparse signals

using learned receptive fields (or feature dictionary). SAILnet, LCA, spiking LCA

and hardware implementation challenges are discussed. Also, this chapter analyzes

the tradeoff between the fidelity of sparse coding and the hardware performance.

Particularly, the focus is on three tuning parameters, 1) network size, 2) target firing

rate and 3) neuron update step size, and their effects on image fidelity and hardware

performance.

Chapter V explores practical hardware architectures for sparse coding. Two scal-

able architectures (bus and ring) are discussed, and the impacts of the architectures

on the performance of algorithm and hardware are analyzed. Particularly, spike colli-

sion rate on the bus is derived to identify the tradeoff between the image fidelity and

collision rate. In a ring architecture, the image fidelity is improved by damping neu-

ron responses and implementing a holding policy. The proposed 2-layer architecture

combines the bus and the ring to achieve both high throughput and scalability. As a

proof of the concept, the three architectures are synthesized and compared.

Chapter VI presents the design of a 3.06mm2 65nm sparse coding ASIC that

implements a 2-layer grid-ring architecture. In this ASIC chip, 256 leaky integrate-

and-fire neurons are connected in 2D local grids, which are linked in a 4-stage systolic

ring to reduce the communication latency. A snooping core is attached to the ring to

record a subset of spikes for a fast and approximate learning. Fixed-point arithmetic

with adjustable precision allows for highly parallel inference and on-chip learning.

11

Error tolerance of the SAILnet algorithm enables energy-efficient inference, allow-

ing the memory supply voltage to be lowered to 440mW. The sparse coding ASIC

demonstrates sparse feature extraction and learning of features in natural images.

Chapter VII presents the design of a 1.82mm2 65nm neuromorphic object recog-

nition processor. The 256-neuron IM is organized in four parallel neural networks to

process four image patches to achieve a high throughput. The sparse neuron spikes

allow the classifier implementation to be simplified by removing all multiplications.

A light-weight co-processor performs efficient on-chip learning by taking advantage

of the sparse neuron activity. The result is a 10.16G pixel/s test chip that dissipates

268mW. Integrated IM and classifier provides extra error tolerance for voltage scaling,

allowing the power to be lowered to 3.65mW at a throughput of 640M pixel/s.

12

CHAPTER II

Background and simulation of CT image

reconstruction

s

t

x

z
y

0

0

Source
Ds0

Dsd

Source trajectory

Projection

Detector

Detector

s

t

x

z

y

0

X-ray source



Figure 2.1: Axial cone-beam arc-detector geometry for X-ray CT.

Current generation CT systems have a cone-beam projection geometry, illustrated

in Fig. 2.1 [59, 2, 60, 61]. The X-ray source rotates on a circle centered at (x, y) =

(0, 0) on the z = 0 plane. The angle β indexes the projection view measured from

positive y-axis to X-ray source. For each angle β, the source emits X-rays that project

the volume onto the detector. The transaxial direction s is perpendicular to z and

the axial direction t is parallel to z.

This chapter introduces iterative methods for CT image reconstruction. The

floating-point to fixed-point conversion is applied to the iterative methods to con-

This work is based in part on [18].

13

firm the feasibility of use, and the projection geometry is analyzed for an efficient

mapping onto hardware.

2.1 Background of CT image reconstruction

In current clinical practice, a single CT scan using a state-of-the-art helical CT

scanner records up to several thousand X-ray images taken in multiple rotations as

the patient’s body is moved slowly through the scanner. The projections are captured

on an array of detector cells and a dedicated computer is used for image construc-

tion. Efficient algorithms, such as filtered backprojection (FBP) [62] and its variants,

are in common commercial use to handle large projection data sets and reconstruct

images at sufficient throughput. However, being an analytical algorithm, FBP disre-

gards the effects of noise. To improve the image quality and/or reduce X-ray dose,

statistical image reconstruction methods have been proposed [1, 2]. These methods

are based on accurate projection models and measurement statistics, and formulated

as a maximum likelihood (ML) estimation. Iterative algorithms such as conjugate

gradient (CG) [3], coordinate descent (CD) [4] and ordered subsets (OS) [5], have

been proposed. These algorithms find the minimizer of a cost function by iterative

forward- and back-projection. Iterations increase the compute load substantially over

FBP and impede routine clinical use.

2.1.1 Statistical iterative image reconstruction

A CT system captures a large series of projections at different view angles, recorded

as sinogram. Mathematically, sinogram y can be modeled as y = Af+ε, where f rep-

resents the volume being imaged, A is the system matrix, or the forward-projection

model, and ε denotes measurement noise. The goal of image reconstruction is to esti-

mate the 3D image f from the measured sinogram y. A statistical image reconstruc-

tion method estimates f based on detector measurement statistics. The estimator f̂

14

can be formulated as a solution to a weighted least square (WLS) problem [2],[63]

f̂ = arg min
f

1

2
‖y − Af‖2W , (2.1)

where W is a diagonal matrix with entries based on photon measurement statistics

[2]. Please see [64] for the detailed derivation of (2.1). A solution to (2.1) satisfies

A′WAf̂ =A′Wy [63]. If A′WA is invertible, the unique solution to (2.1) is given by

f̂ = (A′WA)−1A′Wy, where A′, the adjoint of the system matrix, represents the back-

projection model. This solution can be interpreted as the weighted back-projection

of y, followed by a deconvolution filter (A′WA)−1. As the deconvolution filter has a

high pass characteristic, the deconvolved image is affected by high frequency noise

[63]. One approach to control this noise is to add a penalty term to form a penalized

weighted least square (PWLS) [2],[63] cost function:

f̂ = arg min
f

Ψ(f) = arg min
f

1

2
‖y − Af‖2W + βR(f), (2.2)

where R(f) is known as the regularizer and β is a regularization parameter. One

example of R(f) is an edge-preserving regularizer [65].

Minimizing (2.2) requires iterative methods [3, 4, 5]. In this chapter, we consider

a diagonally preconditioned gradient descent method to solve (2.2) [5], [63]:

f̂ (i+1) = f̂ (i) −D∇Ψ(f̂ (i)) = f̂ (i) +D
[
A′W (y − Af̂ (i))− β∇R(f̂ (i))

]
. (2.3)

The solution is obtained iteratively. In each iteration, a new 3D image estimate

f̂ (i+1) is obtained by updating the previous image f̂ (i) with a chosen step, the negative

gradient of the cost function Ψ(f̂) scaled by D. Fig. 2.2 shows a block diagram of this

iterative approach. To start, the CT scanner produces the measured sinogram, y and

the FBP algorithm is used to estimate the initial image f̂ (0), followed by computed

15

+

computed

sinogram

-

OBJECT CT
BACK

PROJECTION

FORWARD

PROJECTION

measured

sinogram

+
+

3D IMAGE

ESTIMATE

ITERATIVE IMAGE RECONSTRUCTION

g W A`

A

D

1 delay

f
+

-
 

)(R

+

-

+

+

 

measured

sinogram

computed

sinogram

forward projection

imageweight back projection step size

regularizer

ITERATIVE IMAGE RECONSTRUCTION

-

+
+

+

+

image update

image

regularization

back-

projection

forward-

projection

scale-

measured

sinogram

computed

sinogramˆ ()n
f

negative gradient

of cost function

 A A´W

βC´C

D ˆ (1)n+
f

Figure 2.2: Block diagram of iterative image reconstruction.

forward-projection to obtain the computed sinogram Af̂ (0). The error between the

computed and measured sinogram y −Af̂ (0) is back-projected A′W (y −Af̂ (0)), then

offset by a regularization term. The result is scaled by D, and used to improve the

initial image to produce f̂ (1). The image f̂ is iteratively updated to minimize the cost

function.

2.1.2 Forward- and back- projection

Recently, a separable footprint (SF) projection algorithm was designed to simplify

the forward-projection by approximating the voxel footprints as separable functions

[66]. The SF projector has high accuracy and favorable speed, but it is still very

computationally intensive: each forward- and back-projection requires on the order

of 100 billion floating-point multiply-accumulate (MAC) operations, requiring min-

utes or longer for each forward- and back-projection on a state-of-the-art multicore

microprocessor [19].

Forward and back-projection are the most computationally intense operations

in iterative image reconstruction due to the large size of the system matrix A. It is

infeasible to store A, thus the forward-projection Af (i), and back-projection A′W (y−

f (i)) in (2.3) are computed on the fly.

The forward-projection is mathematically based on the Radon transform. The

Radon transform of a 3D volume f(x, y, z) at view angle β is described by the line

integrals[66]:

16

g(s, t; β) =

∫
L(s,t,β)

f(x, y, z)dl, (2.4)

where L(s, t, β) is the line that connects the X-ray source and the detector cell at

(s, t). In a practical implementation, a 3D continuous volume f(x, y, z) is discretized

to a collection of volume elements, or voxels f [n1, n2, n3], where [n1, n2, n3] is the voxel

coordinate. The grid spacings are ∆x, ∆y, ∆z and dimensions are Nx, Ny, Nz along

the x, y, z directions. Let β0 be the common voxel basis function, defined as a cubic

function, β0(x, y, z)= rect(x)rect(y)rect(z), and (xc[n1], yc[n2], zc[n3]) be the location

of voxel [n1, n2, n3]. We have

f(x, y, z) =
Nx−1∑
n1=0

Ny−1∑
n2=0

Nz−1∑
n3=0

f [n1, n2, n3]β0

(
x− xc[n1]

∆x

,
y − yc[n2]

∆y

,
z − zc[n3]

∆z

)
. (2.5)

To account for the finite detector cell size, the projection is convolved with the

detector blur h(s, t). Following a common assumption that the detector blur is shift

invariant, independent of the view angle β, and acts only along s and t coordinates,

then the ideal noiseless forward-projection on the detector cell [k, l] centered at (sk, tl)

is given by

yβ[k, l] =
Nx−1∑
n1=0

Ny−1∑
n2=0

Nz−1∑
n3=0

ab(sk, tl; β;n1, n2, n3)f [n1, n2, n3], (2.6)

where

ab(sk, tl; β;n1, n2, n3) ,

∞∫
−∞

∞∫
−∞

h(sk − s, tl − t)a(s, t; β;n1, n2, n3)dsdt, (2.7)

17

and

a(s, t; β;n1, n2, n3) ,
∫

L(s,t,β)

β0

(
x− xc[n1]

∆x

,
y − yc[n2]

∆y

,
z − zc[n3]

∆z

)
dl, (2.8)

where a(s, t; β;n1, n2, n3) is the footprint of voxel [n1, n2, n3] and ab(sk, tl; β;n1, n2, n3)

is the blurred footprint. For a detailed description of this derivation, see [63]. The

separable footprint (SF) method [66] approximates the blurred footprint function as

the product of ab1(sk, β;n1, n2) and ab2(tl, β;n1, n2, n3), thus (2.6) is approximated as

yβ[k, l] ≈
Nx−1∑
n1=0

Ny−1∑
n2=0

Nz−1∑
n3=0

ab1[k, β;n1, n2]ab2[l, β;n1, n2, n3]f [n1, n2, n3].

Based on (2.9), one complete forward-projection involves multiplication and sum-

mation over six nested loops: n1, n2, n3, β, k, and l. For a practical object made

up of more than 10 million voxels, a SF forward-projection that comprises more than

900 view angles, as in a commercial axial CT scanner [2], requires on the order of 100

billion multiply-accumulate (MAC) operations. In the following sections, we explore

architecture and algorithm co-optimization to accelerate the SF forward-projection.

For the sake of completeness, we briefly summarize back-projection. Back-projection

is the operation that smears the projection in detector space back into the object space

to reconstruct the 3D volume [63]. Back-projection is mathematically described as

fb[n1, n2, n3] =

Nβ−1∑
nβ=0

Nt−1∑
l=0

Ns−1∑
k=0

ab(sk, tl;nβ;n1, n2, n3)g[k, l, nβ], (2.9)

where g[k, l, nβ] is the weighted difference between measured sinogram and the com-

puted sinogram yβ(nβ)[k, l]. Similarly, the SF method approximates back-projection

as

18

fb[n1, n2, n3] ≈
Nβ−1∑
nβ=0

Nt−1∑
l=0

Ns−1∑
k=0

ab1[k, nβ;n1, n2]ab2[l, nβ;n1, n2, n3]g[k, l, nβ]. (2.10)

Note that the equations governing forward- and back-projection are similar and

they also share a common architecture. In this chapter, we will focus the discussions

on forward-projection, but the results can also be applied to back-projection.

2.2 Fixed-point quantization and CT geometry

This section explores fixed-point quantization error effects and CT projection

geometry. Numerical simulation verifies that with much reduced wordlengths, the

fixed-point forward-projection provides a comparable image quality in an iterative al-

gorithm. The CT projection geometry is analyzed to identify the intrinsic parallelism

and data access sequence for an highly parallel hardware accelerator.

0 50 100 150
0

1

2

3

4

5

Iteration

M
ea

n
ab

so
lu

te
 e

rr
or

 [H
U

]

32−bit floating point
fixed−point

(a)

0 50 100 150
0

5

10

15

20

25

Iteration

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 [H

U
]

32−bit floating point
fixed−point

(b)

Figure 2.3: (a) Mean absolute error and (b) root mean square error of iterative image
reconstruction using floating-point and fixed-point quantization.

19

2.2.1 Quantization errors investigation

Iterative CT image reconstruction algorithms are usually implemented in 32-bit

single-precision floating-point quantization. Floating-point arithmetic costs more

hardware resources and longer latency than integer (or fixed-point) operations. The

substantially smaller area and higher speed provide strong incentives for using fixed-

point operations. However, fixed-point quantization introduces errors that may de-

grade image quality. We show in the following that good image quality can be achieved

with appropriate quantization choice and sufficient number of iterations.

Our experiment was done using a 61-slice test volume, with each slice made up

of 320×320 voxels. Errors are defined in reference to a baseline that is the image

reconstructed using 32-bit floating-point quantization after 1,000 iterations. We con-

verted floating-point to fixed-point and varied the word length and quantization of

each parameter and operand. Mean absolute error (MAE) and root mean square

error (RMSE) of the image update in every iteration were measured compared to the

baseline. The errors are expressed in Hounsfield unit (HU), which is a linear trans-

formation of the linear attenuation coefficient (the attenuation coefficient of water at

standard pressure and temperature is defined as 0 HU and that of the air is -1,000

HU).

Table 2.1: Fixed-Point Quantization of Iterative Image Reconstruction
Forward-projection Back-projection
Parameter Quant. Parameter Quant.

f Q13.0 g Q5.15
ab2 Q1.15 ab1 Q3.17
ab2f Q13.3 ab1g Q7.15∑

n3

ab2f Q13.3
∑
k

ab1g Q8.15

ab1 Q3.13 ab2 Q1.15∑
n3

ab1ab2f Q15.8
∑
k

ab1ab2g Q9.15∑
n1

∑
n2

∑
n3

ab1ab2f Q20.8
∑
nβ

∑
l

∑
k

ab1ab2g Q9.15

20

We used an OS algorithm [5] with 82 subsets which is a variation of (2.3) that

uses a subset of the projection views for each update. Fig. 2.3 comparises the 32-bit

floating-point quantization and the fixed-point quantization described in Table 2.1.

We use the notation Qnint.nfrac to denote a fixed-point format with nint before the

radix point and nfrac after the radix point. The experiment confirms that the fixed-

point quantization errors introduced can be limited to fairly low levels. More itera-

tions can help suppress the errors, and the word length can be increased to reduce

the errors further if necessary.

Fig. 2.4 shows the images obtained by iterative image reconstruction as well as

the absolute pixel-by-pixel differences between the reconstructed image using 32-bit

floating-point quantization and the reconstructed image using fixed-point quantiza-

tion. Three representative slices in the region of interest are shown from left to right.

The vast majority of the pixel errors remain relatively small. We observe no percep-

tual difference between floating-point and fixed-point reconstructed images. These

initial results suggest that the iterative image reconstruction algorithm can be robust

to quantization error. The property allows us to simplify the hardware with much

more efficient integer arithmetic and smaller memory.

2.2.2 Projection geometry

The projection geometry is central to the proposed algorithms. Fig. 2.5 illustrates

the X-ray projection of a single voxel of dimension ∆x×∆y×∆z centered at (x, y, z).

We define the magnification factor Mβ(x, y) as the ratio of the source-to-detector

distance Dsd (which is a constant in cone-beam geometry) over the distance between

the source and (x, y, 0). (The magnification factors of all voxels in an axial column

are equal.) Mβ(x, y) is maximized when the voxel is closest to the X-ray source and

minimized when the voxel is furthest to the X-ray source, i.e.,

21

(a)

(b)

(c)

−15 −10 −5 0 5 10 15
10

0

10
1

10
2

10
3

10
4

Difference [HU]

N
um

be
r

of
 p

ix
el

s
in

 R
O

I

−15 −10 −5 0 5 10 15
10

0

10
1

10
2

10
3

10
4

Difference [HU]

N
um

be
r

of
 p

ix
el

s
in

 R
O

I

−15 −10 −5 0 5 10 15
10

0

10
1

10
2

10
3

10
4

Difference [HU]

N
um

be
r

of
 p

ix
el

s
in

 R
O

I

(d)

Figure 2.4: Reconstructed images using (a) 32-bit floating-point quantization, (b)
fixed-point quantization, (c) absolute pixel-by-pixel differences between
the floating-point and the fixed-point quantization, and (d) histograms of
the differences in logarithm scale. Three slices in the region of interest
are shown: slice 17, 31 and 45 from left to right.

22

x

z

y

X-ray source

Detector

∆z

∆x

∆y

(x, y, z)

Projection
t

s

Ds0

Dsd

FOV

Figure 2.5: Forward-projection of a single voxel.

Dsd

Ds0 + FOV/2
≤Mβ(x, y) ≤ Dsd

Ds0 − FOV/2
, (2.11)

where FOV , or field of view, is the diameter of the volume that is reconstructed from

all view angles, and Ds0 is the source-to-rotation-center distance.

y

x

y

x

Ds0

Dsd

∆x

∆y

∆s

∆s

FOV

Figure 2.6: Top view of the transaxial span of the forward-projection of one voxel.

Now, consider the position of a voxel relative to the X-ray source – the transaxial

width of a voxel’s projection is maximized if the transaxial diagonal of the voxel

is perpendicular to the line joining the X-ray source and the center of the voxel,

illustrated in Fig. 2.6. Considering both the magnification and the transaxial diagonal

of the voxel, the transaxial span of the projection of a voxel, quantized to the axial

spacing ∆s of the detector grid, is

23

stransaxial ≤

⌈√
∆2

x + ∆2
y

∆s

Mβ(x, y)

⌉
+ 1 ≤

⌈√
∆2

x + ∆2
y

∆s

Dsd

Ds0 − FOV/2

⌉
+ 1 = sbin,

(2.12)

where d e denotes ceiling.

∆s

t
s

x

yz

∆t

detectorsource axial column detector cell

sk sk+1 sk+2

tl

tl+1

tl-1

... ...
...

...

Figure 2.7: Forward-projection of one axial column of voxels.

z

Ds0

Dsd

t

∆z

xFOV

Figure 2.8: Side view of the axial span of the forward-projection of one voxel.

The magnification factor in (2.11) can also be used to derive the axial span.

Typically the axial spacing ∆t of the detector grid is designed to match the voxel

grid ∆z by having ∆t/∆z = Dsd/Ds0. Therefore, on average one voxel maps to one

detector cell along the axial direction. However, grid misalignment and geometry

cause multiple consecutive voxels in an axial column to project to a single detector

cell, as shown in Fig. 2.7. The axial height of a voxel’s projection is minimized if the

voxel is located on the z = 0 plane, illustrated in Fig. 2.8. It follows that the number

of voxels in an axial column that project to a single detector cell is

24

zaxial ≤
⌈

∆t

∆z

1

Mβ(x, y)

⌉
+ 1 ≤

⌈
FOV/2

Ds0

⌉
+ 2 = zvx. (2.13)

Table 2.2: Sample Helical Cone-beam CT Geometry Parameters
Parameter Value Parameter Value

N1 320 ∆x 2.1911 [mm]
N2 320 ∆y 2.1911 [mm]
N3 61 ∆z 0.625 [mm]
Ns 888 ∆s 1.023 [mm]
Nt 32 ∆t 1.096 [mm]

Nviews 3,625 Ds0 541.0 [mm]
Views per rotation 984 Dsd 949.075 [mm]

Pitch 0.513 FOV 500 [mm]

For a numerical example, substituting sample helical cone-beam geometry param-

eters given in Table 2.2, we get sbin = 11 and zvx = 3, i.e., one voxel’s projection spans

at most 11 detector cells along the transaxial direction, and at most 3 consecutive

voxels in an axial column project to one detector cell.

2.3 Summary

Iterative algorithms for image reconstruction in X-ray CT are introduced. This

chapter discusses the fixed-point quantization of forward-projection, which reduces

hardware costs over the floating-point quantization and enables fast computations.

Numerical simulation shows that the induced fixed-point quantization errors are tol-

erable in an iterative algorithm. The analysis of the projection geometry leads to the

investigation of tranaxial projection and axial projection. Limited transaxial span

and axial span allow for highly parallel hardware architecture. A design of a custom

hardware accelerator will be discussed in the next chapter.

25

CHAPTER III

Parallel forward-projection architecture

Image

memory

Detector

memory

On-chip

image

memory

Forward-

projection

Off-chip

image

memory

Forward-

projection

On-chip

detector

memory

Off-chip

detector

memory

On-chip

image

memory

Forward

projection

processing

On-chip

detector

memory

On-chip

image

memory

Forward

projection

processing

Off-chip

image

memory

On-chip

detector

memory

Off-chip

detector

memory

On-chip

image

memory

Forward

projection

processing

On-chip

detector

memory

.

.

.

.

.

.

(a) One-level memory

Image

memory

Detector

memory

On-chip

image

memory

Forward-

projection

Off-chip

image

memory

Forward-

projection

On-chip

detector

memory

Off-chip

detector

memory

On-chip

image

memory

Forward

projection

processing

On-chip

detector

memory

On-chip

image

memory

Forward

projection

processing

Off-chip

image

memory

On-chip

detector

memory

Off-chip

detector

memory

On-chip

image

memory

Forward

projection

processing

On-chip

detector

memory

.

.

.

.

.

.

(b) Two-level memory hierarchy

Figure 3.1: High-level forward-projection architecture.

This chapter describes the design of a hardware accelerator for the forward-

projection. Impacts of the fixed-point quantization used in the design are modeled

and analyzed, and a quantization error bound in a diagonally preconditioned gradient

descent algorithm is derived. The out-of-order sectored processing is proposed to

enhance the performance of the accelerator. As a proof of concept, a 5-stage pipelined

55-way parallel forward projector supported by the sectored processing is prototyped

on a Xilinx Virtex-5 FPGA.

This chapter is based in part on [18, 19, 20].

26

3.1 Custom architecture for acceleration

Forward- and back-projection are the core and most computationally intense

building blocks of iterative image reconstruction. A simplistic forward-projection

architecture includes image memory on the input and detector memory on the out-

put as in Fig. 3.1; back-projection exchanges the positions of image and detector

memory but its processing architecture is similar. In a state-of-the-art commercial

CT scanner, the image and detector datasets are up to 1 GB in size. Such enormous

datasets can only be accommodated in off-chip memory, and input and output data

are selectively brought to on-chip memory (cache) for processing. The on-chip mem-

ory is smaller but much faster and sometimes immediately accessible by the processor,

while the larger off-chip memory interface is much slower and costs a longer latency to

access. Iterative image reconstruction algorithm in its original form requires moving

of large datasets on and off chip constantly, resulting in a low throughput due to

limited off-chip memory interface.

Parallelism can be used to improve the throughput, but it further increases mem-

ory bandwidth. The architecture can be pipelined, though its throughput is far from

ideal due to loop-carried dependencies from geometry processing. In the following

we investigate the projection geometry and design algorithms and architectures to

reduce the memory bottleneck and improve the efficiency of parallel and pipelined

architectures.

3.1.1 Loop-level parallelism

The SF forward-projection algorithm contains six layers of nested loops (2.9): β

(view angle), n1 (x index), n2 (y index), n3 (z index), l (t index) and k (s index) for

each forward-projection. The innermost k loop computes the transaxial projection of

a voxel. As discussed in the previous section, one voxel projects to a row of up to sbin

detector cells, each of which can be evaluated independently. Thus we exploit loop-

27

ab1[k,β;n1,n2]
On-chip

detector

memory

bank

yβ[k,l]

ab2[l,β;n1,n2,n3]

f[n1,n2,n3]

k = k1

... k2
kSbin

...

Transaxial projection block

wdet

wdet

Figure 3.2: Parallel transaxial projection.

level parallelism by allocating sbin multiply-accumulate (MAC) units and detector

memory banks for the transaxial projection, as shown in Fig. 3.2.

The quantization study showed that the transaxial projection can be carried out

in a 16-bit × 16-bit fixed-point multiply followed by a 28-bit accumulate. To operate

at a high clock frequency, e.g., 200 MHz on a Xilinx Virtex-5 FPGA, we pipeline the

MAC unit to 3 stages: multiply (MU), add (AD), and write back (WB). Let wdet be

the wordlength of yβ[k, l] that is stored in the detector memory and fclk be the clock

frequency, the required read and write bandwidth to the on-chip detector memory is

2wdetfclk b/s. Since one complete transaxial projection block uses sbin MAC units,

the total on-chip detector memory bandwidth is 2sbinwdetfclk b/s.

MU AD WB

MU AD WB

MU AD WB

n3 = z1

z2

z3

...
...

MU AD WBRE SU

MU AD WBRE SU

MU AD WBRE SU

MU AD WBRE SU

l = l1

l2

l3

..

.

l4

..

.

Stall

Stall

Data dependency

Data dependency

1 2 3 4 5 . . . Time (cycle)

1 2 3 4 5 . . . Time (cycle)

MU AD WBRE

MU AD WBRE

MU AD WBRE

n3 = z1

z2

z3

..

.
..
.

1 2 3 4 5 . . . Time (cycle)

Data dependency

Data dependency
Stall

Stall

Figure 3.3: Pipeline bubbles inserted to resolve data dependencies in axial projec-
tions.

The outer l loop can be easily pipelined, but it is complicated by loop-carried

dependencies: multiple voxels in an axial column can project to a single detector cell,

as illustrated in Fig. 2.7, so the pipeline would have to be stalled, waiting for write

back to complete before next add. The 3-stage pipeline chart in Fig. 3.3 shows that

one pipeline bubble is necessary to resolve data dependency. A deeper pipeline will

28

result in more stalls.

3.1.2 Water-filling

ab2[l,β;n1,n2,z3]

ab2[l,β;n1,n2,z2]

ab2[l,β;n1,n2,z1]

ab1[k,β;n1,n2]

k = k1

... k2
kSbin

...
. . .

z1

z2

z3

l1

l2

l3

..

.
..
.

n3 l

z4

ab2,2

z1

ab2,1

ab2,3=0

SR1

z5

z6

l4

z4

SR1

z7

z8

z9

...

On-chip

image

memory

Q

Transaxial projection

block

Axial projection

block

Axial projection blockWater-filling buffer

f [n1,n2,z1]

. . .

SR2

f [n1,n2,z2]

. . .

SR3

f [n1,n2,z3]

. . .

en1

z2

SR2

z5
Q

en2

z3

SR3

z6
Q

en3

z7 l5

z8

Water-filling

buffer

On-chip

image

memory

bank

...

Figure 3.4: Water-filling buffer and partially-unrolled axial projection.

The mismatch between the voxel grid and detector grid requires the joint consid-

eration between the n3 loop and the l loop. To eliminate loop-carried dependencies,

we propose an algorithm transformation to merge the two loops. In the transformed

algorithm, for each l-th detector cell, we identify the group of contiguous voxels along

the axial column that project to the cell and sum up the contributions. In particular,

we allocate zvx shift registers, each providing one candidate voxel (because up to zvx

voxels in an axial column project to a single detector cell), as in Fig. 3.4. Each can-

didate voxel is multiplied by its axial footprint and the contributions are summed,

which is equivalent to a partial unrolling of the n3 loop.

Table 3.1: Pipeline Stall Rate versus Shift Register Length of the Water-Filling Buffer
Shift register length Stall rate (%)

1 9.70
2 7.42
3 5.65
4 4.36
5 3.48

Note that in the above example, one new voxel is brought in the water-filling buffer

29

every cycle to support the average input consumption rate. The average consumption

rate is one input per clock cycle because ∆z and ∆t are designed to be matched

as previously described. However, the actual input consumption varies every cycle

and prefetching is needed to avoid stalling the pipeline. A longer shift register and

prefetching guarantee a lower stall rate, but increase latency and resource usage. We

experimentally verified the stall rate versus shift register length, and the results are

listed in Table 3.1. We choose a 2-stage shift registers in our prototype design for a

stall rate Pstall = 7.42%. A lower stall rate is possible with longer shift registers.

ab2[l,β;n1,n2,z3]

ab2[l,β;n1,n2,z2]

ab2[l,β;n1,n2,z1]

ab1[k,β;n1,n2]

k = k1

... k2
kSbin

...
. . .

z1

z2

z3

l1

l2

l3

..

.
..
.

n3 l

z4

ab2,2

z1

ab2,1

ab2,3=0

SR1

z5

z6

l4

z4

SR1

z7

z8

z9

...

On-chip

image

memory

Q

Transaxial projection

block

Axial projection

block

Axial projection blockWater-filling buffer

f [n1,n2,z1]

. . .

SR2

f [n1,n2,z2]

. . .

SR3

f [n1,n2,z3]

. . .

en1

z2

SR2

z5
Q

en2

z3

SR3

z6
Q

en3

z7 l5

z8

Water-filling

buffer

On-chip

image

memory

bank

...

(a)

ab2[l,β;n1,n2,z3]

ab2[l,β;n1,n2,z2]

ab2[l,β;n1,n2,z1]

ab1[k,β;n1,n2]

k = k1

... k2
kSbin

...
. . .

z1

z2

z3

l1

l2

l3

..

.
..
.

n3 l

z4

ab2,2

z1

ab2,1

ab2,3=0

SR1

z5

z6

l4

z4

SR1

z7

z8

z9

...

On-chip

image

memory

Q

Transaxial projection

block

Axial projection

block

Axial projection blockWater-filling buffer

f [n1,n2,z1]

. . .

SR2

f [n1,n2,z2]

. . .

SR3

f [n1,n2,z3]

. . .

en1

z2

SR2

z5
Q

en2

z3

SR3

z6
Q

en3

z7 l5

z8

Water-filling

buffer

On-chip

image

memory

bank

...

(b)

Figure 3.5: Example showing (a) n3 and l grid mismatch, and (b) the corresponding
water-filling buffering scheme.

An example is shown in Fig. 3.5 using 2-stage shift registers and input prefetch-

ing. Initially, l = l1, voxels z1 and z2 project to detector cell l1. A controller sets

ab2,1 = ab2[l1, β;n1, n2, z1], ab2,2 = ab2[l1, β;n1, n2, z2] and ab2,3 = 0, respectively. The

contributions by voxels z1 and z2 to the axial projection are summed, followed by

transaxial projection. Next, l = l2, voxels z2 and z3 project to detector cell l2. The

controller sets en1 = 1, en2 = 0, en3 = 0 to pop z1 and keep z2 and z3. Now the

water level in SR1 has dropped and the input multiplexer will direct the new voxel

input z7 to SR1.

30

MU AD WB

MU AD WB

MU AD WB

n3 = z1

z2

z3

...
...

MU AD WBRE SU

MU AD WBRE SU

MU AD WBRE SU

MU AD WBRE SU

l = l1

l2

l3

..

.

l4

..

.

Stall

Stall

Data dependency

Data dependency

1 2 3 4 5 . . . Time (cycle)

1 2 3 4 5 . . . Time (cycle)

MU AD WBRE

MU AD WBRE

MU AD WBRE

n3 = z1

z2

z3

..

.
..
.

1 2 3 4 5 . . . Time (cycle)

Data dependency

Data dependency
Stall

Stall

Figure 3.6: Pipeline chart for the complete forward-projection module.

