
Model-Based X-Ray CT Image and Light Field
Reconstruction Using Variable Splitting Methods

by

Hung Nien

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in the University of Michigan
2014

Doctoral Committee:

Professor Jeffrey A. Fessler, Chair
Assistant Professor Laura Balzano
Professor Anna C. Gilbert
Professor Alfred O. Hero



© Hung Nien 2014

All Rights Reserved



ACKNOWLEDGEMENTS

I could not finish this work without the help of many people. First of all, I

would like to thank my advisor, Professor Jeffrey A. Fessler, for his careful guidance,

constant encouragement, and the maximum freedom he gave me for developing inde-

pendent thinking and research skills. Unlike most of my colleagues, I knew nothing

about medical imaging and worked on a totally different research topic when I first

arrived at the University of Michigan. When I could not find a supervisor for taking

the qualifying exams, it was Jeff who volunteeringly served as my directed research

supervisor and gave me insightful advice on my preliminary research on light field

reconstruction. When I had a hard and had to quit from the PhD program since I

did not have a research advisor supporting my PhD research, it was Jeff who willingly

served as my research advisor and supported my following doctoral study. Without

Professor Jeff Fessler’s kindly help, this work would not have been possible, even from

the very beginning.

Furthermore, I would like to thank Professor Laura Balzano, Professor Anna C.

Gilbert, and Professor Alfred O. Hero, who served as my thesis committee and gave

me enlightening suggestion and valuable feedback about my dissertation and future

research plan. I really appreciate their help in sharing their deep knowledge of statis-

tics, optimization, and machine learning, which greatly improved the quality of this

thesis. I am grateful to my current and former colleagues: Michael Allison, Jang

Hwan Cho, Donghwan Kim, Jung Kuk Kim, Young Song Kwon, Mai Le, Antonis

Matakos, Madison McGaffin, Gopal Nataraj, Sathish Ramani, Stephen Schmitt, Hao

Sun, and Daniel Weller, for their contributed ideas and discussions. I would also like

to thank all my friends in the EE:Systems program (too many to be listed) for their

emotional support and timely assistance, and thank the EE:Systems staff who helped

me pass different stages of my doctoral study at the University of Michigan.

Finally, I would like to thank my mother and my grandparents for their unwavering

support, letting me pursue my dream, and always believing in me, from the other

side of the world. I would also like to thank my girlfriend, Huiying (Yanna) Yan, who

always stands on my side and helps me become a better man.

ii



This work is supported in part by NIH grant R01-HL-098686 and by an equipment

donation from Intel Corporation. We thank GE Healthcare for providing sinogram

data for our experiments.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II. Background of X-ray CT and its reconstruction . . . . . . . . 4

2.1 Review of X-ray computed tomography . . . . . . . . . . . . 4
2.2 Model-based X-ray CT image reconstruction . . . . . . . . . 6

2.2.1 Gradient-based methods . . . . . . . . . . . . . . . 8
2.2.2 Splitting-based methods . . . . . . . . . . . . . . . 13

III. Fast X-ray CT image reconstruction using variable splitting
methods with ordered subsets . . . . . . . . . . . . . . . . . . . 19

3.1 Non-iterative image update using a linearized AL method . . 19
3.1.1 Linearized AL method . . . . . . . . . . . . . . . . 20
3.1.2 OS-LALM: a splitting-based ordered-subset method 26

3.2 Fast convergence with a downward continuation approach . . 30
3.2.1 Second-order system analysis with a fixed ρ . . . . . 31
3.2.2 Experimental results: low-dose CT . . . . . . . . . . 36

3.3 Efficient memory usage when considering additional splits . . 43
3.3.1 Split OS-LALM: OS-LALM with additional split . . 45
3.3.2 Memory-efficient implementation . . . . . . . . . . . 47
3.3.3 Experimental results: sparse-view CT . . . . . . . . 50

iv



3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

IV. Blind gain correction for X-ray CT image reconstruction . . 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Joint gain-image estimation for X-ray CT image re-
construction . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Applying prior knowledge of gain parameter to the
joint gain-image estimation . . . . . . . . . . . . . . 57

4.2.3 Joint gain-image estimation using other optimization
methods . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 2D fan beam X-ray CT image reconstruction . . . . 59
4.3.2 3D axial X-ray CT image reconstruction . . . . . . 60

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V. Model-based light field reconstruction . . . . . . . . . . . . . . 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Discrete light fields . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Light field transformations of typical camera operations . . . 68

5.3.1 Light field transformation: refocusing . . . . . . . . 69
5.3.2 Light field transformation: zooming . . . . . . . . . 70
5.3.3 Light field transformation: camera translation . . . 71

5.4 Model-based light field reconstruction . . . . . . . . . . . . . 72
5.4.1 Sparsity-regularized minimization using ADMM . . 73
5.4.2 Prior of the elongated light field structure . . . . . . 73

5.5 The back-project filter method for light field reconstruction . 78
5.6 Flatland simulations . . . . . . . . . . . . . . . . . . . . . . . 79
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

VI. Conclusion and future work . . . . . . . . . . . . . . . . . . . . . 83

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2 The split Bregman method as an ADMM algorithm . . . . . 87
B.1 Frequency analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

B.1.1 Case I . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.1.2 Case II . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.1.3 Case III . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2 Parameter selection for image restoration problems . . . . . . 95
B.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . 96
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

v



C.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . 100
C.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . 103

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



LIST OF FIGURES

Figure

3.1 Optimal asymptotic convergence rate ρ? of a system with six distinct
eigenvalues (µ = 0.05L, 0.1L, 0.3L, 0.7L, 0.9L, and L). . . . . . . . 34

3.2 Shoulder scan: cropped images (displayed from 800 to 1200 HU)
from the central transaxial plane of the initial FBP image x(0) (left),
the reference reconstruction x? (center), and the reconstructed image
using the proposed algorithm (OS-LALM-40-c-1) at the 30th iteration
x(30) (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Shoulder scan: cropped difference images (displayed from −30 to 30
HU) from the central transaxial plane of x(30) − x? using OS-based
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Shoulder scan: RMS differences between the reconstructed image
x(k) and the reference reconstruction x? as a function of iteration
using OS-based algorithms with (a) 20 subsets and (b) 40 subsets,
respectively. The dotted lines show the RMS differences using the
standard OS algorithm with one subset as the baseline convergence
rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Shoulder scan: RMS differences between the reconstructed image x(k)

and the reference reconstruction x? as a function of iteration using
the proposed algorithm with different number of FISTA iterations n
(1, 2, and 5) for solving the inner constrained denoising problem. . . 41

3.6 Truncated abdomen scan: cropped images (displayed from 800 to
1200 HU) from the central transaxial plane of the initial FBP image
x(0) (left), the reference reconstruction x? (center), and the recon-
structed image using the proposed algorithm (OS-LALM-20-c-1) at
the 30th iteration x(30) (right). . . . . . . . . . . . . . . . . . . . . . 41

3.7 Truncated abdomen scan: cropped difference images (displayed from
−30 to 30 HU) from the central transaxial plane of x(30) − x? using
OS-based algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Truncated abdomen scan: RMS differences between the reconstructed
image x(k) and the reference reconstruction x? as a function of iter-
ation using OS-based algorithms with 10, 20, and 40 subsets. The
dotted line shows the RMS differences using the standard OS algo-
rithm with one subset as the baseline convergence rate. . . . . . . . 42

vii



3.9 GE performance phantom: cropped images (displayed from 800 to
1200 HU) from the central transaxial plane of the initial FBP image
x(0) (left), the reference reconstruction x? (center), and the recon-
structed image using the proposed algorithm (OS-LALM-24-c-1) at
the 30th iteration x(30) (right). . . . . . . . . . . . . . . . . . . . . . 44

3.10 GE performance phantom: cropped difference images (displayed from
−30 to 30 HU) from the central transaxial plane of x(30) − x? using
the relaxed OS+momentum algorithm and the proposed algorithm. . 44

3.11 GE performance phantom: RMS differences between the reconstructed
image x(k) and the reference reconstruction x? as a function of iter-
ation using the relaxed OS+momentum algorithm and the proposed
algorithm with 24 subsets. The dotted line shows the RMS differences
using the standard OS algorithm with one subset as the baseline con-
vergence rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.12 Chest scan: cropped images (displayed from 800 to 1200 HU) from
the central transaxial plane of the initial FBP image x(0) (left), the
reference reconstruction x? with δ = 0.1 (center), and the converged
reconstruction with δ = 1 (right). . . . . . . . . . . . . . . . . . . . 52

3.13 Chest scan: RMS differences between the reconstructed image x(k)

and the reference reconstruction x? as a function of (a) iteration and
(b) time, respectively, using the proposed algorithm with M = 5 and
different values of η. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.14 Chest scan: RMS differences between the reconstructed image x(k)

and the reference reconstruction x? as a function of (a) iteration and
(b) time, respectively, using the proposed algorithm with η = 0.05
and different values of M . . . . . . . . . . . . . . . . . . . . . . . . 53

3.15 Chest scan: RMS differences between the reconstructed image x(k)

and the reference reconstruction x? as a function of (a) iteration and
(b) time, respectively, using the OS+momentum algorithm and the
proposed algorithm with M = 5. . . . . . . . . . . . . . . . . . . . . 53

3.16 Chest scan: cropped images (displayed from 800 to 1200 HU) from
the central transaxial plane of the reconstructed images x(100) us-
ing the OS+momentum algorithm (left) and the proposed algorithm
(center) after 100 iterations and the reference reconstruction x? (right). 54

4.1 2D simulation: (a) The noisy sinogram with gain fluctuations, and
(b) the corresponding gain fluctuations, where the horizontal and
vertical axes are the radial axis r and the projection view angle θ,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 2D simulation: (a) The true phantom (in cm−1), (b) the initial guess
using the FBP reconstruction, (c) the conventional reconstruction
without gain correction, (d) the proposed reconstruction with blind
gain correction, and (e) the reference reconstruction from a noisy
sinogram without gain fluctuations. . . . . . . . . . . . . . . . . . . 61

viii



4.3 2D simulation: (a) The estimated gain parameter vector as a function
of projection view angle, and (b) the RMS error of the estimated gain
parameter vector versus iteration. . . . . . . . . . . . . . . . . . . . 62

4.4 3D simulation: (a) The true phantom (in cm1 ), (b) the initial guess
using the FBP reconstruction, (c) the conventional reconstruction
without gain correction, (d) the proposed reconstruction with blind
gain correction, (e) the proposed reconstruction with non-blind gain
correction, and (f) the reference reconstruction from a noisy sino-
gram without gain fluctuations. Each subfigure shows the middle
transaxial, coronal, and sagittal planes of the volume. . . . . . . . . 63

4.5 3D simulation: (a) the true gain fluctuations, (b) the estimated gain
fluctuations for the blind case, and (c) the estimated gain fluctuations
for the non-blind case, where the horizontal and vertical axes are the
projection view angle θ and the transaxial axis z, respectively. . . . 64

4.6 3D simulation: for each method, RMS difference between the image
at the nth iteration and the converged reference reconstruction. . . 64

5.1 Different parameterizations of light fields. . . . . . . . . . . . . . . . 66
5.2 Parameterization of light fields in a camera. . . . . . . . . . . . . . 66
5.3 Ray diagram of a planar object with Lambertian reflectance h in a

simplified camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 An example of a 4D light field. (a) A 2D representation of a 4D

light field L(x,u). Each block denotes a 2D slice or a sub-aperture
image with sub-aperture centered at u. (b) An example of a 2D slice
L(x,u0) of the 4D light field L(x,u). . . . . . . . . . . . . . . . . . 68

5.5 Ray diagrams for (a) refocusing, (b) zooming, and (c) camera trans-
lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Demo of refocusing: (a) Image refocused at the first object (z = 1
m). (b) Image refocused at the second object (z = 2 m). (c) Image
refocused at the third object (z = 3 m). . . . . . . . . . . . . . . . . 70

5.7 Demo of zooming: (a) Image captured with α = 1.0. (b) Image
captured with α = 1.1. (c) Image captured with α = 1.2. . . . . . . 71

5.8 Demo of camera translation: (a) Pinhole image with pinhole centered
at u0 = (−2.5 mm, 0.0 mm). (b) Pinhole image with pinhole centered
at u0 = (0.0 mm, 0.0 mm). (c) Pinhole image with pinhole centered
at u0 = (2.5 mm, 0.0 mm). . . . . . . . . . . . . . . . . . . . . . . . 72

5.9 Characteristic slope s0 of practical camera. . . . . . . . . . . . . . . 75
5.10 Depth-invariant blur kernel. . . . . . . . . . . . . . . . . . . . . . . 76
5.11 Demonstration of the depth-invariant prior. . . . . . . . . . . . . . . 77
5.12 A scene with two planar objects at different depth. . . . . . . . . . 79
5.13 2D flatland simulation: (a) The true light field of a scene in Fig-

ure 5.12. (b) The reconstructed light field using the framelet prior.
(c) The reconstructed light field using the curvelet prior. (d) The
reconstructed light field using the TV prior. (e) The reconstructed
light field using the proposed light field prior. (f) The reconstructed
light field using the BPF method. . . . . . . . . . . . . . . . . . . . 80

ix



5.14 2D flatland simulation: (a) The true light field of a scene with three
planar objects at different depths. (b) The reconstructed light field
using the proposed light field prior. (c) The reconstructed light field
using the BPF method. . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.1 An image restoration problem instance: the true image (left), the
noisy blurred image (middle), and the converged reference reconstruc-
tion (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.2 The convergence rate curves with different parameter settings: (a) the
relative error of cost value and (b) the RMS difference between the
reconstructed image and the reference reconstruction as a function of
the number of iterations. . . . . . . . . . . . . . . . . . . . . . . . . 98

x



LIST OF APPENDICES

Appendix

A. A (primal) convergence proof of the SB method for regularized least-
squares problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B. Frequency analysis and parameter selection of ADMM: the quadratic
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C. Convergence analyses of the inexact linearized AL method . . . . . . . 99

xi



ABSTRACT

Model-Based X-Ray CT Image and Light Field Reconstruction Using
Variable Splitting Methods

by

Hung Nien

Chair: Jeffrey A. Fessler

Model-based image reconstruction (MBIR) is a powerful technique for solving ill-

posed inverse problems. Compared with direct methods, it can provide better es-

timates from noisy measurements and from incomplete data, at the cost of much

longer computation time. In this work, we focus on accelerating and applying MBIR

for solving reconstruction problems, including X-ray computed tomography (CT) im-

age reconstruction and light field reconstruction, using variable splitting based on

the augmented Lagrangian (AL) methods. For X-ray CT image reconstruction, we

combine the AL method and ordered subsets (OS), a well-known technique in the

medical imaging literature for accelerating tomographic reconstruction, by consider-

ing a linearized variant of the AL method and propose a fast splitting-based ordered-

subset algorithm, OS-LALM, for solving X-ray CT image reconstruction problems

with penalized weighted least-squares (PWLS) criterion. Practical issues such as

the non-trivial parameter selection of AL methods and remarkable memory overhead

when considering the finite difference image variable splitting are carefully studied,

and several variants of the proposed algorithm are investigated for solving practical

model-based X-ray CT image reconstruction problems. Experimental results show

that the proposed algorithm significantly accelerates the convergence of X-ray CT

image reconstruction with negligible overhead and greatly reduces the noise-like OS

artifacts in the reconstructed image when using many subsets for OS acceleration.

For light field reconstruction, considering decomposing the camera imaging process

into a linear convolution and a non-linear slicing operations for faster forward pro-

jection, we propose to reconstruct light field from a sequence of photos taken with

xii



different focus settings, i.e., a focal stack, using an alternating direction method

of multipliers (ADMM). To improve the quality of the reconstructed light field, we

also propose a signal-independent sparsifying transform by considering the elongated

structure of light fields. Flatland simulation results show that our proposed sparse

light field prior produces high resolution light field with fine details compared with

other existing sparse priors for natural images.
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CHAPTER I

Introduction

Inverting a measurement process to recover a phenomenon of interest from noisy

measurements is of fundamental interest in science and mathematics. This problem

is known as the inverse problem. It is central to any context where a phenomenon we

are truly interested in cannot be observed directly. As an example, and one focus of

this thesis, consider X-ray computed tomography. In this application, X-ray photons

with known intensity emitting from known locations are transmitted through the

patient to image what is inside the body in a non-invasive way. The measurements,

however, are not direct measurements of the body’s internal structures but instead

measured attenuation properties that indicate the density distribution over different

parts of the body. In this case, the inverse problem refers to reconstructing internal

structures of the human body from the indirect X-ray measurements. Unfortunately,

for most cases, it is impossible to solve the inverse problem exactly and directly, either

because the inverse problem itself is highly ill-posed, or because the measurements

are severely corrupted by noise.

Model-based image reconstruction (MBIR) methods (also known as statistical im-

age reconstruction methods) are a collection of techniques that solve inverse problems

iteratively to obtain better reconstructions at the cost of longer computation time.

There are five key components to MBIR methods [1]: (1) the object model that de-

scribes the unknown continuous object using finitely many unknown coefficients of a

certain basis; (2) the system model that relates the unknown coefficients to the ideal

measurements assuming that there is no error in the measurement process; (3) the

statistical model that measures how the observations deviate from the ideal measure-

ments in the noisy environment; (4) the cost function that evaluates the goodness of

fit between the estimate and the statistical model together with the prior knowledge

of the object; and (5) an algorithm that minimizes the cost function iteratively to

find a better estimate of the unknown coefficients.
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It has been shown in the literature [2–4] that MBIR methods can provide better

estimates from noisy measurements and from incomplete data, comparing to the

conventional but widely used filtered back-projection (FBP) method in X-ray CT

image reconstruction. This is extremely useful because it implies that we can acquire

a CT scan with relatively lower dose but have even better reconstructed image quality.

The growing concern about radiation dose from CT scans comes from the increased

use of CT procedures. In the past three decades, the average American’s dose from

medical exposure (not including radiotherapy) has increased from 0.54 mSv in 1982

to 3.0 mSv in 2006, where CT procedures account for about half of the collective dose

from all medical procedures [5]. Compared with the natural background yearly dose

of 3.6 mSv, the standard radiation dose used currently can increase the possible risk of

cancers, especially for body screening with multiple scans. Veo, the first commercial

product using MBIR methods recently introduced by GE, demonstrates significantly

improved image quality under sub-mSv dose level in clinical scans [6]. However, the

much longer computation time (estimated from 20 to 80 minutes) still restrains the

applicability of MBIR methods in practice.

1.1 Contributions

In this work, we focus on accelerating and applying MBIR for solving reconstruc-

tion problems, including X-ray CT image reconstruction and light field reconstruc-

tion, using an optimization technique called variable splitting based on the augmented

Lagrangian (AL) methods. For X-ray CT image reconstruction, we propose to ac-

celerate the existing splitting-based X-ray CT image reconstruction algorithms [7–9]

using ordered subsets (OS) [10] and a proposed downward continuation approach. Ex-

perimental results show that the proposed algorithm converges much faster than the

existing splitting- and OS-based algorithms, illustrating the efficiency of our proposed

combination and continuation approach. We also propose a new penalized weighted

least-squares (PWLS) formulation for model-based X-ray CT image reconstruction,

which automatically handles the model mismatch due to the incorrect calibration of

reference channels in a CT scan. The new PWLS formulation is applicable to all

existing X-ray CT image reconstruction algorithms with just a mild modification but

significantly removes the visible shading artifacts in the reconstructed images. For

light field reconstruction, we propose to decompose the imaging process of a camera

into a linear convolution and a non-linear slicing operation for faster forward projec-

tion, and then we can solve the light field reconstruction problem using a splitting-

2



based algorithm with non-iterative updates. We also propose a signal-independent

sparse light field prior that considers the elongated structure of light fields, and flat-

land simulation results show that our proposed sparse light field prior produces high

resolution light field with fine details compared with other existing sparse priors for

natural images.

1.2 Outline

This thesis is organized as follows. In Chapter II, a brief review of the back-

ground of X-ray CT and its reconstruction is presented. In Chapter III, we consider

accelerating splitting-based X-ray CT image reconstruction algorithms using OS. In

Chapter IV, a new variational formulation that takes gain correction of CT scans into

account in model-based X-ray CT image reconstruction is proposed. In Chapter V,

we use MBIR methods to reconstruct light field from a focal stack. Finally, Chapter

VI draws a conclusion and outlines the future work.
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CHAPTER II

Background of X-ray CT and its reconstruction

2.1 Review of X-ray computed tomography

Unlike conventional single-shot projection radiography in which X-ray photons are

transmitted through the human body to view its internal structure, X-ray computed

tomography (CT) is a non-invasive imaging technique that combines a series of X-ray

projections of an object taken from many different angles and computer processing

(i.e., reconstruction methods) to create tomographic (i.e., cross-sectional) images of

the spatial attenuation distribution (e.g., the bones and soft tissues) inside the object.

It is incredibly important and used for diagnostic purposes in various disciplines in

the medical community since its introduction into clinical practice in the 1970s [11].

It has more recently been used for preventive medicine or screening for disease. For

example, CT screening of lungs is used to detect small nodules or tumors in the lung

parenchyma that are usually not shown in conventional chest X-rays in an early stage.

A typical (transmission) CT scanner consists of an X-ray tube, a rotating gantry, a

table, and a detector with one or more detector cells. There are various CT geometries

(cone-beam vs. multi-slice fan-beam) and scan trajectories (axial vs. spiral/helical) in

modern CT scanners. However, regardless of the different geometries and trajectories,

the physics of X-ray CT measurement is governed by the Beer-Lambert law, which

states that there is a logarithmic dependence between the transmission (i.e., the ratio

of the exit to the incident intensity) of X-ray photons through the object and the

integral of the (linear) attenuation coefficient of the substance along the path that

X-ray photons travel through the object. That is,

Iout(E) = Iin(E) exp

(
−
∫
L

µ(x, y, z; E) d`

)
, (2.1)

where Iout and Iin are the energy-dependent exit and incident X-ray intensity, µ is
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the spatially-varying energy-dependent attenuation coefficient of the substance, and

L denotes the path that X-ray photons travel through the object. Therefore, for a

ray Li with infinitesimal width, the mean projection measurement can be expressed

as:

E[Yi] ∝
∫
Iin(E) exp

(
−
∫
Li

µ(x, y, z; E) d`

)
dE + ri , (2.2)

where Yi denotes the measurement for the ith ray of the incident spectrum, and ri

accounts for the background signals such as Compton scatter, dark current, and read-

out noise. Consider a monoenergetic X-ray source and assume no background signals

for simplicity. The post-logarithmic projection measurement yi (i.e., sinogram in CT

terminology) can be represented as a line integral of the attenuation coefficient (up

to some scaling factor that is determined by the reference projection measurement).

The image reconstruction problem for X-ray CT is to estimate the attenuation

coefficient µ from the measurement y , [y1, . . . , ynd
]′, where nd denotes the total num-

ber of measurements. However, reconstructing an unknown continuous attenuation

coefficient from a finite number of measurements is highly ill-posed and intractable in

general. To make the reconstruction problem tractable, we usually parameterize the

unknown continuous object using a finitely many unknown coefficients x1, . . . , xnp

of a certain basis. Then, the line integral of the unknown continuous attenuation

coefficient can be approximated as a linear combination of x1, . . . , xnp . That is,

yi =

np∑
j=1

aijxj + εi , (2.3)

where aij defines the system matrix (or the projection matrix) A that serves as the

forward model of X-ray CT, and εi denotes the additive noise for the ith measurement.

Note that although the projection matrix A in X-ray CT is usually sparse (but highly

shift-variant), it is still too large to store due to the large problem size, and the matrix-

vector multiplication by A (forward projection) and A′ (back-projection) should be

computed on the fly (and usually very slow without other hardware acceleration [12]).

Finally, the system equation (2.3) can be written in a more compact form as:

y = Ax + ε , (2.4)

where x , [x1, . . . , xnp ]′ and ε , [ε1, . . . , εnd
]′, and X-ray CT image reconstruction

refers to estimating the unknown coefficient vector x from the noisy post-logarithmic

measurement y.
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The conventional X-ray CT image reconstruction relies on analytical (i.e., non-

iterative) image reconstruction methods, and the mathematical theory behind those

analytical image reconstruction methods is the Radon transform [13], which relates

a continuous function to the collection of its projections in the frequency domain by

the Fourier transform. The most widely used analytical image reconstruction method

is called the filtered back-projection (FBP) method, or the FDK method [14] for 3D

axial cone-beam CT in particular. The method is pretty mature nowadays, and one

can reconstruct an image volume with typical image size in a minute with modern

computer architecture.

Although the analytical reconstruction methods are simple and fast these days,

there are still several limitations that impair their performance due to somewhat un-

realistic simplified models when developing those methods. For instance, analytical

formulations usually assume continuous measurements and provide integral-form so-

lutions, and the sampling issues are treated by discretizing these solutions after the

fact. Furthermore, analytical methods generally ignore measurement noise in the

problem formulation and solve the noise-related problems by post-processing filters

after the image is reconstructed. When the radiation dose is medium or high, the fast

approximate solution by analytical methods (such as the FBP method) is tolerable;

however, when the radiation dose is low, analytical methods might amplify the noise

and degrade reconstructed image quality for medical diagnosis. Note that there is

a growing concern about the radiation dose from increasingly used CT procedures

because the standard radiation dose used currently can increase the potential risk of

cancers. Hence, noise-robust image reconstruction from “low-dose” (i.e., low SNR)

CT scans becomes one of the main issues in modern X-ray CT research. One possible

way to solve this problem is to estimate the unknown coefficient vector x based on a

more realistic system model that takes the noise statistics into account, which usu-

ally refers to the model-based image reconstruction (MBIR) methods or the statistical

image reconstruction (SIR) methods in the medical imaging literature.

