
Accelerated Computation of Regularized
Estimates in Magnetic Resonance Imaging

by

Michael J. Allison

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in the University of Michigan
2014

Doctoral Committee:

Professor Jeffrey A. Fessler, Chair
Professor Anna C. Gilbert
Professor Alfred O. Hero III
Assistant Research Scientist Jon-Fredrik Nielsen
Professor Douglas C. Noll



c© Michael J. Allison 2014
All Rights Reserved



ACKNOWLEDGEMENTS

This work would not have been possible without the guidance of many people.

First and foremost, I would like to thank my supervisor, Prof. Jeffrey Fessler, for

his insightful advice over the course of my graduate career. I am grateful to Dr.

Sathish Ramani for mentoring me during my early years and helping me determine

my research focus. Furthermore, I would like to thank my doctoral committee for

their suggestions, which greatly improved this thesis.

I would also like to thank the people and agencies who provided material sup-

port. Specifically, the Natural Sciences and Engineering Research Council of Canada

(NSERC), the National Institutes of Health (NIH), and the Department of Electrical

Engineering and Computer Science for providing crucial financial support. Further-

more, Prof. Thomas Chenevert and Dr. Alexey Samsonov for providing data sets

that allowed me to pursue a wide range of MRI topics.

Finally, I would like to acknowledge all those who provided emotional support

and encouragement. First, the EE:Systems staff who helped me transition through

the many stages of a graduate career. Becky Turanski for always providing a kind

ear and an outside perspective. Everyone in the image processing and fMRI labs for

their camaraderie and interesting discussions. Takanori Watanabe and the rest of

the pot-luck crew for being great friends throughout my time in Michigan — I wish

you all the best. It would be remiss of me to not thank my parents and sister for

ii



keeping me focused on the road ahead. Finally, and most importantly, I am eternally

grateful to my wife, Annie, for her unwavering support and for helping me determine

my path when it was unclear. I promise to return the favor if you choose to do a

Ph.D.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Specific Contributions . . . . . . . . . . . . . . . . . . . . . . 4

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 MRI Background . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Magnetic Moments and Electromagnetic Fields . . . 9
2.1.2 Acquiring MR Imaging Data . . . . . . . . . . . . . 12
2.1.3 Discrete Image Model . . . . . . . . . . . . . . . . . 15

2.2 Main Magnetic Field Inhomogeneity (∆B0) . . . . . . . . . . 17
2.3 Chemical Shift and Water-Fat Imaging . . . . . . . . . . . . . 19
2.4 Accelerated MR Imaging . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Parallel Imaging . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Compressed Sensing . . . . . . . . . . . . . . . . . . 23

2.5 Optimization Transfer Methods . . . . . . . . . . . . . . . . . 24
2.6 Augmented Lagrangian Methods . . . . . . . . . . . . . . . . 24
2.7 Sparse Cholesky Factorization . . . . . . . . . . . . . . . . . . 27
2.8 Spatial Resolution Analysis of Regularized Estimators . . . . 30

III. Receive Coil Sensitivity Estimation . . . . . . . . . . . . . . . . 35

3.1 Accelerated Computation of Regularized Sensitivity Profile
Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Materials and Methods . . . . . . . . . . . . . . . . 38

iv



3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Additional Topics in Regularized Sensitivity Profile Estimation 56
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 ADMM Estimation Algorithm with Conjugate Gra-

dient Substeps . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 AL Estimation Method with Similar Variable Splitting 64
3.2.4 Effect on SENSE Reconstruction Quality . . . . . . 65
3.2.5 Estimation Over a Convex Hull Mask . . . . . . . . 79
3.2.6 Circulant Versus Non-Circulant Finite Differencing

Matrices . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . 89

IV. Main Magnetic Field Inhomogeneity Estimation . . . . . . . . 94

4.1 Accelerated Computation of Regularized Field Map Estimates 94
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 94
4.1.2 Materials and Methods . . . . . . . . . . . . . . . . 96
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . 111
4.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Edge Preserving Field Map Estimation . . . . . . . . . . . . . 116
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 116
4.2.2 Field Map Estimation with Edge Preserving Regu-

larization . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.3 Simulation of Field Inhomogeneity at Tissue Interfaces118
4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . 128

V. Water-Fat Image Reconstruction . . . . . . . . . . . . . . . . . 133

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Compressed Sensing Based Water-Fat Imaging . . . . . . . . 134
5.3 Novel Minimization Strategy . . . . . . . . . . . . . . . . . . 137