The new water-filling architecture can be implemented using 3 MAC units that

are pipelined in two stages: read (RE) and sum (SU), which augment the 3-stage

pipeline in Fig. 3.3 to 5 stages as in Fig. 3.6. Pipeline bubbles due to loop-carried

dependencies have been eliminated to achieve an average throughput of fclk(1−Pstall)

voxel projections/s. The required on-chip image memory bandwidth is wimgfclk b/s

with wimg as the voxel wordlength. Substituting parameters from Table 2.2, Pstall =

7.42%, and fclk = 200 MHz that is typical of an FPGA platform, the proposed

projection module completes 185.2 million voxel projections/s and requires an on-

chip image memory bandwidth of 2.6 Gb/s and detector memory bandwidth of 123.2

Gb/s. In the following section, we propose out-of-order scheduling to reduce the

detector memory bandwidth.

Table 3.2: FPGA Resource Utilization of a Forward-Projection Module based on XIL-
INX Virtex-5 XC5VLX155T Device

Usage Utilization ratio
FPGA slice register 10,419 10%

FPGA slice LUT 9,124 9%
Occupied FPGA slice 5,119 21%

BRAM 37 17%
DSP48E 17 13%

A complete forward-projection module consisting of the water-filling axial pro-

jection and parallel transaxial projection has been synthesized on a Xilinx Virtex-5

XC5VLX155T FPGA and the device usage is listed in Table 3.2.

31

A A´W D

βC´C

 

y

  

efp
(n)

ebp
(n)



eim
(n)

++ + -
+

+
+

+ +

+

+

image image

regularizer

back projectionforward

projection
scale-

measured

sinogram

computed

sinogram

image

error

forward

error

backward

error


-

+

+
+

image update

image

regularization

back-

projection

forward-

projection
scale-

measured

sinogram

computed

sinogram

A

y

A´W

βC´C

Dˆ ()

p

n
f

(1)

p
ˆ n+
f

()

bp

n
()

im

n ()

fp

n


+

+

+

+

+

+

back-

projection

error

forward-

projection

error

image

error

Figure 3.7: Iterative image reconstruction with perturbed forward-projection, back-
projection and image update.

3.2 Impact of fixed-point quantization

Fixed-point calculations can substantially reduce the computational load, but also

increase quantization error. To investigate the effect of fixed-point quantization, we

analyze the error propagation after introducing perturbation in a diagonally precon-

ditioned gradient descent algorithm for X-ray computed tomography. The effects of

the quantization error in forward-projection, back-projection, and image update are

calculated using the open loop and loop gain of the iterative algorithm. We derive an

analytical upper bound on the quantization error variance of the reconstructed image

and show that the quantization step size can be chosen to meet a given upper bound.

The analytical results are confirmed by numerical simulations.

3.2.1 Perturbation-based analysis

This section analyzes the effect of perturbation in iterative image reconstruction

and show that both the maximum and the mean error variance in an image update

are bounded for a given level of uniform white noise. Hereafter, we define f̂
(n)
p as the

nth image update of the perturbed iterative algorithm, and e(n) as the corresponding

image error relative to the unperturbed version f̂ (n), i.e., e(n) = f̂ (n) − f̂ (n)
p .

32

3.2.1.1 Perturbation of forward-projection

We proceed by first perturbing the forward-projection to model the effect of fixed-

point quantization [67]. We add a random error vector, ε
(n)
fp , to the ideal forward-

projection, as illustrated in Fig. 3.7. We further assume that the error samples are

uncorrelated. Specifically, we assume

ε
(n)
fp ∼ U

[
−∆fp

2
,
∆fp

2

]
, cov(ε

(i)
fp , ε

(i)
fp) =

∆2
fp

12
I, cov

(
ε
(i)
fp , ε

(j)
fp

)
= 0 ∀i, ∀j, i 6= j,

(3.1)

where ∆fp denotes the quantization step size.

From (2.3), the first image update of the perturbed algorithm can be written as

f̂ (1)
p = f̂ (0) +D

[
A′W

(
y −

(
Af̂ (0) + ε

(0)
fp

))
− βC ′Cf̂ (0)

]
= f̂ (1) +Kfpε

(0)
fp , (3.2)

where Kfp , −DA′W is the open loop gain of the error due to perturbation in

forward-projection. Similarly, we have the second image update as

f̂ (2)
p = f̂ (1)

p +D
[
A′W

(
y −

(
Af̂ (1)

p + ε
(1)
fp

))
− βC ′Cf̂ (1)

p

]
. (3.3)

Substituting (3.2) into (3.3) and simplification yields

f̂ (2)
p = f̂ (2) +MKfpε

(0)
fp +Kfpε

(1)
fp ,

where M , I−D(A′WA+βC ′C) is the loop gain of the error in this iterative method.

(Note that M is related to the Hessian of the cost function [63], which is given by

H = A′WA + βC ′C). By induction, the image update of the nth iteration and the

33

image update error are given by

f̂ (n)
p = f̂ (n) + e(n)

e(n) =
n−1∑
k=0

MkKfpε
(n−1−k)
fp .

Using (3.1), the mean of e(n) is zero, and the covariance is

cov
(
e(n), e(n)

)
=

∆2
fp

12

n−1∑
k=0

MkKfpK
′
fp

(
Mk
)′
. (3.4)

Note that a covariance matrix is positive semidefinite[68], and its eigenvalues

are nonnegative[69]. Thus, an upper bound on the error variance is the maximum

eigenvalue, i.e., spectral radius, of the covariance matrix of e(n). Evaluating the

spectral radius is nontrivial due to the term Mk. Since matrix D is a real diagonal

matrix with positive diagonal entries, we can decompose M as

M = I −DH = D
1
2

(
I −D

1
2HD

1
2

)
D−

1
2 .

The Hessian matrix H is a nonnegative definite and so is I−D 1
2HD

1
2 , by the design of

D. Thus by the spectral theorem [70], there exists a unitary matrix U and a diagonal

matrix Σ such that I −D 1
2HD

1
2 = UΣU ′. Then M becomes

M = D
1
2UΣU ′D−

1
2 . (3.5)

Similarly, (A′W)(A′W)′ is also nonnegative definite and can be decomposed using

a unitary matrix V and a nonnegative diagonal matrix F [70]. It follows that

KfpK
′
fp = (−DA′W)(−DA′W)′ = D(V FV ′)D. (3.6)

34

Substituting (3.5) and (3.6) into (3.4), we have

cov
(
e(n), e(n)

)
=

∆2
fp

12

n−1∑
k=0

D
1
2UΣkU ′D

1
2 (V FV ′)D

1
2UΣkU ′D

1
2 .

Thus the spectral radius equals the 2-norm and its upper bound can be derived

using the matrix norm property that ‖ AB ‖≤‖ A ‖‖ B ‖ [71]. After considerable

simplification, we have

ρ
(
cov

(
e(n), e(n)

))
= max

x:‖x‖=1

(
x′cov

(
e(n), e(n)

)
x
)

=
∆2

fp

12
max
x:‖x‖=1

(
n−1∑
k=0

‖ F
1
2V ′D

1
2UΣkU ′D

1
2x ‖2

)

≤
∆2

fp

12
ρ(F)ρ(D2)

1− ρ(Σ2)n

1− ρ(Σ2)
. (3.7)

For the detailed derivation of (3.7), please see (A.1).

The spectral radius of the covariance matrix measures the maximum error variance

in the nth iteration. i.e., σ2
(n)max , ρ

(
cov

(
e(n), e(n)

))
. Next, we analyze the mean

error variance in an image update, which is related to the trace, or sum of diagonal

entries, of the covariance matrix, i.e., σ2
(n)mean , tr

(
cov

(
e(n), e(n)

))
/nv, where nv is

the number of diagonal entries in the covariance matrix. Using the property that

tr(AB) ≤ ρ(B)tr(A) [70], we have

tr
(
cov

(
e(n), e(n)

))
=

∆2
fp

12
tr

(
n−1∑
k=0

D
1
2UΣkU ′D

1
2 (V FV ′)D

1
2UΣkU ′D

1
2

)

≤
∆2

fp

12

n−1∑
k=0

ρ
(
Σk
)

tr
(
D

1
2 (V FV ′)D

1
2UΣkU ′D

)
≤

∆2
fp

12
tr(D (V FV ′)D)

1− ρ(Σ2)n

1− ρ(Σ2)
. (3.8)

For the detailed derivation of (3.8), please see (A.2). To guarantee the convergence of

35

iterative reconstruction algorithm, the matrix D is always selected such that D−1 �

H, i.e., D−1 −H is positive definite, which implies ρ(I −DH) < 1, where H is the

Hessian of the cost function [63]. It follows that

ρ(Σ) = ρ(U ′(I −D
1
2HD

1
2)U) = ρ(I −D

1
2HD

1
2)

= ρ(D−
1
2 (I −DH)D

1
2) = ρ(I −DH) < 1.

In steady state as n→∞, the upper bounds of (3.7) and (3.8) become

σ2
(n)max ≤ ρ(cov(e(∞), e(∞))) ≤

∆2
fp

12

ρ(D2)ρ(F)

1− ρ(Σ2)
,

σ2
(n)meannv ≤ tr(cov(e(∞), e(∞))) ≤

∆2
fp

12

tr(D(V FV ′)D)

1− ρ(Σ2)
.

Therefore, both the maximum and the mean error variance of an image update

are bounded. For example, given ε > 0, if we choose ∆fp such that

∆fp <

√
12 (1− ρ(Σ)2)

ρ(D2)

√
1

ρ(F)

√
ε,

then

σ2
(∞)max < ε, σ2

(∞)mean < ε.

The result implies that we can make the error due to perturbation in forward-

projection arbitrarily small for this algorithm by choosing an appropriate quantization

step size, provided quantization noise can be modeled as in (3.1).

3.2.1.2 Perturbation of forward- and back- projection, and image update

Following the derivation from the previous section, we can also model the effect

of fixed-point quantization in the back-projection and image update by injecting

uniform white noises ε
(n)
bp and ε

(n)
im , as indicated in Fig. 3.7. Similar to (3.1), we make

36

the following assumptions:

ε
(n)
bp ∼ U

[
−∆bp

2
,
∆bp

2

]
, ε

(n)
im ∼ U

[
−∆im

2
,
∆im

2

]
, (3.9)

where ∆bp and ∆im denote the quantization step sizes of back-projection and image

update respectively.

Similar to (3.2), we can express the perturbed image update of the first iteration

as

f̂ (1)
p =(f̂ (0) + ε

(0)
im) +D[A′W (y − (A(f̂ (0) + ε

(0)
im) + ε

(0)
fp)) + ε

(0)
bp − βC

′C(f̂ (0) + ε
(0)
im)]

=f̂ (1) +Kfpε
(0)
fp +Kbpε

(0)
bp +Mε

(0)
im ,

where Kbp , D is the open loop gain of the error due to perturbation in back-

projection. It follows that the image update error in the nth iteration is

e(n) =
n−1∑
k=0

(Mk(Kfpε
(n−1−k)
fp +Kbpε

(n−1−k)
bp +Mε

(n−1−k)
im)).

We assume independence of the three noise vectors. Using (3.1), (3.5), (3.6),

and (3.9), the mean of e(n) is zero, and the covariance can be written as

cov
(
e(n), e(n)

)
=

∆2
fp

12

n−1∑
k=0

(MkKfpK
′
fp(Mk)′) +

∆2
bp

12

n−1∑
k=0

(MkKbpK
′
bp(Mk)′) +

∆2
fp

12

n−1∑
k=0

(Mk+1(Mk+1)′).

(3.10)

Following a similar approach as in the previous section, we can derive the upper

37

0 100 200 300
10

−2

10
−1

10
0

Iteration

S
td

. d
ev

. [
H

U
]

Upper bound on error std. dev.
Analytical error std. dev.
Simulation

(a)

0 100 200 300
10

−2

10
−1

10
0

Iteration

S
td

. d
ev

. [
H

U
]

Upper bound on error std. dev.
Analytical error std. dev.
Simulation

(b)

Figure 3.8: Theoretical bound and numerical simulation of standard deviation of the
image updates : (a) forward-projection with the quantization step size
of ∆fp = 27[HU×mm] (b) forward-projection, back-projection, and image
update with ∆fp = 27[HU×mm], ∆bp = 215[mm], ∆im = 2−3[HU].

bounds on the spectral radius and the trace of the covariance matrix.

ρ(cov(e(∞), e(∞))) ≤
∆2

fp

12

ρ(D2)ρ(F)

1− ρ(Σ2)
+

∆2
bp

12

ρ(D2)

1− ρ(Σ2)
+

∆2
im

12

ρ(Σ2)ρ(D)ρ(D−1)

1− ρ(Σ2)
,

(3.11)

and

tr(cov(e(∞), e(∞))) ≤
∆2

fp

12

tr(V FV ′D2)

1− ρ(Σ2)
+

∆2
bp

12

tr(D2)

1− ρ(Σ2)
+

∆2
im

12

ρ(Σ2)tr(I)

1− ρ(Σ2)
. (3.12)

For the detailed derivation of (3.11) and (3.12), please see (A.6) and (A.10), respec-

tively.

Therefore, both the maximum and the mean error variance of the reconstructed

image are bounded after considering perturbation in forward-projection, back-projection,

and image update. The error can be made arbitrarily small for this algorithm by

choosing an appropriate quantization step size.

38

3.2.2 Simulation results

To verify the quantization error analysis, we performed numerical simulations

of an iterative reconstruction of a 40×40×4 test object in an axial cone-beam arc-

detector X-ray CT system with a detector size of 170×10 over 90 projection views.

The PWLS diagonally preconditioned gradient descent algorithm (2.3) was simulated

with a quadratic roughness regularizer. We evaluated analytical quantization error

variance and its upper bound in each iteration, which are compared to measured

quantization error variance from simulations by injecting uniformly distributed error

vectors that correspond to quantization step sizes of ∆fp = 27[HU×mm], ∆bp =

215[mm], and ∆im = 2−3[HU]. Fig. 3.8 shows the standard deviation of the image

update error due to (a) perturbation in forward-projection alone and (b) perturbation

in forward-projection, back-projection, and image update. The measured standard

deviation matches the analytical standard deviation and stays below the upper bound.

Due to limited space, we only show one set of quantization step size, but alternative

choices could be equally used. Both the analytical and simulation results in Fig. 3.8

point to the conclusion that the error variance of image updates converges to a fixed

level after a sufficient number of iterations. Note that evaluating the analytical error

variance is not feasible for large object sizes.

3.3 Algorithm rescheduling

The architecture can further parallelize the n1 and n2 loops, but it would increase

the memory bandwidth. Absent of any temporal locality of reference, the off-chip

memory bandwidth will be easily saturated as we continue to parallelize. To circum-

vent the difficulty, we compress the off-chip memory bandwidth by an out-of-order

access schedule that maximizes the temporal locality of reference.

39



y

x

Overlap

s

Detector

Source

y

x


s

Detector

Source

X-ray

Figure 3.9: Top view of the forward-projection following an X-ray.

3.3.1 Out-of-order scheduling

To explain the sectored processing, note that the voxels along a line cast projec-

tions onto the same block of detector cells, thus the on-chip memory can be reused

without resorting to off-chip access, as shown in Fig. 3.9. Based on this observation,

we design an out-of-order scheduling algorithm as follows: (1) divide the detector

into sectors as in Fig. 3.10(a); (2) draw the upper and lower edge of each sector by

connecting the X-ray source and the upper and lower end of the sector; (3) determine

the set of voxels whose projections lie entirely in each sector. Assign the set of voxels

to a projection module for processing to maximize the detector memory’s locality of

reference.



y

x

sec

sec

: Voxel missed

(a)



y

x

sec

sec

: Voxel double counted

(b)

Figure 3.10: Illustrations showing (a) non-overlapping sectors, and (b) overlapping
sectors.

If we choose the sectors to be non-overlapping as in Fig. 3.10(a), some voxels will

40

be missed as their projections do not completely lie in any sector. Adjacent sectors

will have to overlap by an amount (sbin− 1)∆s to ensure all voxels are accounted for.

(Recall that sbin is the maximum transaxial span of a voxel’s projection. An overlap

of sbin∆s or more is not necessary.) For simplicity of implementation, we choose a

fixed overlap of (sbin− 1)∆s in making sectors. Now another problem arises with the

choice of a fixed overlap, as some voxels will be counted twice in adjacent sectors,

as shown in Fig. 3.10(b). To avoid double counting, we keep track of the upper and

lower edge of each sector.

The out-of-order schedule can be computed in design time and stored in memory.

The required memory is wcoordNxNyNviews, where wcoord is the wordlength to store

the (x, y) coordinate pair. Using the sample geometry in Table 2.2, the out-of-order

schedule memory takes 796.5 MB. If we take into account the multiple rotations in

a CT scan that repeat view angles and only voxels inside the FOV , the out-of-order

schedule memory size is reduced to 86.3 MB, which is still significant.

Sec1

n1

n2 :edge1 :edge2

(a) 1st scan

∆ns

Sec2

n1

n2 :edge1 :edge2

(b) 2nd scan

Figure 3.11: Illustration of run-length encoding of access schedule.

To further shrink the out-of-order schedule memory, we design a run-length en-

coding to compress the schedule. The encoding scheme is illustrated in Fig. 3.11: we

store the voxel coordinates along edge1 of Sec1, and encode and store edge2 of Sec1

41

Table 3.3: Moving Directions for Run-Length Encoding
View : β (rad) Direction
π
4
≤ β ≤ 3π

4
-n2

3π
4
≤ β ≤ 5π

4
+n1

5π
4
≤ β ≤ 7π

4
+n2

0 ≤ β ≤ π
4

or 7π
4
≤ β ≤ 2π -n1

as the run length from edge1. edge2 of Sec1 becomes the edge1 of Sec2 and the edge2

encoding follows a similar fashion. The direction to count run length depends on the

view angle β, as described in Table 3.3. For a numerical example, if we choose a

sector size of sec = 20, the out-of-order schedule memory can be compressed by an

order of magnitude to 8 MB.

Table 3.4: Sector Choice for Out-of-Order Scheduling

sec Nsec ∆ns Nvx,min Nvx,max Nvx

On-chip
memory
(Kb)

∆ns/sbin
/Nvx

Off-chip
BW
(Mb/s)

Schedule
memory
(Mb)

14 222 4 41 341 183 15.75 0.00199 245.17 98.85

16 148 6 61 457 274 19.25 0.00199 245.17 67.05

18 111 8 96 572 365 22.75 0.00199 245.17 75.00

20 89 10 112 681 456 26.25 0.00199 245.17 60.82

30 45 20 189 1245 903 43.75 0.00201 247.63 42.12

40 30 30 330 1855 1355 61.25 0.00201 247.63 29.23

50 23 40 170 2401 1767 78.75 0.00206 253.79 28.15

Table 3.4 lists a few more example sector sizes based on the geometry in Table 2.2.

If we choose sector size sec = 20, with a fixed sector-sector overlap of sbin − 1 =10,

the detector is divided into 89 sectors. A sector covers an average of Nvx = 456 voxel

columns. Sectors are processed sequentially. After finishing one sector, we move

forward by a stride of ∆ns = sec − (sbin − 1) = 10 to the new sector. The external

memory access is reduced to only ∆ns banks every sector. When sec = 20, the off-

chip detector memory bandwidth of the proposed projection module described in the

previous section is reduced to 245.2 Mb/s. As we increase the sector size, both the

stride ∆ns and sector coverage Nvx increase, resulting in an almost constant off-chip

memory bandwidth. A larger sector size requires a larger on-chip memory but a

42

smaller out-of-order schedule memory.

Inverse

rotator

Rotator

ksbin

sec : 1 ab1,1

k = k1

k2
 sec

sbin:1

×××

Transaxial

projection block

××××××

××× ×××
×××

Inverse rotator Rotator

kSbinmax

Sbinmax

2

M1

28

Sec+∆ns : 1

28

ab1,1

F1

16

16
1

28

××× Transaxial

projection

block

k = k1

M2
k2 Msec+∆ns

Mem

Sec+∆ns

Mem 228
28

en1
1

1
28

Sbinmax:1

×××

2

Sbinmax

M1Mem 1

M2

×××
×××

×××

Msec+∆ns

×××
×××

 2
Bank 1

×××

wdet

sec wdet

wdet
sbinwdet

×××

On-chip detector

 memory

×××

(a) Rotator-based architecture

Mem 20
Mem 2

Mem 1

28

28

en1
1ab1

F
16

16
Transaxial

projection

block

×××

Mem sec

Mem 2
Mem 1

Transaxial

projection

block en1ab1

F

× ×
×

k = k1

k2

ksec

× ×
×

ksec

k2

k = k1

ab1,1

××
×××

×

××
×

Transaxial projection block

wdet
 sec××
×

On-chip detector memory

sec wdet

×××

 2

Bank 1

Detector controller

(b) Selector-based architecture

Figure 3.12: Architectures supporting sectored processing.

The out-of-order scheduling requires sectored processing. The number of on-chip

detector memory banks has to be increased from sbin to sec. Since a projection covers

only an sbin segment of the sector, a rotator and an inverse rotator are needed to select

the detector memory banks. The rotator-based architecture can be implemented using

multiplexers and it incurs a high routing overhead. An alternative selector-based

architecture allocates sec transaxial projection blocks, and each block can be enabled

or disabled by the write enable to the corresponding memory bank. The comparison

between the rotator-based and the selector-based architecture is illustrated in Fig. 3.12

with FPGA synthesis results listed in Table 3.5. A selector-based architecture uses

fewer logic units or FPGA slices, but more MAC units or DSP48E slices. In both

43

Table 3.5: FPGA Resource Utilization of a Forward-Projection Module Supporting
Sectored Processing based on XC5VLX155T Device

sec = 14 sec = 20
Rotator Selector Rotator Selector

FPGA slice register 11,120 11,487 11,494 12,250
FPGA slice LUT 12,335 11,060 15,028 11,809

Occupied FPGA slice 6,347 6,166 7,132 6,522
BRAM 39 39 45 45

DSP48E 17 20 17 26

architectures, a small sector size results in more efficient use of hardware.

The detector memory is dual-port to support one read and one write per cycle

for the read-accumulate-write operation. To enable loading and unloading from off-

chip memory without stalling the computation, we increase the number of detector

memory banks from sec to sec + ∆ns. While sec memory banks are accessed for the

projection of the current sector, the remaining ∆ns banks are being unloaded/loaded

to/from off-chip memory. To avoid stalling the pipeline, the loading and unloading

time by the ∆ns memory banks should be no greater than the time spent on the

projection computation. This condition can be easily met in the proposed sectored

processing.

3.3.2 FPGA implementation

ab2,2

ab2,1

ab2,3

Axial projection blockWater-filling buffer

en1

en2

en3

ab1,1

ksec+∆ns

ksec+1

ksec

k = k1

Transaxial projection block On-chip detector memory

SR1

Selector

× ×
×

× ×
×

× ×
×

× ×
×

× ×
×

SR2

SR3

 sec+∆ns

 sec+1
 sec

Bank 1
× ×
×

× ×
×

× ×
×

wdet
wdet wdet

(sec+∆ns)wdet

∆ns wdet

× ×
×

× ×
×

wimg

wimg

∆ns wdet

Off-chip

detector

memory

Sel-

ector

wimg

wdet

Voxel coordinate scheduler

Detector controllerTransaxial controllerAxial controller

On-chip

image

memory

Off-chip

image

memory

Figure 3.13: Complete selector-based forward-projection module supporting sectored
processing.

44

Table 3.6: Architecture Metrics of a Forward-Projection Module Supporting Sectored
Processing

On-chip image memory bandwidth wimgfclk [b/s]
Off-chip image memory bandwidth wimgfclk [b/s]

On-chip detector memory bandwidth 2sbinwdetfclk [b/s]
Off-chip detector memory bandwidth 2∆nswdetfclk/Nvx [b/s]

On-chip image memory banks 1
On-chip detector memory banks sec+ ∆ns

MAC units sec+ ∆ns + zvx
Throughput fclk(1− Pstall) [voxel projs/s]

Table 3.7: FPGA Resource Utilization of Complete Forward-Projection Modules
based on XILINX Virtex-5 XC5VLX155T Device

single module 5× parallel modules
Usage Utilization ratio Usage Utilization ratio

FPGA slice register 12,077 12% 30,323 31%
FPGA slice LUT 11,939 12% 31,874 32%

Occupied FPGA slice 6,328 26% 14,243 58%
BRAM 43 20% 117 55%

DSP48E 24 18% 108 84%

A complete forward-projection module is shown in Fig. 3.13. Inputs are read

from the image memory, held by the water-filling buffer before being processed by

the partially-unrolled axial projection block. Transaxial projections are performed in

parallel and the results are accumulated in the detector memory. A selector-based

architecture orchestrates sectored processing following an out-of-order schedule. A

summary of the architecture metrics is listed in Table 3.6.

The projection module has been mapped to a Xilinx Virtex-5 XC5VLX155T

FPGA [72] and the device utilization is listed in Table 3.7. We followed the sam-

ple geometry in Table 2.2 and chose a small sector size sec = 14 with ∆ns = 4. The

projection module uses 24 DSP48E slices as MAC units, 43 block RAMs as on-chip

memory banks, and occupies 6,328 FPGA slices. Note that the resource usage in-

cludes a fixed overhead created to handle interfaces to the FPGA and controls. At

a 200 MHz clock frequency, the off-chip input image memory bandwidth is 2.6 Gb/s

and the off-chip output detector memory bandwidth is compressed to 245.2 Mb/s.

45

Additional memory access is needed to load the out-of-order schedule, but the band-

width is very low as only one pair of coordinates is read per column of voxels and the

coordinates have been compressed using run-length encoding. The projection module

is fully pipelined and capable of completing up to sbin = 11 projections per clock cycle

for an average throughput of 185.2 million voxel projections/s at fclk = 200 MHz.

The substantially reduced off-chip memory bandwidth allows us to parallelize the

design further by multiple projection modules. The Xilinx Virtex-5 XC5VLX155T

FPGA can accommodate 5 parallel projection modules, and the device utilization is

shown in Table 3.7. The parallel projection modules will be assigned to non-adjacent

sectors, so they will be able to operate independently for a 55-way parallel compu-

tation towards a combined average throughput of 925.8 million voxel projections/s

at fclk = 200 MHz. The 55-way parallel forward-projector is integrated with two

DDR400 64-bit DRAM channels that each provides up to 25.6 Gb/s off-chip memory

interface. One DRAM channel is used as the off-chip image memory and the other

as the off-chip detector memory. This 55-way parallel design completes one forward-

projection of a 320×320×61 test object over 3,625 views in 6.31 seconds. The same

task implemented in C requires 31.1 seconds of execution time on an 8-core 2.8-GHz

Intel processor for a throughput of 203.0 million voxel projections/s. The C program

uses 16 threads, and is optimized based on the projection geometry.

3.4 Summary

This chapter implements a forward-projector for fast iterative image reconstruc-

tion. A custom designed forward-projection is enabled by studying the projection

geometry and the proposed water-filling buffer. An 11-way parallel multiply-and-

accumulate (MAC) is used to match the maximum transaxial span of voxel projec-

tions to compute the transaxial projection efficiently. The water-filling buffer resolves

pipeline stalls caused by geometric mismatch between voxel grid and detector grid.

46

The water-filling buffer is implemented using 3 shift registers and they can provide 3

voxels concurrently to compute voxel contributions to the axial projection. The ax-

ial and transaxial projection modules are concatenated to enable a 5-stage pipelined

11-way parallel forward-projection processing.

To analyze the impacts of the fixed-point quantization on algorithm performance,

we evaluated quantization error variance and its upper bound in each iteration of

the PWLS diagonally preconditioned gradient descent algorithm (2.3), which are

compared to measured quantization error variance from simulations by injecting uni-

formly distributed error vectors. Both the analytical and simulation results point to

the conclusion that the error variance of image updates converges to a fixed level after

a sufficient number of iterations.

We propose an out-of-order sectored processing to enhance the performance of

the forward-projector. The sectored processing exploits spatial locality of reference

in detector cell updates, and the off-chip detector memory bandwidth is reduced

by grouping voxels whose projections are overlapped in a limited detector segment.

The cost of implementing the sectored processing is kept low by judicious choices of

on-chip detector memory and scheduling memory.

A 5-stage pipelined, 55-way parallel forward-projector implemented on a Xilinx

Virtex-5 XC5VLX155T FPGA demonstrates an average throughput of 925.8 million

voxel projections/s at a clock frequency of 200 MHz. Note that the throughput is

limited by the number of MAC units available on this device, as this FPGA contains

only 128 DSP48E slices. The latest Xilinx Virtex-7 devices offer up to 3,600 DSP slices

[73], allowing for a much higher throughput potential. The proposed architecture can

be easily adopted for back-projection for a complete iterative image reconstruction

system. The proposed algorithm and architecture techniques also apply to designs

that are built on alternative hardware platforms, such as GPU and DSP to achieve

significant accelerations.

47

CHAPTER IV

Background and simulation of sparse coding

This chapter discusses the background of sparse coding which mimics human

vision processing. Input stimuli first pass through the retina, and are encoded to

recognizable features in the primary visual cortex. The features are called receptive

fields. The receptive fields can be considered as vectors that represent signals in the

input space. Each cortical neuron in the primary visual cortex has its own receptive

field. The receptive fields are selectively activated depending on the features in the

input stimuli. The activation of receptive fields is manifested as neuron spiking (1

or 0). Sparse coding mimics the mechanisms of the primary visual cortex. It is an

important step in complex vision processing such as object recognition [9, 10].

4.1 Background of sparse coding

Much progress has been made in training unsupervised machine learning algo-

rithms using natural images to build the receptive fields that resemble the receptive

fields of the primary visual cortex. Among the most promising candidates are the

sparse coding algorithms [11, 12, 13, 74, 75, 76] that learn to represent natural images

using a small number of receptive fields.

The Sparsenet algorithm by Olshausen and Field [11] attempts to minimize the

This work is based in part on [31].

48

mean neuron activity in learning the representation of natural images, and it is shown

to reproduce the receptive fields that match the key qualitative features of the recep-

tive fields of the primary visual cortex. The sparse-set coding (SSC) network by Rehn

and Sommer [74] tries to minimize the number of active neurons, and it successfully

predicted the distribution of receptive field shapes found in the primary visual cortex

of cat and monkey.

Sparse coding algorithms can be mapped to a biologically inspired network of

computing nodes, or “neurons”. Foldiak proposed a network of model neurons with

feed-forward connections between neurons and stimulus, and inhibitory feedback con-

nections between neurons [12]. The feed-forward connection weights are updated by

the Hebbian rule [77] to strengthen a feed-forward connection when an input pat-

tern matches the receptive field; and the feedback connection weights are updated

by the anti-Hebbian rule to suppress correlated neuron activities and enforce sparse

activation. The locally competitive algorithm (LCA) by Rozell et al. [75] is naturally

mapped to a network similar to what Foldiak proposed. In Rozell’s network, a model

neuron’s membrane potential charges up in response to input stimulus at a rate de-

pending how well the input pattern matches the neuron’s receptive field, and when

the potential exceeds a threshold, the neuron emits an action potential to inhibit

neighboring neurons. LCA was shown to perform the optimal sparse approximation

that minimizes the mean squared error (MSE) of image reconstruction and a sparsity

cost function. The parallel network of neurons implementation is appealing, but the

model neurons in Foldiak’s network was designed to communicate with analog signal.

Also, the weight updates in Rozell’s network are performed offline by costly global

computations.

Recently, Zylberberg et al. proposed sparse and independent local network (SAIL-

net) algorithm to perform sparse coding using spiking neurons and local update

rules [76]. The SAILnet algorithm was demonstrated to learn the full diversity of

49

the primary visual cortex simple cell receptive field shapes when trained on natural

images. The SAILnet algorithm enables a fundamentally more efficient mapping to

a network of spiking neurons that uses only local computation in weight updates.

The spiking neural network consists of a set of interconnected simple computing neu-

rons that communicate using binary spikes. In contrast to modern multi-core von

Neumann processors that are optimized for sequential tasks and often limited by in-

terconnect and memory bandwidth, the biologically inspired spiking neural network

is an inherently parallel array of self-adapting computational units that are ideally

suited for computer vision processing.