2.2 Model-based X-ray CT image reconstruction

The most straightforward MBIR method for estimating image x is maximum-

likelihood (ML) estimation, which estimates the parameters by maximizing the likeli-

hood (or minimizing the negative log-likelihood) of the unknown parameters. Math-
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ematically, the ML estimator of the image x can be represented as:

x̂ML ∈ arg min
x
L̄(x; y) , (2.5)

where L̄(x; y) , − log l(x; y) denotes the negative log-likelihood of the noisy mea-

surement y and unknown image x, and l(x; y) is the corresponding likelihood, which

happens to be the probability mass function p(y; x) of the noisy measurement y given

some underlying image x.

One simple and widely used noise model of X-ray CT is the Poisson model (ig-

noring electronic noise). In this case, the negative log-likelihood L̄(x; y) is

L̄(x; y) =

nd∑
i=1

{
−yi (log bi − [Ax]i) + bi exp(−[Ax]i)

}
, (2.6)

where bi is a constant determined by the reference projection measurement of the

ith measurement yi. Unfortunately, typical ML reconstruction x̂ML is extremely

noisy and impossible for clinical use. Therefore, people usually add an additional

regularization term (or regularizer for short) R to the ML cost function for better

reconstructed image quality (e.g., sharper and less noisy), leading to a maximum a

posteriori (MAP) or penalized likelihood (PL) reconstruction. Mathematically, the

MAP or PL estimator of the image x can be represented as:

x̂MAP ∈ arg min
x

{
L̄(x; y) + R(x)

}
, (2.7)

and we focus on a family of regularizers R that penalizes the “roughness” of the

reconstructed image and is defined as:

R(x) , Φ(Cx) =
nc∑
m=1

np∑
j=1

ωreg(j;m)φ([Cmx]j) , (2.8)

where C is a tall matrix that stacks up the first-order finite difference matrices Cm

for m = 1, . . . , nc, ωreg is a direction- and voxel-dependent weight that controls the

regularization force in each direction by βm for m = 1, . . . , nc and the spatial reso-

lution uniformity by κj for j = 1, . . . , np [15], and φ is a convex, even, and possibly

non-smooth potential function. For smooth potential functions, define ωφ(t) , φ̇(t) /t

as the potential weighting function of φ. Suppose it is non-negative, bounded above

(without loss of generality, we assume max t ωφ(t) = 1), and non-increasing for t ≥ 0.

This implies that ωφ(t) attains its maximum at t = 0, i.e., max t ωφ(t) = ωφ(0) = 1.
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Furthermore, when φ is twice differentiable, we also have max t φ̈(t) = φ̈(0) = 1. The

gradient of R with bounded ωφ can be expressed as:

∇R(x) , C′∇Φ(Cx) = C′DregDφ{Cx}Cx , (2.9)

where Dreg and Dφ{v} denote diagonal matrices with diagonal entries ωreg and

ωφ(v) arranged in proper orders, respectively. Note that since both ωreg(j;m) and

ωφ([Cmx]j) are computed locally, gradients of R can be computed efficiently on the

fly with the expression in (2.9).

However, due to the space-varying “shape” (i.e., local curvature or Hessian) of the

non-quadratic negative log-likelihood L̄(x; y), the minimization problem is usually

hard to solve analytically and numerically. Furthermore, for some more general noise

models of X-ray CT, L̄(x; y) can be non-convex, making the minimization problem

prone to local minimums. One typical way to solve this problem is to approximate

the negative log-likelihood with a second-order Taylor expansion, thus leading to

a penalized weighted least-squares (PWLS) formulation for model-based X-ray CT

image reconstruction [3]:

x̂PWLS ∈ arg min
x∈Ω

{
ΨPWLS(x) , 1

2
‖y −Ax‖2

W + R(x)
}
, (2.10)

where W is the statistical diagonal weighting matrix whose diagonal entries are in-

verse proportional to the measurement variances in the simple Poisson noise model

(thus with extremely huge dynamic range), and Ω denotes a convex set for a box

constraint (usually the non-negativity constraint) on x. With high photon flux, the

PWLS formulation (2.10) leads to negligible bias [16] and a simpler cost function.

We will focus on solving this formulation with some advance convex optimization

algorithms in this thesis.

2.2.1 Gradient-based methods

The conventional way to solve (2.10) is to use gradient-based methods. Let `(x)

denote the weighted quadratic data-fitting term in (2.10) and [·]Ω denote an operator

that projects a vector onto Ω. The projected gradient descent method solving (2.10)

is described in Algorithm II.1. Convergence of Algorithm II.1 is guaranteed if the

step size t > 0 satisfies some convergence condition. For example, when 1/t is greater

than the Lipschitz constant of ΨPWLS, Algorithm II.1 guarantees convergence and

monotone decrease of the cost function.
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Algorithm II.1 Projected gradient descent method solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1, t > 0
1: for k = 0, 1, . . . , niter − 1 do
2: x(k+1) =

[
x(k) − t

(
∇`
(
x(k)
)

+∇R
(
x(k)
))]

Ω
3: end for
4: return x(niter)

Another closely-related convex optimization method is called the optimization

transfer method, the majorization-minimization (MM) method [17], or the separable

quadratic surrogate (SQS) method. In the SQS method, the cost function ΨPWLS in

(2.10) is replaced by its SQS function Ψ̆PWLS (evaluated at the previous iterate) at

each iteration, and the image update is performed by exactly minimizing the separable

quadratic majorized cost function. The SQS function of a function ϕ evaluated at

x = x̄ with diagonal Hessian D(x̄) is defined as

ϕ̆(x; x̄) , ϕ(x̄) + (x− x̄)′∇ϕ(x̄) + 1
2
‖x− x̄‖2

D(x̄) (2.11)

which satisfies the “majorization” condition:ϕ̆(x; x̄) ≥ ϕ(x) ,∀x, x̄ ∈ Domϕ

ϕ̆(x̄; x̄) = ϕ(x̄) ,∀x̄ ∈ Domϕ .
(2.12)

In X-ray CT image reconstruction, the standard choice of Ψ̆PWLS at the kth iteration

is the sum of ˘̀
(
x; x(k)

)
and R̆

(
x; x(k)

)
with diagonal Hessian matrices

DL , diag{A′WA1} � ∇2`
(
x(k)
)

= A′WA (2.13)

and

D
(k)
R , diag

{
|C|′DregDφ

{
Cx(k)

}
|C|1

}
� C′DregDφ

{
Cx(k)

}
C , (2.14)

respectively. The rightmost term in (2.14) is called Huber’s curvature of R evaluated

at x = x(k) [18]. Furthermore, since max t ωφ(t) = 1, we can find another looser but

universal diagonal Hessian matrix for R̆ as:

DR , diag{|C|′Dreg|C|1} � C′DregC , (2.15)

where the rightmost term is called the maximum curvature of R everywhere. In
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terms of convergence rate, Huber’s curvature is preferable since it is tighter and data-

dependent. We use it in the SQS method solving (2.10) described in Algorithm II.2.

Due to the majorization conditions (2.12), the image update in Algorithm II.2 also

guarantees monotone decrease of the cost function. In fact, projected gradient descent

method is just an SQS method that majorizes the cost function by an “isotropic” SQS

function (i.e., with a “constant-times-identity” diagonal Hessian matrix). However,

unlike Algorithm II.1, Algorithm II.2 allows voxel-dependent step sizes in the image

update and does not need to estimate the the Lipschitz constant of ΨPWLS. Hence, the

SQS method is usually more preferable for X-ray CT image reconstruction problems.

Algorithm II.2 Separable quadratic surrogate (SQS) method solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1
1: for k = 0, 1, . . . , niter − 1 do

2: x(k+1) =
[
x(k) −

(
DL + D

(k)
R

)−1 (∇`(x(k)
)

+∇R
(
x(k)
))]

Ω
3: end for
4: return x(niter)

However, the standard SQS method is not used in practice because it takes one

forward/back-projection per iteration for evaluating the gradient of ` and converges

very slowly. As mentioned before, since the coefficient of A is computed on the fly,

multiplication by A and A′ is very slow. A more practical SQS method is call the

OS-SQS method [10]. By grouping the projections into M ordered subsets (OS) that

satisfy the “subset balance condition” and updating the image incrementally using

the M subset gradients, the OS-SQS method effectively performs M times as many

as image updates per outer iteration as the standard SQS method, leading to approx-

imately M times acceleration in early iterations. Mathematically, ` is decomposed

into M smaller quadratic functions `1, . . . , `M , where

`m(x) , 1
2
‖ym −Amx‖2

Wm
(2.16)

for m = 1, . . . ,M , and {y1, . . . ,yM}, {A1, . . . ,AM}, and {W1, . . . ,WM} are the

corresponding non-overlaping partition of y, A, and W, respectively. Suppose the

projections are grouped properly. We should have

∇`(x) ≈M∇`1(x) ≈ · · · ≈M∇`M(x) (2.17)

when x is far away from the optimum x̂PWLS, and we can use the subset gradients

to approximate the full gradient of ` [10]. The OS-SQS method [10] solving (2.10) is
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described in Algorithm II.3. The net computational complexity per outer iteration

of Algorithm II.3 is one forward and back-projection (for computing subset gradients

of `) and M regularizer gradient evaluations. That is, the OS-SQS method evaluates

regularizer gradients more frequently than the standard SQS method. However, since

the most computationally expensive operation in CT is the forward/back-projection,

the OS-SQS method is still faster than the standard SQS method when M is not too

big. Furthermore, since the gradients in the OS-SQS method are computed inexactly,

and the subset gradient approximation (2.17) is valid only when the current iterate

is far away from the optimum, the OS-SQS method eventually approaches a “limit

cycle” in which updates stop approaching the optimum. The OS-SQS method is not

convergent in general unless relaxation [19] or incremental majorization [20] is used,

unsurprisingly, at the cost of slower convergence rate. We can interpret the OS-SQS

method as an incremental gradient method [21]; when the subsets are chosen randomly

with some constraints so that the subset gradient is unbiased and with finite variance,

the OS-SQS method can also be referred as a stochastic gradient method [22] in the

machine learning literature.

Algorithm II.3 Ordered-subset SQS (OS-SQS) method solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1,M ≥ 1
1: for k = 0, 1, . . . , niter − 1 do
2: x(k,1) = x(k)

3: for m = 1, . . . ,M do

4: x(k,m+1) =
[
x(k,m) −

(
DL + D

(k,m)
R

)−1 (
M∇`m

(
x(k,m)

)
+∇R

(
x(k,m)

))]
Ω

5: end for
6: x(k+1) = x(k,M+1)

7: end for
8: return x(niter)

Recently, OS variants of fast gradient methods [23–25] were proposed and demon-

strated dramatic accelerations (about M2 times in early iterations) in convergence

rate over their one-subset counterparts [26, 27]. People call these fast OS methods

the OS+momentum methods because the momentum of update trajectory is used for

acceleration in these methods. An OS+momentum method [27] is described in Al-

gorithm II.4. Note that the net computational complexity per outer iteration of the

OS+momentum (OS-Nes05) method is almost unchanged comparing with the OS-SQS

method. With negligible (memory and computational) overhead, OS+momentum

methods improve the early convergence rate significantly! However, experimental

results also showed that OS+momentum methods seem to have “larger” limit cycles
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and exhibit noise-like OS artifacts in the reconstructed images when M increases [28].

This problem is also studied in the machine learning literature. Devolder showed that

the error accumulation in fast gradient methods is inevitable when an inexact oracle is

used, but it can be reduced by using relaxed momentum, i.e., a growing diagonal ma-

jorizer (or equivalently, a diminishing step size), at the cost of slower convergence rate

[29]. An OS variant of the relaxed momentum method was investigated for solving

X-ray CT image reconstruction problems [28]. A simplified relaxed OS+momentum

method (OS-rNes05) is described in Algorithm II.5. There is an additional parame-

ter γ ≥ 0 in Algorithm II.5. This parameter affects the amount of relaxation. When

γ = 0, Algorithm II.5 reverts to a standard OS+momentum method. Schmidt et al.

also showed that an accelerated proximal gradient method is more sensitive to errors

in the gradient and proximal mapping calculation of the smooth and non-smooth cost

function components, respectively [30]. In OS-based methods, M affects the accuracy

of gradient calculation. When M is too large, gradient errors accumulate too fast,

and the algorithm diverges. Therefore, choosing an appropriate M for OS+momentum

methods that ensures both fast convergence and stable reconstruction is very impor-

tant when implementing these methods for real applications.

Algorithm II.4 OS+momentum (OS-Nes05) method [27] solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1,M ≥ 1
1: Initialize z(0) = x(0), v(0) = 0, t0 = 1
2: for k = 0, 1, . . . , niter − 1 do
3: c(k,1) = c(k) for c ∈ {x,v, z}
4: tk,1 = tk
5: for m = 1, . . . ,M do
6: D(k,m+1) = DL + D

(k,m)
R

7: g(k,m+1) = M∇`m
(
z(k,m)

)
+∇R

(
z(k,m)

)
8: x(k,m+1) =

[
z(k,m) −

(
D(k,m+1)

)−1
g(k,m+1)

]
Ω

9: v(k,m+1) = v(k,m) + tk,mg(k,m+1)

10: tk,m+1 =
1+
√

1+4t2k,m
2

11: z(k,m+1) =
tk,m+1−1

tk,m+1
x(k,m+1) + 1

tk,m+1

[
z(0) −

(
D(k,m)

)−1
v(k,m+1)

]
Ω

12: end for
13: c(k+1) = c(k,M+1) for c ∈ {x,v, z}
14: tk+1 = tk,M+1

15: end for
16: return x(niter)
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Algorithm II.5 Relaxed OS+momentum (OS-rNes05) method [27] solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1,M ≥ 1, γ ≥ 0
1: Initialize z(0) = x(0), v(0) = 0, Γ = γ ·median([DL]j) I, r = 1
2: for k = 0, 1, . . . , niter − 1 do
3: c(k,1) = c(k) for c ∈ {x,v, z}
4: for m = 1, . . . ,M do
5: D(k,m+1) = DL + D

(k,m)
R + (r + 2) Γ

6: g(k,m+1) = M∇`m
(
z(k,m)

)
+∇R

(
z(k,m)

)
7: x(k,m+1) =

[
z(k,m) −

(
D(k,m+1)

)−1
g(k,m+1)

]
Ω

8: v(k,m+1) = v(k,m) + r+1
2

g(k,m+1)

9: z(k,m+1) = r+1
r+3

x(k,m+1) + 2
r+3

[
z(0) −

(
D(k,m+1)

)−1
v(k,m+1)

]
Ω

10: r = r + 1
11: end for
12: c(k+1) = c(k,M+1) for c ∈ {x,v, z}
13: end for
14: return x(niter)

2.2.2 Splitting-based methods

Unlike gradient-based methods that devote themselves to finding a minimizer that

minimizes the cost function of the original minimization problem, splitting-based

methods solve a minimization problem by divide-and-conquer. More precisely, they

decompose the original minimization problem into a series of easier penalized least-

squares problems using a mathematical technique called variable splitting. These

methods are especially useful for minimization problems with (tractable) non-smooth

cost function such as the LASSO regression [31], a least-squares problem with an

`1 regularization, because the non-differentiable nature of those problems precludes

optimization by conventional gradient-based methods. They become more popular

in X-ray CT image reconstruction with non-smooth regularizations these days due

to the recent resurgence of the classic augmented Lagrangian (AL) methods in fields

like total-variation (TV) denoising and compressed sensing (CS). In fact, splitting-

based methods are also very useful for X-ray CT image reconstructions even when

smooth approximations (of non-smooth regularizers, e.g., using corner-rounding) are

employed because approximations with such modifications usually have very high

curvature, leading to very slow convergence of gradient-based methods again.

To demonstrate how splitting-based methods solve an X-ray CT image reconstruc-

tion problem, let’s consider a sparse-view X-ray CT image reconstruction problem for

example. Undersampling projection views is one way to reduce radiation dose in
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CT scans; however, this causes strong streak artifacts in FBP images that degrade

image quality. To overcome this problem, the split Bregman (SB) method [32], an

alias of the AL method in the context of `1-regularized image reconstruction prob-

lems, has been investigated using strong non-smooth TV and sparsity-promoting

regularizations [7, 33]. Mathematically, instead of solving (2.10) directly, consider an

equivalent equality-constrained minimization problem (we ignore the box constraint

here for simplicity):

(x̂, v̂) ∈ arg min
x,v

{
1
2
‖y −Ax‖2

W + Φ(v)
}

s.t. v = Cx . (2.18)

The SB method solves this problem by finding a saddle point of the corresponding

scaled augmented Lagrangian of (2.18):

LA(x,v, e; η) , 1
2
‖y −Ax‖2

W + Φ(v) + η
2
‖Cx− v − e‖2

2 , (2.19)

where e is the scaled Lagrange multiplier of the auxiliary variable v, and η > 0 is

the corresponding AL penalty parameter, using an alternating minimization method

followed by a gradient ascent of the (unscaled) Lagrangian multiplier. For instance,

suppose we update variables in the order of x, v, and then e. At the kth iteration,

the x-update is a least-squares problem:

x(k+1) ∈ arg min
x

{
1
2
‖y −Ax‖2

W + η
2

∥∥Cx− v(k) − e(k)
∥∥2

2

}
(2.20)

with an analytical solution:

x̂(k+1) = (A′WA + ηC′C)
−1 (

A′Wy + ηC′
(
v(k) + e(k)

))
. (2.21)

Due to the large problem size, inverting the big non-circulant matrix A′WA+ηC′C is

impossible; however, one can still find an approximate solution to (2.20) using limited

iterations of the conjugate gradient (CG) method or the preconditioned CG (PCG)

method. We call the corresponding iterates (with iteration limiter) an “inexact” SB

method due to the inevitable inexact image update. Once x(k+1) is determined, one

can proceed to the v-update, which is a penalized least-squares problem:

v(k+1) ∈ arg min
x

{
Φ(v) + η

2

∥∥Cx(k+1) − v − e(k)
∥∥2

2

}
. (2.22)
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This can be written as the proximal mapping of Φ:

v(k+1) ∈ prox η−1Φ

(
Cx(k+1) − e(k)

)
, (2.23)

where proxϕ denotes the proximal mapping of a function ϕ defined as:

proxϕ(z) , arg min
x

{
ϕ(x) + 1

2
‖x− z‖2

2

}
. (2.24)

For some ϕ, its proximal mapping can be computed very efficiently, e.g., the soft-

shrinkage operation for the `1-norm. For those Φ’s that do not have efficient proximal

mappings, the v-update in (2.22) can only be solved inexactly. We also refer to the

corresponding iterates as an inexact SB method. Finally, the e-update is a simple

gradient ascent:

e(k+1) = e(k) +
(
−Cx(k+1) + v(k+1)

)
. (2.25)

In summary, the SB method solving (2.18) is described in Algorithm II.6. As a

final remark, due to the inevitable inexact image (x-)update and the (column) rank

deficiency of the finite difference matrix C, the (primal) convergence of Algorithm II.6

is not straightforward. To conclude the discussion of the SB method, a (primal)

convergence proof of the (inexact) SB method for regularized least-squares problems

with rank deficient analysis regularization matrices is included in Appendix A.

Algorithm II.6 Split Bregman (SB) method [7] solving (2.18)

Require: x(0) ∈ IRnp , niter ≥ 1, η > 0
1: Initialize v(0) = prox η−1Φ

(
Cx(0)

)
, e(0) = −Cx(0) + v(0)

2: for k = 1, . . . , niter − 1 do
3: Compute x(k+1) by solving (2.20) using (P)CG
4: Compute v(k+1) by solving (2.22) using the proximal mapping of Φ
5: e(k+1) = e(k) −Cx(k+1) + v(k+1)

6: end for
7: return x(niter)

Theoretically, the SB method should work pretty well for X-ray CT image re-

construction problems with non-smooth regularizers, just like the great success it

achieves in TV denoising and CS. However, there are still some practical issues when

solving X-ray CT image reconstruction problems using the SB method, e.g., how

long the SB method takes for an image update. This is usually not a big problem for

gradient-based methods because image updates in gradient-based methods are very

straightforward: forward projection, back-projection, vector addition, and finally an

element-wise projection. However, image updates in splitting-based methods are a lit-
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tle bit tricky because they are minimization problems! Due to the enormous dynamic

range of the statistical weighting W, the Hessian of the statistical data-fitting term

(i.e., A′WA) is highly shift-variant. This forces people to run more (P)CG iterations

to get an acceptable approximation to the analytical solution (2.21). For example,

[7] suggested solving the challenging inner least-squares problem using up to 100 it-

erations of the CG method, that is, hundreds of forward/back-projection pairs for a

single outer-loop image update! As mentioned before, the forward/back-projection

is the most time-consuming operation in CT because we have to compute the co-

efficients of the system matrix A on the fly. Hundreds of forward/back-projection

pairs for a single image update is absolutely undesirable. To solve this problem,

Ramani et al. introduced an additional auxiliary variable that separates the shift-

variant and approximate shift-invariant parts of the statistically weighted quadratic

data-fitting term so that one can find an appropriate circulant preconditioner for

the better-conditioned inner least-squares problem and solve the inner least-squares

problem efficient using the PCG method [8]. More precisely, the authors consider

another equivalent equality-constrained minimization problem that is also equivalent

to (2.10) (ignore the box constraint here again) but uses two auxiliary variables:

(x̂, û, v̂) ∈ arg min
x,u,v

{
1
2
‖y − u‖2

W + Φ(v)
}

s.t. u = Ax,v = Cx . (2.26)

The corresponding scaled augmented Lagrangian of (2.26) is

LA(x,u,v,d, e; ρ, η)

, 1
2
‖y − u‖2

W + Φ(v) + ρ
2
‖Ax− u− d‖2

2 + η
2
‖Cx− v − e‖2

2 , (2.27)

where d and e are the scaled Lagrange multipliers of the auxiliary variables u and

v, respectively, and ρ, η > 0 are the corresponding AL penalty parameters. As can

be seen in (2.27), the statistical weighting W is no longer tied to the system matrix

A. Therefore, if we solve (2.26) using an alternating minimization method followed

by a gradient ascent of the (unscaled) Lagrange multipliers in the order of x, u, v,

and then the Lagrange multipliers d and e, at the kth iteration, the x-update is a

least-squares problem:

x(k+1) ∈ arg min
x

{
ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥Cx− v(k) − e(k)
∥∥2

2

}
(2.28)
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with an analytical solution:

x̂(k+1) = (ρA′A + ηC′C)
−1 (

ρA′
(
u(k) + d(k)

)
+ ηC′

(
v(k) + e(k)

))
. (2.29)

Although it is still impractical to compute (2.29) exactly, the Hessian of the cost

function in (2.28) (i.e., ρA′A + ηC′C) is approximately shift-invariant in 2D CT.

Hence, one can precondition the problem effectively using FFTs with cone-type filters!

The u-update is a much simpler least-squares problem:

u(k+1) ∈ arg min
x

{
1
2
‖y − u‖2

W + ρ
2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
(2.30)

with an analytical solution:

û(k+1) = (W + ρI)−1 (Wy + ρ
(
Ax(k+1) − d(k)

))
. (2.31)

Unlike the analytical solution in (2.29), W + ρI in (2.31) is a diagonal matrix, so the

u-update (2.30) can be solved exactly and efficiently by element-wise division. The

v-update here is exactly the same as that in the SB method, i.e., (2.23), and it can

be solved using the proximal mapping of Φ. Finally, the Lagrange multipliers d and

e perform gradient ascents accordingly:d(k+1) = d(k) +
(
−Ax(k+1) + u(k+1)

)
e(k+1) = e(k) +

(
−Cx(k+1) + v(k+1)

)
.

(2.32)

The complete alternating direction method of multipliers (ADMM) is described in

Algorithm II.7. We call this algorithm ADMM to distinguish it from the SB method,

which uses a variable splitting scheme with a rank deficient analysis regularization

matrix. A more detailed discussion about the SB method and ADMM can be found

in Appendix B. Experimental results showed that ADMM provides significant ac-

celeration over the SB method in 2D CT [8]; however, in 3D CT, due to different

cone-beam geometries and scan trajectories, it is more difficult to construct a good

preconditioner for the inner least-squares problem, and ADMM has yet to achieve

the same acceleration as in 2D CT. Furthermore, splitting-based methods simplify

optimization at the expense of storing additional auxiliary variables (and Lagrange

multipliers). The additional memory requirement might be still affordable for 2D

problems. For 3D problems, the remarkable memory overhead (26 extra image vol-

umes if one considers all 13 neighbors when computing the finite differences) can
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be problematic and restrains the applicability of splitting-based methods from an

implementation perspective.

