
ACCELERATED OPTIMIZATION ALGORITHMS
FOR STATISTICAL 3D X-RAY COMPUTED

TOMOGRAPHY IMAGE RECONSTRUCTION

by

Donghwan Kim

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)
in The University of Michigan

2014

Doctoral Committee:

Professor Jeffrey A. Fessler, Chair
Assistant Professor Laura K. Balzano
Associate Professor Marina A. Epelman
Professor Alfred O. Hero III

c© Donghwan Kim 2014

All Rights Reserved

ACKNOWLEDGEMENTS

My last five years in Ann Arbor pursuing this dissertation have been fulfilling and un-

forgettable and this would not have been possible without people around me who deserve

thanks. Most importantly, I would like to thank my advisor, Prof. Jeffrey A. Fessler, a

hundred times. I really enjoyed working with him as his insight and advice provided me

wonderful research experience as well as great outcomes. He has encouraged every time

when I felt stupid when facing research problems and that really helped me make myself

confident in my work and ability.

Next, I would like to acknowledge my doctoral committee for their time and suggestions

on improving this dissertation. The research collaboration with GE Healthcare and GE

Global Research Center was effective and I would like to thank them for all their support

including the real CT data used in this dissertation.

Inside the research group, I was glad to have a seat right next to Dr. Sathish Ramani

in the office, who shared great insights on my research. I also would like to thank all of the

group members for their inspiring research and kindness, and particularly I want to point

out Hung Nien and Madison McGaffin for helpful discussion on our common research topic.

Outside of my research, I will always be grateful for endless support from my family. I

should list each of their names here: my mother Okkyung Eun, my father Janghee Kim, and

my sister Dongyoung Kim. I would also like to thank my friends in Korea who constantly

kept in touch with me. In Ann Arbor, friends from my first year and last year, Korean

EECS friends, and a soccer team AK United were always around me and made my life in

Ann Arbor joyful.

Finally, I should not forget to acknowledge invaluable financial support from the Depart-

ment of EECS, KLA-Tencor Corporation and National Institutes of Health, and equipment

support from Intel Corporation.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . x

LIST OF APPENDICES . xi

LIST OF ABBREVIATIONS . xii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Contribution . 3

II. Background . 6

2.1 Background of X-ray CT image reconstruction 6
2.1.1 X-ray CT physics . 6
2.1.2 Object parametrization . 8

2.2 Statistical image reconstruction . 9
2.2.1 Statistical modeling of X-ray CT scan 9
2.2.2 Statistical X-ray CT image reconstruction 10

2.3 Optimization algorithms . 11
2.3.1 Optimization algorithms in X-ray CT problem 12
2.3.2 Optimization transfer methods 13
2.3.3 Ordered subsets methods 16
2.3.4 Momentum methods . 17

III. Ordered subsets for 3D cone-beam X-ray CT 19

3.1 Ordered subsets (OS) methods . 20

iii

3.2 Scaling factor for 3D helical geometry 21
3.3 Averaging sub-iterations . 22
3.4 Conclusion . 24

IV. Accelerated optimization transfer methods 25

4.1 Separable quadratic surrogates (SQS) methods 25
4.2 Spatially nonuniform SQS methods 30

4.2.1 Convergence rate of SQS methods 30
4.2.2 NU-SQS methods . 31
4.2.3 Results . 39

4.3 Other variation of SQS methods . 48
4.3.1 SQS with bounded interval (SQS-BI) for regularizer R(x) . 48
4.3.2 Quasi-separable quadratic surrogates (QSQS) 54

4.4 Conclusion and Discussion . 61

V. Momentum approaches with ordered subsets 62

5.1 OS-SQS methods with Nesterov’s momentum 62
5.1.1 Proposed OS-SQS methods with momentum 1 (OS-mom1) 63
5.1.2 Proposed OS-SQS methods with momentum 2 (OS-mom2) 63

5.2 Relaxation of momentum . 64
5.2.1 Stochastic gradient method 65
5.2.2 Proposed OS-SQS methods with relaxed momentum (OS-

mom3) . 65
5.2.3 The choice of Γ(k) and tk 66
5.2.4 The choice of c(k) . 68
5.2.5 The choice of Γ . 69

5.3 Results . 70
5.3.1 Simulation data . 70
5.3.2 Shoulder region scan data 76
5.3.3 Abdominal region scan . 77

5.4 Conclusion and Discussion . 78

VI. Optimized momentum approaches . 80

6.1 Introduction . 80
6.2 Problem and approach . 82

6.2.1 Smooth convex minimization problem 82
6.2.2 Optimizing the step coefficients of first-order algorithms . . 83

6.3 Examples of first-order algorithms 84
6.3.1 Gradient method . 84
6.3.2 Heavy-ball method . 84
6.3.3 Nesterov’s fast gradient method 1 85
6.3.4 Nesterov’s fast gradient method 2 86

iv

6.4 A convergence bound of first-order algorithms using PEP approach . 89
6.4.1 Review of relaxation schemes for PEP approach 89
6.4.2 An analytical bound for Nesterov’s fast gradient methods . 93

6.5 A convergence bound for the optimized first-order algorithm 95
6.5.1 Review of DT’s numerical bound for optimized first-order

algorithms . 95
6.5.2 An analytical bound for the optimized first-order algorithm 97

6.6 Proposed optimized first-order algorithms 101
6.6.1 Analytical coefficients of the optimized first-order algorithm 101
6.6.2 Efficient formulations of optimized first-order algorithms . . 102

6.7 Conclusion and Discussion . 105
6.8 Results . 106

6.8.1 Simulation data . 106
6.8.2 Shoulder region scan data 108

VII. Axial block coordinate descent in 3D cone-beam X-ray CT 109

7.1 3D cone-beam X-ray CT geometry and system matrix 109
7.1.1 3D cone-beam X-ray CT geometry 109
7.1.2 System matrix in 3D X-ray CT geometry 111

7.2 Axial block coordinate descent (ABCD) 112
7.2.1 ABCD algorithm . 113
7.2.2 Prelimary simulation results 115

7.3 Conclusion and Discussion . 117

VIII. Conclusion and Future work . 118

8.1 Future work . 119

APPENDICES . 120

BIBLIOGRAPHY . 134

v

LIST OF FIGURES

Figure

2.1 Schematic diagram of a X-ray CT scanner [100]. 7
2.2 The measurement yi is acquired by forward projecting µ(~r) along a line path

Li. 7
2.3 Simulation of forward projection and FBP: (a) Phantom image, (b) noisy

sinogram and (c) FBP image. 8
3.1 Diagram of helical CT geometry. The (red) dashed region indicates the

detector rows that measure data with contributions from voxels both within
and outside the ROI. 20

3.2 Effect of gradient scaling in regularized OS-SQS algorithm with GE perfor-
mance phantom (GEPP) in helical CT: Each image is reconstructed after
running 20 iterations of OS algorithm with 328 subsets, using ordinary and
proposed scaling approaches. Standard deviation σ of a uniform region (in
white box) is computed for comparison. We compute full-width half max-
imum (FWHM) of a tungsten wire (red arrow) to measure the resolution.
(The result of a convergent algorithm is shown for reference. Images are
cropped for better visualization.) . 23

3.3 GE performance phantom: mean and standard deviation within a uniform
region in the first slice of the ROI (see Fig. 3.2) vs. iteration, showing the
instability of ordinary OS approach with 328 subsets, compared with the
proposed OS approach. Also shown is the result from a converged image
x(∞) generated from several iterations of a convergent algorithm. 23

4.1 2D illustration of SQS method: SQS methods construct a SQS surrogate φ(n)

and update to next iterate x(n+1) by minimizing the surrogate. Note that
the shape of SQS surrogate φ(n) is aligned to coordinate axes (for efficient
implementation as in (4.12)), but not to the contour of the cost function
Ψ(x). 28

4.2 2D illustration of SQS method: (a) Standard SQS methods using (4.16)
construct a SQS surrogate φ(n) with a similar shape regardless of the cur-
rent location x(n) respect to the location of the minimizer x̂. (b) Proposed
nonuniform (NU) SQS methods are expected to construct a SQS surrogate
that is adaptively adjusted based on the current x(n) respect to x̂ to encour-
age larger updates for the voxels that need more updates. 29

vi

4.3 Shoulder region scan: ũ
(2)
j and ũ

(8)
j after dynamic range adjustment (DRA)

for NU-OS-SQS(82 subsets), with the choice g(v) = max {v10, 0.05}. NU-

OS-SQS updates the voxels with large ũ
(n)
j more, whereas ordinary OS-SQS

updates all voxels equivalently. 35
4.4 GE performance phantom: plots of (a) FWHM and (b) RMSD as a function

of run time for different choice of DRA parameters t for ǫ = 0.05. The plot
markers show each iteration. There are no changes during first iterations,
since we consider precomputing the denominator using one forward and back
projections as one iteration. 41

4.5 Shoulder region scan: plot of RMSD versus run time for different choice of
parameters (a) t and (b) ǫ in g(v) = max {vt, ǫ}. 42

4.6 Shoulder region scan: (a) Center slice of initial FBP, converged image and re-
constructed image by OS-SQS(82) and NU-OS-SQS(82)-g(v) = max {v10, 0.05}
after about 95 min. (b) Difference between the reconstructed and converged
images are additionally shown to illustrate the acceleration of NU approach.
(Images are cropped for better visualization.) 43

4.7 Truncated abdomen scan: (a) Center slice of FBP, converged image, and
reconstructed image by NUsub-OS-SQS(82)-g(v) = max {v10, 0.05} using

ũ
(0)
j in (4.42) generated from sub-iterations. (b) Difference between the

reconstructed and converged images, where images are reconstructed by
OS-SQS(82) after 5400sec (20iter.), NU-OS-SQS(82) after 5230sec (18iter.)

using ũ
(0)
j extracted from FBP based on Section 4.2.2.5, and NUsub-OS-

SQS(82) after 5220sec (17iter.) using ũ
(0)
j in (4.42). The (black) arrows

indicate truncation artifacts. Images are cropped for better visualization. . 45
4.8 Plots of ξ(n) in (4.43) as a function of run time for different choice of DRA

parameters for (a) GE performance phantom and (b-c) shoulder region scan. 46
4.9 Simulated XCAT phantom: a center slice of 1024× 1024× 154 XCAT phan-

tom. (Images are cropped for better visualization.) 47
4.10 Simulated XCAT phantom: plots of (a) RMSD and (b) ξ(n) versus run time

for different choice of parameters t for ǫ = 0.05 in g(v) = max {vt, ǫ}. . . . 48
4.11 Simulated XCAT phantom: (a) Center slice of reconstructed image by OS-

SQS(82) and NU-OS-SQS(82)-g(v) = max {v10, 0.05} after about 88 min.
(b) Difference between the reconstructed and converged images are addi-
tionally shown to illustrate the acceleration of NU approach. (Images are
cropped for better visualization.) . 49

4.12 A separable surrogate function ρkj(xj − r
(n)
kj) and its quadratic surrogate

function q
(n)
kj (xj − r

(n)
kj) with Huber’s, Yu et al.’s and proposed curvatures.

Proposed curvature is much smaller than Huber’s curvature, while Yu et
al.’s curvature is similar to Huber’s curvature. 53

4.13 (a) Phantom image, (b) FBP image x(0), (c) OS-SQS image x(330) and (d)
OS-SQS-BI image x(290) with η = 0.25 for 4 ordered subsets. The NRMSD
for both (c) and (d) are -30 [dB]. 54

4.14 NRMSD [dB] versus iterations of OS-SQS and OS-SQS-BI with η = 0.5,
0.25, 0.125 for 1, 2 and 4 ordered subsets 55

vii

4.15 (a) Phantom image, (b) FBP image x(0), (c) OS-SQS image x(34), (d) OS-
QSQS image x(32) and (e) OS-QSQS-R image x(26) for 41 ordered subsets.
The NRMSD for (c), (d) and (e) are -40 [dB]. 60

4.16 NRMSD [dB] versus iterations of OS-SQS, OS-QSQS and OS-QSQS-R for
1, 12 and 41 ordered subsets . 61

5.1 Simulation data: convergence rate of OS algorithms (12, 24, 48 subsets) for
30 iterations with and without momentum for (a) sequential order and (b)
bit-reversal order in Table 5.4. (The first iteration counts the precomputa-
tion of the denominator D in (2.19), and thus there are no changes during
the first iteration.) . 71

5.2 Simulation data: a transaxial plane of (a) an initial FBP image x(0), (b) a
converged image x̂, and two reconstructed images x(15) after 20 normalized
run time (15 iterations) of (c) OSb(24) and (d) OSb(24)-mom2. (Images are
cropped for better visualization.) . 73

5.3 Simulation data: convergence rate for various choices of the parameter λ
in relaxation scheme of OS-momentum algorithms (c, ζ, λ) for (a) 12, (b)
24, (c) 48 subsets with both sequential (OSs) and bit-reversal (OSb) subset
orderings in Table 5.4 for 30 iterations. (The plot (b) and (c) share the legend
of (a).) The averaged plot of five realizations of random subset ordering
(OSr) is illustrated in (d) for 24 subsets. 75

5.4 Shoulder region scan data: convergence rate of OSb methods (24, 48 subsets)
for 30 iterations with and without momentum for (a) several choices of (c, ζ,
λ) with a fixed c(k) = c = 1.5 and (b) the choices of (λ, η) for an increasing
c(k) in (5.12) with 24 subsets and ζ = 30 [HU]. 76

5.5 Shoulder region scan data: a sagittal plane of (a) an initial FBP image
x(0), (b) a converged image x̂, and two reconstructed images x(15) after 20
normalized run time (15 iterations) from (c) OSb(24) and (d) OSb(24)-mom3
where (c, ζ, λ) = (1.5, 30, 0.01). 77

5.6 Abdominal region scan: a transaxial plane of (a) an initial FBP image x(0),
(b) a converged image x̂, and (c) an image x(15) after 20 normalized run time
(15 iterations) of OSb(24)-mom3 where (c, ζ, λ) = (1.5, 30, 0.01). (Images
are cropped for better visualization.) . 78

5.7 Abdominal region scan: convergence rate of OSb methods (24, 48 subsets)
for 30 iterations with and without momentum for several choices of (c, ζ, λ)
with (a) the choice ζū(≈ û) in (5.19) with ζ = 30 [HU] and (b) the oracle
choice û (5.14) for 48 subsets. 79

6.1 Plots of RMSD [HU] versus (a) iteration and (b) run time (sec) for OS
methods using 1 and 12 subsets with and without momentum techniques.
Each iteration of OS methods with 12 subsets performs 12 sub-iterations.
(GD is an abbreviation for gradient descent methods, also known as gradient
methods (GM).) . 106

6.2 2D XCAT simulation: (a) an initial FBP image x(0), (b) a converged image
x̂, and (c) a reconstructed image x(5) from 5 iterations of the proposed OGM
algorithm using 12 subsets. 107

viii

6.3 Plots of RMSD [HU] versus iteration for OS methods using 1 and 12 subsets
with and without momentum techniques such as FGM and OGM. Each
iteration of OS methods with 12 subsets performs 12 sub-iterations. 108

7.1 Axial cone-beam flat-detector CT geometry [70] 110
7.2 Axial footprint overlap. 110
7.3 Coupling between (colored) voxels within a group in (a) GCD [41] (b) B-

ICD [12] and (c) ABCD algorithms. Middle gray denotes the voxels that are
coupled with a reference (black) voxel. The ratio of mid-gray voxels within a
group illustrates the amount coupling within a group. GCD and B-ICD have
dense Hessian matrix, while Hessian matrix in ABCD is banded. (Hessian
matrix in GCD is small-eigenvalued compared with that in B-ICD.) 113

7.4 Phantom, FDK reconstructed image and reconstructed images by five dif-
ferent algorithms after 15 iterations . 116

7.5 Cost function Ψ(x(n)) versus iteration n for five algorithms 116

ix

LIST OF TABLES

Table

2.1 OT methods using the Lipschitz constant L 14
2.2 SQS methods . 16
2.3 OS-SQS methods . 16
2.4 Nesterov’s momentum method (1983) in [79] 17
2.5 Nesterov’s momentum method (2005) in [83] 18
3.1 GE performance phantom: Noise, resolution and RMSD behavior of OS-

SQS(328 subsets) after 20 iterations followed by averaging. 24
4.1 Run time of one iteration of NU-OS-SQS(82 subsets) for different choice of

nloop for GE performance phantom. 36
4.2 Outline of the proposed NU-OS-SQS algorithm (cont’d). 37
4.2 Outline of the proposed NU-OS-SQS algorithm. 38
4.3 Pseudo code of QSQS algorithm with reordering of x in horizontal and verti-

cal direction. (Each subscript h and v denote horizontal and vertical direction.) 59
5.1 Proposed OS-SQS methods with momentum in [79] (OS-mom1) 63
5.2 Proposed OS-SQS methods with momentum in [83] (OS-mom2), The nota-

tion (l)M denotes l modM . 64
5.3 Proposed stochastic OS-SQS algorithms with momentum (OS-mom3). ξk is

a realization of a random variable Sk. 66
5.4 Examples of subset orderings: Two deterministic subset ordering (OSs,

OSb) and one instance of random ordering (OSr) for OS methods with
M = 8 subsets in a simple geometry with 24 projection views denoted
as (p0, p1, · · · , p23), where those are reasonably grouped into the following 8
subsets: S0 = (p0, p8, p16), S1 = (p1, p9, p17), · · · , S7 = (p7, p15, p23). 72

x

LIST OF APPENDICES

Appendix

A. Proof of Lemma 2 . 121

B. Proof of Lemma 4 . 123

C. Choice of coefficients tk . 125

D. Proof of Lemma 6 . 127

E. Proof of Lemma 7 . 130

xi

LIST OF ABBREVIATIONS

ABCD Axial block coordinate descent

BCD Block coordinate descent

BI Bounded interval

CD Coordinate descent

CG Conjugate gradient

CT Computed tomography

DD Distance-driven

DRA Dynamic range adjustment

EM Expectation maximization

FBP Filtered back-projection

FDK Feldkamp-Davis-Kress reconstruction

FGM Fast gradient methods

FO First-order methods

FWHM Full-width half-maximum

GCD Grouped coordinate descent

GD Gradient descent

GE General Electric

GEPP GE performance phantom

GM Gradient method

HBM Heavy-ball method

xii

ICD Iterative coordinate descent

IOT Incremental optimization transfer

NH Non-homogeneous

NRMSD Normalized root-mean squared difference

NU Non-uniform

OGM Optimized gradient methods

OS Ordered subsets

OT Optimization transfer

PCG Preconditioned conjugated gradient

PEP Performance estimation problem

PET Positron emission tomography

PL Penalized likelihood

PWLS Penalized weighted least squares

QS Quadratic surrogates

QSQS Quasi-separable quadratic surrogates

RAM Random access memory

RMSD Root-mean squared difference

ROI Region-of-interest

SDP Semidefinite programming

SF Separable footprint

SPECT Single-photon emission computed tomography

SQS Separable quadratic surrogates

SS Separable surrogates

VS Variable-splitting

xiii

ABSTRACT

ACCELERATED OPTIMIZATION ALGORITHMS FOR STATISTICAL 3D X-RAY
COMPUTED TOMOGRAPHY IMAGE RECONSTRUCTION

by

Donghwan Kim

Chair: Jeffrey A. Fessler

X-ray computed tomography (CT) has been widely celebrated for its ability to visualize

the anatomical information of patients, but has been criticized for high radiation exposure.

Statistical image reconstruction algorithms in X-ray CT can provide improved image quality

for reduced dose levels in contrast to the conventional reconstruction methods like filtered

back-projection (FBP). However, the statistical approach requires substantial computation

time, more than half an hour for commercial 3D X-ray CT products. Therefore, this disser-

tation focuses on developing iterative algorithms for statistical reconstruction that converge

within fewer iterations and that are amenable to massive parallelization in modern multi-

processor implementations.

Ordered subsets (OS) methods have been used widely in tomography problems, because

they reduce the computational cost by using only a subset of the measurement data per

iteration. This dissertation first improves OS methods so that they better handle 3D helical

cone-beam CT geometries. OS methods have been used in commercial positron emission

tomography (PET) and single-photon emission CT (SPECT) since 1997. However, they

require too long a reconstruction time in X-ray CT to be used routinely for every clinical

CT scan. In this dissertation, two main approaches are proposed for accelerating OS algo-

rithms, one that uses new optimization transfer approaches and one that combines OS with

momentum algorithms.

First, the separable quadratic surrogates (SQS) methods, a widely used optimization

transfer method with OS methods yielding simple, efficient and massively parallelizable OS-

SQS methods, have been accelerated in three different ways; a nonuniform SQS (NU-SQS),

xiv

a SQS with bounded interval (SQS-BI), and a quasi-separable quadratic surrogates (QSQS)

method. Among them, a new NU-SQS method that encourages larger step sizes for the

voxels that are expected to change more between the current and the final image has highly

accelerated the convergence, while the derivation guarantees monotonic descent.

Next, we combined OS methods with momentum approaches that cleverly reuse previous

updates with almost negligible increased computation. Using momentum approaches such

as well-known Nesterov’s methods were found to be not fast enough for 3D X-ray CT recon-

struction, but the proposed combination of OS methods and momentum approaches (OS-

momentum) resulted in very fast convergence rates. OS-momentum algorithms sometimes

suffered from instability, we adapted relaxed momentum schemes. This refinement improves

stability without losing the fast rate of OS-momentum. To further accelerate OS-momentum

algorithms, this dissertation proposes new momentum methods, called optimized gradient

methods, which are twice as fast yet have remarkably simple implementations comparable

to Nesterov’s methods.

Finally, in addition to OS-type algorithms, one variant of the block coordinate descent

(BCD) algorithm, called axial BCD (ABCD), is specifically designed for 3D cone-beam CT

geometry. The chosen axial block of voxels in 3D CT geometry for the BCD algorithm

enables both accelerated convergence and efficient computation, particularly when designed

hand-in-hand with separable footprint (SF) projector.

Overall, this dissertation proposes several promising accelerated iterative algorithms for

3D X-ray CT image reconstruction. Their performance are investigated on simulated and

real patient 3D CT scans.

xv

CHAPTER I

Introduction

X-ray computed tomography (CT) has been widely celebrated for its ability to visualize

the anatomical information of patients, but has been criticized for high radiation exposure

[15]. Statistical image reconstruction methods can improve resolution and reduce noise and

artifacts even for reduced dose levels [92], unlike conventional filtered back-projection (FBP)

methods, by minimizing either penalized likelihood (PL) [1, 32, 36] or penalized weighted

least-squares (PWLS) [96,102,103] cost functions that model the physics and statistics in X-

ray CT. The primary drawback of these methods is their computationally expensive iterative

algorithms. Therefore, we propose new accelerated optimization algorithms for 3D X-ray CT

statistical image reconstruction.

Over the last few decades, many iterative algorithms have been adapted and developed

for accelerated X-ray statistical image reconstruction. Coordinate descent (CD) [14, 109],

preconditioned conjugate gradient (PCG) [38, 45], expectation-maximization (EM) [25, 28]

and ordered subsets (OS) [2, 52, 89] methods have been noticeably applied in X-ray CT re-

search. However, the large scale and the shift-variance of the statistical 3D X-ray CT cost

function have limited the effectiveness of existing methods, motivating the researchers to de-

velop algorithms that are less dependent on the large and shift-variant nature of the 3D CT

system. In addition, the iterative algorithms that are favorable to modern massively paral-

lelizable computing techniques are of increasing interest [95], whereas sequentially updating

CD algorithms are more difficult to parallelize than simultaneously updating algorithms such

as PCG, EM and OS.

Recently, variable-splitting (VS) techniques [46, 75, 94], accompanied by the method-

of-multipliers framework [13], have gotten attention from the community because they can

circumvent the shift-variance of the statistical CT cost function. Initial efforts on 2D CT [94]

seemed promising, but the significant shift-variance of 3D CT system has remained a chal-

lenge [44, 73]. In addition, substantial memory requirements and parameter tuning remain

an issue in VS techniques [75, 87].

1

Considering the large measurement data of 3D CT system, OS methods that use only a

subset of the measurement data per iteration have been used widely since their first intro-

duction in 1994 [52]. OS methods can be applied to any gradient-based iterative algorithms,

such as OS-CD [68], OS-PCG [76], and OS-EM [52]. The VS-based algorithms can also

accommodate OS methods [85]. The acceleration gain from such simple OS application to

gradient-based algorithms has been found to be very impressive, and the commercial positron

emission tomography (PET) and single-photon emission CT (SPECT) products adopted OS-

EM algorithms around 1997. The first work of this thesis is modifying OS methods so that

they can handle 3D helical cone-beam CT geometry in Chapter III. However, the existing

OS methods are not fast enough to be used routinely for every clinical CT scan, and this

dissertation focuses on developing faster algorithms using OS methods.

Among many variants of OS methods, this work focuses on the version that is based on

separable quadratic surrogates (SQS) [2]. The corresponding OS-SQS methods require sim-

ple implementation and are massively parallelizable. Their convergence performance is also

less dependent on the shift-variant property of statistical CT reconstruction. Considering

these advantages, OS-SQS methods have served as a state-of-the-art approach in X-ray CT

research until recently [3,16,32,69,77,101]. However, they require further acceleration to be

used routinely for clinical CT, and this dissertation proposes two main approaches for ac-

celerating OS-SQS algorithms, one that uses novel optimization transfer (OT) techniques in

Chapter IV, and one that combines with momentum methods such as well-known Nesterov’s

momentum methods [79,83] and their relaxed version [29], called OS-momentum algorithms,

in Chapter V. To further accelerate OS-momentum, this thesis proposes new momentum

methods in Chapter VI, called optimized gradient methods, which are twice as fast yet have

remarkably simple implementations comparable to Nesterov’s methods. The specific con-

tribution of each proposed approach for accelerating OS-SQS methods is discussed in next

section.

In addition to OS-based algorithms, one variant of block CD (BCD) algorithms, called

axial BCD (ABCD), is investigated in Chapter VII. Sequential CD algorithms and simulta-

neous PCG or OS-SQS algorithms have a trade-off between fast convergence rate and efficient

computation [22, 96], and the proposed ABCD in 3D X-ray CT is expected to well-balance

between two aspects. The specific contribution of this ABCD algorithm is discussed in next

section.

This dissertation is organized as follows. Chapter II reviews X-ray CT physics, statis-

tical X-ray CT image reconstruction, and optimization algorithms. Chapter III presents

the OS methods and improves them for 3D helical cone-beam X-ray CT. Chapter IV pro-

poses accelerated optimization transfer techniques that are combined with the OS methods.

2

Chapter V suggests combining the OS and (relaxed) momentum techniques like Nesterov’s

momentum. Chapter VI presents new momentum techniques that are twice faster than Nes-

terov’s momentum. Chapter VII shows the ABCD method which is specifically designed for

3D cone-beam X-ray CT. Chapter VIII offers conclusion and future work.

1.1 Contribution

This section describes the specific contributions of this dissertation, namely developing

fast iterative algorithms for statistical 3D X-ray CT reconstruction.

In 3D helical CT geometries, we observed that conventional OS algorithms for PL and

PWLS problems are unstable for large subset numbers as they did not consider their nonuni-

form sampling. Thus, Chapter III describes an improved OS algorithm that takes account of

the nonuniform sampling and is more stable for helical CT. In addition, OS methods typically

approach a limit-cycle looping around the optimum of the cost function, and Chapter III

suggests a simple approach that averages sub-iterations at the last iteration to improve con-

vergence, when the algorithm reaches a limit-cycle. This work was initially presented in [61]

and then included as a part of [62].

The SQS method is an optimization transfer (OT) method that replaces the original

cost function by a simple surrogate function [53, 67] with a monotonic descent property.

We usually combine this SQS with the OS method yielding OS-SQS method, because it is

simple, efficient and massively parallelizable. However, the OS-SQS method itself is not fast

enough, and thus Chapter IV proposes three novel approaches that accelerate SQS method

without losing the monotonicity. First, we construct surrogates with spatially nonuniform

curvatures that provide spatially nonuniform step sizes to accelerate convergence, which is

effective because the difference between the initial and final images are spatially nonuniform

as discussed in [109]. In other words, the proposed spatially nonuniform (NU) SQS method

encourages larger updates for voxels that are predicted to be farther from the optimal value.

Section 4.2.1 provides a theoretical justification for the acceleration of NU method by an-

alyzing the convergence rate of the SQS algorithm. Second, Chapter IV suggests a SQS

method with bounded intervals (SQS-BI) that designs a surrogate function defined within a

bounded interval that is known to include the minimizer of the cost function, which leads to a

reduced surrogate curvature, inspired by [109]. Chapter IV further proposes quasi-separable

quadratic surrogate (QSQS) methods that construct a surrogate with a tridiagonal Hessian

rather than a diagonal Hessian for the original SQS. This approach provides a good trade-off

between the convergence rate and computation time per iteration. The NU-SQS work was

initially introduced in [57] and led to a main part of [62]. The SQS-BI work was discussed

3

in [56].

Momentum approaches such as a heavy-ball method [93] and Nesterov’s methods [79,83]

have received wide attention in the optimization community for cleverly reusing the previous

updates for acceleration without any computational overhead. Particularly, Nesterov’s meth-

ods have been applied to X-ray CT [7, 19, 55] with promising results, but we observed that

these algorithms do not show significant improvement in 3D X-ray CT, due to the large Lip-

schitz constant of its CT cost function (as discussed in [94]). Therefore, Chapter V proposes

combining OS methods and Nesterov’s momentum approaches, named as OS-momentum al-

gorithms, that provide very fast initial acceleration. However, we experienced some unstable

behavior of the proposed OS-momentum algorithms. To stabilize the proposed methods,

Chapter V adapted a relaxation scheme that is developed for stochastic gradient methods

with momentum in [29]. We investigated various choices of relaxation scheme to achieve

both fast initial acceleration and stability. The initial work combining OS and momentum

was discussed in [63,64] and the additional relaxation was introduced in [58]. All these works

were gathered and further investigated in [65].

To further accelerate OS-momentum algorithms, Chapter VI develops new momentum

methods, called optimized gradient methods, which are twice as fast yet have remarkably sim-

ple implementations comparable to Nesterov’s momentum methods. This new momentum

approach has been initially studied by Drori and Teboulle [31], numerically showing that the

certain first-order algorithms provide twice faster convergence rate than the state-of-the-art

Nesterov’s methods. However, the corresponding algorithm in [31] remained computationally

undesirable and relied only on numerical analysis. The main contribution of Chapter VI is

making the Drori and Teboulle’s work practical implementation-wise and analytically show-

ing that new proposed algorithms are twice as fast as Nesterov’s methods. This work was

introduced in [59], and its OS version has been investigated in [60].

Finally, Chapter VII suggests an ABCD algorithm that is specifically designed for 3D

cone-beam X-ray CT geometries. This uses an axial block in a general BCD framework

[49, 54], leading to both a fast convergence rate and an efficient implementation along with

a separable footprint (SF) projector [70]. In BCD algorithms of X-ray CT, the coupling

between voxels within the block becomes an issue considering the convergence rate and

efficient implementation. Block iterative CD (B-ICD) [12] and group coordinate descent

(GCD) [41] methods have been previously proposed in 2D CT problems considering the

coupling effects. The ABCD algorithm can be viewed as an extension of them that leads

to less coupling between voxels regarding the 3D CT geometry, and this is expected to

provide an accelerated convergence rate comparable to ICD [96, 109] updating one voxel at

a time, while the ABCD having more parallelization opportunity from updating a block of

4

voxels simultaneously. The ABCD algorithm works hand-in-hand with SF projector, and

we provide a way to efficiently implement the ABCD algorithm. This ABCD approach was

presented in [42].

5

CHAPTER II

Background

This chapter provides a background of X-ray CT image reconstruction and its statistical

approach. Then, optimization methods for statistical X-ray CT reconstruction are discussed.

2.1 Background of X-ray CT image reconstruction

2.1.1 X-ray CT physics

X-ray CT images a distribution of X-ray attenuation coefficients µ(~r) of an object, where

~r represents the spatial location. An X-ray CT system basically consists of a source and a

detector array rotating around the patient (see Fig. 2.1). A patient is scanned along several

different projection views. A “projection” here refers to a process of emitting X-ray photons

from a source through the patient and recording the intensity of those photons that pass

through the object.

Each projection can be viewed as a ray of X-ray photons for each pair of projection views

and detector elements, where i is the index for each ray and Nd is the total number of rays.

The following is Beer’s law for the mono-energetic1 X-ray CT projection process:

Ȳi = bi exp

(

−
∫

Li

µ(~r)dl

)

+ ri, for i = 1, · · · , Nd, (2.1)

where Ȳi is mean detected intensity, bi is initial intensity of a beam, ri is room background

and mean scatter, and Li is a line path of the ray through the object. Based on the Beer’s

law (2.1), the measured Ȳi has the information of total attenuation encountered by the ith

ray, i.e., the line integral of µ(~r) along the path Li. In practice, we observe the noisy

measured intensity Yi of a beam, rather than the mean Ȳi of the beam.

1 In this thesis, we focus on the case where this (mono-energetic) Beer’s law (2.1) holds by assuming
that the measured data has been precorrected for the effects from a poly-energetic X-ray source and beam
hardening [32].

6

x

y

z

Figure 2.1: Schematic diagram of a X-ray CT scanner [100].

One X-ray CT scan provides Nd line integral values of µ(~r) for each ray (see Fig. 2.2),

which are equivalent to the following post-log data ȳi of mean measurement Ȳi:

ȳi , log

(

bi
Ȳi − ri

)

=

∫

Li

µ(~r)dl, for i = 1, · · · , Nd. (2.2)

Note that the noisy measured projection data y is available in practice rather than the mean

projection data ȳ. The measured projection data y (or Y) is called a sinogram, and an

example of sinogram data for 2D X-ray CT is shown in Fig. 2.3(b) with the orientation of

projection views and detector elements.

Projectio
n

Object

yi

Li

µ(r)

Figure 2.2: The measurement yi is acquired by forward projecting µ(~r) along a line path Li.

7

PHANTOM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

NOISY SINOGRAM

detector elements

p
ro

je
c
ti
o

n
 v

ie
w

s

0

1

2

3

4

5

6

7

8

9

(b)

FBP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c)

Figure 2.3: Simulation of forward projection and FBP: (a) Phantom image, (b) noisy sino-
gram and (c) FBP image.

Since the scanning process of CT provides forward projected measurements, one might

think that a simple back-projection of the data may reconstruct an image of the patient’s

body. However, a back-projection blurs the image with a point spread function 1
||~r|| . To

overcome this blur, an (apodized) ramp filter is introduced to prefilter the sinogram. Then

the filtered back-projection (FBP) algorithm reconstructs an image by back-projecting such

filtered sinogram [34]. Fig. 2.3 illustrates the sinogram and the FBP reconstructed image

for a simple phantom image.

2.1.2 Object parametrization

To process the reconstruction on a computer, it is necessary to discretize a continuous

object µ(~r) by a linear series expansion. We parametrize the object using a basis function

pj(~r) at each jth location as follows:

µ(~r) ≈
Np
∑

j=1

xjpj(~r), (2.3)

where xj represents the coefficients of an object µ(~r) in a discrete domain with the corre-

sponding basis function. Here, the choice of basis function affects the image quality and the

complexity of computation. Two popular choices of basis functions are voxels and blobs.

Voxels are easy to compute since they are rectangular-shaped, but have a disadvantage that

the voxels have a large side-lobe in the frequency domain, which may amplify errors of high

frequency information of an object. On the other hand, smooth blobs are band-limited in

the frequency domain, but computationally more complicated due to a larger footprint in

8

the projection domain. For the numerical results in this thesis, voxels are used as a basis

function for their simplicity, but the proposed algorithms are applicable for any choice of

basis functions.

The object parametrization (2.3) leads to a following discretization of a forward projection

in (2.2) as:

yi =

∫

Li

µ(~r)dl ≈
∫

Li

Np
∑

j=1

xjpj(~r)dl =

Np
∑

j=1

xj

∫

Li

pj(~r)dl =

Np
∑

j=1

aijxj , [Ax]i, (2.4)

where the footprint aij ,
∫

Li
pj(~r)dl, depends on the model of a basis function pj(~r) and

a ray Li. The matrix A is called X-ray CT system matrix, or simply system matrix or

projector.

The size of the system matrix A is large in 3D CT geometry, and thus it is impractical to

store it in fast random access memory (RAM), even if we exploit the sparse structure of A.

One typical size of A in 3D helical CT scan is Np×Nd ≈ (2 · 108)× (3 · 107) ≈ 6 · 1015, where
the size of image x is Np = 512×512×109 and that of measurement y is Nd = 888×32×7146

(the number of detector columns × detector rows × projection views). Considering that each

ray intersects about two times the number of voxels of an axis along the transaxial plane,

the sparsity of A can be approximated as
∑Np

j=1 I{aij>0}

Np
≈ 2×512

512×512×109
≈ 4 · 10−5. However,

even with this high sparse nature of A, the memory requirement for storing A remains large,

about 4 · 10−5 × 6 · 1015 × 4 Byte= 960 GByte for single-precision floating point. Instead of

storing A, the matrix-vector multiplications Ax and A′y, called forward and back projection

operations, are computed on the fly, which are the computational bottleneck of 3D X-ray CT.

We discuss the details of efficient computation of projection operations for 3D cone-beam

X-ray CT in Section 7.1.2.

2.2 Statistical image reconstruction

For low-dose scans, a conventional FBP reconstruction cannot construct a decent image

due to increased noise (see Fig. 2.3(c)). Therefore, we use statistical modeling for improved

image reconstruction.

2.2.1 Statistical modeling of X-ray CT scan

Several statistical models have been proposed for X-ray CT. The two simple noise models

mostly used in practice are explained here. The pre-log observation data is often modeled

9

by a Poisson model of a discretized version of (2.1) [3]:

Yi ∼ Poisson
{

Ȳi
}

= Poisson
{

bi e
−[Ax]i + ri

}

, for i = 1, . . . , Nd, (2.5)

where bi and ri are known nonnegative constants.