5.3.1 Water and Fat Images Update (dρ(k+1)) . . . . . . . 138
5.3.2 Field Map Update (dφ(k+1)) . . . . . . . . . . . . . 140
5.3.3 Initialization Method . . . . . . . . . . . . . . . . . 141

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4.1 Simulated Water-Fat Imaging Data . . . . . . . . . 147
5.4.2 In-vivo Knee Water-Fat Imaging Data . . . . . . . . 148

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

v



VI. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 166

vi



LIST OF FIGURES

Figure

2.1 Overview of the optimization transfer method. . . . . . . . . . . . . 24

2.2 Overview of the general AL method. . . . . . . . . . . . . . . . . . 25

2.3 Overview of a scaled AL method. . . . . . . . . . . . . . . . . . . . 26

2.4 Overview of the ADMM. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Example of the non-zero elements of a Hessian matrix with D = I
and a full 2-D second-order C (left) and the corresponding L matrix
created by CHOLMOD (right). . . . . . . . . . . . . . . . . . . . . 29

3.1 The matrices R, B, and C for the case of 1D second-order finite
differences. The top and bottom rows of C compute the difference
between the first and last pixels, hence the need for the mask B. . . 40

3.2 Overview of the ADMM–Circ algorithm. Note that Cs(j+1) only
needs to be computed once per iteration. . . . . . . . . . . . . . . . 43

3.3 The ADMM–Circ algorithm with intermediate Lagrange multiplier
updating (ADMM–Circ–IU). Note that Cs(j+1) only needs to be
computed once per iteration. . . . . . . . . . . . . . . . . . . . . . . 44

3.4 The (a) magnitude and (b) phase (masked) of the body coil image
for the simulated brain data. . . . . . . . . . . . . . . . . . . . . . . 47

3.5 The magnitudes of the (a) simulated sensitivity profiles and the (b)
simulated surface coil images for the brain data. . . . . . . . . . . . 48

3.6 The magnitudes of the (a) estimated sensitivity profiles and (b) their
percentage difference to the true sensitivities for the simulated brain
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



3.7 Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)), with
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CHAPTER I

Introduction

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality

that uses electromagnetic fields to image both physical and metabolic properties of

the body. A fundamental aspect of MRI is the generation and measurement of spa-

tially varying parameters such as magnetic field strength and receive coil sensitivity.

We often assume that these parameters are uniform; however, there are many sit-

uations in which they are not. In some cases, we exploit the spatial variation to

acquire additional information (e.g., parallel imaging techniques [1]). In other cases,

the spatial variation can lead to significant reconstruction artifacts (e.g., main mag-

netic field inhomogeneity [2]). However, in all of these situations, accurate estimates

of the spatial variation can be used to improve image quality [1, 2].

Regularized estimation methods provide robust and accurate estimates of spa-

tially varying parameters [2–4]. They are most often statistically driven and contain

additional terms that introduce a priori information about the estimate. However,

these methods require the minimization of cost functions that contain large ma-

trices making direct solutions intractable. Instead, iterative minimization methods

are used; however, many of the common iterative methods converge slowly on these

problems and this detracts from the appeal of regularized estimation. In this thesis,
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we investigate the regularized estimation of several spatially varying parameters with

a focus on developing faster minimization algorithms.

MRI acquisition times can be reduced using parallel imaging techniques in which

data is simultaneously acquired from multiple receive coils [1]. Some of these tech-

niques require estimates of the spatially varying sensitivity of each coil to recon-

struct the final image [5–7]. These estimates must be computed from calibration

data obtained at the time of acquisition as they are influenced by the patient and

the surrounding environment [8]. Regularized coil sensitivity estimation methods

impose a smoothness constraint to generate high quality estimates even in cases of

low signal-to-noise ratio (SNR) [3,9] and patient motion [9]. However, the standard

conjugate gradient (CG) minimization technique used for this regularized estimation

problem can take several minutes per coil [10]. As there can be dozens of coils in a

single acquisition [11], the resulting computational costs associated with regularized

estimation can be significant. In Chapter III, we further investigate regularized coil

sensitivity estimation and propose a faster minimization strategy.

Ideally, the main magnetic field used in MRI would be spatially uniform over the

entire field-of-view. However, this is not possible even with careful shimming [12,

p. 837] and the remaining inhomogeneity can cause artifacts in image reconstruc-

tions [2]. These artifacts can be avoided with accurate estimates of the spatial in-

homogeneity, which can be computed from multiple scans acquired at different echo

times [2, 13]. Regularized field inhomogeneity estimators impose a smoothness con-

straint to generate high quality estimates but they require minimizing a nonconvex

cost function [2, 4, 14]. An existing minimization strategy using separable quadratic

surrogate (SQS) functions finds a desirable local minimum for this problem but at

a significant computational cost [2]. This cost is further compounded in some al-
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gorithms where regularized field estimation is used as a sub-step (e.g., [15] and our

work in Chapter V). In Chapter IV, we propose two faster minimization strategies

for regularized main magnetic field inhomogeneity estimation.