Algorithm II.7 Alternating direction method of multipliers (ADMM) [8] solving
(2.26)

Require: x(0) ∈ IRnp , niter ≥ 1, ρ, η > 0
1: Initialize u(0) = (W + ρI)−1 (Wy + ρAx(0)

)
, d(0) = −Ax(0) + u(0),

v(0) = prox η−1Φ

(
Cx(0)

)
, e(0) = −Cx(0) + v(0)

2: for k = 1, . . . , niter − 1 do
3: Compute x(k+1) by solving (2.28) using (P)CG
4: u(k+1) = (W + ρI)−1 (Wy + ρ

(
Ax(k+1) − d(k)

))
5: Compute v(k+1) by solving (2.22) using the proximal mapping of Φ
6: d(k+1) = d(k) −Ax(k+1) + u(k+1)

7: e(k+1) = e(k) −Cx(k+1) + v(k+1)

8: end for
9: return x(niter)
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CHAPTER III

Fast X-ray CT image reconstruction using variable

splitting methods with ordered subsets

In Chapter II, we have reviewed two families of methods, gradient-based methods

and splitting-based methods, solving model-based X-ray CT image reconstruction

problems. From an implementation perspective, image updates of gradient-based

methods are more straightforward and memory-efficient. However, unlike splitting-

based methods which have more flexibility to deal with complicated regularizations

using variable splitting, gradient-based methods have a pratical limitation that re-

strains their applications to smooth regularizers with modest curvature. In this chap-

ter, we propose to combine these two methods by considering a linearized variant

of the AL method [39–42], in which we majorize the quadratic AL penalty term in

the scaled augmented Lagrangian using a fixed diagonal majorizer, thus leading to

a much simpler splitting-based order-subsets algorithm, OS-LALM, for model-based

X-ray CT image reconstruction with PWLS criterion. In the following sections, we

will go through our proposed algorithm by solving three practical issues (iterative

image updates, non-trivial parameter selection, and enormous memory requirement)

of splitting-based methods.

3.1 Non-iterative image update using a linearized AL method

The first practical issue of splitting-based methods is the iterative image updates

due to the challenging inner least-squares problem. This issue is not highlighted

before in the context of image restoration because the blur kernel is usually assumed

to be shift-invariant in image restoration problems, leading to efficient image updates

using FFTs. However, in X-ray CT image reconstruction problems, due to the huge

This chapter is based on [34–38].
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dynamic range of transimission data in X-ray CT, the minimum (non-zero) statistical

weighting can be about 10−5 times of the peak value typically. This makes the matrix

A′WA highly ill-conditioned, so the SB method (Algorithm II.6) will be very slow

in practice. In fact, even for the unweighted case, the matrix A′A is still highly

ill-conditioned in 3D CT due to the different geometries and scan trajectories. For

example, in 3D helical CT scan, the local impulse response (or posint spread function)

rotates from slice to slice because the X-ray source rotates and moves in the z-direction

at the same time. Therefore, ADMM (Algorithm II.7) is also very slow in 3D CT.

One possible way to deal with the issue is to simplify the image update with some

approximation that still guarantees convergence. Here, we focus on a linearized AL

method that simplify the image update to a single prox-linear step [43].

3.1.1 Linearized AL method

We first review the linearized AL method in a general setting and show new

convergence properties of the linearized AL method with “inexact” updates. Consider

a general composite convex optimization problem:

x̂ ∈ arg min
x

{
g(Ax) + h(x)

}
(3.1)

and its equivalent constrained minimization problem:

(x̂, û) ∈ arg min
x,u

{
g(u) + h(x)

}
s.t. u = Ax , (3.2)

where both g and h are closed and proper convex functions. Typically, g is a weighted

quadratic data-fitting term, and h is an edge-preserving regularization (together with

the box constraint Ω) term in CT. One way to solve the constrained minimization

problem (3.2) is to use the (alternating direction) AL method, which alternatingly

minimizes the scaled augmented Lagrangian:

LA(x,u,d; ρ) , g(u) + h(x) + ρ
2
‖Ax− u− d‖2

2 (3.3)
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with respect to x and u, followed by a gradient ascent of d, yielding the following AL

iterates [44, 45]:
x(k+1) ∈ arg min

x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2

}
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) ,

(3.4)

where d is the scaled Lagrange multiplier of the auxiliary variable u, and ρ > 0 is the

corresponding AL penalty parameter.

In the linearized AL method [39–42] (also known as the split inexact Uzawa

method in the image processing literature [46–48]), one replaces the quadratic AL

penalty term in the x-update of (3.4):

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(3.5)

by its SQS function defined in (2.11):

θ̆k
(
x; x(k)

)
, θk

(
x(k)
)

+
〈
∇θk

(
x(k)
)
,x− x(k)

〉
+ ρL

2

∥∥x− x(k)
∥∥2

2

= ρ
2t

∥∥x− (x(k) − tA′
(
Ax(k) − u(k) − d(k)

))∥∥2

2
+ (const. independent of x) , (3.6)

where L > ‖A‖2
2 = λmax(A′A) ensures that LI � A′A, and t , 1/L. It is trivial to

generalize L to a symmetric positive semi-definite matrix L, e.g., the diagonal matrix

diag{|A|′|A|1} used in OS-based methods [10, 49], and still ensure (2.12). When

L = A′A, the linearized AL method reverts to the standard AL method. Majorizing

with a diagonal matrix removes the entanglement of x introduced by the system

matrix A and leads to a simpler x-update. The corresponding linearized AL iterates

are as follows [39–42]:
x(k+1) ∈ arg min

x

{
φk(x) , h(x) + θ̆k

(
x; x(k)

)}
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(3.7)
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The x-update can be written as the proximal mapping (2.24) of h:

x(k+1) ∈ prox(ρ−1t)h

(
x(k) − tA′

(
Ax(k) − u(k) − d(k)

))
= prox(ρ−1t)h

(
x(k) − (ρ−1t) s(k+1)

)
, (3.8)

where

s(k+1) , ρA′
(
Ax(k) − u(k) − d(k)

)
(3.9)

denotes the “search direction” of the proximal gradient x-update in (3.8). Further-

more, θ̆k can also be written as:

θ̆k
(
x; x(k)

)
= θk(x) + ρ

2

∥∥x− x(k)
∥∥2

G
, (3.10)

where G , LI −A′A � 0 by the definition of L. Hence, the linearized AL iterates

(3.7) can be represented as a proximal-point variant of the standard AL iterates

(3.4) (also known as the preconditioned AL iterates) by plugging (3.10) into (3.7)

[46, 50, 51]: 
x(k+1) ∈ arg min

x

{
h(x) + θk(x) + ρ

2

∥∥x− x(k)
∥∥2

G

}
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(3.11)

The linearized AL method (3.7) is convergent with any fixed AL penalty parameter

ρ > 0 for any A [39–42], while the standard AL method is (primal) convergent only

if A has full column rank [44, Theorem 8]. Furthermore, even if the AL penalty

parameter varies every iteration, (3.7) is convergent when ρ is non-decreasing and

bounded above [39]. However, all these convergence analyses assume that all updates

are exact. In this chapter, we are more interested in the linearized AL method with

inexact updates. Specifically, instead of the exact linearized AL method (3.7), we

focus on inexact linearized AL methods:
∥∥∥x(k+1) − arg min

x
φk(x)

∥∥∥ ≤ δk

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) ,

(3.12)

22



where φk was defined in (3.7), and
∣∣∣φk(x(k+1)

)
−min

x
φk(x)

∣∣∣ ≤ εk

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(3.13)

The u-update can also be inexact; however, for simplicity, we focus on exact updates

of u. Considering an inexact update of u is a trivial extension.

Our convergence analysis of the inexact linearized AL method is twofold. First,

we show that the equivalent proximal-point variant of the standard AL iterates (3.11)

can be interpreted as a convergent ADMM that solves another equivalent constrained

minimization problem of (3.1) with a redundant auxiliary variable (the proof can be

found in Appendix C):

(x̂, û, v̂) ∈ arg min
x,u,v

{
g(u) + h(x)

}
s.t. u = Ax and v = G1/2x . (3.14)

Therefore, the linearized AL method is a convergent ADMM, and it has all the nice

properties of ADMM, including the tolerance of inexact updates [44, Theorem 8].

More formally, we have the following theorem:

Theorem III.1. Consider a constrained composite convex optimization problem (3.2)

where both g and h are closed and proper convex functions. Let ρ > 0 and {δk}∞k=0

denote a non-negative sequence such that

∞∑
k=0

δk <∞ . (3.15)

If (3.2) has a solution (x̂, û), then the sequence of updates
{(

x(k),u(k)
)}∞

k=0
generated

by the inexact linearized AL method (3.12) converges to (x̂, û); otherwise, at least one

of the sequences
{(

x(k),u(k)
)}∞

k=0
or
{
d(k)

}∞
k=0

diverges.

Theorem III.1 shows that the inexact linearized AL method (3.12) converges if the

error δk is absolutely summable. However, it does not describe how fast the algorithm

converges and more importantly, how inexact updates affect the convergence rate.

This leads to the second part of our convergence analysis.

In this part, we rely on the equivalence between the linearized AL method and

the Chambolle-Pock first-order primal-dual algorithm (CPPDA) [50]. Consider a

23



minimax problem:

(ẑ, x̂) ∈ arg min
z

max
x

Ω(z,x) , (3.16)

where

Ω(z,x) , 〈−A′z,x〉+ g∗(z)− h(x) , (3.17)

and ϕ∗ denotes the convex conjugate of a function ϕ. Note that since both g and

h are closed, proper, and convex, we have g∗∗ = g and h∗∗ = h. The sequence of

updates
{(

z(k),x(k)
)}∞

k=0
generated by the CPPDA iterates:
x(k+1) ∈ proxσh

(
x(k) − σA′z̄(k)

)
z(k+1) ∈ proxτg∗

(
z(k) + τAx(k+1)

)
z̄(k+1) = z(k+1) +

(
z(k+1) − z(k)

) (3.18)

converges to a saddle-point (ẑ, x̂) of (3.16), and the non-negative primal-dual gap

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
converges to zero with rate O(1/k) [50, Theorem 1], where xk

and zk denote the arithemetic mean of all previous x- and z-updates up to the kth

iteration, respectively. Since the CPPDA iterates (3.18) solve the minimax problem

(3.16), they also solve the primal problem:

ẑ ∈ arg min
z
{h∗(−A′z) + g∗(z)} (3.19)

and the dual problem:

x̂ ∈ arg max
x
{−g(Ax)− h(x)} (3.20)

of (3.16), and the latter happens to be the composite convex optimization problem

(3.1). Therefore, the CPPDA iterates (3.18) solve (3.1) with rate O(1/k) in an er-

godic sense. Furthermore, Chambolle et al. showed that their proposed primal-dual

algorithm is equivalent to a preconditioned ADMM solving (3.2) with a precondi-

tioner M , σ−1I− τA′A provided that 0 < στ < 1/ ‖A‖2
2 [50, Section 4.3]. Letting

z(k) = −τd(k) and choosing σ = ρ−1t and τ = ρ, the CPPDA iterates (3.18) re-

duce to (3.11) and hence, the linearized AL method (3.7). This suggests that we can

measure the convergence rate of the linearized AL method using the primal-dual gap

that is vanishing ergodically with rate O(1/k). Finally, to take inexact updates into

account, we apply the error analysis technique developed in [30] to the convergence

rate analysis of CPPDA, leading to the following theorem (the proof can be found in

Appendix C):

Theorem III.2. Consider a minimax problem (3.16) where both g and h are closed
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and proper convex functions. Suppose it has a saddle-point (ẑ, x̂), where ẑ and x̂

are the solutions of the primal problem (3.19) and the dual problem (3.20) of (3.16),

respectively. Let ρ > 0 and {εk}∞k=0 denote a non-negative sequence such that

∞∑
k=0

√
εk <∞ . (3.21)

Then, the sequence of updates
{(
−ρd(k),x(k)

)}∞
k=0

generated by the inexact linearized

AL method (3.13) is a bounded sequence that converges to (ẑ, x̂), and the primal-dual

gap of (zk,xk) has the following bound:

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤
(
C + 2Ak +

√
Bk

)2

k
, (3.22)

where zk , 1
k

∑k
j=1

(
−ρd(j)

)
, xk , 1

k

∑k
j=1 x(j),

C ,

∥∥x(0) − x̂
∥∥

2√
2ρ−1t

+

∥∥(−ρd(0)
)
− ẑ
∥∥

2√
2ρ

, (3.23)

Ak ,
k∑
j=1

√
εj−1(

1− t ‖A‖2
2

)
ρ−1t

, (3.24)

and

Bk ,
k∑
j=1

εj−1 . (3.25)

Theorem III.2 shows that the inexact linearized AL method (3.13) converges with

rate O(1/k) if the square root of the error εk is absolutely summable. In fact, even

if
{√

εk
}∞
k=0

is not absolutely summable, say,
√
εk decreases as O(1/k), Ak grows

as O(log k) (note that Bk always grows slower than Ak), and the primal-dual gap

converges to zero in O
(
log2 k/k

)
. To obtain convergence of the primal-dual gap, a

necessary condition is that the partial sum of
{√

εk
}∞
k=0

grows no faster than o
(√

k
)
.

The primal-dual gap convergence bound above is measured at the average point

(−ρdk,xk) of the update trajectory. In practice, the primal-dual gap of
(
−ρd(k),x(k)

)
converges much faster than that. Minimizing the constant in (3.22) need not provide

the fastest convergence rate of the linearized AL method. However, the ρ-, t-, and

εk-dependence in (3.22) suggests how these factors affect the convergence rate of the

linearized AL method. Finally, although the linearized AL method has gradient-

based image updates that pretty much solves the iterative image updates problem of
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splitting-based methods, it is still not suitable for OS acceleration in general because

the d-update takes a full forward projection. We use the linearized AL method

for analysis and to motivate the proposed algorithm in Section 3.1.2, but it is not

recommended for practical implementation in CT reconstruction. By restricting g

to be a quadratic loss function, we show that the linearized AL method becomes

OS-accelerable.

3.1.2 OS-LALM: a splitting-based ordered-subset method

Now, we restrict g to be a quadratic loss function, i.e., g(u) , 1
2
‖y − u‖2

2, and

then the minimization problem (3.1) becomes a regularized least-squares problem:

x̂ ∈ arg min
x

{
Ψ(x) , 1

2
‖y −Ax‖2

2 + h(x)
}
. (3.26)

It is very easy to generalize the above regularized least-squares problem to a weighted

one such as (2.10) by using substitutions y←W1/2y, A←W1/2A, and h← R + ιΩ,

where ιC denotes the characteristic function of a convex set C. Let `(x) , g(Ax)

denote the quadratic data-fitting term in (3.26). We assume that ` is suitable for OS

acceleration; i.e., ` can be decomposed into M smaller quadratic functions `1, . . . , `M

satisfying the “subset balance condition” (2.17).

Since g is quadratic, its proximal mapping is linear. The u-update in the linearized

AL method (3.7) has the following simple closed-form solution:

u(k+1) = ρ
ρ+1

(
Ax(k+1) − d(k)

)
+ 1

ρ+1
y . (3.27)

Combining (3.27) with the d-update of (3.7) yields the identity

u(k+1) + ρd(k+1) = y (3.28)

if we initialize d as d(0) = ρ−1
(
y − u(0)

)
. Letting ũ , u − y denote the split

residual and substituting (3.28) into (3.7) leads to the following simplified linearized

AL iterates: 
s(k+1) = A′

(
ρ
(
Ax(k) − y

)
+ (1− ρ) ũ(k)

)
x(k+1) ∈ prox(ρ−1t)h

(
x(k) − (ρ−1t) s(k+1)

)
ũ(k+1) = ρ

ρ+1

(
Ax(k+1) − y

)
+ 1

ρ+1
ũ(k) .

(3.29)

The net computational complexity of (3.29) per iteration reduces to one multiplication

by A, one multiplication by A′, and one proximal mapping of h that often can be

26



solved non-iteratively or solved iteratively without using A or A′. Since the gradient

of ` is A′ (Ax− y), letting g , A′ũ (a back-projection of the split residual) denote

the split gradient, we can rewrite (3.29) as:
s(k+1) = ρ∇`

(
x(k)
)

+ (1− ρ) g(k)

x(k+1) ∈ prox(ρ−1t)h

(
x(k) − (ρ−1t) s(k+1)

)
g(k+1) = ρ

ρ+1
∇`
(
x(k+1)

)
+ 1

ρ+1
g(k) .

(3.30)

We call (3.30) the gradient-based linearized AL method because only the gradients

of ` are used to perform the updates, and the net computational complexity of (3.30)

per iteration becomes one gradient evaluation of ` and one proximal mapping of h.

We interpret the gradient-based linearized AL method (3.30) as a generalized

proximal gradient descent of a regularized least-squares cost function Ψ with step

size ρ−1t and search direction s(k+1) that is a linear average of the gradient and

split gradient of `. A smaller ρ can lead to a larger step size. When ρ = 1, (3.30)

happens to be the proximal gradient method or the iterative shrinkage/thresholding

algorithm (ISTA) [52]. In other words, by using the linearized AL method, we can

arbitrarily increase the step size of the proximal gradient method by decreasing ρ,

thanks to the simple ρ-dependent correction of the search direction in (3.30). To

have a concrete example, suppose all updates are exact, i.e., εk = 0 for all k. From

(3.28) and Theorem III.2, we have −ρd(k) = u(k) − y → Ax̂ − y = ẑ as k → ∞.

Furthermore,
(
−ρd(0)

)
− ẑ = u(0) −Ax̂. Therefore, with a reasonable initialization,

e.g., u(0) = Ax(0) and consequently, g(0) = ∇`
(
x(0)
)
, the constant C in (3.23) can be

rewritten as a function of ρ:

C(ρ) =

∥∥x(0) − x̂
∥∥

2√
2ρ−1t

+

∥∥A(x(0) − x̂
)∥∥

2√
2ρ

. (3.31)

This constant attains its minimum at

ρopt =

∥∥A(x(0) − x̂
)∥∥

2√
L ‖x(0) − x̂‖2

≤ 1 , (3.32)

and it suggests that unity might be a reasonable upper bound on ρ for fast conver-

gence. When the majorization is loose, i.e., L � ‖A‖2
2, then ρopt � 1. In this case,

the first term in (3.31) dominates C for ρopt < ρ ≤ 1, and the upper bound of the

27



primal-dual gap becomes

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤ C2

k
≈ O

(
L

ρ−1k

)
. (3.33)

That is, comparing to the proximal gradient method (ρ = 1), the convergence rate

(bound) of our proposed algorithm is accelerated by a factor of ρ−1 for ρopt < ρ ≤ 1!

Finally, since the proposed gradient-based linearized AL method (3.30) requires

only the gradients of ` to perform the updates, it is OS-accelerable! For OS accelera-

tion, we simply replace ∇` in (3.30) with M∇`m using the approximation (2.17) and

incrementally perform (3.30) for M times as a complete iteration, thus leading to the

final proposed OS-accelerable linearized AL method (OS-LALM):
s(k,m+1) = ρM∇`m

(
x(k,m)

)
+ (1− ρ) g(k,m)

x(k,m+1) ∈ prox(ρ−1t)h

(
x(k,m) − (ρ−1t) s(k,m+1)

)
g(k,m+1) = ρ

ρ+1
M∇`m+1

(
x(k,m+1)

)
+ 1

ρ+1
g(k,m)

(3.34)

with c(k,M+1) = c(k+1) = c(k+1,1) for c ∈ {s,x,g} and `M+1 = `1. The proposed

algorithm (OS-LALM-FISTA) solving the X-ray CT image reconstruction problem

(2.10) is described in Algorithm III.1. Note that when we majorize the quadratic

AL penalty term using diagonal matrix DL in (2.13), the image update becomes a

constrained weighted denoising problem:

x(k,m+1) ∈ arg min
x∈Ω

{
1
2

∥∥x− (x(k,m) − (ρDL)−1 s(k,m+1)
)∥∥2

ρDL
+ R(x)

}
(3.35)

that does not have simple analytical solution in general. Therefore, in Algorithm III.1,

it is solved by using the fast iterative shrinkage/thresholding algorithm (FISTA)

[25] starting from the previous update as a warm start, which is described in Al-

gorithm III.2. Intuitively, the more FISTA iterations (i.e., the lower minimization

errors), the faster convergence rate of OS-LALM-FISTA according to Theorem III.2.

However, using more FISTA iterations for solving the denoising problem also increase

the computational overhead of Algorithm III.1 per outer iteration. For example,

suppose one use n FISTA iterations for solving the denoising problem, the net com-

putational complexity of Algorithm III.1 per outer iterations is approximately one

forward/back-projection pair and nM regularizer gradient evaluations! The compu-

tational overhead of computing regularizer gradients is not negligible when n or M is

large.
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Algorithm III.1 Proposed algorithm (OS-LALM-FISTA) solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1,M ≥ 1, ρ > 0
1: Initialize p(0) = g(0) = M∇`M

(
x(0)
)

2: for k = 0, 1, . . . , niter − 1 do
3: c(k,1) = c(k) for c ∈ {x,p,g}
4: for m = 1, . . . ,M do
5: s(k,m+1) = ρp(k,m) + (1− ρ) g(k,m)

6: Compute x(k,m+1) by solving (3.35) using Algorithm III.2
7: p(k,m+1) = M∇`m

(
x(k,m+1)

)
8: g(k,m+1) = ρ

ρ+1
p(k,m+1) + 1

ρ+1
g(k,m)

9: end for
10: c(k+1) = c(k,M+1) for c ∈ {x,p,g}
11: end for
12: return x(niter)

Algorithm III.2 Fast iterative shrinkage/thresholding algorithm (FISTA) solving
constrained denoising problem arg minx∈Ω

{
1
2
‖x− b‖2

D + R(x)
}

Require: x(0) ∈ IRnp , ndeno ≥ 1
1: Initialize z(0) = x(0), t0 = 1
2: for k = 0, 1, . . . , ndeno − 1 do

3: x(k+1) =
[
z(k) −

(
D + D

(k)
R

)−1 (
D
(
x(k) − b

)
+∇R

(
z(k)
))]

Ω

4: tk+1 =
(
1 +

√
1 + 4t2k

)
/2

5: z(k+1) = x(k+1) + tk−1
tk+1

(
x(k+1) − x(k)

)
6: end for
7: return x(ndeno)
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Fortunately, in typical X-ray CT image reconstruction problems, the majorization

is usually very loose (i.e., DL �� A′WA) probably due to the huge dynamic range

of the statistical weight W. This leads to a very strong weighting on the data-fitting

term in (3.35), which equivalently dimishes greatly the regularizatio force in the de-

noising problem. In practice, the constrained denoising problem can be solved up to

some acceptable tolerance within just one or two iterations. Therefore, an inexact

version of the proposed algorithm (inexact OS-LALM) the uses only one FISTA de-

noising step to solve the constrained denoising problem is described in Algorithm III.3.

Note that if we solve denoising problems with one FISTA (or ISTA) iteration, the

net computatioinal complexity of the algorithm is the same as conventional OS-based

methods. By the way, the inexact algorithm is equivalent to replacing the regularizer

R by its SQS function R̆ in a convergent ADMM (the linearized AL method). This par-

ticular approximation of ADMM is called the stochastic ADMM [51] in the machine

learning literature. It is proven to be convergent only with a growing majorization

(even when no gradient error is presented), thus leading to slower convergence rate,

in the original paper [51]. However, a more recent paper showed that the stochastic

ADMM is also convergent without the growing majorization in the noiseless case with

rate O(1/k) [53]. Hence, when M = 1, the inexact OS-LALM is convergent.

Algorithm III.3 Proposed algorithm (inexact OS-LALM) solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1,M ≥ 1, ρ > 0
1: Initialize p(0) = g(0) = M∇`M

(
x(0)
)

2: for k = 0, 1, . . . , niter − 1 do
3: c(k,1) = c(k) for c ∈ {x,p,g}
4: for m = 1, . . . ,M do
5: s(k,m+1) = ρp(k,m) + (1− ρ) g(k,m)

6: x(k,m+1) =
[
x(k,m) −

(
ρDL + D

(k,m)
R

)−1 (
s(k,m+1) +∇R

(
x(k,m)

))]
Ω

7: p(k,m+1) = M∇`m
(
x(k,m+1)

)
8: g(k,m+1) = ρ

ρ+1
p(k,m+1) + 1

ρ+1
g(k,m)

9: end for
10: c(k+1) = c(k,M+1) for c ∈ {x,p,g}
11: end for
12: return x(niter)

3.2 Fast convergence with a downward continuation approach

One drawback of the AL method with a fixed AL penalty parameter ρ is the

difficulty of finding the value that provides the fastest convergence. For example,
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although the optimal AL penalty parameter ρopt in (3.32) minimizes the constant

C in (3.31) that governs the convergence rate of the primal-dual gap, one cannot

know its value beforehand because it depends on the solution x̂ of the problem.

Intuitively, a smaller ρ is better because it leads to a larger step size. However, when

the step size is too large, one can encounter overshoots and oscillations that slow

down the convergence rate at first and when nearing the optimum. In fact, ρopt in

(3.32) also suggests that ρ should not be arbitrarily small. Rather than estimating

ρopt heuristically, we focus on using an iteration-dependent ρ, i.e., a continuation

approach, for acceleration.