The post-log observation data yi = log(bi/(Yi − ri)) in (2.2) is often modeled by a linear

additive Gaussian noise model, which comes from quadratically approximating the negative

likelihood of (2.5) [35]:

yi = ȳi + ǫi = [Ax]i + ǫi, ǫi ∼ N (0, σ2
i), for i = 1, . . . , Nd, (2.6)

where the noise variance is σ2
i = Ȳi

(Ȳi−ri)2
.

2.2.2 Statistical X-ray CT image reconstruction

Based on the previous section, we reconstruct a nonnegative image x = (x1, . . . , xNp) ∈
R

Np

+ from noisy measured transmission data Y ∈ R
Nd by minimizing either penalized likeli-

hood (PL) [1,32,36] or penalized weighted least-squares (PWLS) [96,102,103] cost functions:

x̂ = argmin
x�0

Ψ(x), (2.7)

Ψ(x) , L(x) +R(x) =

Nd
∑

i=1

hi([Ax]i) +
Nr
∑

k=1

ψk([Cx]k), (2.8)

where x̂ is a minimizer of Ψ(x) subject to a nonnegativity constraint. The function L(x) is a

negative log-likelihood term (data-fit term) and R(x) is a regularizer. The matrix A , {aij}
is a projection operator (aij ≥ 0 for all i, j) where [Ax]i ,

∑Np

j=1 aijxj, and C , {ckj}
is a finite differencing matrix considering 26 neighboring voxels in 3D image space.2 The

function hi(t) is selected based on the chosen statistics and physics:

• PL for pre-log data Yi with Poisson model [1, 32, 36] in (2.5) uses:

hi(t) = (bie
−t + ri)− Yi log

(

bie
−t + ri

)

, (2.9)

where bi is the blank scan factor and ri is the mean number of background events. The

function hi(·) is nonconvex if ri 6= 0 or convex otherwise. A shifted Poisson model [107]

that partially accounts for electronic recorded noise can be used instead.

2 Each row of C consists of a permutation of (1,−1, 0, . . . , 0) ∈ R
Np where the indices of the nonzero

entries 1 and −1 corresponds to adjacent voxel locations in 3D image space.

10

• PWLS for post-log data yi = log (bi/(Yi − ri)) with Gaussian model [96, 102, 103]

in (2.6) uses a convex quadratic function:

hi(t) =
1

2
wi(t− yi)

2, (2.10)

where wi = (Yi − ri)
2/Yi provides statistical weighting. Then L(x) =

1
2
||y −Ax||2W for

PWLS with a diagonal matrix W = diag{wi}.

The function ψk(t) is a (convex and typically nonquadratic) edge-preserving potential func-

tion:

ψk([Cx]k) , βkψ([Cx]k), (2.11)

where spatial weighting βk balances between the data-fit term and regularizer, and it can

be designed to provide uniform resolution properties [43]. The function ψ(t) can be chosen

from many options, including the following:

• Hyperbola potential function [17]:

ψ(t) =
δ2

3

(

√

1 + 3(t/δ)2 − 1
)

, (2.12)

• Generalized Fair potential function3 [33]:

ψ(t) =
δ2

b3

(

ab2

2

∣

∣

∣

∣

t

δ

∣

∣

∣

∣

2

+ b(b− a)

∣

∣

∣

∣

t

δ

∣

∣

∣

∣

+ (a− b) log

(

1 + b

∣

∣

∣

∣

t

δ

∣

∣

∣

∣

)

)

. (2.13)

These nonquadratic cost functions Ψ(x) cannot be minimized analytically, and require many

iterations of optimization algorithms to minimize the cost function. This process demands

long computation time in X-ray CT, and thus our main goal is to develop optimization

algorithms that provide fast convergence rate in X-ray CT image reconstruction with com-

putational efficiency.

2.3 Optimization algorithms

This section discusses optimization algorithms that have been found useful for minimizing

the X-ray CT cost function (2.8) efficiently and rapidly, and reviews specific algorithms such

3 The potential function (2.13) is a generalized version of Fair potential function in [33], and the equa-
tion (2.13) reduces to the original when a = 0 and b = 1.

11

as optimization transfer (OT) techniques [53,67], SQS methods [2], OS methods [2,52], and

momentum approaches [79, 83] that are used and extended in this dissertation.

2.3.1 Optimization algorithms in X-ray CT problem

Many iterative algorithms have been applied and developed for statistical X-ray CT prob-

lems. However, none of them can optimize the large and shift-variant statistical 3D X-ray

CT cost function within short computation time. Iterative algorithms that can circumvent

those two difficulties of the X-ray CT problem are likely to be effective in accelerating statis-

tical X-ray CT reconstruction. In addition, considering the modern parallelizable computing

resources, algorithms that are amenable to massive parallelization are preferable. Here we

point out some optimization algorithms that have been extensively developed and used in

X-ray CT research such as CD, PCG, OS-SQS, VS and momentum methods.

CD algorithms [109] (also known as Gauss-Siedel algorithms [47, p. 507]) and BCD

algorithms [12, 41], update one or a group of voxels sequentially. These can converge (to

within some tolerance) in few iterations but can require long computation times per iteration

[22, 96]. Considering modern computing architectures, algorithms that update all voxels

simultaneously and that are amenable to parallelization are desirable, such as OS-SQS [2]

and PCG algorithms [38,45]. (Similarly, BCD may have more opportunity for parallelization

than CD algorithms that sequentially update one voxel at a time.) However, those highly

parallelizable algorithms require more iterations than CD algorithms [22, 96], and thus it is

desirable to reduce the number of iterations needed to reach acceptable images, which is the

main goal of this dissertation.

The parallelizable PCG algorithms [38] are widely used in general optimization algorithms

(and X-ray CT problems), but the the shift-variance of the statistical 3D cost function makes

it difficult to find an efficient and shift-invariant preconditioner that approximates a shift-

variant Hessian of the cost function well. (Here the accuracy of the approximation of the

Hessian is the key to the acceleration.) Recently, VS techniques [46, 75, 94] accompanied by

the method-of-multipliers framework [13] have been introduced, dividing the problem into

easier sub-problems relieving the shift-variant nature of the statistical CT problems. Even

though the initial work on 2D CT [94] looked promising, the significant shift-variance of the

3D CT system made the VS approaches less effective [44, 73]. (VS approach was initially

proposed along with PCG algorithms [75, 94], but recent works [74, 86] use other methods

such as OT or duality approach to circumvent the shift-variant nature.) In addition, their

increased memory in 3D CT and parameter tuning remain a problem. (A reduced memory

version [75] is available but provides slow convergence.)

Highly parallelizable OS-SQS methods [2] are less dependent on both large-scale and

12

shift-variance of the cost function, and thus we focus on further accelerating these in this

dissertation. OS methods [52] use only a subset of the measurement data per iteration for

computational efficiency, and have been used widely in tomography problems. OS methods

are usually combined with the SQS methods [2] because those are simple, efficient, and

massively parallelizable. We provide more details in next Sections 2.3.2.2 and 2.3.3.

Momentum techniques [10, 79, 81, 83] that use previous update directions as momentum

towards the optimum for acceleration with minimal computational overhead become popular

in optimization community. These have been applied to X-ray CT [7,19,55], but we observed

that the algorithms are not fast enough in 3D X-ray CT problem (as discussed in [94]), which

we further accelerate by combining with OS methods in Chapter V. The details of momentum

techniques are reviewed in Section 2.3.4.

2.3.2 Optimization transfer methods

The previous section discussed couple of optimization algorithms that are widely used

or recently introduced in X-ray CT reconstruction. Here, we review a useful optimization

transfer (OT) framework [53,67] that is widely applied in X-ray CT optimization algorithms.

In general, any optimization algorithm has to determine a step size for the updating descent

direction such as a negative gradient at each iteration. Exactly (or almost exactly) searching

the optimal step size along the descent direction is expensive for a nonquadratic and large-

scale X-ray CT cost function (2.8). Alternatively, we usually adapt an OT method that

replaces a complicated cost function by a surrogate function at every iteration that is easier

to minimize. This may not provide the optimal step size for a given updating descent

direction, but improves computational efficiency while somewhat preserving the convergence

rate.

In other words, when a cost function Ψ(x) is difficult to minimize, an OT method replaces

Ψ(x) with a surrogate function φ(n)(x) at the nth iteration for computational efficiency. This

is also known as a majorization-minimization principle [91], and a comparison function [51].

OT methods include well-known expectation maximization (EM) algorithms [23,28], separa-

ble surrogate (SS) algorithms based on De Pierro’s lemma [24,25,66] and surrogate algorithms

using Lipschitz constants [10, 20].

The basic iteration of OT is

x(n+1) = argmin
x�0

φ(n)(x). (2.14)

To monotonically decrease Ψ(x), we design surrogate functions φ(n)(x) that satisfy the fol-

13

lowing majorization conditions:

Ψ(x(n)) = φ(n)(x(n)), Ψ(x) ≤ φ(n)(x), ∀ x ∈ R
Np

+ . (2.15)

Constructing surrogates with smaller curvatures while satisfying condition (2.15) is the key

to faster convergence in the OT methods [41]; Chapter IV investigates different ways to

construct a surrogate that leads to both fast convergence rate and efficient computation.

The OT method has been used widely in tomography problems. De Pierro developed a

SS approach in emission tomography [24,25]. Quadratic surrogate (QS) functions have been

derived for nonquadratic problems, enabling monotonic descent [1]. SQS algorithms combine

SS and QS [2] and are the focus of Chapter IV. Partitioned SQS methods for multi-core

processors have been proposed for separating the image domain by the number of processors

and updating each of them separately while preserving monotonicity [99].

We use this OT method implicitly and explicitly for the efficient implementation for all

optimization algorithms used in this dissertation. We propose accelerating iterative algo-

rithms in Chapter IV that extend SQS algorithms and converge faster than the standard

SQS. The next two sections show two examples of OT methods.

2.3.2.1 Optimization transfer using the Lipschitz constant

The cost function Ψ(x) that is continuously differentiable with Lipschitz constant L, i.e.,

||∇Ψ(x)−∇Ψ(z)|| ≤ L||x− z||, ∀x, z ∈ R
Np

+

can be majorized at the nth iteration as:

Ψ(x) ≤ φ
(n)
L (x) , Ψ(x(n)) +∇Ψ(x(n))′(x− x(n)) +

L
2
||x− x(n)||2, ∀x ∈ R

Np

+ , (2.16)

which satisfies (2.15). This construction leads to the following algorithm in Table 2.1, where

the notation [·]+ enforces a nonnegativity constraint.

1: Initialize x(0).

2: for n = 0, 1, · · · , N − 1

3: x(n+1) = argminx�0 φ
(n)
L (x) =

[

x(n) − 1
L∇Ψ(x(n))

]

+

4: end

Table 2.1: OT methods using the Lipschitz constant L

Table 2.1 is simple and provides monotonic descent updates with the following conver-

14

gence rate [10]:

Ψ(x(n))−Ψ(x̂) ≤ L||x(0) − x̂||2
2n

. (2.17)

Note that the above “global” convergence rate inequality holds for all iterations (n), unlike

the root-convergence factor [91] (in Section 4.2.1) that quantifies the “asymptotic” conver-

gence behavior. Considering that we are interested in developing iterative algorithms that

provide fast initial convergence rate rather than fast asymptotic rate, we focus on studying

the “global” convergence behavior like (2.17) throughout this dissertation.

In 3D X-ray CT, computing the (smallest) Lipschitz constant L is expensive, so the

efficient SQS methods described next are usually preferred instead.

2.3.2.2 Separable quadratic surrogates methods

SQS methods [2] construct the following surrogate function with a diagonal Hessian

matrix D(n) at the nth iteration:

Ψ(x) ≤ φ
(n)
SQS(x) , Ψ(x(n)) +∇Ψ(x(n))′(x− x(n)) +

1

2
||x− x(n)||2D(n) , ∀x ∈ R

Np

+ , (2.18)

which satisfies (2.15). In PWLS reconstruction, for example, the standard SQS algorithm [2]

uses the following (precomputed) diagonal majorizing matrix:

D , diag
{

A′WA1+ |C|′ diag
{

ψ̈k(0)
}

|C|1
}

(2.19)

using the maximum curvature ψ̈k(0) = maxt ψ̈k(t) [1], where W = diag{wi} ∈ R
Nd×Nd
+

and |C| , {|ckj|} ∈ R
Nr×Np

+ , and the vector 1 ∈ R
Np consists of Np ones. The detailed

derivation of D in (2.19) and its extension using an iteration-dependent D(n) for acceleration

are discussed in Chapter IV.

Table 2.2 gives the outline of the computationally efficient (and massively paralleliz-

able) SQS algorithm using the precomputed diagonal D, where the operation [·]+ enforces a

nonnegativity constraint by a (simple) element-wise clipping that replaces negative element

values to zero. The convergence rate of the SQS methods (that extends (2.17)) and its

acceleration are discussed in Chapter IV.

Both OT methods using Lipschitz constant and SQS methods in Tables 2.1 and 2.2 are

preferable implementation-wise, since they only require either 1
L or D−1 simple operation

per iteration, in addition to the gradient computation ∇Ψ(x). However, none of them lead

to fast convergence due to large L (or D(n)) in (2.17). Therefore, these are usually combined

with OS methods in tomography problems for accelerated (initial) convergence rates, which

we review in next section.

15

1: Initialize x(0) and compute D.

2: for n = 0, 1, · · · , N − 1

3: x(n+1) = argminx�0 φ
(n)
SQS(x) =

[

x(n) −D−1∇Ψ(x(n))
]

+

4: end

Table 2.2: SQS methods

2.3.3 Ordered subsets methods

X-ray CT iterative reconstruction requires both forward and back projection operations

Ax and A′y on the fly [21, 70] due to their large-scale in 3D, and thus computation of the

gradient ∇Ψ(x) requiring two projections is very expensive. OS methods [52] accelerate

gradient-based algorithms by grouping the projection views into M subsets (approximately

evenly) and using only the subset of measured data to approximate the exact gradient of the

cost function.

In PWLS reconstruction, for example, OS methods define the subset-based cost function:

Ψm(x) ,
1

2
||ym − Amx||2Wm

+
1

M
R(x) (2.20)

for m = 0, 1, · · · ,M − 1, where Ψ(x) =
∑M−1

m=0 Ψm(x) and the matrices ym, Am, Wm are

sub-matrices of y, A, W = diag{wi} for the mth subset, and rely on the following “subset

balance” approximation [2, 52]:

∇Ψ(x) ≈M∇Ψ0(x) ≈ · · · ≈M∇ΨM−1(x). (2.21)

Using (2.21), OS methods provide initial acceleration of about the factor of the number of

subsets M by replacing ∇Ψ(x) in Table 2.2 into M∇Ψm(x). Table 2.3 shows the OS version

of the SQS method in Table 2.2.

1: Initialize x(0) and compute D.

2: for n = 0, 1, · · · , N − 1

3: for m = 0, 1, · · · ,M − 1

4: k = nM +m

5: x(
k+1
M

) =
[

x(
k
M

) −D−1M∇Ψm(x
(k
M

))
]

+

6: end

7: end

Table 2.3: OS-SQS methods

16

We count one iteration after all M sub-iterations are performed considering the use

of projection operators A and A′ per iteration, and expect to have initial acceleration of

O
(

1
nM

)

. (Using large M can slow down the algorithm in run time due to the regularizer

computation [18].) OS algorithms approach a limit-cycle because the assumption (2.21)

breaks near the optimum [71]. OS algorithms can be modified to converge to the optimum

with some loss of acceleration in early iterations [4, 5].

2.3.4 Momentum methods

Momentum approaches are optimization methods that use previous updating directions

in addition to the current one to provide acceleration toward the optimum. A heavy-ball

method [93] and Nesterov’s first-order methods [79,83] are representative of the momentum

approaches, and we focus on Nesterov’s work here. Nesterov published a fast first-order

method using the difference between two previous iterates as a momentum approach for

smooth functions4 in [79], and it was extended later for nonsmooth functions in [10], which is

one of the state-of-the-art methods in image restoration [9]. In [83], Nesterov also proposed

a new formulation of momentum using all previous iterates, which he also extended for

nonsmooth functions [84].

Nesterov’s two algorithms [79, 83] have been used widely for various optimization prob-

lems. This section briefly reviews them. Both [79] and [83] use an optimization transfer

update described in Table 2.1. Then the algorithm is accelerated using previous iterates as

shown in Tables 2.4 and 2.5 [79, 83]. We use the choice of parameters suggested in [104] for

the algorithm in Table 2.5, which provides faster convergence than the original choice in [83].

1: Initialize x(0) = z(0), t0 = 1

2: for n = 0, 1, 2, · · ·
3: tn+1 =

(

1 +
√

1 + 4t2n

)

/2

4: x(n+1) =
[

z(n) − 1
L∇Ψ(z(n))

]

+

5: z(n+1) = x(n+1) + tn−1
tn+1

(x(n+1) − x(n))

6: end

Table 2.4: Nesterov’s momentum method (1983) in [79]

The sequences
{

x(n)
}

generated by both algorithms have been proven to have the follow-

4 A smooth function f(x) is continuously differentiable with Lipschitz continuous gradient L satisfying
||∇f(x)−∇f(z)|| ≤ L||x− z|| for all x, z ∈ R

Np .

17

1: Initialize x(0) = v(0) = z(0), t0 = 1

2: for n = 0, 1, 2, · · ·
3: tn+1 =

(

1 +
√

1 + 4t2n

)

/2

4: x(n+1) =
[

z(n) − 1
L∇Ψ(z(n))

]

+

5: v(n+1) =
[

z(0) − 1
L
∑n

k=0 tk∇Ψ(z(k))
]

+

6: z(n+1) =
(

1− 1
tn+1

)

x(n+1) + 1
tn+1

v(n+1)

7: end

Table 2.5: Nesterov’s momentum method (2005) in [83]

ing convergence rate [79, 83]:

Ψ(x(n))−Ψ(x̂) ≤ 2L||x(0) − x̂||2
n2

, (2.22)

if Ψ(x) is convex and has L-Lipschitz gradient. This O
(

1
n2

)

rate is promising since ordinary

optimization transfer provides only O
(

1
n

)

rate in (2.17). However, the large Lipschitz con-

stant L in CT problem causes slow convergence even with the O
(

1
n2

)

rate. In Chapter V,

we illustrate that the rate O
(

1
n2

)

plays an important role for the very fast convergence rate

of the proposed momentum methods combined with OS methods.

18

CHAPTER III

Ordered subsets for 3D cone-beam X-ray CT

This chapter describes some simple modifications of ordered subsets (OS) algorithms that

improve their effectiveness for 3D CT. We first review the OS framework that is widely used

in tomography problems for fast initial convergence rate. OS methods can accelerate algo-

rithms by the number of subsets in early iterations by using a subset of the measured data

for each subset update. OS algorithms are most effective when a properly scaled gradient of

each subset data-fit term approximates the gradient of the full data-fidelity term, and then

the algorithm can accelerate convergence by a factor of the number of subsets. However,

standard OS algorithms usually approach a limit-cycle where the sub-iterations loop around

the optimal point. OS algorithms can be modified so that they converge by introducing

relaxation [4], reducing the number of subsets, or by using incremental optimization transfer

methods [5]. Unfortunately, such methods converge more slowly than ordinary OS algo-

rithms in early iterations. Therefore, we investigated averaging the sub-iterations when the

algorithm reaches a limit-cycle, which improves image quality without slowing convergence.

(There was a preliminary simulation study of this approach in [6].)

In cone-beam CT, the user must define a region-of-interest (ROI) along the axial (z)

direction for image reconstruction (see Fig. 3.1). Model-based reconstruction methods for

cone-beam CT should estimate many voxels outside the ROI, because parts of each patient

usually lie outside the ROI yet contribute to some measurements. However, accurately

estimating non-ROI voxels is difficult since they are incompletely sampled, which is called the

“long-object problem” [26]. Reconstructing the non-ROI voxels adequately is important, as

they may impact the estimates within the ROI. Unfortunately in OS algorithms, the sampling

of these extra slices leads to very imbalanced subsets particularly for large numbers of subsets,

which can destabilize OS algorithms outside the ROI. Here we propose an improved OS

algorithm that is more stable for 3D helical CT by defining better scaling factors for the

subset-based gradient [61].

19

This work was published in a conference proceedings [61], and is included as a part of a

journal paper [62].

z

Figure 3.1: Diagram of helical CT geometry. The (red) dashed region indicates the detector
rows that measure data with contributions from voxels both within and outside the ROI.

3.1 Ordered subsets (OS) methods

Here, we focus on a simple diagonally preconditioned algorithm, the SQS method, (see

Sections 2.3.2.2 and 4.1) that generates an image sequence {x(n)} as follows:

x
(n+1)
j =

[

x
(n)
j − 1

d
(n)
j

(

∂

∂xj
L(x(n)) +

∂

∂xj
R(x(n))

)]

+

, (3.1)

where d
(n)
j can be derived using SQS method (see Section 4.1), and [·]+ enforces a nonnega-

tivity constraint. Then, an OS algorithm (with M subsets) for accelerating the update (3.1)

has the following mth sub-iteration within the nth iteration:

x
(n+m+1

M
)

j =

[

x
(n+m

M
)

j − 1

d
(n)
j

(

γ̂
(n+m

M
)

j

∂

∂xj
Lm

(

x(n+
m
M

)
)

+
∂

∂xj
R
(

x(n+
m
M

)
)

)]

+

, (3.2)

20

where γ̂
(n+m

M
)

j scales the gradient of a subset data-fit term

Lm(x) =
∑

i∈Sm

hi ([Ax]i) , (3.3)

and Sm consists of projection views in mth subset for m = 0, 1, · · · ,M − 1. We count

one iteration when all M subsets are used once, since the projection A used for computing

data-fit gradients is the dominant operation.

If we use many subsets to attempt a big acceleration in the OS algorithm, some issues

arise. The increased computation for the gradient of regularizer in (3.2) can become a

bottleneck (this can be relieved by [18]). In addition, having less measured data in each

subset will likely break the subset balance condition

∇L0(x) ≈ ∇L1(x) ≈ · · · ≈ ∇LM−1(x). (3.4)

The update in (3.2) would accelerate the SQS algorithm by exactly M if the scaling factor

γ̂
(n+m

M
)

j satisfied the condition:

γ̂
(n+m

M
)

j =

∂
∂xj
L
(

x(n+
m
M

)
)

∂
∂xj
Lm

(

x(n+
m
M

)
) . (3.5)

It would be impractical to compute this factor exactly, so the conventional OS approach

is to simply use the constant γ = M . This “approximation” often works well in the early

iterations when the subsets are suitably balanced, and for a small number of subsets. But in

general, the errors caused by the differences between γ̂
(n+m

M
)

j and a constant scaling factor γ

cause two problems in OS methods. First, the choice γ =M causes instability in OS methods

in a helical cone-beam CT that has limited projection views outside the ROI, leading to very

imbalanced subsets. Therefore, Section 3.2 proposes an alternative choice γj that better

stabilizes OS for helical CT. Second, even with γ replaced by γj, OS methods approach

a limit-cycle that loops around the optimal point within sub-iterations [4]. Section 3.3

considers a simple averaging approach that reduces this problem.

3.2 Scaling factor for 3D helical geometry

The constant scaling factor γ = M used in the ordinary regularized OS algorithm is

reasonable when all the voxels are sampled uniformly by the projection views in all the sub-

sets. But in geometries like helical CT, the voxels are nonuniformly sampled. In particular,

voxels outside the ROI are sampled by fewer projection views than voxels within the ROI

21

(see Fig. 3.1). So some subsets make no contribution to such voxels, i.e., subsets are very

imbalanced. We propose to use a voxel-based scaling factor γj that considers the nonuniform

sampling, rather than a constant factor γ.

After investigating several candidates, we focused on the following scaling factor that is

expected to count the effective number of subsets for each voxel:

γj =
M−1
∑

m=0

I{∑
i∈Sm

c̆
(n)
i aij

(

∑Np
l=1 ail

)}, (3.6)

where IB = 1 if B is true or 0 otherwise.1 As expected, γj < M for voxels outside the ROI

and γj = M for voxels within the ROI. We store (3.6) as a short integer for each voxel

outside the ROI only, so it does not require very much memory.

We evaluated the OS algorithm with the proposed scaling factors (3.6) using the GE

performance phantom (GEPP). Fig. 3.2 shows that the OS algorithm using the proposed

scaling factors (3.6) leads to more stable reconstruction than the ordinary OS approach,

which diverges outside the ROI. The instability seen with the ordinary OS approach may

also degrade image quality within the ROI as seen by the noise standard deviations in Fig. 3.2.

The results in Fig. 3.3 further show that the ordinary OS algorithm exhibits more variations

within the ROI due to the instability outside ROI, whereas the proposed OS algorithm is

robust.

3.3 Averaging sub-iterations

Although the new scaling factors (3.6) stabilize OS in helical CT and reduce artifacts, the

final noise level is still worse than a convergent algorithm (see Fig. 3.2 and 3.3) because any

OS method with constant scaling factors will not converge [71]. This section discusses one

practical method that can reduce noise without affecting the convergence rate. This approach

helps the OS algorithm come closer to the converged image, reducing the undesirable noise

in images reconstructed using OS algorithms with large M .

To ensure convergence, the incremental optimization transfer (IOT) method [5] was pro-

posed, which involves a form of averaging, but the greatly increased memory space required

has prevented its application in 3D X-ray CT. As a practical alternative, we investigated an

approach where the final image is formed by averaging all of the sub-iterations at the final

iteration nend of the OS algorithm (after it approaches its limit cycle). A memory-efficient

1 The scaling factor (3.6) is particularly chosen so that the SQS method (in Section 4.1) will have small
computation overhead as it can be computed simultaneously with the precomputation of the initial data-fit

denominator (4.10). The notation c̆
(n)
i is explained in Section 4.1.

22

 Ordinary OS

 Outside

 ROI

 Proposed OS

 First slice

 of ROI

 Converged

 σ=8.4 σ=8.0 σ=6.6

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

Figure 3.2: Effect of gradient scaling in regularized OS-SQS algorithm with GE performance
phantom (GEPP) in helical CT: Each image is reconstructed after running 20 iterations of
OS algorithm with 328 subsets, using ordinary and proposed scaling approaches. Standard
deviation σ of a uniform region (in white box) is computed for comparison. We compute
full-width half maximum (FWHM) of a tungsten wire (red arrow) to measure the resolution.
(The result of a convergent algorithm is shown for reference. Images are cropped for better
visualization.)

0 5 10 15 20
1123

1123.5

1124

1124.5

1125

1125.5

1126

Iteration

Mean [HU]

0 5 10 15 20
6.5

7

7.5

8

8.5

Iteration

Std. Dev. [HU]

Ordinary OS

Proposed OS

Converged

Figure 3.3: GE performance phantom: mean and standard deviation within a uniform region
in the first slice of the ROI (see Fig. 3.2) vs. iteration, showing the instability of ordinary
OS approach with 328 subsets, compared with the proposed OS approach. Also shown is
the result from a converged image x(∞) generated from several iterations of a convergent
algorithm.

implementation of this approach uses a recursive in-place calculation:

x̄(
m+1
M) =

m

m+ 1
x̄(

m
M) +

1

m+ 1
x(nend−1+m+1

M), (3.7)

23

where x̄(0) is an initial zero image, and x̄(1) is the final averaged image. There was a pre-

liminary simulation investigation of averaging the final iteration in [6], and we applied the

averaging technique to CT scans here. In Table 3.1, we investigated this averaging method

using a scan of the GEPP phantom and quantified the noise and resolution properties (as

described in Fig. 3.2), and evaluated root mean square difference (RMSD) between current

and converged image within the ROI:

RMSD ,

∣

∣

∣

∣x
(n)
ROI − x

(∞)
ROI

∣

∣

∣

∣

2
√

Np,ROI

[HU], (3.8)

whereNp,ROI is the number of voxels in the ROI. Table 3.1 shows that the averaging technique

successfully reduces the noise and RMSD.

Smoothed OS-SQS(328)
Conv.

FBP w/o averaging w/ averaging

Mean [HU] 1127.7 1123.3 1123.8 1123.7

Std. Dev. [HU] 2.3 8.0 7.2 6.6

FWHM [mm] 1.4 0.7 0.7 0.7

RMSD [HU] 9.4 3.4 0.8 ·

Table 3.1: GE performance phantom: Noise, resolution and RMSD behavior of OS-SQS(328
subsets) after 20 iterations followed by averaging.

3.4 Conclusion

We reviewed the OS algorithm and provided some simple modifications that were found to

be helpful for 3D cone-beam CT reconstruction. We have refined the OS algorithm to handle

a nonuniformly sampled helical CT geometry, which leads to more stabilized reconstruction.

We have also adapted an averaging sub-iterations approach at the last iteration to reduce

noise from the OS method.

24

CHAPTER IV

Accelerated optimization transfer methods

This chapter discusses acceleration in optimization transfer methods, particularly sepa-

rable quadratic surrogates (SQS). SQS method is simple and massively parallelizable due

to the diagonal Hessian of the surrogate, and can be easily combined with OS framework

yielding OS-SQS method with fast initial convergence rate. But as it would benefit further

acceleration, we carefully review SQS method and propose three novel approaches that ex-

tend SQS method to accelerate the convergence rate based on a careful derivation. First, we

analyze the convergence rate of a standard SQS, and develop a spatially nonuniform SQS

(NU-SQS) algorithm that provides larger step sizes for the voxels that need more updates.

Second, with a knowledge of a bounded interval (BI) that includes the minimizer x̂, we

construct a tighter surrogate than the standard one, which we call SQS with BI (SQS-BI).

Last, we generalize SQS method to construct a surrogate with a tridiagonal matrix that is

tighter than the standard SQS, exploiting the fact that inverting a tridiagonal matrix can

be done efficiently.

Each proposed idea in Section 4.2 and 4.3.1 was published in a conference proceedings

[56, 57], and the former one combined with Chapter III lead to a journal paper [62].

4.1 Separable quadratic surrogates (SQS) methods

We first construct a quadratic surrogate at the nth iteration for the nonquadratic cost

function in (2.8):

Ψ(x) = L(x) +R(x) ≤ Q
(n)
L (x) +Q

(n)
R (x), (4.1)

25

where Q
(n)
L (x) and Q

(n)
R (x) are quadratic surrogates for L(x) and R(x). Based on (2.8), the

quadratic surrogate for L(x) has the form:

Q
(n)
L (x) =

Nd
∑

i=1

q
(n)
i ([Ax]i), (4.2)

q
(n)
i (t) , hi(t

(n)
i) + ḣi(t

(n)
i)(t− t

(n)
i) +

c̆
(n)
i

2
(t− t

(n)
i)2, (4.3)

where t
(n)
i , [Ax(n)]i, and c̆

(n)
i = max

{

č
(n)
i , η

}

is the curvature of q
(n)
i (t) for some small

positive value η that ensures the curvature c̆
(n)
i positive [1]. In PWLS problem, hi (·) is

quadratic already, so q
(n)
i (t) = hi(t). The quadratic surrogate Q

(n)
R (x) for R(x) is defined

similarly.

We choose curvatures
{

č
(n)
i

}

that satisfy the monotonicity conditions in (2.15). For PL,

the smallest curvatures:

č
(n)
i ,











[

2
hi(0)−hi(t

(n)
i)+t

(n)
i ḣi(t

(n)
i)

[t
(n)
i]2

]

+

, t
(n)
i > 0,

[

ḧi(0)
]

+
, t

(n)
i = 0,

(4.4)

where [t]+ = max{t, 0}, called “optimal curvatures,” lead to the fastest convergence rate but

require an extra back-projection each iteration for nonquadratic problems [1]. Alternatively,

we may use “maximum curvatures”:

či , max
t≥0

ḧi(t) (4.5)

that we can precompute before the first iteration [1].

Next, we generate a separable surrogate of the quadratic surrogate. For completeness,

we repeat De Pierro’s argument in [2]. We first rewrite forward projection [Ax]i as follows:

[Ax]i =

Np
∑

j=1

aijxj =

Np
∑

j=1
aij 6=0

π
(n)
ij

(

aij

π
(n)
ij

(xj − x
(n)
j) + [Ax(n)]i

)

, (4.6)

where a nonnegative real number π
(n)
ij is zero only if aij is zero for all i, j, and satisfies

∑Np

j=1 π
(n)
ij = 1 for all i. Using the convexity of q

(n)
i (·) and the convexity inequality yields

q
(n)
i ([Ax]i) ≤

Np
∑

j=1
aij 6=0

π
(n)
ij q

(n)
i

(

aij

π
(n)
ij

(xj − x
(n)
j) + [Ax(n)]i

)

. (4.7)

26

Thus we have the following SQS φ
(n)
L (x) (with a diagonal Hessian) for the data-fit term L(x):

L(x) ≤ Q
(n)
L (x) ≤ φ

(n)
L (x) ,

Np
∑

j=1

φ
(n)
L,j(xj), (4.8)

φ
(n)
L,j(xj) ,

Nd
∑

i=1
aij 6=0

π
(n)
ij q

(n)
i

(

aij

π
(n)
ij

(xj − x
(n)
j) + [Ax(n)]i

)

. (4.9)

The second derivative (curvature) of the surrogate φ
(n)
L,j(xj) is

d
L,(n)
j ,

∂2

∂x2j
φ
(n)
L,j(xj) =

Nd
∑

i=1
aij 6=0

c̆
(n)
i

a2ij

π
(n)
ij

. (4.10)

We can define a SQS φ
(n)
R,j(xj) for the regularizer similarly, and it has the curvature:

d
R,(n)
j ,

∂2

∂x2j
φ
(n)
R,j(xj) =

Nr
∑

k=1
ckj 6=0

ψ̈k(0)
c2kj

π
(n)
kj

, (4.11)

where π
(n)
kj have similar constraints as π

(n)
ij , ψ̈k(0) = maxt ψ̈k(t) for maximum curvature [2],

or ψ̈k(0) can be replaced by ψ̇k

(

[Cx(n)]k
)

/[Cx(n)]k for Huber’s optimal curvature [51, Lemma

8.3, p.184].

Combining the surrogates for the data-fit term and regularizer and minimizing it in (2.14)

leads to the following separable quadratic surrogate (SQS) method [2] that updates all voxels

simultaneously with a “denominator” d
(n)
j , d

L,(n)
j + d

R,(n)
j :

x
(n+1)
j =

[

x
(n)
j − 1

d
(n)
j

∂

∂xj
Ψ(x(n))

]

+

, (4.12)

where a clipping [·]+ enforces the nonnegativity constraint. (Fig. 4.1 provides an illustration

of the SQS update (4.12) on a 2D contour example, where it constructs a SQS surrogate

φ(n) , φ
(n)
L (x) + φ

(n)
R (x) at the nth iteration with a diagonal Hessian D(n) , diag

{

d
(n)
j

}

and

minimizes the surrogate to generate the next iterate x(n+1) as (4.12).) This SQS decreases

the cost function Ψ(x) monotonically, and it converges based on the proof in [53]. If Ψ(x)

is convex, a sequence
{

x(n)
}

converges to x(∞) that is a global minimizer x̂. Otherwise,
{

x(n)
}

converges to a local minimizer x(∞) which may or may not be a global minimizer x̂

depending on the initial image x(0).

27

Figure 4.1: 2D illustration of SQS method: SQS methods construct a SQS surrogate φ(n)

and update to next iterate x(n+1) by minimizing the surrogate. Note that the shape of SQS
surrogate φ(n) is aligned to coordinate axes (for efficient implementation as in (4.12)), but
not to the contour of the cost function Ψ(x).

The implementation and convergence rate of SQS depend on the choice of π
(n)
ij . A general

form for π
(n)
ij is

π
(n)
ij ,

λ
(n)
ij

∑Np

l=1
ail 6=0

λ
(n)
il

, (4.13)

where a nonnegative real number λ
(n)
ij is zero only if aij is zero. Then (4.10) can be re-written

as

d
L,(n)
j =

Nd
∑

i=1
aij 6=0

c̆
(n)
i

a2ij

λ
(n)
ij







Np
∑

l=1
ail 6=0

λ
(n)
il






. (4.14)

Summations involving the constraint aij 6= 0 require knowledge of the projection geometry,

and thereby each summation can be viewed as a type of forward or back projection.

The standard choice [2, 41]:

λ̄ij = aij, λ̄kj = |ckj|, (4.15)

leads to

d̄
L,(n)
j =

Nd
∑

i=1

c̆
(n)
i aij

(

Np
∑

l=1

ail

)

, (4.16)

28

and

d̄
R,(n)
j =

Nr
∑

k=1

ψ̈k(0)|ckj|
(

Np
∑

l=1

|crl|
)

. (4.17)

This choice is simple to implement, since the (available) standard forward and back pro-

jections can be used directly in (4.16). (Computing d̄
R,(n)
j in (4.17) is negligible compared

with (4.16).) The standard SQS generates a sequence
{

x(n)
}

in (4.12) by defining the de-

nominator as

d̄
(n)
j , d̄

L,(n)
j + d̄

R,(n)
j . (4.18)

However, we prefer choices for λ
(n)
ij (and λ

(n)
kj) that provide fast convergence. Therefore,

we first analyze the convergence rate of the SQS algorithm in terms of the choice of λ
(n)
ij in

Section 4.2.1. Then, Section 4.2.2 introduces acceleration by choosing better λ
(n)
ij (and λ

(n)
kj)

than the standard choice (4.15), which we name as a spatially nonuniform SQS (NU-SQS).

Fig. 4.2 extends the illustration in Fig. 4.1 to present the intuition of the proposed NU-SQS

methods that encourage larger updates for the voxels that need more updates for acceleration

from standard SQS, with appropriately chosen λ
(n)
ij (and λ

(n)
kj) based on convergence analysis

discussed in next sextion.