Sparse coding is operated in two phases: 1) learning and 2) inference. In the

learning phase, a spiking neural network is trained using images to extract a library

of features. During learning, the neural network updates the connection weights to

optimally adapt to the operating environment. Training image pixels excite the neu-

rons, which then generate binary (1 or 0) spikes [76, 12, 13] that are propagated

through the neural network. When a neuron spikes, it updates its feed-forward con-

nection weight. When a neuron sees a spike from a neighboring neuron, it updates

the feedback connection weight. The updates are based on a learning rule. Upon con-

vergence, the neural network will have finalized a library of feed-forward connection

weights, resembling the receptive fields, as well as the feedback connection weights

that regulate the interactions between neurons.

Learning is very compute-intensive as it involves weight updates, but learning is

done infrequently – in the beginning for setting up the weights and occasionally to

update the weights to accommodate changes in the operating environment. The deci-

sion to switch learning on and off is made by a controller that is external to the sparse

coding processor, e.g., if the sparse coding processor is integrated as part of a vision

system, the system decides whether to switch learning on or off. More specifically,

when the sparse coding processor is moved to a new operating environment, e.g., a

50

different terrain, it needs to update the receptive fields to reflect the new operating

environment. If it is not properly trained, the image fidelity will be poor. There is

no real-time constraint and the learning power budget is not the most critical due to

its infrequent activation.

Input

image

Spiking neural network

Image

processing

Neuron Neuron

Neuron Neuron

Figure 4.1: A spiking neural network for inference.

In the inference phase, the neural network receives an input image and responds by

neuron spikes that correspond to the receptive fields that are activated, as illustrated

in Fig. 4.1. Using a sparse coding algorithm, such as SAILnet [76], spikes will be kept

very sparse, thus the neural network will be capable of encoding an image using a

sparse set of receptive fields. Tasks including image reconstruction, target extraction

and tracking can be performed based on the neuron firing and the receptive fields.

Inference is also compute-intensive, but to a lesser extent compared to learning,

because it does not perform weight updates. However, inference needs to be done in

real time. Furthermore, inference is always on and its power consumption needs to be

minimized. In this paper, we develop optimized algorithm and hardware architecture

to reduce the implementation cost and power consumption of a spiking neural network

for inference. As inference shares the same hardware architecture as learning, the

efficiency of learning is also improved.

4.1.1 Sparse and Independent Local Network (SAILnet)

In this section, we discuss the sparse and independent local network (SAILnet)

algorithm. SAILnet uses spiking neurons as the fundamental computing units, and

the neurons process input signals to perform inference and learning. We first introduce

51

a spiking neuron model, followed by an introduction of the SAILnet learning rule.

4.1.1.1 Spiking neuron model

A biological neuron in the visual cortex receives stimuli from visual inputs and

other neurons in the network in the form of electrical signals. The received stimuli

will increase or decrease the neuron’s membrane potential. The neuron fires an action

potential, or spike, when its membrane potential reaches a threshold value [78]. After

firing, the neuron resets its membrane potential for the next firing.

Ii (t) CR

Ii (t) CR

Threshold

Comparator

R
OUT

yi(t)

R
OUT

i (t)V

yi(t)

Figure 4.2: Integrate-and-fire neuron model.

Fig. 4.2 describes a simple passive or leaky integrate-and-fire (IF) neuron model,

including a current source Ii(t) and a parallel RC circuit [78, 79, 80]. The current

source Ii(t) in a neuron is determined by the inputs and the activities of other neurons

in the network along with feed-forward and feedback connection weights. The current

Ii(t) is mathematically formulated as

Q
ik

Wij

Neuron i

Neuron j

Q
jk

Wji

...

...
Pixel Np

Pixel k

Pixel 2

Pixel 1

Pixel k+1

Figure 4.3: Feed-forward connection between neuron and pixel, and feedback connec-
tion between neurons.

52

Ii(t) =
1

R

(
Np∑
k=1

Qikxk −
∑
j 6=i

Wijsj(t)

)
, (4.1)

where xk denotes an input pixel value, sj(t) represents the spike train generated by

neuron j (sj(t) = 1 if neuron j fires at time t, and sj(t) = 0 otherwise). Qik is the

weight of the feed-forward connection between input pixel k and neuron i, and Wij

is the weight of the feedback connection from neuron j to neuron i, as labeled in

Fig. 4.3. Np is the number of pixels. An interpretation of (4.1) is that the input

stimuli increase the current (an excitatory effect) and the neighboring neuron spikes

decrease the current (an inhibitory effect).

The voltage V (i) across the capacitor C represents a neuron’s membrane poten-

tial. The resistor R in parallel with the capacitor models the membrane resistance.

While the current source Ii(t) charges up the capacitor and increases the membrane

potential, some current leaks through R. The following equation describes the leaky

integration of the membrane potential.

C
dVi(t)

dt
= Ii(t)−

Vi(t)

R
. (4.2)

When Vi(t) exceeds a threshold voltage θi, set by the diode, the neuron emits a

spike as its output Yi(t), or a spike train si(t) over time. After firing, the capacitor

is discharged through a small Rout, i.e., Rout � R, to reset Vi(t). Note that the

spiking neural network described above uses binary spikes to communicate between

neurons, different from a non-spiking neural network [75, 74] or a spiking neural

network that relies on analog voltage or current as the way to communicate between

neurons [12, 13].

For simulation and implementation of the neuron, it is customary to discretize the

53

Neuron firingAccumulation

θ Ii[n] register
en 1 or 0

If

Vi[n]≥ θ
register

+

en

+ Vi[n+1]
Spike

Shift

0
select

Q mem

Xk

+ register

+
Qik

Σ(XkQik)
en

addr

en

XkQik

.

reset
.

register
en

register

AccumulationMultiplicationRead

inprod.v

>>neuron.v

Σ(XkQik)

XkQik

Ii[n]
Wij -

W mem

en

addr

Sel-

ector
0

+
Spike register

+

en
reset

AccumulationRead

current.v

Q(4,3)
(3)

Q(3,2)

Q(5,0)

Q(3,5)

Q(1,5)

Q(6,0)

Q(1,5)

Q(2,1)

xk

Qik

+
register

+

en
reset

.

Wij
+

register

+

en
reset

.

+
register

+

en
reset

Ƞ

+

-

-

Σ(Qikxk)

Σ(Wijsj)

Vi

Vi Vi

Figure 4.4: Digital SAILnet neuron model.

continuous-time voltage and current equations to [76, 31]

V
(n+1)
i = Vi

(n)
+ η

(
Np∑
k=1

Qikxk −
∑
j 6=i

Wijs
(n)
j − Vi

(n)

)
, (4.3)

where

Vi
(n)

= V
(n)
i I(−∞,θ)

(
V

(n)
i

)
, (4.4)

and

s
(n)
j = I[θ,∞)

(
V

(n)
j

)
, (4.5)

where (n) and (n+1) are the current and the next neuron update iteration. η = ∆t/τ

is the neuron update step size, and τ = RC is the neuron time constant. η is ∆t

normalized by the time constant τ . We define I(a,b)(x) as an indicator function where

it is 1 if x ∈ (a, b), and 0 otherwise. Fig. 4.4 describes a digital SAILnet neuron

model.

Given a neuron update step size of η, the number of update steps ns in response

to each image patch is w/(ητ). With these, the spike count of neuron i for the steps

54

of ns is

ci =
ns∑
n=1

s
(n)
j . (4.6)

Spike count ci is the output of the inference phase, and is used for learning.

4.1.1.2 Local learning rule

In the learning phase, the firing threshold θi and the weights Wij and Qik are con-

stantly updated according to a learning rule. Computations involved in the SAILnet

learning rule [76] are local, and the results are also shown to successfully reproduce

key features of biological receptive fields in mammalian visual cortex. The SAIL-

net learning rule enforces sparse and independent neuron spiking, and it involves

only local computations, both of which are implementation-friendly features. In the

following, we briefly introduce the SAILnet learning rule.

In response to an input image X, neurons in the network generate spikes, and the

spikes can be used to reconstruct the input image based on the learned feature dic-

tionary or learned receptive fields. The dictionary Q is simply the set of feed-forward

connection weights: Q = [Q1, Q2, . . . , QN] where N is the total number of neurons

in the network and Qi = [Qi1, Qi2, . . . , QiNp]
T are feed-forward connection weights

associated with the connections between neuron i and each pixel of the input image

patch. For this case, an image patch consists of Np pixels. The reconstructed image

X̂ is formulated as the linear combination (or the weighted sum) of the dictionary

elements [76], known as the linear generative model.

X̂ =
N∑
i=1

Qici, (4.7)

where ci denotes the number of spikes generated by neuron i in response to an input

image, collected over an inference window w. Using the SAILnet learning rule [76],

the spikes are kept sparse, and the majority of the terms in the summation of (4.7)

55

are zero.

The SAILnet algorithm for learning the dictionary Q minimizes the mean squared

error (MSE) between M input image patches X = [X1, X2, . . . , XM] and their corre-

sponding reconstructed patches X̂ = [X̂1, X̂2, . . . , X̂M], i.e., ΣM
m=1‖Xm− X̂m‖2, while

satisfying the constraints of sparse and decorrelated neural activities across the net-

work [76]. The two constraints are justified by the experiments in [81, 82]. The

constrained optimization problem can be summarized as

Q̂ = arg min
Q

M∑
m=1

‖Xm −QCm(Q)‖2 (4.8)

s.t.
1

M

M∑
m=1

cmi(Qi) = p, ∀i = 1, 2, . . . , N

1

M

M∑
m=1

cmi(Qi)cmj(Qj) = p2, ∀i 6= j

where Cm(Q) = [cm1(Q1), cm2(Q2), . . . , cmN(QN)]T and cmi is the number of spikes of

neuron i in response to the image patch m. Cm is a function of feature dictionary Q,

because the dynamics of neurons depend on Q, as discussed in the previous section.

We denote p as the target firing rate, or the average number of spikes per image,

which is set to a low value. For example, p = 0.01 means a neuron spikes once every

100 image patches.

For simplicity, to find the update equation of Q, we evaluate iterative steps of

inference and learning (or updating Q): 1) inference to compute C for a given Q by

following (4.3), (4.4), (4.5) and (4.6); 2) learning to update Q using the precomputed

C. To find the Q update, we introduce a Lagrange function L(Q, λ, τ) where λ =

[λ1, λ2, . . . , λN] and τ = [τ11, τ12, . . . , τNN] are Lagrange multipliers. The Lagrange

56

function can be given as

L(Q, λ, τ) =
M∑
m=1

‖Xm−QCm‖2+
N∑
i=1

λi

(
1

M

M∑
m=1

cmi − p

)
+
∑
j 6=i

τij

(
1

M

M∑
m=1

cmicmj − p2
)
.

(4.9)

In practical implementation, the network is trained over millions of image patches

(M∼ 106), so it is infeasible to directly calculate derivatives of the Lagrange function.

The solution to the constrained optimization problem (4.8) can be found by applying

the stochastic gradient descent method to (4.9). In each iteration, we randomly select

R patches (∼ 102) out of M patches (∼ 106) to compute the gradient.

Reference [76] states that ∆θi∝ −∆λi (i.e., the neuron threshold needs to be

increased to enforce sparsity if a measured firing rate is high) and ∆Wij∝ −∆τij (i.e.,

the feedback weight between two neurons needs to be increased in order to enforce

uncorrelation if the spiking of the two neurons is correlated). The update for Q can

be simplified under the condition that the target firing rate is small [76]. The SAILnet

learning rule that governs the iterative updates of the firing thresholds (θ), feedback

connection weights (W), and feed-forward connection weights (Q) is given as

θ
(t+1)
i = θ

(t)
i + α

(
c̄
(t)
i − p

)
, (4.10)

W
(t+1)
ij = W

(t)
ij + β

(
cicj

(t) − p2
)
, (4.11)

Q
(t+1)
i = Q

(t)
i + γ

(
ciX

(t) − c2i
(t)
Q

(t)
i

)
, (4.12)

where

c̄
(t)
i ,

1

R

∑
m∈St

cmi

(
θ
(t)
i ,W

(t)
i , Q

(t)
i

)
, (4.13)

cicj
(t) ,

1

R

∑
m∈St

cmi

(
θ
(t)
i ,W

(t)
i , Q

(t)
i

)
cmj

(
θ
(t)
j ,W

(t)
j , Q

(t)
j

)
, (4.14)

c2i
(t)

,
1

R

∑
m∈St

c2mi

(
θ
(t)
i ,W

(t)
i , Q

(t)
i

)
, (4.15)

57

ciX
(t)

,
1

R

∑
m∈St

cmi

(
θ
(t)
i ,W

(t)
i , Q

(t)
i

)
Xm, (4.16)

where α, β, γ are tuning parameters, and (t) and (t+ 1) indicate the current and the

next weight update iteration. Note that (t) differs from the previously defined (n) in

that (n) is the current neuron update iteration. St denotes a sequence of R integers

randomly selected with replacement from {1, 2, . . . ,M}.

As a result of learning, we obtain θ(∞), W (∞), and Q(∞), and these thresholds,

weights, and receptive fields (dictionary) are used in inference. The pseudo-code for

the SAILnet learning rule is listed in Table. 4.1. Note that the above learning rule is

local: neuron i updates the firing threshold θi and the feed-forward connection weight

Qik based on its own spike count, and it updates the feedback connection weight Wij

based solely on the activity of the pair of neurons that are associated with the connec-

tion. For a detailed derivation of these learning rules, see [76]. In the learning phase,

input stimuli and neuron spikes trigger updates of firing thresholds, feedback connec-

tion weights and feed-forward connection weights following (4.10), (4.11) and (4.12).

In the inference phase, the thresholds and weights are all fixed, and we obtain spikes

using (4.6) with the threshold.

4.1.2 Locally competitive algorithm (LCA)

The locally competitive algorithm (LCA) [75] implements a dynamic system by

introducing internal states in the neuron model, and finds sparse coefficients of the

feature dictionary that are used to best approximate the input signals like other sparse

coding approaches [11, 74]. LCA uses leaky integrate-and-fire neurons for learning

and inference, but an LCA network is different from spiking neural networks [76, 53].

Neurons in the network are non-spiking, i.e., analog neuron output, but LCA provides

excellent performance in sparse approximation of dynamic inputs such as videos,

outperforming conventional greedy matching pursuit algorithms [75].

58

Table 4.1: Pseudo-code for the SAILnet learning

• Set learning parameters α, β, and γ.

• Set neuron update step size η and neuron update steps ns.

• Initialize threshold θ(0) and weights W (0) to zeros.

• Initialize dictionary Q(0) to random values normally distributed with N(0, 1).

• For each batch of images t = 1, 2, . . . , T :

1. Generate a sequence St of R integers randomly selected with replace-
ment from {1, 2, . . . ,M}

2. For each image patch m ∈ St:
(a) Initialize neuron potential V (0) to zero.

(b) For each time step n = 1, 2, . . . , ns

i. Evaluate neuron potential using (4.3) and (4.4).

(c) Compute spike count Cm using (4.6) and neuron potential evaluated
in 2-(b)-i.

3. Compute momentum using (4.13), (4.14), (4.15), (4.16) and spike count
computed in 2-(c).

4. Update threshold, feedback weights, and receptive fields us-
ing (4.10), (4.11), (4.12) and the compute momentum.

4.1.2.1 Non-spiking LCA

Non-spiking LCA or the conventional LCA performs sparse approximation by

solving an optimization problem given as [75]

Ĉm = arg min
C

(
1

2
‖Xm −QC‖22 + βR(C)

)
, (4.17)

where Xm is an Np × 1 input signal, and Q is a feature dictionary composed of N

feature vectors where N is greater than Np (i.e., the feature dictionary is overcom-

plete). We denote Cm as an M × 1 coefficient vector of the feature dictionary, so

QĈ is the reconstructed signal. The sparsity inducing regularizer R is used to find a

sparse coefficient vector that minimizes the reconstruction errors.

59

To find a solution of (4.17), LCA introduces internal state variables V interpreted

as the neuron potential. For the details, please see [75]. The dynamics of leaky

integrate and fire neurons to update V is formulated as [75]

V (n+1)
m = V (n)

m + η
(
QT
m

(
Xm −QmC

(n)
m

)
+ C(n)

m − V (n)
m

)
, (4.18)

where

C(n)
m = Tλ

(
V (n)
m

)
, (4.19)

where Tλ(·) denotes a threshold function. For example, if it is defined as a hard-

thresholding function, C
(n)
m is 0 if |V (n)

m | ≤ λ and it is V
(n)
m otherwise, so a neuron

spikes if its potential is greater than the neuron threshold λ. We denote η as the

neuron update step size. The neuron potential converges to a stable state after a

sufficient number of iterations [75, 83]. Note that (4.18) is a discretized version of the

continuous neuron dynamics of the Rozell’s network [75].

Similar to the SAILnet algorithm, we find an optimal dictionary Q in the learning

phase by solving the following optimization problem [76]:

Q̂ = arg min
Q

M∑
m=1

‖Xm −QCm(Q)‖2, (4.20)

where M is the number image patches used for training. Similar to (4.9), to find the

update Q, we introduce a Lagrange function for fixed Cm [76]. To find a solution

to (4.20), we apply the stochastic gradient descent method to the Lagrange function.

The Q update can be given as

Q(t+1) = Q(t) + α
1

R

∑
m∈St

((
Xm −Q(t)Cm

(
Q(t)

))
Cm
(
Q(t)

)T)
, (4.21)

60

where α is a tuning parameter, and St denotes a sequence of R integers randomly

selected with replacement from {1, 2, . . . ,M}. Neuron output Cm can be evaluated

using (4.18) and (4.19).

As a result of learning using (4.21), we obtain a feature dictionaryQ(∞) that is used

in the inference phase. The pseudo-code for the learning used for the LCA algorithm

is summarized in Table. 4.2. Note that unlike the SAILnet algorithm, the Q update

is a global computation, i.e., to update an entry of Q, we need to know all neuron

outputs and the other entries of Q. The global update rule is more computationally

intensive than the local update rule such as the SAILnet learning rule [76].

Table 4.2: Pseudo-code for the LCA learning

• Set learning parameters α.

• Set neuron update step size η, neuron update steps ns and the neuron thresh-
old λ.

• Initialize dictionary Q(0) to random values normally distributed with N(0, 1).

• For each batch of images t = 1, 2, . . . , T :

1. Generate a sequence St of R integers randomly selected with replace-
ment from {1, 2, . . . ,M}

2. For each image patch m = 1, 2, . . . , R:

(a) Initialize neuron potential V (0) to zero.

(b) For each time step n = 1, 2, . . . , ns:

i. Evaluate neuron potential using (4.18) and (4.19).

(c) Evaluate neuron output C
(ns)
m using (4.19).

3. Update receptive fields Q(t)using (4.21) and the neuron outputs evalu-
ated in 2-(c).

4.1.2.2 Spiking LCA

LCA provides benefits in hardware implementation because feedback weights can

be precomputed using the feature dictionary, and all neurons in the network share the

same neuron threshold. However, neuron output is an analog value, so implementation

61

cost is high. In comparison, spiking neural networks allow for efficient communication

using address-event representation [39, 40, 31], and has a potential to reduce the

computations using binary spikes. Therefore, we investigate a rate-based LCA (or

spiking LCA [53]).

For simplicity, we consider a soft-thresholding function with non-negativity con-

straint on spiking rate, i.e., c
(n)
i = max(0, u

(n)
i − λ) where u

(n)
i is an internal state

variable of neuron i and λ is the offset of neuron update step [53]. In comparison,

note that ci was defined as analog neuron output and spike count in non-spiking

LCA and SAILnet, respectively, and that λ was defined as the neuron threshold in

non-spiking LCA. The potential update of rate-based LCA can be formulated as [53]

V (n+1) = Vi
(n)

+ η
(
u(n) − λ

)
, (4.22)

where

Vi
(n)

= V
(n)
i I(−∞,1)

(
V

(n)
i

)
, (4.23)

where I(−∞,1)(x) denotes an indicator function where it is 1 if x ∈ (−∞, 1), and 0

otherwise, i.e., the potential is reset to zero if it exceeds 1. Therefore, the steady

state inter-spike interval is approximately 1/(u(∞) − λ), so the instantaneous firing

rate of neuron i at time n becomes c
(n)
i = max(0, u(n) − λ).

Given a neuron update step size of η and the number of update steps ns in response

to each image patch, the spiking rate of neuron i can be measured as

c
(ns)
i =

1

nsη

ns∑
n=1

I[1,∞)

(
V

(n)
i

)
, (4.24)

where I[1,∞)(x) is an indicator function where the value is 1 if x ∈ [1,∞), and 0

62

otherwise. Spiking rate c
(∞)
i is the output of the inference phase, and is used for

learning.

In spiking LCA, the internal variable can be formulated as [53]

u
(n)
i = QT

i X −
∑
j 6=i

(
Wi,j

tj,k<n∑
k

α(n−tj,k)

)
, (4.25)

and

α(n) = U (n)e−n, W , QTQ− I (4.26)

where η is the neuron update step size, and W denotes feedback weights. tj,k is the

kth spike time of neuron j, and U (n) is a unit step function. There is a high degree of

similarity between the LCA algorithm and the SAILnet algorithm in that the input

excitations increase neuron potential, and the spikes of neighboring neurons reduce

the neuron potential.

Note that the dynamics of neurons in the spiking LCA algorithm (4.22) and (4.25)

are similar to the dynamics of neurons in the SAILnet algorithm. However, compared

to SAILnet, there are also three main differences in the neuron dynamics: 1) the

feedback weights of spiking LCA are determined by feature dictionary Q; 2) the leaky

term in (4.22) is a constant λ. On the other hand, the leaky term of the SAILnet

potential update varies and depends on the potential itself, as formulated in (4.3); 3)

Finally, the neuron threshold of spiking LCA is same for all neurons, and it is 1 so

that the firing rate is approximately equal to the output of soft-thresholding function

implemented in non-spiking LCA [75, 53].

In the learning phase, spiking LCA follows (4.21). Pseudo-code for the spiking

LCA learning is summarized in Table 4.3. We estimate the spiking rate C by counting

spikes in a long inference window, and it is shown that the estimated spiking rate is

63

Table 4.3: Pseudo-code for the spiking LCA learning

• Set learning parameters α.

• Set neuron update step size η, neuron update steps ns and the neuron thresh-
old λ.

• Initialize dictionary Q(0) to random values normally distributed with N(0, 1).

• For each batch of images t = 1, 2, . . . , T :

1. Generate a sequence St of R integers randomly selected with replace-
ment from {1, 2, . . . ,M}

2. For each image patch m = 1, 2, . . . , R:

(a) Initialize neuron potential V (0) to zero.

(b) For each time step n = 1, 2, . . . , ns:

i. Evaluate neuron potential V (n)
(
Q

(t−1)
i

)
us-

ing (4.22), (4.23), (4.25), and (4.26).

(c) Evaluate spiking rate C
(ns)
m using (4.24) and neuron potential.

3. Update receptive fields Q(t)using (4.21) and spiking rate evaluated in
2-(c).

statistically equivalent to the solution obtained from non-spiking LCA. For the details

of its derivation, please see [53].

4.2 Hardware implementation challenges

A binary spiking and discrete-time neuron model described above makes it possible

to design a simple digital neuron, as illustrated in Fig. 4.5(a). The neuron is connected

to Np input pixels and N − 1 neighboring neurons through point-to-point links. The

neuron contains two memories: Q memory to store feed-forward connection weights

(Np entries in total, one per each pixel) and W memory to store feedback connection

weights (N−1 entries in total, one per each neighboring neuron). The neuron performs

leaky integrate-and-fire described in (4.3) in response to pixel inputs and neuron

spikes.

64

..

.

..

.

Q mem W mem

Neuron i

Neuron 1WQ

WQ

WQ

WQ

..

.

WQ

..

.

..

.

X1Pixel 1
Neuron 2

Neuron i-1

Neuron i+1

Neuron N

Pixel 2

Pixel 3

X2

X3

XNpPixel Np

..

.

Q mem W mem

Neuron i
..
.

..

.

..

.

Pixel 1

Pixel 2

Pixel 3

Pixel Np

Neuron 1

Neuron 2

Neuron i-1

Neuron i+1

Neuron N

Q mem W mem

Neuron i ..
.

..

.

..

.

Pixel 1

Pixel 2

Pixel 3

Pixel Np

Neuron 1

Neuron 2

Neuron i-1

Neuron i+1

Neuron N

Q 1i

Q 2i
...

Q iNp

W 2i

W 1i

W iN

...

Neuron i

..

.
..
.

Pixel 1

Pixel 2

Pixel 3

Pixel Np

Neuron 1

Neuron 2

Neuron 3

Neuron N

Q mem

W mem

Q 1i

Q 2i
...

Q iNp

Addr Val

1

2

Np

...

...

Addr Val

1

2

N

...

W 2i

W 1i

W iN

-

Compare

+ θ

To all

neurons

(a)

× × ×
× ×

×

× ×
×

× ×
×

× × ×

× × ×

× × ×

Neuron

× × ×
× ×

×

× ×
×

× ×
×

× ×
×

× × ×

× × ×

× × ×

Pixel

(b)

Figure 4.5: (a) A digital neuron design, and (b) a fully connected network for sparse
coding.

65

The size of the neural network depends on the size of the input image patch. For

example, to detect features in a 16×16 image patch of 256 pixels, an overcomplete

network (i.e., the number of neurons in the network is greater than 256) is helpful to

provide a good performance of image encoding [76]. In particular, we consider a 512-

neuron network. Each neuron in this network requires a 256-entry Q memory and a

511-entry W memory, which easily dominate the size of the digital neuron. To imple-

ment the fully connected network [35], each neuron needs to be connected to 256 pixel

inputs and 511 neighboring neurons. The fully connected network matches the bio-

logical neural network and it provides the highest throughput of fclk/ns 16×16 image

patches per second, or 256fclk/ns pixels/s (px/s), where fclk is the clock frequency, ns

is the number of neuron update steps for each inference. The fully connected network

as illustrated in Fig. 4.5(b) is however impractical due to the high interconnection

overhead that grows at N2 for a network of N neurons.

Regardless of the practicality, the fully connected network is often the underlying

assumption of neural network algorithms. The performance of the algorithms using

the fully connected network can be simulated in software to provide the baseline

reference. Fig. 4.6 shows the performance of a 512-neuron network in feature detection

and image reconstruction after it has been trained using the SAILnet learning rule. In

the beginning of each training, the W weights are set to zero, and the Q weights are

initialized with Gaussian white noise. Fig. 4.6(a) shows 144 sample neurons’ receptive

fields (Q weights) that are obtained after learning. The learned RFs resemble the

receptive fields recorded from the macaque monkey brain [76, 84]. Fig. 4.6(b) is the

input 512×512 whitened natural image from [85]. Whitening of natural images is an

operation that flattens the amplitude spectrum. Whitening is done by computing the

2D FFT of the original images, passing through a 2D ramp filter (since the amplitude

spectrum of natural images tends to be 1/f, where f is the frequency), followed by 2D

IFFT [9, 86]. The whitened image is divided to 16×16 patches as the inputs to the

66

(a)

1 512

1

512 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

1 512

1

512 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

Figure 4.6: (a) 256 randomly selected receptive fields (each square in the grid repre-
sents a 16×16 receptive field), (b) whitened input image, and (c) recon-
structed image using sparse code.

67

neural network for inference. Fig. 4.6(c) is the reconstruction of the image using the

linear generative model (4.7) with the neuron spikes obtained from the fully connected

network and the neurons’ receptive fields (Q weights). The fidelity of sparse coding is

measured by the error in the reconstructed image by the linear generative model. In

the following we will use root-mean-square error (RMSE) as the image fidelity metric.

4.3 Simulation of spiking neurons

In this section, we simulate two sparse coding algorithms: SAILnet and spiking

LCA. A study of the neuron spiking dynamics in SAILnet uncovers important design

considerations involving the neural network size, target firing rate, and neuron update

step size. Optimal tuning of these parameters keeps the neuron spikes sparse and

random to achieve the best image fidelity. Similarly, a simulation based analysis of

spiking LCA allows for the optimal tuning of neuron update steps, update step size,

and threshold. In simulation, we assume neurons are fully connected.

4.3.1 SAILnet

In this section, we adapt neural network architectures for efficient and high-

performance implementations of a sparse coding algorithm called the sparse and in-

dependent local network (SAILnet). Each neuron in the network has a receptive field,

and receptive fields of neurons form a dictionary used to represent the input image.

SAILnet enforces neuron activities in the network to be sparse and uncorrelated so

as to perform sparse coding. A study of the neuron spiking dynamics in the network

uncovers important design considerations involving the neural network size, target

firing rate, and neuron update step size. Optimal tuning of these parameters keeps

the neuron spikes sparse and random to achieve the best image fidelity. In simulation,

we assume neurons are fully connected.

The digital neural network is a dynamic system, and its learning and inference are

68

dependent on the neuron update step size η (in (4.3)) and the target neuron firing

rate p (in (4.10)and (4.11))). η controls the step size of the neuron potential update.

The smaller the η (more time steps), the closer the discrete-time system mimics a

continuous-time system for a higher accuracy, but the longer it takes for learning to

converge, so intuitively η determines the tradeoff between accuracy and throughput.

p controls the target firing rate, and is set to a low value to maintain sparse firing. A

low p is also appealing as the sparse firing results in sparse communication and low

power consumption. However, the sparseness is relative to the neural network size.

A small network is not likely to support a low firing rate.

We analyze the influence of η and p and relate them to the neuron spike rate

pattern that underpin the performance of the SAILnet algorithm. In the following

experiments, we first train the network based on given η and p values, and then

perform inference using the trained network. A fully connected network is assumed.

The focus here is on the dynamics of the network when it is performing inference,

consistent with the motivation outlined in the background section.

4.3.1.1 Spike rate pattern

The neuron spike rate pattern is depicted in Fig. 4.7 as the average spike rate ps

at each time step across a network of 512 neurons when performing inference with

a target firing rate of p = 0.04. η is varied between 2−3 to 2−6, and the inference

window w is set to 3τ . η determines the number of time steps in the window w, i.e.,

ns = w/(ητ). For example, if η = 2−5, ns = 96. For a fully connected digital neural

network operating at a clock frequency of fclk, the sparse coding throughput is fclk/ns

image patches per second. The throughput of the network is inversely proportional

to ns, and thus proportional to η.

To measure the spike rate, the neuron potential is reset to 0 before performing

each inference. When presented with an input image patch, some neurons will start

69

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10−3

Time (normalized by τ)

A
ve

ra
ge

 s
pi

ke
 r

at
e

p s

η = 2−6

η = 2−5

η = 2−4

η = 2−3

Figure 4.7: Average spike rate at each time step across a network of 512 neurons
when performing inference with a target firing rate of p = 0.04.

to charge up and fire, leading to a rise of the spike rate until it starts to settle to a

steady state. The target firing rate p determines the average spike rate summed over

the inference window w, i.e., p ≈
∑ns

i=0 ps[i], where ps[i] is the spike rate at time step

i. A larger step size η means fewer time steps ns, and a higher spike rate in each time

step to meet the a given target firing rate p.

Varying η has a pronounced effect on the spike rate pattern, as seen in Fig. 4.7.

A large η results in a large peaking of the spike rate, which is attributed to the quick

rise of neuron potentials: many neurons fire together after a few initial steps and then

inhibitions take effect to silence most of the neurons. The bursts of neuron spikes

are not desirable for implementation, because they lead to competitions for hardware

resources and communication bandwidth. A small η results in a sparse, random,

and more evenly distributed spike rate over time, and a more efficient utilization of

hardware resources.

The influence of η can be understood by the distribution of the neuron firing

threshold and the distribution of the feedback connection weights (inhibitory weights).

The neuron firing threshold controls the sparseness of neuron spikes [76]: the higher

the threshold, the more difficult it is to reach the threshold, thus fewer spikes are

70

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Neuronal firing threshold

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(C
D

F
)

η = 2−6

η = 2−5

η = 2−4

η = 2−3

(a)

101 102

0.4

0.5

0.6

0.7

0.8

0.9

1

Feedback connection weight

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(C
D

F
)

η = 2−6

η = 2−5

η = 2−4

η = 2−3

(b)

Figure 4.8: (a) CDF of neuron firing thresholds, and (b) CDF of feedback connection
weights for different η values.

expected. The feedback connection weight controls the correlation between neuron

spikes [76]. A higher positive feedback connection weight indicates a strong inhibition

– when one neuron spikes, the other neurons will be strongly inhibited to de-correlate

spike activities. Fig. 4.8(a) shows the cumulative distribution function (CDF) of the

neuron firing threshold, and Fig. 4.8(b) shows the CDF of the feedback connection

weights for different η values. A smaller η results in a higher neuron firing threshold

and feedback connection weights on average, which confirm the observation that a

smaller η produces more sparse and random spikes that are amenable for an efficient

implementation.