The classic continuation approach increases ρ as the algorithm proceeds so that

the previous iterate can serve as a warm start for the subsequent worse-conditioned

but more penalized inner minimization problem [54, Proposition 4.2.1]. However, in

classic continuation approaches such as [39], one must specify both the initial value

and the update rules of ρ. This introduces even more parameters to be tuned. In this

section, unlike classic continuation approaches, we consider a downward continuation

approach. The intuition is that, for a fixed ρ, the step length
∥∥x(k+1) − x(k)

∥∥ is typ-

ically a decreasing sequence because the gradient norm vanishes as we approach the

optimum, and an increasing sequence ρk (i.e., a diminishing step size) would aggra-

vate the shrinkage of step length and slow down the convergence rate. In contrast,

a decreasing sequence ρk can compensate for step length shrinkage and accelerate

convergence. Of course, ρk cannot decrease too fast; otherwise, the soaring step size

might make the algorithm unstable or even divergent. To design a “good” decreasing

sequence ρk for “effective” acceleration, we first analyze how our proposed algorithm

(the one-subset version (3.30) for simplicity) behaves for different values of ρ.

3.2.1 Second-order system analysis with a fixed ρ

Consider a very simple quadratic problem:

x̂ ∈ arg min
x

1
2
‖Ax‖2

2 . (3.36)

It is just an instance of (3.26) with h = 0 and y = 0. One trivial solution of (3.36) is

x̂ = 0. To ensure a unique solution, we assume that A′A is positive definite (for this

analysis only). Let A′A have eigenvalue decomposition VΛV′, where Λ , diag{λi}
and µ = λ1 ≤ · · · ≤ λn = L. The updates generated by (3.30) that solve (3.36) can
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be written as x(k+1) = x(k) − (1/L)
(
VΛV′x(k) + (ρ−1 − 1) g(k)

)
g(k+1) = ρ

ρ+1
VΛV′x(k+1) + 1

ρ+1
g(k) .

(3.37)

Furthermore, letting x̄ = V′x and ḡ = V′g, the linear system can be further diago-

nalized, and we can represent the ith components of x̄ and ḡ asx̄
(k+1)
i = x̄

(k)
i − (1/L)

(
λix̄

(k)
i + (ρ−1 − 1) ḡ

(k)
i

)
ḡ

(k+1)
i = ρ

ρ+1
λix̄

(k+1)
i + 1

ρ+1
ḡ

(k)
i .

(3.38)

Solving this system of recurrence relations of x̄i and ḡi, one can show that both

x̄i and ḡi satisfy a second-order recursive system determined by the characteristic

polynomial:

(1 + ρ) r2 − 2 (1− λi/L+ ρ/2) r + (1− λi/L) . (3.39)

We analyze the roots of this polynomial to examine the convergence rate.

When ρ = ρc
i , where

ρc
i , 2

√
λi
L

(
1− λi

L

)
∈ (0, 1] , (3.40)

the characteristic equation has repeated roots. Hence, the system is critically damped,

and x̄i and ḡi converge linearly to zero with convergence rate

rc
i =

1− λi/L+ ρc
i/2

1 + ρc
i

=

√
1− λi/L

1 + ρc
i

. (3.41)

When ρ > ρc
i , the characteristic equation has distinct real roots. Hence, the system

is over-damped, and x̄i and ḡi converge linearly to zero with convergence rate that is

governed by the dominant root

ro
i (ρ) =

1− λi/L+ ρ/2 +
√
ρ2/4− λi/L (1− λi/L)

1 + ρ
. (3.42)

It is easy to check that ro
i (ρ

c
i ) = rc

i , and ro
i is non-decreasing. This suggests that

the critically damped system always converges faster than the over-damped system.

Finally, when ρ < ρc
i , the characteristic equation has complex roots. In this case, the

system is under-damped, and x̄i and ḡi converge linearly to zero with convergence
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rate

ru
i (ρ) =

1− λi/L+ ρ/2

1 + ρ
, (3.43)

and oscillate at the damped frequency ψi/(2π), where

cosψi =
1− λi/L+ ρ/2√
(1 + ρ)(1− λi/L)

≈
√

1− λi/L (3.44)

when ρ ≈ 0. Furthermore, by the small angle approximation:

cos
√
θ ≈ 1− θ/2 ≈

√
1− θ , (3.45)

if λi � L, ψi ≈
√
λi/L. Again, ru

i (ρc
i ) = rc

i , but ru
i behaves differently from ro

i .

Specifically, ru
i is non-increasing if λi/L < 1/2, and it is non-decreasing otherwise.

This suggests that the critically damped system converges faster than the under-

damped system if λi/L < 1/2, but it can be slower otherwise. In sum, the critically

damped system is optimal for those eigencomponents with smaller eigenvalues (i.e.,

λi < L/2), while for eigencomponents with larger eigenvalues (i.e., λi > L/2), the

under-damped system is optimal.

In practice, the asymptotic convergence rate of the system is dominated by the

smallest eigenvalue λ1 = µ. As the algorithm proceeds, only the component oscillat-

ing at the frequency ψ1/(2π) persists. Therefore, to achieve the fastest asymptotic

convergence rate, we would like to choose

ρ? = ρc
1 = 2

√
µ

L

(
1− µ

L

)
∈ (0, 1] . (3.46)

Figure 3.1 shows an example of the optimal asymptotic convergence rate ρ? of a

system with six distinct eigenvalues (µ = 0.05L, 0.1L, 0.3L, 0.7L, 0.9L, and L).

As we mentioned before, for those eigencomponents with smaller eigenvalues (0.05L,

0.1L, and 0.3L), the critically damped system has the fastest asymptotic convergence

rate, while eigencomponents with larger eigenvalues (0.7L, 0.9L, and L) attain the

fastest asymptotic convergence rate in the under-damping regime. Moreover, when µ

is less than L/2, the eigencomponent with the smallest eigenvalue µ determines the

asymptotic convergence rate, i.e., minρ {maxiri(ρ)} = ρ?, of the system as shown in

(3.46). Unlike ρopt in (3.32), this choice of ρ does not depend on the initialization. It

depends only on the geometry of the Hessian A′A. Furthermore, notice that both ρopt

and ρ? fall in the interval (0, 1]. Hence, although the linearized AL method converges

for any ρ > 0, we consider only ρ ≤ 1 in our downward continuation approach.
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Figure 3.1: Optimal asymptotic convergence rate ρ? of a system with six distinct
eigenvalues (µ = 0.05L, 0.1L, 0.3L, 0.7L, 0.9L, and L).

We can now interpret the classic (upward) continuation approach based on the

second-order recursive system analysis. The classic continuation approach usually

starts from a small ρ for better-conditioned inner minimization problem. Therefore,

initially, the system is under-damped. Although the under-damped system has a

slower asymptotic convergence rate, the oscillation can provide dramatic acceleration

before the first zero-crossing of the oscillating components. We can think of the classic

continuation approach as a greedy strategy that exploits the initial fast convergence

rate of the under-damped system and carefully increases ρ to avoid oscillation and

move toward the critical damping regime. However, this greedy strategy requires a

“clever” update rule for increasing ρ. If ρ increases too fast, the acceleration ends

prematurally; if ρ increases too slow, the system starts oscillating.

In contrast, we consider a more conservative strategy that starts from the over-

damped regime, say, ρ = 1 as suggested in (3.46), and gradually reduces ρ to the

optimal AL penalty parameter ρ?. It sounds impractical at first because we do not

know µ beforehand. To solve this problem, we adopt the adaptive restart proposed in

[55] and generate a decreasing sequence ρk that starts from ρ = 1 and reaches ρ? every

time the algorithm restarts (i.e., reseting g to be the current gradient of `)! As men-

tioned before, the system oscillates at frequency ψ1/(2π) when it is under-damped.

This oscillating behavior can also be observed from the trajectory of updates. For

example,

ξ(k) ,
(
g(k) −∇`

(
x(k+1)

))′(∇`(x(k+1)
)
−∇`

(
x(k)
))

(3.47)

oscillates at the frequency about ψ1/π [55]. Hence, if we restart every time ξ(k) > 0,

we restart the decreasing sequence about every (π/2)
√
L/µ iterations. Suppose we
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restart at the lth iteration, we have the approximation
√
µ/L ≈ π/ (2l), and the ideal

AL penalty parameter at the lth iteration should be

2
√(

π
2l

)2(
1−

(
π
2l

)2)
= π

l

√
1−

(
π
2l

)2
. (3.48)

Finally, the proposed downward continuation approach has the form (3.30), while we

replace every ρ in (3.30) with

ρr =

1 , if r = 0

max
{

π
r+1

√
1−

(
π

2r+2

)2
, ρmin

}
, otherwise ,

(3.49)

where r is a counter that starts from zero, increases by one, and is reset to zero

whenever ξ(k) > 0. For the M -subset version (3.34), we usually do not use adaptive

restart because gradients are inaccurate in this case, and one might restart prema-

turely due to the false restart signal. The lower bound ρmin is a small positive number

for guaranteeing convergence. Note that ADMM is convergent if ρ is non-increasing

and bounded below away from zero [56, Corollary 4.2]. As shown in Section 3.1.1,

the linearized AL method is in fact a convergent ADMM. Therefore, we can ensure

convergence (of the one-subset version) of the proposed downward continuation ap-

proach if we set a non-zero lower bound for ρl, e.g., ρmin = 10−3 in our experiments.

The proposed algorithm (inexact OS-LALM-c) is described in Algorithm III.4.

Algorithm III.4 Proposed algorithm (inexact OS-LALM-c) solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1,M ≥ 1
1: Initialize p(0) = g(0) = M∇`M

(
x(0)
)
, r = 1

2: for k = 0, 1, . . . , niter − 1 do
3: c(k,1) = c(k) for c ∈ {x,p,g}
4: for m = 1, . . . ,M do
5: Compute ρr using (3.49)
6: s(k,m+1) = ρr p(k,m) + (1− ρr) g(k,m)

7: x(k,m+1) =
[
x(k,m) −

(
ρrDL + D

(k,m)
R

)−1 (
s(k,m+1) +∇R

(
x(k,m)

))]
Ω

8: p(k,m+1) = M∇`m
(
x(k,m+1)

)
9: g(k,m+1) = ρr

ρr+1
p(k,m+1) + 1

ρr+1
g(k,m)

10: r = r + 1
11: end for
12: c(k+1) = c(k,M+1) for c ∈ {x,p,g}
13: end for
14: return x(niter)

Note that ρr in (3.49) is the same for any A. The adaptive restart condition
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takes care of the dependence on A. When h is non-zero and/or A′A is not positive

definite, our analysis above does not hold. However, the downward continuation

approach works well in practice for CT. One possible explanation is that the cost

function can usually be well approximated by a quadratic near the optimum when

the minimization problem is well-posed and h is locally quadratic.

3.2.2 Experimental results: low-dose CT

This section reports numerical results for 3D X-ray CT image reconstruction from

real low-dose CT scans with different geometries using various OS-based methods,

including

� OS-SQS-M : the standard OS algorithm [10] with M subsets (Algorithm II.3),

� OS-Nes05-M : the OS+momentum algorithm [27] based on Nesterov’s fast

gradient method [24] with M subsets (Algorithm II.4),

� OS-rNes05-M -γ: the relaxed OS+momentum algorithm [28] based on Nes-

terov’s fast gradient method [24] and Devolder’s growing diagonal majorizer

with M subsets (Algorithm II.5),

� OS-LALM-M -ρ-1 : the proposed algorithm using a fixed AL penalty parame-

ter ρ with M subsets and one FISTA iterations for solving the inner constrained

denoising problem (Algorithm III.3), and

� OS-LALM-M -c-1 : the proposed algorithm using the downward continua-

tion approach with M subsets and one FISTA iterations for solving the inner

constrained denoising problem (Algorithm III.4).

All algorithms listed above have approximately the same computational complexity,

i.e., total number of flops, with one forward/back-projection pair and M regularizer

gradient evaluations per iteration. Therefore, comparing the convergence rate as

a function of iteration is fair. We measured the convergence rate using the RMS

difference (in the region of interest) between the reconstructed image x(k) and the

almost converged reference reconstruction x? that is generated by running several

iterations of the standard OS+momentum algorithm with a small M , followed by

2000 iterations of a convergent (i.e., one-subset) FISTA with adaptive restart [55].

Since OS-based methods are in fact incremental gradient methods, the order of

incremental image update affects both the convergence rate and stability of OS-

based algorithms. In our experiments, we choose the bit-reversal order [57] that
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heuristically minimizes the subset gradient variance as in other OS-based algorithms

[10, 27, 28, 49]. The number of subsets M also affects the stability of OS-based

algorithms. When M is too large, OS algorithms typically become unstable, and one

can observe artifacts in the reconstructed image. Therefore, finding an appropriate

number of subsets is very important. Since errors of OS-based algorithms come

from the gradient approximation using subset gradients, artifacts might be supressed

using a better gradient approximation. Intuitively, to have an acceptable gradient

approximation, each voxel in a subset should be sampled by a minimum number of

views s. For simplicity, we consider the central voxel in the transaxial plane. In axial

CT, the views are uniformly distributed in each subset, so we want

1
Maxial

· (number of views) ≥ saxial . (3.50)

This leads to our maximum number of subsets for axial CT:

Maxial ≤ (number of views) · 1
saxial

. (3.51)

In helical CT, the situation is more complicated. Since the X-ray source moves in the

z-direction, a central voxel is only covered by dso/ (p · dsd) turns, where p is the pitch,

dso denotes the distance from the X-ray source to the isocenter, and dsd denotes the

distance from the X-ray source to the detector. Therefore, we want

1
Mhelical

· (number of views per turn) · dso
p·dsd
≥ shelical . (3.52)

This leads to our maximum number of subsets for helical CT:

Mhelical ≤ (number of views per turn) · dso
p·shelical·dsd

. (3.53)

Note that the maximum number of subsets for helical CT Mhelical is inversely pro-

portional to the pitch p. That is, the maximum number of subsets for helical CT

decreases for a larger pitch. We set saxial ≈ 40 and shelical ≈ 24 for the proposed

algorithm in our experiments.

3.2.2.1 Shoulder scan

In this experiment, we reconstructed a 512× 512× 109 image from a shoulder re-

gion helical CT scan, where the sinogram has size 888× 32× 7146 and pitch 0.5. The

suggested maximum number of subsets according to (3.53) is about 40. Figure 3.2
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shows the cropped images from the central transaxial plane of the initial FBP image,

the reference reconstruction, and the reconstructed image using the proposed algo-

rithm (OS-LALM-40-c-1) at the 30th iteration (i.e., after 30 forward/back-projection

pairs). As can be seen in Figure 3.2, the reconstructed image using the proposed al-

gorithm looks almost the same as the reference reconstruction in the display window

from 800 to 1200 Hounsfield unit (HU). The reconstructed image using the standard

OS+momentum algorithm (not shown here) also looks quite similar to the reference

reconstruction.

To see the difference between the standard OS+momentum algorithm and our

proposed algorithm, Figure 3.3 shows the difference images, i.e., x(30)−x?, for different

OS-based algorithms. We can see that the standard OS algorithm (with both 20 and

40 subsets) exhibits visible streak artifacts and structured high frequency noise in the

difference image. When M = 20, the difference images look similar for the standard

OS+momentum algorithm and our proposed algorithm, although that of the standard

OS+momentum algorithm is slightly structured and non-uniform. When M = 40, the

difference image for our proposed algorithm remains uniform, whereas some noise-like

OS artifacts appear in the standard OS+momentum algorithm’s difference image. The

OS artifacts in the reconstructed image using the standard OS+momentum algorithm

become worse when M increases, e.g., M = 80. This shows the better gradient error

tolerance of our proposed algorithm when OS is used, probably due to the way we

compute the search direction.

As can be seen in (3.30), the search direction s is a linear average of the cur-

rent gradient and the split gradient of `. Specifically, (3.30) computes the search

direction using a low-pass infinite-impulse-response (IIR) filter (across iterations),

and therefore, the gradient error might be suppressed by the low-pass filter, lead-

ing to a more stable reconstruction. A similar averaging technique (with a low-pass

finite-impulse-response or FIR filter) is also used in the stochastic average gradient

(SAG) method [58, 59] for acceleration and stabilization. In comparison, the stan-

dard OS+momentum algorithm computes the search direction using only the current

gradient (of the auxiliary image), so the gradient error accumulates when OS is used,

providing a less stable reconstruction.

Figure 3.4 shows the convergence rate curves (RMS differences between the re-

constructed image x(k) and the reference reconstruction x? as a function of iteration)

using OS-based algorithms with (a) 20 subsets and (b) 40 subsets, respectively. By ex-

ploiting the linearized AL method, the proposed algorithm accelerates the standard

OS algorithm remarkably. As mentioned in Section 3.1.2, a smaller ρ can provide
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Figure 3.2: Shoulder scan: cropped images (displayed from 800 to 1200 HU) from
the central transaxial plane of the initial FBP image x(0) (left), the reference re-
construction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-40-c-1) at the 30th iteration x(30) (right).

greater acceleration due to the increased step size. We can see the approximate 5, 10,

and 20 times acceleration (comparing to the standard OS algorithm, i.e., ρ = 1) using

ρ = 0.2, 0.1, and 0.05 in both figures. Note that too large step sizes can cause over-

shoots in early iterations. For example, the proposed algorithm with ρ = 0.05 shows

slower convergence rate in first few iterations but decreases more rapidly later. This

trade-off can be overcome by using our proposed downward continuation approach.

As can be seen in Figure 3.4, the proposed algorithm using downward continuation

reaches the lowest RMS differences (lower than 1 HU) within only 30 iterations!

Furthermore, the slightly higher RMS difference of the standard OS+momentum al-

gorithm with 40 subsets shows evidence of OS artifacts.

Figure 3.5 demonstrates the effectiveness of solving the inner constrained denois-

ing problem using FISTA (for X-ray CT image reconstruction). As can be seen in

Figure 3.5, the convergence rate improves only slightly when more FISTA iterations

are used for solving the inner constrained denoising problem. In practice, one FISTA

iteration, i.e., n = 1, suffices for fast and “convergent” X-ray CT image reconstruc-

tion. When the inner constrained denoising problem is more difficult to solve (e.g.,

when regularization term dominates the cost function), one might want to introduce

an additional split variable for the regularizer as in [8] at the cost of higher memory

burden, thus leading to a “high-memory” version of OS-LALM. We will discuss this

variant of the proposed algorithm in the next section.

3.2.2.2 Truncated abdomen scan

In this experiment, we reconstructed a 600 × 600 × 239 image from an abdomen

region helical CT scan with transaxial truncation, where the sinogram has size 888×
64 × 3516 and pitch 1.0. The suggested maximum number of subsets according to

(3.53) is about 20. Figure 3.6 shows the cropped images from the central transaxial

plane of the initial FBP image, the reference reconstruction, and the reconstructed
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Figure 3.3: Shoulder scan: cropped difference images (displayed from −30 to 30 HU)
from the central transaxial plane of x(30) − x? using OS-based algorithms.
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(b)

Figure 3.4: Shoulder scan: RMS differences between the reconstructed image x(k) and
the reference reconstruction x? as a function of iteration using OS-based algorithms
with (a) 20 subsets and (b) 40 subsets, respectively. The dotted lines show the
RMS differences using the standard OS algorithm with one subset as the baseline
convergence rate.
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Figure 3.5: Shoulder scan: RMS differences between the reconstructed image x(k)

and the reference reconstruction x? as a function of iteration using the proposed
algorithm with different number of FISTA iterations n (1, 2, and 5) for solving the
inner constrained denoising problem.
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Figure 3.6: Truncated abdomen scan: cropped images (displayed from 800 to 1200
HU) from the central transaxial plane of the initial FBP image x(0) (left), the reference
reconstruction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-20-c-1) at the 30th iteration x(30) (right).

image using the proposed algorithm (OS-LALM-20-c-1) at the 30th iteration. This

experiment demonstrates how different OS-based algorithms behave when the number

of subsets exceeds the suggested maximum number of subsets. Figure 3.7 shows the

difference images for different OS-based algorithms with 10, 20, and 40 subsets. As

can be seen in Figure 3.7, the proposed algorithm works best for M = 20; when M is

larger (M = 40), ripples and light OS artifacts appear due to the insufficient sampling

rate. However, it is still much better than the standard OS+momentum algorithm [27].

In fact, the OS artifacts in the reconstructed image using the standard OS+momentum

algorithm with 40 subsets are visible with the naked eye in the display window from

800 to 1200 HU. The convergence rate curves in Figure 3.8 support our observation.

In sum, the proposed algorithm exhibits fast convergence rate and excellent gradient

error tolerance even in the case with truncation.
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Figure 3.7: Truncated abdomen scan: cropped difference images (displayed from −30
to 30 HU) from the central transaxial plane of x(30) − x? using OS-based algorithms.
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Figure 3.8: Truncated abdomen scan: RMS differences between the reconstructed im-
age x(k) and the reference reconstruction x? as a function of iteration using OS-based
algorithms with 10, 20, and 40 subsets. The dotted line shows the RMS differences
using the standard OS algorithm with one subset as the baseline convergence rate.
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3.2.2.3 GE performance phantom

In this experiment, we reconstructed a 1024×1024×90 image from the GE perfor-

mance phantom (GEPP) axial CT scan, where the sinogram has size 888× 64× 984.

The suggested maximum number of subsets according to (3.51) is about 24. Fig-

ure 3.9 shows the cropped images from the central transaxial plane of the initial FBP

image, the reference reconstruction, and the reconstructed image using the proposed

algorithm (OS-LALM-24-c-1) at the 30th iteration. Again, the reconstructed image

using the proposed algorithm at the 30th iteration is very similar to the reference

reconstruction.

The goal of this experiment is to evaluate the gradient error tolerance of our

proposed algorithm and the recently proposed relaxed OS+momentum algorithm [28]

that trades reconstruction stability with speed by introducing relaxed momentum

(i.e., a growing diagonal majorizer). We vary γ to investigate different amounts of re-

laxation. When γ = 0, the relaxed OS+momentum algorithm reverts to the standard

OS+momentum algorithm. A larger γ can lead to a more stable reconstruction but

slower convergence. Figure 3.10 and Figure 3.11 show the difference images and con-

vergence rate curves using these OS-based algorithms, respectively. As can be seen

in Figure 3.10 and 3.11, the standard OS+momentum algorithm has even more OS

artifacts than the standard OS algorithm, probably because 24 subsets in axial CT is

too aggressive for the standard OS+momentum algorithm, and we can see clear OS

artifacts in the difference image and large limit cycle in the convergence rate curve.

The OS artifacts are less visible as γ increases. The case γ = 0.005 achieves the best

trade-off between OS artifact removal and fast convergence rate. When γ is even

larger, the relaxed OS+momentum algorithm is significantly slowed down although

the difference image looks quite uniform (with some structured high frequency noise).

The proposed OS-LALM algorithm avoids the need for such parameter tuning; one

only needs to choose the number of subsets M . Furthermore, even for γ = 0.005,

the relaxed OS+momentum algorithm still has more visible OS artifacts and slower

convergence rate comparing to our proposed algorithm.

3.3 Efficient memory usage when considering additional splits

As mentioned in the previous section, due to the inexact updates, the proposed

algorithm can be slow when the regularization term dominates the cost function. To

have a concrete example, let’s take a look at the gradient-based image update of Algo-

rithm III.4. The voxel-dependent step sizes are determined by the diagonal entries of
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Figure 3.9: GE performance phantom: cropped images (displayed from 800 to 1200
HU) from the central transaxial plane of the initial FBP image x(0) (left), the reference
reconstruction x? (center), and the reconstructed image using the proposed algorithm
(OS-LALM-24-c-1) at the 30th iteration x(30) (right).
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Figure 3.10: GE performance phantom: cropped difference images (displayed from
−30 to 30 HU) from the central transaxial plane of x(30) − x? using the relaxed
OS+momentum algorithm and the proposed algorithm.
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Figure 3.11: GE performance phantom: RMS differences between the reconstructed
image x(k) and the reference reconstruction x? as a function of iteration using the
relaxed OS+momentum algorithm and the proposed algorithm with 24 subsets. The
dotted line shows the RMS differences using the standard OS algorithm with one
subset as the baseline convergence rate.

ρrDL +D
(k)
R . Suppose the regularization force is large (hence, diagonal entries of D

(k)
R

are large). The effect of continuation (decrease of ρr) is marginal because the latter

term dominates the step sizes. One possible way to solve this problem is to introduce

an additional auxiliary variable that separates the regularization effect from image

updates, just like the high-memory ADMM [8]. By introducing the high-memory

v = Cx auxiliary variable, in (2.28), the non-quadratic regularizer R whose Hessian

can have very high (or even infinite) curvature is replaced by a quadratic AL penalty

term with Hessian ηC′C that has an η-scalable curvature. This looks very promising,

except for the inevitable high memory requirement.

3.3.1 Split OS-LALM: OS-LALM with additional split

Consider a regularized least-squares problem:

x̂ ∈ arg min
x∈Ω

{
1
2
‖y −Ax‖2

2 + Φ(Θx)
}
, (3.54)

where A is the system matrix, y is the noisy measurement, Θ is an analysis reg-

ularization matrix, Φ is some convex (and possibly non-smooth) potential function

defined in (2.8), and Ω denotes the convex set for a box constraint (usually the non-

negativity constraint) on x. For example, in (anisotropic) TV-regularized X-ray CT

image reconstruction problems, A is the weighted forward projection matrix, y is the

weighted noisy sinogram, Θ is a finite difference matrix, and Φ is an `1-norm, prob-

ably with some weighting. The minimization problem (3.54) is non-trivial in general
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since Θ might not be an identity matrix, and Φ can be non-smooth.