(a) (b)

Figure 4.2: 2D illustration of SQS method: (a) Standard SQS methods using (4.16) construct
a SQS surrogate φ(n) with a similar shape regardless of the current location x(n) respect to
the location of the minimizer x̂. (b) Proposed nonuniform (NU) SQS methods are expected
to construct a SQS surrogate that is adaptively adjusted based on the current x(n) respect
to x̂ to encourage larger updates for the voxels that need more updates.

We also provide two other variants of SQS in Section 4.3.

29

4.2 Spatially nonuniform SQS methods

We provide the convergence analysis of SQS algorithm, and propose NU approach that

leads to faster convergence rate based on the analysis. The convergence rate of the sequence
{

x(n)
}

generated by the SQS iteration (4.12) depends on the denominator D(n) , diag
{

d
(n)
j

}

(or λ
(n)
ij), and the main goal is to choose λ

(n)
ij so that the sequence

{

x(n)
}

converges faster.

4.2.1 Convergence rate of SQS methods

The asymptotic convergence rate of a sequence
{

x(n)
}

that converges to x(∞) is measured

by the root-convergence factor defined as R1

{

x(n)
}

, lim supn→∞
∣

∣

∣

∣x(n) − x(∞)
∣

∣

∣

∣

1/n
in [91,

p. 288]. The root-convergence factor at x(∞) for SQS algorithm is given as R1

{

x(n)
}

=

ρ
(

I − [D(∞)]−1H(∞)
)

in [91, Linear Convergence Theorem, p. 301] and [39, Theorem 1],

where the spectral radius ρ(·) of a square matrix is its largest absolute eigenvalue andH(∞) ,

▽2Ψ(x(∞)), assuming thatD(n) converges toD(∞). For faster convergence, we want R1

{

x(n)
}

and ρ(·) to be smaller. We can reduce the root-convergence factor based on1 [39, Lemma

1], by using a smaller denominator D(n) subject to the majorization conditions in (2.15)

or (4.8).

However, the asymptotic convergence rate does not help us design D(n) in the early

iterations, so we consider another factor that relates to the convergence rate of SQS:

Lemma 1. For a fixed denominator D (using the maximum curvature (4.5)), a sequence
{

x(n)
}

generated by an SQS algorithm (4.12) satisfies

Ψ(x(n+1))−Ψ(x(∞)) ≤
∣

∣

∣

∣x(0) − x(∞)
∣

∣

∣

∣

2

D

2(n+ 1)
, (4.19)

for any n ≥ 0, if Ψ(x) is convex.

Lemma 1 is a simple generalization of Theorem 3.1 in [10], which was shown for a sur-

rogate with a scaled identity Hessian (using Lipschitz constant).2 The inequality (4.19)

shows that minimizing
∣

∣

∣

∣x(0) − x(∞)
∣

∣

∣

∣

D
with respect to D will reduce the upper bound of

Ψ(x(n)) − Ψ(x(∞)), and thus accelerate convergence. (Since the upper bound is not tight,

there should be a room for further acceleration by choosing better D, but we leave it as

future work.)

1 If D−1
s � D−1

l � H(∞) � 0, then ρ(I −D−1
s H(∞)) ≤ ρ(I −D−1

l H(∞)) < 1.
2 Note that Lemma 1 can be further generalized for any positive definite matrix D, where the surrogate

with such Hessian D satisfies the conditions (2.15) and (2.18). Here, we focus on a diagonal matrix D
because the corresponding SQS algorithm leads to efficient implementation.

30

We want to adaptively design D(n) to accelerate convergence at the nth iteration. We

can easily extend Lemma 1 to Corollary 1 by treating the current estimate x(n) as an initial

image for the next SQS iteration:

Corollary 1. A sequence
{

x(n)
}

generated by an SQS algorithm (4.12) satisfies

Ψ(x(n+1))−Ψ(x(∞)) ≤
∣

∣

∣

∣x(n) − x(∞)
∣

∣

∣

∣

2

D(n)

2
(4.20)

for any n ≥ 0, if Ψ(x) is convex.

The inequality (4.20) motivates us to use
∣

∣x
(n)
j − x

(∞)
j

∣

∣ when selecting d
(n)
j (and λ

(n)
ij) to

accelerate convergence at nth iteration. We discuss this further in Section 4.2.2.1. We fix

D(n) after the nfix number of iterations to ensure convergence of SQS iteration (4.12), based

on [53]. In this case, D(n) must be generated by the maximum curvature (4.5) to guarantee

the majorization condition (2.15) for subsequent iterations.

From (4.12) and (4.14), the step size ∆
(n)
j of the SQS iteration (4.12) has this relationship:

∆
(n)
j , x

(n+1)
j − x

(n)
j ∝ 1

d
(n)
j

, (4.21)

where smaller d
(n)
j (and relatively larger λ

(n)
ij) values lead to larger steps. Therefore, we

should encourage d
(n)
j to be small (λ

(n)
ij to be relatively large) to accelerate the SQS algo-

rithm. However, we cannot reduce d
(n)
j simultaneously for all voxels, due to the majorization

conditions in (2.15) and (4.8). Lemma 1 (and Corollary 1) suggest intuitively that we should

try to encourage larger steps ∆
(n)
j (smaller d

(n)
j) for the voxels that are far from the optimum

to accelerate convergence.

4.2.2 NU-SQS methods

We design surrogates that satisfy condition (2.15) and provide faster convergence based on

Section 4.2.1. We introduce the “update-needed factors” and propose a spatially nonuniform

SQS (NU-SQS) algorithm.

4.2.2.1 Update-needed factors

Based on Corollary 1, knowing
∣

∣x
(n)
j −x(∞)

j

∣

∣ would be helpful for accelerating convergence

at the nth iteration, but x
(∞)
j is unavailable in practice. Non-homogeneous coordinate descent

(NH-CD) algorithm [109] used the difference between the current and previous iteration

31

instead:

u
(n)
j , max

{

∣

∣x
(n)
j − x

(n−1)
j

∣

∣, δ(n)
}

, (4.22)

which we call the “update-needed factors” (originally named a voxel selection criterion (VSC)

in [109]). Including the small positive values
{

δ(n)
}

ensures all voxels to have at least a small

amount of attention for updates. This u
(n)
j accelerated the NH-CD algorithm by visiting

voxels with large u
(n)
j more frequently.

4.2.2.2 Design

For SQS, we propose to choose λ
(n)
ij to be larger if the jth voxel is predicted to need more

updates based on the “update-needed factors” (4.22) after the nth iteration. We select

λ̃
(n)
ij = aiju

(n)
j , (4.23)

which is proportional to u
(n)
j and satisfies the condition for λ

(n)
ij . This choice leads to the

following NU-based denominator:

d̃
L,(n)
j =

1

u
(n)
j

Nd
∑

i=1

c̆
(n)
i aij

(

Np
∑

l=1

ailu
(n)
l

)

, (4.24)

which leads to spatially nonuniform updates ∆
(n)
j ∝ u

(n)
j .

If it happened that

∣

∣x
(n)
j − x

(∞)
j

∣

∣ ≈ B
∣

∣x
(n)
j − x

(n−1)
j

∣

∣ for all j, (4.25)

where B is a constant, then the NU denominator d̃
L,(n)
j would minimize the upper bound of

Ψ(x(n+1))−Ψ(x(∞)) in Corollary 1:

Lemma 2. The proposed choice d̃
L,(n)
j in (4.24) minimizes the following weighted sum of the

denominators
Np
∑

j=1

(

u
(n)
j

)2

d
L,(n)
j (4.26)

over all possible choices of the d
L,(n)
j in (4.14).

Proof. In Appendix A.

The proposed d̃
L,(n)
j in (4.24) reduces to the standard choice d̄

L,(n)
j in (4.16) when

{

u
(n)
j

}

is

uniform. Similar to the standard choice d̄
L,(n)
j , the proposed choice d̃

L,(n)
j can be implemented

32

easily using standard forward and back projection. However, since d̃
L,(n)
j depends on iteration

(n), additional projections required for d̃
L,(n)
j at every iteration would increase computation.

We discuss ways to reduce this burden in Section 4.2.2.6.

Similar to the data-fit term, we derive the denominator of NU-SQS for the regularizer

term to be:

d̃
R,(n)
j =

1

u
(n)
j

Nr
∑

k=1

ψ̈k(0)|ckj|
(

Np
∑

l=1

|crl|u(n)l

)

, (4.27)

from the choice λ̃
(n)
kj = |ckj|u(n)j and the maximum curvature method in [2]. Alternatively,

we may use Huber’s optimal curvature [51, Lemma 8.3, p.184] replacing ψ̈k(0) in (4.27) by

ψ̇k

(

[Cx(n)]k
)

/[Cx(n)]k. The computation of (4.27) is much less than that of the data-fit term.

Defining the denominator in the SQS iteration (4.12) as

d̃
(n)
j , d̃

L,(n)
j + d̃

R,(n)
j (4.28)

leads to the accelerated NU-SQS iteration, while the algorithm monotonically decreases Ψ(x)

and is provably convergent [53]. We can further accelerate NU-SQS by OS methods [2,52] in

Chapter III, while losing the guarantee of monotonicity. This algorithm, called OS algorithms

based on a spatially nonuniform SQS (NU-OS-SQS), generates a sequence
{

x
(n+m

M
)

j

}

using

x
(n+m+1

M
)

j =

[

x
(n+m

M
)

j − 1

d̃
(n)
j

(

γj
∂

∂xj
Lm

(

x(n+
m
M

)
)

+
∂

∂xj
R
(

x(n+
m
M

)
)

)]

+

, (4.29)

where γj is computed from (3.6) (see Chapter III for more details of OS method).

4.2.2.3 Dynamic range adjustment of u
(n)
j

In reality, (4.25) will not hold, so (4.22) will be suboptimal. We could try to im-

prove (4.22) by finding a function f (n)(·) : [δ(n), ∞) → [ǫ, 1] based on the following:

argmin
f (n)(·)

Np
∑

j=1

(

f (n)(u
(n)
j)−

∣

∣x
(n)
j − x

(∞)
j

∣

∣

maxj
∣

∣x
(n)
j − x

(∞)
j

∣

∣

)2

, (4.30)

where ǫ is a small positive value. Then we could use f (n)(u
(n)
j) as (better) update-needed

factors. However, solving (4.30) is intractable, so we searched empirically for good candidates

for a function f (n)(·).
Intuitively, if the dynamic range of the update-needed factors u

(n)
j in (4.22) is too wide,

then there will be too much focus on the voxels with relatively large u
(n)
j , slowing the overall

33

convergence rate. On the other hand, a narrow dynamic range of u
(n)
j will provide no speed-

up, since the algorithm will distribute its efforts uniformly. Therefore, adjusting the dynamic

range of the update-needed factors is important to achieve fast convergence. This intuition

corresponds to how the NH-CD approach balanced between homogeneous update orders and

nonhomogeneous update orders [109].

To adjust the dynamic range and distribution of u
(n)
j , we first construct their empirical

cumulative density function:

F
(n)
cdf (u) ,

1

Np

Np
∑

j=1

I{
u
(n)
j ≤u

} (4.31)

to somewhat normalize their distribution, where IB = 1 if B is true or 0 otherwise. Then

we map the values of F
(n)
cdf (u) by a nondecreasing function g(·) : [0, 1] → [ǫ, 1] as follows

ũ
(n)
j , f (n)(u

(n)
j) = g

(

F
(n)
cdf (u

(n)
j)
)

, (4.32)

which controls the dynamic range and distribution of
{

ũ
(n)
j

}Np

j=1
, and we enforce positivity

in g(·) to ensure that the new adjusted parameter λ̃
(n)
ij = aijũ

(n)
j is positive if aij is positive.

(We set δ(n) in (4.22) to zero here, since a positive parameter ǫ ensures the positivity of

λ̃
(n)
ij if aij is positive.) The transformation (4.32) from u

(n)
j to ũ

(n)
j is called dynamic range

adjustment (DRA), and two examples of such ũ
(n)
j are presented in Fig. 4.3. Then we use

ũ
(n)
j instead of u

(n)
j in (4.23).

Here, we focus on the following function for adjusting the dynamic range and distribution:

g(v) , max
{

vt, ǫ
}

(4.33)

where t is a nonnegative real number that controls the distribution of ũ
(n)
j and ǫ is a small

positive value that controls the maximum dynamic range of ũ
(n)
j . The function reduces to

the ordinary SQS choice in (4.15) when t = 0. The choice of g(·), particularly the parameters

t and ǫ here, may influence the convergence rate of NU-SQS for different data sets, but we

show that certain values for t and ǫ consistently provide fast convergence for various data

sets.

34

ũ
(2)
j ũ

(8)
j

0

0.2

0.4

0.6

0.8

1

Figure 4.3: Shoulder region scan: ũ
(2)
j and ũ

(8)
j after dynamic range adjustment (DRA) for

NU-OS-SQS(82 subsets), with the choice g(v) = max {v10, 0.05}. NU-OS-SQS updates the

voxels with large ũ
(n)
j more, whereas ordinary OS-SQS updates all voxels equivalently.

4.2.2.4 Related work

In addition to the standard choice (4.15), the choice

λ
(n)
ij = aij max

{

x
(n)
j , δ

}

, (4.34)

with a small nonnegative δ, has been used in emission tomography problems [24, 25] and in

transmission tomography problems [41,66]. This choice is proportional to x
(n)
j , and thereby

provides a relationship ∆
(n)
j ∝ x

(n)
j . This classical choice (4.34) can be also viewed as another

NU-SQS algorithm based on “intensity”. However, intensity is not a good predictor of which

voxels need more update, so (4.34) does not provide fast convergence based on the analysis

in Section 4.2.1.

4.2.2.5 Initialization of u
(0)
j

Unfortunately, u
(n)
j in (4.22) is available only for n ≥ 1, i.e., after updating all voxels

once. To define the initial update factors u
(0)
j , we apply edge and intensity detectors to

an initial filtered back-projection (FBP) image. This is reasonable since the initial FBP

image is a good low-frequency estimate, so the difference between initial and final image will

usually be larger near edges. We investigated one particular linear combination of edge and

intensity information from an initial image. We used the 2D Sobel operator to approximate

the magnitude of the gradient of the image within each transaxial plane. Then we scaled

both the magnitude of the approximated gradient and the intensity of the initial image to

have a same maximum value, and computed a linear combination of two arrays with a ratio

35

2 : 1 for the initial update-needed factor u
(0)
j , followed by DRA method. We have tried other

linear combinations with different ratios, but the ratio 2 : 1 provided the fastest convergence

rate in our experiments.

4.2.2.6 Implementation

The dependence of λ
(n)
ij on iteration (n) increases computation, but we found two practi-

cal ways to reduce the burden. First, we found that it suffices to update ũ
(n)
j (and d̃

(n)
j) every

nloop > 1 iterations instead of every iteration. This is reasonable since the update-needed fac-

tors usually change slowly with iteration. In this case, we must generate a surrogate with the

maximum curvature (4.5) to guarantee the majorization condition (2.15) for all iterations.

Second, we compute the NU-based denominator (4.24) simultaneously with the data-fit gra-

dient in (4.12). In 3D CT, we use forward and back projectors that compute elements of the

system matrix A on the fly, and those elements are used for the gradient ∇L(x) in (4.12).

For efficiency, we reuse those computed elements of A for the NU-based denominator (4.24).

We implemented this using modified separable footprint projector subroutines [70] that take

two inputs and project (or back-project) both. This approach required only 29% more com-

putation time than a single forward projection rather than doubling the time (see Table 4.1).

Combining this approach with nloop = 3 yields a NU-SQS algorithm that required only 11%

more computation time per iteration than standard SQS, but converges faster.

SQS OS-SQS(82) NU-OS-SQS(82)

nloop · · 1 3 5

1 Iter. [sec] 82 125 161 139 133

Table 4.1: Run time of one iteration of NU-OS-SQS(82 subsets) for different choice of nloop

for GE performance phantom.

Computing ũ
(n)
j and the corresponding NU-based denominator requires one iteration each.

In the proposed algorithm, we computed ũ
(n)
j during one iteration, and then computed the

NU-based denominator (4.24) during the next iteration combined with the gradient com-

putation ∇L(x). Then we used the denominator for nloop iterations and then compute ũ
(n)
j

again to loop the process. The outline of the proposed NU-OS-SQS algorithm is described

in the following Table 4.2.

36

Set M , nend, nloop and initialize x by an FBP image.

Generate uj from an FBP image by edge and intensity detectors.

Compute the maximum curvature c̆i = max
{

ḧi(0), η
}

.

dLj = 0, γj = 0, xj,ref = xj, and the final image x̄j = 0.

d̃Rj =
1

uj

Nr
∑

k=1

ψ̈k(0)|ckj|
(

Np
∑

l=1

|crl|ul
)

(4.35)

n = 0

for m = 0, 1, . . . ,M − 1

dLj,sub =
1

uj

∑

i∈Sm

c̆iaij

(

Np
∑

l=1

ailul

)

(4.36)

dLj += dLj,sub and γj+= I{dLj,sub>0}
end

Table 4.2: Outline of the proposed NU-OS-SQS algorithm (cont’d).

37

for n = 1, 2, . . . , nend − 1

if n mod nloop = 1 and n ≤ nfix

d̃Lj = dLj , and compute d̃Rj by (4.35)

elseif n mod nloop = nloop − 1 and n ≤ nfix − 2

xj,ref = xj

elseif n mod nloop = 0 and n ≤ nfix − 1

dLj = 0, and uj = g(Fcdf(xj − xj,ref))

end

for m = 0, 1, . . . ,M − 1
xj,prev = xj

if n mod nloop 6= 0 or n ≥ nfix

gLj,sub =
∂

∂xj
Lm(xprev) (4.37)

else

compute both dLj,sub by (4.36) and gLj,sub by (4.37)

simultaneously using two-input projection function, and

dLj += dLj,sub

end

xj =

[

xj,prep −
γjg

L
j,sub +

∂
∂xj
R(xTrev)

d̃Lj + d̃Rj

]

+

(4.38)

if n = nend − 1

x̄j =
m

m+ 1
x̄j +

1

m+ 1
xj

end

end

end

Table 4.2: Outline of the proposed NU-OS-SQS algorithm.

38

4.2.3 Results

We investigated the proposed NU-OS-SQS algorithm for PWLS image reconstruction (2.10)

with a nonnegativity constraint. The PWLS cost function is strictly convex and has a unique

global minimizer [27]. We implemented the NU-OS-SQS algorithm in C and executed it on

a Mac with two 2.26GHz quad-core Intel Xeon processors and a 16GB RAM. We used 16

threads, and projection views were grouped and assigned to each thread. We used the ap-

proaches in Chapter III that are developed for OS method in 3D helical geometry, the scaling

factor for helical geometry in Section 3.2 and the averaging technique in Section 3.3.

Four 3D helical CT data sets are used in this section to compare the proposed NU-OS-SQS

algorithm to the ordinary OS-SQS algorithm, and we used the GE performance phantom

(GEPP) to measure the resolution. We used two other clinical data sets to investigate the

performance of NU approach. We investigated tuning the DRA function g(·) in (4.33) to

provide fast convergence rate for various data sets. We also provide results from a simulation

data set.

We chose the parameters of the cost function Ψ(x) in (2.8) to provide a good image. We

defined an edge-preserving potential function ψk([Cx]k) = βkψ([Cx]k) by the function ψ(t)

in (2.13) (with a = 0.0558, b = 1.6395, and δ = 10), and the spatial weighting βk [43] that

provides resolution properties emulating the GE product “Veo”. We used M = 82 subsets

for the OS algorithms, assigning 12 out of 984 projection views per rotation to each subset.

We used the maximum curvature (4.5) for generating the denominator of surrogate function

of the cost function Ψ(x), and focused on nloop = 3 which balances the convergence rate and

run time, based on Table 4.1.

In Section 4.2.1, we recommended fixing the denominator d̃
(n)
j (generated by the maxi-

mum curvature (4.5)) after nfix iterations in NU-SQS algorithm to guarantee convergence.

This condition is less important theoretically when we accelerate the NU-SQS algorithm

with OS methods that break the convergence property. However, we still recommend fixing

d̃
(n)
j after nfix iterations (before approaching the limit-cycle) in the NU-OS-SQS algorithm,

because we observed some instability from updating d̃
(n)
j (and ũ

(n)
j) every nloop iterations

near the limit-cycle in our experiments. We selected nfix = 7 for GEPP, but we did not use

nfix for other two cases because the algorithm did not reach a limit-cycle within nend = 20

iterations, and we leave optimizing nfix as a future work.

In Section 3.2, we stabilized the OS-SQS algorithm outside ROI in helical geometry

by using the factor γj in (3.6). However, we experienced some instability outside ROI in

NU-OS-SQS methods even with (3.6), because a small NU denominator d̃
(n)
j outside ROI

is more likely to lead to instability than for voxels within the ROI due to the incomplete

sampling outside ROI. Therefore, we prevent the denominator d̃
(n)
j outside ROI from being

39

very small. We empirically modified the DRA function in Section 4.2.2.3, and used it for

our experiments, improving stability outside ROI. We first modified the function (4.31) as

follows:

F
(n)
cdf (u) ,

1

Np

Np
∑

j=1

I{
γju

(n)
j ≤u

} (4.39)

for γj in (3.6), since the value of u
(n)
j in (4.22) outside ROI was found to be relatively large

due to the incomplete sampling. We further modified (4.32) and (4.33) to prevent d̃
(n)
j from

becoming very small outside ROI as follows with g(v; α) , max {αvt, ǫ}:

ũ
(n)
j ,







g
(

F
(n)
cdf (γju

(n)
j); 1

)

, if jth voxel within ROI,

g
(

F
(n)
cdf (γju

(n)
j); 0.5

)

, otherwise.
(4.40)

4.2.3.1 GE performance phantom

We reconstructed 512×512×47 images of the GEPP from a 888×64×3071 sinogram (the

number of detector columns × detector rows × projection views) with pitch 0.5. We evalu-

ated the full width at half maximum (FWHM) of a tungsten wire (see Fig. 3.2). Fig. 4.4(a)

shows the resolution versus run time and confirms that nonuniform (NU) approach accel-

erates the SQS algorithm. This dramatic speed-up in FWHM is promising since SQS-type

algorithms are known to have slow convergence rate of high frequency components [96].

We also evaluated the convergence rate by computing RMSD (3.8) between current and

converged3 image versus run time, within ROI.

Figs. 4.4(a) and 4.4(b) illustrate that increasing t in g(·) in (4.33) accelerates the conver-

gence of “update-needed” region, particularly the wire and edges in GEPP. However, highly

focusing the updates on few voxels will not help speed up the overall convergence for all

objects. Therefore, we further investigate the choice of g(·) using various patient CT scans.

The RMSD plots4 of NU-OS-SQS in Fig. 4.4(b) reached a limit-cycle after 1500 sec that

did not approach zero. Averaging the sub-iterations at the final iteration that is suggested

in Section 3.3 improved the final image with small computation cost, yielding the drop in

RMSD at the last 20th iteration in Fig. 4.4(b). The reduced noise was measurable in the

reconstructed image as seen in Table 3.1.

3 We ran 100 iterations of OS-SQS algorithm with 41 subsets, followed by each 100 iterations of OS-SQS
algorithm with 4 subsets, and 2000 iterations of (convergent) SQS. We subsequently performed 100 iterations
of (convergent) NH-ABCD-SQS [57] to generate (almost) converged images x(∞).

4 We also provide the plots of the cost function for GEPP and shoulder region scan in Section 4.2.3.4.

40

0 500 1000 1500 2000 2500

0.8

0.9

1

1.1

1.2

1.3

Run time [sec]

F
W

H
M

 [
m

m
]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
1
,0.05)

NU−OS−SQS(82): g(v)=max(v
5
,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
40

,0.05)

(a)

(a)

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

Run time [sec]

R
M

S
D

 [
H

U
]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
1
,0.05)

NU−OS−SQS(82): g(v)=max(v
5
,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
40

,0.05)

(b)

(b)

Figure 4.4: GE performance phantom: plots of (a) FWHM and (b) RMSD as a function of
run time for different choice of DRA parameters t for ǫ = 0.05. The plot markers show each
iteration. There are no changes during first iterations, since we consider precomputing the
denominator using one forward and back projections as one iteration.

4.2.3.2 Shoulder region scan

In this experiment, we reconstructed a 512×512×109 image from a shoulder region scan

888× 32× 7146 sinogram with pitch 0.5. Figs. 4.5(a) and 4.5(b) show that the nonuniform

approach accelerates convergence, depending on the choice of parameters in g(·). We inves-

tigated the relationship between the convergence rate and the DRA function g(·) by tuning

both the parameters t and ǫ in (4.33). Fig. 4.5(a) shows that increasing t to 10 accelerated

convergence, but larger t values did not help as the choice of t = 40 was slower than t = 10.

In Fig. 4.5(b), decreasing ǫ to 0.01 accelerated the algorithm in this shoulder region scan,

but not for the data set in Section 4.2.3.3, so ǫ = 0.05 appears to be a reasonable choice

overall.

We averaged the sub-iterations at the last iteration, but Figs. 4.5(a) and 4.5(b) did not

show a drop at the final iteration (which appeared in Fig. 4.4(b)), because the algorithm

had not yet reached a limit-cycle. Even though averaging technique in Section 3.3 did not

noticeably decrease the RMSD, the reconstructed image had measurable noise reduction in

regions that already reached a limit-cycle like uniform regions. (Results not shown.)

In Fig. 4.6(a), we illustrate that statistical image reconstruction can reduce noise and pre-

serve image features compared to analytical FBP reconstruction. The reconstructed images

of (NU-)OS-SQS show that NU approach helps OS-SQS to approach the converged image

faster than the ordinary method. After the same computation (95 min.), the reconstructed

41

image of OS-SQS still contains streaks from the initial FBP image, while NU-OS-SQS has

reduced the streaks. This is apparent in the difference images between the reconstructed

and converged images in Fig. 4.6(b).

By analyzing NU-OS-SQS in two CT scans, we observed that the parameters t = 10 and

ǫ = 0.05 consistently accelerated the algorithm by about a factor of more than two.5 (The

choice ǫ = 0.01 was too aggressive in our other experiments.) We also have observed more

than two-fold accelerations in other experiments. (Results not shown.) Fig. 4.5(b) shows the

RMSD plot using the (practically unavailable) oracle update-needed factor û
(n)
j , |x(n)j −x(∞)

j |
instead of our heuristic choice ũ

(n)
j . This result suggests that additional optimization of the

DRA method and initialization of ũ
(0)
j could further speed up the NU algorithm in future

work.

0 1000 2000 3000 4000 5000 6000
5

10

15

20

25

30

Run time [sec]

R
M

S
D

 [
H

U
]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
1
,0.05)

NU−OS−SQS(82): g(v)=max(v
5
,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
40

,0.05)

(a)

(a)

0 1000 2000 3000 4000 5000 6000
5

10

15

20

25

30

Run time [sec]

R
M

S
D

 [
H

U
]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
10

,0.5)

NU−OS−SQS(82): g(v)=max(v
10

,0.2)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.01)

NU−OS−SQS(82): Oracle

(b)

(b)

Figure 4.5: Shoulder region scan: plot of RMSD versus run time for different choice of
parameters (a) t and (b) ǫ in g(v) = max {vt, ǫ}.

4.2.3.3 Truncated abdomen scan

We also reconstructed a 390 × 390 × 239 image from a 888 × 64 × 3516 sinogram with

pitch 1.0. This scan contains transaxial truncation and the initial FBP image has truncation

artifacts [108] that can be reduced by iterative reconstruction. The choice of u
(0)
j described

in Section 4.2.2.5 did not consider truncation effects, and we found that NU-OS-SQS did not

reduce such artifacts faster than standard OS-SQS. (The large patient size may also have

5 We used the run time and RMSD of standard OS-SQS after 20 iterations (without averaging) as a
reference to compare with the NU-OS-SQS for each data set. Then we compared the run time of NU-OS-
SQS that is required for achieving the reference RMSD with the reference run time, and confirmed that NU
provided more than two-fold accelerations in two CT scans.

42

 FBP Converged

 OS−SQS(5800sec,20iter.) NU−OS−SQS(5700sec,18iter.)

 (a)
800

850

900

950

1000

1050

1100

1150

1200

(a)

 (OS−SQS) − (Converged) (NU−OS−SQS) − (Converged)

 (b)
−50

0

50

(b)

Figure 4.6: Shoulder region scan: (a) Center slice of initial FBP, converged image and recon-
structed image by OS-SQS(82) and NU-OS-SQS(82)-g(v) = max {v10, 0.05} after about 95
min. (b) Difference between the reconstructed and converged images are additionally shown
to illustrate the acceleration of NU approach. (Images are cropped for better visualization.)

reduced the possible speed-up by the NU method, compared to the previous two scans.)

Therefore, we investigated an alternative NU method that can reduce truncation artifacts

faster than standard algorithm.

We designed a modified NU method using a few (msub) sub-iterations of standard OS-SQS

to generate the initial update-needed factor u
(0)
j , which may also be a reasonable approach

for other scans. We perform initial sub-iterations x
(m/M)
sub in (4.29) efficiently using two-input

projectors (in Section 4.2.2.6) and replacing the all-view denominator d̃
L,(n)
j in (4.24) by a

standard subset-based denominator [4]:

d̃
Lm,(m

M)
j,sub , γ

∑

i∈Sm

c̆
(m
M

)

i aij

(

Np
∑

l=1

ail

)

, (4.41)

where Sm consists of projection views in mth subset. The scaling factor γj in (3.6) is

43

unavailable at this point, so we use γ = M instead. After msub sub-iterations, we compute

the following initial update-needed factors:

ũ
(0)
j , f

(msub
M)

sub

(

∣

∣

∣x
(msub

M)
j,sub − x

(0)
j

∣

∣

∣

)

, (4.42)

where f
(msub

M)
sub (·) is a DRA function in (4.32), and we use these to compute the NU denomi-

nators d̃
L,(0)
j and d̃

R,(0)
j that we use for first nloop outer iterations.

Fig. 4.7(a) shows that statistical image reconstruction provides better image quality than

FBP reconstruction. Fig. 4.7(b) illustrates that this NUsub-OS-SQS approach reduces the

truncation artifacts faster than the standard OS-SQS and NU-OS-SQS. Although standard

OS-SQS reduces noise faster than other two algorithms in Fig. 4.7(b), both NU-OS-SQS and

NUsub-OS-SQS show better convergence near the spine, the boundary of patient, and other

internal structures than OS-SQS at the same computation time (90 min.).

Next, two sections are from the supplementary material of [62] that supports the previous

experimental results.

4.2.3.4 Cost function plots

This section provides cost function plots for GEPP and shoulder region scan in Sec-

tions 4.2.3.1 and 4.2.3.2.

Previously, we computed RMSD within the ROI to evaluate the convergence rate of

the proposed algorithm. Another way to assess the convergence rate is computing the cost

function Ψ(x) in (2.8) at each iteration. We used the following metric:

ξ(n) = 20 log10

(

Ψ(x(n))−Ψ(x(∞))

Ψ(x(∞))

)

[dB] (4.43)

to better visualize how the cost function decreases each iteration. We used double precision

and triple for loops when accumulating Ψ(x(n)) to ensure high accuracy.

Fig. 4.8 shows plots of ξ(n) for the choices of parameters used in Figs. 4.4 and 4.5 for two

real 3D scans; GEPP and shoulder region scan. Fig. 4.8(a) shows that for the GEPP case, the

NU-OS-SQS methods decreased the cost function at about the same rate than the ordinary

OS method, or even perhaps slightly slower. In contrast, when we plotted RMSD distance to

the converged image within the ROI in Fig. 4.4, NU-OS-SQS converged significantly faster.

The reason for this different behavior is that the cost function plot considers all voxels, even

those outside the ROI which are not of interest clinically. It is known that OS methods are

not guaranteed to converge and apparently the non-ROI voxels are either not converging

44

 (Smoothed) FBP Converged NUsub−OS−SQS

 (a)
800

900

1000

1100

1200

(a)

 (OS−SQS) (NU−OS−SQS) (NUsub−OS−SQS)

 (b)
−20

−10

0

10

20

(b)

Figure 4.7: Truncated abdomen scan: (a) Center slice of FBP, converged image, and re-

constructed image by NUsub-OS-SQS(82)-g(v) = max {v10, 0.05} using ũ
(0)
j in (4.42) gen-

erated from sub-iterations. (b) Difference between the reconstructed and converged images,
where images are reconstructed by OS-SQS(82) after 5400sec (20iter.), NU-OS-SQS(82) after

5230sec (18iter.) using ũ
(0)
j extracted from FBP based on Section 4.2.2.5, and NUsub-OS-

SQS(82) after 5220sec (17iter.) using ũ
(0)
j in (4.42). The (black) arrows indicate truncation

artifacts. Images are cropped for better visualization.

or perhaps approaching a larger limit-cycle, presumably due to the poor sampling in the

padded slices outside the ROI, even with the stabilizing methods outside ROI described in

Section 3.2. Therefore, cost function plots may not provide practical measures of convergence

rate for OS methods, particularly with acceleration. Future research on trying to further

stabilize the NU-OS-SQS algorithm outside the ROI also may be helpful.

The final drops at the right in Fig. 4.8(a) show that averaging sub-iterations at the last

iteration, as described in Section 3.3, can compensate for the limit-cycle, particularly outside

the ROI.

Unlike Fig. 4.8(a), the plots in Fig. 4.8(b) and 4.8(c) of shoulder region scan look similar

to the plots of RMSD within ROI in Fig. 4.5. The scan geometry of each data set might

explain these behavior of cost function in Fig. 4.8, where the shoulder region scan is a helical

scan with pitch 1.0 and 7 helical turns and thus the corresponding image space has relatively

45

0 500 1000 1500 2000 2500

−50

−40

−30

−20

−10

0

Run time [sec]

ξ(n
) [

d
B

]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
1
,0.05)

NU−OS−SQS(82): g(v)=max(v
5
,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
40

,0.05)

(a)

(a)

0 1000 2000 3000 4000 5000 6000

−40

−30

−20

−10

0

10

20

Run time [sec]

ξ(n
) [

d
B

]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
1
,0.05)

NU−OS−SQS(82): g(v)=max(v
5
,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
40

,0.05)

(b)

(b)

0 1000 2000 3000 4000 5000 6000

−40

−30

−20

−10

0

10

20

Run time [sec]

ξ(n
) [

d
B

]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
10

,0.5)

NU−OS−SQS(82): g(v)=max(v
10

,0.2)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.01)

(c)

(c)

Figure 4.8: Plots of ξ(n) in (4.43) as a function of run time for different choice of DRA
parameters for (a) GE performance phantom and (b-c) shoulder region scan.

few voxels outside the ROI, compared with GEPP data that is acquired by a helical scan with

pitch 0.5 and 3 helical turns. Therefore, we can expect the cost function of shoulder region

scan to be less affected by instability outside the ROI. Slower convergence of NU-OS-SQS

algorithm at early iterations in Fig. 4.8(c) means that some choices of initial update-needed

factor ũ
(0)
j were not good enough for voxels outside the ROI. The effect of averaging at the

last iterations is apparent in Fig. 4.8(b) and 4.8(c), because the instability outside the ROI

is suppressed by the averaging.

46

4.2.3.5 Simulation data

This section provides a simulation study of a helical scan of the XCAT phantom [98] for

the reproducability of the results. We first acquired a 1024 × 1024 × 154 XCAT phantom

for 500 [mm] transaxial field-of-view (FOV) at 70 [keV], where ∆x = ∆y = 0.4883 [mm] and

∆z = 0.6250 [mm]. (See Fig. 4.9.)

 Phantom

800

850

900

950

1000

1050

1100

1150

1200

Figure 4.9: Simulated XCAT phantom: a center slice of 1024× 1024× 154 XCAT phantom.
(Images are cropped for better visualization.)

We simulated a helical scan using the blank scan factor bi = 106 and the mean number of

background events ri = 0 with Poisson noise. The sinogram data is in 888× 64× 2934 (the

number of detector columns×detector rows×projection views) space with pitch 1.0. Then, we

reconstructed a 512×512×154 image where ∆x = ∆y = 0.9766 [mm] and ∆z = 0.6250 [mm]

using the proposed NU-OS-SQS algorithm.

We solve a PWLS function with a potential function ψk(t) , βkψ(t) in (2.13) using a

spatial weighting parameter:

βk , 50 ·
Np
∏

j=1
ckj 6=0

max {κj, 0.01 κmax} (4.44)

that provides uniform resolution properties [43], where

κj ,

√

∑Nd

i=1 aijwi
∑Nd

i=1 aij
(4.45)

and the value of κmax , maxj κj is used in (4.44) to avoid under-regularizing some voxels

with very small κj. Fig. 4.10 illustrates both RMSD within ROI and ξ(n) versus computation

time.

47

0 1000 2000 3000 4000 5000

10

15

20

25

30

35

40

45

Run time [sec]

R
M

S
D

 [
H

U
]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
1
,0.05)

NU−OS−SQS(82): g(v)=max(v
5
,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
40

,0.05)

(a)

(a)

0 1000 2000 3000 4000 5000
−40

−30

−20

−10

0

10

20

30

40

50

Run time [sec]

ξ(n
) [

d
B

]

OS−SQS(82)

NU−OS−SQS(82): g(v)=max(v
1
,0.05)

NU−OS−SQS(82): g(v)=max(v
5
,0.05)

NU−OS−SQS(82): g(v)=max(v
10

,0.05)

NU−OS−SQS(82): g(v)=max(v
40

,0.05)

(b)

(b)

Figure 4.10: Simulated XCAT phantom: plots of (a) RMSD and (b) ξ(n) versus run time for
different choice of parameters t for ǫ = 0.05 in g(v) = max {vt, ǫ}.