The smaller update step size improves the fidelity of sparse coding, as evidenced

in the lower RMSE in image reconstruction by the linear generative model, as shown

in Fig. 4.9. Therefore it is advantageous to choose the smallest η that meets the

throughput requirement.

71

0.02 0.04 0.06 0.08 0.1 0.12
0.184

0.1845

0.185

0.1855

0.186

0.1865

0.187

0.1875

0.188

η

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 (

R
M

S
E

)

Figure 4.9: RMSE of image reconstruction by the linear generative model when vary-
ing step size η.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8
x 10−4

Time (normalized by τ)

A
ve

ra
ge

 s
pi

ke
 r

at
e

p s

p = 0.02

p = 0.03

p = 0.04

p = 0.05

p = 0.06

Figure 4.10: Average spike rate at each time step across a network of 512 neurons
when performing inference with η = 2−5.

72

4.3.1.2 Target firing rate

The target firing rate p determines the average spike rate. A low p results in a

low average spike rate, as seen in Fig. 4.10 for a network of 512 neurons with η =

2−5 and w = 3τ . Reducing p raises the firing thresholds and the feedback connection

weights, as shown in Fig. 4.11(a) and (b), and creates a more sparse and random

spiking network.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neuronal firing threshold

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(C
D

F
)

p = 0.02

p = 0.03

p = 0.04

p = 0.05

p = 0.06

(a)

100 101 102

0.4

0.5

0.6

0.7

0.8

0.9

1

Feedback connection weight

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(C
D

F
)

p = 0.02

p = 0.03

p = 0.04

p = 0.05

p = 0.06

(b)

Figure 4.11: (a) CDF of neuron firing thresholds, and (b) CDF of feedback connection
weights for different p values.

A low target firing rate p is attractive for an efficient implementation, but a very

low p raises the RMSE, as seen in Fig. 4.12(a). In a network of 512 neurons, p =

0.01 results in an average of only 512×0.01 = 5.12 spikes over the inference window.

The linear generative model (4.7) contains less than a handful of terms, which are

insufficient for sparse coding. Raising p to 0.02 doubles the number of spikes and

reduces the RMSE. Continued increasing of p improves the RMSE until p reaches

about 0.045, or about 23 spikes over the inference window. The RMSE then worsens

as the spikes start to crowd. Therefore, while we optimize the SAILnet algorithm for

sparse and random spikes, a minimum number of spikes is needed for a good RMSE.

To verify the minimum number of spikes necessary, we designed networks of 256,

73

0.01 0.02 0.03 0.04 0.05 0.06
0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Target firing rate p

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 (

R
M

S
E

)

(a)

0.02 0.04 0.06 0.08 0.1
0.17

0.175

0.18

0.185

0.19

0.195

0.2

Target firing rate p

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 (

R
M

S
E

)

256 neurons
512 neurons
768 neurons
1024 neurons

(b)

Figure 4.12: (a) RMSE of image reconstruction by the linear generative model when
varing target firing rate p. (b) RMSE of image reconstruction by the
linear generative model when varying target firing rate p and network
size.

512, 768, and 1024 neurons, and analyzed the choice of p, as illustrated in Fig. 4.12(b).

A lower RMSE is attainable in a larger network, but only with a good choice of p.

The optimal p is lower in a larger network: about 0.09 in the 256 network, 0.045 in the

512 network, 0.03 in the 768 network, and 0.025 in the 1024 network, which all point

to the almost constant optimal number of spikes to be around 20 to 25 regardless of

the size of the network.

The above analysis yields two important insights: (1) a minimum number of spikes

is needed for a good RMSE, and more spikes beyond the minimum are not needed,

and (2) sparse and random spikes result in better RMSE. The two insights guide

the selection of the neural network size along with the target firing rate for the best

tradeoff between RMSE and implementation cost, and the selection of the update

step size for the best tradeoff between RMSE and throughput.

4.3.2 Spiking LCA

In this section, we investigate the impact of tuning parameters on the performance

of sparse coding. Particularly we focus on neuron update steps (ns), neuron update

74

0 200 400 600 800 1000
0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

0.051

Update steps n
s

N
R

M
S

E

change n
s
 and plot rmse

(a)

0 200 400 600 800 1000
5

6

7

8

9

10

11

12

Update steps n
s

l 0(n
eu

ro
ns

)
(%

)

change n
s
 and plot the l

0
(neurons)

(b)

Figure 4.13: (a) Normalized Root mean square error in the reconstructed image at
each neuron update step in spiking LCA, and (b) the activities of neu-
rons.

step size (η), and the neuron threshold (λ). To check the performance, we check the

image reconstruction error. Input to the 256-neuron network is 512 × 512 whitened

natural images [85], and each input image is divided into 16× 16 overlapped patches.

We measure the spiking rate of neurons after the presentation of each image patch.

The spiking rate can be calculated by measuring spike count divided by the inference

window, ns × η seconds. An input image patch is reconstructed using the linear

generative model, and each pixel of the 512×512 image is reconstructed by averaging

corresponding pixels of reconstructed image patches.

4.3.2.1 Neuron update step

We study the trade off between the performance of sparse coding and the through-

put of sparse coding. The number of neuron update steps implies the number of steps

to update the neuron potential in response to an input image patch. Particularly, we

measure the reconstruction errors in normalized root mean square error (NRMSE)

between the input and the reconstructed image. Fig. 4.13(a) shows the NRMSE with

different update steps. λ and η are set to 1.7 and 2−5 respectively for this case, and

75

0 0.05 0.1 0.15 0.2 0.25
0.049

0.0495

0.05

0.0505

0.051

0.0515

0.052

0.0525

0.053

0.0535

0.054

Neuron update step size η

N
R

M
S

E

change η and plot rmse

(a)

0 0.05 0.1 0.15 0.2 0.25
0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

0.092

0.094

Neuron update step size η

T
ar

ge
t f

iri
ng

 r
at

e
p

(s
pi

ke
/im

ag
e)

change η and plot the target firing rate

(b)

Figure 4.14: (a) Normalized root mean square error in the reconstructed image at
each neuron update step size, and (b) the spike count or target fire rate
of neurons in the network.

ns changes from 32 to 960. As the number of update steps increases, the reconstruc-

tion error monotonically decreases, and the improvement is negligible after 400 steps.

More update steps help to estimate the spiking rate more accurately, since we are

counting spikes over a longer inference window. Therefore, neurons in the network

have more chances to spike, as shown in Fig. 4.13(b), resulting in a better image

fidelity. However, a long inference window lowers the throughput of sparse coding, so

there is a tradeoff between image fidelity and throughput.

4.3.2.2 Update step size

We explore the effects of the neuron update step size on the performance of sparse

coding. We set the neuron threshold to 1.7 in order to have less than 10% neurons

spike, and the update steps as 1/η to keep the inference window (ηns) to 1 second.

Fig. 4.14(a) shows the reconstruction error with different update step size. A smaller

update step size lowers the NRMSE because the digital neuron model better approx-

imates continuous neuron model [53]. Therefore, we observe that more neuron spikes

with a smaller update step size as shown in Fig. 4.14(b), improve the performance of

76

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

Time step (n
s
)

ac
tiv

ity
 (

%
)

λ = 0.2

λ = 0.3

λ = 0.5

λ = 0.8

λ = 1.5

λ = 2.5

(a)

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Time step (n
s
)

R
oo

t m
ea

n
sq

ua
re

 e
rr

or

λ = 0.2

λ = 0.3

λ = 0.5

λ = 0.8

λ = 1.5

λ = 2.5

(b)

Figure 4.15: (a) Activity of neurons at each neuron update step. (b) Root mean
square error in the reconstructed image with different neuron update
offsets.

image reconstruction by representing input using many receptive fields (or features).

Note that some (active) neurons have very low spiking rate. However, a downside

of using a small update step size is a low throughput of inference because of a large

number of neuron update steps.

4.3.2.3 Update step offset

The offset of neuron update step controls the amount to be accumulated to the

neuron potential in every update step, and it affects spiking rate as formulated

in (4.22). A high offset reduces the update amount, so it takes longer for the neu-

ron to accumulate its potential to reach the threshold (or 1), which results in sparse

neuron spikes, as shown in Fig. 4.15(a). For this simulation, the update step size is

set to 2−4. The sparse activities as a result of a high offset is beneficial for efficient

hardware implementation [33]. However, a high offset increases image reconstruction

error due to coarse sparse approximation, as shown in Fig. 4.15(b).

We compare spiking LCA with SAILnet by measuring the reconstruction error

with different firing rate, as shown in Fig. 4.16. With high target firing rate due to

77

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

Target firing rate p (spike/image)
N

R
M

S
E

change th and compare spiking lca with sailnet

η = 1/96, n
s
 = 96, Spiking LCA

η = 1/32, n
s
 = 96, SAILnet

(a)

Figure 4.16: NRMSE of spiking LCA and SAILnet with different target firing rate.

a small update offset, spiking LCA outperforms SAILnet for this case. Note that

the SAILnet local learning rule is enabled by the assumption that the activities of

neurons are sparse [76]. A simulation study confirms that receptive fields hardly

capture features in input images if a SAILnet network is trained using a high target

firing rate. Note that SAILnet and spiking LCA are simulated with the same update

steps in order to have the same throughput, and the update step size for spiking LCA

is set to 1/ns in order to transform the spiking rate measured in spiking count/second

into the target firing rate measured in spike count [76, 31] for SAILnet.

In this section, we explored the effects of neuron update steps, neuron update

step size, and neuron update offset on the algorithm performance. A large number

of update steps and a smaller update step size improve the performance, but lowers

the throughput. A small offset provides a good image fidelity, but it increases the

activities of the neurons.

4.4 Summary

This chapter introduces sparse coding that mimics the human vision processing.

In particular, SAILnet is considered for implementing sparse and uncorrelated spiking

78

neural network, and spiking LCA is studied to be used in the front-end of neuromor-

phic object recognition processor. We describe a fully-connected network and a digital

spiking neuron architecture, and explore the neuron dynamics.

By exploring the neuron spiking dynamics of the SAILnet algorithm, we show

that a low target firing rate and a small neuron update step size are necessary to

maintain sparse and random neuron spikes for an efficient use of hardware resources.

An optimal target firing rate depends on the network size, and a neuron update step

size is set as a minimum amount that satisfies the throughput requirement.

The study of the spiking LCA shows that the reconstruction error converges to

a low level after a sufficient number of update steps (or iterations). Similar to the

SAILnet algorithm, a small update step size provides a better image fidelity, but it

reduces the throughput. Unlike the SAILnet algorithm, the spiking LCA algorithm

further reduces the reconstruction error as we increase target firing rate.

79

CHAPTER V

Architecture for sparse coding

Sparse and random spiking resulted from the optimal tuning of SAILnet plays

a key role toward designing hardware architecture for SAILnet. This chapter inves-

tigates two practical architectures: a bus architecture that provides efficient neuron

communications, but results in spike collisions; and a ring architecture that is more

scalable than the bus, but causes neuron misfires. We show that the spike colli-

sion rate is reduced with a sparse spiking neural network, so an arbitration-free bus

architecture can be designed to tolerate collisions without the need of arbitration.

However, the bus speed can be limited by the network size due to the bus loading.

To reduce neuron misfires in the ring architecture, we design a latent ring architec-

ture to damp the neuron responses for an improved image fidelity. However, large

ring size inevitably causes long latency for the spike propagation. To combine the

benifits of both the bus and the ring architecture, this chapter proposes a hierarchical

arbitration-free bus-ring architecture for the improved throughput and image fidelity.

The performance of the bus, the ring and the hierarchical architecture are compared

using synthesis.

This chapter is based in part on [31].

80

5.1 Neural network architectures

For a few decades, practical hardware architectures for spiking neural network

have been investigated. Among them, we explore the bus and ring architectures and

investigate the feasibility of adoption in SAILnet for a high throughput and scalable

hardware implementation.

5.1.1 Bus Architecture

A bus allows many neurons to be connected [87, 36], replacing individual point-

to-point links altogether. A bus can be used to connect pixel inputs to the neurons

using a pixel bus, and connect neurons together using a neuron bus.

Once the inputs are complete, neurons will be ready to perform integrate and fire

and generate spikes. The spikes are exchanged on the neuron bus. Since the neuron

spikes are random, arbitration is required to resolve conflicts when multiple neurons

try to access the bus at the same time. An arbiter decides the order that the access

is granted depending on a pre- or a dynamically determined priority. The design of

an arbiter is complicated by a large neural network, as the arbiter needs to serve

many neurons and handle large fan-in and fan-out connections, and the service time

is critical as excessive delays alter the dynamics of the neural network and degrade

the performance. Solutions have been proposed to structure the arbiter design to

reduce its fan-in and fan-out connections and improve its service time, but increasing

the hardware cost [44, 41, 46, 45]. The design of the neuron bus is the focus of the

following discussion.

AER is a popular time-multiplexing communication protocol for the neuron bus.

Fig. 5.1 explains the protocol [39, 40]. When a neuron fires, the AER encoder puts

the address of the neuron on the AER bus and asserts a request REQ. All neurons are

attached to this bus. Upon hearing REQ, neurons read the address from the bus and

perform integrate and fire. If neuron spikes are very sparse, AER enables an efficient

81

A
E

R
 e

n
co

d
er

Transmitter

Address bus

1 23

Receiver

Neuron 0

0

REQ

Neuron 1

Neuron 2

Neuron 3

Neuron 0

Neuron 1

Neuron 2

Neuron 3

Figure 5.1: Neuron communication via AER protocol.

sharing of the bus. When there are more than one spike at the same time, it results

in a collision, and arbitration is required to resolve the conflict. To be able to handle

multiple requests in a timely manner, a synchronous AER bus needs to operate at

a higher clock speed. If spikes happen in bursts, the bus speed has to be increased

further. An asynchronous AER bus is potentially beneficial, but in this work we focus

on a synchronous system.

5.1.2 Ring Architecture

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Neuron 5

Neuron N-1

Neuron N

× × ×

Figure 5.2: A ring architecture.

A ring [37] is a serial relay architecture as shown in Fig. 5.2. In the simplest

setup, the communication in a ring is unidirectional, i.e., a neuron can only talk to

one neighboring neuron. When a neuron spikes, it passes the spike as an address-

82

event to the next neuron, who then passes the address-event one step further, and so

on.

In a digital implementation, a spike address-event steps through one neuron every

clock cycle. For a spike to be heard by all neurons, it will have to travel along the

entire ring, which takes N − 1 clock cycles, where N is the size of the network. Once

an address-event reaches its originating neuron, the event is deleted. One advantage

of the ring over the bus is that it is more scalable because all the communications are

local, and it eliminates all collisions. The throughput of the ring architecture is fclk/ns

image patches per second. The short connections between neighboring neurons allow

the ring to run at a higher clock frequency than a fully connected network or a bus.

Even though the throughput of the ring architecture can be as high as the fully

connected network or the bus, a choice of ns < N − 1 will result in the incomplete

propagation of spikes, since it takes a minimum of N − 1 clock cycles for a spike to

be propagated through the ring. As a result, some of the spikes are lost. Another

consequence of the serial spike propagation along the ring is that the inhibitions due

to neuron spikes do not take effect immediately, allowing neuron potentials to grow

without inhibitions and fire mistakenly. The delayed inhibitions eventually take effect

to suppress the spike rate later in the propagation. The two factors, spike losses due to

incomplete spike propagation, and neuron misfires due to delayed inhibitions, worsen

the fidelity of sparse coding.

5.2 Impacts of scalable architectures

The use of arbitration-free bus can improve the throughput and reduce hardware

costs over conventional AER designs. However, collisions caused by no arbitration

may degrade the image fidelity. On the other hand, the scalability of the ring is

appealing for the design, but the neuron misfires for an improved throughput need

to be resolved to provide a good image fidelity. This section presents an arbitration-

83

free architecture, analyzes collision rate of the bus architecture to confirm a practical

use of the arbitration-fee design, and proposes a latent ring architecture to mitigate

effects of the neuron misfires.

5.2.1 Arbitration-free bus

The power-consuming arbitration and higher bus speed are used to resolve spike

collisions. If the collisions can be tolerated, arbitration is removed and the bus will

run at the same clock speed as neurons, leading to a more efficient bus architecture.

The sparse and independent neuron firing backed by the SAILnet algorithm [76] is

promising, as the spike rate is kept low and the spikes are random, making the collision

rate much lower than a conventional neural network. It is then plausible to adopt an

arbitration-free bus that tolerates spike collisions.

Neuron 0

Fire

Neuron 1

Fire

Neuron N

Fire

Receiver Transmitter

A
d

d
re

ss
 b

u
s

A
d

d
re

ss
 b

u
s

××
×

RX

Address bus

× × ×

Neuron 1

F
ir

e

Neuron 2

F
ir

e

Neuron N

F
ir

e

TX

Figure 5.3: Neuron communication via arbitration-free bus.

An arbitration-free bus architecture can be designed as in Fig. 5.3. Each neuron

is equipped with a tri-state transmitter (TX) and an inverter as receiver (RX). The

TX and RX are assumed to be symmetrical, i.e., the pull-up and pull-down strength

are balanced. (The assumption is used to simplify the analysis. The synchronous

communication scheme does not require the perfect matching of TXs and RXs for the

correct operation. However, mismatches will reduce the bus speed.) When a neuron

fires, it puts its address (composed of multiple bits) on the shared neuron address

bus. All neurons are attached to the address bus. Upon detecting an address-event,

neurons will read the address and perform integrate and fire. The bus runs at the

same clock frequency as the neurons. A collision occurs when multiple neurons spike

84

at the same time, as they will all attempt to drive their addresses onto the bus. We

assume a collision resolution scheme to match the implementation in Fig. 5.3: if a bus

line is driven by multiple neurons, the pull-up and pull-down strength determine the

“winning” bit. For example, if there are x neurons pulling up a line and y neurons

pulling down a line, the winning bit will be 1 if x > y, 0 if x < y, and a random draw

if x = y (as the voltage level will be in the undetermined region and the RX output

will be determined by noise). The throughput of the bus architecture is fclk/ns image

patches per second, same as the fully connected network.

5.2.2 Spike collision analysis

A collision on the neuron address bus results in spike corruption. The winning

neuron address in a collision may not match any of the competing neurons involved in

the collision. Therefore, the fidelity of sparse coding will be sacrificed. To minimize

the degradation, the collision rate needs to be kept low.

The spike collision probability can be analytically derived by assuming that the

spikes are independent. The independent spikes assumption is backed by the SAILnet

algorithm [76]. A collision occurs when two or more spikes occur in the same time

step, thus the average collision probability in each time step is given by

Pc = 1− (1− ps)N −Nps(1− ps)N−1,

where N is the size of the network, which is assumed to be large, and ps is the spike

rate in each time step, which is assumed to be low and close to 0. By Taylor series

expansion of (1−ps)N and (1−ps)N−1 at ps = 0, and keeping only the first two terms

in each expansion, we get

Pc ≈ 1− (1−Nps)−Nps(1− (N − 1)ps) ≈ (Nps)
2,

85

300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Network size

A
ve

ra
ge

 c
ol

lis
io

n
pr

ob
ab

ili
ty

 P
c

(a)

300 400 500 600 700 800 900 1000
0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

Network size

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 (

R
M

S
E

)

arbitration−free bus

fully connected network

(b)

Figure 5.4: (a) Collision probability in 256, 512, 768, 1024-neuron arbitration-free bus
with p = 0.09, 0.045, 0.03, and 0.0225, respectively, and (b) corresponding
RMSE of image reconstruction by the linear generative model.

Assume that ps is approximately the target firing rate p averaged over the ns time

steps, i.e., ps ≈ p/ns, the above equation can be written as

Pc ≈ (Np/ns)
2. (5.1)

Note that Np is the total number of spikes over the inference window, which remains

approximately constant if the target firing rate p is optimally set based on the size of

the network, as discussed previously. The result (5.1) suggests the collision probabil-

ity’s quadratic dependence on the total number of spikes within the inference window

averaged over the number of time steps. In a network of 512 neurons with a target

firing rate of p = 0.045, ns = 96, the average collision probability Pc ≈ 5.8%, which

is low.

As an experimental verification of (5.1), the arbitration-free bus is first trained

to learn the feed-forward and feedback connection weights and firing thresholds, and

then used to perform inference. Fig. 5.4(a) shows the average collision probability of

the four networks of size N = 256, 512, 768, and 1024 with a target firing rate p =

86

0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

η

A
ve

ra
ge

 c
ol

lis
io

n
pr

ob
ab

ili
ty

 P
c

(a)

0.02 0.04 0.06 0.08 0.1 0.12
0.18

0.19

0.2

0.21

0.22

0.23

0.24

η

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 (

R
M

S
E

)

fully connected network
arbitration−free bus

(b)

Figure 5.5: (a) Collision probability in a 512-neuron arbitration-free bus with p =
0.04, and (b) corresponding RMSE of image reconstruction by the linear
generative model.

0.09, 0.045, 0.03, and 0.0225, respectively. The neuron update step size η = 2−5, and

the number of time steps ns = 96. The average collision probability of each of the

four networks is about 5%, which agrees with the analytical result. The low collision

probability results in a small increase of the RMSE in image reconstruction using the

linear generative model, as shown in Fig. 5.4(b).

The dependency of the collision probability on η is plotted in Fig. 5.5(a) for a

network of 512 neurons that perform inference with a target firing rate p = 0.04.

The neuron update step size η is varied from 2−4 to 2−6, and the average collision

probability decreases quadratically, confirming the analytical result in (5.1). A small

η helps spread spikes over more steps, resulting in a much lower collision probability

and RMSE, as shown in Fig. 5.5(b).

The efficient arbitration-free bus architecture provides the same throughput as a

fully connected network. It also avoids using AER that requires a bus arbiter and

a higher bus speed. To implement the arbitration-free bus architecture, the neuron

update step size η needs to be kept sufficiently low to maintain a low spike collision

rate for a good RMSE.

87

5.2.3 Latent ring

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−3

Time (normalized by τ)

A
ve

ra
ge

 s
pi

ke
 r

at
e

p s

fully connected network
systolic ring

Figure 5.6: Average spike rate at each time step across a 512-neuron ring when per-
forming inference with a target firing rate of p = 0.04.

Unlike in the bus where the spikes reach all neurons within one clock cycle, the

serial spike passing in the ring takes much longer to reach all neurons. Neuron po-

tentials will grow, and without seeing spikes immediately, the potential will grow to

high levels, resulting in many more spikes. The majority of the spikes are actually

misfires, which contribute to errors. The spike rate pattern of a network of N = 512

neurons in a ring with update step size of η = 2−5 and number of update steps ns

= 96 is shown in Fig. 5.6. The distinctive spike rate pattern of the ring is compared

with the fully connected network, showing the spike rate grows up to an order of

magnitude higher due to neuron misfires, followed by a depression as the inhibitions

take effect to suppress the spikes. Note than since ns < N − 1, spikes do not reach

all neurons. The neuron misfires and spike losses result in a high RMSE.

The serial spike passing along the ring slows down the inhibitions, whereas the

neurons are active in every update step and ready to fire. The mismatch between the

inhibitions and excitations cause many neurons to misfire. To improve the fidelity of

sparse coding, the inhibitory and excitatory effects need to be balanced. A simple

scheme is to implement a holding policy: each neuron is allowed to propagate one

88

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

x 10−3

Time (normalized by τ)

A
ve

ra
ge

 s
pi

ke
 r

at
e

p s

d = 5
d = 6
d = 7
d = 8
fully connected network

(a)

0 5 10 15 20

0.2

0.25

0.3

0.35

0.4

0.45

0.5

d

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 (

R
M

S
E

)

(b)

Figure 5.7: (a) Average spike rate of a 512-neuron ring with holding, and (b) corre-
sponding RMSE of image reconstruction by the linear generative model.

spike every cycle, but perform inference update only once every d cycles. For example,

setting d = 2 will allow each neuron to update once every two cycles. The number

of inference steps is still ns, so the spikes will propagate to dns neurons. The holding

policy reduces the excessive excitatory strength. Longer spike propagation also re-

duces spike losses. As Fig. 5.7(a) shows, after implementing holding, the misfire rate

is lower and the RMSE improves until d reaches about 6, as shown in Fig. 5.7(b).

Note that in the example of N = 512 and ns = 96, when d = 6, dns ≈ N , i.e., spikes

are allowed to propagate around the entire ring, eliminating spike losses.

The holding policy is one way of implementing a “latent” ring that damps neuron

responses to adapt to the slow spike propagation. During holding, each neuron dis-

ables integrate and fire. To implement holding of d cycles, a d-entry memory needs

to be added to each neuron to store up to d address-events. The latent ring decreases

the throughput to fclk/(dns) image patches per second, where dns should be set to

close to N for the best RMSE.

An alternative approach to damp the neuron response is to use a smaller neuron

update step size η. A smaller η increases the number of update steps ns for a fixed

89

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10−3

Time (normalized by τ)

A
ve

ra
ge

 s
pi

ke
 r

at
e

p s

η = 2−9

η = 2−8

η = 2−7

η = 2−6

(a)

100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

Number of time steps (n
s
)

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 (

R
M

S
E

)

(b)

Figure 5.8: (a) Average spike rate of a 512-neuron ring by changing update step size
η, and (b) corresponding RMSE of image reconstruction by the linear
generative model.

window w. Fig. 5.8(a) shows the spike rate pattern as η is reduced from 2−4 to

2−9, the misfire rate is reduced significantly. The RMSE improves with a lower η, as

indicated in Fig. 5.8(b), and the best RMSE is reached between η = 2−7 and 2−8, or

when ns ≈ N .

A latent ring architecture is scalable. The serial spike propagation slows down the

inhibitions and neuron responses are damped to match the slow spike propagation

for a good RMSE. The damping decreases the throughput, but the clock frequency

of the ring architecture is higher than the bus architecture.

5.3 Hierarchical architecture

The arbitration-free bus architecture is efficient and provides high throughput but

its clock speed is limited by capacitive loading, so the number of neurons that can be

connected to a bus is limited. The latent ring architecture is scalable, but the extra

delay introduced hurts the throughput. Therefore, we propose to combine bus and

ring in a hybrid architecture to achieve the best of both.

90

Cluster 1 Cluster 2

Cluster 4

× × ×

Neuron 385

F
ir

e

Neuron 386

F
ir

e

Neuron 512

F
ir

e

× × ×
Neuron 257

F
ir

e

Neuron 258

F
ir

e

Neuron 384

F
ir

e

Cluster 3

×××Neuron 1

F
ir

e

Neuron 2

F
ir

e

Neuron 128

F
ir

e

×××Neuron 129

F
ir

e

Neuron 130

F
ir

e

Neuron 256

F
ir

e

Bus

Bus

Bus

Bus

Figure 5.9: A 512-neuron 2-layer ring-bus architecture, consisting of 4 neuron clusters.

5.3.1 Hybrid bus-ring architecture

The hierarchical bus-ring architecture is implemented in a two-level hierarchy, as

illustrated in Fig. 5.9. At the first level, neurons are grouped into local clusters, and

the neurons in a cluster are connected in a bus. The cluster size is limited to control

the capacitive loading of the bus to maintain a high clock speed. At the second level,

a small number of clusters are connected in a short ring. The length of the ring

is kept short to minimize the communication latency. The spike address events are

generated in local clusters and then propagated through the ring to broadcast to all

other clusters. The throughput of the hybrid architecture is fclk/ns image patches

per second. The hybrid architecture is scalable as buses are kept short and local, and

the communication is faster than a global bus or a long ring.

With short local buses in the hybrid architecture, the probability of spike collisions

is reduced. Using equation (5.1) and assuming that the spikes are independent, the

collision probability is reduced quadratically with more clusters for a fixed neural

network size, as delineated in Fig. 5.10(a). With a reduced collision probability and

faster spike propagation through a short ring, the hybrid architecture allows for an

efficient implementation of SAILnet sparse coding algorithm to achieve an excellent

RMSE shown in Fig. 5.10(b). The next section compares hardware implementation

results of the hybrid architecture with those of the arbitration-free bus and the latent

91

0 10 20 30 40 50 60
10−5

10−4

10−3

10−2

10−1

Number of clusters

A
ve

ra
ge

 c
ol

lis
io

n
pr

ob
ab

ili
ty

 P
c

(a)

0 10 20 30 40 50 60
0.183

0.185

0.187

0.189

0.191

0.193

Number of clusters

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 (

R
M

S
E

)

(b)

Figure 5.10: (a) Collision probability in the arbitration-free bus in a different number
of clusters, and (b) corresponding RMSE of image reconstruction by
the linear generative model. A 512-neuron network with p=0.045 and
ns = 96 is considered.

ring demonstrate its advantages.

5.3.2 Chip synthesis results

As a proof of concept, we synthesized a 512-neuron network for sparse coding in a

TSMC 65nm CMOS technology. One design was implemented in an arbitration-free

bus architecture, one was implemented in a latent ring architecture with a holding

factor d = 4, and a third design was implemented in a hybrid bus-ring architecture

with a 4-stage ring connecting 4 128-neuron buses.

Learning and inference are both soft operations that are intrinsically noise tolerant.

The feed-forward Q weight and the feedback W are quantized to 4 bits with minimal

impact on RMSE, saving significant memory and complexity. To improve the area

utilization, the W and Q memories of 32 neurons are grouped together to increase

the word size and amortize the addressing overhead. Memory grouping is feasible in

a bus architecture or a hybrid architecture because all neurons in a bus or a cluster

(in the hybrid architecture) will be accessing the same address in the Q memories

92

in response to a pixel input, and the same address in the W memories in response

to a neuron spike. However, memory grouping is not possible in a ring architecture,

because each neuron receives spikes at the different times, and the memory accesses

are not synchronized. With a holding policy, neurons perform updates every d cycles,

so the memories of d neurons are grouped together to save area. The three designs

are synthesized using Synopses Design Compiler, and place-and-routed using Cadence

Encounter. The results are compared in Table 5.1, where core area refers to the area

of the design excluding peripheral circuits, such as clock generation, testing circuits,

and IO pads. The designs are built using standard cells and SRAMs, and the memory

capacity and standard cell count are also reported.

The area of the bus and the hybrid architectures are smaller than the ring because

memories can be grouped together into larger arrays to save area. The bus architec-

ture runs at a maximum clock frequency of 357MHz (2.8ns clock period), limited by

the capacitive loading of the bus. The ring and the hybrid architecture can run faster

at up to 385MHz and 370MHz, receptively. Note that the 512-neuron network is still

relatively small to see a notable difference in clock frequency. For a larger network,

we expect the difference will be more pronounced.

At 357MHz, the power consumption of the three architectures can be compared.

The ring architecture consumes the highest power, due to the smaller memory arrays

that incur a higher overhead. The bus architecture consumes less power with the

help of larger memory arrays that amortize the overhead. The hybrid architecture

consumes the least power due to larger memory arrays and a reduction in bus loading.

At 357MHz, the throughput of the bus architecture and the hybrid architecture are

952Mpx/s, which is fast enough to process 3980×3980 image frames at 60 frames

per second at a low energy consumption of 0.522nJ/px for the bus architecture and

0.486nJ/px for the hybrid architecture. The ring architecture consumes higher energy

due to a lower throughput.

93

Table 5.1: 65nm CMOS Chip Synthesis Results

Architecture Bus Ring Hybrid

Network size 512 512 512

Memory size 1.5Mb 1.5Mb 1.5Mb

Core area 3.47mm2 4.08mm2 3.47mm2

Frequency 357MHz 357MHz 357MHz

Standard cells 461,691 502,821 482,862

Power 497mW 538mW 463mW

Throughput 952Mpx/s 238Mpx/s 952Mpx/s

Energy 0.522nJ/px 2.261nJ/px 0.486nJ/px

RMSE 0.192 0.189 0.185

The ring architecture is more scalable than the bus architecture. To support an

even larger network, the area and power of the ring architecture are expected to scale

up linearly, and the energy per pixel is expected to stay relatively constant. However,

the ring delays spike propagation, which lowers the throughput. The hybrid bus-ring

architecture divides the bus into smaller segments using a hierarchy, which is more

scalable than a flat bus architecture, and it improves the throughput and RMSE over

the latent ring architecture.