To solve (3.54), consider solving an equivalent constrained minimization problem:

(x̂, û, v̂) ∈ arg min
x,u,v

{
1
2
‖y − u‖2

2 + Φ(v) + ιΩ(x)
}

s.t. u = Ax,v = Θx (3.55)

by finding a saddle-point of the corresponding scaled augmented Lagrangian (with a

weighted quadratic AL penalty term [34, 56]):

LA(x,u,v,d, e; ρ, η) , 1
2
‖y − u‖2

2 + Φ(v) + ιΩ(x)

+ ρ
2
‖Ax− u− d‖2

2 + η
2
‖Θx− v − e‖2

DregDφ{Θx} (3.56)

with the linearized AL method described in Section 3.1.1:

x(k+1) ∈ arg min
x

{
ιΩ(x) + θ̆k

(
x; x(k)

)
+ φ̆k

(
x; x(k)

)}
u(k+1) ∈ arg min

u

{
1
2
‖y − u‖2

2 + ρ
2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
v(k+1) ∈ arg min

v

{
Φ(v) + η

2

∥∥Θx(k+1) − v − e(k)
∥∥2

DregDφ{Θx(k)}

}
d(k+1) = d(k) −Ax(k+1) + u(k+1)

e(k+1) = e(k) −Θx(k+1) + v(k+1) ,

(3.57)

where ιΩ is the characteristic function of the convex set Ω that handles the box

constraint on x, d and e are the scaled Lagrange multipliers of the auxiliary variables

u and v, respectively, and ρ, η > 0 are the corresponding AL penalty parameters. We

weight the second quadratic AL penalty term by ηDregDφ{Θx(k)} to impose more

penalty for finite difference that has higher curvature in a scalable way. The functions

θ̆k
(
x; x(k)

)
and φ̆k

(
x; x(k)

)
are two SQS functions that majorize

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(3.58)

and

φk(x) , η
2

∥∥Θx− v(k) − e(k)
∥∥2

DregDφ{Θx(k)} (3.59)

at x = x(k) with diagonal Hessian matrices ρDL and ηD
(k)
R , respectively.

As can be seen in (3.57), introducing an additional auxiliary variable v only mod-

estly changes the updates from the one-split linearized AL iterates (3.7). By letting

hk , ιΩ + φ̆k, the two-split linearized AL iterates (3.57) become the one-split lin-

earized AL iterates (3.7) with an iteration-dependent regularization term hk, where
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the effect of hk is fully determined by the v- and e-updates in (3.57)! Hence, we

can easily rewrite the two-split linearized AL iterates (3.57) to the two-split gradient-

based linearized AL iterates:

s(k+1) = ρ∇`
(
x(k)
)

+ (1− ρ) g(k)

x(k+1) ∈ proxhk,ρDL

(
x(k) − (ρDL)−1 s(k+1)

)
g(k+1) = ρ

ρ+1
∇`
(
x(k+1)

)
+ 1

ρ+1
g(k)

v(k+1) ∈ proxΦ,ηDregDφ{Θx(k)}
(
Θx(k+1) − e(k)

)
e(k+1) = e(k) −Θx(k+1) + v(k+1) ,

(3.60)

where ` denotes the quadratic data-fitting term in (3.54), and proxϕ,D denotes the

(diagonal-)generalized proximal mapping of ϕ with diagonal weighting D defined as:

proxϕ,D(z) , arg min
x

{
ϕ(x) + 1

2
‖x− z‖2

D

}
. (3.61)

Since both ιΩ and φ̆k are separable, the x-update of the two-split gradient-based

linearized AL iterates (3.60) has a closed-form solution:

x(k+1) =
[
x(k) −

(
ρDL + ηD

(k)
R

)−1 (
s(k+1) + σ(k+1)

)]
Ω
, (3.62)

where

σ(k+1) , ηΘ′DregDφ{Θx(k)}
(
Θx(k) − v(k) − e(k)

)
(3.63)

is the search direction attributed to the regularization term. Finally, the two-split

gradient-based linearized AL method (3.60) is an extension of the one-split gradient-

based linearized AL method, so we can accelerate it by using OS and the downward

continuation approach. When OS is used for acceleration, we call our proposed al-

gorithm split OS-LALM, by an analogy of the SB method. The proposed algorithm

(split OS-LALM-c) solving (2.10) is described in Algorithm III.5.

3.3.2 Memory-efficient implementation

As mentioned before, the issue of the high-memory ADMM [8] is the remarkable

memory overhead. To solve this problem, we consider majorizing the (smooth and

LΦ-Lipschitz) potential function Φ in Step 11 of Algorithm III.5 by its SQS function

Φ̆
(
v; Cx(k,m+1)

)
∝ v′∇Φ

(
Cx(k,m+1)

)
+ 1

2

∥∥v −Cx(k,m+1)
∥∥2

DregDφ{Θx(k,m+1)} (3.64)
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Algorithm III.5 Proposed algorithm (split OS-LALM-c) solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1,M ≥ 1
1: Initialize p(0) = g(0) = M∇`M

(
x(0)
)
, r = 1,

v(0) = proxΦ,ηDregDφ{Θx(k)}
(
Cx(0)

)
, e(0) = −Cx(0) + v(0)

2: for k = 0, 1, . . . , niter − 1 do
3: c(k,1) = c(k) for c ∈ {x,p,g,v, e}
4: for m = 1, . . . ,M do
5: Compute ρr using (3.49)
6: s(k,m+1) = ρr p(k,m) + (1− ρr) g(k,m)

7: σ(k,m+1) = ηC′DregDφ{Θx(k,m)}
(
Cx(k,m) − v(k,m) − e(k,m)

)
8: x(k,m+1) =

[
x(k,m) −

(
ρrDL + ηD

(k,m)
R

)−1 (
s(k,m+1) + σ(k,m+1)

)]
Ω

9: p(k,m+1) = M∇`m
(
x(k,m+1)

)
10: g(k,m+1) = ρr

ρr+1
p(k,m+1) + 1

ρr+1
g(k,m)

11: Compute v(k,m+1) using the proximal mapping of Φ
12: e(k,m+1) = e(k,m) −Θx(k,m+1) + v(k,m+1)

13: r = r + 1
14: end for
15: c(k+1) = c(k,M+1) for c ∈ {x,p,g,v, e}
16: end for
17: return x(niter)

using Huber’s curvature. Since Φ̆ is quadratic, its proximal mapping is linear. This

makes all v- and e-related steps linear. Then, letv̄(k,m+1) , C′DregDφ{Θx(k,m+1)}
(
Cx(k,m+1) − v(k,m+1)

)
ẽ(k,m+1) , C′DregDφ{Θx(k,m+1)} e(k,m+1)

(3.65)

denote the “compressed” auxiliary variables. After simple calculations, the iterates

of the compressed auxiliary variables are as follows:v̄(k,m+1) = η
η+1

ẽ(k,m) + 1
η+1
∇R
(
x(k,m+1)

)
ẽ(k,m+1) = ẽ(k,m) − v̄(k,m+1) .

(3.66)

Note that no explicit shrinkage has to be done now. The search direction attributed

to the regularization term can be computed simply as:

σ(k,m+1) = η
(
v̄(k,m) − ẽ(k,m)

)
. (3.67)
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In other words, unlike the original (high-memory) split OS-LALM in which we have

to store (one or) two extra image volumes of difference images for each direction,

we only have to store (one or) two extra image volumes of difference images for

all direction in the proposed approximate algorithm (inexact split OS-LALM)! The

complete algorithm of inexact split OS-LALM is described in Algorithm III.6. So far,

we do not have any convergence proof of the inexact split OS-LALM, even for M = 1,

unless we think of the resulting update with majorization as an inexact update whose

errors satisfy the absolutely summable condition. However, we believe algorithms that

majorize functions in those updates of auxiliary variables are still convergent, just like

the inexact OS-LALM (Algorithm III.3) that majorizes the regularizer in the image

update. In fact, the majorization (3.64) equivalently majorizes the regularizer using a

tighter non-separable quadratic surrogate function with Huber’s curvature! Proving

the convergence of the inexact split OS-LALM (for M = 1) is a very interesting future

work because it will be very useful for problems with lots of auxiliary variables.

For example, in the prior image constrained compressed sensing (PICCS) CT

reconstruction [60], images are reconstructed from very limited number of view angles

(i.e., highly downsampled projection views) with the help of a “prior image” that is,

for example, reconstructed from the union of interleaved dynamic dataset (4D cone-

beam CT). Mathematically, the PICCS CT reconstruction can be formulated as:

x̂PICCS ∈ arg min
x∈Ω

{
1
2
‖y −Ax‖2

W + β1 ‖x‖TV + β2 ‖x− xprior‖TV

}
, (3.68)

where xprior denotes the prior image, ‖·‖TV denotes the TV norm of an image, and

β1, β2 ≥ 0 are the regualrization forces of the two TV norms. In this case, suppose we

solve this PICCS reconstruction problem (3.68) using splitting-based methods, say,

the SB method, and consider all 13 neighbors on one side of a 3 × 3 × 3 cube when

computing the finite difference images. We have to store 2× 2× 13 = 52 extra image

volumes in the memory in order to solve this non-smooth minimization problem! That

is definitely intractable even for a small dataset. Gradient-based methods can solve

the smoothed PICCS reconstruction problem without additional auxiliary variables

but are usually very slow due to the high curvature nature of the smoothed TV norm.

In comparison, with our proposed low-memory OS-LALM with compressed variable

splitting, we can have both faster convergence (via the η-scalable curvature) rate and

efficient memory usage (by compressed variable splitting) at the same time!

49



Algorithm III.6 Proposed algorithm (inexact split OS-LALM-c) solving (2.10)

Require: x(0) ∈ IRnp , niter ≥ 1,M ≥ 1
1: Initialize p(0) = g(0) = M∇`M

(
x(0)
)
, r = 1,

v̄(0) = ∇R
(
x(0)
)
/(η + 1), ẽ(0) = −v̄(0)

2: for k = 0, 1, . . . , niter − 1 do
3: c(k,1) = c(k) for c ∈ {x,p,g, v̄, ẽ}
4: for m = 1, . . . ,M do
5: Compute ρr using (3.49)
6: s(k,m+1) = ρr p(k,m) + (1− ρr) g(k,m)

7: σ(k,m+1) = η
(
v̄(k,m) − ẽ(k,m)

)
8: x(k,m+1) =

[
x(k,m) −

(
ρrDL + ηD

(k,m)
R

)−1 (
s(k,m+1) + σ(k,m+1)

)]
Ω

9: p(k,m+1) = M∇`m
(
x(k,m+1)

)
10: g(k,m+1) = ρr

ρr+1
p(k,m+1) + 1

ρr+1
g(k,m)

11: v̄(k,m+1) = η
η+1

ẽ(k,m) + 1
η+1
∇R
(
x(k,m+1)

)
12: ẽ(k,m+1) = ẽ(k,m) − v̄(k,m+1)

13: r = r + 1
14: end for
15: c(k+1) = c(k,M+1) for c ∈ {x,p,g, v̄, ẽ}
16: end for
17: return x(niter)

3.3.3 Experimental results: sparse-view CT

This section reports numerical results for simulated 3D X-ray sparse-view CT

image reconstruction from a real low-dose CT scan using two different OS-based

methods, including

� OS-Nes05-M : the OS+momentum algorithm [27] based on Nesterov’s fast

gradient method [24] with M subsets (Algorithm II.4), and

� OS-LALM-M -c-η (low-mem): the low-memory inexact split OS-LALM-c

algorithm with M subsets and AL penalty parameter η using the downward

continuation approach (Algorithm III.6).

We reconstructed a 718 × 718 × 122 image from an undersampled chest axial

CT scan. The size of the original sinogram is 888 × 64 × 642 (half scan), and we

uniformly undersampled the number of projection views from 642 to 81 (about 12.6%

of projection views are used for reconstruction). Consider a smooth approximation

of the anisotropic TV regularizer using the (scaled) Fair potential [61]:

φFair(x) , δ2 (|x/δ| − log(1 + |x/δ|)) (3.69)
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with δ = 0.1 HU. Due to the small δ, even though the regularizer is smooth, gradient-

based methods (including the fast variants) converge very slow.

Figure 3.12 shows the cropped images from the central transaxial plane of the

initial FBP image, the reference reconstruction (with δ = 0.1), and the converged

reconstruction with δ = 1. As can be seen in Figure 3.12, due to the strong under-

sampling, there are severe streak artifacts in the FBP image; while by using proper

regularization, most streak artifacts can be removed. Furthermore, the value of δ also

affects the image quality of the reconstructed image. When δ is larger, the regularizer

has smaller curvature and is easier to minimize; however, the converged image looks

smoother, and one can still see some mild streak artifacts in it.

To evaluate the effect of η and M , we run each algorithms for 100 iterations (in this

case, 100 undersampled forward/back-projection pairs, about 13 full forward/back-

projection pairs, are used for reconstruction) and plot the convergence rate curves

as a function of both iteration and time. Figure 3.13 demonstrates how η affects

the convergence rate of the proposed algorithm with fixed M = 5. As can be seen

in Figure 3.13, algorithm converges faster with smaller η due to the lower curvature

weighted quadratic AL penalty term in image updates. However, η cannot be arbi-

trarily small; otherwise, algorithm might be unstable because some voxels might have

too large step sizes. To ensure empirical fast convergence rate, we tuned the value of

η so that the median of η[D
(0)
R ]ii/[DL]ii is about 2% to 10%. The intuition is that as

the algorithm proceeds, ρrDL becomes smaller and smaller, and we would like to have

small enough step sizes for stable image updates with a large enough ηD
(k)
R . Note

that since the number of subsets M is fixed, algorithms with different configurations

have the same computational complexity. Therefore, RMS differences as a function

of iteration and time do not look very different.

In contrast, Figure 3.14 shows how M affects the convergence rate of the proposed

algorithm with fixed η = 0.05. By using ordered subsets, we can perform image up-

dates more frequently, so the convergence rate curves as a function of iteration scale

accordingly. However, since the forward/back-projection in sparse-view CT is not

as time-consuming as in clinical CT, the overhead of regularizer gradient evaluations

is not negligible. Hence, we do not see such significant acceleration of convergence

when plotting convergence rate curves as a function of time. Finally, we compare

our proposed algorithm with the OS+momentum algorithm. Figure 3.15 and Fig-

ure 3.16 show the convergence rate curves (as a function of both iteration and time)

and the reconstructed images after 100 iterations, respectively. As can be seen in

Figure 3.15, due to the very high curvature of the regularizer, the OS+momentum
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Figure 3.12: Chest scan: cropped images (displayed from 800 to 1200 HU) from the
central transaxial plane of the initial FBP image x(0) (left), the reference reconstruc-
tion x? with δ = 0.1 (center), and the converged reconstruction with δ = 1 (right).
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Figure 3.13: Chest scan: RMS differences between the reconstructed image x(k) and
the reference reconstruction x? as a function of (a) iteration and (b) time, respectively,
using the proposed algorithm with M = 5 and different values of η.

algorithm becomes very slow after the 40th iteration, while the image reconstructed

by the proposed algorithm keep approaching to the solution. Furthermore, the con-

vergence rate of low frequency components depends highly on the high curvature

region (around zero) of the regularizer. In Figure 3.15, we can easily see that the low

frequencies of the image reconstructed by the OS+momentum algorithm converges

much slower than the low frequencies of the image reconstructed by the proposed

algorithm.

3.4 Conclusion

The AL method and OS are two powerful techniques for accelerating optimization

algorithms using decomposition and approximation, respectively. In this chapter, we
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Figure 3.14: Chest scan: RMS differences between the reconstructed image x(k) and
the reference reconstruction x? as a function of (a) iteration and (b) time, respectively,
using the proposed algorithm with η = 0.05 and different values of M .
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Figure 3.15: Chest scan: RMS differences between the reconstructed image x(k) and
the reference reconstruction x? as a function of (a) iteration and (b) time, respectively,
using the OS+momentum algorithm and the proposed algorithm with M = 5.
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Figure 3.16: Chest scan: cropped images (displayed from 800 to 1200 HU) from the
central transaxial plane of the reconstructed images x(100) using the OS+momentum
algorithm (left) and the proposed algorithm (center) after 100 iterations and the
reference reconstruction x? (right).

combined these two techniques by considering a linearized variant of the AL method

and proposed a fast splitting-based ordered-subset algorithm, OS-LALM, for solving

X-ray CT image reconstruction problem with PWLS criterion. Several variants of the

proposed algorithm were investigated for solving three practical issues of conventional

splitting-based method: iterative image updates, non-trivial parameter selection, and

enormous memory requirement. Experimental results showed that the proposed al-

gorithm exhibits fast convergence rate and excellent gradient error tolerance when

OS is used. Furthermore, the proposed algorithm also demonstrated more rapid low

frequency convergence than conventional gradient-based methods when regularizers

with very high curvature are used.
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CHAPTER IV

Blind gain correction for X-ray CT image

reconstruction

4.1 Introduction

The effective X-ray source intensity in CT scan can fluctuate from view to view

due to the attenuation of thin items like sheets that partially block reference channels.

Thibault et al. proposed to modify the cost function so that it depends on both the

unknown image x and an unknown gain parameter vector g, where [g]j denotes the

gain fluctuation of the jth view, and to minimize jointly over both x and g by solving

the following convex optimization problem [63]:

(x̂, ĝ) ∈ arg min
x,g

{
Ψ(x,g) , 1

2
‖y −Ax− g ⊗ 1‖2

W + R(x)
}
, (4.1)

where y denotes the noisy post-logarithm sinogram that may suffer from gain fluc-

tuations, A denotes the system matrix, W denotes the diagonal weighting matrix

that accounts for measurement variance, ⊗ denotes the Kronecker product operator,

1 denotes the vector with all entries equal to unity and of length equal to the number

of beams, and R is an edge-preserving regularizer. Compared with (4.1), existing

splitting-based iterative algorithms reconstruct image without considering the effect

of g, or equivalently, setting g to be 0. This introduces visible shading artifacts as

shown in Figure 4.1(c). We propose splitting-based iterative algorithms based on a

simplification of the joint cost function in (4.1) that improves image quality compared

to conventional splitting-based iterative algorithms [8, 32] that assume g = 0.

This chapter is based on [62].
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4.2 Method

4.2.1 Joint gain-image estimation for X-ray CT image reconstruction

Let yj, Aj, and Wj for j = 1, . . . , J denote data, system matrix, and diago-

nal weighting matrix associated with the jth view in a CT scan, respectively. The

optimization problem in (4.1) is equivalent to

(x̂, ĝ) ∈ arg min
x,g

{∑J
j=1

1
2
‖yj −Ajx− gj1‖2

Wj
+ R(x)

}
= arg min

x

{∑J
j=1

(
min
gj

1
2
‖yj −Ajx− gj1‖2

Wj

)
+ R(x)

}
. (4.2)

The inner minimization problem in (4.2) has a minimizer

ĝj(x) =
1′Wj(yj−Ajx)

1′Wj1
(4.3)

with minimum

‖yj −Ajx− ĝj(x) 1‖2
Wj

=
∥∥∥(I− 11′Wj

1′Wj1

)
(yj −Ajx)

∥∥∥2

Wj

= ‖yj −Ajx‖2fWj
, (4.4)

where we define the following positive semi-definite symmetric “diagonal + rank-1”

weighting matrix:

W̃j = Wj − Wj11′Wj

1′Wj1
. (4.5)

Plugging (4.4) into (4.2) yields the following problem formulation that is equivalent to

(4.1) yet also equivalent to the kind of cost function used in “conventional” statistical

X-ray CT image reconstruction except that it uses a non-diagonal weighting matrix:

x̂ ∈ arg min
x

{
Ψ(x) , 1

2
‖y −Ax‖2fW + R(x)

}
, (4.6)

where W̃ is a block diagonal matrix with block described in (4.5). Since W̃ is positive

semi-definite, (4.6) is a convex optimization problem, and any existing optimization

methods such as nonlinear conjugate gradient (NCG) [64], OS-SQS [10], and OS-

momentum [26, 27] are still applicable. Here, we first propose to solve (4.6) by using

splitting-based iterative algorithms [8, 9] with the “u = Ax” split that involves the

sinogram. The subproblem of u has a closed form solution:

u(k+1) = D−1
ρ

(
W̃y + ρ

(
Ax(k+1) + d(k)

))
, (4.7)
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where Dρ , W̃ + ρI, and d is the scaled dual variable of u in ADMM [45]. When

there is no gain correction, i.e., g = 0, Dρ is a diagonal matrix, and (4.7) can be

computed efficiently in O(S), where S is the size of the sinogram. When there is gain

correction, i.e., g 6= 0, Dρ is block diagonal matrix with block:

Dρ,j = (Wj + ρI) +
(
−wj

1′wj

)
w′j , (4.8)

where wj , Wj1 is the diagonal entries of Wj. The inverse of Dρ will also be a

block diagonal matrix with block:

(Dρ,j)
−1 = (Wj + ρI)−1 +

(Wj+ρI)−1wjw
′
j(Wj+ρI)−1

1′wj−w′j(Wj+ρI)−1wj
(4.9)

by the Sherman-Morrison formula. Note that the matrix-vector multiplication of

(Dρ,j)
−1 and a vector of proper size involves only componentwise division, vector

inner product, and vector outer product. Therefore, the computational complexity

of (4.7) is still O(S) in the presence of gain correction. That is, we can estimate

the unknown gain parameter vector and the image jointly with almost unchanged

computational complexity per iteration.

4.2.2 Applying prior knowledge of gain parameter to the joint gain-image

estimation

The optimization problem described in (4.1) can be thought of as an X-ray CT

image reconstruction with blind gain correction since we have no prior knowledge of

the gain parameter vector, and we apply gain correction to every view. However,

sometimes we do have some prior knowledge of the gain parameter vector. For ex-

ample, when the sinogram is truncated between some view angles, we know that the

object is outside the field of view, and the reference channels might be blocked by

the object in these views with high probability. Hence, it is better to apply gain

correction to these views. Similarly, when the object is well bounded in the field of

view in some view angles, i.e., the projection is not truncated, the reference channel

is less likely to be blocked, and we can turn off gain corrections in these views. To

incorporate such prior knowledge about the support of the gain parameter vector, we

propose a constrained optimization problem for non-blind gain correction:

(x̂, ĝ) ∈ arg min
x,g

{
Ψ(x,g) , 1

2
‖y −Ax− g ⊗ 1‖2

W + R(x)
}

s.t. [g]j /∈J=0 , (4.10)
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where J ⊆ {1, . . . , J} is the index set of the candidate views which may suffer from

gain fluctuations. Note that since the gain fluctuations are assumed to be only view-

dependent, following the same procedure in the blind case, we can get exactly the

same equivalent problem formulation as in (4.6), where W̃ is a block diagonal matrix

with block:

W̃j =

Wj , if j /∈ J

Wj − Wj11′Wj

1′Wj1
, otherwise .

(4.11)

When we solve the X-ray CT image reconstruction with non-blind gain correction

using splitting-based methods with the “u = Ax” split that involves the sinogram,

we will solve the subproblem of u using (4.7), where (Dρ)
−1 is a block diagonal matrix

with block:

(Dρ,j)
−1 = (Wj + ρI)−1 +

(Wj+ρI)−1wjw
′
j(Wj+ρI)−1

1′wj−w′j(Wj+ρI)−1wj
1j∈J , (4.12)

where 1j∈J is the indicator function of J . Clearly, when J = ∅, it reduces to the X-

ray CT image reconstruction without gain correction; when J = {1, . . . , J}, it is the

X-ray CT image reconstruction with blind gain correction. Furthermore, if desired,

we can shrink the set J as the iterative algorithm proceeds. For example, we can

reset the very small estimated gain fluctuations to be zero after several iterations.

4.2.3 Joint gain-image estimation using other optimization methods

We can also solve (4.6) using any other convex optimization method. For example,

the cost function in (4.6) has gradient

∇Ψ(x) = A′W̃ (Ax− y) +∇R(x) (4.13)

assuming that the regularization term R(x) is differentiable. This gradient can be used

for any first-order method such as NCG [64]. In OS-based algorithms [10, 26, 27],

we have to find a (separable) quadratic surrogate function that majorizes the original

cost function and to minimize it. Since the only difference between the conventional

variational formulation and our proposed formulation is the weighted least-squares

(WLS) term, we just focus on the majorizer of that part. A quadratic majorizer of a

function f has the general form

f
(
x(k)
)

+
(
x− x(k)

)′∇f(x(k)
)

+ 1
2

∥∥x− x(k)
∥∥2

G (4.14)
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with G � ∇2f . When f is the conventional WLS cost function, one particular

choice of G is Gdiag , diag
{
|A|′W |A|1

}
� A′WA [10]. Since W � W̃, we have

A′WA � A′W̃A. Therefore, Gdiag is a valid diagonal matrix that majorizes the

proposed WLS cost function, and it is very easy to modify the existing OS-based

algorithms to enable gain correction.