In Fig. 4.10(a), we evaluated the convergence rate using RMSD within ROI between

current and converged image, where the converged image was generated by many iterations

of a (convergent) SQS. We used parameters of DRA function that are used in Figs. 4.4

and 4.5, and we observed similar trends. We also illustrate the plot of ξ(n) versus run

time in Fig. 4.10(b), which looks very similar to Fig. 4.10(a). This is because we regularized

relatively more than two other experiments in this simulation experiment, and thus instability

outside the ROI that can be caused by NU-OS-SQS methods is not apparent here.

In Fig. 4.11(a), the reconstructed images of (NU-)OS-SQS show that NU method accel-

erates OS-SQS and reaches closer to the converged image after the same computation time

(88 min.). This is apparent when comparing the difference images between the reconstructed

and converged images in Fig. 4.11(b), particularly around the spine.

4.3 Other variation of SQS methods

In addition to a promising NU-SQS method, we have also attempted to design SQS in

other ways that lead to faster convergence rate than the standard SQS; a SQS with bounded

interval (SQS-BI) for regularizer and a quasi-separable quadratic surrogates (QSQS).

4.3.1 SQS with bounded interval (SQS-BI) for regularizer R(x)

We present a new monotonic algorithm that is derived using SQS. The new algorithm

accelerates the convergence rate by adapting reduced curvature values for the regularizer that

48

 OS−SQS(5200sec,20iter.) NU−OS−SQS(5300sec,18iter.)

 (a)
800

850

900

950

1000

1050

1100

1150

1200

(a)

 (OS−SQS) − (Converged) (NU−OS−SQS) − (Converged)

 (b)
−50

0

50

(b)

Figure 4.11: Simulated XCAT phantom: (a) Center slice of reconstructed image by OS-
SQS(82) and NU-OS-SQS(82)-g(v) = max {v10, 0.05} after about 88 min. (b) Difference
between the reconstructed and converged images are additionally shown to illustrate the
acceleration of NU approach. (Images are cropped for better visualization.)

were proposed by Yu et al. [109] for coordinate descent algorithms. We further accelerate

the new algorithm by modifying Yu et al.’s curvature, since improvement using the original

Yu et al.’s curvature is relatively small.

We follow the derivation of SQS in Section 4.1 but in an opposite order that first con-

structs a separable surrogate and designs a new tighter quadratic surrogate for the separable

surrogate with respect to a bounded interval that is known to include the minimizer x̂. So,

the construction of a quadratic surrogate is different from the standard SQS.

4.3.1.1 SQS-BI algorithm for regularizer

We first derive a separable surrogate S
(n)
R (x) for the regularizer R(x) given in (2.8), using

the convexity of ψk(t) and the coefficient πkj =
|ckj |

∑Np
l=1 |crl|

for the regularizer version of (4.8)

49

and (4.9):

R(x) ≤ S
(n)
R (x) ,

Np
∑

j=1

S
(n)
R,j(xj) (4.46)

S
(n)
R,j(xj) ,

Nr
∑

k=1

πkjψk

(

ckj
πkj

(xj − x
(n)
j) + [Cx(n)]k

)

=
Nr
∑

k=1

ρkj

(

xj − r
(n)
kj

)

, (4.47)

where ρkj(t) , πkjψk

(

ckj
πkj
t
)

, and r
(n)
kj , x

(n)
j − πkj

ckj
[Cx(n)]k.

Typically the regularization matrix C is sparse, so we can save computation by using the

set Nj , {k = 1, . . . , Nr : ckj 6= 0}. Combining with the data-fit SQS surrogate in (4.9)

yields the overall separable surrogate

S
(n)
j (xj) , φ

(n)
L,j(xj) + S

(n)
R,j(xj) = φ

(n)
L,j(xj) +

∑

k∈Nj

ρkj(xj − r
(n)
kj). (4.48)

The separable surrogate S
(n)
R (x) is not quadratic, so we design a quadratic surrogate next.

The simplest design would be to find an upper bound on the curvature of S
(n)
R,j(xj), called

the maximum curvature. Much smaller curvatures are derived in [51, Lemma 8.3, p.184]

that are optimal when minimizing over the entire real line (see (4.54) below), called Huber’s

curvature. However, the minimizer of a separable surrogate always lies in a finite interval,

and this property provides the opportunity to use the method in [109] that yields even smaller

curvatures that can accelerate the convergence rate.

We assume that the potential function ψk(t) satisfies the conditions in [109, Theorem 1],

then ρkj(t) also satisfies these. Then, the quadratic surrogate function for ρkj(t) can be

defined as

q
(n)
kj (t) , ρkj(t̃

(n)
kj) + ρ̇kj(t̃

(n)
kj)(t− t̃

(n)
kj) +

1

2
č
(n)
kj (t− t̃

(n)
kj)

2, (4.49)

where t̃
(n)
kj , x

(n)
j − r

(n)
kj . We design the regularizer surrogate curvature č

(n)
kj so that the

surrogate q
(n)
kj (t) satisfies the following conditions, which is modified from (2.15):

ρkj(x
(n)
j − r

(n)
kj) = q

(n)
kj (x

(n)
j − r

(n)
kj)

ρkj(xj − r
(n)
kj) ≤ q

(n)
kj (xj − r

(n)
kj), ∀xj ∈ P

(n)
j , (4.50)

where P
(n)
j ,

[

p
min,(n)
j , p

max,(n)
j

]

is an interval containing the minimizer of S
(n)
j (xj). (Using

the bounded interval P
(n)
j instead of R

Np

+ in (2.15) is the main contribution here.) The set

50

P
(n)
j is computed by finding the smallest and the largest minimizer of the convex functions

{

φ
(n)
L,j(xj), ρkj(xj − r

(n)
kj), k ∈ Nj

}

(4.51)

The minimizers of the set (4.51) are p
(n)
j , argminxj

φ
(n)
L,j(xj) = x

(n)
j − 1

d
L,(n)
j

∂
∂xj
L(x(n)) , and

r
(n)
kj = argminxj

ρkj(xj − r
(n)
kj). Then we define p

min,(n)
j and p

max,(n)
j to be the minimum and

maximum of
{

u
(n)
j , r

(n)
kj , k ∈ Nj

}

. (We set p
min,(n)
j to be zero for nonnegativity constraint

if the minimum of
{

u
(n)
j , r

(n)
kj , k ∈ Nj

}

is negative.) Having the specified P
(n)
j , the optimal

curvature č
(n)
kj of q

(n)
kj (t) satisfying the conditions (4.50) is computed by the method in [109,

Fig. 12] using:

t
(n)
kj ,



















−t̃(n)kj , |t̃(n)kj | ≤ min{|t̃min,(n)
kj |, |t̃max,(n)

kj |}
t̃
min,(n)
kj , |t̃min,(n)

kj | ≤ min{|t̃(n)kj |, |t̃
max,(n)
kj |}

t̃
max,(n)
kj , otherwise,

(4.52)

where t̃
min,(n)
kj , p

min,(n)
j − r

(n)
kj , and t̃

max,(n)
kj , p

max,(n)
j − r

(n)
kj . Then, the optimal curvature

č
(n)
kj , referred as Yu et al.’s curvature, which is the smallest curvature of q

(n)
kj (t) satisfying the

conditions (4.50), is

č
(n)
kj ,











2

(

ρkj(t
(n)
kj)−ρkj(t̃

(n)
kj)

(t
(n)
kj −t̃

(n)
kj)2

− ρ̇kj(t̃
(n)
kj)

t
(n)
kj −t̃

(n)
kj

)

, t̃
(n)
kj 6= 0

ρ̈kj(0), otherwise.

(4.53)

The traditional Huber’s curvature is found by computing č
(n)
kj for t

(n)
kj = −t̃(n)kj where P

(n)
j =

(−∞,∞), and turns out to be

č
(n)
kj =

ρ̇kj(t̃
(n)
kj)

t̃
(n)
kj

, (4.54)

which is larger than Yu’s optimal curvature (4.53).

The quadratic surrogate function of the separable surrogate S
(n)
R,j(xj) in (4.47) can be

defined using (4.49) as

φ
(n)
R,BI,j(xj) ,

∑

k∈Nj

q
(n)
kj (xj − r

(n)
kj). (4.55)

51

Then the overall separable quadratic surrogate function for R(x) can be written as follows:

φ
(n)
R,BI(x) , R(x(n)) +∇R(x(n))(x− x(n)) +

1

2
(x− x(n))′ diag

{

d
R,BI,(n)
j

}

(x− x(n)). (4.56)

where d
R,BI,(n)
j , ∂2

∂x2
j
φ
(n)
R,BI(x) =

∑

k∈Nj
č
(n)
kj .

To summarize the surrogate derivations above:

Ψ(x) ≤ φ
(n)
BI (x) , φ

(n)
L (x) + φ

(n)
R,BI(x)

= Ψ(x(n)) +∇Ψ(x(n))(x− x(n)) +
1

2
(x− x(n))′ diag

{

d
BI,(n)
j

}

(x− x(n)), (4.57)

where d
BI,(n)
j , d

L,(n)
j + d

R,BI,(n)
j . Because φ

(n)
BI (x) is separable and quadratic, its uncon-

strained minimizer is easily derived to be:

p̂
(n)
j , argmin

p
φ
BI,(n)
j (p) = x

(n)
j − 1

d
BI,(n)
j

∂

∂xj
Ψ(x(n)). (4.58)

However, x
(n+1)
j must be in the set P

(n)
j to maintain the monotonicity, so we revise (4.58) to

be:

x
(n+1)
j = argmin

p∈P (n)
j

φ
BI,(n)
j (p) = clip

{

p̂
(n)
j , P

(n)
j

}

, (4.59)

where the clip function chooses a nearest value in the interval P
(n)
j when p̂

(n)
j falls out of the

interval.

We further accelerate the algorithm while preserving monotonicity by reducing the in-

terval P
(n)
j which in turn decreases the the optimal curvature (4.53). Define

P̄
(n)
j =











[

x
(n)
j − η

(

x
(n)
j − p

min,(n)
j

)

, x
(n)
j + η

(

p
max,(n)
j − x

(n)
j

)

]

, x
(n)
j ∈ P

(n)
j

P
(n)
j , otherwise,

(4.60)

where η ∈ [0, 1] is a user-selected reduction factor. The proposed curvature is computed by

replacing P
(n)
j by the reduced interval P̄

(n)
j in (4.60), and thereby the proposed algorithm is

expected to converge faster. However, too much reduction can confine the update to a small

interval, possibly slowing convergence.

52

0.08 0.09 0.1 0.11 0.12 0.1 3 0.14 0.1 5 0.1 6 0.17 0.1 8
0

1

2
x 10

−4

ρ
kj

(x
j
−r

kj

(n)
)

q
kj

(n)
(x

j
−r

kj

(n)
) w/ Huber’s curvature

q
kj

(n)
(x

j
−r

kj

(n)
) w/ Yu et al.’s curvature

q
kj

(n)
(x

j
−r

kj

(n)
) w/ Proposed curvature (η=0.5)

q
kj

(n)
(x

j
−r

kj

(n)
) w/ Proposed curvature (η=0.25)

xj x
(n)
j

Figure 4.12: A separable surrogate function ρkj(xj−r(n)kj) and its quadratic surrogate function

q
(n)
kj (xj−r

(n)
kj) with Huber’s, Yu et al.’s and proposed curvatures. Proposed curvature is much

smaller than Huber’s curvature, while Yu et al.’s curvature is similar to Huber’s curvature.

4.3.1.2 Simulation results

We evaluated the algorithm using a simulation data with the phantom in Fig. 4.13(a).

The projection space is 444 detector elements and 20 projection views, and the reconstructed

image is of size 256 × 256. The noisy sinogram data y was generated by the Poisson noise

model (2.5). The FBP reconstructed image in Fig. 4.13(b) was used as the initial guess

x(0) for the iterative reconstruction. We minimized the PWLS cost function Ψ(x) with

the statistical weighting wi = exp(−yi) ∝ 1
var(yi)

. The edge-preserving hyperbola potential

function ψ(t) (2.12) with δ = 0.005, the regularization parameter βk = 0.25 for horizontal

and vertical differences, and βk = 0.25√
2

for diagonal differences was empirically chosen to

produce a good image, where differencing matrix C had 1st-order differences in 2D. We

reconstructed an image for each η = 0.5, 0.25, 0.125 and 1, 2 and 4 ordered subsets, with

a nonnegativity constraint. The OS-SQS and OS-SQS-BI reconstructed images in Fig. 4.13

suggest that iterative image reconstruction can produce better images than FBP.

The proposed method uses smaller curvatures than previous work, thus converging faster

than the conventional OS approach. Fig. 4.14 plots normalized root-mean squared difference

(NRMSD) [dB]:

NRMSD , 20 log10

(
∣

∣

∣

∣x(n) − x̂
∣

∣

∣

∣

2
∣

∣

∣

∣x̂
∣

∣

∣

∣

2

)

[dB] (4.61)

53

0

0.1

0.2

0.3

0.4

(a)

0

0.1

0.2

0.3

0.4

(b)

0

0.1

0.2

0.3

0.4

(c)

0

0.1

0.2

0.3

0.4

(d)

Figure 4.13: (a) Phantom image, (b) FBP image x(0), (c) OS-SQS image x(330) and (d) OS-
SQS-BI image x(290) with η = 0.25 for 4 ordered subsets. The NRMSD for both (c) and (d)
are -30 [dB].

between the current image x(n) and the converged image x̂ (computed by 3000 iterations of

SQS method), versus iteration. (The NRMSD plot (or RMSD [HU] plot) versus computation

time would be useful for comparison, and we plan to acquire the data in near future.) The

results show that OS-SQS-BI is about 15% faster than the standard OS-SQS. This is a modest

improvement, but the extra curvature computation required in (4.53) is small compared to

forward projection. Fig. 4.14 illustrates that both reducing the interval P
(n)
j and using

ordered subsets accelerate the SQS algorithm, as expected. However, the results show that

reducing the interval too much slows down the convergence speed. We found that for densely

sampled view angles, the acceleration was less significant because the reduced curvatures in

R(x) are overwhelmed by the curvature of L(x).

4.3.2 Quasi-separable quadratic surrogates (QSQS)

We propose a quasi-separable quadratic surrogate (QSQS) algorithm that leads to a two-

voxel-wise quasi-separable surrogate function with a tridiagonal Hessian matrix, where a

54

0 50 100 150 200 250 300 350 400
−40

−35

−30

−25

−20

−15

−10

−5

0

Iteration

N
R

M
S

 d
i"

e
re

n
c

e
 [

d
B

]

OS(1)−SQS

OS(1)−SQS−BI−0.5

OS(1)−SQS−BI−0.25

OS(1)−SQS−BI−0.125

OS(2)−SQS

OS(2)−SQS−BI−0.5

OS(2)−SQS−Bi−0.25

OS(2)−SQS−BI−0.125

OS(4)−SQS

OS(4)−SQS−BI−0.5

OS(4)−SQS−BI−0.25

OS(4)−SQS−BI−0.125

Figure 4.14: NRMSD [dB] versus iterations of OS-SQS and OS-SQS-BI with η = 0.5, 0.25,
0.125 for 1, 2 and 4 ordered subsets

tridiagonal Hessian matrix that can be inverted quickly [47, Chapter 5] [106], almost as fast

as inverting a diagonal Hessian matrix. Therefore, we expect to have faster convergence

in run time with a QSQS algorithm as it has smaller curvature than that of SQS while

the computation time per iteration remains almost the same. In 2D X-ray CT, the QSQS

approach will update either the horizontal or vertical profiles faster than SQS, depending on

the ordering of x. (We have not extended this algorithm to 3D geometry, which we leave

as possible future work if time permits.) We propose reordering of x at each iteration to

encourage equivalent convergence rates for both horizontal and vertical profiles, which is also

recommended in coordinate descent algorithm [96]. We further accelerate the algorithm using

ordered subsets. Simulation results show that the proposed OS-QSQS algorithm converges

faster than the OS-SQS algorithm for 2D X-ray CT reconstruction.

4.3.2.1 QSQS algorithm

We extend the derivation of SQS in Section 4.1. We first group each two adjacent voxels

in order with a parameter θij ∈ (0 1) for all i and j to determine the portion of grouping of

55

voxels, and illustrate the projection [Ax]i as follows:

[Ax]i =

Np
∑

j=1

aijxj =

Np
∑

j=1

θijaijxj +

Np
∑

j=1

(1− θij)aijxj (4.62)

=

Np
∑

j=0

(θijaijxj + (1− θi,j+1)ai,j+1xj+1) , (4.63)

where we let aij = 0 and xj = 0 for all i and j ∈ {0, Np + 1} for simplicity. Then, we

rewrite (4.63) using the idea of separable surrogate:

[Ax]i =

Np
∑

j=0

π̃ij

(

θijaij
π̃ij

(xj − x
(n)
j) +

(1− θi,j+1)ai,j+1

π̃ij
(xj+1 − x

(n)
j+1) + [Ax(n)]i

)

, (4.64)

where
∑Np

j=0 π̃ij = 1 and π̃ij is nonnegative and zero only if aij = 0 and ai,j+1 = 0.

We construct a quadratic surrogate Q
(n)
L (x) =

∑Nd

i=1 q
(n)
i ([Ax]i) for L(x) as in (4.3), and

derive the following by using the convexity inequality:

q
(n)
i ([Ax]i) ≤

Np
∑

j=0

π̃ijq
(n)
i

(

θijaij
π̃ij

(xj − x
(n)
j) +

(1− θi,j+1)ai,j+1

π̃ij
(xj+1 − x

(n)
j+1) + [Ax(n)]i

)

.

(4.65)

Then, we get a quasi-separable quadratic surrogate φ̃
(n)
L (x) for L(x):

L(x) ≤ φ̃
(n)
L (x) =

Np
∑

j=0

φ̃
(n)
L,j(xj, xj+1) (4.66)

φ̃
(n)
L,j(xj, xj+1) ,

Nd
∑

i=1

π̃ijq
(n)
i

(

θijaij
π̃ij

(xj − x
(n)
j) +

(1− θi,j+1)ai,j+1

π̃ij
(xj+1 − x

(n)
j+1) + [Ax(n)]i

)

.

(4.67)

The second derivatives of φ̃
(n)
L (x) are:

T
L,(n)
jl ,

∂2

∂xj∂xl
φ̃
(n)
L (x) =



















∑Nd

i=1 c̆
(n)
i

(

(1−θij)
2

π̃i,j−1
+

θ2ij
π̃ij

)

a2ij, l = j
∑Nd

i=1 c̆
(n)
i

θijaij(1−θi,j+1)ai,j+1

π̃ij
, l = j + 1

0, otherwise

, (4.68)

where
{

c̆
(n)
i

}

are curvatures for the function q
(n)
i (t). This reduces to the standard SQS choice

56

in (4.10) when θij = 1 for all i and j.

We select

π̃ij ,
θijaij + (1− θi,j+1)ai,j+1

∑Np

l=1 ail
,

where aij ≥ 0 for all i and j here, but any other choice of π̃ij satisfying its conditions can be

used. In particular, the nonuniform ideas of Section 4.2.2 could also be used here. For this

choice, the surrogate Hessian becomes

∂2

∂xj∂xl
φ̃
(n)
L (x) =



















∑Nd

i=1 c̆
(n)
i

(

(1−θij)
2

θi,j−1ai,j−1+(1−θij)aij
+

θ2ij
θijaij+(1−θi,j+1)ai,j+1

)

a2ij
∑Np

l=1 ail, l = j
∑Nd

i=1 c̆
(n)
i

θijaij(1−θi,j+1)ai,j+1

θijaij+(1−θi,j+1)ai,j+1

∑Np

l=1 ail, l = j + 1

0, otherwise.

(4.69)

We choose θij =
1
2
for all i and j for simplicity, which leads to uniform grouping. (Other

choices of θij can be possible but we will not discuss here.) This choice leads to the following

expression for the elements of the tridiagonal Hessian matrix:

∂2

∂xj∂xl
φ̃
(n)
L (x) =



















1
2

∑

i∈Ñj
c̆
(n)
i

(

1
ai,j−1+aij

+ 1
aij+ai,j+1

)

a2ij
∑Np

l=1 ail, l = j

1
2

∑

i∈Ñj∩Ñj+1
c̆
(n)
i

aijai,j+1

aij+ai,j+1

∑Np

l=1 ail, l = j + 1

0, otherwise

, (4.70)

where Ñj , {i = 1, . . . , Nd : aij 6= 0}. The complicated form (4.70) for the tridiagonal

Hessian can be simplified as follows:

∂2

∂xj∂xl
φ̃
(n)
L (x) =



















∑

i∈Ñj
c̆
(n)
i aij

∑Np

l=1 ail −
(

∂2

∂xj∂xj−1
φ̃
(n)
L (x) + ∂2

∂xj∂xj+1
φ̃
(n)
L (x)

)

, l = j

1
2

∑

i∈Ñj∩Ñj+1
c̆
(n)
i

aijai,j+1

aij+ai,j+1

∑Np

l=1 ail, l = j + 1

0, otherwise

,

(4.71)

which can be easily calculated by computing the Hessian of SQS (4.10) and additional off-

diagonal elements of Hessian for QSQS.

The QSQS of L(x) can be written as

φ̃
(n)
L (x) , L(x(n)) +∇L(x(n))(x− x(n)) +

1

2
(x− x(n))′TL,(n)(x− x(n)), (4.72)

57

where TL,(n) =
{

T
L,(n)
jl

}

Np×Np

is a symmetric tridiagonal matrix.

Similarly, we can construct a QSQS surrogate φ̃
(n)
R (x) for the regularizer R(x) with Hes-

sian values:

T
R,(n)
jl ,

∂2

∂xj∂xl
φ̃
(n)
R (x) (4.73)

=



















1
2

∑

k∈K̃j
ψ̈k(0)

(

1
|ck,j−1|+|ckj | +

1
|ckj |+|ck,j+1|

)

c2kj
∑Np

l=1 |crl|, l = j

1
2

∑

k∈K̃j∩K̃j+1
ψ̈k(0)

ckjck,j+1

|ckj |+|ck,j+1|
∑Np

l=1 |crl|, l = j + 1

0, otherwise

(4.74)

=



















∑

k∈K̃j
ψ̈k(0)ckj

∑Np

l=1 |crl| −
(

∂2

∂xj∂xj−1
φ̃
(n)
R (x) + ∂2

∂xj∂xj+1
φ̃
(n)
R (x)

)

, l = j

1
2

∑

k∈K̃j∩K̃j+1
ψ̈k(0)

ckjck,j+1

|ckj |+|ck,j+1|
∑Np

l=1 |crl|, l = j + 1

0, otherwise

,

(4.75)

where K̃j = {k = 1, . . . , Nr : ckj 6= 0}. (Compare (4.75) with the denominator of regularzier

for the standard SQS in (4.11).)

The overall QSQS surrogate can be defined as:

Ψ(x) ≤ φ̃(n)(x) , φ̃
(n)
L (x) + φ̃

(n)
R (x)

= Ψ(x(n)) +∇Ψ
(

x(n)
)

(x− x(n)) +
1

2
(x− x(n))′T (n)(x− x(n)), (4.76)

where T (n) , TL,(n) + TR,(n) =
{

T
L,(n)
jl + T

R,(n)
jl

}

Np×Np

is a symmetric tridiagonal matrix.

For computational efficiency, we precompute the coefficients that are used for computing

TL,(n) and TR,(n) before starting the iterative algorithm, which takes longer than the pre-

computation needed for SQS. In addition, we need doubled memory space for precomputed

T (n), compared to that of SQS, due to the off-diagonal elements in Hessian of QSQS. The

following is the update equation of QSQS:

x(n+1) = argmin
x

φ̃(n)(x) = x(n) −
[

T (n)
]−1

∇Ψ
(

x(n)
)

. (4.77)

All voxels can be updated relatively fast, since
[

T (n)
]−1

∇Ψ
(

x(n)
)

can be computed in O(n)

operations instead of O(n3) that is required for a dense Hessian matrix [47, Chapter 5] [106].

This enables the QSQS algorithm to have similar computation for each iteration as SQS,

while converging faster than SQS due to a smaller curvature for surrogate.

58

4.3.2.2 Reordering of x in horizontal and vertical direction

We expect (4.77) to update either the horizontal or vertical profiles faster than SQS,

depending on the ordering of x. To accelerate convergence, we further suggest sequentially

reordering x to update the horizontal and vertical profiles respectively. In [96], a related

reordering idea is suggested to compensate the update-direction related convergence behavior

of the coordinate descent algorithm. The pseudo code of the proposed algorithm is illustrated

in Table 4.3. We expect the QSQS method will likely speed up the convergence for both

horizontal and vertical direction, with a little extra computation and memory space. We

refer to this algorithm as QSQS with reordering (QSQS-R).

1: Precompute the coefficients that is used for computing T
(n)
h and T

(n)
v

2: for n = 0, 1, 2, · · ·
3: if n is odd

4: Order x(n) in horizontal directions: x
(n)
h

5: x
(n+1)
h = argminxh

φ̃
(n)
h (xh) = x

(n)
h −

[

T
(n)
h

]−1

∇Ψh

(

x
(n)
h

)

6: else

7: Order x(n) in vertical directions: x
(n)
v

8: x
(n+1)
v = argminxv

φ̃
(n)
v (xv) = x

(n)
v −

[

T
(n)
v

]−1

∇Ψv

(

x
(n)
v

)

9: end

10: end

Table 4.3: Pseudo code of QSQS algorithm with reordering of x in horizontal and vertical
direction. (Each subscript h and v denote horizontal and vertical direction.)

4.3.2.3 Simulation results

The algorithm is evaluated with a simulation data using the phantom in Fig. 4.15(a).

The projection space have 444 detector elements and 492 projection views, and the recon-

structed image is of size 256×256. The noisy sinogram data y was generated by the Poisson

noise model (2.5). The FBP reconstructed image in Fig. 4.15(b) was used for initializing

the iterative reconstruction. We minimized PWLS cost function with statistical weighting

parameter wi = exp(−yi) ∝ 1
var(yi)

. The edge-preserving hyperbola potential function (2.12)

with δ = 0.005, and the spatial weighting βk = 0.25 for horizontal and vertical differences,

and βk =
0.25√

2
for diagonal differences was empirically chosen to produce a good image, where

differencing matrix C had 1st-order differences in 2D. We reconstructed an image for 1, 12

and 41 ordered subsets, with the nonnegativity constraint. The OS-SQS, OS-QSQS and

59

0.16

0.18

0.2

0.22

0.24

(a)

0.16

0.18

0.2

0.22

0.24

(b)

0.16

0.18

0.2

0.22

0.24

(c)

0.16

0.18

0.2

0.22

0.24

(d)

0.16

0.18

0.2

0.22

0.24

(e)

Figure 4.15: (a) Phantom image, (b) FBP image x(0), (c) OS-SQS image x(34), (d) OS-QSQS
image x(32) and (e) OS-QSQS-R image x(26) for 41 ordered subsets. The NRMSD for (c), (d)
and (e) are -40 [dB].

OS-QSQS-R reconstructed images in Fig. 4.15 suggest that iterative image reconstruction

can produce better images than FBP.

The proposed method uses smaller curvatures than a standard SQS method, thus the

proposed OS-QSQS converges faster than the OS-SQS algorithm. Fig. 4.16 plots NRMSD

[dB] (4.61) between the current image x(n) and the converged image x̂ (reconstructed by

3000 iterations of SQS), versus iteration. (The plot of NRMSD [dB] (or RMSD [HU])

versus computation time would be useful for comparison, which we leave it as a future

work.) The results show that OS-QSQS-R is about 25% faster than the standard OS-

SQS. This is a modest improvement, but the extra computation required for computing a

tridiagonal Hessian matrix and inverting the matrix is small compared to forward projection.

Fig. 4.16 illustrates that both reordering of x and using ordered subsets accelerate the QSQS

algorithm, as expected. We leave the comparison of the proposed algorithms in computation

time.

60

0 5 10 15 20 25 30 35 40
−50

−45

−40

−35

−30

−25

−20

−15

−10

Iteration

N
R

M
S

 d
if
fe

re
n
c
e
 [
d
B

]

OS−SQS−1
OS−QSQS−1
OS−QSQS−R−1
OS−SQS−12
OS−QSQS−12
OS−QSQS−R−12
OS−SQS−41
OS−QSQS−41
OS−QSQS−R−41

Figure 4.16: NRMSD [dB] versus iterations of OS-SQS, OS-QSQS and OS-QSQS-R for 1,
12 and 41 ordered subsets

4.4 Conclusion and Discussion

We have carefully studied the SQS method that is widely used in X-ray CT reconstruction,

and proposed three novel approaches to improve the convergence rate of the SQS. We found

the performance of NU-SQS algorithm the best among three approaches, which led us to

further investigate NU-SQS method on 3D real patient data. In future work, we also plan

to check SQS-BI and QSQS on real patient data set.

The key of the NU-SQS approach is designing “update-needed” factors u
(n)
j in (4.22) that

encourage larger step sizes for voxels that are predicted to need larger changes to reach the

final image. Further optimization of these factors, e.g., by improving the initialization of

ũ
(0)
j and the DRA function in (4.32), should lead to further acceleration and stability of the

proposed NU-SQS and NU-OS-SQS methods.

61

CHAPTER V

Momentum approaches with ordered subsets

The accelerated optimization transfer methods with OS framework described in the pre-

vious chapter provided promising convergence rate but they are not yet fast enough. We

provide further acceleration by introducing momentum approaches in Section 2.3.4 into OS-

SQS methods. We call this combination the OS-momentum method. We particularly focus

on Nesterov’s two momentum methods [79,83] in Section 2.3.4, which provide a fast conver-

gence rate O
(

1
n2

)

where n counts the number of iterations. However, the combination of OS

and momentum sometimes leads to instability. So, we adapted a relaxation scheme in [29]

to stabilize the proposed OS-momentum algorithm.

Section 5.1 led to two conference papers [63,64], and the initial version of Section 5.2 was

presented in [58]. The journal version [65] of this chapter is currently in a review process.

5.1 OS-SQS methods with Nesterov’s momentum

To further accelerate OS-SQS methods, we propose to adapt two of Nesterov’s momentum

techniques [79, 83]. (We can also consider another Nesterov’s momentum approach [82]

achieving same rate as other two [79,83].) This section reviews both momentum approaches

and combines them with OS methods.

The first momentum method [79] uses two previous iterates, while the second [83] accu-

mulates all gradients. Without using OS methods, both Nesterov methods provide O (1/n2)

convergence rates. We expect that combining momentum with OS methods will provide

O (1/(nM)2) rates in early iterations. The main benefit of combining OS and Nesterov’s

momentum is that we have approximately M2 times acceleration in early iterations with

M subsets, while the extra computation and memory needed for momentum technique in

OS-SQS are almost negligible. We discuss both proposed algorithms in more detail.

62

5.1.1 Proposed OS-SQS methods with momentum 1 (OS-mom1)

Table 5.1 illustrates the proposed combination of an OS-SQS algorithm with the mo-

mentum technique that is described in [79], where the algorithm generates two sequences

{x(n+m
M

)} and {z(n+m
M

)}, and line 7 of the algorithm corresponds to a momentum step with

Nesterov’s optimal parameter sequence tk. Table 5.1 reduces to the ordinary OS-SQS algo-

rithm in Table 2.3 when tk = 1 for all k ≥ 0.

1: Initialize x(0) = z(0), t0 = 1 and compute D.

2: for n = 0, 1, · · · , N − 1

3: for m = 0, 1, · · · ,M − 1

4: k = nM +m

5: tk+1 =
1
2

(

1 +
√

1 + 4t2k

)

6: x(
k+1
M

) =
[

z(
k
M

) −D−1M∇Ψm(z
(k
M

))
]

+

7: z(
k+1
M

) = x(
k+1
M

) + tk−1
tk+1

(

x(
k+1
M

) − x(
k
M

)
)

8: end

9: end

Table 5.1: Proposed OS-SQS methods with momentum in [79] (OS-mom1)

The non-OS version of Table 5.1 satisfies the following convergence rate:

Lemma 3. For n ≥ 0, the sequence
{

x(n)
}

generated by the non-OS version (M = 1) of

Table 5.1 satisfies

Ψ(x(n+1))−Ψ(x̂) ≤ 2||x(0) − x̂||2D
(n+ 1)(n+ 2)

, (5.1)

where D is a majorizing matrix such as (2.19).

The inequality (5.1) is a simple generalization of [10, Theorem 4.4]. In practice, we expect

the initial rate of OS-mom1 for M > 1 to have O (1/(nM)2) with the approximation (2.21),

which is the main benefit of this work, while the computation cost remains almost the same

as that of OS-SQS algorithm in Table 2.3. The only slight drawback of Table 5.1 over

Table 2.3 is the extra memory needed to store the image z.

5.1.2 Proposed OS-SQS methods with momentum 2 (OS-mom2)

The second proposed OS-SQS algorithm with momentum in [83] is described in Table 5.2.

The choice of coefficient tk in Table 5.2 is adopted from [30,104] and gives faster convergence

than the choice in [83].

63

1: Initialize x(0) = v(0) = z(0), t0 = 1 and compute D.

2: for n = 0, 1, · · · , N − 1

3: for m = 0, 1, · · · ,M − 1

4: k = nM +m

5: tk+1 =
1
2

(

1 +
√

1 + 4t2k

)

6: x(
k+1
M

) =
[

z(
k
M

) −D−1M∇Ψm(z
(k
M

))
]

+

7: v(
k+1
M

) =
[

z(0) −D−1
∑nM+m

l=0 tlM∇Ψ(l)M (z(
l
M

))
]

+

8: z(
k+1
M

) = x(
k+1
M

) + tk+1
∑k+1

l=0 tl

(

v(
k+1
M

) − x(
k+1
M

)
)

9: end

10: end

Table 5.2: Proposed OS-SQS methods with momentum in [83] (OS-mom2), The notation
(l)M denotes l modM .

The sequence
{

x(n)
}

generated by Table 5.2 with M = 1 can be proven to satisfy the

inequality (5.1), by generalizing [83, Theorem 2]. While the one-subset (M = 1) version

of Table 5.2 provides O(1/n2), we expect from (2.21) for the OS version to have the rate

O (1/(nM)2) in early iterations. Compared with Table 5.1, one additional [·]+ operation per

iteration and extra arithmetic operations are required in Table 5.2, but those are negligible.

Overall, the two proposed algorithms in Tables 5.1 and 5.2 are expected to provide fast

convergence rate O (1/(nM)2) in early iterations, which we confirm empirically in Section 5.3.

However, the type of momentum affects the overall convergence when combined with OS.

Also, the convergence behavior of two algorithms is affected by the number and ordering of

subsets, as discussed in Section 5.3.

The proposed OS-momentum algorithms in Tables 5.1 and 5.2 become unstable in some

cases, as predicted by the convergence analysis in [29]. To stabilize the algorithms, the next

section proposes to adapt a recent relaxation scheme [29] developed for stochastic gradient

methods with momentum.

5.2 Relaxation of momentum

This section relates the OS-SQS algorithm to diagonally preconditioned stochastic gra-

dient methods and adapts a relaxation scheme designed for stochastic gradient algorithms

with momentum. Then we investigate various choices of relaxation to achieve overall fast

convergence.

64

5.2.1 Stochastic gradient method

One can view OS methods as stochastic gradient methods by defining M∇ΨSk
(x) as

a stochastic estimate of ∇Ψ(x), where a random variable Sk at kth iteration is uniformly

chosen from {0, 1, · · · ,M − 1}. In this stochastic setting, OS-SQS methods satisfy:



















E [MΨSk
(x)] = Ψ(x)

E [M∇ΨSk
(x)] = ∇Ψ(x)

E
[

(M∇jΨSk
(x)−∇jΨ(x))2

]

≤ σ2
j , ∀j

(5.2)

for all x ∈ B, for some finite constants {σj}, where E is the expectation operator over

the random selection of Sk, ∇j , ∂/∂xj, and B is a bounded feasible set that includes

x̂. The feasible set B can be derived based on the measurement data y and the derivation

in [4, Section A.2], and we reasonably assume that the sequences generated by the algorithms

are within the set B. The last inequality in (5.2) is a generalized version of [29, eqn. (2.5)]

for (diagonally preconditioned) OS-SQS-type algorithms. The matrix Σ , diag{σj} has

smaller values if we use smaller M and group the views into subsets appropriately, but it is

impractical to compute Σ. (Section 5.3.1.4 provides a practical approach for approximating

Σ.)

5.2.2 Proposed OS-SQS methods with relaxed momentum (OS-mom3)

Inspired by [29], Table 5.3 describes a generalized version of OS-SQS-momentum meth-

ods, which reduces to OS-mom2 algorithm in Table 5.2 with a deterministic subset ordering

Sk = (k modM) and a fixed majorizing diagonal matrix

Γ(k) = D. (5.3)

For M = 1, the algorithm with these choices satisfies (5.1) with n = k. However, for M > 1,

the analysis in [29] illustrates that using the choice (5.3) leads to the following inequality

E

[

Ψ(x(
k+1
M

))−Ψ(x̂)
]

≤ 2||x(0) − x̂||2D
(k + 1)(k + 2)

+
(k + 3) tr{PΣ}

3
(5.4)

for k ≥ 0, where P , diag
{

pj , maxx,x̄∈B |xj − x̄j|
}

measures the diameter of the feasible

set B. This expression reveals that OS methods with momentum may suffer from error

accumulation due to the last term in (5.4) that depends on the error bounds (Σ) in (5.2). To

improve stability, we would like to find a way to decrease this term. Using a larger constant

65

1: Initialize x(0) = v(0) = z(0), t0 ∈ (0, 1] and compute D.

2: for n = 0, 1, · · · , N − 1

3: for m = 0, 1, · · · ,M − 1

4: k = nM +m

5: Choose Γ(k) , diag
{

γ
(k)
j

}

s.t.