5.4 Summary

In this chapter, we present the design of efficient network architectures for the

SAILnet sparse coding algorithm. Impacts of the architectures are analyzed, and

improvements have been proposed.

For a practical implementation of SAILnet, three network architectures are consid-

ered: a bus architecture that provides a shared medium for neuron communications,

and a ring architecture that serializes neuron communications. The bus architecture

results in spike collisions and requires access arbitration. We show that the collision

94

rate is quadratically dependent on the number of spikes averaged over the number of

neuron update steps. Keeping the spikes sparse and random by a small neuron update

step reduces the collision rate to about 5%, low enough that the errors due to colli-

sions are tolerated by the SAILnet algorithm with only a small impact on the RMSE.

We design an efficient arbitration-free bus architecture that tolerates spike collisions,

and removes the AER and access arbitration that are necessary for a conventional

bus architecture.

A conventional ring architecture propagates spikes serially, delaying inhibitions

and causing neurons to misfire. The misfires are fundamentally due to the mismatch

between slow inhibitions and fast neuron responses. To reduce the neuron misfires,

the neuron responses are damped by a holding policy in a latent ring architecture,

where each neuron is allowed to propagate one spike every cycle, but only allowed

to perform inference update once every d cycles (d > 1). Alternatively, the neuron

responses are naturally damped by a small update step size.

The arbitration-free bus architecture and the latent ring architecture are combined

in a hybrid bus-ring architecture to achieve a better scalability than the bus architec-

ture, and a higher throughput than the ring architecture. Synthesis, place-and-route

in 65nm CMOS show that the hybrid architecture occupies the same area as the bus

architecture, and it consumes the lowest power. At 357MHz, the hybrid architec-

ture achieves a throughput of 952Mpx/s at 0.486nJ/px. The proof-of-concept designs

demonstrate the high throughput and energy efficiency of practical implementations

of sparse coding.

95

CHAPTER VI

Sparse coding ASIC implementation

In this chapter, we describe the design of a sparse coding ASIC. The ASIC chip

Sparse coding

Input Reconstructed

image

Receptive field

Spike

Fig. 1. Sparse coding mimicking neural coding in the primary visual cortex.
The input image can be reconstructed by the weighted sum of receptive fields
of model neurons.

Figure 6.1: Sparse coding mimicking neural coding in the primary visual cortex. The
input image can be reconstructed by the weighted sum of receptive fields
of model neurons.

implementation and testing are done in collaboration with Phil Knag and Thomas

Chen.

Sparse and independent local network (SAILnet) [76] learns RFs through training

a network of model neurons, and infers the sparse representation of the input image

using the most salient RFs, as illustrated in Fig. 6.1. Inference based on the learned

RFs enables efficient image encoding, and detecting features and objects [9, 88].

However, the implementation of an energy-efficient high-throughput sparse coding

processor is faced with challenges of on-chip interconnect and memory bandwidth

This chapter is based in part on [32, 33].

96

to support the parallel operations of hundreds or more model neurons. Existing

hardware designs cannot be adapted for sparse coding [43, 42], and they often resort

to off-chip memory and processing [42, 41, 45].

Fig. 2. (a) Receptive fields learned by model neurons through training, (b) an input
image presented to the sparse coding ASIC, and (c) the reconstructed image based on
the neuron spikes obtained by inference.

Neuron 1 Neuron 2

...
...

..

.
..
.

. . .

..

.
..

.

Neuron 16

Neuron 17 Neuron 18 Neuron 32

Neuron 241 Neuron 242 Neuron 256

(a)

Receptive fields Input image

(b) (c)

Reconstructed image

Figure 6.2: (a) Receptive fields learned by model neurons through training, (b) an in-
put image presented to the sparse coding ASIC, and (c) the reconstructed
image based on the neuron spikes obtained by inference.

We develop the first fully integrated sparse coding ASIC that consists of 256

digital neurons, 64K feed-forward synapses, and 64K feedback synapses. The sparse

coding chip performs both unsupervised learning and inference on-chip. The RF

of each model neuron is initialized with random noise, and each neuron learns its

RF through training images. After learning converges, the chip is able to perform

inference to encode images by the sparse activation of neurons, i.e., neuron spikes. To

check the fidelity of inference, the input image can be compared with its reconstruction

by the weighted sum of the RFs of the activated neurons Fig. 6.2.

6.1 Simulation of hierarchical architecture

Hierarchical architectures [41, 46, 45, 47, 48, 89] provide scalability and flexibility

for the mapping of large-scale neural networks. In this section, we present a 256-

neuron hierarchical bus-ring architecture for the SAILnet sparse coding algorithm.

97

The architecture includes two levels of hierarchy. In the bottom level, an arbitration-

free bus [31] is used and in the top level the ring connects the output of buses,

as illustrated in Fig. 5.9. Neurons are placed in the bottom level and separated

into several neuron groups. In each group, neurons are connected to an address

bus. A spike is encoded into a neuron ID (NID) for communications. An NID

generated ascends to the top level of the hierarchy and is propagated through the

ring, and neurons in the bottom level receive NIDs from the top level by tapping

their corresponding ring nodes.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of groups (buses)

A
ve

ra
ge

 c
ol

lis
io

n
pr

ob
ab

ili
ty

 P
c (

%
)

Figure 6.3: Collision probability of the hierarchical ring-bus architecture made up of
256 spiking neurons.

The bus architecture causes collisions if multiple neurons spike simultaneously.

The collisions corrupt a resulting NID [31]. The occurrences of the collisions can be

vastly reduced in a smaller neural network. The collision probability on the address

bus decreases quadratically as the neuron group size is reduced, as discussed in Sec-

tion 5.3. The quadratic relationship is verified in simulation, shown in Fig. 6.3. In the

simulation, a 256-neuron network is trained by presenting 16× 16 patches extracted

from natural images. The target firing rate is p = 0.09 and the number of time steps is

ns = 96. Note that as we increase the number of groups, the hierarchical architecture

becomes the ring architecture and the average collision probability on the address bus

approaches zero.

98

2 3 4 5 6 7 8 9

0.05

0.06

0.07

0.08

N
R

M
S

E

Q and W Word Length for Inference
(Number of Bits per Weight)

(a)

10 12 14 16 18 20
0.05

0.06

0.07

0.08

0.09

0.1

N
R

M
S

E

Q Word Length for Learning
(Number of Bits per Weight)

(9b W) (13b W)

(10b W)

(11b W)

(12b W) (14b W)

(8b W)

(7b W)

(6b W)

(b)

Figure 6.4: (a) Q and W weight quantization for inference and (b) learning.

Though the fixed-point quantization reduces the hardware cost and provides a

fast processing capability, a floating-point to fixed-point conversion may degrade the

algorithm performance. This section applies the fixed-point conversion to the SAIL-

net algorithm, and empirically verifies the feasibility of the conversion. Fig. 6.4(a)

shows the RMSE error of reconstructed image by applying fixed-point quantization

to receptive field (Q) and feedback (W) memory during inference, and Fig. 6.4(b)

shows the RMSE with different word length of Q and W weights. The results are

from the simulation of a ring-bus architecture implemented in MATLAB where the

bus size is 64, and the ring size is 4. The baseline comparison is the reconstructed

image of the floating-point quantized algorithm in a 256-neuron network that is fully

connected [31]. A 4-bit Q weight and a 4-bit W weight in inference and a 13-bit Q

weight and a 8-bit W weight in learning still provide a good sparse coding perfor-

mance [33]. Based on the quantization study, in the next section we design a practical

hierarchical architecture for sparse coding.

99

Fig. 3. 2D grid of a cluster of 64 neurons. Spike collisions are
detected and tolerated to save power.

..

.
..
.

..

.
..
.

Collision detection Encoder

From

image

memory

To

next

grid

From

previous

grid

N16N10N9 N11

N24N18N17 N19

N64N58N57 N59

C
o
llisio

n
 d

etectio
n

Q
 m

em
... N8N2N1 N3

W
 m

em

Figure 6.5: 2D bus of a cluster of 64 neurons. Spike collisions are detected and toler-
ated to save power.

6.2 Architectural design

Each model neuron in the sparse coding chip is a compute node that performs

leaky integrate-and-fire [76]. In this section, a two-layer network is designed to allow

all neurons to communicate efficiently. First, we address a local 2-D bus design in

the first level of the hierarchy. A cluster of 64 neurons are connected in a 2D grid

that improves the communication delay over a 1D bus. The root nodes of four grids

are connected in a 4-stage systolic ring in the second level. The grid size (or the

number of neurons connected in a grid) is designed to limit the wire loading for sub-

ns timing and bound the spike collision rate; and the ring is kept short to reduce

latency. The learning part of sparse coding has usually been implemented off-chip

due to the required high computational loads. We present a snooping core attached to

the ring that performs approximate learning to reduce the computational loads. We

verified in the previous section that a 5% or lower collision rate is tolerated without

causing any noticeable degradation in fidelity.

100

1 2 3 4 5 6 7 8
0.195

0.196

0.197

0.198

0.199

0.2

0.205

0.202

0.203

0.204

0.205

Number of groups (buses)
R

oo
t m

ea
n

sq
ua

re
 e

rr
or

 (
R

M
S

E
)

bus−original
bus−off
full

Figure 6.6: RMSE of the reconstructed images for an arbitration-free 2D bus design,
an arbitration-free flat bus design, and fully-connected network.

6.2.1 Arbitration-free 2D bus

A conventional design of the bus architecture contains a neuron grid, row and

column arbiters, and a handshake [87, 36]. The conventional design enables a parallel

to serial spike transmission on the 2D address bus without collisions on the bus.

However arbitration and handshake add complexity to the design of the bus, and

require additional memory for spike transmissions. Alternatively, an arbitration-free

bus design presented in Chapter V is more efficient to implement.

For an efficient bus design, we propose a new arbitration-free 2D bus structure.

A conventional 2D bus is used to place neurons and each neuron is connected to its

row and column address buses. Once a neuron spikes, its NID is loaded to the buses.

Different from others [87, 36], we simplify the collision detection and management by

turning on the bus if only one neuron in the grid spikes and turning it off otherwise.

This scheme allows us to remove the row and the column arbiters and the handshake.

A 64-neuron arbitration-free 2D bus is illustrated in Fig. 6.5. An OR gate outputs

1 if any neurons in the same row/column spike. The row/column collision detection

block calculates the number of OR gates that output 1. When the number calculated

by either the row or the column collision detector is greater than or equal to two, we

101

Fig. 4. 4-stage systolic ring connecting 4 2D local grids. A snooping core
is attached to the ring to record neuron spikes for learning.

Grid 4

Q
 m

em

...
...

...

.

.

.
.
.
.

.

.

.
.
.
.

...W
 m

em

Q
 m

em

...
...

...

.

.

.
.
.
.

.

.

.
.
.
.

...W
 m

em
Q

 m
em

...
...

...

.

.

.
.
.
.

.

.

.
.
.
.

...W
 m

em

Q
 m

em

...
...

...

.

.

.
.
.
.

.

.

.
.
.
.

...W
 m

em

Grid 1

Grid 2Grid 3

Spike activity

cache mem

Weight

updates

Snooping core

Learning

Figure 6.7: 4-stage systolic ring connecting 4 2D local buses. A snooping core is
attached to the ring to record neuron spikes for learning.

say that a collision is detected. Q and W memory blocks are attached to the grid.

We use a broadcast pixel bus to accommodate parallel neuronal potential updates.

Experiments shown in Fig. 6.3 verifies that the probability of spike collisions can be

reduced by grouping a small number of neurons, so our bus design, in turn, does not

degrade the performance of sparse coding, as delineated in Fig. 6.6.

6.2.2 2-layer bus-ring architecture

The output of a grid is represented as a packet {REQ, NID}, and the grids can be

modeled as super neurons where their inputs are incoming packets and pixels. For a

scalable VLSI implementation, we arrange the super nodes in a systolic ring structure.

In this work, we build a hierarchical 256-neuron network where a ring contains 4 super

nodes, each of which has 64 neurons placed in a 2D bus, as illustrated in Fig. 6.7.

During inference, neurons in each neuron grid listen to the packets transmitted

from neighboring nodes and update their neuronal potentials by considering feedback

connection weights. We allow each neuron to fire every clock cycle assuming that the

packets propagate to the next ring node in one clock cycle, and the potential update

is done in one clock cycle. An NID is discarded once it returns to the grid where it

is generated.

102

Ring

node 1

Control

NID

reg 1

En

NID

counter 1

En

Compare

...
...

NID

reg 10

NID

counter 10

Snooping core

Ring

node 2

8

8

8

4

4

REQ1

NID

Addr NID1 Count1 NID10 Count10

...

1

2

3

4

50

...
...

...
...

...

100 108 5

8 1210 1

78 012 0

16 1786 3

26 07 0

...

Image

mem

1

1

1

1

1

1

Register file

Figure 6.8: Recording of NIDs and their spike counts during inference. The snoop-
ing core stores NIDs and spike counts to the register file for 50 patch
presentations.

6.2.3 Snooping core and approximate learning

Learning and inference make use of the same network of model neurons, but

learning also updates Q and W weights, which dictates the learning speed. Learning

is done by a snooping core attached to the top-level ring to listen to neuron spikes

and record the activities in a cache, illustrated in Fig. 6.7. After a batch of training

images, the snooping core reads the cache and makes weight adjustments according

the SAILnet learning rules [76]. To accelerate learning and reduce the cache size,

we implement approximate learning to record the activities of only a few neurons

that spike for each input image patch, as illustrated in Fig. 6.8. In our design, the

snooping core records 10 dominant NIDs and their spike counts, and the cache has

a capacity of 50 patches. Experimental evidence points to the fact that the neurons

that spike first tend to be the most active. The remaining neuron activities play a

minor role, and can be safely ignored.

Initiated by the loading of NIDs and their spike counts from the activity cache,

learning performs three updates: update of feed-forward connection weights Q; update

of feedback connection weighs W; and update of the threshold. Updating Q is the

most computationally intensive as the update depends on the input image, current

weights, and spike counts, as formulated in (4.12). To reduce hardware cost and to

achieve fast Q update, we approximate the Q update in two ways. One is to allow

103

{REQ,

NID, Count}
Select

max

count

Register

file

...

Mask

Reg

Control

{NID1,

 Count1}
Reg 1

1

Reg 10

1
{NID10,

 Count10}

8

4

8

4

... ...

Mask and select

Snooping core

Ring

node 2

Ring

node 3

...

En

Figure 6.9: Approximation of the Q update. Transmit a maximum count to each ring
node.

Table 6.1: Mapping of a square of the spike count to a bitshift operation

si si
2 mapping of si

2 bitshift (<<)

1 1 1 Do nothing

2 4 4 2

3 9 8 3

4 16 16 4

5 25 32 5

6 36 32 5

else - 64 6

104

the Q update of “one” neuron per grid. To implement this scheme, we categorize

recorded NIDs into four groups, each of which corresponds to the largest spike count

in each group, as illustrated in Fig. 6.9. As a result, the snooping core propagates at

most four packets {REQ, NID, sNID}, each of which targets a ring node. Once the

four nodes in the ring receive their packets, each node approximates the Q update

further. The square of spike count, s2, is mapped to one of 6 possible values by using

a look-up table, summarized in Table. 6.1. Since the mapped number is a power of

2, the computation of s2Q
(m)
ik can be approximated by a bitshift operation of Q

(m)
ik .

Through the two approximations, the Q updates are efficiently computed, and the

updates are performed in parallel over the four ring nodes.

Register

file

...

{NID1,

 Count1}

{NID10,

 Count10}

8

4

8

4

... ...

NIDL

NIDR

SLSR

Reg

Control

Correlator

Snooping core

Ring

node 2

Ring

node 3

...

{REQ, NIDL,

NIDR, SLSR}

REQ

En

Route

Figure 6.10: Computation of correlations for W update.

The W and threshold updates are relatively straightforward. The update of W is

governed by the correlation of spike counts, as formulated in (4.11). NIDs and their

spike counts in the memory are loaded and the correlation is recursively computed,

as illustrated in Fig. 6.10. The snooping core sends out packets, each of which is

defined as {REQ, NIDL,NIDR, sLsR} where NIDL and NIDR are the NIDs of two

neurons being connected by a feedback connection. Once the two neurons receive

the packet, they update the feedback connection weight. To update the threshold of

a neuron, the snooping core transmits a packet {REQ, NIDTh, sTh}, which targets

a specific neuron whose NID is NIDTh. Packets for the Q, W, threshold updates

are distributed following the hierarchy from the top layer (ring) to the bottom (2D

105

bus). The updates are performed in parallel in the bottom layer of the hierarchy.

Simulation in MATLAB confirms that the approximate computing for learning does

not degrade the algorithm performance.

...
...

...
...

...
...

...
...

Arbitration-free 64-neuron grid

Ring node control

Ring node 2

256

WMSB mem (RFs)
N97 N98 N128...

...
...

...

Addr N65

0

255

...

N66 N96...

1 ...
...

...

Q mem

2046 x 72

SRAM

LSB mem

256
N97 N98 N128...

...
...

...

Addr N65

0

255

...

N66 N96...

1 ...
...

...

MSB mem (RFs)

Snooping core

Learning control

WLSB mem

2046 x 128

SRAM

...Ring

node 1

Image

mem

...

...

...
...

...
...

...
...

...
...

Arbitration-free 64-neuron grid

Ring node 1

256

Q mem (RFs)

N33 N34 N64...

...
...

...

Addr N1

0

255

...

N2 N32...

1 ...
...

...

256

W mem (RFs)

N33 N34 N64...

...
...

...

Addr N1

0

255

...

N2 N32...

1 ...
...

...

N1 N2 N3 N8

N9 N10 N11 N16

N17 N18 N19 N24

N57 N58 N59 N64

Collision detection

C
o
llisio

n
 d

etectio
n

Encoder

9

Figure 6.11: Illustration of register files (RF) banks in the ring node 1 for the infer-
ence.

6.2.4 Memory partition

Each neuron in the neuron grid can be considered as a computing unit, and it

stores RFs, termed Q weights (16×16 image patch) and synaptic strengths, termed

W weights (256 entries for each neuron). A high throughput sparse coding can be

achieved if all neurons in the network work as parallel computing units with parallel

memory accesses. Through fixed-point quantization and an optimal memory organi-

zation, we allow all neurons in the network to compute in parallel with an efficient

memory access.

The SAILnet algorithm consists of an inference phase and a learning phase. During

inference, the memory read operation needs to be synchronized over all model neurons

in the network. When a pixel value is provided to a neuron grid, neurons in the grid

need to read their Q weights concurrently to calculate excitations. Furthermore, when

neurons in a grid see a spike transmitted by its previous grid, they need to read W

weights at the same time to compute inhibitions. For a higher memory efficiency,

106

we store the Q weights and the W weights of a cluster of neurons together in Q

and W memory. Based on simulations, we find that a coarse quantization of 4-bit

feed-forward weights and 4-bit feedback weights still provides a good performance

with minimal loss in image encoding accuracy. Each grid includes register files to

store weights. The register file is preferable than the SRAM for this case due to the

area efficiency. 32 neurons in a neuron grid share one 32-Kbit register file to store Q

weights and another 32-Kbit register file to store W weights. Each row of the register

files contains 32 Q/W weights, each of which is the weight corresponding to a neuron

in the grid, as illustrated in Fig. 6.11.

Ring node 4Ring node 1

...
...

...
...

...
...

...
...

Arbitration-free 64-neuron grid

Ring node control

Ring node 3

256

WMSB mem (RFs)
N161 N162 N192...

...
...

...

Addr N129

0

255

...

N130 N160...

1 ...
...

...

Q mem

2046 x 72

SRAM

LSB mem

256
N161 N162 N192...

...
...

...

Addr N129

0

255

...

N130 N160...

1 ...
...

...

MSB mem (RFs)
...

...
...

...

...
...

...
...

Arbitration-free 64-neuron grid

Ring node control

Ring node 2

256

WMSB mem (RFs)
N97 N98 N128...

...
...

...

Addr N65

0

255

...

N66 N96...

1 ...
...

...

Q mem

2046 x 72

SRAM

LSB mem

256
N97 N98 N128...

...
...

...

Addr N65

0

255

...

N66 N96...

1 ...
...

...

MSB mem (RFs)

Register

file

...

{NID1,

 Count1}

{NID10,

 Count10}

8

4

8

4

... ...

NIDL

NIDR

SLSR

Reg

Control

Correlator

Snooping core

Ring

node 2

Ring

node 3

...

{REQ, NIDL,

NIDR, SLSR}

REQ

En

Route

Snooping core

Learning control

50 x 120

RF

Inference control

Compare and count

NID
Counter

...

8

4

120 Select

max

count

... Reg

Mask and select

Reg
12

Reg
12

...

NIDL

NIDR

SLSR

Reg

Correlator

12

12

WLSB mem

2046 x 128

SRAM

Figure 6.12: Overall design of the hierarchical bus-ring architecture and a snooping
core that support inference and learning.

During learning, the weights are incrementally updated, and a high precision is

required. Through the quantization study, we optimize the wordlength of Q and W

weight to 13 bits and 8 bits respectively to minimize storage and guarantee conver-

gence. The weight updates happen occasionally and always follow inference, so it is

efficient for learning to share memory banks with inference. In addition to the core

107

Q mem and W mem, we implement Q auxiliary memory and W auxiliary memory to

support learning. The auxiliary memory banks are separated from the core memory

banks, and are implemented in SRAM to achieve a higher memory density and a small

area. Each neuron grid has a 144-Kbit Q auxiliary memory to enable parallel updates

of Q weights. Since the W update happens less frequently than the Q update, so the

W update is not the bottleneck of learning. To optimize the area of the W auxiliary

memory, we use one 256-Kbit SRAM for all neurons in the network. During learning,

the auxiliary memory banks are updated and the carry outs are used to update the

core memory.

We exploit the difference in memory usage between learning and inference and

place the core memory and auxiliary memory on separate supply rails: the core section

to support inference, and the auxiliary section that is only powered on for learning.

The core memory is implemented in high-bandwidth register file to support real-time

inference. The auxiliary memory is implemented in a lower-bandwidth SRAM to

provide the extra bits needed for learning. As learning is called less frequently, the

power consumption of SRAM for learning becomes negligible. On-chip learning is

nonetheless orders of magnitude faster and lower power than off-chip learning. The

overall design with the memory map is illustrated in Fig. 6.12. For this design, we

used an ARM memory compiler to generate register files and SRAMs for the weight

storage.

6.3 Pipeline of inference and learning

To obtain good receptive fields, neurons in the network continually update the

feed-forward weights in response to the change of input images. They update their

feedback connection weights and thresholds as well in order to maintain sparse neuron

spikes in the network.

The algorithm functions in two phases: inference phase which records neuron

108

spiking in response to a batch of static images. We choose 50 as the batch size; and

learning phase which performs the updates. We define one iteration as the inference

of a batch of images followed by weight updates. Note that learning depends on

inference, so inference and learning need to be serialized within an iteration. We

empirically verify that the weight updates converge after about 104 iterations in most

of the cases that we experiment with.

The inference of an image is done by computing excitations, spiking and propagat-

ing spikes, and recording spikes. The excitation of each neuron is proportional to the

overlap between an input image and the receptive field (Q weights) of each neuron,

and the computation is done by memory read (RE) and multiply-and-accumulation

(MU). Once the excitation is computed, neurons start spiking (SP). The spiking of

neurons in the network is synchronized, and a spike generated in one neuron grid

is propagated to neurons in the others. During the spike propagation, the snooping

core taps the ring and writes an NID of each spike to memory. The throughput of

inference is npfclk/ns pixel/second.

RE MU

...
RE MU

RE MU SP

Excitation Spiking and recoding

MA WR

WR

WR

Threshold

CO

W update

Q update

...

IN1

IN2

IN3

IN50 LE1 LE2

...

LE50

...

IN1

IN2

IN3

IN50 LE1 LE2

...

LE50

...

IN1

IN2

IN3

IN50 LE1 LE2

...

LE50

Iter 1

Iter 2

Iter 3

...
...

Inference Learning Inference Learning Inference Learning ...

...

RE MU

...
RE MU

RE MU SP

RE MU

...
RE MU

RE MU SP

RE MU

...
RE MU

RE MU SP

Excitation Spiking and recoding Spiking and recoding Spiking and recoding
. . .

Patch 1

Patch 2

Patch 3

...

Figure 6.13: Pipeline of inference (IN) and learning (LE) of 50-patch batches.

The completion of inference of 50 patches triggers the weight and threshold up-

dates. The updates are performed serially in patches, i.e., we update Q weights, W

weights, and the thresholds by considering spikes obtained from inference of patch

1, and update them again with respect to the inference of patch 2, and so on. For

109

a given patch, Q weight, W weight, and threshold are updated in parallel. The Q

updates are efficiently parallelized over ring nodes, which is achieved by masking and

selecting a maximum spike count as discussed in the previous section. The correla-

tor in the snooping core calculates correlations of at most 10 NIDs per patch, so we

selectively update entries of W memories. To update the thresholds, NIDs and their

spike counts are propagated through the ring. The pipeline chart of inference and

learning of batches of 50 images is described in Fig. 6.13. The throughput of learning

is npfclk/(ns + np) pixel/second.

Fig. 7. Chip microphotograph

IMAGE MEM

V
C

O

SNOOOPING
CORE

AUX. MEM AUX. MEM

CORE MEM

GRID 1GRID 4

AUX. MEM AUX. MEM

GRID 2GRID 3

AUX. MEM

(a)

QSH

Core logic

power

VCO powerAux. mem. power

Core mem.

power

I/O power

(b)

Figure 6.14: (a) Chip photograph. (b) Printed circuit board for the testing.

6.4 Measurement results

The sparse coding ASIC test chip is implemented in TSMC 65nm CMOS, as

illustrated in Fig. 6.14(a), and the chip is fully functional. 102 bond pads on a chip

are wired to 84 pins in a ceramic pin grid array (CPGA) package, as illustrated in

Fig. 6.14(b). The 4-layer printed circuit board has five power connectors: core logic,

core memory, auxiliary memory, VCO and I/O. During inference all but auxiliary

110

memory are powered on, and during learning, all supplies are powered on. In the

beginning of the testing, 50 16 × 16 image patches, receptive fields and feedback

weights are scanned in to an SRAM. The test chip infers the input by extracting

natural features of the input. The chip also learns the receptive fields by updating

the feed-forward and feedback weights to adapt to changing environment.

250

200

150

100

50

0

Total
Core memory
Core logic

250200150100500 300

P
o

w
er

 (
m

W
)

Frequency (MHz)
Fig. 5. Measured inference power consumption: core
memory power, core logic power, and total inference
power (auxiliary memory is powered off in inference).
Power is measured at the minimum logic and memory
supply voltages for each clock frequency.

(a)

Fig. 3. 2D grid of a cluster of 64 neurons. Spike collisions are
detected and tolerated to save power.

..

.
..
.

..

.
..
.

Collision detection Encoder

From

image

memory

To

next

grid

From

previous

grid

N16N10N9 N11

N24N18N17 N19

N64N58N57 N59

C
o
llisio

n
 d

etectio
n

Q
 m

em

... N8N2N1 N3

W
 m

em

Fig. 4. 4-stage systolic ring connecting 4 2D local grids. A snooping core
is attached to the ring to record neuron spikes for learning.

Grid 4

Q
 m

em

...
...

...

.

.

.
.
.
.

.

.

.
.
.
.

...W
 m

em

Q
 m

em

...
...

...

.

.

.
.
.
.

.

.

.
.
.
.

...W
 m

em
Q

 m
em

...
...

...

.

.

.
.
.
.

.

.

.
.
.
.

...W
 m

em

Q
 m

em

...
...

...

.

.

.
.
.
.

.

.

.
.
.
.

...W
 m

em

Grid 1

Grid 2Grid 3

Spike activity

cache mem

Weight

updates

Snooping core

Learning

Sparse coding

Input Reconstructed

image

Receptive field

Spike

Fig. 1. Sparse coding mimicking neural coding in the primary visual cortex.
The input image can be reconstructed by the weighted sum of receptive fields
of model neurons.

Fig. 2. (a) Receptive fields learned by model neurons through training, (b) an input
image presented to the sparse coding ASIC, and (c) the reconstructed image based on
the neuron spikes obtained by inference.

Neuron 1 Neuron 2

...
...

..

.
..
.

. . .

..

.
..

.

Neuron 16

Neuron 17 Neuron 18 Neuron 32

Neuron 241 Neuron 242 Neuron 256

(a)

Receptive fields Input image

(b) (c)

Reconstructed image

TABLE II: COMPARISION WITH PRIOR WORKS

RBM

Core Area

Reference

Neurons

Synapses

Algorithm

Application

Interconnect

Technology

Mem size

This work

256

128K

2-layer grid

and ring

1.31Mbits

SAILnet

Image

sparse coding

TSMC 65nm

 3.1mm2

Merolla [6]

256

256K

Crossbar

256Kbits

Digit

recognition

IBM 45nm

 4.2mm2

Learning Off chip On chip

Energy metric 48pJ/pixel 45pJ/spike

Bitwith

of a Synapse
8 and

11 bits
1 bit

Seo [5]

256

64K

Crossbar

256Kbits

STDP

Pattern

recognition

IBM 45nm

 4.2mm2

On chip

-

4 bits

Energy Efficiency

(pJ/pixel)

Throughput

(Mpixel/s)

TABLE I: CHIP SUMMARY

Technology

Core Area

Chip Area

Frequency (MHz)

Core logic (V)

Core mem (V)

Aux. mem (V)

TSMC 65nm GP CMOS

(Core logic: 1.16mm2,

 Core mem: 1.01mm2

 Aux. mem: 0.89mm2)

 2.11 × 2.11mm (4.45mm2)

Inference Learning

Power (mW)

31035

1.000.53

1.000.44

1240140

2186.67

175.847.6

20 235

1.000.50

0.000.00

1.000.58

1.000.60

18816

228.16.83

1213426.9

1.75mm ×

1.75mm

250

200

150

100

50

0

Total
Core memory
Core logic

250200150100500 300

P
o
w

er
 (

m
W

)

Frequency (MHz)
Fig. 5. Measured inference power consumption: core
memory power, core logic power, and total inference
power (auxiliary memory is powered off in inference).
Power is measured at the minimum logic and memory
supply voltages for each clock frequency.

Fig. 8. Measured normalized root-mean-square error
(NRMSE) in inference with increasing core memory bit
error rate. The core memory supply voltage is annotated.

0.10

0.08

0.06

0.04

0.02

0.00

0.16

0.14

0.12

N
o
rm

al
iz

ed
 R

M
S

E

Core memory bit error rate

0.44V
0.425V

0.37V

0.42V

0.405V

0.395V

0.39V

Fig. 7. Chip microphotograph

IMAGE MEM

V
C

O

SNOOOPING
CORE

AUX. MEM AUX. MEM

CORE MEM

GRID 1GRID 4

AUX. MEM AUX. MEM

GRID 2GRID 3

AUX. MEM

Total
Core memory

Core logic

Auxiliary memory

250

200

150

100

50

0
250200150100500

P
o
w

er
 (

m
W

)

Frequency (MHz)
Fig. 6. Measured learning power consumption: core
memory power, auxiliary memory power, core logic
power, and total learning power (auxiliary memory is
powered on in learning). Power is measured at the
minimum logic and memory supply voltages for each
clock frequency.

10-210-3
10-410-5

10-6

Total

Core memory

Core logic

Auxiliary memory

250

200

150

100

50

0
250200150100500

P
o
w

er
 (

m
W

)

Frequency (MHz)

(b)

Figure 6.15: (a) Measured inference power consumption and (b) learning power con-
sumption.

Inference is carried out in steps for each 16 × 16 input image patch. For a

high fidelity, the number of steps is set to at least 64, which translates to an in-

ference throughput of 16×16
64

fclk pixel/s where fclk is the clock frequency. An av-

erage power consumption of inference (Pinf) is measured by repeating the compu-

tations of inference for 1 million loops, and the energy efficiency of inference is

Pinf/((16× 16/64)fclk) J/pixel. Inference operates at a maximum 310MHz, consum-

ing 218mW at 1.0V and room temperature, which translates to a maximum inference

throughput of 1.24Gpixel/s (Gpx/s) at an energy efficiency of 176pJ/px, as summa-

rized in Fig. 6.15(a) and Table 6.2.