4.3 Result

To evaluate our proposed method, we consider both 2D and 3D X-ray CT image

reconstruction problems. In each case, the statistical weight wi is set to be exp(−yi),
where yi denotes the line-integral projection with gain fluctuations. We are interested

in edge-preserving regularizer R in the form:

R(x) , β
N∑
n=1

M∑
m=1

κnκn+s(m)Φ([Cmx]n) , (4.15)

where β is the regularization parameter, N is the number of voxels, M is the number

of offsets, κn is the voxel-dependent weight for n = 1, . . . , N , Cm is the first-order

finite-difference matrix in the mth direction with offset s(m) for m = 1, . . . ,M , and

Φ is an edge-preserving potential function. We choose Φ to be the Fair potential

function ΦFP(x) , |x| /δ − ln(1 + |x| /δ) with parameter δ. Following the voxel-

dependent weight proposed by Fessler et al. [15], κn is set to be
√

[A′W1]n / [A′1]n.

For 2D case, M = 2 for the horizontal and vertical neighbors; for 3D case, M = 13

for the thirteen nearest neighbors. The minimization problem in (4.6) is solved by

using ADMM for 500 iterations [8]. The FBP reconstruction from the gain-fluctuated

noisy sinogram is used as the initial guess x(0) for the iterative algorithm.

4.3.1 2D fan beam X-ray CT image reconstruction

We first consider a 2D X-ray CT image reconstruction from simulated NCAT

phantom data with gain fluctuations. We use a 256×256 2D slice of NCAT phantom to

numerically generate a 444×492 gain-fluctuated noisy sinogram with GE LightSpeed

fan-beam geometry downsampled by two corresponding to a monoenergetic source

with 105 incident photons per ray without background events. Two sections of angular

samples suffer from gain fluctuations due to partially blocked reference channels with

20% and 18% attenuation, respectively, as shown in Figure 4.1. We set δ = 10−5 and

β = 3×10−6 for edge-preserving regularization in this case. Figure 4.2 shows the true
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Figure 4.1: 2D simulation: (a) The noisy sinogram with gain fluctuations, and (b)
the corresponding gain fluctuations, where the horizontal and vertical axes are the
radial axis r and the projection view angle θ, respectively.

image, the initial guess, the conventional reconstruction without gain correction, the

proposed reconstruction with blind gain correction, and the reference reconstruction

from a noisy sinogram without gain fluctuations as a comparison, from left to right,

top to bottom. As can be seen from Figure 4.2, our proposed method greatly reduced

the shading artifacts resulting from gain fluctuations. Figure 4.3 shows the estimated

gain parameter vector and its RMS error. As can be seen from Figure 4.3, our

proposed method estimates the gain parameter vector accurately, and therefore, we

have a comparable reconstruction with the reconstruction from the gain-fluctuation-

free noisy sinogram as shown in Figure 4.1(d) and Figure 4.1(e). The RMS difference

between them is about 3.12 × 10−5 cm−1, which means that they are very close to

each other.

4.3.2 3D axial X-ray CT image reconstruction

We now consider a 3D X-ray CT image reconstruction from simulated phantom

data with gain fluctuations. Assuming that the gain fluctuations are changing lin-

early in the angular direction and are constant in the transaxial direction, we use

a 128 × 120 × 100 3D phantom (cylinder bone-like inserts) to analytically generate

a 128 × 120 × 144 noisy sinogram with axial geometry corresponding to a monoen-

ergetic source with 104 incident photons per ray without background events. Then,

we numerically add 2% and 5% (peak) attenuation to two separate sections of views,

respectively. In this case, we set δ = 103 and β = 2× 10−3 for edge-preserving regu-

larization. Figure 4.4 shows the middle transaxial, coronal, and sagittal planes of the

true image, the initial guess, the conventional reconstruction without gain correction,
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Figure 4.2: 2D simulation: (a) The true phantom (in cm−1), (b) the initial guess using
the FBP reconstruction, (c) the conventional reconstruction without gain correction,
(d) the proposed reconstruction with blind gain correction, and (e) the reference
reconstruction from a noisy sinogram without gain fluctuations.
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Figure 4.3: 2D simulation: (a) The estimated gain parameter vector as a function of
projection view angle, and (b) the RMS error of the estimated gain parameter vector
versus iteration.

the proposed reconstruction with blind gain correction, the proposed reconstruction

with non-blind gain correction, and the reference reconstruction from a noisy sino-

gram without gain fluctuations as a comparison, from left to right, top to bottom. As

can be seen from Figure 4.4, our proposed method effectively reduced the shading ar-

tifacts under such small attenuations. Figure 4.5 shows the true gain fluctuations and

the estimated gain fluctuations for both blind and non-blind cases. The estimated

gain fluctuations are a little bit noisier due to the small peak attenuation and show

a ringing pattern no matter the reconstruction is blind or not. Figure 4.6 shows the

RMS difference between the image at the kth iteration and the converged reference

reconstruction for each method. Note that all methods show almost the same con-

vergence rates in the early iterations before they start deviating from the solution.

That is, gain correction does not change the convergence rate of the algorithm very

much but rather improves the overall accuracy of the method.

4.4 Conclusion

In this chapter, a new variational formulation of statistical X-ray CT image re-

construction for jointly estimating the true gain parameter vector and the image was

proposed. We evaluated our proposed method in both 2D and 3D cases. The shading

artifacts due to gain fluctuations are greatly reduced, while the computational com-

plexity per iteration is almost unchanged in our proposed method. Similar concepts

can be applied to any convex optimization methods.
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Figure 4.4: 3D simulation: (a) The true phantom (in cm1 ), (b) the initial guess
using the FBP reconstruction, (c) the conventional reconstruction without gain cor-
rection, (d) the proposed reconstruction with blind gain correction, (e) the proposed
reconstruction with non-blind gain correction, and (f) the reference reconstruction
from a noisy sinogram without gain fluctuations. Each subfigure shows the middle
transaxial, coronal, and sagittal planes of the volume.
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Figure 4.5: 3D simulation: (a) the true gain fluctuations, (b) the estimated gain
fluctuations for the blind case, and (c) the estimated gain fluctuations for the non-
blind case, where the horizontal and vertical axes are the projection view angle θ and
the transaxial axis z, respectively.
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Figure 4.6: 3D simulation: for each method, RMS difference between the image at
the nth iteration and the converged reference reconstruction.
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CHAPTER V

Model-based light field reconstruction

5.1 Introduction

Visual information results from complex interactions between lighting, object ge-

ometry, materials, observer location and the characteristic of human visual system

(or image sensor). To generate a photorealistic image, all parameters have to be

precisely modeled, and numerous computations are required for simulating the in-

teractions between parameters. This makes it difficult to have a simple systematic

analysis. However, if we focus on geometric optics, the overall effects of these inter-

actions are simply re-direction, scattering and attenuation of light rays. Therefore,

once light rays in space can be described explicitly, we can re-create the visual con-

tents without simulating the complex interactions. To describe the distribution of

light rays explicitly, we should specify the radiance carried by a light ray propagating

through position (x, y, z) in direction (θ, φ) with wavelength λ at time t. This leads

to a seven-dimensional radiance function L(x, y, z, θ, φ, λ, t), which is called plenoptic

function, proposed by Edward H. Adelson and James R. Bergen for early vision [65].

However, the 7D plenoptic function is never used in practice because it is expen-

sive and difficult to sample, store and reconstruct. Therefore, some simplifications

are imposed. First, one can remove the time axis by focusing on a static scene. Sec-

ond, one can use the trichromatic property of human visual system to replace the

wavelength axis with, for example, RGB. This leads to three 5D plenoptic functions,

one for each color [66]. Furthermore, if we concentrate on the plenoptic function in

an empty bounding box, for example, the plenoptic function in a camera, since the

bounding box is empty, there is no unexpected redirection, gain, and attenuation

when light rays are propagating in the bounding box. It is sufficient to describe the

This chapter is based on my research for the qualifying exam.
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Figure 5.1: Different parameterizations of light fields.

Figure 5.2: Parameterization of light fields in a camera.

5D plenoptic function by specifying its 4D slice. For example, we can describe the

5D plenoptic function L(x, y, z, θ, φ) given a 4D slice L(x, y, z0, θ, φ) of the complete

5D plenoptic function since the observed radiances carried by a light ray propagating

through (x, y, z0) with angle (θ, φ) will be the same (or decay in a known manner)

along the line. Therefore, the 5D plenoptic function is redundant, leaving us with a

four-dimensional function, called light field [67] or lumigraph [68].

5.2 Discrete light fields

There are many ways to parameterize the 4D light field as shown in Figure 5.1.

We can parameterize a light ray by its intersections with two parallel planes. We can

also parameterize a light ray by its intersection and angle to a reference plane. If

our main interest is the light field inside a camera, it can be intuitively and uniquely

represented by the plane-plane parameterization which takes the aperture plane (uv-

plane) and image plane (xy-plane) as the reference planes as shown in Figure 5.2. In

this parameterization, each light ray in the camera passes through the aperture at

some point and hits some point on the image plane. The origins of these two planes

are defined by their intersections with the optical axis of the camera. We can define

L(x,u) to be a 4D light field representing the radiance carried by light ray passing

through u = (u, v) on the aperture plane and x = (x, y) on the sensor plane when it

reaches the aperture plane.

To start our analysis of 4D light fields, lets consider the light field of a planar

object with a Lambertian reflectance pattern h(x′′,u′′) = h(x′′) in a (simplified)

camera as shown in Figure 5.3. As can be seen in Figure 5.3, (x′′,u) and (x,u)
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Figure 5.3: Ray diagram of a planar object with Lambertian reflectance h in a sim-
plified camera.

can be represented as h(x′′)/d2, where the 1/d2 term denotes the r−2-decay when

light propagating. We can find the expression of x′′ in terms of x and u by using ray

transfer matrix analysis, and the light field of a planar object with reflectance pattern

h can be represented as

L(x,u) = h
((

1− d
f

+ d
D

)
u +

(
− d
D

)
x
)
/d2 , (5.1)

where d denotes the object depth, f denotes the focal length of the main lens, and D

denotes the separation between the aperture plane and the sensor plane. Note that

from (5.1), we can find that the 4D light field of a planar scene is nothing but an

oblique backprojection of the 2D object reflectance.

The light field we derived so far is continuous, which is intractable for computation.

To find the tractable discrete light field, we need more derivations. Suppose the

continuous light field L(x,u) can be represented as a linear combination of a shift-

invariant basis function β(x,u) with grid sizes 4x,y and 4u,v, i.e.,

L(x,u) =
∑

m

∑
k L[m,k] β(x−m4x,y,u− k4u,v) . (5.2)

For simplicity, we just let the basis function to be a separable rectangular function

with widths 4x,y and 4u,v in xy- and uv-dimensions, respectively. The coefficient

L[m,k] is set to be the average of L(x,u) over the rectangular region centered at

(m4x,y,k4u,v), and the continuous light field L(x,u) can then be approximated by

L(x,u) ≈
∑

m

∑
k L[m,k] rect4x,y(x−m4x,y) rect4u,v(u− k4u,v) . (5.3)

and the specific coefficient L[m,k] is define as the discrete light field. For example,

the discrete light field L[m,k] of the planar object shown in Figure 5.3 is the oblique

backprojection of the 2D object reflectance onto the 4D rectangular region with grid

sizes 4x,y and 4u,v centered at (m4x,y,k4u,v).
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Figure 5.4: An example of a 4D light field. (a) A 2D representation of a 4D light field
L(x,u). Each block denotes a 2D slice or a sub-aperture image with sub-aperture
centered at u. (b) An example of a 2D slice L(x,u0) of the 4D light field L(x,u).

Figure 5.4 shows an example discrete light field of a scene with three identical

planar target objects placed at 1 m, 2 m, and 3 m, respectively, in front of a camera

with aperture radius r = 2.5 mm, focal length f = 50 mm and aperture-sensor

separation D = 51 mm. The grid sizes 4x,y and 4u,v are set to be 10−2 mm and

10−1 mm, respectively. Note that we downsample the light field by a factor of 2 in

uv-dimension for alias-free display. Each block in Figure 5.4(a) shows a 2D slice of

L(x,u) or a sub-aperture image with sub-aperture centered at u. Figure 5.4(b) shows

an example sub-aperture image with sub-aperture centered at u0. The sub-aperture

image looks sharp due to the small sub-aperture.

5.3 Light field transformations of typical camera operations

In this section, we derive the light field transformations of typical camera oper-

ations including refocusing, zooming, and camera translation. We consider a general

light field transformation as

L′(x′,u′) = A · L(ax′ + bu′ + e, cx′ + du′ + f) , (5.4)

where e = (ex, ey)
′ and f = (fu, fv)

′. The discrete image captured by the camera with

light field L′ will be

Igeneral[m] =

∫ (∫
L′(x,u) du

)
rect4x,y(x−m4x,y) dx . (5.5)
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Figure 5.5: Ray diagrams for (a) refocusing, (b) zooming, and (c) camera translation.

Now, by plugging the discrete light field defined in (5.3), we can simplify (5.5) as

Igeneral[m] = (L ∗ ggeneral) [m′,k′]
∣∣
m′=am,k′=

c4x,y
4u,v

m
, (5.6)

where

ggeneral[m,k] , A · (s ∗ t)(m4x,y,k4u,v) , (5.7)

s(x,u) , rect4x,y(x) rect4u,v(u) , (5.8)

and

t(x,u) , 1
|ad−bc|rect|ad−bc|4x,y(d (x + e)− b (u + f)) . (5.9)

The complete derivation is omitted here. In sum, we factor the vertical projection of

a linear-transformed light field into a 4D convolution followed by a 4D-to-2D slicing.

This gives us a fast algorithm to simulate typical camera operations given the light

field. Note that 4D FFT has high memory allocation overhead, in real implementa-

tion, we decompose the 4D FFT and 4D-to-2D slicing into several 2D FFTs on the

2D slice. This decomposition has the same complexity but lower overhead.

5.3.1 Light field transformation: refocusing

In this subsection, we derive the light field transformation for refocusing the cam-

era at a different depth. Consider the refocusing procedure as shown in Figure 5.5(a).

We want to refocus the camera which originally focuses at some scene depth with a

lens of focal length f at a different scene depth with a lens of focal length f ’. Let L

denote the light field captured by the camera with the original focus setting and L′

denote the light field captured by the camera with the new focus setting. Note that

since (x′,u′) and (x,u′) represent an identical light ray, by using ray transfer matrix
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Figure 5.6: Demo of refocusing: (a) Image refocused at the first object (z = 1 m).
(b) Image refocused at the second object (z = 2 m). (c) Image refocused at the third
object (z = 3 m).

analysis, we can represent L′ by L as

L′(x′,u′) = L
(
x′ +

(
D
f ′
− D

f

)
u′,u′

)
. (5.10)

In other words, changing focus setting from f to f ′ results in shearing light field

by a factor of D/f ′ − D/f . Obviously, refocusing falls into our general light field

transformation. Figure 5.6 shows a demonstration of refocusing using the algorithm

derived in this subsection. The discrete light field we used in this demo is the same

as the discrete light field we showed in Figure 5.4. We refocus the camera at each

object. As can be seen in Figure 5.6, in-focus objects look sharp while out-of-focus

objects look blurry in the refocused images.

5.3.2 Light field transformation: zooming

In this subsection, we derive the light field transformation for zooming the camera

to have different angle of view. Consider the zooming scheme to change angle of view

as shown in Figure 5.5(b). We change the angle of view by moving the main lens and

changing its focal length at the same time. Similar to the analysis in the previous

subsection, let L denote the light field captured by the camera with focal length f and

aperture-sensor separation D and L′ denote the light field captured by the camera

with focal length f ′ and aperture-sensor separation D′. Since (x,u) and (x′,u′)

represent the same light ray, L′ can be represented by L as

L′(x′,u′) = L
(
āx′ + b̄u′, c̄x′ + d̄u′

)
, (5.11)
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Figure 5.7: Demo of zooming: (a) Image captured with α = 1.0. (b) Image captured
with α = 1.1. (c) Image captured with α = 1.2.

where 

ā =
(
1− D

f

)(
1− D

D′

)
+ D

D′

b̄ =
(
1− D

f

)(
D′

f ′
− D

f ′
+ D

D′

)
+ D

f ′
− D

D′

c̄ = 1− D
D′

d̄ = D′

f ′
− D

f ′
+ D

D′
.

(5.12)

Unlike refocusing, the light field transformation for zooming is a combination of shear-

ing and scaling, and the optical zooming effect results from the scaling of light field.

However, since the resolution of discrete light field is finite, we still have to do digital

zooming. Again, zooming falls in our general light field transformation. Furthermore,

in zooming, we usually have a non-zero c, and therefore, a non-horizontal slicing. For-

tunately, the magnitude of c4x,y/4u,v is usually fairly small, so a horizontal slicing

is usually a good approximation of the non-horizontal slicing. Figure 5.7 shows a

demonstration of zooming using the algorithm derived in this subsection. The dis-

crete light field we used in this demo is the same as the discrete light field we showed

in Figure 5.4. We focus at the first object and zoom the camera with D′ = αD, where

α = 1.0, 1.1, and 1.2 in our example. As can be seen in Figure 5.7, as we increase

α, the angle of view decreases, and therefore the objects look larger in the captured

images.

5.3.3 Light field transformation: camera translation

In this subsection, we derive the light field transformation for translating the

camera on the aperture plane. Consider the setting shown in Figure 5.4(c), in which

we synthesize an image of a pinhole camera centering at u0 on the aperture plane.

It is trivial to extend the pinhole camera to the lens camera. According to the

definition of light field, the pinhole image Iu0(x) = L(x′,u0)/D2. Furthermore, x′ =
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Figure 5.8: Demo of camera translation: (a) Pinhole image with pinhole cen-
tered at u0 = (−2.5 mm, 0.0 mm). (b) Pinhole image with pinhole centered
at u0 = (0.0 mm, 0.0 mm). (c) Pinhole image with pinhole centered at u0 =
(2.5 mm, 0.0 mm).

x + (1 − D/f)u0 by ray transfer matrix analysis. Therefore, the pinhole image can

be represented as

Iu0(x) = L
(
x +

(
1− D

f

)
u0,u0

)
/D2 , (5.13)

which is a shifted sub-aperture image. Figure 5.8 shows a demonstration of camera

translation using the algorithm derived in this subsection. The discrete light field we

used in this demo is the same as the discrete light field we showed in Figure 5.4. We

translate the camera from the right to the left. As can be seen in Figure 5.8, the

right viewer, i.e., Figure 5.8(a), can see larger occluded region of the second object

than the left viewer, i.e., Figure 5.8(c), does. Furthermore, we can see the parallax

when the camera moves from right to left. As expected, the front object shows larger

displacement than the rear object does.

5.4 Model-based light field reconstruction

In this section, we consider light field reconstruction as solving an inverse problem

based on the forward model we described in the previous section. To achieve better

reconstruction, we add a sparsity-promoting prior, which works well in many inverse

problems, to our reconstruction. We will first derive the algorithm we used to solve

sparsity-regularized minimization problems. Then, a new analysis light field prior

without explicit depth estimation is proposed to capture the elongated structure of

light fields.
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5.4.1 Sparsity-regularized minimization using ADMM

Consider a focal stack of size n generated by taking pictures using n different focus

settings. Let x denote the discrete light field, Bi denote the convolution matrix of

the ith focus setting, Si denote the diagonal sampling matrix of the ith focus setting,

and yi denote the ith image in the focal stack. Suppose Gaussian noise is added

when taking photos. We will have ‖yi − SiBix‖2 ≤ εi, where εi is proportional to

the noise level of the ith image. In addition, as shown before, the light field should

be non-negative, i.e., x � 0. Combining with the sparsity regularizer, our proposed

model-based light field reconstruction formulation becomes

x̂ ∈ arg min
x�0
‖Θx‖1 s.t. ‖yi − SiBix‖2 ≤ εi for i = 1, . . . , n , (5.14)

where Θ is a sparsifying matrix, e.g., the discrete framelet transform matrix [69], the

discrete curvelet transform matrix [70], and the finite different matrix C. To solve

this constrained convex optimization problem, we apply C-SALSA [45], which is an

ADMM algorithm for constrained convex optimization problems.

5.4.2 Prior of the elongated light field structure

So far, we have formulated our model-based light field reconstruction problem by

considering light fields as natural images and applying popular natural image priors,

such as framelet prior, curvelet prior and TV prior, in our reconstruction. However,

light fields can be very different from natural images. If we take a closer look at

the light field data, we can find light field data has a special elongated structure

with linear characteristics as we showed in (5.1). Some light field priors have been

proposed in recent years. The classical prior used in early light field sampling and

reconstruction works [71–73] is based on the band-limited assumption of captured

light field. In this case, light field is assumed to be pre-filtered by a proper low-pass

filter to meet the Nyquist rate. Therefore, the classical prior penalizes high frequency

components of the reconstructed light field isotropically. The simplest way to express

this band-limited assumption is to use a zero-mean isotropic Gaussian prior on the

high-passed light field, i.e., Hx ∼ N (0, σ0I), where H denotes matrix of a proper

high pass filter based on the frequency analysis of plenoptic sampling. It is easy to

see that this classical prior does not capture the elongated structure of light fields at

all. To account for the strong elongated structure of light fields, Anat Levin et al.

[74] proposed a light field prior using a mixture of oriented Gaussians, where each
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Gaussian component corresponds to a depth interpretation of the scene. That is, if

the scene depth (and hence light field orientation) is known, they define an anisotropic

Gaussian prior that accounts for the oriented structure. Therefore, they penalize the

amount

x′Ψ−1
S x ,

∑
i

(
1
σs

∣∣g′s(i),ix∣∣+ 1
σ0

∣∣g′0,ix∣∣) , (5.15)

where g′s(i),ix computes the directional derivative centered at the ith light field entry

along direction s(i), which is the orientation at the ith light field entry, g′0,ix computes

the derivative at the ith light field entry in horizontal/spatial direction, and σs � σ0.

This prior constrains the light field tighter than the classical prior. However, inference

is more complicated since the correct mixture of oriented Gaussians, or the scene

depth, needs to be estimated ahead. Unfortunately, depth estimation is usually noise-

sensitive and requires human assistance. Although there are many depth estimation

algorithms available, a precious and fully automatically generated depth map is still

not achievable. Therefore, priors that involve depth estimation are undesirable. A

good light field prior should be a prior that has a linear analysis form, captures the

elongated structure of light fields, and is invariant to the scene depth.

Consider a scene with characteristic
{
x− s0u = k

∣∣ k ∈ R
}

. Note that here we

consider the case of 2D light fields, i.e., light fields in flatland. It is fairly easy to

extend the 2D result to 4D. Let u0 be some value on the u-axis. Since the light field

has characteristic
{
x− s0u = k

∣∣ k ∈ R
}

, L(x, u) = L(x0, u0) = Lu0(x0) for some x0.

x0 can be found by solving the equation x− s0u = k = x0− s0u0 for some k, and the

solution is

x0 = x− s0(u− u0) . (5.16)

Therefore, we have the identity

L(x, u) = Lu0(x− s0(u− u0)) . (5.17)

Now, let Bs(x) ,
∫
u∈rect(R,0)

L(x+ su, u) du, where rect(r,c) denotes an interval cen-

tered at c with radius R. Similar to the light field transformations we derived before,

the shear-projection operation can be expressed as a horizontal slice of a 2D convo-

lution. Furthermore, after inserting the identity in (5.17) to the definition of Bs, we

can represent Bs as

Bs(x) =
(
Lu0 ∗ 1

|s−s0|rect(R|s−s0|,−s0u0)

)
(x) , (5.18)
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Figure 5.9: Characteristic slope s0 of practical camera.

so a horizontal slice of a 2D convolution can be expressed as a 1D convolution of a

horizontal slice given the linear characteristic
{
x− s0u = k

∣∣ k ∈ R
}

. However, Bs(x)

is still s0-dependent. To remove the s0-dependency, suppose |s0| � S for some

positive S. This assumption does make sense in practice. Consider a 35 mm equivalent

camera with lens focal length 50 mm, which is typical for photography of street

and documentary. Suppose the camera is focused at scene depth 2.5 m, that is,

D = 1/(1/50 − 1/2500) ≈ 51.0204 mm. The corresponding characteristic (inverse)

slope s0 for scene depth between 1 m and 10 m can be computed by comparing with

(5.1) and is shown in Figure 5.9. As can be seen in Figure 5.9, the characteristic slope

falls in a relative small interval, which can be bounded by, for example, S = 3.

Let B̄(x) ,
∫ S
−S B

s(x) ds. On the one hand, since each Bs(x) is a horizontal slice

of a 2D convolution of L(x, u) with a projection kernel, B̄(x) can be represented as a

horizontal slice of a 2D convolution of L(x, u) with some kernel g(x, u). On the other

hand, by using the property of linear characteristic in (5.18), we can also express

B̄(x) as

B̄(x) =

∫ S

−S
Bs(x) ds = (L0 ∗ φs0)(x) , (5.19)
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Figure 5.10: Depth-invariant blur kernel.

where

φs0(x) =

∫ S

−S

1
|s−s0|rect(R|s−s0|,0)(x) ds

= ln
(

(S−s0)R
|x|

)
· 1(S − s0 ≤ |x|/R) + ln

(
(S+s0)R
|x|

)
· 1(S + s0 ≤ |x|/R) (5.20)

≈ 2ln
(
SR
|x|

)
· 1(SR ≤ |x|) (5.21)

= φ0(x)

=

∫
u∈rect(R,0)

g(x, u) du (5.22)

is depth-invariant blur kernel [75, 76]. Figure 5.10 shows the approximate depth-

invariant blur kernels for s0 ∈ [−0.3, 0.3] and S = 3. As can be seen in Figure 5.10,

the 50 blur kernels are almost the same except for the tail distributions.