{

Γ(0) ≻ D, k = 0

Γ(k) � Γ(k−1), k > 0

6: Choose tk+1 s.t. t2k+1Γ
(k+1) �

(

∑k+1
l=0 tl

)

Γ(k)

7: x(
k+1
M

) =
[

z(
k
M

) −
[

Γ(k)
]−1

M∇Ψξk(z
(k
M

))
]

+

8: v(
k+1
M

) =
[

z(0) −
[

Γ(k)
]−1∑k

l=0 tlM∇Ψξl(z
(l
M

))
]

+

9: z(
k+1
M

) = x(
k+1
M

) + tk+1
∑k+1

l=0 tl

(

v(
k+1
M

) − x(
k+1
M

)
)

10: end

11: end

Table 5.3: Proposed stochastic OS-SQS algorithms with momentum (OS-mom3). ξk is a
realization of a random variable Sk.

denominator, i.e. Γ(k) = qD for q > 1, only slows down the accumulation of error and does

not prevent eventual accumulation of error [29].

To stabilize the algorithm, we adapt the relaxed momentum approach in [29] as described

in Table 5.3 with appropriately selected Γ(k) and tk. Then, the algorithm in Table 5.3 satisfies

the following convergence rate:

Lemma 4. For k ≥ 0, the sequence {x(k+1
M

)} generated by Table 5.3 satisfies

E

[

Ψ(x(
k+1
M

))−Ψ(x̂)
]

≤ 1
∑k

l=0 tl

[

||x(0) − x̂||2
Γ(k)

2
+

k
∑

l=0

l
∑

i=0

ti(Γ
(k) −D)−1Σ2

]

. (5.5)

Proof. See Appendix B.

Lemma 4 shows that increasing Γ(k) can help prevent accumulation of error Σ. Next we

discuss the selection of parameters Γ(k) and tk.

5.2.3 The choice of Γ(k) and tk

For any given Γ(k) , diag
{

γ
(k)
j

}

, we use t0 = 1 and the following rule:

tk+1 =
1

2α(k+1)

(

1 +
√

1 + 4t2kα
(k)α(k+1)

)

(5.6)

66

for all k ≥ 0, where α(k+1) , maxj

(

γ
(k+1)
j /γ

(k)
j

)

and α(0) = 1. The choice (5.6) increases

the fastest among all possible choices satisfying the condition in line 6 of Table 5.3 (see the

proof in Appendix C).1

Here, we focus on the choice

Γ(k) = D + (k + 2)c
(k)

Γ (5.7)

for a nondecreasing c(k) ≥ 0 and a fixed diagonal matrix Γ , diag{γj} ≻ 0. The choice (5.7)

is a generalized version of the work in [29], enabling more flexibility in the choice of c(k). We

leave other formulations of Γ(k) that may provide better convergence as future work.

For Γ(k) in (5.7), computing α(k) in (5.6) becomes

α(k+1) = 1 +
(k + 3)c

(k+1) − (k + 2)c
(k)

minj(dj/γj) + (k + 2)c(k)
. (5.8)

Overall, the computational cost of Table 5.3 with the choices (5.6) and (5.7) remains similar

to that of Table 5.2. Using (5.6) and (5.7), the proposed algorithm in Table 5.3 achieves the

following inequality:

Corollary 2. For k ≥ 0, the sequence {x(k+1
M

)} generated by Table 5.3 with the coeffi-

cients (5.6) and (5.7) satisfies

E

[

Ψ(x(
k+1
M

))−Ψ(x̂)
]

≤
(

max
0≤l≤k

√
α(l)

)

[

2||x(0) − x̂||2D
(k + 1)(k + 2)

+
2||x(0) − x̂||2Γ

(k + 1)(k + 2)1−c(k)
+

2
∑k

i=0(i+ 2)2−c(i) tr{Γ−1Σ2}
(k + 1)(k + 2)

]

. (5.9)

Proof. Use Lemma 4 and the inequality conditions of the sequence {tk} in (5.6):

k + 1

2
√
α(k)

≤ tk ≤
k + 1√
α(k)

,

min
0≤l≤k

(k + 1)(k + 2)

4
√
α(l)

≤
k
∑

l=0

tl ≤ max
0≤l≤k

(k + 1)(k + 2)

2
√
α(l)

for k ≥ 0, which can be easily proven by induction.

There are two parameters c(k) and Γ to be tuned in (5.7). Based on Corollary 2, the

next two subsections explore how these parameters affect convergence rate. (We made a

1 The coefficient (5.6) increases faster than the choice tk+1 = k+1
2c for a constant c(k) = c ≥ 1 used in [29],

so we use the choice (5.6) that leads to faster convergence based on Lemma 4.

67

preliminary investigation of these two parameters in [58].)

5.2.4 The choice of c(k)

In Corollary 2, the choice of c(k) controls the overall convergence rate. We first consider

a constant c(k).

Corollary 3. For k ≥ 0 and a fixed constant c(k) = c ∈ [0, 2], the sequence {x(k+1
M

)} generated

by Table 5.3 with the coefficients (5.6) and (5.7) satisfies

E

[

Ψ(x(
k+1
M

))−Ψ(x̂)
]

≤
(

max
0≤l≤k

√
α(l)

)

[

2||x(0) − x̂||2D
(k + 1)(k + 2)

+
2||x(0) − x̂||2Γ

(k + 1)(k + 2)1−c
+

2(k + 3)3−c tr{Γ−1Σ2}
(3− c)(k + 1)(k + 2)

]

. (5.10)

Proof. Use the derivation in [29, Section 6.3] using

k
∑

i=0

(i+ 2)2−c ≤
∫ k+1

1

(x+ 2)2−cdx ≤ (k + 3)3−c

3− c
.

In Corollary 3, the choice c(k) = 1.5 provides the rate

E

[

Ψ(x(
k+1
M

))−Ψ(x̂)
]

≤



max
0≤l≤k

∀j

√

dj + (l + 2)1.5γj
dj + (l + 1)1.5γj





×O

(

2||x(0) − x̂||2D
k2

+
2||x(0) − x̂||2Γ√

k
+

2 tr{Γ−1Σ2}
1.5

√
k

)

, (5.11)

achieving, on average, the optimal rate O(1/
√
k) in the presence of stochastic noise2. Corol-

lary 3 shows that using c ≤ 1 will suffer from error accumulation, using 1 < c < 1.5 might

provide faster initial convergence than c = 1.5 but does not achieve the optimal rate, and

c > 1.5 will cause slower overall convergence rate than c = 1.5. So, we prefer 1 < c ≤ 1.5, for

which we expect to eventually reach smaller cost function values than the choice Γ(k) = D (or

Γ = 0) in (5.3), since we prevent the accumulation of error from OS methods by increasing

the denominator Γ(k) as (5.7). In other words, the algorithm with M > 1 and (5.7) is slower

2 Stochastic gradient algorithms (using only first-order information) cannot decrease the stochastic noise
faster than the rate O(1/

√
k) [78], and the proposed relaxation scheme achieves the optimal rate [29].

68

than the choice of (5.3) initially, but eventually becomes faster and reaches the optimum on

average.

In light of these trade-offs, we further consider using an increasing sequence c(k) that is

upper-bounded by 1.5, hoping to provide fast overall convergence rate. We investigated the

following choice:

c(k) = 1 + 0.5

(

1− η

k + η

)

(5.12)

for k ≥ 0 with a parameter η > 0. This choice of c(k) balances between fast initial acceler-

ation and prevention of error accumulation. In other words, this increasing c(k) can provide

faster initial convergence than a constant c(k) = 1.5 (or η = 0), yet guarantees the optimal

(asymptotic) rate O(1/
√
k) as the case c(k) = 1.5, based on Corollary 2. We leave further

optimization of c(k) as future work.

5.2.5 The choice of Γ

To choose Γ, we would like to minimize the upper bound on the right hand side of (5.10).

For simplicity in designing Γ, we consider a fixed value of c in (5.10), we ignore the max0≤l≤k

√
α(l)

term, and we ignore the “+1” and “+2” factors added to k. The optimal Γ for k (sub)iterations

is

Γ̂c(k) , argmin
Γ≻0

{

||x(0) − x̂||2Γ
k2−c

+
tr{Γ−1Σ2}
(3− c)kc−1

}

= diag

{

σj√
3− c ûj

k1.5−c

}

, (5.13)

where

ûj , |x(0)j − x̂j|. (5.14)

It is usually undesirable to have to select the (sub)iteration k before iterating. The choice

c = 1.5 cancels out the parameter k in (5.13) leading to the k-independent choice:

Γ̂1.5(·) = diag

{

σj√
1.5 ûj

}

. (5.15)

Since we prefer the choice of c(k) that eventually becomes 1.5 for the optimal rate, we focus

on the choice Γ̂1.5(·) in (5.15). The next section describes practical approximations for the

values of σj and ûj in (5.15).

69

5.3 Results

We investigate the convergence rate of the three proposed OS-momentum algorithms

in Tables 5.1, 5.2 and 5.3, namely OS-mom1, OS-mom2 and OS-mom3 in this section, for

PWLS reconstruction of simulated and real 3D CT scans. We implemented the proposed

algorithm in C and ran on a Mac with two 2.26GHz quad-core Intel Xeon processors and a

16GB RAM using 16 threads.

We use an edge-preserving potential function ψk(·) in (2.13). For simulation data, the

spatial weighting βk was chosen to be

βk , 50
∏

∀j,ckj 6=0

max{κj, 0.01κmax} (5.16)

for uniform resolution properties [43], where κj ,

√

∑Nd
i=1 aijwi

∑Nd
i=1 aij

and κmax , maxj κj. We

emulated βk of the GE product “Veo” for the patient 3D CT scans. We use the NU ap-

proach [62] in SQS methods for fast convergence. We investigated 12, 24 and 48 subsets for

OS algorithms.

We first use simulated data to analyze the factors that affect the stability of the proposed

OS-momentum algorithms, and further study the relaxation scheme for the algorithms. Then

we verify the convergence speed of the proposed algorithm using real 3D CT scans. We

computed the root mean squared difference (RMSD3) between the current and converged4

image within the region-of-interest (ROI) versus computation time5 for 30 iterations (n) to

measure the convergence rate.6

5.3.1 Simulation data

We simulated 888× 64× 2934 sinogram from a 1024× 1024× 154 XCAT phantom [98]

scanned in a helical geometry with pitch 1.0. We reconstructed 512× 512× 154 images with

an initial filtered back-projection (FBP) image x(0) using a (simple) single-slice rebinning

method [88]. Fig. 5.1 shows that SQS-Nesterov’s momentum methods without OS algo-

rithms do not accelerate SQS much. OS algorithm itself can accelerate the SQS algorithm

3 RMSDROI(x
(n)) , ||x(n)

ROI − x̂ROI||/
√

Np,ROI [HU], where Np,ROI is the number of voxels within the
ROI.

4 We ran thousands of iterations of (convergent) SQS algorithm to generate (almost) converged images
x̂.

5 We use the normalized run time that is a computation time divided by the run time required for one
iteration of SQS (one subset version of OS-SQS) for each data set.

6 Even though the convergence analysis in Section 5.2 is based on the cost function, we plot RMSD rather
than the cost function because RMSD is more informative (see Section 4.2.3.4).

70

better than Nesterov’s momentum. Our proposed OS-momentum algorithms rapidly de-

crease RMSD in early iterations (disregarding the diverging curves that we address shortly).

However, the convergence behavior of OS-momentum algorithm depends on several factors

such as the number of subsets, the order of subsets, and the type of momentum techniques.

Thus, we discuss these in more detail based on the results in Fig. 5.1, and suggest ways to

improve the stability of the algorithm while preserving the fast convergence rate.

5.3.1.1 The number of subsets

Intuitively, using more subsets will provide faster initial convergence but will increase

instability due to errors between the full gradient and subset gradient. Also, performing

many sub-iterations (m) can increase error accumulation per outer iteration (n). Fig. 5.1

confirms this behavior.

0 10 20 30 40
0

10

20

30

40

Normalized run time

R
M

S
D

 [
H

U
]

OS(1)
OSs(12)

OSs(24)

OSs(48)
OSs(12)−mom1

OSs(12)−mom2
OSs(24)−mom1

OSs(24)−mom2

OSs(48)−mom1
OSs(48)−mom2

(a) Sequential order (OSs)

0 10 20 30 40
0

10

20

30

40

Normalized run time

R
M

S
D

 [
H

U
]

OS(1)−mom1

OS(1)−mom2
OSb(12)

OSb(24)
OSb(48)

OSb(12)−mom1

OSb(12)−mom2
OSb(24)−mom1

OSb(24)−mom2
OSb(48)−mom1

OSb(48)−mom2

(b) Bit-reversal order (OSb)

Figure 5.1: Simulation data: convergence rate of OS algorithms (12, 24, 48 subsets) for 30
iterations with and without momentum for (a) sequential order and (b) bit-reversal order in
Table 5.4. (The first iteration counts the precomputation of the denominator D in (2.19),
and thus there are no changes during the first iteration.)

5.3.1.2 The ordering of subsets

Interestingly, the results of the proposed algorithms depend greatly on the subset order-

ing. Fig. 5.1 focuses on two deterministic orders: a sequential (OSs) order, and a bit-reversal

(OSb) order [50] that selects each order-adjacent subsets to have their projection views to be

far apart as described in Table 5.4. The ordering greatly affects the build-up of momentum

in OS-momentum algorithms, whereas ordering is less important for ordinary OS methods as

71

seen in Fig. 5.1. The bit-reversal order provided much better stability in Fig. 5.1(b) compared

to the results in Fig. 5.1(a). Apparently, the bit-reversal order can cancel out some gradient

errors, because successive updates are likely to have opposite directions due to its subset

ordering rule. In contrast, the sequential ordering has high correlation between the updates

from two adjacent subsets, increasing error accumulation through momentum. Therefore,

we recommend using the bit-reversal order. (Fig. 5.3(d) shows that random ordering (OSr)

performed worse than the bit-reversal order.)

Sequential (OSs): (S0, S1, S2, S3, S4, S5, S6, S7), (S0, S1, S2, S3, S4, S5, S6, S7), · · ·
Bit-reversal (OSb): (S0, S4, S2, S6, S1, S5, S3, S7), (S0, S4, S2, S6, S1, S5, S3, S7), · · ·
Random (OSr): S6, S7, S1, S7, S5, S0, S2, S4, S7, S3, S2, S3, S0, S4, S1, S6, · · ·

Table 5.4: Examples of subset orderings: Two deterministic subset ordering (OSs, OSb) and
one instance of random ordering (OSr) for OS methods withM = 8 subsets in a simple geom-
etry with 24 projection views denoted as (p0, p1, · · · , p23), where those are reasonably grouped
into the following 8 subsets: S0 = (p0, p8, p16), S1 = (p1, p9, p17), · · · , S7 = (p7, p15, p23).

5.3.1.3 Type of momentum

Fig. 5.1 shows that combining OS with two of Nesterov’s momentum techniques in Ta-

bles 5.1 and 5.2 (OS-mom1 and OS-mom2) resulted in different behaviors, whereas the

one-subset versions of them behaved almost the same. Fig. 5.1 shows that the OS-mom2 al-

gorithm is more stable than the OS-mom1 algorithm perhaps due to the different formulation

of momentum or the fact that the momentum term {z(n+m
M

)} in Table 5.1 is not guaranteed

to stay within the feasible set R
Np

+ unlike that in Table 5.2. Therefore, we recommend using

the OS-mom2 algorithm in Table 5.2 for better stability.

Fig. 5.2 shows the initial image and the converged image and reconstructed images after

20 normalized run time (15 iterations) of conventional OS and our proposed OS-momentum

algorithm with 24 subsets and the bit-reversal ordering. The OSb(24)-mom2 reconstructed

image is very similar to the converged image after 15 iterations while that of conventional

OS is still noticeably different. However, even the more stable OS-mom2 algorithm becomes

unstable eventually for many subsets (M > 24) as seen in Fig. 5.1; the next subsection shows

how relaxation improves stability.

5.3.1.4 The choice of Γ

Section 5.2.5 gives an optimized Γ in (5.7) that minimizes the right term of (5.10), i.e.,

the gradient error term, on average. However, since the right term in (5.10) is a worst-case

72

(a)

800

850

900

950

1000

1050

1100

1150

1200

(b)

(c) (d)

Figure 5.2: Simulation data: a transaxial plane of (a) an initial FBP image x(0), (b) a
converged image x̂, and two reconstructed images x(15) after 20 normalized run time (15
iterations) of (c) OSb(24) and (d) OSb(24)-mom2. (Images are cropped for better visualiza-
tion.)

loose upper-bound, we can afford to use smaller Γ than Γ̂1.5(·) in (5.15). In addition, we

may use even smaller Γ depending on the order of subsets. Specifically, the bit-reversal

ordering (OSb) appears to accumulate less gradient error than other orderings, including

random subset orders (OSr), so the choice (5.15) may be too conservative. Therefore, we

investigated decreasing the matrix Γ̂1.5(·) (5.15) by a factor λ ∈ (0, 1] as

Γ = λΓ̂1.5(·), (5.17)

where we empirically investigate the parameter λ in Fig. 5.3.

The optimized Γ̂1.5(·) in (5.15) relies on unavailable parameters {σj} and {ûj}, so we

provide a practical approach to estimate them, which we used in Fig. 5.3. The value σj =

73

maxx∈B σ̃j(x) in (5.2) is the upper bound of the values σ̃j(x) for all x ∈ B, where

σ̃j(x) ,
√

E
[

(M∇jΨSk
(x)−∇jΨ(x))2

]

=

√

√

√

√M

M−1
∑

m=0

[A′
mWm(Amx− ym)]

2
j − [A′W (Ax− y)]2j .

(5.18)

In practice, the sequences in Table 5.3 visit only a part of the set B, so it would be preferable

to compute σ̃j(x) within such part of B but even that is impractical. Instead, we use σ̃j(x
(0))

as a practical approximation that is computationally efficient. This quantity measures the

variance of the stochastic estimate of the gradient at the initial image x(0), mostly depending

on the grouping of the subsets and the number of subsets.7

We compute value σ̃j(x
(0)) in (5.18) simultaneously with the computation of D in (2.19)

using modified projectors A and A′ (see [62, Section III.F]) that handle two inputs and only

slightly increase the computation rather than doubling the computation.

We further approximate ûj (5.14) by

ûj ≈ ζū (5.19)

for Γ̂1.5(·) in (5.15), where ζ > 0 is an (unknown) constant, and a vector ū ∈ R
Np

+ is a

normalized approximation of ûj that satisfies ‖ūROI‖/
√

Np,ROI = 1, which is computed by

applying an edge-detector to the FBP image that is used for the initial x(0) [62, Section

III.E].8 In low-dose clinical CT, the RMSD within ROI between the initial FBP image and

the converged image is about 30 [HU], i.e. ‖ûROI‖/
√

Np,ROI ≈ 30 [HU], so we let ζ = 30 [HU]

in (5.19) as a reasonable choice in practice.9 Then, our final practical choice of Γ becomes

Γ̃ = λΓ̂1.5(·) ≈ λ diag

{

σ̃j(x
(0))√

1.5 ζūj

}

. (5.20)

In Fig. 5.3, we have investigated the parameter λ for various choices of the number and

ordering of subsets. In all cases, λ = 1 is too conservative and yields very slow convergence.

Smaller λ ≤ 0.1 values lead to faster convergence, but it failed to stabilize the case of

sequential ordering for M > 24. However, we found it reasonable to use λ = 0.01 for

the bit-reversal orderings in the simulation data, while the choice λ = 0.001 was too small

7 We found that
∑Np

j=1 σ̃48,j(x
(0)) ≈ 2.1

∑Np

j=1 σ̃24,j(x
(0)) ≈ 4.4

∑Np

j=1 σ̃12,j(x
(0)) for the simulation data,

agreeing with the discussion in Section 5.3.1.1.
8 We provide convergence results from using the oracle û, compared to its approximate ζū, in Section 5.3.3.
9 This choice worked well in our experiments, but depend on the initial image, the cost function and the

measurements, so improving the choice of ζ is future work.

74

0 10 20 30
0

10

20

30

40

Normalized run time

R
M

S
D

 [
H

U
]

OSs−mom2
OSb−mom2

OSs−mom3(1.5,30,1)

OSb−mom3(1.5,30,1)
OSs−mom3(1.5,30,0.1)

OSb−mom3(1.5,30,0.1)
OSs−mom3(1.5,30,0.01)

OSb−mom3(1.5,30,0.01)

OSs−mom3(1.5,30,0.001)
OSb−mom3(1.5,30,0.001)

(a) 12 subsets

0 10 20 30 40
0

10

20

30

40

Normalized run time

R
M

S
D

 [
H

U
]

(b) 24 subsets

0 10 20 30 40 50
0

10

20

30

40

Normalized run time

R
M

S
D

 [
H

U
]

(c) 48 subsets

0 10 20 30 40
0

10

20

30

40

Normalized run time

R
M

S
D

 [
H

U
]

OSr
OSr−mom2
OSr−mom3(1.5,30,1)

OSr−mom3(1.5,30,0.1)
OSr−mom3(1.5,30,0.01)
OSr−mom3(1.5,30,0.001)

(d) 24 subsets

Figure 5.3: Simulation data: convergence rate for various choices of the parameter λ in
relaxation scheme of OS-momentum algorithms (c, ζ, λ) for (a) 12, (b) 24, (c) 48 subsets with
both sequential (OSs) and bit-reversal (OSb) subset orderings in Table 5.4 for 30 iterations.
(The plot (b) and (c) share the legend of (a).) The averaged plot of five realizations of
random subset ordering (OSr) is illustrated in (d) for 24 subsets.

to suppress the accumulation of error within 30 iterations for 48 subsets. Any value of

λ > 0 here will eventually lead to stability as Γ(k) increases with c(k) = 1.5, based on the

convergence analysis (5.10). Particularly, OSs-mom3 algorithm with λ = 0.1 in Figs. 5.3(b)

and 5.3(c) illustrates this stability property, where the RMSD curve recovers from the initial

diverging behavior as the algorithm proceeds.

For Fig. 5.3(d), we executed five realizations of the random ordering and show the average

of them for each curve. Here, we found that λ = 0.01 was too small to suppress the error

within 30 iterations, and λ = 0.1 worked the best. Based on Fig. 5.3, we recommend using

the bit-reversal order with λ = 0.01 rather than random ordering.

75

Figs. 5.1 and 5.3 are plotted with respect to the run time of each algorithm. Here us-

ing larger subsets increased the run time, about 0.01 normalized run time increment per

each iteration (n) for increasing M by one in our implementation. The additional compu-

tation required for momentum methods was almost negligible, confirming that introducing

momentum approach accelerates OS algorithm significantly in run time.

Overall, the simulation study demonstrated dramatic acceleration from combining OS

algorithm and momentum approach. Next, we study the proposed OS-momentum algorithms

on patient data, and verify that the parameters tuned with the simulation data work well

for real CT scans.10

5.3.2 Shoulder region scan data

From a 888 × 32 × 7146 sinogram measured in a helical geometry with pitch 0.5, we

reconstructed a 512 × 512 × 109 shoulder region image in Fig. 5.5. Fig. 5.4 shows the

RMSD convergence curves for the bit-reversal subset ordering, where the results are similar

to those for the simulation in Fig. 5.3 in terms of parameter selection. In Fig. 5.4(a), the

parameter λ = 0.01 for both 24 and 48 subsets worked well providing overall fast convergence.

Particularly for M = 48, the choice λ = 0.01 greatly reduced the gradient approximation

error and converged faster than the un-relaxed OS-momentum algorithm.

0 10 20 30 40 50
0

5

10

15

20

25

30

Normalized run time

R
M

S
D

 [
H

U
]

OS(1)
OS(1)−mom2

OSb(24)

OSb(48)
OSb(24)−mom2

OSb(48)−mom2
OSb(24)−mom3(1.5,30,0.1)

OSb(48)−mom3(1.5,30,0.1)

OSb(24)−mom3(1.5,30,0.01)
OSb(48)−mom3(1.5,30,0.01)

(a)

0 10 20 30 40
0

1

2

3

4

5

6

Normalized run time

R
M

S
D

 [
H

U
]

OSb(24)−mom3(0.1,0)
OSb(24)−mom3(0.1,10)

OSb(24)−mom3(0.1,100)
OSb(24)−mom3(0.1,1000)

OSb(24)−mom3(0.01,0)
OSb(24)−mom3(0.01,10)

OSb(24)−mom3(0.01,100)
OSb(24)−mom3(0.01,1000)

(b)

Figure 5.4: Shoulder region scan data: convergence rate of OSb methods (24, 48 subsets)
for 30 iterations with and without momentum for (a) several choices of (c, ζ, λ) with a fixed
c(k) = c = 1.5 and (b) the choices of (λ, η) for an increasing c(k) in (5.12) with 24 subsets
and ζ = 30 [HU].

10 We present from another real CT scan in the supplementary material.

76

In Fig. 5.4(b), we further investigate the increasing c(k) (5.12) in (5.7) that starts from 1

and eventually becomes 1.5 with a tuning parameter η in (5.12). Larger η in (5.12) leads to

a slowly increasing c(k), i.e. smaller c(k) values in early iterations (k), and thus, the results

in Fig. 5.4(b) show better initial acceleration from using large η. Particularly, using large

η for the choice λ = 0.1 showed a big acceleration, while that was less effective in the case

λ = 0.01 due to small values of Γ (5.17) in (5.7).

(a)

800

1000

1200

(b)

(c) (d)

Figure 5.5: Shoulder region scan data: a sagittal plane of (a) an initial FBP image x(0), (b)
a converged image x̂, and two reconstructed images x(15) after 20 normalized run time (15
iterations) from (c) OSb(24) and (d) OSb(24)-mom3 where (c, ζ, λ) = (1.5, 30, 0.01).

Fig. 5.5 shows the initial FBP image, converged, and reconstructed images from con-

ventional OS and the proposed OS-momentum with relaxation. Visually, the reconstructed

image from the proposed algorithm is almost identical to the converged image after 15 iter-

ations.

5.3.3 Abdominal region scan

We reconstructed a 600 × 600 × 222 abdominal region image (in Fig. 5.6) from 888 ×
64 × 3611 sinogram data measured in a helical geometry with pitch 1.0. We measured the

RMSD of the proposed OS-momentum algorithms for 24 and 48 subsets using bit-reversal

ordering (OSb) in OS methods. The convergence results in Fig. 5.7(a) are similar to that

of previous two data sets, where λ = 0.01 is more effective than λ = 0.1 for stabilizing

OS-momentum. However, the case M = 48 accumulated more gradient error than two other

data sets, particularly the un-relaxed (λ = 0) OS-momentum for M = 48 become very

unstable. So the choice λ = 0.01 was not large enough to suppress the large accumulating

error in first 10 iterations than λ = 0.1.

Fig. 5.7(b) shows the results using the oracle ûj = |x(0)j − x̂j| in (5.14) for 48 subsets,

compared to those using the approximate ζū (5.19) of û. The oracle parameter û worked

77

well for both λ = 0.1 and 0.01, indicating that the convergence rate depends less on λ when

the voxel-dependent factor ζūj better approximates ûj, and we leave this as future work.

Fig. 5.6 shows the initial FBP image, converged image, and the reconstructed image at

15th iteration from the proposed algorithm. The reconstructed image is very close to the

converged image after 15 iterations, largely removing the streak artifacts in FBP.

(a) (b)

800

850

900

950

1000

1050

1100

1150

1200

(c)

Figure 5.6: Abdominal region scan: a transaxial plane of (a) an initial FBP image x(0), (b)
a converged image x̂, and (c) an image x(15) after 20 normalized run time (15 iterations) of
OSb(24)-mom3 where (c, ζ, λ) = (1.5, 30, 0.01). (Images are cropped for better visualization.)

5.4 Conclusion and Discussion

We introduced the combination of OS-SQS and Nesterov’s momentum techniques in

tomography problems. We quantified the accelerated convergence of the proposed algorithms

using simulated and patient 3D CT scans. The initial combination could lack stability for

78

0 10 20 30 40 50
0

5

10

15

20

25

30

Normalized run time

R
M

S
D

 [
H

U
]

OS(1)
OS(1)−mom2

OSb(24)

OSb(48)
OSb(24)−mom2

OSb(48)−mom2
OSb(24)−mom3(1.5,30,0.1)

OSb(48)−mom3(1.5,30,0.1)

OSb(24)−mom3(1.5,30,0.01)
OSb(48)−mom3(1.5,30,0.01)

(a)

0 10 20 30 40 50
0

2

4

6

8

10

Normalized run time

R
M

S
D

 [
H

U
]

OSb(48)−mom3(1.5,30,0.1)

OSb(48)−mom3(1.5,orac,0.1)

OSb(48)−mom3(1.5,30,0.01)

OSb(48)−mom3(1.5,orac,0.01)

(b)

Figure 5.7: Abdominal region scan: convergence rate of OSb methods (24, 48 subsets) for
30 iterations with and without momentum for several choices of (c, ζ, λ) with (a) the choice
ζū(≈ û) in (5.19) with ζ = 30 [HU] and (b) the oracle choice û (5.14) for 48 subsets.

large numbers of subsets, depending on the subset ordering and type of momentum. So, we

adapted a diminishing step size approach to stabilize the proposed algorithm while preserving

fast convergence.

We have focused on PWLS cost function in this chapter, but the proposed algorithms can

be applied to any (smooth or nonsmooth) convex cost function, including the Poisson. We

are further interested in studying the proof of convergence of the OS-momentum algorithm

for a (bit-reversal) “deterministic” order.

The accumulating error of the proposed algorithms in Section 5.2 is hard to measure

due to the computational complexity, and thus optimizing the relaxation parameters for

an increasing Γ(k) in (5.7) remains an open issue. In our experiments, we observed that

the updated images within subiterations of OS-momentum algorithms form a cycle looping

around the optimal image x̂ with increasing radius when they reach a diverging phase. (The

plain OS eventually reaches a fixed limit-cycle.) One could consider this behavior as an

indication of instability that could lead to adaptively decreasing the step size, i.e., increasing

Γ(k). Alternatively, one could discard the current momentum and restart the build-up of the

momentum as in [72,90]. Such refinements could make OS-momentum a practical approach

for low-dose CT.

79

CHAPTER VI

Optimized momentum approaches

We introduce new optimized first-order methods for smooth unconstrained convex min-

imization. Drori and Teboulle [31] recently described a numerical method for computing

the N -iteration optimal step coefficients in a class of first-order algorithms that includes a

gradient method, a heavy-ball method [93], and Nesterov’s fast gradient methods [80, 83].

However, the numerical method in [31] is computationally expensive for large N , and the

corresponding numerically optimized first-order algorithm in [31] requires impractical mem-

ory for large-scale optimization problems and O(N2) computation for N iterations. In this

chapter, we propose optimized first-order algorithms that achieve a convergence bound that

is two times faster than Nesterov’s fast gradient methods; our bound is found analytically

and refines the numerical bound in [31]. Furthermore, we show that the proposed optimized

first-order methods have efficient recursive forms that are remarkably similar to Nesterov’s

fast gradient methods and require O(N) computations for N iterations.

6.1 Introduction

First-order algorithms are used widely to solve large-scale optimization problems in vari-

ous fields such as signal and image processing, machine learning, communications and many

other areas. The computational cost per iteration of first-order algorithms is mildly de-

pendent on the dimension of the problem, yielding computational efficiency. Particularly,

Nesterov’s fast gradient methods [80, 83] have been celebrated in various applications for

their fast convergence rates and efficient recursive implementation. This chapter proposes

first-order algorithms (OGM1 and OGM2 in Section 6.6) that are twice as fast (in terms

of worst-case bounds) as Nesterov’s fast gradient methods for smooth unconstrained convex

minimization yet require remarkably similar computation per iteration.

We consider finding a minimizer over Rd of a cost function f belonging to a set FL(R
d)

of smooth convex functions with L-Lipschitz continuous gradient. The class of first-order

80

algorithms of interest generates a sequence of points {xi ∈ R
d : i = 0, · · · , N} using the

following scheme:

Algorithm Class FO

Input: f ∈ FL(R
d), x0 ∈ R

d.

For i = 0, · · · , N − 1

xi+1 = xi −
1

L

i
∑

k=0

hi+1,kf
′(xk). (6.1)

The update step at the ith iterate xi uses a linear combination of previous and current

gradients {f ′(x0), · · · , f ′(xi)}. The coefficients {hi,k}0≤k<i≤N determine the step size and

are selected prior to iterating (non-adaptive). Designing these coefficients appropriately is the

key to establishing fast convergence. The algorithm class FO includes a gradient method, a

heavy-ball method [93], Nesterov’s fast gradient methods [80,83], and our proposed optimized

first-order methods.

Evaluating the convergence rate of such first-order algorithms is essential. Recently,

Drori and Teboulle (hereafter “DT”) [31] considered the Performance Estimation Problem

(PEP) approach to bounding the decrease of a cost function f . For given coefficients h =

{hi,k}0≤k<i≤N , a given number of iterations N ≥ 1 and a given upper bound R > 0 on the

distance between an initial point x0 and an optimal point x∗ ∈ X∗(f) , argminx∈Rd f(x),

the worst-case performance bound of a first-order method over all smooth convex functions

f ∈ FL(R
d) is the solution of the following constrained optimization problem [31]:

BP(h, N, L,R) , max
f∈FL(Rd)

max
x0,··· ,xN∈Rd,
x∗∈X∗(f)

f(xN)− f(x∗) (P)

s.t. xi+1 = xi −
1

L

i
∑

k=0

hi+1,kf
′(xk), i = 0, · · · , N − 1,

||x0 − x∗|| ≤ R.

As reviewed in Section 6.4.1, DT [31] used relaxations to simplify the intractable problem (P)

to a solvable form.

Nesterov’s fast gradient methods [80, 83] achieve the optimal rate of decrease O
(

1
N2

)

of

BP(h, N, L,R) for minimizing a smooth convex function f [81]. Seeking first-order algorithms

that converge faster (in terms of the constant factor) than Nesterov’s fast gradient methods,

DT [31] proposed using a (relaxed) PEP approach to optimize the choice of h in class FO by

minimizing a (relaxed) worst-case bound B(h, N, L,R) at the Nth iteration with respect to

81

h. In [31], the optimized h factors were computed numerically, and were found to yield faster

convergence than Nesterov’s methods. However, numerical optimization of h in [31] becomes

expensive for large N . In addition, the general class FO, including the algorithm in [31],

requires O(N2) computations for N iterations and requires O(Nd) memory for storing all

gradients {f ′(xi) ∈ R
d : i = 0, · · · , N − 1}, which is impractical for large-scale problems.

This chapter proposes optimized first-order algorithms that are twice as fast (in terms

of worst-case bound) as Nesterov’s fast gradient methods, inspired by [31]. We develop

remarkably efficient recursive formulations of the optimized first-order algorithms that re-

semble those of Nesterov’s fast gradient methods, requiring O(N) computations and O(d)

memory.

Section 6.2 reviews the smooth convex minimization problem and introduces the approach

to optimizing h used here and in [31]. Section 6.3 illustrates well-known examples in class

FO. Section 6.4 reviews DT’s PEP approach and uses the PEP approach to derive a new

convergence bound for the primary variables in Nesterov’s fast gradient methods. Section 6.5

reviews DT’s analysis of a relaxed convergence bound for a first-order method, and derives

a new equivalent analytical bound and step size coefficients h that optimize that bound.

Section 6.6 investigates efficient formulations of the proposed first-order methods that achieve

the relaxed convergence bound. Section 6.7 offers conclusions.

6.2 Problem and approach

6.2.1 Smooth convex minimization problem

We consider first-order algorithms for solving the following minimization problem

argmin
x∈Rd

f(x), (M)

where the following two conditions are assumed:

• f : R
d → R is a convex function of the type C1,1

L (Rd), i.e., continuously differentiable

with Lipschitz continuous gradient:

||f ′(x)− f ′(y)|| ≤ L||x− y||, ∀x,y ∈ R
d,

where L > 0 is the Lipschitz constant.

• The optimal set X∗(f) = argminx∈Rd f(x) is nonempty, i.e., the problem (M) is solv-

able.

82

We focus on measuring the “inaccuracy” f(xN) − f(x∗) after N iterations to quantify

the worst-case performance of any given first-order algorithm.

6.2.2 Optimizing the step coefficients of first-order algorithms

In search of the best-performing first-order methods, DT [31] proposed to optimize h =

{hi,k}0≤k<i≤N in Algorithm FO by minimizing the worst-case bound of f(xN) − f(x∗) for

a given number of iterations N ≥ 1 and initial distance R > 0, by adding argminh to

problem (P) as follows:

ĥP , argmin
h∈RN(N+1)/2

BP(h, N, L,R). (HP)

Note that ĥP is independent1 of both L and R. Solving problem (HP) would give the step

coefficients of the optimal first-order algorithm achieving the best worst-case convergence

bound. DT [31] relaxed2 problem (HP) to a tractable form, as reviewed in Sections 6.4.1

and 6.5.1. After these simplifications, the resulting solution was computed numerically using

a semidefinite programming (SDP) that remains computationally expensive for large N [31].

In addition, the corresponding numerically optimized first-order algorithm was impractical

for large-scale problems, requiring a linear combination of previous and current gradients

{f ′(x0), · · · , f ′(xi)} at the (i+ 1)-th iteration.3

To make DT’s work [31] practical, we directly derive the “analytical” solution for h

in a relaxed version of the problem (HP), circumventing the numerical approach in [31].

Interestingly, the analytical solution of the relaxed version of (HP) satisfies a convenient

recursion, so we provide practical optimized algorithms similar to efficient Nesterov’s fast

gradient methods.

Next, we provide examples of Algorithm FO such as a gradient method, a heavy-ball

method [93], and Nesterov’s fast gradient methods [80, 83].

1 Using the substitutions x′ = 1
R
x and f̆(x′) = 1

LR2 f(Rx′) ∈ F1(R
d) in problem (P), we get

BP(h, N, L,R) = LR2BP(h, N, 1, 1). This leads to ĥP = argminh BP(h, N, L,R) = argminh BP(h, N, 1, 1).
2 Using the term ‘best’ or ‘optimal’ here for [31] may be too strong, since [31] relaxed (HP) to a solvable

form. We also use these relaxations, so we use the term “optimized” for our proposed algorithms.
3 If coefficients h in Algorithm FO have a special recursive form, it is possible to find an equivalent

efficient form, as discussed in Sections 6.3 and 6.6.