To enable learning, the auxiliary memory is powered on, and the test chip per-

forms inference of one image patch followed by updating weights stored in core and

auxiliary memory. The number of steps for inference is set to 64, and the weight

111

Table 6.2: Chip summary
Technology TSMC 65nm GP CMOS

Core Area

1.75mm × 1.75mm
(Core logic: 1.16mm2,
Core mem: 1.01mm2,
Aux. mem: 0.89mm2)

Chip Area 2.11mm × 2.11mm (4.45mm2)
Inference Learning

Frequency (MHz) 35 310 20 235
Core logic (V) 0.53 1.00 0.50 1.00
Core mem (V) 0.44 1.00 0.58 1.00
Aux. mem (V) 0.00 0.00 0.60 1.00

Throughput (Mpixel/s) 140 1240 16 188
Power (mW) 6.67 218 6.83 228.1

Energy Efficiency (pJ/pixel) 47.6 175.8 426.9 1213

update is carried out in additional 256 clock cycles. Therefore, the throughput can

be calculated as (16 × 16/(256 + 64))fclk pixel/s. The energy efficiency of learning

is Plearn/(0.8fclk) J/pixel. Learning consumes 228mW at 1.0V and 235MHz for a

throughput of 188Mpx/s, as shown in Fig. 6.15(b) and Table 6.2. A training set of 1

million 16×16 image patches is completed in 1.4s.

Fig. 8. Measured normalized root-mean-square error
(NRMSE) in inference with increasing core memory bit
error rate. The core memory supply voltage is annotated.

0.10

0.08

0.06

0.04

0.02

0.00

0.16

0.14

0.12

N
o
rm

al
iz

ed
 R

M
S

E

Core memory bit error rate

0.44V
0.425V

0.37V

0.42V

0.405V

0.395V

0.39V

10-210-3
10-410-5

10-6

Figure 6.16: Measured normalized root-mean-square error (NRMSE) in inference
with increasing core memory bit error rate. The core memory supply
voltage is annotated.

The sparse coding algorithm is error tolerant, and with on-chip learning, errors can

be corrected by on-line training. Our measurements indicate a gradual degradation of

112

the normalized root-mean-square error (NRMSE) of the reconstructed image (mea-

sure of fidelity) until the core memory supply is lowered to 390mV, where a nearly

10−3 core memory bit error rate results in no more than 0.03 NRMSE in inference,

as illustrated in Fig. 6.16. The error tolerance is exploited to reduce power. The core

memory supply voltage can be reduced to 440mV, while still keeping NRMSE within

0.01. Together with voltage scaling the core logic, the inference power consumption is

reduced to 6.67mW for an inference throughput of 140Mpx/s, improving the energy

efficiency 48pJ/px, as shown in Fig. 6.15(a) and Table 6.2. Learning requires writing

to memory, which places lower bounds on the core and auxiliary memory supply at

580mV and 600mV, respectively. At these low supplies, the learning power consump-

tion is reduced to 6.8mW for a learning speed of 16Mpx/s, as shown in Fig. 6.15(b)

and Table 6.2. A comparison with recent literature is presented in Table 6.3. The on-

chip learning capability, as well as the achieved high throughput and energy efficiency

demonstrate the potential of the sparse coding ASIC for embedded vision processing

tasks.

Table 6.3: Comparison with prior works
Reference Mellola et al. [42] Seo et al. [43] This work
Neurons 256 256 256
Synapses 256K 64K 128K

Bitwidth of a Synapse 1 bit 4 bits 8 and 13 bits
Memory size 256Kbits 256Kbits 1.31Mbits
Interconnect Crossbar Crossbar 2-layer bus and ring
Algorithm RBM STDP SAILnet
Learning Off-chip On-chip On-chip

Application Digit recognition Pattern recognition Image sparse coding
Technology IBM 45nm IBM 45nm TSMC 65nm
Core Area 4.2mm2 4.2mm2 3.1mm2

Energy metric 45pJ/spike - 48pJ/pixel

6.5 Summary

In this chapter, we design a 256-neuron bus-ring architecture. Neurons in the

network are divided into 4 neuron clusters, and 64 neurons in a neuron cluster are

113

connected with a 2D bus. Each output of the bus is connected to the 4-stage systolic

ring. Each neuron cluster is designed to tolerate spike collisions. The cluster size and

ring size are determined by considering the tradeoff between communication latency

and image encoding accuracy. The SAILnet learning rule is further approximated to

enable fast on-chip learning. To save power, memory is divided into core and auxiliary

sections, and the auxiliary memory is powered off during inference.

A 65nm test chip achieves a throughput of 1.24G pixel/s at 1.0 nominal supply

voltage, running at 310MHz. The test chip exploits the error tolerance of the soft

SAILnet algorithm to reduce core memory supply voltage to 440mW at 35MHz,

achieving an energy efficiency of 47.6 pJ/pixel.

114

CHAPTER VII

Neuromorphic object recognition processor

Continuing with the design of a sparse coding ASIC in the previous chapter, this

chapter shows a higher-level application of sparse coding: object recognition, and its

efficient hardware implementation. A sparse coding based IM for object recognition

is illustrated in Fig. 7.1. The classifier attached to the IM takes sparse feature inputs,

and classifies objects. In particular, we focus on the spiking LCA-based IM and a

task-driven classifier due to the advantages of sparsity [75], binary neuron output [53],

and high classification accuracy [90].

7.1 Simulation of spiking LCA IM

Feature extraction is enabled by parallel spiking neurons, each of which has its own

feature vector or RF. If a neuron’s feature vector matches features presented in the

input, the neuron will spike as a result. Compared to other neural-inspired IMs such

as the SAILnet IM [76], the LCA IM [75] provides two benefits. Feedback weights

can be precomputed using the feature dictionary, and all neurons in the IM share

the same neuron threshold. Because of sparsity imposed, the LCA IM allows only a

few neurons to be activated in response to an input image, thereby reducing active

power and enabling efficient neuron-to-neuron interconnect. Despite the progress on

This chapter is based in part on [34].

115

Fig. 1. Sparse neuromorphic object recognition system composed of the spiking LCA inference module
(IM) front-end and the task-driven classifier back-end. A sparse set of features are extracted to represent
the input image. The weighted spiking rate is summed to vote the most likely object class.

Fig. 4 . (a) Feature matrix and a 64-entry spike count
vector multiplication to support learning. (b) Simplified
vector-matrix product by taking advantage of sparsity.

Fig. 2. Throughput and energy comparison with state-of-the-
art neuromorphic ASICs for sparse coding.

Fig. 5. Measured power consumption of the object
recognition processor at the minimum datapath and
memory supply voltages for each frequency.

Fig. 6. Measured energy efficiency of the
object recognition processor by exploiting
error tolerance.

Input

Inference module

Feature dictionary

Classifier

Spike
rate

Spike
rate

Spike
rate

Spike
rate…

Spike
rate

…

Class 1

Class 2

Class 10

Sparse
spike

…

(a) (b)

…

…

2
3

…
 …

 0

0

2

3
0

Spike
count

…

…

…

…

…
…
…

…

Feature matrix

256

64

64

… Feature
dictionary

16

Fig. 7. Chip microphotograph

sadfsadfsaddddfdddsdddadddfasdfsadf

Series2

Error-free IM and classification

Error-free classification9

8

7

6

5

10

E
ne

rg
y

ef
fi

ci
en

cy
 (

pJ
/p

ix
el

)

Frequency (MHz)
806040200 100

IM NETWORK 1 IM NETWORK 2

IM MEM

LEARNING MEM

VCO

IM NETWORK 3 IM NETWORK 4

MEM
IMAGE

SUB‐CLASSIFIERS

IM MEM

IM MEM

GRIDGRID

Series1

Series2

re memory

Total
Datapath

Memory
250

200

150

100

50

0

300

5004003002001000 600

P
ow

er
 (

m
W

)

Frequency (MHz)

aaaaaaaaaaaaaaa

Series3

256 neurons (65nm)
[4]

18 neurons (0.35um)

256 neurons (65nm)
[This work]

Object recognition

Sparse coding

[3]

T
hr

ou
gh

pu
t (

In
pu

t e
le

m
en

t/
s)

107

1011

103

105

109

Energy (J/input element)
10-410-1010-12 10-610-8

Fig. 3. Object recognition processor with on-chip learning co-processor. (a) Four image patches to extract features in parallel. (b) Inference module (IM)
implemented in four 64-neuron spiking neural networks. (c) Spike event-driven classifier (d) Soft output of ten class nodes (e) On-chip learning co-processor.

Output

(c) (d)

(e)

Update

Classifier

…

1
2

3
4

Addr …

Class node 1

Class node 2

Class node 10

Addr
1
2

…

64

Weights

…

…

…
3

Inference module

(b)

1
2

3
4

(a)

Learning co-processor

Input

Patch 2

Patch 1

Patch 3

Patch 4

S
um

Class…

LEARNING
PROCESSOR

TABLE II: COMPARISION WITH PRIOR WORKS

Energy metric

Spiking LCA

Core area

Reference

Neurons

Synapses

Algorithm

Architecture

Technology

Mem size

Kim [4]

256

128K

1.31Mbits

SAILnet

65nm

 3.1mm2

Shapero [3]

18

0.53K

3.7 Kbits

0.35um

-

Learning Off chip On chip

 48pJ/pixel6.3nJ/input

7 bit

This work

256

83K

301Kbits

Spiking LCA with
classification

65nm

 1.8mm2

On chip

5.7pJ/pixel

Bitwith
of a Synapse

8 and
13 bits

4, 5 and
14 bits

2-layer grid
and ring

2-layer grid
and ring

RBM

Merolla [8]

256

256K

Crossbar

256Kbits

45nm

 4.2mm2

Off chip

 45pJ/spike

1 bit

Seo [7]

256

64K

256Kbits

STDP

45nm

 4.2mm2

On chip

-

4 bits

Crossbar Crossbar

 1.73 × 1.73mm (2.99mm2)

6.7×

8.2×

TABLE I: CHIP SUMMARY

Energy Efficiency
(pJ/pixel)

Throughput
(Mpixel/s)

Core Area

Chip Area

Frequency (MHz)

Datapath (V)

Memory (V)

Power (mW)

63540

1.000.45

1.000.425

10160640

268.23.65

26.405.70

1.35mm × 1.35mm

(Datapath : 0.97mm2,
 Memory : 0.48mm2,
Learning : 0.21mm2,
 Periphery: 0.16mm2)

Figure 7.1: Sparse neuromorphic object recognition system composed of the spiking
LCA inference module (IM) front-end and the task-driven classifier back-
end. A sparse set of features are extracted to represent the input image.
The weighted spiking rate is summed to vote the most likely object class.

efficient hardware architecture for sparse coding to address the routing complexity in

the IM network [31, 33], a major hardware challenge still remains for implementing

a large-scale neural network for LCA. The size of weight memory can be over 60% of

the total chip area in order to perform on-chip inference and learning [33]. To address

the memory challenge, this work uses the convolutional neural networks idea [91] to

implement the spiking LCA IM [53]. In this section, we study the impacts of the RF

size and the network size on classification accuracy in order to optimize the size of

on-chip memory.

The size of on-chip memory in the IM is dominated by the weight memory that

stores RFs and feedback weights. The size of RF memory grows linearly with the

number of input pixels and the number of neurons in the network, and that of feedback

weight memory grows quadratically with the number of neurons. Thus, the size of

on-chip memory can be reduced if we use small input patches, and implement a small

network.

To optimize the network size, we first check the performance of the conventional

116

50 100 150 200 250 300 350 400
5

6

7

8

9

10

11

12

Number of neurons
M

N
IS

T
 c

la
ss

ifi
ca

tio
n

er
ro

r
(%

)

(a)

Figure 7.2: Errors in MNIST classification with different network sizes.

spiking LCA using the MNIST database [92]. Fig. 7.3 shows errors in classification

with different network sizes. The spiking LCA IM is connected to a task-driven

classifier where the weights of the classifier are trained using a regression model that

minimizes the errors between a given label and the reconstructed label [90]. Note that

learning in the IM is independent of learning of the classifier for practical hardware

implementation, so the error of classification is about 5% higher than the results of

the conventional task-driven learning approach [90]. We choose to implement a 256-

neuron network, since the improvement of classification is negligible if the network

size is above 256 in this case.

To reduce the RF size, we use the ideas of convolutional neural networks to imple-

ment the spiking LCA IM. Convolutional neural networks use a small number of RFs,

and the size of each RF is less than the number of input pixels. There is already an

existing approach that makes use of convolutional neural networks in implementing

LCA [93]. However, this approach implements feedback weight memory based on all-

to-all neuron interconnects in order to achieve overcompleteness. In comparison, we

prune neuron-to-neuron connections to reduce the size of feedback weight memory by

dividing the input image into overlapping patches and processing the image patches

117

50 100 150 200 250
5

6

7

8

9

10

11

12

Number of neurons
M

N
IS

T
 c

la
ss

ifi
ca

tio
n

er
ro

r
(%

)

2−layer, Spiking LCA − Label
Convolution, pooling

(a)

Figure 7.3: MNIST classification of the spiking LCA IM and the conventional spiking
LCA.

independently. Therefore, the size of feedback weight memory is O(N2
RF) where NRF

denotes the number of RFs.

In inference, the size of RF is set to 16 × 16. We take 20 × 20 pixels centered

at a 28 × 28 MNIST test image. Fig. 7.3 compares our convolutional spiking LCA

with the conventional spiking LCA. It is shown that 64 RFs using a stride of 4, i.e.,

2 steps in each direction to cover an 20 × 20 input image, provides a comparable

classification result as a conventional 256-neuron spiking LCA network. We tested

the effects of smaller RF sizes such as 14 × 14 and 15 × 15. The classification error

for these receptive field sizes is increased by 2% over a receptive field size of 16× 16,

so we choose 16×16 for the implementation. In training, we use (4.21) to update the

64 RFs.

7.2 Architectural design

An end-to-end object recognition processor consists of two major building blocks:

inference module (IM) and classifier. In this section, we implement the spiking LCA

IM [53] and a task-driven classifier [90]. In addition, we implement a light-weight

118

0 10 20 30 40 50 60
7

8

9

10

11

12

13

14

Number of grids
M

N
IS

T
 c

la
ss

ifi
ca

tio
n

er
ro

r
(%

)

Measure errors in different number of clusters

(a)

Figure 7.4: MNIST classification with different number of grids in the IM.

learning co-processor for on-chip learning.

7.2.1 Spiking LCA IM

A straight implementation of the spiking LCA IM includes 64 RFs and 64 digital

integrate-and fire neuron to extract features in 16×16 image patches. The 64-neuron

IM network is implemented using the 2-layer bus-ring architecture to address routing

complexity and scalability [32, 33]. The grid size is determined by considering the

tradeoff between hardware efficiency and inference accuracy. A large grid (a small

number of grids) is more compact, but results in more simultaneous neuron spikes

colliding over the grid, worsening the inference accuracy, as illustrated in Fig. 7.4;

while a systolic ring preserves neuron spikes but a long ring costs more area and

power. We choose a grid size of 8 for this IM design.

The 64-neuron digital IM is implemented in eight clusters, as illustrated in Fig. 7.5.

Each cluster includes an 8-neuron grid, two collision detection blocks and an NID en-

coder. Eight neurons in each cluster are placed in a 2 × 4 grid, and are connected

with column and row buses. Similar to the SAILnet IM design, the collision detection

blocks listen to the column and row buses, and they disable the NID encoder if multi-

119

Cluster 1 Cluster 4

…

…

Cluster 5Cluster 8

{Spike, NID}

Cluster 2

Cluster 7

Cluster 3

Cluster 6

OutputClassifier

…

Addr
…

Class node 1

Class node 2

Class node 10

Addr
1
2

…

256

Weights

…

…

…

3

Inference module

Input

Patch

S
u

m
Class…

Figure 7.5: Inference module (IM) implemented in a 64-neuron spiking neural net-
work.

ple spikes are detected in one clock cycle [32, 33]. The eight clusters are connected in

an 8-stage systolic ring to propagate NIDs. To enhance the performance, neurons are

pipelined to 2 stages. The neuron dynamics are tuned to achieve a high accuracy with

less than 16% of neurons firing over a 2τ inference period (τ : neuron time constant,

or ηns), saving the power.

The 64 RFs are quantized into a 14-bit resolution, so the size of RF memory is

224Kbits (14×64× (16×16)-bit). The 14-bit word length is the minimum needed for

learning to converge properly. We use an unsupervised learning algorithm to train

the 64 RFs. The learning algorithm is summarized in Table 4.3. In the inference

phase, a simulation study shows that the 4 most significant bits (MSBs) are sufficient

to provide high classification accuracy. To save power in inference, we divide the RF

memory into core and auxiliary memory, and place them in two different supply rails.

The core memory is implemented in two 32-Kbit register files to support high-memory

bandwidth, and is powered on in inference and learning. The auxiliary memory is

implemented in 160-Kbit SRAM, and it is powered on only in learning. The word

length of feedback weights are optimized to a 4-bit resolution, and stored in eight

120

2-Kbit register files. Each 2-Kbit register file is placed next to an 8-neuron grid to

provide feedback weights.

7.2.2 Sparse event-driven classifier

A task-driven classifier is integrated with the spiking LCA IM to recognize objects

from ten object classes. Neuron outputs are connected to ten class nodes of the

classifier. Each class node of the classifier represents one out of ten possible object

classes. Each neuron-to-node connection has a weight. The weight quantifies the

relation between the neuron’s RF with the object class. A straight implementation

of the classifier includes spiking rate calculators and multiply-and-accumulate units

(MACs), as illustrated in Fig. 7.1. Each spiking rate calculator takes a neuron output

to calculate the spiking rate of the neuron over an inference period, and 10N MACs

calculate the weighted sum of spiking rate where N denotes the number of neurons

in the IM. Each MAC output is the score of each object class. However, the straight

implementation is expensive since the spiking rate calculator requires a division unit,

and the MACs include costly multipliers.

For an efficient implementation of the classifier, the spiking rate calculators and

the MACs are jointly designed, and they are implemented with only accumulators.

The joint design is done in two phases. In the first phase, we remove the division unit

in each spiking rate calculator. We notice that the spiking rate of a neuron is propor-

tional to its spike count over an inference period, as formulated in (4.24). Therefore,

a classifier using the weighted sum of spike count gives the same classification results

as the conventional classifier design.

In the second phase of the classifier design, we leverage sparse binary (1 or 0)

spikes to remove not only the multiplier in each MAC, but also the entire spiking

rate calculator blocks. For an efficient implementation, we unroll the weighted sum

of spike count. The multiplication of weight and spike count is equivalent to the

121

Cluster 1 Cluster 4

…

…

Cluster 5Cluster 8

{Spike, NID}

Cluster 2

Cluster 7

Cluster 3

Cluster 6

OutputClassifier

…

Addr

…

Class node 1

Class node 2

Class node 10

Addr
1
2

…

256

Weights

…

…

…

3

Inference module

Input

Patch

S
u
m

Class…

Figure 7.6: Spiking LCA IM and spike event-driven classifier.

accumulation of the weight whenever we receive spikes from the IM. Based on this

observation, the weighted sum of spike count can be implemented with real-time

accumulators where the weight accumulation is driven by spike events. Note that

the number of accumulators required for the classifier design does not depend on the

number of neurons in the IM network, but the number of object classes.

However, the transformation to the spike event-driven weight accumulation is com-

plicated. Spikes generated by multiple neurons need to be serialized, which requires

long latency to complete the weight accumulation. For an efficient implementation,

the classifier is tightly integrated with the spiking LCA IM network. The classifier

taps the systolic ring, and listens to the NIDs generated by the IM, as illustrated in

Fig. 7.6. Since neuron spikes (or NIDs) are sparse, the event-driven classifier is idle

most of the time. Furthermore, the classifier enables the weighted sum of spike count

using only accumulators, so it saves 72% area and 65% power.

The 64-neuron IM network processes four overlapped image patches sequentially,

and the dimension of the IM output is 256. Therefore, the classifier needs to store

256 × 10 weights to recognize 10 object classes. A supervised learning algorithm is

used to train the weights [90]. Through simulation studies, the weights are quantized

into 5-bit resolution, keeping classification errors less than 10%. The weights are

consolidated, and stored in a 12.5-Kbit register file. A received NID from the IM

122

Fig. 1. Sparse neuromorphic object recognition system composed of the spiking LCA inference module
(IM) front-end and the task-driven classifier back-end. A sparse set of features are extracted to represent
the input image. The weighted spiking rate is summed to vote the most likely object class.

Fig. 4 . (a) Feature matrix and a 64-entry spike count
vector multiplication to support learning. (b) Simplified
vector-matrix product by taking advantage of sparsity.

Fig. 2. Throughput and energy comparison with state-of-the-
art neuromorphic ASICs for sparse coding.

Fig. 5. Measured power consumption of the object
recognition processor at the minimum datapath and
memory supply voltages for each frequency.

Fig. 6. Measured energy efficiency of the
object recognition processor by exploiting
error tolerance.

Input

Inference module

Feature dictionary

Classifier

Spike
rate

Spike
rate

Spike
rate

Spike
rate…

Spike
rate

…

Class 1

Class 2

Class 10

Sparse
spike

…

(a) (b)

…

…

2
3

…
 …

 0

0

2

3
0

Spike
count

…

…

…

…

…
…
…

…

Feature matrix

256

64

64

… Feature
dictionary

16

Fig. 7. Chip microphotograph

sadfsadfsaddddfdddsdddadddfasdfsadf

Series2

Error-free IM and classification

Error-free classification9

8

7

6

5

10

E
ne

rg
y

ef
fi

ci
en

cy
 (

pJ
/p

ix
el

)

Frequency (MHz)
806040200 100

IM NETWORK 1 IM NETWORK 2

IM MEM

LEARNING MEM

VCO

IM NETWORK 3 IM NETWORK 4

MEM
IMAGE

SUB‐CLASSIFIERS

IM MEM

IM MEM

GRIDGRID

Series1

Series2

re memory

Total
Datapath

Memory
250

200

150

100

50

0

300

5004003002001000 600

P
ow

er
 (

m
W

)

Frequency (MHz)

aaaaaaaaaaaaaaa

Series3

256 neurons (65nm)
[4]

18 neurons (0.35um)

256 neurons (65nm)
[This work]

Object recognition

Sparse coding

[3]

T
hr

ou
gh

pu
t (

In
pu

t e
le

m
en

t/
s)

107

1011

103

105

109

Energy (J/input element)
10-410-1010-12 10-610-8

Fig. 3. Object recognition processor with on-chip learning co-processor. (a) Four image patches to extract features in parallel. (b) Inference module (IM)
implemented in four 64-neuron spiking neural networks. (c) Spike event-driven classifier (d) Soft output of ten class nodes (e) On-chip learning co-processor.

Output

(c) (d)

(e)

Update

Classifier

…

1
2

3
4

Addr …

Class node 1

Class node 2

Class node 10

Addr
1
2

…

64

Weights

…

…

…
3

Inference module

(b)

1
2

3
4

(a)

Learning co-processor

Input

Patch 2

Patch 1

Patch 3

Patch 4

S
um

Class…

LEARNING
PROCESSOR

TABLE II: COMPARISION WITH PRIOR WORKS

Energy metric

Spiking LCA

Core area

Reference

Neurons

Synapses

Algorithm

Architecture

Technology

Mem size

Kim [4]

256

128K

1.31Mbits

SAILnet

65nm

 3.1mm2

Shapero [3]

18

0.53K

3.7 Kbits

0.35um

-

Learning Off chip On chip

 48pJ/pixel6.3nJ/input

7 bit

This work

256

83K

301Kbits

Spiking LCA with
classification

65nm

 1.8mm2

On chip

5.7pJ/pixel

Bitwith
of a Synapse

8 and
13 bits

4, 5 and
14 bits

2-layer grid
and ring

2-layer grid
and ring

RBM

Merolla [8]

256

256K

Crossbar

256Kbits

45nm

 4.2mm2

Off chip

 45pJ/spike

1 bit

Seo [7]

256

64K

256Kbits

STDP

45nm

 4.2mm2

On chip

-

4 bits

Crossbar Crossbar

 1.73 × 1.73mm (2.99mm2)

6.7×

8.2×

TABLE I: CHIP SUMMARY

Energy Efficiency
(pJ/pixel)

Throughput
(Mpixel/s)

Core Area

Chip Area

Frequency (MHz)

Datapath (V)

Memory (V)

Power (mW)

63540

1.000.45

1.000.425

10160640

268.23.65

26.405.70

1.35mm × 1.35mm

(Datapath : 0.97mm2,
 Memory : 0.48mm2,
Learning : 0.21mm2,
 Periphery: 0.16mm2)

Figure 7.7: (a) Feature matrix and a 64-entry spike count vector multiplication to
support learning. (b) Simplified vector-matrix product by taking advan-
tage of sparsity.

is used to read the NIDth word of the register file. The length of a word is 50-bit,

concatenating ten 5-bit weights associated with ten class nodes.

7.2.3 Light-weight learning co-processor

Real-time learning is not necessary for practical applications, but on-chip learning

reduces I/O power and it provides quick adaptation to changing environment. For

this reason, a light-weight learning co-processor is integrated on chip to update the

RFs and feedback weights. The RFs are developed iteratively following stochastic

gradient descent formulated in (4.21) to minimize image encoding error and improve

sparsity. Learning of the RFs is conveniently done on chip as all the information

needed for learning including input pixels, neuron IDs, and spike rates are available

on chip. The RF update triggers the update of feedback weights following QTQ− I.

Learning involves large vector and matrix multiplications that are naturally mapped

to a vector processor. However, the vectors are sparse due to sparse neuron spikes, as

shown in Fig. 7.7. We take advantage of this insight to design a scalar processor to

cut over 84% of the workload and power. The low-cost scalar learning co-processor

123

Fig. 1. Sparse neuromorphic object recognition system composed of the spiking LCA inference module
(IM) front-end and the task-driven classifier back-end. A sparse set of features are extracted to represent
the input image. The weighted spiking rate is summed to vote the most likely object class.

Fig. 4 . (a) Feature matrix and a 64-entry spike count
vector multiplication to support learning. (b) Simplified
vector-matrix product by taking advantage of sparsity.

Fig. 2. Throughput and energy comparison with state-of-the-
art neuromorphic ASICs for sparse coding.

Fig. 5. Measured power consumption of the object
recognition processor at the minimum datapath and
memory supply voltages for each frequency.

Fig. 6. Measured energy efficiency of the
object recognition processor by exploiting
error tolerance.

Input

Inference module

Feature dictionary

Classifier

Spike
rate

Spike
rate

Spike
rate

Spike
rate…

Spike
rate

…

Class 1

Class 2

Class 10

Sparse
spike

…
(a) (b)

…

…

2
3

…
 …

 0

0

2

3
0

Spike
count

…

…

…

…

…
…
…

…

Feature matrix

256

64

64

… Feature
dictionary

16

Fig. 7. Chip microphotograph

sadfsadfsaddddfdddsdddadddfasdfsadf

Series2

Error-free IM and classification

Error-free classification9

8

7

6

5

10

E
ne

rg
y

ef
fi

ci
en

cy
 (

pJ
/p

ix
el

)

Frequency (MHz)
806040200 100

IM NETWORK 1 IM NETWORK 2

IM MEM

LEARNING MEM

VCO

IM NETWORK 3 IM NETWORK 4

MEM
IMAGE

SUB‐CLASSIFIERS

IM MEM

IM MEM

GRIDGRID

Series1

Series2

re memory

Total
Datapath

Memory
250

200

150

100

50

0

300

5004003002001000 600

P
ow

er
 (

m
W

)

Frequency (MHz)

aaaaaaaaaaaaaaa

Series3

256 neurons (65nm)
[4]

18 neurons (0.35um)

256 neurons (65nm)
[This work]

Object recognition

Sparse coding

[3]

T
hr

ou
gh

pu
t (

In
pu

t e
le

m
en

t/
s)

107

1011

103

105

109

Energy (J/input element)
10-410-1010-12 10-610-8

Fig. 3. Object recognition processor with on-chip learning co-processor. (a) Four image patches to extract features in parallel. (b) Inference module (IM)
implemented in four 64-neuron spiking neural networks. (c) Spike event-driven classifier (d) Soft output of ten class nodes (e) On-chip learning co-processor.

Output

(c) (d)

(e)

Update

Classifier

…

1
2

3
4

Addr …

Class node 1

Class node 2

Class node 10

Addr
1
2

…

64

Weights

…

…

…
3

Inference module

(b)

1
2

3
4

(a)

Learning co-processor

Input

Patch 2

Patch 1

Patch 3

Patch 4

S
um

Class…

LEARNING
PROCESSOR

TABLE II: COMPARISION WITH PRIOR WORKS

Energy metric

Spiking LCA

Core area

Reference

Neurons

Synapses

Algorithm

Architecture

Technology

Mem size

Kim [4]

256

128K

1.31Mbits

SAILnet

65nm

 3.1mm2

Shapero [3]

18

0.53K

3.7 Kbits

0.35um

-

Learning Off chip On chip

 48pJ/pixel6.3nJ/input

7 bit

This work

256

83K

301Kbits

Spiking LCA with
classification

65nm

 1.8mm2

On chip

5.7pJ/pixel

Bitwith
of a Synapse

8 and
13 bits

4, 5 and
14 bits

2-layer grid
and ring

2-layer grid
and ring

RBM

Merolla [8]

256

256K

Crossbar

256Kbits

45nm

 4.2mm2

Off chip

 45pJ/spike

1 bit

Seo [7]

256

64K

256Kbits

STDP

45nm

 4.2mm2

On chip

-

4 bits

Crossbar Crossbar

 1.73 × 1.73mm (2.99mm2)

6.7×

8.2×

TABLE I: CHIP SUMMARY

Energy Efficiency
(pJ/pixel)

Throughput
(Mpixel/s)

Core Area

Chip Area

Frequency (MHz)

Datapath (V)

Memory (V)

Power (mW)

63540

1.000.45

1.000.425

10160640

268.23.65

26.405.70

1.35mm × 1.35mm

(Datapath : 0.97mm2,
 Memory : 0.48mm2,
Learning : 0.21mm2,
 Periphery: 0.16mm2)

Figure 7.8: Object recognition processor with on-chip learning co-processor. (a) Four
image patches. (b) Four 64-neuron spiking LCA IM networks. (c) Four
event-driven sub-classifiers (d) Soft output of ten class nodes (e) On-chip
learning co-processor.

provides three instructions to support learning: vector-matrix product, matrix scal-

ing, and matrix-matrix product, which are all executed element-by-element in a serial

fashion. The vector-matrix product and matrix scaling are used to compute the Q

update, and the matrix-matrix product is used to compute the feedback weight up-

date.

7.3 Performance enhancement

To enhance performance, we implement four independent 64-neuron IM networks,

each of which operates on a 16×16 input image patch, as illustrated in Fig. 7.8. Since

the four networks are identical, they share 64 RFs to extract features in input patches.

By deploying the four neural networks in parallel, a high throughput and comparable

inference accuracy can be achieved without the memory overhead associated with a

large neural network.

The four IM networks extract features in four image patches in parallel, so the

IM generates four sparse spike trains as its output. To enable a 4-way parallel weight

accumulation, the event-driven classifier is divided into four sub-classifiers, each of

which is integrated with an IM network. Furthermore, the 2.5-Kbit register file that

124

Fig. 1. Sparse neuromorphic object recognition system composed of the spiking LCA inference module
(IM) front-end and the task-driven classifier back-end. A sparse set of features are extracted to represent
the input image. The weighted spiking rate is summed to vote the most likely object class.

Fig. 4 . (a) Feature matrix and a 64-entry spike count
vector multiplication to support learning. (b) Simplified
vector-matrix product by taking advantage of sparsity.

Fig. 2. Throughput and energy comparison with state-of-the-
art neuromorphic ASICs for sparse coding.

Fig. 5. Measured power consumption of the object
recognition processor at the minimum datapath and
memory supply voltages for each frequency.

Fig. 6. Measured energy efficiency of the
object recognition processor by exploiting
error tolerance.