The discrete version of g and φ0 can be found using the same technique we used

when deriving the discrete light fields. Analytically, they are

g[n,m] =

∫ R

−R

(∫ S

−S
(rect4x ∗ rect4x)(su+ n4x) ds

)
rect4u(u+m4u) du (5.23)

and

φ0[n] = (φ0 ∗ rect4x ∗ rect4x)(n4x) . (5.24)

Although both g and φ0 have closed-form expressions, for simplicity, we just compute

them numerically. Finally, we do not have to always consider the entire light field.

Since the support of g and φ0 depend on R, if R is large, the number of samples that

are free from boundary effect becomes fewer. Instead, we can think of the aperture as

many overlapped sub-apertures and consider the elongated structure locally. In this
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Figure 5.11: Demonstration of the depth-invariant prior.

case, we decompose the entire light field into multiple overlapped horizontal stripes.

For each stripe, we compute the difference between the two expressions of B̄[n] using

the filters derived in (5.23) and (5.24). If the stripe has the elongated structure, the

1D slice (except for boundary samples) must have small magnitude. Furthermore, we

can stack these 1D slices and form a 2D matrix, which indicates the distortion from

the elongated structure. To express this analysis form elongated structure indicator,

let B2D be the 2D convolution matrix of g, B1D be the 1D convolution matrix of φ0,

and SROI denotes the sampling matrix of the region of interest. If x is a light field with

the elongated structure, then most of entries in SROI(B2D−B1D)x should be close to

zero and have large magnitude only in occlusion region. Suppose the scene of interest

has locally constant depth with finitely many depth discontinuities, SROI(B2D−B1D)x

should be sparse. That is, SROI(B2D −B1D)x ∼ Laplacian(λI). Apparently, the null

space of SROI(B2D−B1D) is non-trivial. This depth-invariant prior may be a prior for

the elongated structure. Figure 5.11 demonstrates the depth-invariant prior. In this

demonstration, the light field L[n,m] (R = 1 mm, L = 10 mm, and 4x = 4u = 10−2

mm) is a superposition of an elongated structure with characteristic slope s0 = 0.1

and a Gaussian disk at the center of the rectangular region. g and φ0 are computed

by setting S = 3 and stripe width to be 0.2R. The wedge-shape g[n,m] is due to

superposition of infinitely many projection kernels. φ0[n] is a long-tailed blur kernel.

The white rectangular box in the bottom row of Figure 5.11 indicates the region of

interest. As can be seen in Figure 5.11, SROI(B2D −B1D)x indicates regions that do

not have locally elongated structure. Finally, to apply our proposed light field prior

to the light field reconstruction problem, we simply set Θ = SROI(B2D − B1D) and

solve the convex optimization problem (5.14) using C-SALSA [45].
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5.5 The back-project filter method for light field reconstruc-

tion

In the proposed light field reconstruction scheme, we reconstruct the light field

from a focal stack. We have already shown that a focal stack is samples of oblique

projections of the light field. Suppose we define a focal stack diagram to be a collection

of oblique projections of the light field. The proposed method reconstructs light fields

from samples of the focal stack diagram. This is very similar to the X-ray CT image

reconstruction problem, which reconstructs object from samples of the sinogram,

where a sinogram denotes a collection of vertical projections of the object. Therefore,

it is possible to solve the light field reconstruction problem by using methods that

solve the X-ray CT image reconstruction problem.

One of the most well-known method in X-ray CT image reconstruction is called the

back-project filtered (BPF) method. In the BPF method, one first gets a laminogram

by back-projecting the sinogram. Because of the natural of vertical projection/back-

projection, the back-projection results in a shift-invariant blur of the image, and

therefore, one can reconstruct the image by removing the shift-invariant blur from

the laminogram. In our light field reconstruction problem, we first obliquely back-

project the focal stack diagram to get the laminogram. However, due to the oblique

projection/back-projection, the blur is no longer shift-invariant. To solve this prob-

lem, we have to go back to our model. Suppose yi denotes the image taken by the ith

focus setting, Si denotes the sampling matrix of the ith focus setting, and Bi denotes

the projection matrix of the ith focus setting. The measurements should satisfy the

system of linear equations 
y1

...

yn

 ≈


S1B1

...

SnBn

x . (5.25)

Note that since SiBi denotes the oblique projection operator, B′iS
′
i should be the

operator of oblique back-projection. Therefore, the oblique back-projection of focal

stack diagram should satisfy the system of linear equations
S1B1

...

SnBn


′

y1

...

yn

 ≈


S1B1

...

SnBn


′

S1B1

...

SnBn

x . (5.26)

This equation is very similar to the normal equation we encounter in least-squares
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Figure 5.12: A scene with two planar objects at different depth.

problems. The only difference is that in our case, (5.25) is ill-posed, so does (5.26).

However, we can still solve (5.26) by using conjugate gradient (CG) method, and this

can be seen as a generalized BPF method for light field reconstruction.

5.6 Flatland simulations

In this section, we report flatland simulations based on the proposed algorithms

described in the previous sections. Throughout the simulation, we consider the scene

as shown in Figure 5.12. The focal length of the lens is set to be 50 mm. The

separation between the main lens and the image sensor is 51 mm. The grid sizes 4u

and4x are set to be 10−2 mm, the width of sensor is 5 mm, and the radius of aperture

is 1 mm. We consider the size of focal stack to be 16. We generate the focal stack

by moving the sensor back and forth with α varying uniformly from 1 to 1.5. The

sampling rate is about 16/200 = 8%. The maximum number of iterations is set to

be 20000. Framelet, curvelet, TV, and the proposed light field priors are considered

in the reconstruction. We also consider the BPF method in our simulation. The

maximum number of CG iterations is set to be 1000.

Figure 5.13 shows the true and reconstructed light fields using different priors for

the two-object scene shown in Figure 5.12. Figure 5.12(b) shows the reconstructed

light field with the framelet prior. The RMS error is 24.6778. As can be seen in

Figure 5.12(b), the reconstructed light field with the framelet prior suffers from

blocky artifacts. This results from the separable basis and shift-variant property

of framelets. We can also find that the reconstruction shows aliasing patterns, or

the Moiré patterns, in the fast-varying region of the light field. Figure 5.12(c) shows

the reconstructed light field with the curvelet prior. The RMS error is 37.4821. As

can be seen in Figure 5.12(c), although the reconstructed light field with the curvelet

prior recovers the elongated structure of light fields, it fails to satisfy the Lambertian

scene assumption in our simulation. In addition, the reconstruction shows smear-like

artifacts in the slow-varying region of the light field. Figure 5.12(d) shows the recon-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: 2D flatland simulation: (a) The true light field of a scene in Figure 5.12.
(b) The reconstructed light field using the framelet prior. (c) The reconstructed
light field using the curvelet prior. (d) The reconstructed light field using the TV
prior. (e) The reconstructed light field using the proposed light field prior. (f) The
reconstructed light field using the BPF method.
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structed light field with the TV prior. The RMS error is 22.7264. As can be seen in

Figure 5.12(d), we can find that the TV prior prefers piecewise constant solutions, and

therefore, some fine details of light field is smeared out in the reconstructed light field

with TV prior, and the reconstruction suffers from staircase artifacts. Figure 5.12(e)

shows the reconstructed light field with the proposed light field prior. The RMS error

is 18.1181. As can be seen in Figure 5.12(e), we can find that the proposed light field

prior captures the elongated structure of light fields well and recovers most of the

fine details of the light field. Furthermore, the `1 objective function automatically

handles the distribution of model mismatch error and suppresses the artifacts around

the occlusion regions. Figure 5.12(f) shows the reconstructed light field using the

BPF method. The RMS error is 16.1507. As can be seen in Figure 5.12(f), the BPF

method reconstructs a relatively smooth light field which has the smallest RMS error.

However, if we take a closer look at the reconstructed light field, we can find streak

artifacts around the fast-varying region of the light field. In practice, we can use the

reconstructed light field using the BPF method as the initial guess of the reconstruc-

tion with the light field prior for faster convergence. Figure 5.13(a) shows another

example light field with three objects in the scene. Figure 5.13(b) and Figure 5.13(c)

show the reconstructed light fields with the light field prior and the BPF method,

respectively. Again, the reconstruction using the BPF method is smoother and with

streak artifacts. On the other hand, the reconstruction with the light field prior is

sharper and free from streak artifacts.

5.7 Conclusion

In this chapter, we proposed a fast algorithm to compute the projection of a

linear-transformed light field and built a camera model using the discrete light fields.

Based on the proposed camera model, we proposed to reconstruct the light field from

a focal stack by solving a convex optimization problem with a sparsity-promoting

prior. We found that existing natural image priors are not adequate for light fields.

Therefore, we proposed an analysis light field prior which does not require explicit

depth estimation. The proposed light field prior outperforms all the investigated

natural image priors according to our flatland simulations. We also proposed a fast

BPF method to find a good initial guess of the light field, which is useful for other

iterative light field reconstruction methods.
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(a) (b)

(c)

Figure 5.14: 2D flatland simulation: (a) The true light field of a scene with three
planar objects at different depths. (b) The reconstructed light field using the proposed
light field prior. (c) The reconstructed light field using the BPF method.
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CHAPTER VI

Conclusion and future work

In this work, we developed a fast splitting-based ordered-subset algorithm for prac-

tical model-based X-ray CT image reconstruction and proposed a model-based light

field reconstruction from a focal stack using ADMM. Experimental results showed

promising preliminary results of both X-ray CT image and light field reconstructions.

More rigorous and practical experiments have to be done in the future. For X-ray CT

image reconstruction, the proposed future work is two-fold. In the theory part, we

would like to investigate more about the convergence rate analysis of the proposed al-

gorithm with the downward continuation approach and a more rigorous convergence

analysis of the proposed algorithm with majorizations and for M > 1. The latter

topic is closely related to the stochastic analysis in the machine learning literature

and needs an accurate model (or “oracle”) of gradient errors using OS. We are also

interested in the convergence analysis of the proposed inexact low-memory algorithm

using the compressed variable splitting due to the potential impact on image recon-

struction problems with lots of auxiliary variables, e.g., the prior image constrained

compressed sensing CT reconstruction. In the application part, we would like to apply

the proposed algorithm to CT reconstruction problems with more general noise model

(i.e., other than the PWLS criterion). To do that, we can do successive quadratic

majorization of the (Lipschitz) cost function. In fact, we use this trick very often in

this work, so it looks promising that we can solve more general convex optimization

problems, e.g., machine learning problems, using the proposed algorithm. Further-

more, we also think about applying techniques like smoothing (continuation of the

smoothness parameter δ in the potential function) to solve reconstruction problems

with high curvature regularizers. For light field reconstruction, thanks to the inher-

ent similarity between X-ray CT image and light field reconstruction, it is natural to

solve light field reconstruction problems using the same technique we used in X-ray

CT image reconstruction. As a future work, we will build a more accurate forward
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model of camera imaging process and investigate real 4D light field reconstructions

with the proposed algorithm for X-ray CT.
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APPENDIX A

A (primal) convergence proof of the SB method

for regularized least-squares problems

A.1 Introduction

Consider a regularized least-squares optimization problem with a general convex

regularizer:

x̂ ∈ arg min
x

{
1
2
‖y −Ax‖2

2 + Φ(Θx)
}
, (A.1)

where y is the noisy measurement, A is the system matrix, Φ is a convex potential

function, and Θ is an analysis regularization matrix. For example, when Φ is the

`1-norm and Θ is the discrete framelet transform matrix [69], the regularized least-

squares problem (A.1) is a frame-based image restoration problem [78]; when Φ is a

smooth “`1-like” potential function (such as the Huber function [18, 79] and the Fair

function [61, 64]) and Θ is the finite difference matrix, the regularized least-squares

problem (A.1) is an image restoration problem with an edge-preserving regularizer.

To solve (A.1), one can use the split Bregman (SB) method proposed by Goldstein

et al. [32], which solves an equivalent constrained minimization problem:

(x̂, v̂) ∈ arg min
x,v

{
1
2
‖y −Ax‖2

2 + Φ(v)
}

s.t. v = Θx (A.2)

This appendix is based on [77].
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using the (alternating direction) augmented Lagrangian (AL) method. The iterates

of the SB method are as follows:
x(k+1) ∈ arg min

x

{
1
2
‖y −Ax‖2

2 + η
2

∥∥Θx− v(k) − e(k)
∥∥2

2

}
v(k+1) ∈ arg min

v

{
Φ(v) + η

2

∥∥Θx(k+1) − v − e(k)
∥∥2

2

}
e(k+1) = e(k) −Θx(k+1) + v(k+1) ,

(A.3)

where the x-update is a least-squares problem, and the v-update is a proximal map-

ping of Φ, which often can be solved efficiently, e.g., by soft-thresholding for the `1

potential.

To prove the convergence of the SB method, Esser [80] showed that the SB

method is equivalent to the alternating direction method of multipliers (ADMM)

[44, 45, 81, 82], and Setzer [83] showed that the SB method can be interpeted as the

Douglas-Rachford splitting (DRS) method [44, 84, 85] applied to the dual problem.

However, both [80] and [83] implicitly assume that Θ has full column rank, i.e., Θ′Θ

is invertible, and show the primal convergence proofs using [44, Theorem 8]. The

full column rank condition holds when Θ is a tight frame as in frame-based image

restoration problems. When Θ is the finite difference matrix as in edge-preserving

image restoration problems (and also in [32]), this assumption does not hold anymore,

and the the proofs in [80] and [83] are inapplicable. Differently, in [78], assuming all

the inner updates in (A.3) are exact, Cai et al. proved the convergence of the SB

method without using [44, Theorem 8] and therefore did not impose the “full column

rank” assumption. In other words, the SB method is a convergent algorithm for any

Θ if all the inner minimization problems in (A.3) are solved exactly! Unfortunately,

when some of the inner updates are inexact, e.g., the x-update in parallel mag-

netic resonance (MR) and X-ray computed tomography (CT) image reconstructions

[8, 32, 86, 87], we still lack convergence proofs of the SB method.

A.2 The split Bregman method as an ADMM algorithm

To show the convergence of the inexact SB method, we first consider another

constrained minimization problem that is also equivalent to (A.1) but uses two split

variables:

(x̂, û, v̂) ∈ arg min
x,u,v

{
1
2
‖y − u‖2

2 + Φ(v)
}

s.t. u = Ax,v = Θx . (A.4)
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The ADMM algorithm for this constrained minimization problem is [45]:

x(k+1) ∈ arg min
x

{
ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥Θx− v(k) − e(k)
∥∥2

2

}
u(k+1) ∈ arg min

u

{
1
2
‖y − u‖2

2 + ρ
2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
v(k+1) ∈ arg min

v

{
Φ(v) + η

2

∥∥Θx(k+1) − v − e(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1)

e(k+1) = e(k) −Θx(k+1) + v(k+1) ,

(A.5)

where d and e are the scaled Lagrange multipliers (i.e., dual variables) of the split

variables u and v, respectively, and ρ, η > 0 are the corresponding AL penalty pa-

rameters. By stacking u and v, we can represent the equality constraint in (A.4)

more compactly as [
u

v

]
=

[
A

Θ

]
︸︷︷︸

S

x . (A.6)

When S has full column rank, this ADMM algorithm (A.5) is convergent, even with

inexact updates, providing the error in the inexact updates satisfies the conditions

of [44, Theorem 8]. In many applications such as image restoration and X-ray CT

image reconstruction, A′A is a low-pass filter (but not necessarily shift-invariant).

When Θ = C is the finite difference matrix, Θ′Θ is the Laplacian, which is a high-

pass filter. The non-zero vectors in the null space of Θ′Θ are usually not in the null

space of A′A, and vice versa, so the null space of S′S = A′A + Θ′Θ is usually {0}.
That is, S usually has full column rank in applications like image restoration and

X-ray CT image reconstruction! Therefore, (A.5) is a convergent ADMM algorithm

that allows inexact updates for image restoration and X-ray CT image reconstruction

according to [44, Theorem 8]. More specifically, x(k+1) in (A.5) converges to x̂ if the

error of the inner minimization problem (i.e., the `2 distance between the iterate and

the optimum of the inner problem) is absolutely summable.

Now, let’s take a closer look at (A.5). The u-update in (A.5) has a closed-form

solution

u(k+1) = ρ
ρ+1

(
Ax(k+1) − d(k)

)
+ 1

ρ+1
y . (A.7)

Combining with the d-update in (A.5), we have the identity

u(k+1) + ρd(k+1) = y (A.8)
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if we initialize d as d(0) = ρ−1
(
y − u(0)

)
. Substituting (A.8) into (A.5), we have the

simplified ADMM iterates:

x(k+1) ∈ arg min
x

{
ρ
2

∥∥Ax− ρ−1y − (1− ρ−1) u(k)
∥∥2

2
+ η

2

∥∥Θx− v(k) − e(k)
∥∥2

2

}
u(k+1) = ρ

ρ+1
Ax(k+1) + 1

ρ+1
u(k)

v(k+1) ∈ arg min
v

{
Φ(v) + η

2

∥∥Θx(k+1) − v − e(k)
∥∥2

2

}
e(k+1) = e(k) −Θx(k+1) + v(k+1) .

(A.9)

By comparing the SB method (A.3) and the simplified ADMM algorithm (A.9) side

by side, we can easily find that they have common v- and e-updates. The u-update

in (A.9) can be seen as a perturbation of its x-update. In fact, when ρ = 1, the

x-update in (A.9) is independent of u(k), and the simplified ADMM algorithm (A.9)

reduces to the SB method (A.3). In other words, the SB method is a convergent

ADMM algorithm when we solve a regularized least-squares problem, and this proves

the convergence of the inexact SB method for image restoration and X-ray CT image

reconstruction provided S in (A.6) has full column rank, and the inner minimization

error is absolute summable! Note that S has full column rank in many applications

whereas Θ often does not. This is the main difference between our new convergence

condition and the conventional one.
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APPENDIX B

Frequency analysis and parameter selection of

ADMM: the quadratic case

B.1 Frequency analysis

In the previous appendix, we showed that when the data-fitting term is quadratic,

the SB method is a convergent ADMM algorithm, and therefore proved the conver-

gence of the inexact SB method. Although the convergence of the SB method for

general convex data-fitting term is still an open problem, the convergence proof in

Section A.2 is applicable to many popular image reconstruction problems. Note that

the equivalence of the SB method and the ADMM algorithm holds for the choice

ρ = 1; however, the ADMM algorithm (A.9) is convergent for any ρ > 0. Thus, it

seems likely that the ADMM algorithm will be faster than the SB method if ρ is

selected appropriately. To have a more concrete example and mathematically tract-

ble analysis, we analyze the convergence rate properties of (A.9) for a quadratically

regularized image restoration problem:

x̂ ∈ arg min
x

{
1
2
‖y −Ax‖2

2 + α
2
‖Cx‖2

2

}
, (B.1)

where y denotes the noisy blurred measurement of an image x, degraded by a degrada-

tion matrix A, α > 0 is the regularization parameter, and C denotes the tall masked

finite difference matrix in multiple directions. To simplify our analysis, we will fur-

ther assume that both A′A and C′C are approximately block circulant with circulant

This appendix is based on [77].
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blocks (BCCB), i.e., A′A ≈ UΛU′ and C′C ≈ UΩU′, where Λ , diag{λi ≥ 0},
Ω , diag{ωi ≥ 0}, and U denotes the normalized 2D inverse DFT matrix.

Clearly, the quadratically regularized image restoration problem (B.1) is simply an

instance of the regularized least-squares problem (A.1) with Θ , C and Φ(·) , α
2
‖·‖2

2.

Therefore, the simplified ADMM algorithm solving (B.1) is:

x(k+1) ∈ arg min
x

{
ρ
2

∥∥Ax− ρ−1y − (1− ρ−1) u(k)
∥∥2

2
+ η

2

∥∥Cx− v(k) − e(k)
∥∥2

2

}
u(k+1) = ρ

ρ+1
Ax(k+1) + 1

ρ+1
u(k)

v(k+1) ∈ arg min
v

{
α
2
‖v‖2

2 + η
2

∥∥Cx(k+1) − v − e(k)
∥∥2

2

}
e(k+1) = e(k) −Cx(k+1) + v(k+1) .

(B.2)

Furthermore, since Φ is quadratic, it has a linear proximal mapping, and therefore,

the v-update in (B.2) has a closed-form solution

v(k+1) = η
η+α

(
Cx(k+1) − e(k)

)
. (B.3)

Again, using the same trick as before, we find that the dual variable e is also redun-

dant, yielding the identity

αv(k+1) + ηe(k+1) = 0 (B.4)

if we initialize e as e(0) = −αη−1v(0). Substituting (B.4) into (B.2), the ADMM

iterates (B.2) simplify to:
x(k+1) = (ρA′A + ηC′C)−1 (A′y + (ρ− 1)A′u(k) + (η − α)C′v(k)

)
u(k+1) = ρ

ρ+1
Ax(k+1) + 1

ρ+1
u(k)

v(k+1) = η
η+α

Cx(k+1) + α
η+α

v(k) .

(B.5)

To further simplify (B.5), let’s denote
s , (ρA′A + ηC′C)−1 A′y

P , (ρ− 1) (ρA′A + ηC′C)−1 A′

Q , (η − α) (ρA′A + ηC′C)−1 C′ .

(B.6)
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It follows that 
x(k+1) = s + Pu(k) + Qv(k)

u(k+1) = ρ
ρ+1

A
(
s + Pu(k) + Qv(k)

)
+ 1

ρ+1
u(k)

v(k+1) = η
η+α

C
(
s + Pu(k) + Qv(k)

)
+ α

η+α
v(k) ,

(B.7)

and we have the transition equation of the split variables:[
u(k+1)

v(k+1)

]
=

 ρ
ρ+1

AP + 1
ρ+1

In

η
η+α

CP

ρ
ρ+1

AQ

η
η+α

CQ + α
η+α

Im


︸ ︷︷ ︸

G

[
u(k)

v(k)

]
+

 ρ
ρ+1

As

η
η+α

Cs

 . (B.8)

Since we already know that the two-split ADMM algorithm (B.2) is convergent if A

and C have disjoint null spaces (except for {0}) [44], the split variables in (B.2) should

converge linearly with rate of convergence %(G), where %(·) denotes the spectral radius

of a matrix. However, what we really care about is the convergence rate of x. To find

the convergence rate of x, consider

x(k+1) − s

=
[

P Q
] [u(k)

v(k)

]

=
[

P Q
] ρ

ρ+1
AP + 1

ρ+1
In

η
η+α

CP

ρ
ρ+1

AQ

η
η+α

CQ + α
η+α

Im

[u(k−1)

v(k−1)

]
+

 ρ
ρ+1

As

η
η+α

Cs


=
(

ρ
ρ+1

PA + 1
ρ+1

In + η
η+α

QC
)

Pu(k−1)

+
(

ρ
ρ+1

PA + η
η+α

QC + α
η+α

In

)
Qv(k−1) +

(
ρ
ρ+1

PA + η
η+α

QC
)

s . (B.9)

Unfortunately, (B.9) is not a transition equation of x (or x−s), so we cannot find the

linear convergence rate of x in general, except for three cases: (1) ρ = 1, (2) η = α,

and (3) ρ = η/α.

B.1.1 Case I

When ρ = 1, P becomes a zero matrix, and the split variable u is redundant. In

fact, the two-split ADMM algorithm (B.2) reduces to the SB method when ρ = 1 as
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shown in Section A.2. In this case, we have

v(k+1) =
(

η
η+α

CQ + α
η+α

Im

)
v(k) + η

η+α
Cs (B.10)

and

x(k+1) − s

=
(

η
η+α

QC + α
η+α

In

)
Qv(k−1) + η

η+α
QCs

=
(

η
η+α

QC + α
η+α

In

)
︸ ︷︷ ︸

H1

(
x(k) − s

)
+ η

η+α
QCs . (B.11)

Because the two-split ADMM algorithm (B.2) is convergent, it follows that x con-

verges linearly to the solution x̂ with rate %(H1). Now, applying our BCCB approxi-

mations of A′A and C′C, we can approximate the transition matrix H1 as

H1 = η
η+α

(
(η − α) (A′A + ηC′C)−1 C′

)
C + α

η+α
In

≈ U diag
{

η
η+α

(η−α)ωi
λi+ηωi

+ α
η+α

}
U′

= U diag
{

η
η+α

αλi+η
2ωi

ηλi+η2ωi

}
U′

= U diag
{
s1(δi) , η

η+α
α+η2δi
η+η2δi

}
U′ , (B.12)

where δi , ωi/λi ≥ 0 is the ratio of the spectra of C′C and A′A. Note that for any

non-negative δ, s′1(δ) = η
η+α

η−α
(ηδ+1)2

is greater zero if η > α, and it is less than zero if

η < α. When η > α, %(H1), i.e., max
i
s1(δi), is determined by δmax, and we can find

the optimal AL penalty parameter

η? = arg min
η

{
η

η+α
α+η2δmax

η+η2δmax

}
=
√
α/δmax . (B.13)

Note that (B.13) holds only if η > α; therefore, η? =
√
α/δmax only if δmax < α−1.