83

6.3 Examples of first-order algorithms

This section reviews examples of Algorithm FO as discussed in [31, Section 4.1]. We

further show the equivalence4 of two of Nesterov’s fast gradient methods in smooth un-

constrained convex minimization. The analysis techniques used here will be important in

Section 6.6.

6.3.1 Gradient method

The conventional gradient method (GM) is one simple case of Algorithm FO when

hi+1,k =







0, k = 0, · · · , i− 1,

1, k = i,

for i = 0, · · · , N − 1. This GM method is widely known to satisfy [10, 81]:

f(xn)− f(x∗) ≤
L||x0 − x∗||2

2n
, ∀x∗ ∈ X∗(f) (6.2)

for n ≥ 1. Recently, DT, using a specific PEP approach5, found the tightest worst-case

bound for a GM method [31, Theorems 1 and 2]:

f(xn)− f(x∗) ≤
L||x0 − x∗||2

4n+ 2
, ∀x∗ ∈ X∗(f) (6.3)

for n ≥ 1, which is twice better than the conventional bound (6.2).

6.3.2 Heavy-ball method

Another first-order method is a heavy-ball method (HBM) [93] that reuses the last update

xi − xi−1 for acceleration with minimal extra computation, where the parameters 0 < α <

2(1 + β) and 0 ≤ β < 1 are used in [93].

4 The equivalence of two of Nesterov’s fast gradient methods for smooth unconstrained convex minimiza-
tion was previously mentioned without details in [105].

5 The PEP approach for GM is a special case in [31] where DT found explicitly the analytical convergence
bound (6.3). In addition, DT specified a worst-case function in the class of convex C1,1

L that attains the
bound (6.3), so (6.3) is the tightest for GM.

84

Algorithm HBM

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d, x−1 = x0.

For i = 0, · · · , N − 1

xi+1 = xi −
α

L
f ′(xi) + β(xi − xi−1)

Algorithm HBM is an example of Algorithm Class FO by defining

hi+1,k = αβi−k, k = 0, · · · , i,

for i = 0, · · · , N −1 [31]. The convergence bound of HBM is unknown on the class of convex

functions in C1,1
L , and the PEP approach provided a numerical convergence bound [31, Fig.

1 and Table 1] that was found to be faster than that of the GM but slower than that of

Nesterov’s fast gradient methods.

Next, we review two of Nesterov’s celebrated fast gradient methods [80,83]. These achieve

the optimal convergence rate O
(

1
N2

)

for decreasing the function f [81], while requiring

minimal additional computation compared to GM and HBM.

6.3.3 Nesterov’s fast gradient method 1

Nesterov’s first fast gradient method is called FGM1 [80]:

Algorithm FGM1

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d, y0 = x0, t0 = 1.

For i = 0, · · · , N − 1

yi+1 = xi −
1

L
f ′(xi)

ti+1 =
1 +

√

1 + 4t2i
2

(6.4)

xi+1 = yi+1 +
ti − 1

ti+1

(yi+1 − yi).

Note that ti in (6.4) satisfies the following relationships used frequently in later derivations:

t2i+1 − ti+1 − t2i = 0, t2i =
i
∑

k=0

tk, and ti ≥
i+ 2

2
, i = 0, 1, · · · . (6.5)

85

Algorithm FGM1 is in Algorithm Class FO [31, Proposition 2] with:

h̄i+1,k =



















ti−1
ti+1

h̄i,k, k = 0, · · · , i− 2,

ti−1
ti+1

(h̄i,i−1 − 1), k = i− 1,

1 + ti−1
ti+1

, k = i,

(6.6)

for i = 0, · · · , N − 1. Note that Algorithm FO with (6.6) is impractical as written for large-

scale optimization problems, whereas the mathematically equivalent version FGM1 is far

more useful practically due to its efficient recursive form.

The sequence {x0, · · · ,xN−1,yN} of FGM1 can be also written in class FO [31, Propo-

sition 2], and the sequence {y0, · · · ,yN} is known to achieve the rate O
(

1
N2

)

for decreasing

f [10,80]. DT conjectured that the primary6 sequence {x0, · · · ,xN} of FGM1 also achieves

the same O
(

1
N2

)

rate based on the numerical results using the PEP approach [31, Conjecture

2]; our Section 6.4.2 verifies the conjecture by providing an analytical bound using the PEP

approach.

6.3.4 Nesterov’s fast gradient method 2

In [83], Nesterov proposed another fast gradient method that has a different form than

FGM1 and that used a choice of ti factors different from (6.4). Here, we use (6.4) because it

leads to faster convergence than the factors used in [83]. The algorithm in [83] then becomes

FGM2 shown below.

Algorithm FGM2

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d, t0 = 1.

For i = 0, · · · , N − 1

yi+1 = xi −
1

L
f ′(xi)

zi+1 = x0 −
1

L

i
∑

k=0

tkf
′(xk)

ti+1 =
1 +

√

1 + 4t2i
2

xi+1 =

(

1− 1

ti+1

)

yi+1 +
1

ti+1

zi+1

6 The sequence {xi} of FGM1 was originally introduced to be auxiliary in FGM1 with no known conver-
gence bound. In view of class FO, {xi} is the primary sequence of FGM1 and we discuss its convergence
bound in Section 6.4.2.

86

Similar to FGM1, the following proposition shows that FGM2 is in class FO with

h̄i+1,k =







1
ti+1

(

tk −
∑i

j=k+1 h̄j,k

)

, k = 0, · · · , i− 1,

1 + ti−1
ti+1

, k = i,
(6.7)

for i = 0, · · · , N − 1 with ti in (6.4).

Proposition 1. The points x0, · · · ,xN generated by Algorithm FO with (6.7) are identical

to the respective points generated by Algorithm FGM2.

Proof. We use induction to show that the sequence x0, · · · ,xN generated by Algorithm FO

with (6.7) is identical to the respective points generated by Algorithm FGM2. For clarity,

we use the notation x′
0, · · · ,x′

N for Algorithm FO.

Clearly x′
0 = x0. To prove the equivalence for i = 1:

x′
1 = x′

0 −
1

L
h̄1,0f

′(x′
0) = x0 −

1

L

(

1 +
t0 − 1

t1

)

f ′(x0)

=

(

1− 1

t1
+

1

t1

)(

x0 −
1

L
f ′(x0)

)

=

(

1− 1

t1

)

y1 +
1

t1
z1 = x1.

Assuming x′
i = xi for i = 0, · · · , n, we then have

x′
n+1 =x′

n −
1

L
h̄n+1,nf

′(x′
n)−

1

L

n−1
∑

k=0

h̄n+1,kf
′(x′

k)

=xn −
1

L

(

1 +
tn − 1

tn+1

)

f ′(xn)−
1

L

n−1
∑

k=0

1

tn+1

(

tk −
n
∑

j=k+1

h̄j,k

)

f ′(xk)

=

(

1− 1

tn+1

)(

xn −
1

L
f ′(xn)

)

+
1

tn+1

(

xn +
1

L

n−1
∑

k=0

n
∑

j=k+1

h̄j,kf
′(xk)−

1

L

n
∑

k=0

tkf
′(xk)

)

=

(

1− 1

tn+1

)

yn+1 +
1

tn+1

(

xn +
1

L

n
∑

j=1

j−1
∑

k=0

h̄j,kf
′(xk)−

1

L

n
∑

k=0

tkf
′(xk)

)

=

(

1− 1

tn+1

)

yn+1 +
1

tn+1

(

x0 −
1

L

n
∑

k=0

tkf
′(xk)

)

=

(

1− 1

tn+1

)

yn+1 +
1

tn+1

zn+1 = xn+1.

The fifth equality uses the telescoping sum xn = x0+
∑n

j=1(xj−xj−1) and (6.1) in Algorithm

FO.

87

We show next the equivalence of Nesterov’s two algorithms FGM1 and FGM2 for smooth

unconstrained convex minimization using (6.6) and (6.7).

Proposition 2. The points x0, · · · ,xN generated by Algorithm FGM2 are identical to the

respective points generated by Algorithm FGM1.

Proof. We prove the statement by showing the equivalence of (6.6) and (6.7). We use

the notation h̄′i,k for the coefficients (6.7) of Algorithm FGM2 to distinguish from those of

Algorithm FGM1.

It is obvious that h̄′i+1,i = h̄i+1,i, i = 0, · · · , N − 1, and we can easily prove that

h̄′i+1,i−1 =
1

ti+1

(

ti−1 − h̄′i,i−1

)

=
1

ti+1

(

ti−1 −
(

1 +
ti−1 − 1

ti

))

=
(ti − 1)(ti−1 − 1)

titi+1

=
ti − 1

ti+1

(

h̄i,i−1 − 1
)

= h̄i+1,i−1

for i = 0, · · · , N − 1.

We next use induction by assuming h̄′i+1,k = h̄i+1,k for i = 0, · · · , n− 1, k = 0, · · · , i. We

then have

h̄′n+1,k =
1

tn+1

(

tk −
n
∑

j=k+1

h̄′j,k

)

=
1

tn+1

(

tk −
n−1
∑

j=k+1

h̄′j,k − h̄′n,k

)

=
1

tn+1

(

tk −
(

tk − tnh̄
′
n,k

)

− h̄′n,k
)

=
tn − 1

tn+1

h̄′n,k =
tn − 1

tn+1

h̄n,k = h̄n+1,k

for k = 0, · · · , n− 2.

Algorithms FGM1 and FGM2 generate the same sequences {xi} and {yi}, and the se-

quence {yi} is known to satisfy [10, 80, 83]:

f(yn)− f(x∗) ≤
2L||x0 − x∗||2

(n+ 1)2
, ∀x∗ ∈ X∗(f) (6.8)

for n ≥ 1, which was the previously best known analytical bound of first-order methods for

smooth unconstrained convex minimization; DT’s PEP approach provides a tighter ‘numeri-

cal’ bound for the sequences {xi} and {yi} compared to the analytical bound (6.8) [31, Table

1]. Using the PEP approach, Section 6.4.2 provides a previously unknown ‘analytical’ bound

for the sequence {xi} of FGM1 and FGM2.

Nesterov described a convex function f ∈ C1,1
L (Rd) for which any first-order algorithm

88

generating the sequence {xi} in a class of Algorithm FO satisfies [81, Theorem 2.1.7]:

3L||x0 − x∗||2
32(n+ 1)2

≤ f(xn)− f(x∗), ∀x∗ ∈ X∗(f) (6.9)

for n = 1, · · · ,
⌊

d−1
2

⌋

, indicating that Nesterov’s FGM1 and FGM2 achieve the optimal

rate O
(

1
N2

)

. However, (6.9) also illustrates the potential room for improving first-order

algorithms by a constant in convergence speed.

To narrow this gap, DT [31] used a relaxation of problem (HP) to find the “optimal”

choice of {hi,k} for Algorithm FO that minimizes a relaxed bound on f(xN)− f(x∗) at the

Nth iteration, which was found numerically to provide a twice better bound than (6.8), yet

remained computationally impractical.

We next review the PEP approach for solving a relaxed version of (P) and illustrate the

use of the approach by deriving new analytical bounds for the sequence {xi} of FGM1 and

FGM2.

6.4 A convergence bound of first-order algorithms using PEP ap-

proach

6.4.1 Review of relaxation schemes for PEP approach

This section summarizes the relaxation scheme for the PEP approach that transforms

problem (P) into a tractable form [31].

Problem (P) is challenging to solve due to the (infinite-dimensional) functional constraint

on f , so DT [31] cleverly relax the constraint by using the following property of convex

functions f in C1,1
L [81, Theorem 2.1.5]:

1

2L
||f ′(x)− f ′(y)||2 ≤ f(x)− f(y)− 〈f ′(y), x− y〉 , ∀x,y ∈ R

d. (6.10)

DT apply this inequality (6.10) to the generated points {x0, · · · ,xN} of Algorithm FO and

any optimal point x∗ ∈ X∗(f), and replace the functional constraint on f by a corresponding

finite set of inequalities on {x0, · · · ,xN ,x∗} using (6.10). This yields the following relaxed

89

version of problem (P) [31]:

BP1(h, N, L,R) , max
x0,··· ,xN ,x∗∈Rd,
g0,··· ,gN∈Rd,
δ0,··· ,δN∈R

L||x0 − x∗||2δN (P1)

s.t. xi+1 = xi −
i
∑

k=0

hi+1,k||x0 − x∗||gi, i = 0, · · · , N − 1,

1

2
||gi − gj||2 ≤ δi − δj −

〈gj, xi − xj〉
||x0 − x∗||

, i, j = 0, · · · , N, ∗,

||x0 − x∗|| ≤ R,

by defining







δi ,
1

L||x0−x∗||2 (f(xi)− f(x∗)),

gi ,
1

L||x0−x∗||f
′(xi)

for i = 0, · · · , N, ∗, and note that δ∗ = 0 and g∗ = 0. DT [31] eliminate {x0, · · · ,xN ,x∗}
using {g0, · · · , gN} and R in (P1), and rewrite the problem (P1) in the following form7:

BP1(h, N, L,R) = max
G∈R(N+1)d,
δ∈RN+1,

ν∈Rd,||ν||=1

LR2δN

s.t. tr
{

GTAi,j(h)G
}

≤ δi − δj, i < j = 0, · · · , N,
tr
{

GTBi,j(h)G
}

≤ δi − δj, j < i = 0, · · · , N,
tr
{

GTCiG
}

≤ δi, i = 0, · · · , N,
tr
{

GTDi(h)G+ νuT
i G
}

≤ −δi, i = 0, · · · , N,

where i < j = 0, · · · , N denotes i = 0, · · · , N − 1, j = i + 1, · · · , N , by defining the unit

vectors8 ui = eN+1,i+1 ∈ R
N+1 and ν = − x0−x∗

||x0−x∗|| , the (N + 1) × 1 vector δ = [δ0 · · · δN]T ,
7 This form is a (nonhomogeneous) Quadratic Matrix Program that is introduced in [8].
8 The vector eN,i is the ith canonical basis vector in R

N , having 1 for the ith entry and zero for all other
elements.

90

the (N + 1)× d matrix G = [g0 · · · gN]
T , and the (N + 1)× (N + 1) symmetric matrices:































Ai,j(h) ,
1
2
(ui − uj)(ui − uj)

T + 1
2

∑j
l=i+1

∑l−1
k=0 hl,k(uju

T
k + uku

T
j),

Bi,j(h) ,
1
2
(ui − uj)(ui − uj)

T − 1
2

∑i
l=j+1

∑l−1
k=0 hl,k(uju

T
k + uku

T
j),

Ci ,
1
2
uiu

T
i ,

Di(h) ,
1
2
uiu

T
i + 1

2

∑i
j=1

∑j−1
k=0 hj,k(uiu

T
k + uku

T
i).

(6.11)

DT [31] further relax the problem by discarding some constraints as:

BP2(h, N, L,R) , max
G∈R(N+1)d,
δ∈RN+1

LR2δN (P2)

s.t. tr
{

GTAi−1,i(h)G
}

≤ δi−1 − δi, i = 1, · · · , N,
tr
{

GTDi(h)G+ νuT
i G
}

≤ −δi, i = 0, · · · , N,

for any9 given unit vector ν ∈ R
d.

DT [31] finally use a duality approach on (P2). Replacing maxG,δ LR
2δN by minG,δ −δN

for convenience, the Lagrangian of the corresponding constrained minimization problem (P2)

becomes the following separable function in (δ,G):

L(G, δ,λ, τ ;h) = L1(δ,λ, τ) + L2(G,λ, τ ;h),

where







L1(δ,λ, τ) , −δN +
∑N

i=1 λi(δi − δi−1) +
∑N

i=0 τiδi,

L2(G,λ, τ ;h) ,
∑N

i=1 λi tr
{

GTAi−1,i(h)G
}

+
∑N

i=0 τi tr
{

GTDi(h)G+ νuT
i G
}

,

with dual variables λ = (λ1, · · · , λN)T ∈ R
N
+ and τ = (τ0, · · · , τN)T ∈ R

N+1
+ . The corre-

sponding dual function is defined as

H(λ, τ ;h) = min
δ∈RN+1

L1(δ,λ, τ) + min
G∈R(N+1)d

L2(G,λ, τ ;h). (6.12)

9 Problem (P1) is invariant under any orthogonal transformation, so DT [31] assume that x0 − x∗ =
−ν||x0 − x∗|| for any given unit vector ν ∈ R

d without loss of generality.

91

Here minδ L1(δ,λ, τ) = 0 for any (λ, τ) ∈ Λ, where

Λ =

{

(λ, τ) ∈ R
N
+ × R

N+1
+ :

τ0 = λ1, λN + τN = 1

λi − λi+1 + τi = 0, i = 1, · · · , N − 1

}

, (6.13)

and −∞ otherwise. Using [31, Lemma 1]10 and the lemma in [11, p. 163]11, the dual

function (6.12) for any given unit vector ν ∈ R
d reduces to

H(λ, τ ;h) = min
w∈RN+1

{

wTS(h,λ, τ)w + τ Tw
}

= max
γ∈R

{

−1

2
γ : wTS(h,λ, τ)w + τ Tw ≥ −1

2
γ, ∀w ∈ R

N+1

}

= max
γ∈R







−1

2
γ :





S(h,λ, τ) 1
2
τ

1
2
τ T 1

2
γ



 � 0







(6.14)

for any given (λ, τ) ∈ Λ, where DT [31] define the following (N +1)× (N +1) matrix using

the definition of Ai−1,i(h) and Di(h) in (6.11):

S(h,λ, τ) =
N
∑

i=1

λiAi−1,i(h) +
N
∑

i=0

τiDi(h)

=
1

2

N
∑

i=1

λi(ui−1 − ui)(ui−1 − ui)
T +

1

2

N
∑

i=0

τiuiu
T
i

+
1

2

N
∑

i=1

i−1
∑

k=0

(

λihi,k + τi

i
∑

j=k+1

hj,k

)

(uiu
T
k + uku

T
i). (6.15)

In short, using the dual approach on the problem (P2) yields the following bound:

BD(h, N, L,R) , min
λ∈RN ,

τ∈RN+1,
γ∈R







1

2
LR2γ :





S(h,λ, τ) 1
2
τ

1
2
τ T 1

2
γ



 � 0, (λ, τ) ∈ Λ







, (D)

recalling that we previously replaced maxG,λ LR
2δN by minG,λ−δN for convenience. Prob-

lem (D) can be solved using any numerical SDP method [48] for given h and N , noting that

10 Let q(X) = tr

{

XTSX + 2baTX
}

be a quadratic function, where X ∈ R
n×m, a ∈ R

n, 0 6= b ∈ R
m,

and S ∈ R
n×n is a symmetric matrix. Then infX∈Rn×m q(X) = infξ∈Rn q(ξbT).

11 For b ∈ R
n, c ∈ R, and a symmetric matrix S ∈ R

n×n, the inequality wTSw+2bTw+ c ≥ 0, ∀w ∈ R
n

holds if and only if the matrix

(

S b

bT c

)

is positive semidefinite.

92

R is just a multiplicative scalar in (D).

Overall, DT [31] introduced a series of relaxations to the problem (P), eventually reaching

the solvable problem (D) that provides a valid upper bound as

f(xN)− f(x∗) ≤ BP(h, N, L,R) ≤ BD(h, N, L,R)

where xN is generated by Algorithm FO with given h and N , and ||x0 − x∗|| ≤ R. This

bound is for a given h and later we optimize the bound over h.

Solving problem (D) with a SDP method for any given coefficients h and N provides a

numerical convergence bound for f(xN)− f(x∗) [31] (with a given R). However, numerical

bounds only partially explain the behavior of recursive algorithms in class FO for every N ,

such as GM, HBM, FGM1 and FGM2. An analytical bound (6.3) of a GM method, for

example, was found using a specific PEP approach [31], but no other analytical bound was

discussed in [31]. The next section exploits the PEP approach to reveal a new analytical

bound of the sequence {f(xi)} generated by FGM1 or FGM2 as an example, confirming

the conjecture by DT that the primary sequence {xi} achieves the same rate O
(

1
N2

)

as the

sequence {yi} [31, Conjecture 2].

6.4.2 An analytical bound for Nesterov’s fast gradient methods

This section provides an analytical bound for the sequence {xi} in FGM1 and FGM2.

For the h̄ factors in (6.6) or (6.7) of Nesterov’s fast gradient methods, the following choice

(inspired by Section 6.5.2) is a feasible point of problem (D):

λ̄i =
t2i−1

t2N
, i = 1, · · · , N, (6.16)

τ̄i =
ti
t2N
, i = 0, · · · , N, (6.17)

γ̄ =
1

t2N
, (6.18)

with ti in (6.4).

Lemma 5. The choice (λ̄, τ̄ , γ̄) in (6.16), (6.17) and (6.18) is a feasible point of the prob-

lem (D) for the h̄ designs given in (6.6) or (6.7) that are used in Nesterov’s FGM1 and

FGM2.

Proof. It is obvious that (λ̄, τ̄) ∈ Λ using t2i =
∑i

k=0 tk in (6.5). We next rewrite S(h̄, λ̄, τ̄)

using (6.7), (6.16) and (6.17) to show that the choice (λ̄, τ̄ , γ̄) satisfies the positive semidef-

inite condition in (D) for given h̄.

93

For any given h and (λ, τ) ∈ Λ, the (i, k)-th entry of a symmetric matrix S(h,λ, τ)

in (6.15) can be written as

Si,k(h,λ, τ) =































1
2

(

(λi + τi)hi,k + τi
∑i−1

j=k+1 hj,k

)

, i = 2, · · · , N, k = 0, · · · , i− 2,

1
2
((λi + τi)hi,k − λi) , i = 1, · · · , N, k = i− 1,

λi+1, i = 0, · · · , N − 1, k = i,

1
2
, i = N, k = i.

(6.19)

Inserting h̄ (6.7), λ̄ (6.16) and τ̄ (6.17) into (6.19) and using λ̄i + τ̄i =
t2i
t2N

for i = 1, · · · , N ,

we get

Si,k(h̄, λ̄, τ̄) =































1
2

(

t2i
t2N

1
ti

(

tk −
∑i−1

j=k+1 h̄j,k

)

+ ti
t2N

∑i−1
j=k+1 h̄j,k

)

, i = 2, · · · , N, k = 0, · · · , i− 2,

1
2

(

t2i
t2N

(

1 + ti−1−1
ti

)

− t2i−1

t2N

)

, i = 1, · · · , N, k = i− 1,

t2i
t2N
, i = 0, · · · , N − 1, k = i,

1
2
, i = N, k = i,

=



















titk
2t2N

i = 1, · · · , N, k = 0, · · · , i− 1,

t2i
t2N
, i = 0, · · · , N − 1, k = i,

t2N
2t2N

, i = N, k = i,

=
1

2t2N

(

t tT + diag
{

(ťT , 0)
})

,

where t = (t0, · · · , tN)T and ť = (t20, · · · , t2N−1)
T . The second equality uses t2i − ti − t2i−1 = 0

in (6.5), and diag{t} denotes a matrix where diagonal elements are filled with elements of a

vector t and zero for other elements.

Finally, using γ̄ in (6.18), we have





S(h̄, λ̄, τ̄) 1
2
τ̄

1
2
τ̄ T 1

2
γ̄



 =





1
2t2N

(

t tT + diag
{

(ťT , 0)
})

1
2t2N

t

1
2t2N

tT 1
2t2N





=
1

2t2N















t

1









t

1





T

+ diag
{

(ťT , 0, 0)
}











� 0.

Using Lemma 5, we provide an analytical convergence bound for the sequence {xi} of

94

FGM1 and FMG2.

Theorem 1. Let f : R
d → R be convex and C1,1

L and let x0,x1, · · · ∈ R
d be generated by

FGM1 or FGM2. Then for n ≥ 1,

f(xn)− f(x∗) ≤
2L||x0 − x∗||2

(n+ 2)2
, ∀x∗ ∈ X∗(f). (6.20)

Proof. Using γ̄ (6.18) and t2N ≥ (N+2)2

4
from (6.5), we have

f(xN)− f(x∗) ≤ BD(h̄, N, L,R) ≤
1

2
LR2γ̄ ≤ 2LR2

(N + 2)2
, ∀x∗ ∈ X∗(f) (6.21)

for given h̄ in (6.6) or (6.7), based on Lemma 5. Since the coefficients h̄ in (6.6) or (6.7) are

recursive and do not depend on a given N , we can extend (6.21) for all iterations (n ≥ 1).

Finally, we let R = ||x0 − x∗||.

Theorem 1 illustrates using the PEP approach to find an analytical bound for an algo-

rithm in class FO. Note that we verified numerically that the choice (λ̄, τ̄ , γ̄) in (6.16), (6.17)

and (6.18) is not an optimal solution of (D) for given h̄ in (6.6) or (6.7). However this feasible

point (λ̄, τ̄ , γ̄) provides a valid upper bound for the sequence {xi} of FGM1 and FGM2 as

shown in Theorem 1 that is similar to (6.8) and verifies DT’s conjecture [31, Conjecture 2].

The next section reviews DT’s analysis [31] of the relaxed convergence bound BD(h, N, L,R)

and the corresponding numerically optimized step coefficients in the class of first-order meth-

ods, using the (relaxed) PEP approach. Then, we explicitly show that the algorithm achieves

a convergence bound that is twice as fast as (6.8) and (6.20).

6.5 A convergence bound for the optimized first-order algorithm

6.5.1 Review of DT’s numerical bound for optimized first-order algorithms

This section summarizes the numerically optimized first-order algorithms described in [31].

Having relaxed (P) in Section 6.4.1 to (D), DT proposed to optimize h by relaxing (HP)

as follows:

ĥ , argmin
h∈RN(N+1)/2

BD(h, N, L,R), (HD)

where ĥ is independent of both L andR, since BD(h, N, L,R) = LR2BD(h, N, 1, 1). DT found

ĥ numerically, as we review next.

95

Problem (HD) is a bilinear optimization problem in terms of h and the dual variables

in (D), unlike the linear SDP problem (D). To simplify, DT [31] introduced a variable

r = {ri,k}0≤k<i≤N :

ri,k = λihi,k + τi

i
∑

j=k+1

hj,k (6.22)

to convert (HD) into the following related linear SDP problem:

r̂ , argmin
r∈RN(N+1)/2

B̆D(r, N, L,R), (RD)

where

B̆D(r, N, L,R) , min
λ∈RN ,

τ∈RN+1,
γ∈R







1

2
LR2γ :





S̆(r,λ, τ) 1
2
τ

1
2
τ T 1

2
γ



 � 0, (λ, τ) ∈ Λ







,

S̆(r,λ, τ) ,
1

2

N
∑

i=1

λi(ui−1 − ui)(ui−1 − ui)
T +

1

2

N
∑

i=0

τiuiu
T
i +

1

2

N
∑

i=1

i−1
∑

k=0

ri,k(uiu
T
k + uku

T
i).

(6.23)

Then, a solution (r̂, λ̂, τ̂ , γ̂) of linear (RD) for a given N can be computed by any numerical

SDP method [48]. DT showed that the corresponding pair (λ̂, τ̂ , γ̂) with the following ĥ:

ĥi,k =







r̂i,k−τ̂i
∑i−1

j=k+1 ĥj,k

λ̂i+τ̂i
, λ̂i + τ̂i 6= 0

0, otherwise,
(6.24)

for i = 1, · · · , N, k = 0, · · · , i − 1 becomes a solution of (HD) [31, Theorem 3],12 where

both (HD) and (RD) achieve the same optimal value, i.e., BD(ĥ, N, L,R) = B̆D(r̂, N, L,R).

The numerical results for problem (HD) in [31] provided a convergence bound that is

about two-times better than that of Nesterov’s fast gradient methods for a couple of choices

of N in [31, Tables 1 and 2]. However, numerical calculations cannot verify the acceleration

for all N , and SDP computation for solving (RD) becomes expensive for large N . In the

next section, we analytically solve problem (HD), which is our first main contribution.

12 Theorem 3 in [31] that is derived from (6.22) has typos that we fixed in (6.24).

96

6.5.2 An analytical bound for the optimized first-order algorithm

This section provides an analytical solution of (HD) by reformulating (RD) into a form

that is tractable to solve using Karush-Kuhn-Tucker (KKT) conditions.

We first find an equivalent form of the dual function H(λ, τ ;h) in (6.12) that differs

from (6.14) by using the following equality:

SN,N(h,λ, τ) =
1

2
for any (λ, τ) ∈ Λ, (6.25)

i.e., the (N,N)-th entry of S(h,λ, τ) in (6.15) and (6.19) is 1
2
for any (λ, τ) ∈ Λ. Hereafter

we use the notation

S(h,λ, τ) :=





Q(h,λ, τ) q(h,λ, τ)

q(h,λ, τ)T 1
2



 , w :=





w̌

wN



 , and τ :=





τ̌

τN



 ,

(6.26)

where Q(h,λ, τ) is a N ×N symmetric matrix, q(h,λ, τ), w̌ and τ̌ are N × 1 vectors, and

wN and τN are scalars. We omit the arguments (h,λ, τ) in Q(h,λ, τ) and q(h,λ, τ) for

notational simplicity in the next derivation. For any given (λ, τ) ∈ Λ, we rewrite H(λ, τ ;h)

in (6.12) and (6.14) as follows:

H(λ, τ ;h) = min
w∈RN+1

{

w̌TQw̌ + τ̌ T w̌ + 2w̌TqwN +
1

2
w2

N + τNwN

}

= min
w∈RN+1

{

w̌TQw̌ + τ̌ T w̌ +
1

2
(wN + 2w̌Tq + τN)

2 − 1

2
(2w̌Tq + τN)

2

}

= min
w̌∈RN

{

w̌TQw̌ + τ̌ T w̌ − 2w̌TqqT w̌ − 2w̌TqτN − 1

2
τ 2N

}

= min
w̌∈RN

{

w̌T (Q− 2qqT)w̌ + (τ̌ − 2qτN)
T w̌ − 1

2
τ 2N

}

=max
γ∈R

{

−1

2
γ : w̌T (Q− 2qqT)w̌ + (τ̌ − 2qτN)

T w̌ − 1

2
τ 2N ≥ −1

2
γ, ∀w̌ ∈ R

N

}

=max
γ∈R







−1

2
γ :





Q− 2qqT 1
2
(τ̌ − 2qτN)

1
2
(τ̌ − 2qτN)

T 1
2
(γ − τ 2N)



 � 0







, (6.27)

where the third equality comes from minimizing the function with respect to wN , and the

last equality follows from a simple lemma [11, p. 163] in footnote 11.

Using (6.27) instead of (6.14) for the function H(λ, τ ;h) and introducing the variable r

97

in (6.22) leads to the following optimization problem that is equivalent to (RD):

r̂ = argmin
r∈RN(N+1)/2

B̆D1(r, N, L,R), (RD1)

where

B̆D1(r, N, L,R) , min
λ∈RN ,

τ∈RN+1,
γ∈R







1

2
LR2γ :





Q̆− 2q̆q̆T 1
2
(τ̌ − 2q̆τN)

1
2
(τ̌ − 2q̆τN)

T 1
2
(γ − τ 2N)



 � 0, (λ, τ) ∈ Λ







,

Q̆(r,λ, τ) =
1

2

N−1
∑

i=1

λi(ǔi−1 − ǔi)(ǔi−1 − ǔi)
T +

1

2
λN ǔN−1ǔ

T
N−1

+
1

2

N−1
∑

i=0

τiǔiǔ
T
i +

1

2

N−1
∑

i=1

i−1
∑

k=0

ri,k(ǔiǔ
T
k + ǔkǔ

T
i), (6.28)

q̆(r,λ, τ) =
1

2

N−2
∑

k=0

rN,kǔk,+
1

2
(rN,N−1 − λN)ǔN−1 (6.29)

for ǔi = eN,i+1 ∈ R
N . We omit the arguments (r,λ, τ) in Q̆(r,λ, τ) and q̆(r,λ, τ) for

notational simplicity. Unlike (RD), we observe that the new equivalent form (RD1) has a

feasible point at the boundary of the positive semidefinite condition, and we will later show

that the point is indeed a solution of both (RD) and (RD1).

Lemma 6. The choice of (r̂, λ̂, τ̂ , γ̂):

r̂i,k =































4θiθk
θ2N

, i = 2, · · · , N − 1, k = 0, · · · , i− 2,

4θiθi−1

θ2N
+

2θ2i−1

θ2N
, i = 1, · · · , N − 1, k = i− 1,

2θk
θN
, i = N, k = 0, · · · , i− 2,

2θN−1

θN
+

2θ2N−1

θ2N
, i = N, k = i− 1,

(6.30)

λ̂i =
2θ2i−1

θ2N
, i = 1, · · · , N, (6.31)

τ̂i =







2θi
θ2N
, i = 0, · · · , N − 1,

1− 2θ2N−1

θ2N
= 1

θN
, i = N,

(6.32)

γ̂ =
1

θ2N
, (6.33)

98

is a feasible point of both (RD) and (RD1), where

θi =



















1, i = 0,
1+
√

1+4θ2i−1

2
, i = 1, · · · , N − 1,

1+
√

1+8θ2i−1

2
i = N.

(6.34)

Proof. The following set of conditions are sufficient for the feasible conditions of (RD1):































Q̆(r,λ, τ) = 2q̆(r,λ, τ)q̆(r,λ, τ)T ,

τ̌ = 2q̆(r,λ, τ)τN ,

γ = τ 2N ,

(λ, τ) ∈ Λ.

(6.35)

The Appendix D shows that the point (r̂, λ̂, τ̂ , γ̂) in (6.30), (6.31), (6.32) and (6.33) is the

unique solution of (6.35) and also satisfies the feasible conditions of (RD).

Note that the parameter θi (6.34) used in Lemma 6 differs from ti (6.4) only at the

last iteration N . In other words, {θ0, · · · , θN−1} is equivalent to {t0, · · · , tN−1} in (6.4)

satisfying (6.5), while the last parameter θN satisfies

θ2N − θN − 2θ2N−1 = 0. (6.36)

The next lemma shows that the feasible point derived in Lemma 6 is a solution of

both (RD) and (RD1).

Lemma 7. The choice of (r̂, λ̂, τ̂ , γ̂) in (6.30), (6.31), (6.32) and (6.33) is a solution of

both (RD) and (RD1).

Proof. See Appendix E using KKT conditions13 of (RD).

We numerically observed that the analytical solution (r̂, λ̂, τ̂ , γ̂) is equivalent to the

numerical solution of (RD) for couple of choices of N in [31]. The optimized step coefficients

ĥ of interest are then derived using (6.24) [31, Theorem 3] with the analytical solution

(r̂, λ̂, τ̂ , γ̂) of (RD).

13 We found it easier to use the KKT conditions of linear SDP (RD) for showing the optimality of the
choice (r̂, λ̂, τ̂ , γ̂) rather than those of bilinear SDP (RD1).

99

Lemma 8. The choice of (ĥ, λ̂, τ̂ , γ̂) in (6.31), (6.32), (6.33) and

ĥi+1,k =







1
θi+1

(

2θk −
∑i

j=k+1 ĥj,k

)

, k = 0, · · · , i− 1,

1 + 2θi−1
θi+1

, k = i,
(6.37)

for i = 0, · · · , N − 1 with θi in (6.34) is a solution of (HD).

Proof. Inserting r̂ (6.30), λ̂ (6.31) and τ̂ (6.32) into (6.24), and noting that λ̂i + τ̂i > 0 for

i = 1, · · · , N , we get

ĥi,k =
r̂i,k − τ̂i

∑i−1
j=k+1 ĥj,k

λ̂i + τ̂i
, i = 1, · · · , N, k = 0, · · · , i− 1,

=































θ2N
2θ2i

(

4θiθk
θ2N

− 2θi
θ2N

∑i−1
j=k+1 ĥj,k

)

, i = 1, · · · , N − 1, k = 0, · · · , i− 2,

θ2N
2θ2i

(

4θiθi−1

θ2N
+

2θ2i−1

θ2N

)

=
2θiθi−1+θ2i−θi

θ2i
, i = 1, · · · , N − 1, k = i− 1,

2θk
θN

− 1
θN

∑N−1
j=k+1 ĥj,k, i = N, k = 0, · · · , i− 2,

2θN−1

θN
+

2θ2N−1

θ2N
=

2θNθN−1+θ2N−θN
θ2N

, i = N, k = i− 1,

which is equivalent to (6.37). From [31, Theorem 3], the corresponding (ĥ, λ̂, τ̂ , γ̂) becomes

a solution of (HD).

The following theorem shows that Algorithm FO with the optimized ĥ (6.37) achieves a

new fast convergence bound.

Theorem 2. Let f : R
d → R be convex and C1,1

L and let x0, · · · ,xN ∈ R
d be generated by

Algorithm FO with ĥ (6.37) for a given N ≥ 1. Then

f(xN)− f(x∗) ≤
L||x0 − x∗||2

(N + 1)(N + 1 +
√
2)
, ∀x∗ ∈ X∗(f). (6.38)

Proof. Using γ̂ (6.33) and θ2N−1 = t2N−1 ≥ (N+1)2

4
from (6.5) and (6.34), we get

γ̂ =
1

θ2N
=

4
(

1 +
√

1 + 8θ2N−1

)2 ≤ 4
(

1 +
√

1 + 2(N + 1)2
)2

≤ 2

(N + 1)2 +
√
2(N + 1) + 1

≤ 2

(N + 1)(N + 1 +
√
2)
.

100

Then, we have

f(xN)− f(x∗) ≤ BD(ĥ, N, L,R) =
1

2
LR2γ̂ ≤ LR2

(N + 1)(N + 1 +
√
2)
, ∀x∗ ∈ X∗(f),

based on Lemma 8. Finally, we let R = ||x0 − x∗||.