Input

Inference module

Feature dictionary

Classifier

Spike
rate

Spike
rate

Spike
rate

Spike
rate…

Spike
rate

…

Class 1

Class 2

Class 10

Sparse
spike

…

(a) (b)

…

…

2
3

…
 …

 0

0

2

3
0

Spike
count

…

…

…

…

…
…
…

…

Feature matrix

256

64

64

… Feature
dictionary

16

Fig. 7. Chip microphotograph

sadfsadfsaddddfdddsdddadddfasdfsadf

Series2

Error-free IM and classification

Error-free classification9

8

7

6

5

10

E
ne

rg
y

ef
fi

ci
en

cy
 (

pJ
/p

ix
el

)

Frequency (MHz)
806040200 100

IM NETWORK 1 IM NETWORK 2

IM MEM

LEARNING MEM

VCO

IM NETWORK 3 IM NETWORK 4

MEM
IMAGE

SUB‐CLASSIFIERS

IM MEM

IM MEM

GRIDGRID

Series1

Series2

re memory

Total
Datapath

Memory
250

200

150

100

50

0

300

5004003002001000 600

P
ow

er
 (

m
W

)

Frequency (MHz)

aaaaaaaaaaaaaaa

Series3

256 neurons (65nm)
[4]

18 neurons (0.35um)

256 neurons (65nm)
[This work]

Object recognition

Sparse coding

[3]

T
hr

ou
gh

pu
t (

In
pu

t e
le

m
en

t/
s)

107

1011

103

105

109

Energy (J/input element)
10-410-1010-12 10-610-8

Fig. 3. Object recognition processor with on-chip learning co-processor. (a) Four image patches to extract features in parallel. (b) Inference module (IM)
implemented in four 64-neuron spiking neural networks. (c) Spike event-driven classifier (d) Soft output of ten class nodes (e) On-chip learning co-processor.

Output

(c) (d)

(e)

Update

Classifier

…

1
2

3
4

Addr …

Class node 1

Class node 2

Class node 10

Addr
1
2

…

64

Weights

…

…

…
3

Inference module

(b)

1
2

3
4

(a)

Learning co-processor

Input

Patch 2

Patch 1

Patch 3

Patch 4

S
um

Class…

LEARNING
PROCESSOR

TABLE II: COMPARISION WITH PRIOR WORKS

Energy metric

Spiking LCA

Core area

Reference

Neurons

Synapses

Algorithm

Architecture

Technology

Mem size

Kim [4]

256

128K

1.31Mbits

SAILnet

65nm

 3.1mm2

Shapero [3]

18

0.53K

3.7 Kbits

0.35um

-

Learning Off chip On chip

 48pJ/pixel6.3nJ/input

7 bit

This work

256

83K

301Kbits

Spiking LCA with
classification

65nm

 1.8mm2

On chip

5.7pJ/pixel

Bitwith
of a Synapse

8 and
13 bits

4, 5 and
14 bits

2-layer grid
and ring

2-layer grid
and ring

RBM

Merolla [8]

256

256K

Crossbar

256Kbits

45nm

 4.2mm2

Off chip

 45pJ/spike

1 bit

Seo [7]

256

64K

256Kbits

STDP

45nm

 4.2mm2

On chip

-

4 bits

Crossbar Crossbar

 1.73 × 1.73mm (2.99mm2)

6.7×

8.2×

TABLE I: CHIP SUMMARY

Energy Efficiency
(pJ/pixel)

Throughput
(Mpixel/s)

Core Area

Chip Area

Frequency (MHz)

Datapath (V)

Memory (V)

Power (mW)

63540

1.000.45

1.000.425

10160640

268.23.65

26.405.70

1.35mm × 1.35mm

(Datapath : 0.97mm2,
 Memory : 0.48mm2,
Learning : 0.21mm2,
 Periphery: 0.16mm2)

Figure 7.9: Chip microphotograph.

stores weights is divided into four memory blocks in order to increase the memory

bandwidth by 4×. Each memory block is assigned to a sub-classifier. The scores

calculated by the four sub-classifiers are summed to vote for the most likely object

class, as illustrated in Fig. 7.8.

7.4 Measurement results

A test chip of the object recognition processor is fabricated in TSMC 65nm CMOS.

Fig. 7.9 highlights sub-modules of the test chip. Four IM networks are placed in the

corners of the chip, and each IM network includes 8 grids and 16-Kbit IM memory

that store feedback weights. Each sub-classifier is integrated with an IM network

for event-driven classification. An on-chip learning co-processor is implemented to

update 64-Kbit IM memory and 160-Kbit learning memory centered at the chip,

which store 64 RFs used by 4 IM networks. Also, the co-processor updates 64-Kbit

IM memory distributed to four IM networks. We place IM memory and learning

memory in different supply rails so that the learning memory is powered off to save

power in inference. The weights of the classifier are updated by off-chip learning.

125

We collect IM outputs from a test chip, i.e., the IDs of the neurons that spike in

response to a training image and their spike rates. The spike rates along with the

training object label are used to train the classifier weights to minimize the MSE

of the object label. Implementing an on-chip learning co-processor for the classifier

remains our future work. Input images are scanned bit-by-bit into 100-Kbit image

memory implemented in SRAM to accomplish the on-chip object recognition task

and on-chip learning. Clock signals are generated by a VCO block.

Fig. 1. Neural-inspired object recognition system composed of a sparse coding
frontend and a classification backend. A spiking neural network in the frontend
encodes input into sparse spike trains, and a linear classifier in the backend
computes the weighted sums of the spike trains to detect an object in the input.

Sparse coding

Receptive field

Spike

Node 1

Weight

Classification

W
ei

g
h

te
d

 s
u

m

Node

Histogram

Acc

Acc

Acc
(Car)

Input

1 2 3

1

Sub-classifier 432

Weight mem

Class nodes

Histogram

W
ei

g
h

te
d

 s
u

m

Digit
0 1 5… 6

Spiking neural network 4321

Grid 5 Grid 8

…

…

Grid 1Grid 4

{Spike, NID}

Patch 2

Patch 1

Patch 3

Patch 4

Input

…

1
2

3
64

Shared RFs

Fig. 2. End-to-end object recognition processor. Four spiking neural networks are
connected to four sub-classifiers. Each network includes 64 leaky integrate-and-fire
neurons implemented in 8 2D grids that are linked in an 8-stage systolic ring. The
four networks process four image patches concurrently by sharing 64 receptive
fields.

To

network 4

3

2

1

TABLE II: COMPARISION WITH PRIOR WORKS

ConvNet, RBM

Core Area

Reference

Neurons

Synapses

Algorithm

Application

Interconnect

Technology

Mem size

Kim [3]

256

128K

2-layer grid

and ring

1.31Mbits

SAILnet

Image

sparse coding

TSMC 65nm

 3.1mm2

Merolla [2]

256/core

64K

Crossbar

64Kbits

Object

recognition

Samsung 28nm

0.1mm2

Learning Off chip On chip

Energy metric 48pJ/pixel
26pJ/synaptic

event

Bitwith

of a Synapse
8 and

13 bits
1 bit

Seo [1]

256

64K

Crossbar

256Kbits

STDP

Pattern

recognition

IBM 45nm

 4.2mm2

On chip

-

4 bits

This work

256

83K

2-layer grid

and ring

237Kbits

Spiking LCA

Object

recognition

TSMC 65nm

 1.8mm2

On chip

7.72pJ/pixel

4, 5 and

13 bits

Fig. 4. On-chip learning co-processor

Chip microphotograph

Series1

Series2

Core memory

Series4

250

200

150

100

50

0

300

5004003002001000 600

Total
Datapath

Learning memory

IM memory

P
o

w
er

 (
m

W
)

Frequency (MHz)

Series1

Series2

core memory
250

200

150

100

50

0

300
Total

Datapath

IM memory

5004003002001000 600

P
o

w
er

 (
m

W
)

Frequency (MHz)

Energy Efficiency

(pJ/pixel)

Throughput

(Mpixel/s)

TABLE I: CHIP SUMMARY

Technology

Core Area

Chip Area

Frequency (MHz)

Core logic (V)

Core mem (V)

Aux. mem (V)

TSMC 65nm GP CMOS

(Core logic: 0.97mm2,

 Core mem: 0.64mm2

 Aux. mem: 0.21mm2)

 1.73 × 1.73mm (2.99mm2)

Inference Learning

Power (mW)

63539

1.000.45

1.000.43

7779475.3

268.23.65

34.57.69

40 651

1.000.45

0.000.00

1.000.50

1.000.55

4.030.25

257.643.93

6393915881

1.35mm ×

1.35mm

Fig. 3. Multiplier-less sub-classifier. The weighted sum in
the classifier is approximated as an accumulation operation
enabled by sparse {spike, NID} packets.

{Spike, NID}

Weight mem

64x50

Regfile

NID 50

…

En

5

10 class nodes

5

5

To

histogram

Error-free

Error tolerant classification

Error-free

Error tolerant classification30

25

20

15

10

5

40

E
n

er
g

y
 e

ff
ic

ie
n

cy
 (

p
J/

p
ix

el
)

Frequency (MHz)

5004003002001000 600

Sparse coding

Input Reconstructed

image

Receptive field

Spike

Acc

Integrate

and fire

Feedback

weights

…

…

…

…

…

…

…

…

...

...

...

...
..
. ..

. ..
. ..

.

…
…

…

…

Figure 7.10: Measured power consumption of the object recognition processor.

We measure power consumption of the object recognition processor at room tem-

perature. Through voltage scaling, datapath and IM memory power are measured

at the minimum supply voltages for each clock frequency, as illustrated in Fig. 7.10.

The object recognition processor runs at a maximum frequency of 635MHz at 1.0V

to achieve a high throughput of 10.16G pixel/s, dissipating 268mW. The processor

achieves the best energy efficiency at 40MHz with a throughput of 640M pixel/s, as

summarized in Table I. The results demonstrate 8.2× higher throughput and 6.7×

better energy efficiency than the previous SAILnet IM [32, 33]. The spiking LCA

IM outperforms the SAILnet IM with high target firing rate, as discussed in Sec-

tion 4.3.2.3.

An example of recognizing an object is shown in Fig. 7.8. Tested with the MNIST

126

Fig. 1. Sparse neuromorphic object recognition system composed of the spiking LCA inference module
(IM) front-end and the task-driven classifier back-end. A sparse set of features are extracted to represent
the input image. The weighted spiking rate is summed to vote the most likely object class.

Fig. 4 . (a) Feature matrix and a 64-entry spike count
vector multiplication to support learning. (b) Simplified
vector-matrix product by taking advantage of sparsity.

Fig. 2. Throughput and energy comparison with state-of-the-
art neuromorphic ASICs for sparse coding.

Fig. 5. Measured power consumption of the object
recognition processor at the minimum datapath and
memory supply voltages for each frequency.

Fig. 6. Measured energy efficiency of the
object recognition processor by exploiting
error tolerance.

Input

Inference module

Feature dictionary

Classifier

Spike
rate

Spike
rate

Spike
rate

Spike
rate…

Spike
rate

…

Class 1

Class 2

Class 10

Sparse
spike

…

(a) (b)

…

…

2
3

…
 …

 0

0

2

3
0

Spike
count

…

…

…

…

…
…
…

…

Feature matrix

256

64

64

… Feature
dictionary

16

Fig. 7. Chip microphotograph

sadfsadfsaddddfdddsdddadddfasdfsadf

Series2

Error-free IM and classification

Error-free classification9

8

7

6

5

10

E
ne

rg
y

ef
fi

ci
en

cy
 (

pJ
/p

ix
el

)

Frequency (MHz)
806040200 100

IM NETWORK 1 IM NETWORK 2

IM MEM

LEARNING MEM

VCO

IM NETWORK 3 IM NETWORK 4

MEM
IMAGE

SUB‐CLASSIFIERS

IM MEM

IM MEM

GRIDGRID

Series1

Series2

re memory

Total
Datapath

Memory
250

200

150

100

50

0

300

5004003002001000 600

P
ow

er
 (

m
W

)

Frequency (MHz)

aaaaaaaaaaaaaaa

Series3

256 neurons (65nm)
[4]

18 neurons (0.35um)

256 neurons (65nm)
[This work]

Object recognition

Sparse coding

[3]

T
hr

ou
gh

pu
t (

In
pu

t e
le

m
en

t/
s)

107

1011

103

105

109

Energy (J/input element)
10-410-1010-12 10-610-8

Fig. 3. Object recognition processor with on-chip learning co-processor. (a) Four image patches to extract features in parallel. (b) Inference module (IM)
implemented in four 64-neuron spiking neural networks. (c) Spike event-driven classifier (d) Soft output of ten class nodes (e) On-chip learning co-processor.

Output

(c) (d)

(e)

Update

Classifier

…

1
2

3
4

Addr …

Class node 1

Class node 2

Class node 10

Addr
1
2

…

64

Weights

…

…

…
3

Inference module

(b)

1
2

3
4

(a)

Learning co-processor

Input

Patch 2

Patch 1

Patch 3

Patch 4

S
um

Class…

LEARNING
PROCESSOR

TABLE II: COMPARISION WITH PRIOR WORKS

Energy metric

Spiking LCA

Core area

Reference

Neurons

Synapses

Algorithm

Architecture

Technology

Mem size

Kim [4]

256

128K

1.31Mbits

SAILnet

65nm

 3.1mm2

Shapero [3]

18

0.53K

3.7 Kbits

0.35um

-

Learning Off chip On chip

 48pJ/pixel6.3nJ/input

7 bit

This work

256

83K

301Kbits

Spiking LCA with
classification

65nm

 1.8mm2

On chip

5.7pJ/pixel

Bitwith
of a Synapse

8 and
13 bits

4, 5 and
14 bits

2-layer grid
and ring

2-layer grid
and ring

RBM

Merolla [8]

256

256K

Crossbar

256Kbits

45nm

 4.2mm2

Off chip

 45pJ/spike

1 bit

Seo [7]

256

64K

256Kbits

STDP

45nm

 4.2mm2

On chip

-

4 bits

Crossbar Crossbar

 1.73 × 1.73mm (2.99mm2)

6.7×

8.2×

TABLE I: CHIP SUMMARY

Energy Efficiency
(pJ/pixel)

Throughput
(Mpixel/s)

Core Area

Chip Area

Frequency (MHz)

Datapath (V)

Memory (V)

Power (mW)

63540

1.000.45

1.000.425

10160640

268.23.65

26.405.70

1.35mm × 1.35mm

(Datapath : 0.97mm2,
 Memory : 0.48mm2,
Learning : 0.21mm2,
 Periphery: 0.16mm2)

101 102 103
0

10

20

30

40

50

60

70

80

90

100

Clock cycles

M
N

IS
T

 c
la

ss
ifi

ca
tio

n
er

ro
rs

 (
%

)

η = 2−3

η = 2−4

η = 2−5

Figure 7.11: Classification error measured in different inference window.

(a) (b)

Figure 7.12: (a) 100 input images (each square in the grid is a 28×28 image), and (b)
the reconstructed images using chip measurements.

127

 range: [0 0.75]

1 28

1

28

(a)

 range: [−0.0556641 0.495605]

1 28

1

28

(b)

Figure 7.13: Misclassification in digit recognition. (a) Input image, ‘9’, and (b) the
reconstructed image that is classified as ‘7’.

database of 28 × 28 handwritten digits [92], the chip is capable of recognizing 9.9M

objects/s at a classification accuracy of 84%. Increasing the inference period from

2τ to 12τ enhances the classification accuracy to 90% as illustrated in Fig. 7.11, but

cuts the throughput by 6×. Fig. 7.12 shows 100 input images randomly selected from

the MNIST dataset and the reconstructed images. Fig. 7.13 shows an example of

misclassification in digit recognition. The classification accuracy of this single-layer

IM and single-layer classifier is still lower than what is reported in state-of-the-art

machine learning literature, but the scalable architecture allows multiple layers of IM

and classifier to be integrated in future work to improve the results.

The on-chip learning co-processor runs at a maximum frequency of 650MHz at

1.0V, dissipating 258mW. The power breakdown of learning is shown in Fig. 7.14. We

measured the power consumption of datapath, IM memory, and learning memory at

the minimum supply voltages at each clock frequency. Since the co-processor needs

to execute three instructions to update RFs and feedback weights, we set the supply

voltages and frequency where the three instructions are fully functional, and report

the average power consumption of the three for each clock frequency. To compute

vector-matrix product, matrix scaling, and matrix-matrix product, 3057, 6144, and

128

Fig. 1. Neural-inspired object recognition system composed of a sparse coding
frontend and a classification backend. A spiking neural network in the frontend
encodes input into sparse spike trains, and a linear classifier in the backend
computes the weighted sums of the spike trains to detect an object in the input.

Sparse coding

Receptive field

Spike

Node 1

Weight

Classification

W
ei

g
h
te

d
 s

u
m

Node

Histogram

Acc

Acc

Acc
(Car)

Input

1 2 3

1

Sub-classifier 432

Weight mem

Class nodes

Histogram

W
ei

g
h
te

d
 s

u
m

Digit
0 1 5… 6

Spiking neural network 4321

Grid 5 Grid 8

…

…

Grid 1Grid 4

{Spike, NID}

Patch 2

Patch 1

Patch 3

Patch 4

Input

…

1
2

3
64

Shared RFs

Fig. 2. End-to-end object recognition processor. Four spiking neural networks are
connected to four sub-classifiers. Each network includes 64 leaky integrate-and-fire
neurons implemented in 8 2D grids that are linked in an 8-stage systolic ring. The
four networks process four image patches concurrently by sharing 64 receptive
fields.

To

network 4

3

2

1

TABLE II: COMPARISION WITH PRIOR WORKS

ConvNet, RBM

Core Area

Reference

Neurons

Synapses

Algorithm

Application

Interconnect

Technology

Mem size

Kim [3]

256

128K

2-layer grid

and ring

1.31Mbits

SAILnet

Image

sparse coding

TSMC 65nm

 3.1mm2

Merolla [2]

256/core

64K

Crossbar

64Kbits

Object

recognition

Samsung 28nm

0.1mm2

Learning Off chip On chip

Energy metric 48pJ/pixel
26pJ/synaptic

event

Bitwith

of a Synapse
8 and

13 bits
1 bit

Seo [1]

256

64K

Crossbar

256Kbits

STDP

Pattern

recognition

IBM 45nm

 4.2mm2

On chip

-

4 bits

This work

256

83K

2-layer grid

and ring

237Kbits

Spiking LCA

Object

recognition

TSMC 65nm

 1.8mm2

On chip

7.72pJ/pixel

4, 5 and

13 bits

Fig. 4. On-chip learning co-processor

Chip microphotograph

Series1

Series2

Core memory

Series4

250

200

150

100

50

0

300

5004003002001000 600

Total
Datapath

Learning memory

IM memory

P
o
w

er
 (

m
W

)

Frequency (MHz)

Series1

Series2

core memory
250

200

150

100

50

0

300
Total

Datapath

IM memory

5004003002001000 600

P
o
w

er
 (

m
W

)

Frequency (MHz)

Energy Efficiency

(pJ/pixel)

Throughput

(Mpixel/s)

TABLE I: CHIP SUMMARY

Technology

Core Area

Chip Area

Frequency (MHz)

Core logic (V)

Core mem (V)

Aux. mem (V)

TSMC 65nm GP CMOS

(Core logic: 0.97mm2,

 Core mem: 0.64mm2

 Aux. mem: 0.21mm2)

 1.73 × 1.73mm (2.99mm2)

Inference Learning

Power (mW)

63539

1.000.45

1.000.43

7779475.3

268.23.65

34.57.69

40 651

1.000.45

0.000.00

1.000.50

1.000.55

4.030.25

257.643.93

6393915881

1.35mm ×

1.35mm

Fig. 3. Multiplier-less sub-classifier. The weighted sum in
the classifier is approximated as an accumulation operation
enabled by sparse {spike, NID} packets.

{Spike, NID}

Weight mem

64x50

Regfile

NID 50

…

En

5

10 class nodes

5

5

To

histogram

Error-free

Error tolerant classification

Error-free

Error tolerant classification30

25

20

15

10

5

40

E
n
er

g
y
 e

ff
ic

ie
n
cy

 (
p
J/

p
ix

el
)

Frequency (MHz)

5004003002001000 600

Sparse coding

Input Reconstructed

image

Receptive field

Spike

Acc

Integrate

and fire

Feedback

weights

…

…

…

…

…

…

…

…

...

...

...

...
..
. ..

. ..
. ..

.

…
…

…

…

Figure 7.14: Measured power consumption of learning co-processor.

22464 clock cycles per 16 × 16 image patch are required, respectively. A rigorous

training using 4M image patches can be completed within 200 seconds. Note that

the learning rule (4.21) is a global computation, so it takes longer than the SAILnet

local learning. After learning converges, the co-processor is powered off.

Fig. 1. Sparse neuromorphic object recognition system composed of the spiking LCA inference module
(IM) front-end and the task-driven classifier back-end. A sparse set of features are extracted to represent
the input image. The weighted spiking rate is summed to vote the most likely object class.

Fig. 4 . (a) Feature matrix and a 64-entry spike count
vector multiplication to support learning. (b) Simplified
vector-matrix product by taking advantage of sparsity.

Fig. 2. Throughput and energy comparison with state-of-the-
art neuromorphic ASICs for sparse coding.

Fig. 5. Measured power consumption of the object
recognition processor at the minimum datapath and
memory supply voltages for each frequency.

Fig. 6. Measured energy efficiency of the
object recognition processor by exploiting
error tolerance.

Input

Inference module

Feature dictionary

Classifier

Spike
rate

Spike
rate

Spike
rate

Spike
rate…

Spike
rate

…

Class 1

Class 2

Class 10

Sparse
spike

…

(a) (b)

…

…

2
3

…
 …

 0

0

2

3
0

Spike
count

…

…

…

…

…
…
…

…

Feature matrix

256

64

64

… Feature
dictionary

16

Fig. 7. Chip microphotograph

sadfsadfsaddddfdddsdddadddfasdfsadf

Series2

Error-free IM and classification

Error-free classification9

8

7

6

5

10

E
ne

rg
y

ef
fi

ci
en

cy
 (

pJ
/p

ix
el

)

Frequency (MHz)
806040200 100

IM NETWORK 1 IM NETWORK 2

IM MEM

LEARNING MEM

VCO

IM NETWORK 3 IM NETWORK 4

MEM
IMAGE

SUB‐CLASSIFIERS

IM MEM

IM MEM

GRIDGRID

Series1

Series2

re memory

Total
Datapath

Memory
250

200

150

100

50

0

300

5004003002001000 600

P
ow

er
 (

m
W

)

Frequency (MHz)

aaaaaaaaaaaaaaa

Series3

256 neurons (65nm)
[4]

18 neurons (0.35um)

256 neurons (65nm)
[This work]

Object recognition

Sparse coding

[3]

T
hr

ou
gh

pu
t (

In
pu

t e
le

m
en

t/
s)

107

1011

103

105

109

Energy (J/input element)
10-410-1010-12 10-610-8

Fig. 3. Object recognition processor with on-chip learning co-processor. (a) Four image patches to extract features in parallel. (b) Inference module (IM)
implemented in four 64-neuron spiking neural networks. (c) Spike event-driven classifier (d) Soft output of ten class nodes (e) On-chip learning co-processor.

Output

(c) (d)

(e)

Update

Classifier

…

1
2

3
4

Addr …

Class node 1

Class node 2

Class node 10

Addr
1
2

…

64

Weights

…

…

…
3

Inference module

(b)

1
2

3
4

(a)

Learning co-processor

Input

Patch 2

Patch 1

Patch 3

Patch 4

S
um

Class…

LEARNING
PROCESSOR

TABLE II: COMPARISION WITH PRIOR WORKS

Energy metric

Spiking LCA

Core area

Reference

Neurons

Synapses

Algorithm

Architecture

Technology

Mem size

Kim [4]

256

128K

1.31Mbits

SAILnet

65nm

 3.1mm2

Shapero [3]

18

0.53K

3.7 Kbits

0.35um

-

Learning Off chip On chip

 48pJ/pixel6.3nJ/input

7 bit

This work

256

83K

301Kbits

Spiking LCA with
classification

65nm

 1.8mm2

On chip

5.7pJ/pixel

Bitwith
of a Synapse

8 and
13 bits

4, 5 and
14 bits

2-layer grid
and ring

2-layer grid
and ring

RBM

Merolla [8]

256

256K

Crossbar

256Kbits

45nm

 4.2mm2

Off chip

 45pJ/spike

1 bit

Seo [7]

256

64K

256Kbits

STDP

45nm

 4.2mm2

On chip

-

4 bits

Crossbar Crossbar

 1.73 × 1.73mm (2.99mm2)

6.7×

8.2×

TABLE I: CHIP SUMMARY

Energy Efficiency
(pJ/pixel)

Throughput
(Mpixel/s)

Core Area

Chip Area

Frequency (MHz)

Datapath (V)

Memory (V)

Power (mW)

63540

1.000.45

1.000.425

10160640

268.23.65

26.405.70

1.35mm × 1.35mm

(Datapath : 0.97mm2,
 Memory : 0.48mm2,
Learning : 0.21mm2,
 Periphery: 0.16mm2)

Figure 7.15: Measured energy efficiency of the object recognition processor by ex-
ploiting error tolerance.

The neuromorphic IM is error tolerant [33], and integrating IM and classifier

provides additional error tolerance as the soft classifier accommodates more errors

in feature extraction. The classifier calculates the score of each object class, chooses

the maximum score, and generates the corresponding object ID as output. Errors

129

propagated from the IM can be tolerated in the classifier. Error-free classification

even with errors in the output of the IM can be achieved. With the error tolerance,

the supply voltage for the datapath and the memory can be reduced to 450mW and

425mW, respectively to improve the energy efficiency to 5.7pJ/pixel at 40MHz, as

shown in Fig. 7.15.

Fig. 1. Sparse neuromorphic object recognition system composed of the spiking LCA inference module
(IM) front-end and the task-driven classifier back-end. A sparse set of features are extracted to represent
the input image. The weighted spiking rate is summed to vote the most likely object class.

Fig. 4 . (a) Feature matrix and a 64-entry spike count
vector multiplication to support learning. (b) Simplified
vector-matrix product by taking advantage of sparsity.

Fig. 2. Throughput and energy comparison with state-of-the-
art neuromorphic ASICs for sparse coding.

Fig. 5. Measured power consumption of the object
recognition processor at the minimum datapath and
memory supply voltages for each frequency.

Fig. 6. Measured energy efficiency of the
object recognition processor by exploiting
error tolerance.

Input

Inference module

Feature dictionary

Classifier

Spike
rate

Spike
rate

Spike
rate

Spike
rate…

Spike
rate

…

Class 1

Class 2

Class 10

Sparse
spike

…

(a) (b)

…

…

2
3

…
 …

 0

0

2

3
0

Spike
count

…

…

…

…

…
…
…

…

Feature matrix

256

64

64

… Feature
dictionary

16

Fig. 7. Chip microphotograph

sadfsadfsaddddfdddsdddadddfasdfsadf

Series2

Error-free IM and classification

Error-free classification9

8

7

6

5

10

E
ne

rg
y

ef
fi

ci
en

cy
 (

pJ
/p

ix
el

)

Frequency (MHz)
806040200 100

IM NETWORK 1 IM NETWORK 2

IM MEM

LEARNING MEM

VCO

IM NETWORK 3 IM NETWORK 4

MEM
IMAGE

SUB‐CLASSIFIERS

IM MEM

IM MEM

GRIDGRID

Series1

Series2

re memory

Total
Datapath

Memory
250

200

150

100

50

0

300

5004003002001000 600

P
ow

er
 (

m
W

)

Frequency (MHz)

aaaaaaaaaaaaaaa

Series3

256 neurons (65nm)
[4]

18 neurons (0.35um)

256 neurons (65nm)
[This work]

Object recognition

Sparse coding

[3]

T
hr

ou
gh

pu
t (

In
pu

t e
le

m
en

t/
s)

107

1011

103

105

109

Energy (J/input element)
10-410-1010-12 10-610-8

Fig. 3. Object recognition processor with on-chip learning co-processor. (a) Four image patches to extract features in parallel. (b) Inference module (IM)
implemented in four 64-neuron spiking neural networks. (c) Spike event-driven classifier (d) Soft output of ten class nodes (e) On-chip learning co-processor.

Output

(c) (d)

(e)

Update

Classifier

…

1
2

3
4

Addr …

Class node 1

Class node 2

Class node 10

Addr
1
2

…

64

Weights

…

…

…
3

Inference module

(b)

1
2

3
4

(a)

Learning co-processor

Input

Patch 2

Patch 1

Patch 3

Patch 4

S
um

Class…

LEARNING
PROCESSOR

TABLE II: COMPARISION WITH PRIOR WORKS

Energy metric

Spiking LCA

Core area

Reference

Neurons

Synapses

Algorithm

Architecture

Technology

Mem size

Kim [4]

256

128K

1.31Mbits

SAILnet

65nm

 3.1mm2

Shapero [3]

18

0.53K

3.7 Kbits

0.35um

-

Learning Off chip On chip

 48pJ/pixel6.3nJ/input

7 bit

This work

256

83K

301Kbits

Spiking LCA with
classification

65nm

 1.8mm2

On chip

5.7pJ/pixel

Bitwith
of a Synapse

8 and
13 bits

4, 5 and
14 bits

2-layer grid
and ring

2-layer grid
and ring

RBM

Merolla [8]

256

256K

Crossbar

256Kbits

45nm

 4.2mm2

Off chip

 45pJ/spike

1 bit

Seo [7]

256

64K

256Kbits

STDP

45nm

 4.2mm2

On chip

-

4 bits

Crossbar Crossbar

 1.73 × 1.73mm (2.99mm2)

6.7×

8.2×

TABLE I: CHIP SUMMARY

Energy Efficiency
(pJ/pixel)

Throughput
(Mpixel/s)

Core Area

Chip Area

Frequency (MHz)

Datapath (V)

Memory (V)

Power (mW)

63540

1.000.45

1.000.425

10160640

268.23.65

26.405.70

1.35mm × 1.35mm

(Datapath : 0.97mm2,
 Memory : 0.48mm2,
Learning : 0.21mm2,
 Periphery: 0.16mm2)

Figure 7.16: Throughput and energy comparison with state-of-the-art neuromorphic
ASICs for sparse coding.

Table 7.1: Comparison with prior works
Reference Seo [43] Merolla [42] Shapero [53] Kim [32] This work
Neurons 256 256 18 256 256
Synapses 64K 256K 0.53K 128K 83K
Bitwidth of
a Synapse

4 bit 1 bits 7 bit 8 and 13 bits
4, 5, and
14 bits

Memory size 256Kbits 256Kbits 3.7Kbits 1.31Mbits 301Kbits

Architecture Crossbar Crossbar Crossbar
2-layer bus
and ring

2-layer bus
and ring

Algorithm STDP RBM Spiking LCA SAILnet
Spiking LCA with

classification
Learning On-chip Off-chip Off-chip On-chip On-chip

Technology 45nm 45nm 0.35um 65nm 65nm
Core Area 4.2mm2 4.2mm2 - 3.1mm2 1.8mm2

Energy metric - 45pJ/spike 6.3nJ/input 48pJ/pixel 5.7pJ/pixel

7.5 Summary

This chapter presents a 65nm CMOS end-to-end neuromorphic object recogni-

tion processor. The size of on-chip memory is vastly reduced by implementing the

130

convolutional spiking LCA IM that limits the size of receptive fields. The classifier

is tightly integrated with the IM, and snoops the ring of the IM network to reduce

area and power. The light-weight learning co-processor executes three instructions to

update RFs and feedback weights, and its power is reduced by processing non-zero

neuron output. To enhance the throughput of the object recognition processor, we

organize 256 neurons into four IM networks to unroll the convolution operation.

Compared to state-of-the-art neuromorphic ASICs for sparse coding [53, 32], this

design demonstrates new capabilities including object recognition. Using algorithm

and architecture techniques, the energy efficiency of the neuromorphic ASIC chip

is enhanced to 5.7pJ/pixel, which is an 8.2× improvement over the previously de-

signed SAILnet sparse coding IM and a 1105× improvement over spiking LCA IM

implemented in 0.35um CMOS, as illustrated in Fig. 7.16. In comparison with other

neuromorphic ASICs [43, 42], this work implements a 2-layer bus and ring architec-

ture in the IM, and demonstrates object recognition supported by on-chip learning.