Similarly, when η < α, %(H1) is determined by δmin. Follow the same procedure, we

have η? =
√
α/δmin only if δmin > α−1. Finally, for the case that δmin < α−1 < δmax,

η? = α because both η? > α and η? < α lead to a contradiction to the condition

δmin < α−1 < δmax. Summarizing, the optimal AL penalty parameter of the SB

method for solving the quadratically regularized image restoration problem (B.1) is

η? =
√
α/γ , (B.14)
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where γ , median{δmin, δmax, α
−1}.

B.1.2 Case II

When η = α, Q becomes a zero matrix, and the split variable v is redundant.

Furthermore, we can easily prove that when η = α, the two-split ADMM algorithm

(B.2) reduces to the alternating direction AL method that solves the constrained

minimization problem:

(x̂, û) ∈ arg min
x,u

{
1
2
‖y − u‖2

2 + α
2
‖Cx‖2

2

}
s.t. u = Ax (B.15)

that is also equivalent to (B.1). In this case, we have

u(k+1) =
(

ρ
ρ+1

AP + 1
ρ+1

In

)
u(k) + ρ

ρ+1
As (B.16)

and

x(k+1) − s

=
(

ρ
ρ+1

PA + 1
ρ+1

In

)
Pu(k−1) + ρ

ρ+1
PAs

=
(

ρ
ρ+1

PA + 1
ρ+1

In

)
︸ ︷︷ ︸

H2

(
x(k) − s

)
+ ρ

ρ+1
PAs . (B.17)

Follow the same trick, we can approximate the transition matrix H2 as

H2 = ρ
ρ+1

(
(ρ− 1) (ρA′A + αC′C)−1 A′

)
A + 1

ρ+1
In

≈ U diag
{

ρ
ρ+1

(ρ−1)λi
ρλi+αωi

+ 1
ρ+1

}
U′

= U diag
{

ρ
ρ+1

ρ2λi+αωi
ρ2λi+αρωi

}
U′

= U diag
{
s2(δi) , ρ

ρ+1
ρ2+αδi
ρ2+αρδi

}
U′ , (B.18)

and the optimal AL penalty parameter ρ? will be

ρ? =
√
αγ . (B.19)
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B.1.3 Case III

Finally, when ρ = η/α, we have the identity 1
ρ+1

= α
η+α

and we rewrite (B.9) as

x(k+1) − s

=
(

η
η+α

PA + η
η+α

QC + α
η+α

In

) (
Pu(k−1) + Qv(k−1)

)
+ η

η+α
(PA + QC) s

=
(

η
η+α

PA + η
η+α

QC + α
η+α

In

)
︸ ︷︷ ︸

H3

(
x(k) − s

)
+ η

η+α
(PA + QC) s . (B.20)

The transition matrix H3 is approximately

H3 = η
η+α

(
η
α
A′A + ηC′C

)−1 (
( η
α
− 1)A′A + (η − α)C′C

)
+ α

η+α
In

≈ U diag
{

η
η+α

(
(η−α)λi+α(η−α)ωi

ηλi+αηωi

)
+ α

η+α

}
U′

= U diag
{

η
η+α

}
U′

= U diag
{
s3(δi) , η

η+α

}
U′ . (B.21)

Surprisingly, H3 has a uniform sprectrum, and %(H3) = η/(η + α). Theoretically,

we can achieve arbitrarily fast asymptotic convergence rate in this quadratic case by

choosing

η? ≈ 0 . (B.22)

However, a smaller AL penalty parameter leads to a larger step size. When η is

too small, we might encounter overshoots at the beginning and oscillation as the

algorithm proceeds. Therefore, in practice, η? cannot be arbitrarily small.

B.2 Parameter selection for image restoration problems

This section considers parameter selection of ADMM algorithms for image restora-

tion in practical situations, where A′A is a non-invertible low-pass filter, C′C is a

non-invertible high-pass filter, some frequency band is non-zero only for A′A (such

as the DC component), and some frequency band is non-zero only for C′C (such as

the extremely high frequency component). In this case, δi has an extremely huge dy-

namic range, i.e., δmin ≈ 0 and δmax ≈ ∞. Therefore, for most cases, the optimal AL

penalty parameter η? of the SB method (B.14) will be α. Furthermore, the optimal

AL penalty parameter ρ? of the two-split ADMM algorithm when η = α (Case II) is

one, which then reverts to Case I, i.e., the SB method. Hence, once η is chosen to be
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the optimal η of the SB method, the optimal two-split ADMM algorithm is the SB

method itself!

Now, consider the case that η is suboptimal, i.e., η 6= α. When η > α, δmax ≈ ∞
determines the asymptotic convergence rate. In this case,

%(H1) ≈ η
η+α

= %(H3) , (B.23)

which means that the SB method is no better than the two-split ADMM algorithm

(B.2) with ρ = η/α when η is over-estimated. However, in practice, the SB method

appears to converge a little bit faster because most frequency components in the SB

method have convergence rate less than %(H1) ≈ %(H3). On the other hand, when

η < α, δmin ≈ 0 determines the convergence rate. In this case,

%(H1) ≈ α
η+α

> η
η+α

= %(H3) , (B.24)

which means that the SB method is slower than the two-split ADMM algorithm (B.2)

with ρ = η/α when η is under-estimated. In sum, %(H1) & %(H3) for any η. That is,

the two-split ADMM algorithm (B.2) with ρ = η/α is less sensitive to the choice of

η due to the additional split and converges faster than the SB method especially for

small η in most cases.

This analysis of the two-split ADMM algorithm might seem to be useless because

we assume that we can solve the inner least-squares problem exactly and efficiently in

our analysis, while the minimization problem (B.1) itself is a least-squares problem.

In fact, if we initialize d and e in (B.2) properly as mentioned before, the two-split

ADMM algorithm should solve the minimization problem in one iteration if we set

(ρ, η) = (1, α), which happens to be the optimal SB method, as in (B.5). This does

not contradict the non-zero (1/2) asymptotic convergence rate we showed in (B.12),

(B.18), and (B.21) because the x-update just solves the original minimization problem

fortuitously. The other split variables still follow the asymptotic convergence rate we

derived before. The goal of this analysis was to show that ADMM algorithms can

sometimes converge faster than the SB method, and the simple analysis might give

some intuition about the parameter tuning for practical problems.

B.3 Numerical experiments

In this section, we verify the convergence rate result and parameter selection dis-

cussed in the previous section using an image restoration problem with a quadratic
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Figure B.1: An image restoration problem instance: the true image (left), the noisy
blurred image (middle), and the converged reference reconstruction (right).

regularizer. Figure B.1 shows an image restoration problem instance: the true image

(left), the noisy blurred image (middle), and the converged reference reconstruction

(right). We use a quadratic roughness penalty as the regularizer where the regular-

ization parameter α is choosen to be 2−4 for better noise-resolution tradeoff. Note

that since a masked finite difference matrix (in horizontal and vertical directions) is

used, we cannot solve the x-update in (B.2) efficiently using FFT. Instead, we solve

it using PCG with an appropriate circulant preconditioner for three iterations. The

inexact updates might affect the convergence rate but not very significantly thanks to

the circulant preconditioner. Figure B.2 shows the convergence rate curves (the rela-

tive error of cost value and RMS difference) of the two-split ADMM algorithm (B.2)

with different parameter settings. As can be seen in Figure B.2, all reconstructed

images with different parameter settings converge to the solution with minimum cost

value (up to the machine epsilon of the single-precision floating-point arithmetic).

When (α, η) = (1, α), the two-split ADMM algorithm, i.e., the optimal SB method,

achieves the fastest convergence rate with no ripple. As mentioned before, with

a proper initialization, the two-split ADMM algorithm with this parameter setting

should converge immediately; the non-zero convergence rate comes from the inexact

updates. When η is over-estimated (η = α×20), the SB method (ρ = 1) and the

two-split ADMM algorithm with ρ = η/α = 20 exhibit similar slow convergence rate.

When η is under-estimated (η = α/20), the SB method (ρ = 1) is much slower than

the two-split ADMM algorithm with ρ = η/α = 1/20. One might expect the ADMM

algorithm with these parameters to converge with the same asymptotic convergence

rate as the fastest two-split ADMM algorithm because η is very small, but in fact it

suffers from strong overshoots and oscillation due to the large step size as mentioned

in Section B.1.3.
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Figure B.2: The convergence rate curves with different parameter settings: (a) the
relative error of cost value and (b) the RMS difference between the reconstructed
image and the reference reconstruction as a function of the number of iterations.
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APPENDIX C

Convergence analyses of the inexact linearized AL

method

C.1 Introduction

Consider a general composite convex optimization problem:

x̂ ∈ arg min
x

{
g(Ax) + h(x)

}
(C.1)

and its equivalent constrained minimization problem:

(x̂, û) ∈ arg min
x,u

{
g(u) + h(x)

}
s.t. u = Ax , (C.2)

where both g and h are closed and proper convex functions. The inexact linearized

AL methods that solve (C.2) are as follows:
∥∥∥x(k+1) − arg min

x
φk(x)

∥∥∥ ≤ δk

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) ,

(C.3)

and 
∣∣∣φk(x(k+1)

)
−min

x
φk(x)

∣∣∣ ≤ εk

u(k+1) ∈ arg min
u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) ,

(C.4)

This appendix is based on the supplementary material of [38].
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where

φk(x) , h(x) + θ̆k
(
x; x(k)

)
, (C.5)

and

θ̆k
(
x; x(k)

)
, θk

(
x(k)
)

+
〈
∇θk

(
x(k)
)
,x− x(k)

〉
+ ρL

2

∥∥x− x(k)
∥∥2

2
(C.6)

is the separable quadratic surrogate (SQS) function of

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(C.7)

with L > ‖A‖2
2 = λmax(A′A), {δk}∞k=0 and {εk}∞k=0 are two non-negative sequences, d

is the scaled Lagrange multiplier of the split variable u, and ρ > 0 is the correspond-

ing AL penalty parameter. Furthermore, in [38], we also showed that the inexact

linearized AL method is equivalent to the invexact version of the Chambolle-Pock

first-order primal-dual algorithm (CPPDA) [50]:
x(k+1) ∈ proxσh

(
x(k) − σA′z̄(k)

)
z(k+1) ∈ proxτg∗

(
z(k) + τAx(k+1)

)
z̄(k+1) = z(k+1) +

(
z(k+1) − z(k)

) (C.8)

that solves the minimax problem:

(ẑ, x̂) ∈ arg min
z

max
x

{
Ω(z,x) , 〈−A′z,x〉+ g∗(z)− h(x)

}
(C.9)

with z = −τd, σ = ρ−1t, τ = ρ, and t , 1/L, where proxf denotes the proximal

mapping of f defined as:

proxf (z) , arg min
x

{
f(x) + 1

2
‖x− z‖2

2

}
, (C.10)

and f ∗ denotes the convex conjugate of a function f . Note that g∗∗ = g and h∗∗ = h

since both g and h are closed, proper, and convex.

C.2 Proof of Theorem 1

Theorem C.1. Consider a constrained composite convex optimization problem (C.2)

where both g and h are closed and proper convex functions. Let ρ > 0 and {δk}∞k=0
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denote a non-negative sequence such that

∞∑
k=0

δk <∞ . (C.11)

If (C.2) has a solution (x̂, û), then the sequence of updates
{(

x(k),u(k)
)}∞

k=0
generated

by the inexact linearized AL method (C.3) converges to (x̂, û); otherwise, at least one

of the sequences
{(

x(k),u(k)
)}∞

k=0
or
{
d(k)

}∞
k=0

diverges.

Proof. To prove this theorem, we first consider the exact linearized AL method:
x(k+1) ∈ arg min

x

{
h(x) + θ̆k

(
x; x(k)

)}
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(C.12)

Note that

θ̆k
(
x; x(k)

)
= θk

(
x(k)
)

+
〈
∇θk

(
x(k)
)
,x− x(k)

〉
+ ρL

2

∥∥x− x(k)
∥∥2

2

= θk
(
x(k)
)

+
〈
∇θk

(
x(k)
)
,x− x(k)

〉
+ ρ

2

∥∥x− x(k)
∥∥2

A′A
+ ρ

2

∥∥x− x(k)
∥∥2

LI−A′A

= θk(x) + ρ
2

∥∥x− x(k)
∥∥2

G
, (C.13)

where G , LI −A′A � 0. Therefore, the exact linearized AL method can also be

written as
x(k+1) ∈ arg min

x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ ρ

2

∥∥x− x(k)
∥∥2

G

}
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(C.14)

Now, consider another constrained minimization problem that is also equivalent to

(C.1) but uses two split variables:

(x̂, û, v̂) ∈ arg min
x,u,v

{
g(u) + h(x)

}
s.t.

[
u

v

]
=

[
A

G1/2

]
︸ ︷︷ ︸

S

x . (C.15)
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The corresponding augmented Lagrangian and ADMM iterates [45] are

LA(x,u,d,v, e; ρ, η)

, g(u) + h(x) + ρ
2
‖Ax− u− d‖2

2 + η
2

∥∥G1/2x− v − e
∥∥2

2
(C.16)

and

x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥G1/2x− v(k) − e(k)
∥∥2

2

}
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1)

v(k+1) = G1/2x(k+1) − e(k)

e(k+1) = e(k) −G1/2x(k+1) + v(k+1) ,

(C.17)

where e is the scaled Lagrange multiplier of the split variable v, and η > 0 is the

corresponding AL penalty parameter. Note that since G is positive definite, S defined

in (C.15) has full column rank. Hence, the ADMM iterates (C.17) are convergent

[44, Theorem 8]. Solving the last two iterates in (C.17) yields identitiesv(k+1) = G1/2x(k+1)

e(k+1) = 0
(C.18)

if we initialize e as e(0) = 0. Substituting (C.18) into (C.17), we have the equivalent

ADMM iterates:
x(k+1) ∈ arg min

x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2
+ η

2

∥∥G1/2x−G1/2x(k)
∥∥2

2

}
u(k+1) ∈ arg min

u

{
g(u) + ρ

2

∥∥Ax(k+1) − u− d(k)
∥∥2

2

}
d(k+1) = d(k) −Ax(k+1) + u(k+1) .

(C.19)

When η = ρ, the equivalent ADMM iterates (C.19) reduce to (C.14). Therefore, the

linearized AL method is a convergent ADMM! Finally, by using [44, Theorem 8], the

linearized AL method is convergent if the error of x-update is summable. That is,

the inexact linearized AL method (C.3) is convergent if the non-negative sequence

{δk}∞k=0 satisfies
∑∞

k=0 δk <∞.
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C.3 Proof of Theorem 2

Theorem C.2. Consider a minimax problem (C.9) where both g and h are closed

and proper convex functions. Suppose it has a saddle-point (ẑ, x̂). Note that since

the minimization problem (C.1) happens to be the dual problem of (C.9), x̂ is also a

solution of (C.1). Let ρ > 0 and {εk}∞k=0 denote a non-negative sequence such that

∞∑
k=0

√
εk <∞ . (C.20)

Then, the sequence of updates
{(
−ρd(k),x(k)

)}∞
k=0

generated by the inexact linearized

AL method (C.4) is a bounded sequence that converges to (ẑ, x̂), and the primal-dual

gap of (zk,xk) has the following bound:

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤
(
C + 2Ak +

√
Bk

)2

k
, (C.21)

where zk , 1
k

∑k
j=1

(
−ρd(j)

)
, xk , 1

k

∑k
j=1 x(j),

C ,

∥∥x(0) − x̂
∥∥

2√
2ρ−1t

+

∥∥(−ρd(0)
)
− ẑ
∥∥

2√
2ρ

, (C.22)

Ak ,
k∑
j=1

√
εj−1(

1− t ‖A‖2
2

)
ρ−1t

, (C.23)

and

Bk ,
k∑
j=1

εj−1 . (C.24)

Proof. As mentioned before, the inexact linearized AL method is the inexact version

of CPPDA with a specific choice of σ and τ and a substitution z = −τd. Here, we

just prove the convergence of the inexact CPPDA by extending the analysis in [50],

and the inexact linearized AL method is simply a special case of the inexact CPPDA.

However, since the proximal mapping in the x-update of the inexact CPPDA is solved

inexactly, the existing analysis is not applicable. To solve this problem, we adopt

the error analysis technique developed in [30]. We first define the inexact proximal

mapping

u
ε
≈ proxφ(v) (C.25)
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to be the mapping that satisfies

φ(u) + 1
2
‖u− v‖2

2 ≤ ε+ min
ū

{
φ(ū) + 1

2
‖ū− v‖2

2

}
. (C.26)

Therefore, the inexact CPPDA is defined as
x(k+1)

εk≈ proxσh
(
x(k) − σA′z̄(k)

)
z(k+1) ∈ proxτg∗

(
z(k) + τAx(k+1)

)
z̄(k+1) = z(k+1) +

(
z(k+1) − z(k)

) (C.27)

with στ ‖A‖2
2 < 1. One can verify that with z = −τd, σ = ρ−1t, and τ = ρ,

the inexact CPPDA (C.27) is equivalent to the inexact linearized AL method (C.4).

Schmidt et al. showed that

u
ε
≈ proxφ(v)⇔ v − u− f ∈ ∂εφ(u) (C.28)

with ‖f‖2 ≤
√

2ε, and for any s ∈ ∂εφ(u),

φ(w) ≥ φ(u) + s′ (w − u)− ε (C.29)

for all w, where ∂εφ(u) denotes the ε-subdifferential of φ at u [30, Lemma 2]. When

ε = 0, (C.28) and (C.29) reduce to the standard optimality condition of a proximal

mapping and the definition of subgradient, respectively. At the jth iteration, j =

0, . . . , k − 1, the updates generated by the inexact CPPDA (C.27) satisfy
(
x(j) − σA′z̄(j)

)
− x(j+1) − f (j) ∈ ∂εj (σh)

(
x(j+1)

)(
z(j) + τAx(j+1)

)
− z(j+1) ∈ ∂ (τg∗)

(
z(j+1)

)
.

(C.30)

In other words,
x(j) − x(j+1)

σ
−A′z̄(j) − f (j)

σ
∈ ∂εjh

(
x(j+1)

)
(C.31)

and
z(j) − z(j+1)

τ
+ Ax(j+1) ∈ ∂g∗

(
z(j+1)

)
, (C.32)
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where
∥∥f (j)

∥∥
2
≤
√

2εj. From (C.31), we have

h(x) ≥ h
(
x(j+1)

)
+
〈
∂εjh

(
x(j+1)

)
,x− x(j+1)

〉
− εj

= h
(
x(j+1)

)
+
〈

x(j)−x(j+1)

σ
,x− x(j+1)

〉
−
〈
A′z̄(j),x− x(j+1)

〉
−
〈

f (j)

σ
,x− x(j+1)

〉
− εj

= h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)
+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
−
〈

f (j)

σ
,x− x(j+1)

〉
− εj

≥ h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)
+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
− 1

σ

∥∥f (j)
∥∥

2

∥∥x− x(j+1)
∥∥

2
− εj

≥ h
(
x(j+1)

)
+ 1

2σ

( ∥∥x(j+1) − x
∥∥2

2
+
∥∥x(j+1) − x(j)

∥∥2

2
−
∥∥x(j) − x

∥∥2

2

)
+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
+
〈
−A′z(j+1),x− x(j+1)

〉
−
√

2εj

σ

∥∥x− x(j+1)
∥∥

2
− εj (C.33)

for any x ∈ Domh. From (C.32), we have

g∗(z) ≥ g∗
(
z(j+1)

)
+
〈
∂g∗
(
z(j+1)

)
, z− z(j+1)

〉
= g∗

(
z(j+1)

)
+
〈

z(j)−z(j+1)

τ
, z− z(j+1)

〉
+
〈
Ax(j+1), z− z(j+1)

〉
= g∗

(
z(j+1)

)
+ 1

2τ

( ∥∥z(j+1) − z
∥∥2

2
+
∥∥z(j+1) − z(j)

∥∥2

2
−
∥∥z(j) − z

∥∥2

2

)
−
〈
−A′

(
z− z(j+1)

)
,x(j+1)

〉
(C.34)

for any z ∈ Dom g∗. Summing (C.33) and (C.34), it follows:∥∥x(j) − x
∥∥2

2

2σ
+

∥∥z(j) − z
∥∥2

2

2τ
≥
(
Ω
(
z(j+1),x

)
− Ω

(
z,x(j+1)

))
+

∥∥x(j+1) − x
∥∥2

2

2σ
+

∥∥z(j+1) − z
∥∥2

2

2τ
+

∥∥x(j+1) − x(j)
∥∥2

2

2σ
+

∥∥z(j+1) − z(j)
∥∥2

2

2τ

+
〈
−A′

(
z̄(j) − z(j+1)

)
,x− x(j+1)

〉
−
√

2εj

σ

∥∥x− x(j+1)
∥∥

2
− εj . (C.35)
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Furthermore,

〈
−A′

(
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−
〈
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≥
〈
−A′

(
z(j+1) − z(j)

)
,x(j+1) − x

〉
−
〈
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(
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)
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〉
−
√
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2

2τ
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2

2σ

)
, (C.37)

where (C.36) is due to Young’s inequality. Plugging (C.37) into (C.35), it follows that

for any (z,x),∥∥x(j) − x
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〉
−
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2
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Suppose z(−1) = z(0), i.e., z̄(0) = z(0). Summing up (C.38) from j = 0, . . . , k − 1 and

using

〈
−A′

(
z(k) − z(k−1)

)
,x(k) − x

〉
≤
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∥∥2

2

2τ
+ στ ‖A‖2

2
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∥∥2

2

2σ
(C.39)
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as before, we have
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Ω
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)
− Ω

(
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. (C.40)

Since στ ‖A‖2
2 < 1, we have 1 − στ ‖A‖2

2 > 0 and 1 −
√
στ ‖A‖2 > 0. If we choose

(z,x) = (ẑ, x̂), the first term on the left-hand side of (C.40) is the sum of k non-

negative primal-dual gaps, and all terms in (C.40) are greater than or equal to zero.

Let D , 1− στ ‖A‖2
2 > 0. We have three inequalities:

D ·
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∥∥2

2

2τ
+

k∑
j=1

εj−1 +
k∑
j=1

2
√

εj−1

σ

∥∥x(j) − x̂
∥∥

2√
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, (C.41)

D ·
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, (C.42)

and
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∥∥x(0) − x̂

∥∥2

2

2σ
+

∥∥z(0) − ẑ
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. (C.43)

All these inequality has a common right-hand-side. To continue the proof, we have
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to bound
∥∥x(j) − x̂

∥∥
2
/
√

2σ first. Dividing D from both sides of (C.41), we have
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Let

Sk ,
1

D

∥∥x(0) − x̂
∥∥2

2

2σ
+

1

D

∥∥z(0) − ẑ
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2

2τ
+

k∑
j=1

εj−1

D
, (C.45)

λj , 2

(
1

D

√
εj−1

σ

)
, (C.46)

and

uj ,

∥∥x(j) − x̂
∥∥

2√
2σ

. (C.47)

We have u2
k ≤ Sk +

∑k
j=1 λjuj from (C.44) with {Sk}∞k=0 an increasing sequence,

S0 ≥ u2
0 (note that 0 < D < 1 because 0 < στ ‖A‖2

2 < 1), and λj ≥ 0 for all j.

According to [30, Lemma 1], it follows that

∥∥x(k) − x̂
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where

Ãk ,
k∑
j=1

1

D

√
εj−1

σ
, (C.49)

and

B̃k ,
k∑
j=1

εj−1

D
. (C.50)
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Since Ãj and B̃j are increasing sequences of j, for j ≤ k, we have
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j

)1/2

≤ Ãk +
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Now, we can bound the right-hand-side of (C.41), (C.42), and (C.43) as∥∥x(0) − x̂
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∥∥

2√
2τ

+

√
B̃k

)

≤

(∥∥x(0) − x̂
∥∥

2√
2σ

+

∥∥z(0) − ẑ
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≤

(∥∥x(0) − x̂
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2τ

+ 2A∞ +
√
B∞

)2

(C.53)

if
{√

εk
}∞
k=0

is absolutely summable (and therefore, {εk}∞k=0 is also absolutely summable),

where

Ak , Ãk
√
D =

k∑
j=1

√
εj−1

(1−στ‖A‖22)σ
, (C.54)

and

Bk , B̃kD =
k∑
j=1

εj−1 . (C.55)
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Hence, from (C.42), we have∥∥x(k) − x̂
∥∥2

2

2σ
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(C.56)

This implies that the sequence of updates
{(

z(k),x(k)
)}∞

k=0
generated by the inexact

CPPDA (C.27) is a bounded sequence. Let

C ,

∥∥x(0) − x̂
∥∥

2√
2σ

+

∥∥z(0) − ẑ
∥∥

2√
2τ

. (C.57)

From (C.43) and the convexity of h and g∗, we have

Ω
(
zk, x̂

)
− Ω

(
ẑ,xk

)
≤ 1

k

k∑
j=1

(
Ω
(
z(j), x̂
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− Ω

(
ẑ,x(j)
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≤
(
C + 2Ak +

√
Bk

)2

k
(C.58)

≤
(
C + 2A∞ +

√
B∞
)2

k
, (C.59)

where zk , 1
k

∑k
j=1 z(j), and xk , 1

k

∑k
j=1 x(j). That is, the primal-dual gap of

(zk,xk) converges to zero with rate O(1/k). Following the procedure in [50, Section

3.1], we can further show that the sequence of updates
{(

z(k),x(k)
)}∞

k=0
generated by

the inexact CPPDA (C.27) converges to a saddle-point of (C.9) if the dimension of

x and z is finite.
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