Theorem 2 shows that algorithm FO with the optimized ĥ (6.37) decreases the function

f with a bound that is twice as small as that of Nesterov’s fast gradient methods in (6.8)

and (6.20), confirming DT’s numerical results in [31, Tables 1 and 2]. The proposed algorithm

requires at most N =
⌈√

L
ǫ
||x0 − x∗||

⌉

iterations to achieve the desired accuracy f(xN) −

f(x∗) ≤ ǫ, while Nesterov’s fast gradient methods require at most N =
⌈√

2L
ǫ
||x0 − x∗||

⌉

, a

factor of about
√
2-times more iterations.

The next section investigates efficient implementations of the corresponding Algorithm

FO with ĥ (6.37).

6.6 Proposed optimized first-order algorithms

6.6.1 Analytical coefficients of the optimized first-order algorithm

Even though the analytical expression for ĥ in (6.37) that solves (HD) does not require an

expensive SDP method, using ĥ in Algorithm FO would still be computationally undesirable.

Noticing the similarity between (6.7) of FGM2 and (6.37), we can expect that Algorithm FO

with (6.37) may have equivalent efficient form as FGM2, as described in the next section.

In addition, we find an equivalent form of (6.37) that is similar to (6.6) of FGM1, so that

we can find a formulation that is similar to FGM1 by analogy with how Proposition 2 shows

the equivalence between (6.6) and (6.7).

Proposition 3. The optimized ĥ in (6.37) has the following recursive relationship

ĥi+1,k =



















θi−1
θi+1

ĥi,k, k = 0, · · · , i− 2,

θi−1
θi+1

(ĥi,i−1 − 1), k = i− 1,

1 + 2θi−1
θi+1

, k = i,

(6.39)

for i = 0, · · · , N − 1 with θi in (6.34).

Proof. We follow the induction proof of Proposition 2 showing the equivalence between (6.6)

and (6.7). We use the notation ĥ′i,k for the coefficient (6.37) to distinguish from (6.39).

101

It is obvious that ĥ′i+1,i = ĥi+1,i, i = 0, · · · , N − 1, and we clearly have

ĥ′i+1,i−1 =
1

θi+1

(

2θi−1 − ĥ′i,i−1

)

=
1

θi+1

(

2θi−1 −
(

1 +
2θi−1 − 1

θi

))

=
(2θi−1 − 1)(θi − 1)

θiθi+1

=
θi − 1

θi+1

(

ĥi,i−1 − 1
)

= ĥi+1,i−1.

for i = 0, · · · , N − 1.

We next use induction by assuming ĥ′i+1,k = ĥi+1,k for i = 0, · · · , n− 1, k = 0, · · · , i. We

then have

ĥ′n+1,k =
1

θn+1

(

2θk −
n
∑

j=k+1

ĥ′j,k

)

=
1

θn+1

(

2θk −
n−1
∑

j=k+1

ĥ′j,k − ĥ′n,k

)

=
1

θn+1

(

2θk −
(

2θk − θnĥ
′
n,k

)

− ĥ′n,k

)

=
θn − 1

θn+1

ĥ′n,k =
θn − 1

θn+1

ĥn,k = ĥn+1,k

for k = 1, · · · , n− 2.

6.6.2 Efficient formulations of optimized first-order algorithms

This section revisits the derivation in Section 6.3 to transform Algorithm FO with (6.37)

or (6.39) into efficient formulations like Nesterov’s fast gradient methods, leading to practical

algorithms.

We first propose the following optimized gradient method, called OGM1, using (6.39) in

Algorithm FO. OGM1 is computationally similar to FGM1 yet the sequence {xi} generated

by OGM1 achieves the fast convergence bound in Theorem 2.

Algorithm OGM1

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d, y0 = x0, θ0 = 1.

For i = 0, · · · , N − 1

yi+1 = xi −
1

L
f ′(xi)

θi+1 =







1+
√

1+4θ2i
2

, i ≤ N − 2

1+
√

1+8θ2i
2

, i = N − 1

xi+1 = yi+1 +
θi − 1

θi+1

(yi+1 − yi) +
θi
θi+1

(yi+1 − xi)

Apparently, the proposed OGM1 accelerates FGM1 by using just one additional momentum

term θi
θi+1

(yi+1−xi), and thus OGM1 is computationally efficient. Also, unlike DT’s approach

102

that requires choosing N for using SDP solver before iterating, the proposed OGM1 need

not know N in advance because the coefficients ĥ (or θi) for intermediate iterations (i =

0, · · · , N − 1) do not depend on N .

Proposition 4. The points x0, · · · ,xN generated by Algorithm FO with (6.39) are identical

to the respective points generated by Algorithm OGM1.

Proof. We will use induction to show that the sequence x0, · · · ,xN generated by Algorithm

FO with (6.39) is identical to the sequence x0, · · · ,xN generated by Algorithm OGM1. For

clarity, we use the notation x′
0, · · · ,x′

N for Algorithm FO.

It is obvious that x′
0 = x0, and since θ0 = 1 we get

x′
1 = x′

0 −
1

L
ĥ1,0f

′(x′
0) = x0 −

1

L

(

1 +
2θ0 − 1

θ1

)

f ′(x0) = y1 +
θ0
θ1
(y1 − x0) = x1.

Assuming x′
i = xi for i = 0, · · · , n, we then have

x′
n+1 =x′

n −
1

L
ĥn+1,nf

′(x′
n)−

1

L
ĥn+1,n−1f

′(x′
n−1)−

1

L

n−2
∑

k=0

ĥn+1,kf
′(x′

k)

=xn −
1

L

(

1 +
2θn − 1

θn+1

)

f ′(xn)−
θn − 1

θn+1

(ĥn,n−1 − 1)f ′(xn−1)−
1

L

n−2
∑

k=0

θn − 1

θn+1

ĥn,kf
′(xk)

=xn −
1

L

(

1 +
θn
θn+1

)

f ′(xn) +
θn − 1

θn+1

(

− 1

L
f ′(xn) +

1

L
f ′(xn−1)−

1

L

n−1
∑

k=0

ĥn,kf
′(xk)

)

=yn+1 +
θn
θn+1

(yn+1 − xn) +
θn − 1

θn+1

(

− 1

L
f ′(xn) +

1

L
f ′(xn−1) + xn − xn−1

)

=yn+1 +
θn − 1

θn+1

(yn+1 − yn) +
θn
θn+1

(yn+1 − xn) = xn+1

Next, we propose another efficient formulation of Algorithm FO with (6.37) that is similar

to the formulation of FGM2.

103

Algorithm OGM2

Input: f ∈ C1,1
L (Rd) convex, x0 ∈ R

d, θ0 = 1.

For i = 0, · · · , N − 1

yi+1 = xi −
1

L
f ′(xi)

zi+1 = x0 −
1

L

i
∑

k=0

2θkf
′(xk)

θi+1 =







1+
√

1+4θ2i
2

, i ≤ N − 2

1+
√

1+8θ2i
2

, i = N − 1

xi+1 =

(

1− 1

θi+1

)

yi+1 +
1

θi+1

zi+1

The sequence {xi} generated by OGM2 achieves the fast convergence bound in Theorem 2.

Algorithm OGM2 doubles the weight on all previous gradients for {zi} compared to FGM2,

providing some intuition for its two-fold acceleration. OGM2 requires the same computation

as FGM2.

Proposition 5. The points x0, · · · ,xN generated by Algorithm FO with (6.37) are identical

to the respective points generated by Algorithm OGM2.

Proof. We will use induction to show that the sequence x0, · · · ,xN generated by Algorithm

FO with (6.37) is identical to the sequence x0, · · · ,xN generated by Algorithm OGM2. For

clarity, we use the notation x′
0, · · · ,x′

N for Algorithm FO.

It is obvious that x′
0 = x0, and since θ0 = 1 we get

x′
1 = x′

0 −
1

L
ĥ1,0f

′(x′
0) = x0 −

1

L

(

1 +
2θ0 − 1

θ1

)

f ′(x0) = y1 +
θ0
θ1
(y1 − x0) = x1.

Assuming x′
i = xi for i = 0, · · · , n, we then have

x′
n+1 =x′

n −
1

L
ĥn+1,nf

′(x′
n)−

1

L

n−1
∑

k=0

ĥn+1,kf
′(x′

k)

=xn −
1

L

(

1 +
2θn − 1

θn+1

)

f ′(xn)−
1

L

n−1
∑

k=0

1

θn+1

(

2θk −
n
∑

j=k+1

ĥj,k

)

f ′(xk)

=

(

1− 1

θn+1

)(

xn −
1

L
f ′(xn)

)

+
1

θn+1

(

xn +
1

L

n−1
∑

k=0

n
∑

j=k+1

ĥj,kf
′(xk)−

1

L

n
∑

k=0

2θkf
′(xk)

)

104

=

(

1− 1

θn+1

)

yn+1 +
1

θn+1

(

xn +
1

L

n
∑

j=1

j−1
∑

k=0

ĥj,kf
′(xk)−

1

L

n
∑

k=0

2θkf
′(xk)

)

=

(

1− 1

θn+1

)

yn+1 +
1

θn+1

(

x0 −
1

L

n
∑

k=0

2θkf
′(xk)

)

=

(

1− 1

θn+1

)

yn+1 +
1

θn+1

zn+1 = xn+1

The fifth equality uses the telescoping sum xn = x0+
∑n

j=1(xj−xj−1) and (6.1) in Algorithm

FO.

Our proposed OGM1 and OGM2 methods use the parameter θi in (6.34) that differs

from ti in (6.4) only at the last iteration. Therfore, we conclude this section by a conjecture

about convergence bounds for modified versions of OGM1 and OGM2 that simply use ti for

all iterations.

Conjecture 1. Let x0,x1, · · · be the sequence generated by either OGM1 or OGM2 with ti

in (6.4), instead of θi in (6.34), then the sequence {f(xi)} converges to f(x∗) with similar

convergence bound as that of the original OGM1 or OGM2 in Theorem 2.

6.7 Conclusion and Discussion

We proposed new optimized first-order algorithms that are twice as fast as Nesterov’s

methods for smooth unconstrained convex minimization, inspired by DT’s recent work [31].

The proposed first-order methods are comparably efficient for implementation as Nesterov’s

methods. Thus it is natural to use the proposed OGM1 and OGM2 to replace Nesterov’s

methods in smooth unconstrained convex minimization.

The new optimized first-order algorithms lack convergence bounds for the intermediate

iterations, but we conjecture that such bounds are similar as for the last iteration (N). De-

riving convergence bounds for the intermediate iterations may help further understand the

behavior of the proposed algorithms. In addition, just as Nesterov’s fast gradient methods

have been extended for nonsmooth convex minimization [10, 84], extending the proposed

optimized first-order algorithms for minimizing nonsmooth convex function would be a nat-

ural direction to pursue. Last, DT’s PEP approach involves a series of relaxations to make

the problem solvable, so there is likely still room for improvement in optimizing first-order

methods, which we leave as future work.

In addition to introducing new OGM methods in class FO, we next show the convergence

behavior of the proposed OGM methods with OS methods on simulated and real CT scans,

105

and show that they provide faster convergence speed than the OS methods when combined

with Nesterov’s FGM methods proposed in Chapter V.

6.8 Results

We combine the optimized gradient method (OGM) with OS methods, which we expect

to converge faster than OS methods with Nesterov’s momentum FGM method. We also

replaced the 1/L factor in the OGM method with a diagonal matrix D−1 based on separable

quadratic surrogates [2]; this D is easier to compute than the (smallest) Lipschitz constant

L. We used 2D simulation data and 3D real patient data to measure the acceleration of the

proposed algorithms.

6.8.1 Simulation data

We simulated 2D fan-beam CT 492× 444 noisy sinogram data from a 512× 512 XCAT

phantom image [98]. We reconstructed a 256 × 256 image from the sinogram using OS

methods (1 and 12 subsets) with and without momentum techniques for 15 iterations.

0 5 10 15
0

5

10

15

20

25

30

Iteration

R
M

S
D

 [
H

U
]

(a) vs. Iteration

0 10 20 30 40
0

5

10

15

20

25

30

Run time (sec)

R
M

S
D

 [
H

U
]

GD
FGM
OGM

OS(12)
OS(12)−FGM
OS(12)−OGM

(b) vs. Run time

Figure 6.1: Plots of RMSD [HU] versus (a) iteration and (b) run time (sec) for OS methods
using 1 and 12 subsets with and without momentum techniques. Each iteration of OS
methods with 12 subsets performs 12 sub-iterations. (GD is an abbreviation for gradient
descent methods, also known as gradient methods (GM).)

Fig. 6.1 illustrates the root mean square difference (RMSD) between x(n) and the con-

106

verged image x̂ in Hounsfield Units (HU):

RMSD(n) =
||x(n) − x̂||
√

Np

[HU] (6.40)

versus both iteration and run time, to evaluate the convergence rate. The results show that

two momentum techniques provide acceleration. Particularly, the proposed OGM approaches

the converged image faster than Nesterov’s FGM method in both iteration and run time, as

expected. Even though the OGM algorithm is thus far proven to achieve fast convergence

only at the final Nth iteration, the algorithm shows acceleration within all N iterations in

this experiment. In Fig. 6.1, using 12 subsets in OS methods accelerated all algorithms, even

though it slightly increased the computation time per iteration for executing 12 sub-iterations

per each iteration.

(a) Initial FBP image x(0) (b) Converged image x̂

800

900

1000

1100

1200

(c) Reconstructed image x(5)

Figure 6.2: 2D XCAT simulation: (a) an initial FBP image x(0), (b) a converged image x̂,
and (c) a reconstructed image x(5) from 5 iterations of the proposed OGM algorithm using
12 subsets.

Fig. 6.2 shows an initial filtered back-projection (FBP) image x(0), a converged image x̂,

and a reconstructed image from 5 iterations of the proposed OGM algorithm with OS(12)

107

method. The result indicates that we can reach nearby the converged image within very few

iterations using the proposed algorithm.

6.8.2 Shoulder region scan data

We reconstructed 512 × 512 × 109 image from a shoulder region scan 888 × 32 × 7146

sinogram with pitch 0.5 described in Section 4.2.3.2.

Fig. 6.3(a) illustrates that FGM and OGM are much faster than gradient descent (GD)

as expected. We can further experimentally verify that the number of iterations required

for reaching the desired accurracy is about 1√
2
less for the proposed OGM compared to

Nesterov’s FGM, as discussed in Section 6.5.2. Fig. 6.3(b) further shows results of GD,

FGM and OGM combined with OS methods for 12 subsets, illustrating that OS combined

with OGM is the fastest among all choices.

0 50 100 150 200
0

5

10

15

20

25

30

Iteration

R
M

S
D

 [
H

U
]

GD

FGM

OGM

0 5 10 15 20
0

5

10

15

20

25

30

Iteration

R
M

S
D

 [
H

U
]

GD

FGM

OGM

OS(12)−GD

OS(12)−FGM

OS(12)−OGM

Figure 6.3: Plots of RMSD [HU] versus iteration for OS methods using 1 and 12 subsets with
and without momentum techniques such as FGM and OGM. Each iteration of OS methods
with 12 subsets performs 12 sub-iterations.

108

CHAPTER VII

Axial block coordinate descent in 3D cone-beam X-ray

CT

This section develops an iterative algorithm in a different viewpoint compared to previous

chapters. Here, we design an optimization algorithm that is specifically designed for 3D

cone-beam X-ray CT geometry. We briefly review the 3D cone-beam geometry and the

corresponding system matrix, particularly separable footprint (SF) projector [70]. Then, we

propose an axial block coordinate descent (ABCD) [42] that is one instance of a general

block coordinate descent (BCD) methods [49,54]. Carefully chosen axial block based on the

geometry and the projector leads to both fast convergence rate and efficient implementation.

The basic idea of this chapter has been published as a conference paper [42].

7.1 3D cone-beam X-ray CT geometry and system matrix

We provide a background of 3D cone-beam X-ray CT and discuss the advantages of using

an axial block for block coordinate descent (BCD) algorithm in 3D X-ray CT.

7.1.1 3D cone-beam X-ray CT geometry

We generalize Section 2.1 to a 3D cone-beam X-ray CT geometry. Each ray in 3D cone-

beam X-ray CT geometry can be characterized by (β, s, t), where (s, t) indicates the 2D

coordinate of a detector, and β denotes the angle between the source and y axis. Both

source-to-isocenter distance Ds0 and isocenter-to-detector distance D0d that characterize the

geometry remain fixed in standard CT (see Fig. 7.1).

An axial cone-beam flat-detector CT geometry is illustrated in Fig. 7.1, where the source

and the detector rotates with respect to the z-axis to acquire data. Helical geometry is

used to scan many slices along z-axis than axial geometry, where the object moves in z

direction while the source and detector rotates. The corresponding source trajectory of

109

Figure 7.1: Axial cone-beam flat-detector CT geometry [70]
.

helical geometry follows a helical line as described in Fig. 3.1, in contrast to a circle trajectory

in axial geometry (see Fig. 7.1).

z

Source

Detector

Footprints

Figure 7.2: Axial footprint overlap.

A voxel has 2D footprint for each projection view (β) in 3D cone-beam geometry. Typi-

cally, the axial (t) footprints of at most three voxels which are adjacent along z-axis overlap

on any given detector cell for standard 3D CT geometry, as shown in Fig. 7.2. This means

that the coupling among voxels within an axial (z) column are relatively small than that

110

within a (highly-coupled) transaxial (x−y) plane. This point is importantly considered in

ABCD algorithm to choose an axial block for a block coordinate descent.

We further discuss the implementation of system matrix in 3D X-ray CT. We particularly

focus on SF projector [70] that works well with the proposed ABCD algorithm.

7.1.2 System matrix in 3D X-ray CT geometry

A system matrix in (2.4) can be rewritten with geometry-based parameters as below:

g(β, s, t) =
∑

rx,ry ,rz

a(β, s, t, ; rx, ry, rz)x(rx, ry, rz), (7.1)

where a(β, s, t; rx, ry, rz) represents the footprint of the voxel located at (rx, ry, rz). Accu-

rately computing the footprint is impractical, and both a separable footprint (SF) projec-

tor [70] and a distance-driven (DD) projector [21] approximate the footprint to be separable

for computational efficiency. Here, we focus on SF projector.

By simplifying the derivation of SF projector [70], we can approximate the footprint as

below (magnification factor has been omitted):

a(β, s, t; rx, ry, rz) ≈ ã(β, s, t; rx, ry, rz) , f1(β, s; rx, ry)f2(β, t; rx, ry, rz), (7.2)

where each f1(β, s; rx, ry) and f2(β, t; rx, ry, rz) denote axial (t) and transaxial (s) footprint.

The separability leads to very efficient implementation. For a given projection view β, a

forward projection can be efficiently executed as:

g(β, s, t) ≈ g̃(β, s, t) =
∑

rx,ry

f1(β, s; rx, ry)
∑

rz

f2(β, t; rx, ry, rz)x(rx, ry, rz). (7.3)

Similarly, back projection can be computed efficiently as:

x(rx, ry, rz) =
∑

s,t,β

a(s, t, β; rx, ry, rz)g(s, t, β) (7.4)

≈
∑

β

∑

t

f2(β, t; rx, ry, rz)
∑

s

f1(β, s; x, y)g(β, s, t). (7.5)

These derivations indicate that a system matrix based on the separability of footprint can

be efficiently implemented when the computation are executed along the axial z-axis and

s-axis. So, an algorithm that updates voxels within an axial (z) column simultaneously can

be implemented efficiently for a system matrix like SF projector.

Based on the discussions of the geometry and system matrix in 3D X-ray CT, we pro-

111

pose an axial block coordinate descent (ABCD) algorithm updating voxels within an axial

column simultaneously, which is expected to achieve both fast convergence and efficient

implementation.

7.2 Axial block coordinate descent (ABCD)

Considering both the modern computing architectures and the convergence rate of ICD

and PCG/OS (as discussed in Section 2.3.1), a compromise between updating only one

voxel at a time and updating all voxels simultaneously seems to be preferable, such as a

block coordinate descent (BCD) algorithms. These algorithms have been used in statistical

estimation in [49, 54], and have also been applied to statistical image reconstruction [12, 40,

41, 97]. However, the previous works of BCD for 2D tomographic image reconstruction did

not have dramatic acceleration due to the high-coupling within a transaxial (x−y) plane.
A group of voxels based on checker-board patterns in Fig. 7.3(a) with optimization trans-

fer method was used in a group coordinate descent (GCD) [41]. A checker-board pattern

was chosen for each voxels to be far from each other, which reduced the coupling-related

curvature for optimization transfer. But the coupling remained high due to high-coupling

within transaxial (x−y) plane, and thus the algorithm did not have a dramatic accelera-

tion. In other hand, a block-iterative coordinate descent (B-ICD) [12] selected a rectangular

block of voxels in Fig. 7.3(b) without using separable surrogate approach, thereby avoiding

the high curvatures. But inverting a dense Hessian matrix became a bottleneck. In short,

a group or block of voxels within a transaxial (x−y) slice in previous works for 2D CT

were highly coupled, thus either high curvature for separable surrogate or computationally

expensive computation for dense Hessian matrix prevented the dramatic acceleration.

We can extend these ideas straightfowardly to 3D CT geometry of our interest, but those

are not promising for the same reason. Instead, we suggest to choose axial column blocks

in Fig. 7.3(c) for 3D axial and helical axial cone-beam X-ray CT image reconstruction. This

choice have two advantages based on Section 7.1. First, the Hessian of an axial column

block is banded (as discussed in Section 7.1.1), typically penta-diagonal for standard 3D

cone-beam geometry. This leads to inexpensive computation for inverting the banded Hes-

sian [47, Chapter 5], or provides a small coupling-related curvature for optimization transfer

leading to fast convergence rate. Second, the proposed ABCD algorithm can be implemented

efficiently by designing it hand-in-hand with the separable footprint (SF) projector [70] (as

discussed in Section 7.1.2). Preliminary simulation results show that the ABCD algorithms

are comparable to ICD considering the convergence rate. Both ICD and ABCD algorithms

converge faster than the optimization transfer method-based SQS algorithm.

112

Source

Source

Detector

Transaxial plane

x

y

(a)

Source

Source

Detector

Transaxial plane

x

y

(b)

Source

Detector

Axial column

Source

Source

Detector

Transaxial plane

x

y z

(c)

Figure 7.3: Coupling between (colored) voxels within a group in (a) GCD [41] (b) B-ICD [12]
and (c) ABCD algorithms. Middle gray denotes the voxels that are coupled with a reference
(black) voxel. The ratio of mid-gray voxels within a group illustrates the amount coupling
within a group. GCD and B-ICD have dense Hessian matrix, while Hessian matrix in ABCD
is banded. (Hessian matrix in GCD is small-eigenvalued compared with that in B-ICD.)

7.2.1 ABCD algorithm

We first review a general block coordinate descent (BCD) method [49, 54]. The vox-

els of image x = (xb1 , . . . , xbK) are (disjointly) partitioned into K sets. The BCD algo-

rithm updates each block xbk sequentially using the most recent estimates of other blocks
(

x
(n+1)
b1

, . . . , x
(n+1)
bk−1

, xbk , x
(n)
bk+1

, . . . , x
(n)
bK

)

(where n counts the number of iterations), by mini-

113

mizing the cost function Ψ(x) with respect to xbk :

x
(n+1)
bk

= argmin
xbk

Ψ
(n)
bk

(xbk)

Ψ
(n)
bk

(xbk) , Ψ
(

x
(n+1)
b1

, . . . , x
(n+1)
bk−1

, xbk , x
(n)
bk+1

, . . . , x
(n)
bK

)

, (7.6)

which reduces to ICD when each block consists of a single voxel.

Since the function Ψ
(n)
bk

(xbk) cannot be minimized in one step, we use an optimization

transfer method in Section 2.3.2 with a surrogate function φ
(n)
bk

(xbk) for Ψ
(n)
bk

(xbk), which leads

to following update step:

x
(n+1)
bk

= argmin
xbk

φ
(n)
bk

(xbk). (7.7)

The convergence rate of an optimization transfer method depends on the coupling-related

curvature of the surrogate function. (We define the coupling between two voxels as the inner

product of two voxels’ footprint on the same detector element, and also mathematically

as
∑Nd

i=1 aijaij′ for j 6= j′.) Reducing the coupling-related curvature is likely to speed up

the convergence rate, and our choice axial block column provides the reduced coupling as

discussed in Section 7.1.

We first use a quadratic surrogate approach that leads to a non-diagonal but banded

Hessian matrix H
(n)
bk

, usually a penta-diagonal for a standard multi-slice CT geometry. We

call this algorithm as ABCD-BAND that generates a sequence
{

x(n)
}

by

x
(n+1)
bk

= x
(n)
bk

−
[

H
(n)
bk

]−1

∇Ψ
(n)
bk

(

x
(n)
bk

)

, (7.8)

where the matrix H
(n)
bk

can be inverted in O(n) operations [47, Chapter 5] that is much faster

than O(n3) for a dense Hessian in B-ICD algorithm [12].

We also investigated two other methods for updating the kth block in one step, use the

optimization transfer methods based on QSQS in Section 4.3.2 and SQS in Section 4.1. Since

a banded Hessian H
(n)
bk

has most of its energy in the three main diagonal elements, the QSQS

approach that provides a tridiagonal Hessian matrix is a reasonable choice of surrogates that

may reduce the computation. This is because inverting a tridiagonal Hessian T
(n)
bk

require

O(n) operations with relatively small constant compared to inverting H
(n)
bk

. We refer this

method as ABCD-QSQS that leads to:

x
(n+1)
bk

= x
(n)
bk

−
[

T
(n)
bk

]−1

∇Ψ
(n)
bk

(

x
(n)
bk

)

. (7.9)

114

Similarly, we used SQS method in (7.7), which may slow down the convergence rate

slightly compared to two previous choices (7.8) and (7.9), since the coupling of an axial

group of pixels is relatively small, and the corresponding diagonal Hessian D
(n)
bk

simplifies

the update. This algorithm is named as ABCD-SQS which is similar to (4.57):

x
(n+1)
bk

= x
(n)
bk

−
[

D
(n)
bk

]−1

∇Ψ
(n)
bk

(

x
(n)
bk

)

. (7.10)

Note that the Hessian matrix D
(n)
bk

is small-eigenvalued, while the surrogates in GCD [41]

have high curvatures.

So far we only considered the data fit term L(x). The typical edge-preserving regularizers

used for 3D CT [103] use the immediate neighboring voxels. In such regularizers, voxels in an

axial column are coupled to those immediately above and immediately below, and thus the

Hessian matrix for the regularizer within an axial column block is always tridiagonal. This

is another benefit of using an axial column block, which only requires quadratic surrogate

approach to maintain the nature of ABCD-BAND and ABCD-QSQS, while ABCD-SQS

requires additional separable surrogate for the regularizer.

The difference among three ABCD algorithms (7.8), (7.9), and (7.10) is the use of different

surrogate approaches and corresponding Hessian matrix that characterizes the convergence

behavior and computational efficiency of three ABCD methods. Three different Hessian

matrices satisfy

H
(n)
bk

≺ T
(n)
bk

≺ D
(n)
bk
, (7.11)

which means that the banded Hessian matrix is small eigen-valued that leads to fast conver-

gence rate, while inverting the banded matrix is relatively expensive than other two choices.

So, we should study the trade-off among three choices.

7.2.2 Prelimary simulation results

We implemented the three ABCD algorithms in Matlab for PWLS cost function, and

also ICD (K = Np) and SQS (K = 1) methods for comparison. The simulated 3D image

was limited to a small size, 64×64×16, because Matlab is a slow interpreted language. This

simulation mainly focused on the convergence rate per iteration. We left the comparison of

run time per iteration as future work, but we expect the run time per iteration will obey the

following inequalities:

ICD > ABCD-BAND > ABCD-QSQS > ABCD-SQS > SQS. (7.12)

115

On the other hand, the convergence rate will also approximately follow (7.12), although

ABCD-BAND might converge in fewer iterations than ICD.

PHANTOM

0

0.05

0.1

FDK

0

0.05

0.1

ICD

0

0.05

0.1

SQS

0

0.05

0.1

ABCD−BAND

0

0.05

0.1

ABCD−QSQS

0

0.05

0.1

ABCD−SQS

0

0.05

0.1

Figure 7.4: Phantom, FDK reconstructed image and reconstructed images by five different
algorithms after 15 iterations

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

Iteration

C
o
s
t
fu

n
c
ti
o
n
 [
d
B

]

ICD

SQS

ABCD−BAND
ABCD−QSQS

ABCD−SQS

Figure 7.5: Cost function Ψ(x(n)) versus iteration n for five algorithms

Fig. 7.4 shows one slice of the 3D phantom image, and of the reconstructed 3D image

by FDK [34, 37] and by the five iterative algorithms listed in (7.12) after 15 iterations with

FDK reconstructed image as the initial guess. ICD and ABCD algorithms reached nearly

the same image after 15 iterations whereas the SQS reconstructed image is still close to

FDK reconstructed image. However, ABCD-BAND might converge faster than ICD since

116

both only use quadratic surrogate approach and ABCD-BAND updates a group of pixel

simultaneously. Fig. 7.5 illustrates the cost function Ψ(x(n)) value [dB] as a function of

iterations for the five algorithms. The convergence rate of SQS is slow compared with other

algorithms, as expected. We conclude that the convergence rate of the four algorithms

(except SQS) are similar in this simulation. We further need to plot NRMS difference value

[dB] between the current image and the converged image, versus iterations, to compare the

convergence rate of five algorithms more accurately.

7.3 Conclusion and Discussion

We have found that the knowledge of 3D cone-beam geometry and its projector can help

developing efficent optimization algorithms for 3D X-ray CT. Based on 3D CT geometry,

we have chosen an axial block for BCD algorithms that enabled both fast convergence rate

and efficient computation. However, we further need to optimize the implementation of

the proposed ABCD algorithm, and we leave them as a future work. We also would like

to accelerate the convergence rate of ABCD algorithm using the non-homogeneous (NH)

approach in coordinate descent (CD) algorithm [109], which the preliminary results are

shown in our conference paper [57].

117

CHAPTER VIII

Conclusion and Future work

This dissertation presented various optimization algorithms for accelerated statistical

3D X-ray CT reconstruction, mainly focused on extending the state-of-the-art ordered sub-

sets based on separable quadratic surrogates (OS-SQS) methods. Chapter III modified OS

methods so that they can be stable in 3D helical cone-beam CT geometry, and suggested

a sub-iteration averaging approach in OS methods for acceleration. Chapter IV proposed

three novel optimization transfer approaches, and particularly, spatially nonuniform SQS

(NU-SQS) encouraged larger step for the voxels that need more updates, leading to more

than two-fold acceleration compared to the standard SQS in both simulated and real patient

3D CT scans. Chapter V applied momentum approach to ordered subsets (OS-momentum),

providing very fast (initial) convergence rates with minimal computational overhead in our

experiments with 3D CT scans. However, this OS-momentum method sometimes suffered

from instability, and thus Section 5.2 introduced a relaxed scheme that prevented the algo-

rithm from accumulating errors from the OS gradient approximation while preserving the

fast convergence rate. Various relaxation schemes were examined with simulations and real

patient CT data. Initial version of OS-momentum used well-known Nesterov’s momentum

methods. To further accelerate OS-momentum algorithms, Chapter VI proposed optimized

gradient methods (OGM) that are twice as fast yet have remarkably simple implementa-

tions comparable to Nesterov’s methods. The OS version of this OGM methods were found

to decrease the cost function twice faster than the initial OS-momentum algorithms for a

simulated CT scan. In addition to OS-type algorithms, Chapter VII suggested axial block

coordinate descent (ABCD) algorithms that are specifically designed for 3D cone-beam CT

geometry. The ABCD updates voxels within an axial block simultaneously and this lead to

both fast convergence rate and efficient computation in 3D cone-beam CT geometry.

118

8.1 Future work

Among many iterative algorithms developed in this dissertation, the convergence of OS-

momentum methods in Chapters V and VI was particularly fast compared to others, and

we would like to further accelerate their convergence rates while improving the stability.

Continuing the development of new momentum methods that are both efficient and faster

than the proposed OGM methods in Chapter VI is a natural pursuit. Considering the OS

version of momentum methods, extending DT’s [31] performance estimation problem (PEP)

approach and our OGM methods to either stochastic or incremental gradient methods would

be very interesting. In other words, investigating ways to extend our OGM methods (and

DT’s work [31]) to broader classes of functions, such as nonsmooth functions or strongly

convex functions constrained optimization problems, or different choice of algorithms, such

as stochastic or incremental gradient methods would be very important work.

The direct combination of OS and momentum can be unstable sometimes due to accu-

mulated error, particularly for large numbers of subsets, as discussed in Chapter V. We

investigated the diminishing step size rule in Section 5.2 to stabilize the algorithm while

preserving the fast convergence rate. The results in Section 5.3 looked promising but the

parameter tuning for the diminishing rule was found not simple, and we would like to further

develop a stabilizing approach for OS-momentum algorithm with minimal additional tuning

parameters.

119

APPENDICES

120

APPENDIX A

Proof of Lemma 2

The proposed choice λ̃
(n)
ij = aiju

(n)
j in (4.23) and its corresponding d̃

L,(n)
j in (4.24) are a

choice that minimizes
∑Np

j=1

(

u
(n)
j

)2

d
L,(n)
j among all possible d

L,(n)
j in (4.14), i.e.,

{

λ̃
(n)
ij

}

= argmin
{λ(n)

ij }

Np
∑

j=1

(

u
(n)
j

)2







Nd
∑

i=1
aij 6=0

c̆
(n)
i

a2ij

λ
(n)
ij

Np
∑

l=1
ail 6=0

λ
(n)
il






,

subject to the positivity constraint on λ
(n)
ij if aij 6= 0.

Proof. By the Schwarz inequality 〈s, t〉2 ≤ ||s||2||t||2, we have









Np
∑

j=1
aij 6=0

aiju
(n)
j









2

≤
Np
∑

j=1
aij 6=0

(

u
(n)
j

)2 a2ij

λ
(n)
ij

Np
∑

l=1
ail 6=0

λ
(n)
il ,

121

where sj =

√

λ
(n)
ij

∑Np
l=1 λ

(n)
il

and tj = aiju
(n)
j

√

∑Np
l=1 λ

(n)
il

λ
(n)
ij

. Then,

Np
∑

j=1

(

u
(n)
j

)2

d
L,(n)
j =

Nd
∑

i=1

c̆
(n)
i









Np
∑

j=1
aij 6=0

(

u
(n)
j

)2 a2ij

λ
(n)
ij

Np
∑

l=1
ail 6=0

λ
(n)
il









≥
Nd
∑

i=1

c̆
(n)
i









Np
∑

j=1
aij 6=0

aiju
(n)
j









2

=

Np
∑

j=1







Nd
∑

i=1
aij 6=0

c̆
(n)
i aiju

(n)
j

Np
∑

l=1
ail 6=0

ailu
(n)
l







=

Np
∑

j=1

(

u
(n)
j

)2







1

u
(n)
j

Nd
∑

i=1
aij 6=0

c̆
(n)
i aij

Np
∑

l=1
ail 6=0

ailu
(n)
l






=

Np
∑

j=1

(

u
(n)
j

)2

d̃
L,(n)
j .

122

APPENDIX B

Proof of Lemma 4

We extend the proof of [29, Theorem 7] for diagonally preconditioned stochastic OS-SQS-

type algorithms for the proof of Lemma 4. We first use the following lemma:

Lemma 9. For k ≥ 0, the sequence {x(k
M

)} generated by Table 5.3 satisfies

k
∑

l=0

tlΨ(x(
k+1
M

))− e(k) ≤ min
v�0

Φ(k)(v)

Φ(k)(v) ≤
k
∑

l=0

tlΨ(v) +
||v − z(0)||2

Γ(k)

2
+ ē(k)(v),

where

Φ(k)(v) ,
k
∑

l=0

tl

[

MΨSl
(z(

l
M

)) +M∇ΨSl
(z(

l
M

))′
(

v − z(
l
M

)
)

]

+
||v − z(0)||2

Γ(k)

2

that satisfies v(
k+1
M

) = argminv�0 Φ
(k)(v),

e(k) ,

k
∑

l=0

l
∑

i=0

ti

∥

∥

∥M∇ΨSl
(z(

l
M

))−∇Ψ(z(
l
M

))
∥

∥

∥

2

[Γ(l)−D]
−1

+
k
∑

l=0

tl

(

Ψ(z(
l
M

))−MΨSl
(z(

l
M

))
)

+
k
∑

l=1

l−1
∑

i=0

ti

(

∇Ψ(z(
l
M

))−M∇ΨSl
(z(

l
M

))
)′ (

z(
l
M

) − x(
l
M

)
)

and

ē(k)(v) ,
k
∑

l=0

tl

[

MΨSl
(z(

l
M

))−Ψ(z(
l
M

)) +
(

M∇ΨSl
(z(

l
M

))−∇Ψ(z(
l
M

))
)′ (

v − z(
l
M

)
)

]

.

123

Proof. Simply generalize the proof of [29, Lemma 2] using the proof of [83, Lemma 1].

Using Lemma 9 with the fact minv�0 Φ
(k)(v) ≤ Φ(k)(x̂) leads to the following:

k
∑

l=0

tl

(

Ψ(x(
k+1
M

))−Ψ(x̂)
)

≤ ||x(0) − x̂||2
Γ(k)

2
+ e(k) + ē(k)(x̂).

Finally, the expectation on the above equation provides Lemma 4, as in [29, Theorem 7].

124

APPENDIX C

Choice of coefficients tk

Lemma 10. For any given {γ(k)j } satisfying its constraint in line 5 of Table 5.3, the {tk}
generated by t0 = 1

tk+1 =
1

2α(k+1)

(

1 +
√

1 + 4t2kα
(k)α(k+1)

)

,

where α(k+1) , maxj

(

γ
(k+1)
j /γ

(k)
j

)

and α(0) = 1, tightly satisfies the following conditions:

t0 ∈ (0, 1] and α(k+1)t2k+1 ≤
k+1
∑

l=0

tl, ∀k ≥ 0,

which are equivalent to the conditions in line 6 of Table 5.3.