The test chip achieves a classification accuracy of 90%. Table 7.1 summarizes the

comparison.

131

CHAPTER VIII

Conclusion

The co-design techniques are employed to advance the practical implementations

of CT image reconstruction, neuromorphic sparse coding, and object recognition. We

demonstrate a CT forward-projection architecture for CT image reconstruction to

achieve both acceleration and scalability. We also demonstrate a 2-layer bus-ring

architecture for the efficient mapping of sparse spiking neural networks to achieve

1.24 G pixel/s feature extraction throughput. This work leads to an event-driven

classifier design integrated with a spiking LCA IM to demonstrate 640 M pixel/s and

3.67mW object recognition.

8.1 Advances

Custom forward-projection architecture is implemented for fast iterative image

reconstruction in X-ray CT. In comparison with conventional simulators for medical

imaging, fixed-point quantization is applied in the implementation to reduce hard-

ware costs. Errors caused by fixed-point quantization are tolerated in the iterative

method, and the degradation of the quality of practical CT images was negligible,

motivating the use of fixed-point datapath in implementation. The proposed water-

filling buffer resolves the inherent hardware inefficiency due to a mismatch between

the 3D object grid and the 2D projection grid. The proposed out-of-order sectored

132

processing takes advantage of temporal and spatial locality of references to reduce

off-chip memory bandwidth by three orders of magnitude, providing scalability for

high-level parallelism in advanced hardware platforms.

The impacts of fixed-point quantization are further analyzed in the iterative

method using a perturbation-based model. The effect of fixed-point quantization

is modeled as a perturbation of floating-point arithmetic by injecting uniform white

noise. Particularly, the effects of the fixed-point quantization error in forward-projection,

back-projection, and image update are quantified using the open loop and the closed

loop gain of a diagonally preconditioned gradient descent algorithm with a quadratic

regularizer. An upper bound on the quantization error variance is derived, and the

result shows that the quantization step size can be chosen to meet a given upper

bound.

The co-design techniques are employed to implement custom hardware architec-

tures for neuromorphic sparse coding. A tuning strategy of the neural network size,

firing rate and update step size is proposed to achieve sparse and random spiking. The

resulted sparsity allows for implementation of spiking neural networks by addressing

routing complexity and scalability. The proposed arbitration-free bus tolerates spike

collision by leveraging sparsity, removing costly bus arbitor and enabling efficient

communication. A scalable latent ring mitigates neuron misfires by damping neuron

spiking to be sparse and random. Ultimately, a 2-layer bus-ring architecture is pro-

posed to achieve both high throughput and scalability. In this 2-layer architecture,

neurons are grouped into multiple clusters, and neurons in a cluster are connected

with a 2D bus to reduce wire loading. Multiple 2D buses are linked in a systolic ring

to reduce communication latency. The cluster size and the ring size are optimized by

considering the tradeoff between spike collision rate and throughput.

The optimized bus-ring architecture allows for the efficient mapping of sparse

spiking networks onto hardware using a 65nm CMOS technology, achieving a sparse

133

feature extraction throughput of 1.24G pixel/s at 310MHz and 1.0V. The proposed

memory power gating improves energy efficiency of inference by separating weight

memory into core and auxiliary memory, and powering off the auxiliary memory in

inference. The proposed approximate learning scheme tracks only significant neuron

activities, thereby enabling on-chip learning in seconds. The sparse coding ASIC

exploits error tolerance in sparse feature extraction, lowering the core memory supply

voltage for an enhanced energy efficiency.

The inherent sparse spiking enables low-power energy-efficient event-driven classi-

fication, demonstrating 640M pixel/s 3.65mW object recognition using a 65nm CMOS

technology. The convolutional spiking LCA inference module (IM) limits the size of

receptive fields by dividing an input image into patches, saving area and power. The

proposed classifier is tightly integrated with the IM, and activated by sparse spike-

events, simplifying its implementation by removing all multiplications. Multiple IM

networks and sub-classifiers boost the throughput up to 10.16G pixel/s at 635MHz by

processing multiple image patches in parallel. The light-weight learning co-processor

leverages sparsity to efficiently implement the stochastic gradient descent updates for

on-line learning. The integrated IM with classifier enhances throughput and energy

efficiency by exploiting error tolerance.

8.2 Future work

Implementation of custom neural network architectures through co-design tech-

niques enables the development of unconventional neuromorphic computing hardware.

Analog designs are efficient in computing, but component mismatch requires calibra-

tion, and scaling to deep submicron CMOS devices further increases mismatch in

analog designs [94]. Therefore, analog computing may not be the perfect solutions

for a conventional von Neumann computing. However, it could be ideal candidates

for building neuromorphic computing, since neuromorphic computing is tolerant to

134

errors caused by noise in the signals and variations of the components [95, 96, 97].

Based on this observation, energy-efficient neuromorphic systems can be realized

by the co-design of analog components and error-tolerant spiking neural networks.

Future plans about an implementation of analog-digital neural networks include 1)

integration of analog CMOS neurons with digital neural network architectures to

demonstrate hybrid neuromorphic computing platforms, 2) investigation of content

addressable memory enabled by local connectivity in sparse spiking neural networks

in order to reduce cost and power, and 3) analysis of the impact of analog neurons

and local memory on neuromorphic algorithms through the co-design techniques.

In addition, the intuition of error tolerance in the end-to-end object recognition

system allows for the investigation of low-cost medical imaging hardware through

the co-design techniques. Despite the opportunities of speeding up image process-

ing using general-purpose hardware, the ultimate goal of medical imaging is to help

doctors with disease diagnosis [98]. Study on dictionary learning shows that an ex-

act signal reconstruction is not necessarily required for a good detection/prediction

performance [90]. Motivated by these observations, efficient medical imaging systems

can be investigated by the following steps: 1) non-perfect image reconstruction and

image downsampling, 2) feature extraction in the region of interest of the low qual-

ity images, and 3) analysis of the impacts of the image quality on the classification

results.

Furthermore, the FPGA-based CT forward projection accelerator paves a way to

implement a complete CT image reconstruction system by the following steps: 1) im-

plementation of an FPGA-based CT back-projection accelerator, 2) implementation

of an edge preserving regularizer to improve the quality of reconstructed images, 3) in-

tegration of the forward-projection, the back-projection, and the regularizer designs,

and 4) enhancement of the throughput and the accuracy of image reconstruction

using multiple FPGAs.

135

APPENDIX

136

APPENDIX A

Quantization error bounds of iterative image

reconstruction in X-ray CT

A.1 Derivation of perturbation-based error bounds

(Derivation of (3.7))

ρ
(
cov

(
e(n), e(n)

))
= max

x:‖x‖=1

(
x′cov

(
e(n), e(n)

)
x
)

=
∆2

fp

12
max
x:‖x‖=1

(
n−1∑
k=0

x′
(
D

1
2UΣkU ′D

1
2 (V FV ′)D

1
2UΣkU ′D

1
2

)
x

)

=
∆2

fp

12
max
x:‖x‖=1

(
n−1∑
k=0

‖ F
1
2V ′D

1
2UΣkU ′D

1
2x ‖2

)

≤
∆2

fp

12
ρ(F) · max

x:‖x‖=1

(
n−1∑
k=0

‖ V D
1
2UΣkUD

1
2x ‖2

)

=
∆2

fp

12
ρ(F) max

x:‖x‖=1

(
n−1∑
k=0

‖ D
1
2UΣkU ′D

1
2x ‖2

)

≤
∆2

fp

12
ρ(F)ρ(D) max

x:‖x‖=1

(
n−1∑
k=0

‖ UΣkU ′D
1
2x ‖2

)

=
∆2

fp

12
ρ(F)ρ(D) max

x:‖x‖=1

(
n−1∑
k=0

‖ ΣkU ′D
1
2x ‖2

)

137

≤
∆2

fp

12
ρ(F)ρ(D) max

x:‖x‖=1

(
n−1∑
k=0

ρ(Σ)2k ‖ U ′D
1
2x ‖2

)

=
∆2

fp

12
ρ(F)ρ(D) max

x:‖x‖=1

(
n−1∑
k=0

ρ(Σ)2k ‖ D
1
2x ‖2

)

≤
∆2

fp

12
ρ(F)ρ(D)ρ(D)

n−1∑
k=0

ρ(Σ)2k

=
∆2

fp

12
ρ(F)ρ(D2)

1− ρ(Σ)2n

1− ρ(Σ)2
. (A.1)

The second equality in (A.1) holds using the definition of matrix 2-norm. The

first, second, third, and forth inequalities hold from the matrix norm property that

‖ AB ‖≤‖ A ‖ · ‖ B ‖. The third, forth, and fifth equalities hold since a unitary

matrix conserves a matrix norm.

(Derivation of (3.8))

tr
(
cov

(
e(n), e(n)

))
=

∆2
fp

12
tr

(
n−1∑
k=0

(
D

1
2UΣkU ′D

1
2 (V FV ′)D

1
2UΣkU ′D

1
2

))

=
∆2

fp

12

n−1∑
k=0

tr
(
D

1
2UΣkU ′D

1
2 (V FV ′)D

1
2UΣkU ′D

1
2

)
=

∆2
fp

12

n−1∑
k=0

tr
(

ΣkU ′D
1
2 (V FV ′)D

1
2UΣkU ′DU

)
≤

∆2
fp

12

n−1∑
k=0

ρ(Σk)tr
(
U ′D

1
2 (V FV ′)D

1
2UΣkU ′DU

)
=

∆2
fp

12

n−1∑
k=0

ρ(Σk)tr
(
U ′D

3
2 (V FV ′)D

1
2UΣk

)
≤

∆2
fp

12

n−1∑
k=0

ρ(Σ2k)tr
(
U ′D

3
2 (V FV ′)D

1
2U
)

=
∆2

fp

12

n−1∑
k=0

ρ
(
Σ2k
)

tr (D (V FV ′)D)

=
∆2

fp

12
tr (D (V FV ′)D)

1− ρ(Σ2)n

1− ρ(Σ)2
. (A.2)

138

The second equality in (A.2) holds from the property that tr(A+B) = tr(A)+tr(B).

The third, fourth, and fifth equalities hold from the property that tr(ABC) =

tr(BCA). The first and second inequalities hold from the property that tr(AD) ≤

maxi(di) · tr(A) since D has positive diagonal entries.

(Derivation of (3.11)) Continued from (3.10), using Kbp = D and (3.5), the upper

bound on the spectral radius of the second term of (3.10) is

∆2
bp

12
max
x:‖x‖=1

(
n−1∑
k=0

x′
(
D

1
2UΣkU ′D2UΣkU ′D

1
2

)
x

)

≤
∆2

bp

12
ρ(D) · max

x:‖x‖=1

(
n−1∑
k=0

‖ UΣkU ′D
1
2x ‖2

)

≤
∆2

bp

12
ρ(D) max

x:‖x‖=1

(
n−1∑
k=0

ρ(Σ)2k ‖ U ′D
1
2x ‖2

)

≤
∆2

bp

12
ρ(D)ρ(D)

n−1∑
k=0

ρ(Σ)2k

=
∆2

bp

12
ρ(D2)

1− ρ(Σ)2n

1− ρ(Σ)2
, (A.3)

and the upper bound of the third term of (3.10) is

∆2
im

12
max
x:‖x‖=1

(
n−1∑
k=0

x′
(
D

1
2UΣk+1U ′D−1UΣk+1U ′D

1
2

)
x

)

≤ ∆2
im

12
ρ(D) · max

x:‖x‖=1

(
n−1∑
k=0

‖ UΣk+1U ′D−
1
2x ‖2

)

≤ ∆2
im

12
ρ(D) max

x:‖x‖=1

(
n−1∑
k=0

ρ(Σ)2k+2 ‖ U ′D−
1
2x ‖2

)

≤ ∆2
im

12
ρ(D)ρ(D−1)

n−1∑
k=0

ρ(Σ)2k+2

=
∆2

im

12
ρ(D)ρ(D−1)ρ((Σ)2)

1− ρ(Σ)2n

1− ρ(Σ)2
. (A.4)

139

Using (A.1), (A.3), and (A.4), we have

ρ
(
cov

(
e(n), e(n)

))
≤

∆2
fp

12
ρ(F)ρ(D2)

1− ρ(Σ)2n

1− ρ(Σ)2
+

∆2
bp

12
ρ(D2)

1− ρ(Σ)2n

1− ρ(Σ)2
+

∆2
im

12
ρ(D)ρ(D−1)ρ((Σ)2)

1− ρ(Σ)2n

1− ρ(Σ)2
.

(A.5)

Therefore, as n→∞, the upper bound on the spectral radius of (3.10) is

ρ(cov(e(∞), e(∞))) ≤
∆2

fp

12

ρ(D2)ρ(F)

1− ρ(Σ2)
+

∆2
bp

12

ρ(D2)

1− ρ(Σ2)
+

∆2
im

12

ρ(Σ2)ρ(D)ρ(D−1)

1− ρ(Σ2)
. (A.6)

(Derivation of (3.12)) Continued from (3.10), using Kbp = D and (3.5), the upper

bound on the trace of the second term of (3.10) is

∆2
bp

12
tr

(
n−1∑
k=0

(
D

1
2UΣkU ′DUΣkU ′D

1
2

))

≤
∆2

bp

12

n−1∑
k=0

ρ(Σk)tr
(
U ′DUΣkU ′DU

)
≤

∆2
bp

12

n−1∑
k=0

ρ(Σ2k)tr
(
U ′D2U

)
=

∆2
bp

12
tr
(
D2
) 1− ρ(Σ2)n

1− ρ(Σ)2
, (A.7)

and the upper bound of the trace of the third term of (3.10) is

∆2
im

12
tr

(
n−1∑
k=0

(
D

1
2UΣk+1U ′D−1UΣk+1U ′D

1
2

))

≤ ∆2
im

12

n−1∑
k=0

ρ(Σk+1)tr
(
U ′DUΣk+1U ′D−1U

)

140

≤ ∆2
im

12

n−1∑
k=0

ρ(Σ2k+2)tr (I)

=
∆2

im

12
ρ(Σ)2tr (I)

1− ρ(Σ2)n

1− ρ(Σ)2
, (A.8)

Using (A.2), (A.7), and (A.8), we have

tr
(
cov

(
e(n), e(n)

))
≤

∆2
fp

12
tr (D (V FV ′)D)

1− ρ(Σ2)n

1− ρ(Σ)2
+

∆2
bp

12
tr
(
D2
) 1− ρ(Σ2)n

1− ρ(Σ)2
+

∆2
im

12
ρ(Σ)2tr (I)

1− ρ(Σ2)n

1− ρ(Σ)2
.

(A.9)

Therefore, as n→∞, the upper bound on the trace of (3.10) is

tr(cov(e(∞), e(∞))) ≤
∆2

fp

12

tr(V FV ′D2)

1− ρ(Σ2)
+

∆2
bp

12

tr(D2)

1− ρ(Σ2)
+

∆2
im

12

ρ(Σ2)tr(I)

1− ρ(Σ2)
. (A.10)

141

BIBLIOGRAPHY

142

BIBLIOGRAPHY

[1] J. A. Fessler, “Statistical image reconstruction methods for transmission tomog-
raphy,” Handbook of Medical Imaging, Volume 2. Medical Image Processing and
Analysis, pp. 1–70, 2000.

[2] T. M. Buzug, Computed tomography: from photon statistics to modern cone-beam
CT. New York: Springer-Verlag, 2009.

[3] S. Kawata and O. Nalcioglu, “Constrained iterative reconstruction by the Con-
jugate Gradient method,” IEEE Trans. Med. Imag., vol. 4, pp. 65–71, 1985.

[4] Z. Q. Luo and P. Tseng, “On the convergence of the coordinate descent method
for convex differentiable minimization,” J. Optim. Theory Appl., vol. 72, no. 1,
pp. 7–35, 1992.

[5] H. Erdogen and J. A. Fessler, “Ordered subsets algorithms for transmission to-
mography,” Phys. Med. Biol., vol. 44, pp. 2835–51, 1999.

[6] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of com-
pressed sensing for rapid MR imaging,” Magnetic Reconance in Medicine, vol. 58,
no. 6, pp. 1182–1195, 2007.

[7] K. T. Block, M. Uecker, and J. Frahm, “Undersampled radial MRI with multiple
coils. Iterative image reconstruction using a total variation constant,” Magnetic
Reconance in Medicine, vol. 57, no. 6, pp. 1086–1098, 2007.

[8] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE:
sensitivity encoding for fast MRI,” Magnetic Reconance in Medicine, vol. 42, pp.
952–962, 1999.

[9] D. J. Field, “What is the goal of sensory coding?” Neural Computation, vol. 6,
no. 4, pp. 559–601, 1994.

[10] B. A. Olshausen, “Principles of image representation in in visual cortex,” The
Visual Neurosciences, pp. 1603–1615, 2003.

[11] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field proper-
ties by learning a sparse code for natural images,” Nature, vol. 381, pp. 607–609,
1996.

143

[12] P. Foldiak, “Forming sparse representations by local anti-Hebbian learning,”
Biological Cybernetics, vol. 64, no. 2, pp. 165–170, Dec. 1990.

[13] M. S. Falconbridge, R. L. Stamps, and D. R. Badcock, “A simple Hebbian/anti-
Hebbian network learns the sparse, independent components of natural images,”
Neural Computuation, vol. 18, no. 2, pp. 415–429, Feb. 2006.

[14] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief neu-
ral networks for scalable unsupervised learning of hierarchical representation,”
in 26th Annual Int. Conf. Mahine Learning, 2009, pp. 609–616.

[15] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, 2012, pp. 1–9.

[16] G. Hinton, Y. Dong, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senio, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic
modeling in speech recognition: the shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[17] G. E. Dahl, Y. Dong, L. Deng, and A. Acero, “Contex-depedent pre-trained deep
neural networks for large-vocabulary speech recognition,” IEEE Trans. Audio,
Speech, and Language Proc., vol. 20, no. 1, pp. 30–42, 2011.

[18] J. Kim, J. A. Fessler, and Z. Zhang, “Forward-projection architecture for fast
iterative image reconstruction in X-ray CT,” IEEE Trans. Signal Processing,
vol. 60, no. 10, pp. 5508–5518, 2012.

[19] J. Kim, Z. Zhang, and J. A. Fessler, “Hardware acceleration of iterative image
reconstruction for X-ray computed tomography,” in IEEE Conf. Acoust. Speech
Sig. Proc., May 2011, pp. 1697–1700.

[20] J. Kim, J. A. Fessler, and Z. Zhang, “Perturbation-based error analysis of iter-
ative image reconstruction algorithm for X-ray computed tomography,” in Int.
Conf. Image Formation in X-ray Computed Tomography, 2012, pp. 194–197.

[21] F. Xu and K. Mueller, “Real-time 3D computed tomographic reconstruction
using commodity graphics hardware,” Phy. Med. Biol., vol. 52, pp. 3405–19,
2007.

[22] ——, “Accelerating popular tomographic reconstruction algorithms on commod-
ity PC graphics hardware,” IEEE Trans. Nucl. Sci., vol. 52, no. 3, pp. 654–63,
2005.

[23] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 2010.

[24] I. Goddard and M. Trepanier, “High-speed cone-beam reconstruction: an em-
bedded systems approach,” in SPIE, vol. 4681, Feb. 2002, pp. 483–91.

144

[25] J. Xu, N. Subramanian, A. Alessio, and S. Hauck, “Impulse C vs. VHDL
for Accelerating Tomographic Reconstruction,” in IEEE Symposium on Field-
Programmable Custom Computing Machines, 2010, pp. 171–174.

[26] F. Attneave, “Some informational aspects of visual perception,” Psychological
Review, vol. 61, no. 3, pp. 183–193, May 1954.

[27] J. J. Atick and A. N. Redlich, “What does the retina know about natural scenes?”
Neural Computation, vol. 4, no. 2, pp. 196–210, Mar. 1992.

[28] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of
monkey striate cortex,” J. Physiol., vol. 195, no. 1, pp. 215–243, 1968.

[29] R. L. D. Valois, D. G. Albrecht, and L. G. Thorell, “Spatial frequency selectivity
of cells in macaque visual cortex,” Vision Research, vol. 22, no. 5, pp. 545–559,
1982.

[30] J. P. Jones and L. A. Palmer, “An evaluation of the two-dimensional Gabor filter
model of simple receptive fields in cat striate cortex,” J. Physiol., vol. 58, no. 6,
pp. 1233–1258, 1987.

[31] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “Efficient Hardware Architecture for
Sparse Coding,” IEEE Trans. Signal Processing, vol. 62, no. 16, pp. 4173–4186,
2014.

[32] ——, “A 6.67mW sparse coding ASIC enabling on-chip learning and inference,”
in Symp. VLSI Circuits, 2014, pp. 61–62.

[33] P. Knag, J. K. Kim, T. Chen, and Z. Zhang, “A sparse coding neural network
ASIC with on-chip learning for feature extraction and encoding,” IEEE J. Solid-
State Circuits, 2015.

[34] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640m pixel/s xmW neuromorphic
object recognition processor with on-chip learning,” in Symp. VLSI Circuits,
2015.

[35] M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial
neural network (ETANN) with 10240 floating gate synapses,” in Int. Joint Conf.
Neural Networks, 1989, pp. 191–196.

[36] M. Yasunaga, N. Masuda, M. Yagyu, M. Asai, M. Yamada, and A. Masaki,
“Design, fabrication and evaluation of a 5-inch wafer scale neural network LSI
composed on 576 digital neurons,” in Int. Joint Conf. Neural Networks, 1990,
pp. 527–535.

[37] U. Ramacher, “SYNAPSE–A neurocomputer that synthesizes neural algorithms
on a parallel systolic engine,” J. Parallel and Distributed Computing, vol. 14,
no. 3, pp. 306–318, 1992.

145

[38] P. Ienne and M. A. Viredaz, “GENES IV: A bit-serial processing element for a
multi-model neural-network accelerator,” J. VLSI Signal Process., vol. 9, no. 3,
pp. 257–273, 1995.

[39] M. Mahowald, An analog VLSI system for stereoscopic vision. Springer, 1994.

[40] M. A. Sivilotti, “Wiring considerations in analog VLSI systems with application
to field-programmable networks,” Ph.D. dissertation, California Inst. Techology,
1991.

[41] R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynam-
ically reconfigurable silicon array of spiking neurons with conductance-based
synapses,” IEEE Trans. Neural Networks, vol. 18, no. 1, pp. 253–265, Jan. 2007.

[42] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha,
“A digital neurosynaptic core using embedded crossbar memory with 45pJ per
spike in 45nm,” in IEEE Custom Integrated Circuits Conf., 2011, pp. 1–4.

[43] J. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajendran,
J. A. Tierno, L. Chang, D. S. Modha, and D. J. Fridman, “A 45nm CMOS
neuromorphic chip with a scalable architecture for learning in networks of spiking
neurons,” in IEEE Custom Integrated Circuits Conf., 2011, pp. 1–4.

[44] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking
neurons and bistable synapses with spike-timing dependent plasticity,” IEEE
Trans. Neural Netowrks, vol. 17, no. 1, pp. 211–221, 2006.

[45] S. Choudhary, S. Sloan, S. Fok, A. Neckar, E. Trautmann, P. Gao, T. Stew-
art, C. Eliasmith, and K. Boahen, “Silicon neurons that compute,” in Artificial
Neural Networks and Machine Learning–ICANN, 2012, pp. 121–128.

[46] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas-Perez,
T. Delbruck, S. C. Liu, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. C. Ball-
cels, T. Serrano-Gotarredona, A. J. Acosta-Jimenez, and B. Linares-Barranco,
“CAVIAR: A 45k neuron, 5M synapse, 12G connects/s AER hardware sensory–
processing–learning–actuating system for high-speed visual object recognition
and traking,” IEEE Trans. Neural Networks, vol. 20, no. 9, pp. 1417–1438, 2009.

[47] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R.
Lester, A. D. Brown, and S. B. Furber, “SpiNNaker: a 1-W 18-core system-
on-chip for massively-parallel neural network simulation,” IEEE J. Solid-State
Circuits, vol. 48, no. 8, pp. 1–11, 2013.

[48] C. Zamarreno-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Multicasting Mesh AER: A Scalable Assembly Approach
for Reconfigurable Neuromorphic Structured AER Systems. Application to Con-
vNets,” IEEE Trans. Biomed. Circuits and Syst., vol. 7, no. 1, pp. 82–102, 2013.

146

[49] K. Kim, S. Lee, J.-Y. Kim, M. Kim, and H.-J. Yoo, “A 125 GOPS 583 mW
network-on-chip based parallel processor with bio-inspired visual attention en-
gin,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 136–147, 2009.

[50] S. Lee, J. Oh, J. Park, J. Kwon, M. Kim, and H.-J. Yoo, “A 345 mW heteroge-
neous many-core processor with an intelligent inference engine for robust object
recognition,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 42–51, 2011.

[51] J.-Y. Kim, M. Kim, S. Lee, J. Oh, K. Kim, and H.-J. Yoo, “A 201.4 GOPS
496 mW real-time multi-object recognition processor with bio-inspired neural
perception engine,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 32–45, 2010.

[52] J. Oh, G. Kim, B.-G. Nam, and H.-J. Yoo, “A 57 mW 12.5 uJ/epoch embed-
ded mixed-mode neuro-fuzzy processor for mobile real-time object recognition,”
IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2894–2907, 2013.

[53] S. Shapero, C. Rozell, and P. Hasler, “Configurable hardware integrate and fire
neurons for sparse approximation,” Neural Networks, vol. 45, pp. 134–143, 2013.

[54] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H. Yoo, “A 1.93TOPS/W scalable
deep learning/inference processor with Tera-parallel MIMD architecture for big-
data applications,” in IEEE Int. Solid-State Circuits Conf., 2015, pp. 1–3.

[55] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through
spike-timing-dependent synaptic plasticity,” Nature Neurosci., vol. 3, pp. 919–
926, 2000.

[56] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[57] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief
nets,” J. of Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[58] W. B. Levy and R. A. Baxter, “Energy efficient neural codes,” Neural Compu-
tation, vol. 8, no. 3, pp. 531–543, 1996.

[59] E. Seeram, Computed tomography: Physical principles, clinical applications, and
quality control. Saunders Elsverier, 2009.

[60] J. H. Siewerdsen and D. A. Jaffray, “Cone-beam computed tomography with a
flat-panel imager: Effects of image lag,” Med. Phys., vol. 26, pp. 1624–41, 1999.

[61] D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel
cone-beam computed tomography for image-guided radiation therapy,” Int. J.
Radiat. Oncol. Biiol. Phys., vol. 53, pp. 1337–49, 2002.

[62] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,”
J. Opt. Soc. Am. A, vol. 1, no. 6, pp. 612–619, 1984.

147

[63] J. A. Fessler, Image reconstruction: Algorithms and analysis. Book in prepara-
tion.

[64] K. Sauer and C. Bouman, “A local update strategy for iterative reconstruction
from projections,” IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 534–548,
1993.

[65] J.-B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh, “A three-dimensional
statistical approach to improved image quality for multislice helical CT,” Med.
Phys., vol. 34, pp. 4526–44, 2007.

[66] Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and back-projection for
X-ray CT using separable footprints,” IEEE Trans. Med. Imag., vol. 29, no. 11,
pp. 1839–50, 2010.

[67] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing.
New Jersey: Prentice Hall, 1997.

[68] J. A. Gubner, Probability and random processes for electrical and computer en-
gineers. Cambridge University Press, 2006.

[69] D. C. Lay, Linear algebra and its applications. Pearson Education, Inc, 2003.

[70] K. Hoffman and R. Kunze, Linear Algebra. New Jersey: Prentice Hall, 2003.

[71] L. N. Trefethen and D. Bau, Numerical linear algebra. SIAM, 1997.

[72] Virtex-5 FPGA family. Xilinx Corporation. [Online]. Available:
http://www.xilinx.com/products/virtex5/index.htm

[73] Virtex-7 FPGA family. Xilinx Corporation. [Online]. Available:
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm

[74] M. Rehn and F. T. Sommer, “A network that uses few active neurones to code
visual input predicts the diverse shapes of cortical receptive fields,” J. Compu-
tational Neuroscience, vol. 22, no. 2, pp. 135–146, Apr. 2007.

[75] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen, “Sparse coding
via thresholding and local competition in neural circuits,” Neural Computation,
vol. 20, no. 10, pp. 2526–2563, Oct. 2008.

[76] J. Zylberberg, J. T. Murphy, and M. R. DeWeese, “A sparse coding model
with synaptically local plasticity and spiking neurons can account for the di-
verse shapes of V1 simple cell receptive fields,” PLoS Computational Biology,
vol. 7, no. 10, pp. 1–12, Oct. 2011.

[77] D. O. Hebb, The Organization of Behavior: A neuropsychological theory. John
Wiley & Sons, 1949.

148

[78] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Math-
ematical Modeling of Neural System. Taylor & Francis, 2001.

[79] C. Mead and M. Ismail, Analog VLSI Implementation of Neural Systems.
Springer, 1989.

[80] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single neurons, popu-
lations, plasticity. Cambridge University Press, 2002.

[81] W. E. Vinje and J. L. Gallant, “Sparse coding and decorrelation in primary
visual cortex during natural vision,” Science, vol. 287, no. 5456, pp. 1273–1276,
2000.

[82] A. S. Ecker, P. Berens, G. A. Keliris, M. Bethge, N. K. Logothetis, and A. S.
Tolias, “Decorrelated neuronal firing in cortical microcircuits,” Science, vol. 327,
pp. 584–587, Jan. 2010.

[83] A. Balavoine, J. Romberg, and C. Rozell, “Convergence and rate analysis of
neural networks for sparse approximation,” IEEE Trans. Neural Networks Learn.
Syst., vol. 23, no. 9, pp. 1377–1389, Sep. 2012.

[84] D. Ringach, “Spatial structure and asymmetry of simple-cell receptive fields in
macaque primary visual cortex,” J. Neurophysiol, vol. 88, pp. 455–463.

[85] Advanced Topics in Systems Neuroscience. Redwood center for theoretical
neuroscience. [Online]. Available: http://redwood.berkeley.edu/wiki/

[86] E. P. Simoncelli and B. A. Olshausen, “Natural Image Statistics and Neural
Representation,” Annu. Rev. Neurosci., vol. 24, pp. 1193–1216, May 2001.

[87] D. Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-chip
learning,” in Int. Joint Conf. Neural Networks, 1990, pp. 537–543.

[88] L. M. Chalupa and J. S. Werner, The visual neuroscience. Cambridge, MA,
London, England: The MIT Press, 2003.

[89] P. A. Merolla, J. V. Arthur, B. E. Shi, and K. A. Boahen, “Expandable Networks
for Neuromorphic Chips,” IEEE Trans. Circuits Syst.-I, vol. 54, no. 2, pp. 301–
311, 2007.

[90] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE Trans.
Patten Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804, 2012.

[91] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” IEEE Proc., vol. 86, no. 11, pp. 2278–2324, Nov.
1998.

[92] The MNIST database of handwritten digits. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

149

[93] P. F. Schultz, D. M. Paiton, W. Lu, and G. T. Kenyon. (2014) Replicating
kernels with a short stride allows sparse reconstructions with fewer independent
kernels. [Online]. Available: http://arxiv.org/abs/1406.4205v1

[94] A.-J. Annema, B. Nauta, R. van Langevelde, and H. Tuinhout, “Analog circuits
in ultra-deep-submicron CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 1,
pp. 132–143, 2005.

[95] C. F. Stevens and Y. Wang, “Changes in reliability of synaptic function as a
mechanism for plasticity,” Nature, vol. 371, pp. 704–707, 1994.

[96] W. Deng, J. B. Aimone, and F. H. Gage, “New neurons and new memories: how
does adult hippocampal neurogenesis affect learning and memory?” Nature Rev.
Neurosci., vol. 11, pp. 339–350, 2010.

[97] J. Lengler, F. Jug, and A. Steger, “Reliable neuronal systems: the importance
of heterogeneity,” PLoS Computational Biology, vol. 8, no. 12, 2013.

[98] K. Doi, “Current status and future potential of computer-aided diagnosis in
medical imaging,” Br. J. Rad. Special Issue, vol. 78, 2005.

150