Proof. Let t0 have the largest possible value 1.

For k = 0,

α(1)t21 = t0 + t1 = t20 + t1

t1 =
1

2α(1)

(

1 +
√

1 + 4t20α
(0)α(1)

)

. (C.1)

For k > 0, we get

α(k+1)t2k+1 =
k+1
∑

l=0

tl = α(k)t2k + tk+1

125

tk+1 =
1

2α(k+1)

(

1 +
√

1 + 4t2kα
(k)α(k+1)

)

. (C.2)

This rule for tk (C.2) reduces to those used in Tables 5.1 and 5.2 when γ
(k+1)
j = γ

(k)
j for

all k ≥ 0 and j.

126

APPENDIX D

Proof of Lemma 6

We prove that the choice (r̂, λ̂, τ̂ , γ) in (6.30), (6.31), (6.32) and (6.33) satisfies the

feasible conditions (6.35) of (RD1).

Using the definition of Q̆(r,λ, τ) in (6.28), and considering the first two conditions

of (6.35), we get

λi+1 = Q̆i,i(r,λ, τ) = 2q̆2i (r,λ, τ) =
1

2τ 2N
τ 2i

=







1
2(1−λN)2

λ21, i = 0

1
2(1−λN)2

(λi+1 − λi)
2, i = 1, · · · , N − 1,

where the last equality comes from (λ, τ) ∈ Λ, and this reduces to the following recursion:







λ1 = 2(1− λN)
2,

(λi − λi−1)
2 − λ1λi = 0. i = 2, · · · , N.

(D.1)

We use induction to prove that the solution of (D.1) is

λi =







2
θ2N
, i = 1,

θ2i−1λ1, i = 2, · · · , N,

which is equivalent to λ̂ (6.31). It is obvious that λ1 = θ0λ1, and for i = 2 in (D.1), we get

λ2 =
3λ1 +

√

9λ21 − 4λ21
2

=
3 +

√
5

2
λ1 = θ21λ1.

127

Then, assuming λi = θ2i−1λ1 for i = 1, · · · , n and n ≤ N − 1, and using the second equality

in (D.1) for i = n+ 1, we get

λn+1 =
λ1 + 2λn +

√

(λ1 + 2λn)2 − 4λ2n
2

=
1 + 2θ2n−1 +

√

1 + 4θ2n−1

2
λ1

=

(

θ2n−1 +
1 +

√

1 + 4θ2n−1

2

)

λ1 = θ2nλ1,

where the last equality uses (6.5). Then we use the first equality in (D.1) to find the value

of λ1 as

λ1 = 2(1− θ2N−1λ1)
2

θ4N−1λ
2
1 − 2(θ2N−1 +

1

4
)λ1 +

1

2
= 0

λ1 =
θ2N−1 +

1
4
−
√

(θ2N−1 +
1
4
)2 − θ4N−1

θ4N−1

=
1

θ2N−1 +
1
4
+

√

θ2N−1

2
+ 1

16

=
8

(

1 +
√

1 + 8θ2N−1

)2 =
2

θ2N

with θN in (6.34).

Until now, we derived λ̂ (6.31) using some conditions of (6.35). Consequently, using the

last two conditions in (6.35) with (6.5) and (6.36), we can easily derive the following:

τi =



















λ̂1 =
2
θ2N
, i = 0,

λ̂i+1 − λ̂i =
2θ2i
θ2N

− 2θ2i−1

θ2N
= 2θi

θ2N
, i = 1, · · · , N − 1,

1− λ̂N = 1− 2θ2N−1

θ2N
= 1

θN
, i = N,

γ = τ 2N =
1

θ2N
,

which are equivalent to τ̂ (6.32) and γ̂ (6.33).

Next, we derive r̂ for given λ̂ (6.31) and τ̂ (6.32). Inserting τ̂ (6.32) to the first two

conditions of (6.35), we get







q̆i(r̂, λ̂, τ̂) =
τ̂i

2τ̂N
= θi

θN
,

Q̆i,k(r̂, λ̂, τ̂) = 2q̆i(r, λ̂, τ̂)q̆k(r, λ̂, τ̂) =
2θiθk
θ2N

,
(D.2)

128

for i, k = 0, · · · , N − 1, and considering (6.26) and (D.2), we get

S̆i,k(r̂, λ̂, τ̂) =































2θiθk
θ2N

, i, k = 0, · · · , N − 1,

θi
θN

i = 0, · · · , N − 1, k = N,

θk
θN
, i = N, k = 0, · · · , N − 1,

1
2

i = N, k = N.

(D.3)

Finally, using the two equivalent forms (6.23) and (D.3) of S̆(r̂, λ̂, τ̂), we get

S̆i,k(r̂, λ̂, τ̂)































1
2
r̂i,k =

2θiθk
θ2N

, i = 2, · · · , N − 1, k = 0, · · · , i− 2,

1
2
(r̂i,k − λ̂i) =

2θiθk
θ2N

, i = 1, · · · , N − 1, k = i− 1,

1
2
r̂i,k =

θk
θN
, i = N, k = 0, · · · , i− 2,

1
2
(r̂i,k − λ̂i) =

θk
θN
. i = 1, · · · , N − 1, k = i− 1,

(D.4)

and this can be easily converted to the choice r̂i,k in (6.30).

For these given (r̂, λ̂, τ̂), we can easily notice that





S̆(ĥ, λ̂, τ̂) 1
2
τ̂

1
2
τ̂ T 1

2
γ̂



 =





2
θ2N

θ̌θ̌T 1
θ2N

θ̌

1
θ2N

θ̌T 1
2θ2N



 =
2

θ2N





θ̌

1
2









θ̌

1
2





T

� 0 (D.5)

for θ̌ =
(

θ0, · · · , θN−1,
θN
2

)T
, showing that the choice is feasible in both (RD) and (RD1).

129

APPENDIX E

Proof of Lemma 7

We prove that the choice (r̂, λ̂, τ̂ , γ) in (6.30), (6.31), (6.32) and (6.33) is a solution of

problem (RD) using KKT conditions.

We first rewrite problem (RD) into a general form:

argmin
r∈RN(N+1)/2

min
λ∈RN ,

τ∈RN+1,
γ∈R

{

1

2
LR2γ : F0(r,λ, τ , γ) � 0, F1(λ, τ) ≥ 0, F2(λ, τ) = 0

}

, (RD2)

where































F0(r,λ, τ , γ) =





S̆(r,λ, τ) 1
2
τ

1
2
τ T 1

2
γ



 ∈ R
(N+2)×(N+2),

F1(λ, τ) = (λ1, · · · , λN , τ0, · · · , τN)T ∈ R
2N+1,

F2(λ, τ) = (τ0 − λ1, λ1 − λ2 + τ1, · · · , λN−1 − λN + τN−1, λN + τN − 1)T ∈ R
N+1.

The Lagrangian of problem (RD2) is

L̆(r,λ, τ , γ,Z,η,µ) = 1

2
LR2γ − tr{F0(r,λ, τ , γ)Z}−ηTF1(λ, τ)− µTF2(λ, τ), (E.1)

and the KKT conditions of (RD2) are































F0(r,λ, τ , γ) � 0, F1(λ, τ) ≥ 0, F2(λ, τ) = 0,

∇r,λ,τ ,γL̆(r,λ, τ , γ,Z,η,µ) = 0,

Z � 0, η ≥ 0,

tr{F0(r,λ, τ , γ)Z} = 0, ηTF1(λ, τ) = 0,

(E.2)

130

where Z is a (N+2)×(N+2) symmetric matrix, η ∈ R
2N+1 and µ ∈ R

N+1. Since 1
2
LR2γ is

linear, a pair (r,λ, τ , γ) satisfying the KKT conditions (E.2) with a pair (Z,η,µ) becomes

an optimal solution of (RD2).

Hereafter, we show that a pair (Z,η,µ) satisfying the KKT conditions (E.2) for a given

feasible (r̂, λ̂, τ̂ , γ̂) in Lemma 7 exists. The choice (r̂, λ̂, τ̂ , γ̂) is feasible, so the first condition

of (E.2) is satisfied. We can easily get η = 0 from the last two conditions of (E.2), since

F1(λ̂, τ̂) > 0. In addition, for symmetric matrices F0(r̂, λ̂, τ̂ , γ̂) � 0 and Z � 0, we

can replace the condition tr
{

F0(r̂, λ̂, τ̂ , γ̂)Z
}

= 0 by F0(r̂, λ̂, τ̂ , γ̂)Z = 0. The stationary

condition ∇r,λ,τ ,γL̆(r,λ, τ , γ,Z,η,µ) = 0 of (E.2) can be rewritten as































∂
∂ri,k

L̆ = −1
2
(Zi,k + Zk,i) = 0, i = 1, · · · , N, k = 0, · · · , i− 1,

∂
∂λi

L̆ = −1
2
(Zi−1,i−1 − Zi−1,i − Zi,i−1 + Zi,i)− (µi − µi−1) = 0, i = 1, · · · , N,

∂
∂τi

L̆ = −1
2
(Zi,i + Zi,N+1 + ZN+1,i)− µi = 0, i = 0, · · · , N,

∂
∂γ
L̆ = 1

2
LR2 − 1

2
ZN+1,N+1 = 0,

where we omit the arguments (r,λ, τ , γ,Z,η,µ) in L̆(r,λ, τ , γ,Z,η,µ) for notational sim-

plicity.

Then the KKT conditions (E.2) for given (r̂, λ̂, τ̂ , γ̂) reduces to























































Zi,k = 0, i = 1, · · · , N, k = 0, · · · , i− 1,

Zi−1,i−1 + Zi,i = −2(µi − µi−1), i = 1, · · · , N
Zi,i + 2ZN+1,i = −2µi, i = 0, · · · , N
ZN+1,N+1 = LR2,

F0(r̂, λ̂, τ̂ , γ̂)Z = 0,

Z � 0,

(E.3)

and a careful reformulation of the condition F0(r̂, λ̂, τ̂ , γ̂)Z = 0 leads to



















ZN+1,i = −2θiZi,i, i = 0, · · · , N − 1,

ZN+1,N = −θNZN,N ,
∑N−1

i=0 2θiZN+1,i + θNZN+1,N + LR2 = 0.

(E.4)

Inserting (E.4) into (E.3) with additional derivation, the conditions (E.3) can be reformulated

131

as

Z � 0,
N−1
∑

i=0

2θiZN+1,i + θNZN+1,N + LR2 = 0,

Zi,k =























































2θi−1−1
2θi

Zi−1,i−1, i = 1, · · · , N − 1, k = i,

2θi−1−1
θi

Zi−1,i−1, i = N, k = i,

−2θiZi,i, i = N + 1, k = 0, · · · , i− 2,

−θiZi,i, i = N + 1, k = i− 1,

LR2, i = N + 1, k = i,

0, i = 1, · · · , N, k = 0, · · · , i− 1,

µi =







4θi−1
2
Zi,i, i = 0, · · · , N − 1,

2θi−1
2
ZN,N , i = N.

From the above equalities, we can write all variables with respect to Z0,0 as

Zi,k =























































LR2
(

∑N−1
i=0 4θ2i κi + 2θ2NκN

)−1

, i = 0, k = i,

κiZ0,0, i = 1, · · · , N − 1, k = i,

2κiZ0,0, i = N, k = i,

−2θkκkZ0,0, i = N + 1, k = 0, · · · , i− 1,

LR2, i = N + 1, k = i,

0, i = 1, · · · , N, k = 0, · · · , i− 1,

µi =







4θi−1
2
κiZ0,0, i = 0, · · · , N − 1,

(2θi − 1)κiZ0,0, i = N,

where κi =
∏i

j=1
2θj−1−1

2θj
.

We conclude by showing that the matrix Z is positive semidefinite:

Z =

(

N−1
∑

i=0

κi(ûi − 2θiûN+1)(ûi − 2θiûN+1)
T

+ 2κN(ûN − θN ûN+1)(ûN − θN ûN+1)
T

)

Z0,0 � 0,

for ûi = eN+2,i+1 ∈ R
N+2. This finally verifies the existence of (Z,η,µ) that satisfies the

132

KKT conditions (E.2) for a given (r̂, λ̂, τ̂ , γ̂).

133

BIBLIOGRAPHY

134

BIBLIOGRAPHY

[1] H. Erdoğan and J. A. Fessler, “Monotonic algorithms for transmission tomography,”
IEEE Trans. Med. Imag., vol. 18, no. 9, pp. 801–14, Sep. 1999.

[2] ——, “Ordered subsets algorithms for transmission tomography,” Phys. Med. Biol.,
vol. 44, no. 11, pp. 2835–51, Nov. 1999.

[3] P. J. La Rivière, J. Bian, and P. A. Vargas, “Penalized-likelihood sinogram restoration
for computed tomography,” IEEE Trans. Med. Imag., vol. 25, no. 8, pp. 1022–36, Aug.
2006.

[4] S. Ahn and J. A. Fessler, “Globally convergent image reconstruction for emission to-
mography using relaxed ordered subsets algorithms,” IEEE Trans. Med. Imag., vol. 22,
no. 5, pp. 613–26, May 2003.

[5] S. Ahn, J. A. Fessler, D. Blatt, and A. O. Hero, “Convergent incremental optimization
transfer algorithms: Application to tomography,” IEEE Trans. Med. Imag., vol. 25,
no. 3, pp. 283–96, Mar. 2006.

[6] G. I. Angelis, A. J. Reader, F. A. Kotasidis, W. R. Lionheart, and J. C. Matthews,
“The performance of monotonic and new non-monotonic gradient ascent reconstruction
algorithms for high-resolution neuroreceptor PET imaging,” Phys. Med. Biol., vol. 56,
no. 13, pp. 3895–917, Jul. 2011.

[7] S. Anthoine, J.-F. Aujol, Y. Boursier, and C. Mélot, “Some proximal methods for
Poisson intensity CBCT and PET,” Inverse Prob. and Imaging, vol. 6, no. 4, pp.
565–98, Nov. 2012.

[8] A. Beck, “Quadratic matrix programming,” SIAM J. Optim., vol. 17, no. 4, pp. 1224–
38, 2006.

[9] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total varia-
tion image denoising and deblurring problems,” IEEE Trans. Im. Proc., vol. 18, no. 11,
pp. 2419–34, Nov. 2009.

[10] ——, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,”
SIAM J. Imaging Sci., vol. 2, no. 1, pp. 183–202, 2009.

135

[11] A. Ben-Tal and A. Nemirovski, Lecture on modern convex optimization: Analysis,
algorithms, and engineering applications. Philadelphia: Soc. Indust. Appl. Math.,
2001.

[12] T. M. Benson, B. K. B. D. Man, L. Fu, and J.-B. Thibault, “Block-based iterative
coordinate descent,” in Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., 2010, pp. 2856–
9.

[13] D. P. Bertsekas, “Multiplier methods: A survey,” Automatica, vol. 12, no. 2, pp. 133–
45, Mar. 1976.

[14] C. A. Bouman and K. Sauer, “A unified approach to statistical tomography using
coordinate descent optimization,” IEEE Trans. Im. Proc., vol. 5, no. 3, pp. 480–92,
Mar. 1996.

[15] D. J. Brenner and E. J. Hall, “Computed tomography- An increasing source of
radiation exposure,” New England journal of Medicine, vol. 357, no. 22, pp. 2277–84,
Nov. 2007.

[16] K. M. Brown, T. Köhler, F. Bergner, R. Bippus, B. Brendel, S. Zabic, W. C. Karl,
S. Singh, A. Padole, and S. Do, “Sparse sampling for CT dose reduction,” in Proc.
Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, 2013, pp. 428–31.

[17] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Two deterministic
half-quadratic regularization algorithms for computed imaging,” in Proc. IEEE Intl.
Conf. on Image Processing, vol. 2, 1994, pp. 168–71.

[18] J. H. Cho and J. A. Fessler, “Accelerating ordered-subsets image reconstruction for
X-ray CT using double surrogates,” in Proc. SPIE 8313 Medical Imaging 2012: Phys.
Med. Im., 2012, p. 83131X.

[19] K. Choi, J. Wang, L. Zhu, T.-S. Suh, S. Boyd, and L. Xing, “Compressed sensing
based cone-beam computed tomography reconstruction with a first-order method,”
Med. Phys., vol. 37, no. 9, pp. 5113–25, Nov. 2010.

[20] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint,” Comm. Pure Appl. Math., vol. 57,
no. 11, pp. 1413–57, Nov. 2004.

[21] B. De Man and S. Basu, “Distance-driven projection and backprojection in three di-
mensions,” Phys. Med. Biol., vol. 49, no. 11, pp. 2463–75, Jun. 2004.

[22] B. De Man, S. Basu, J.-B. Thibault, J. Hsieh, J. A. Fessler, C. Bouman, and K. Sauer,
“A study of different minimization approaches for iterative reconstruction in X-ray
CT,” in Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., vol. 5, 2005, pp. 2708–10.

[23] A. R. De Pierro, “On the convergence of the iterative image space reconstruction
algorithm for volume ECT,” IEEE Trans. Med. Imag., vol. 6, no. 2, pp. 174–5, Jun.
1987.

136

[24] ——, “On the relation between the ISRA and the EM algorithm for positron emission
tomography,” IEEE Trans. Med. Imag., vol. 12, no. 2, pp. 328–33, Jun. 1993.

[25] ——, “A modified expectation maximization algorithm for penalized likelihood esti-
mation in emission tomography,” IEEE Trans. Med. Imag., vol. 14, no. 1, pp. 132–7,
Mar. 1995.

[26] M. Defrise, F. Noo, and H. Kudo, “A solution to the long-object problem in helical
cone-beam tomography,” Phys. Med. Biol., vol. 45, no. 3, pp. 623–43, Mar. 2000.

[27] A. H. Delaney and Y. Bresler, “Globally convergent edge-preserving regularized recon-
struction: an application to limited-angle tomography,” IEEE Trans. Im. Proc., vol. 7,
no. 2, pp. 204–21, Feb. 1998.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” J. Royal Stat. Soc. Ser. B, vol. 39, no. 1, pp. 1–38, 1977.

[29] O. Devolder, “Stochastic first order methods in smooth convex optimization,” 2011.

[30] O. Devolder, François. Glineur, and Y. Nesterov, “Intermediate gradient methods for
smooth convex problems with inexact oracle,” 2013, cORE discussion paper 2013/17.

[31] Y. Drori and M. Teboulle, “Performance of first-order methods for smooth convex
minimization: A novel approach,” Mathematical Programming, 2013.

[32] I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyenergetic X-
ray computed tomography,” IEEE Trans. Med. Imag., vol. 21, no. 2, pp. 89–99, Feb.
2002.

[33] R. C. Fair, “On the robust estimation of econometric models,” Ann. Econ. Social
Measurement, vol. 2, pp. 667–77, Oct. 1974.

[34] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone beam algorithm,” J.
Opt. Soc. Am. A, vol. 1, no. 6, pp. 612–9, Jun. 1984.

[35] J. A. Fessler, “Hybrid Poisson/polynomial objective functions for tomographic image
reconstruction from transmission scans,” IEEE Trans. Im. Proc., vol. 4, no. 10, pp.
1439–50, Oct. 1995.

[36] ——, “Statistical image reconstruction methods for transmission tomography,” in
Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis,
M. Sonka and J. M. Fitzpatrick, Eds. Bellingham: SPIE, 2000, pp. 1–70.

[37] ——, “Matlab tomography toolbox,” 2004, available from
http://www.eecs.umich.edu/∼fessler.

[38] J. A. Fessler and S. D. Booth, “Conjugate-gradient preconditioning methods for shift-
variant PET image reconstruction,” IEEE Trans. Im. Proc., vol. 8, no. 5, pp. 688–99,
May 1999.

137

[39] J. A. Fessler, N. H. Clinthorne, and W. L. Rogers, “On complete data spaces for PET
reconstruction algorithms,” IEEE Trans. Nuc. Sci., vol. 40, no. 4, pp. 1055–61, Aug.
1993.

[40] J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and K. Lange, “Fast parallelizable algo-
rithms for transmission image reconstruction,” in Proc. IEEE Nuc. Sci. Symp. Med.
Im. Conf., vol. 3, 1995, pp. 1346–50.

[41] ——, “Grouped-coordinate ascent algorithms for penalized-likelihood transmission im-
age reconstruction,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 166–75, Apr. 1997.

[42] J. A. Fessler and D. Kim, “Axial block coordinate descent (ABCD) algorithm for
X-ray CT image reconstruction,” in Proc. Intl. Mtg. on Fully 3D Image Recon. in
Rad. and Nuc. Med, 2011, pp. 262–5.

[43] J. A. Fessler and W. L. Rogers, “Spatial resolution properties of penalized-likelihood
image reconstruction methods: Space-invariant tomographs,” IEEE Trans. Im. Proc.,
vol. 5, no. 9, pp. 1346–58, Sep. 1996.

[44] L. Fu, Z. Yu, J.-B. Thibault, B. D. Man, M. G. McGaffin, and J. A. Fessler,
“Space-variant channelized preconditioner design for 3D iterative CT reconstruction,”
in Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, 2013, pp. 205–8.

[45] L. Fu, K. Zeng, T. M. Benson, B. De Man, Z. Yu, G. Cao, and J.-B. Thibault, “A
preliminary investigation of 3D preconditioned conjugate gradient reconstruction for
cone-beam CT,” in Proc. SPIE 8313 Medical Imaging 2012: Phys. Med. Im., 2012, p.
83133O.

[46] T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,”
SIAM J. Imaging Sci., vol. 2, no. 2, pp. 323–43, 2009.

[47] G. H. Golub and C. F. Van Loan, Matrix computations, 2nd ed. Johns Hopkins Univ.
Press, 1989.

[48] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex programming,” 2006.

[49] R. J. Hathaway and J. C. Bezdek, “Grouped coordinate minimization using Newton’s
method for inexact minimization in one vector coordinate,” J. Optim. Theory Appl.,
vol. 71, no. 3, pp. 503–16, Dec. 1991.

[50] G. T. Herman and L. B. Meyer, “Algebraic reconstruction techniques can be made
computationally efficient,” IEEE Trans. Med. Imag., vol. 12, no. 3, pp. 600–9, Sep.
1993.

[51] P. J. Huber, Robust statistics. New York: Wiley, 1981.

[52] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered
subsets of projection data,” IEEE Trans. Med. Imag., vol. 13, no. 4, pp. 601–9, Dec.
1994.

138

[53] M. W. Jacobson and J. A. Fessler, “An expanded theoretical treatment of iteration-
dependent majorize-minimize algorithms,” IEEE Trans. Im. Proc., vol. 16, no. 10, pp.
2411–22, Oct. 2007.

[54] S. T. Jensen, S. Johansen, and S. L. Lauritzen, “Globally convergent algorithms for
maximizing a likelihood function,” Biometrika, vol. 78, no. 4, pp. 867–77, Dec. 1991.

[55] T. L. Jensen, J. H. Jrgensen, P. C. Hansen, and S. H. Jense, “Implementation of an
optimal first-order method for strongly convex total variation regularization,” BIT
Numerical Mathematics, vol. 52, no. 2, pp. 329–56, Jun. 2012.

[56] D. Kim and J. A. Fessler, “Accelerated ordered-subsets algorithm based on separable
quadratic surrogates for regularized image reconstruction in X-ray CT,” in Proc. IEEE
Intl. Symp. Biomed. Imag., 2011, pp. 1134–7.

[57] ——, “Parallelizable algorithms for X-ray CT image reconstruction with spatially
non-uniform updates,” in Proc. 2nd Intl. Mtg. on image formation in X-ray CT, 2012,
pp. 33–6.

[58] ——, “Ordered subsets acceleration using relaxed momentum for X-ray CT image
reconstruction,” in Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., 2013, to appear.

[59] ——, “Optimized first-order methods for smooth convex minimization,” 2014, in prepa-
ration.

[60] ——, “Optimized momentum steps for accelerating X-ray CT ordered subsets image
reconstruction,” in Proc. 3rd Intl. Mtg. on image formation in X-ray CT, 2014, to
appear.

[61] D. Kim, D. Pal, J.-B. Thibault, and J. A. Fessler, “Improved ordered subsets
algorithm for 3D X-ray CT image reconstruction,” in Proc. 2nd Intl. Mtg. on image
formation in X-ray CT, 2012, pp. 378–81.

[62] ——, “Accelerating ordered subsets image reconstruction for X-ray CT using spatially
non-uniform optimization transfer,” IEEE Trans. Med. Imag., vol. 32, no. 11, pp.
1965–78, Nov. 2013.

[63] D. Kim, S. Ramani, and J. A. Fessler, “Accelerating X-ray CT ordered subsets image
reconstruction with Nesterov’s first-order methods,” in Proc. Intl. Mtg. on Fully 3D
Image Recon. in Rad. and Nuc. Med, 2013, pp. 22–5.

[64] ——, “Ordered subsets with momentum for accelerated X-ray CT image reconstruc-
tion,” in Proc. IEEE Conf. Acoust. Speech Sig. Proc., 2013, pp. 920–3.

[65] ——, “Combining ordered subsets and momentum for accelerated X-ray CT image
reconstruction,” IEEE Trans. Med. Imag., 2014, submitted.

[66] K. Lange and J. A. Fessler, “Globally convergent algorithms for maximum a posteriori
transmission tomography,” IEEE Trans. Im. Proc., vol. 4, no. 10, pp. 1430–8, Oct.
1995.

139

[67] K. Lange, D. R. Hunter, and I. Yang, “Optimization transfer using surrogate objective
functions,” J. Computational and Graphical Stat., vol. 9, no. 1, pp. 1–20, Mar. 2000.

[68] S.-J. Lee, “Accelerated coordinate descent methods for bayesian reconstruction us-
ing ordered subsets of projection data,” in Proc. SPIE 4121 Mathematical Modeling,
Estimation, and Imaging, 2000, pp. 170–81.

[69] Y. Long, L. Cheng, X. Rui, B. De Man, A. M. Alessio, E. Asma, and P. E. Kina-
han, “Analysis of ultra-low dose CT acquisition protocol and reconstruction algorithm
combinations for PET attenuation correction,” in Proc. Intl. Mtg. on Fully 3D Image
Recon. in Rad. and Nuc. Med, 2013, pp. 400–3.

[70] Y. Long, J. A. Fessler, and J. M. Balter, “3D forward and back-projection for X-ray
CT using separable footprints,” IEEE Trans. Med. Imag., vol. 29, no. 11, pp. 1839–50,
Nov. 2010.

[71] Z. Q. Luo, “On the convergence of the LMS algorithm with adaptive learning rate for
linear feedforward networks,” Neural Computation, vol. 32, no. 2, pp. 226–45, Jun.
1991.

[72] O. L. Mangasarian and M. V. Solodov, “Serial and parallel backpropagation conver-
gence via nonmonotone perturbed minimization,” Optimization Methods and Software,
vol. 4, no. 2, pp. 103–16, 1994.

[73] M. McGaffin and J. A. Fessler, “Sparse shift-varying FIR preconditioners for fast
volume denoising,” in Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc.
Med, 2013, pp. 284–7.

[74] M. G. McGaffin and J. A. Fessler, “Duality-based projection-domain tomography solver
for splitting-based X-ray CT reconstruction,” in Proc. 3rd Intl. Mtg. on image forma-
tion in X-ray CT, 2014, to appear.

[75] M. G. McGaffin, S. Ramani, and J. A. Fessler, “Reduced memory augmented La-
grangian algorithm for 3D iterative X-ray CT image reconstruction,” in Proc. SPIE
8313 Medical Imaging 2012: Phys. Med. Im., 2012, p. 831327.

[76] A. Mehranian, A. Rahmim, M. R. Ay, F. Kotasidis, and H. Zaidi, “An ordered-subsets
proximal preconditioned gradient algorithm for edge-preserving PET image reconstruc-
tion,” Med. Phys., vol. 40, no. 5, p. 052503, 2013.

[77] D. Modgil, A. M. Alessio, M. D. Bindschadler, K. J. Little, D. Rigie, P. A. Vargas, and
P. J. La Rivière, “Multi-dimensional sinogram restoration for myocardial blood flow
estimation from dose-reduced dynamic CT,” in Proc. Intl. Mtg. on Fully 3D Image
Recon. in Rad. and Nuc. Med, 2013, pp. 217–20.

[78] A. Nemirovski and D. Yudin, Problem complexity and method efficiency in optimiza-
tion. John Wiley, 1983.

140

[79] Y. Nesterov, “A method for unconstrained convex minimization problem with the rate
of convergence O(1/k2),” Dokl. Akad. Nauk. USSR, vol. 269, no. 3, pp. 543–7, 1983.

[80] ——, “A method of solving a convex programming problem with convergence rate
O(1/k2),” Soviet Math. Dokl., vol. 27, no. 2, pp. 372–76, 1983.

[81] ——, Introductory lectures on convex optimization: A basic course. Kluwer, 1984.

[82] ——, “On an approach to the construction of optimal methods of minimization of
smooth convex functions,” Èkonom. i. Mat. Metody, vol. 24, pp. 509–17, 1988.

[83] ——, “Smooth minimization of non-smooth functions,” Mathematical Programming,
vol. 103, no. 1, pp. 127–52, May 2005.

[84] ——, “Gradient methods for minimizing composite objective function,” CORE,
Catholic University of Louvain, Louvain-la-Neuve, Belgium, Tech. Rep., 2007.

[85] H. Nien and J. A. Fessler, “Combining augmented Lagrangian method with ordered
subsets for X-ray CT image reconstruction,” in Proc. Intl. Mtg. on Fully 3D Image
Recon. in Rad. and Nuc. Med, 2013, pp. 280–3.

[86] ——, “Fast splitting-based ordered-subsets X-ray CT image reconstruction,” in Proc.
3rd Intl. Mtg. on image formation in X-ray CT, 2014, to appear.

[87] ——, “Fast X-ray CT image reconstruction using the linearized augmented Lagrangian
method with ordered subsets,” IEEE Trans. Med. Imag., 2014, submitted.

[88] F. Noo, M. Defrise, and R. Clackdoyle, “Single-slice rebinning method for helical cone-
beam CT,” Phys. Med. Biol., vol. 44, no. 2, pp. 561–70, Feb. 1999.

[89] J. Nuyts, B. De Man, P. Dupont, M. Defrise, P. Suetens, and L. Mortelmans, “Iterative
reconstruction for helical CT: A simulation study,” Phys. Med. Biol., vol. 43, no. 4,
pp. 729–37, Apr. 1998.

[90] B. O’Donoghue and E. Candès, “Adaptive restart for accelerated gradient schemes,”
Found. Computational Math., 2014.

[91] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several
variables. New York: Academic, 1970.

[92] P. J. Pickhardt, M. G. Lubner, D. H. Kim, J. Tang, J. A. Ruma, A. M. del Rio, and G.-
H. Chen, “Abdominal CT with model-based iterative reconstruction (MBIR): Initial
results of a prospective Trial comparing ultralow-dose with standard-dose imaging,”
Am. J. Roentgenol., vol. 199, Dec. 2012.

[93] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Comp. Math. Math. Phys., vol. 4, no. 5, pp. 1–17, 1964.

141

[94] S. Ramani and J. A. Fessler, “A splitting-based iterative algorithm for accelerated
statistical X-ray CT reconstruction,” IEEE Trans. Med. Imag., vol. 31, no. 3, pp.
677–88, Mar. 2012.

[95] J. M. Rosen, J. Wu, T. F. Wenisch, and J. A. Fessler, “Iterative helical CT
reconstruction in the cloud for ten dollars in five minutes,” in Proc. Intl. Mtg. on
Fully 3D Image Recon. in Rad. and Nuc. Med, 2013, pp. 241–4.

[96] K. Sauer and C. Bouman, “A local update strategy for iterative reconstruction from
projections,” IEEE Trans. Sig. Proc., vol. 41, no. 2, pp. 534–48, Feb. 1993.

[97] K. D. Sauer, S. Borman, and C. A. Bouman, “Parallel computation of sequential pixel
updates in statistical tomographic reconstruction,” in Proc. IEEE Intl. Conf. on Image
Processing, vol. 3, 1995, pp. 93–6.

[98] W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W. Tsui, “Realistic CT
simulation using the 4D XCAT phantom,” Med. Phys., vol. 35, no. 8, pp. 3800–8, Aug.
2008.

[99] S. Sotthivirat and J. A. Fessler, “Image recovery using partitioned-separable
paraboloidal surrogate coordinate ascent algorithms,” IEEE Trans. Im. Proc., vol. 11,
no. 3, pp. 306–17, Mar. 2002.

[100] S. Srivastava, “Accelerated statistical image reconstruction algorithms and simplified
cost functions for X-ray computed tomography,” Ph.D. dissertation, Univ. of Michigan,
Ann Arbor, MI, 48109-2122, Ann Arbor, MI, 2008.

[101] J. W. Stayman, Y. Otake, J. L. Prince, A. J. Khanna, and J. H. Siewerdsen, “Model-
based tomographic reconstruction of objects containing known components,” IEEE
Trans. Med. Imag., vol. 31, no. 10, pp. 1837–48, Oct. 2012.

[102] J.-B. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh, “A recursive filter for noise
reduction in statistical iterative tomographic imaging,” in Proc. SPIE 6065 Computa-
tional Imaging IV, 2006, p. 60650X.

[103] J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A three-dimensional statistical
approach to improved image quality for multi-slice helical CT,” Med. Phys., vol. 34,
no. 11, pp. 4526–44, Nov. 2007.

[104] P. Tseng, “On accelerated proximal gradient methods for convex-concave
optimization,” 2008.

[105] ——, “Approximation accuracy, gradient methods, and error bound for structured
convex optimization,” Mathematical Programming, vol. 125, no. 2, pp. 263–95, 2010.

[106] J. Weickert, B. M. H. Romeny, and M. A. Viergever, “Efficient and reliable schemes
for nonlinear diffusion filtering,” IEEE Trans. Im. Proc., vol. 7, no. 3, pp. 398–410,
Mar. 1998.

142

[107] M. Yavuz and J. A. Fessler, “Statistical image reconstruction methods for randoms-
precorrected PET scans,” Med. Im. Anal., vol. 2, no. 4, pp. 369–78, Dec. 1998.

[108] L. Yu, Y. Zou, E. Y. Sidky, C. A. Pelizzari, P. Munro, and X. Pan, “Region of interest
reconstruction from truncated data in circular cone-beam CT,” IEEE Trans. Med.
Imag., vol. 25, no. 7, pp. 869–81, Jul. 2006.

[109] Z. Yu, J.-B. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh, “Fast model-based
X-ray CT reconstruction using spatially non-homogeneous ICD optimization,” IEEE
Trans. Im. Proc., vol. 20, no. 1, pp. 161–75, Jan. 2011.

143

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Contribution

	Background
	Background of X-ray CT image reconstruction
	X-ray CT physics
	Object parametrization

	Statistical image reconstruction
	Statistical modeling of X-ray CT scan
	Statistical X-ray CT image reconstruction

	Optimization algorithms
	Optimization algorithms in X-ray CT problem
	Optimization transfer methods
	Optimization transfer using the Lipschitz constant
	Separable quadratic surrogates methods

	Ordered subsets methods
	Momentum methods

	Ordered subsets for 3D cone-beam X-ray CT
	Ordered subsets (OS) methods
	Scaling factor for 3D helical geometry
	Averaging sub-iterations
	Conclusion

	Accelerated optimization transfer methods
	Separable quadratic surrogates (SQS) methods
	Spatially nonuniform SQS methods
	Convergence rate of SQS methods
	NU-SQS methods
	Update-needed factors
	Design
	Dynamic range adjustment of uj(n)
	Related work
	Initialization of uj(0)
	Implementation

	Results
	GE performance phantom
	Shoulder region scan
	Truncated abdomen scan
	Cost function plots
	Simulation data

	Other variation of SQS methods
	SQS with bounded interval (SQS-BI) for regularizer R(x)
	SQS-BI algorithm for regularizer
	Simulation results

	Quasi-separable quadratic surrogates (QSQS)
	QSQS algorithm
	Reordering of x in horizontal and vertical direction
	Simulation results

	Conclusion and Discussion

	Momentum approaches with ordered subsets
	OS-SQS methods with Nesterov's momentum
	Proposed OS-SQS methods with momentum 1 (OS-mom1)
	Proposed OS-SQS methods with momentum 2 (OS-mom2)

	Relaxation of momentum
	Stochastic gradient method
	Proposed OS-SQS methods with relaxed momentum (OS-mom3)
	The choice of (k) and tk
	The choice of c(k)
	The choice of

	Results
	Simulation data
	The number of subsets
	The ordering of subsets
	Type of momentum
	The choice of

	Shoulder region scan data
	Abdominal region scan

	Conclusion and Discussion

	Optimized momentum approaches
	Introduction
	Problem and approach
	Smooth convex minimization problem
	Optimizing the step coefficients of first-order algorithms

	Examples of first-order algorithms
	Gradient method
	Heavy-ball method
	Nesterov's fast gradient method 1
	Nesterov's fast gradient method 2

	A convergence bound of first-order algorithms using PEP approach
	Review of relaxation schemes for PEP approach
	An analytical bound for Nesterov's fast gradient methods

	A convergence bound for the optimized first-order algorithm
	Review of DT's numerical bound for optimized first-order algorithms
	An analytical bound for the optimized first-order algorithm

	Proposed optimized first-order algorithms
	Analytical coefficients of the optimized first-order algorithm
	Efficient formulations of optimized first-order algorithms

	Conclusion and Discussion
	Results
	Simulation data
	Shoulder region scan data

	Axial block coordinate descent in 3D cone-beam X-ray CT
	3D cone-beam X-ray CT geometry and system matrix
	3D cone-beam X-ray CT geometry
	System matrix in 3D X-ray CT geometry

	Axial block coordinate descent (ABCD)
	ABCD algorithm
	Prelimary simulation results

	Conclusion and Discussion

	Conclusion and Future work
	Future work

	APPENDICES
	BIBLIOGRAPHY