Magnetic field inhomogeneity is also a nuisance parameter in water-fat imaging

where the goal is to obtain separate water and fat images. One approach to water-

fat imaging is to jointly estimate the water image, the fat image, and the field

inhomogeneity from several scans acquired at different echo times [16]. However,

these additional scans increase the acquisition times of such methods beyond those

of the basic water or fat imaging methods [13]. To counter this, compressed sensing

based water-fat (CS-WF) imaging techniques, which can reconstruct high quality

images from significantly less data than traditional methods, have been proposed

[17–20]. The disadvantage of these techniques is that their cost functions contain

nonlinear terms and non-differentiable functions. The existing CS-WF minimization

strategies use linearization and corner rounding approximations to create CG based

methods that take tens of minutes to converge [17–20]. In Chapter V, we propose a

new initialization strategy and minimization algorithm that reduces the computation

time of CS-WF image reconstruction.

The remainder of this thesis is organized as follows. Chapter II presents an

overview of the MRI fundamentals and the optimization techniques used in our

work. Chapter III investigates the coil sensitivity estimation problem and is based

on [9] and its supplemental material. Chapter IV explores magnetic field inhomo-

geneity estimation and is an extension of [21]. Chapter V presents our minimization

technique for the compressed sensing based water-fat image reconstruction problem.

Chapter VI summarizes our contributions and proposes topics for future investiga-

tion.
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1.1 Specific Contributions

The specific contributions in this thesis pertain to the previously outlined param-

eter estimation problems.

For receive coil sensitivity estimation, we extend the work on a regularized estima-

tor proposed in [3]. We first introduce an alternating direction method of multipliers

(ADMM) based algorithm [22] that minimizes the quadratic cost function in half

the time required by a CG method with a circulant preconditioner. In doing so, we

propose a variable splitting strategy that reformulates a shift-variant finite differenc-

ing matrix in a manner that allows for exact ADMM update steps. Furthermore,

we demonstrate the benefits of using a modified ADMM approach, based on updat-

ing the Lagrange multipliers between variable updates [23], for this problem. We

also address several unanswered topics related to regularized coil sensitivity estima-

tion by demonstrating its improved performance compared to existing low resolution

approaches on sensitivity encoded (SENSE) reconstructions [5] as well as the arti-

facts generated by using shift-invariant finite differencing matrices in the regularizer

and the SENSE reconstruction artifacts that can result from using tight estimation

masks.

For main magnetic field inhomogeneity estimation, we present a general cost

function that combines the cases of regularized multiple echo time field map estima-

tion [2] and regularized water-fat imaging field map estimation [4,14]. We introduce

two new minimization algorithms that use quadratic surrogate functions that re-

duce the estimation time to a thirtieth of the existing SQS method [2]. The first of

these methods adapts Huber’s algorithm for quadratic surrogates [24] by exploiting

the sparsity of the Hessian matrix of the surrogate function using sparse Cholesky
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factorization [25]. The second method accelerates a nonlinear CG algorithm using a

monotonic step size line search algorithm and a preconditioning matrix both based on

quadratic surrogate functions. We also explore using edge preserving regularization

for field inhomogeneity estimation at air-tissue interfaces.

For CS-WF image reconstruction, we present a novel alternating minimization

strategy that combines aspects of our two previous topics to obtain estimates in under

a twelfth the time of the existing corner rounding CG algorithm [17]. To update the

water and fat images, which involves minimizing a cost function with an ℓ1-norm,

we adapt an augmented Lagrangian based method proposed in [26]. To update the

field inhomogeneity estimate, which involves a smoothness promoting ℓ2-norm, we

use a CG algorithm with a sparse Hessian matrix preconditioner like in Chapter IV.

We also present an initialization strategy, based on our previous field inhomogeneity

estimator, that can efficiently compute a field map estimate with a similar level of

regularization as the CS-WF estimator. This high quality initialization shifts the

bottleneck in the CS-WF reconstruction from the nonlinear system model to the CS

based water and fat image updates.
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CHAPTER II

Background

This section presents the pertinent background for the remainder of this thesis.

It begins with a derivation of the discrete MR imaging model starting from the

classical description of the underlying MR physics (the organization of which is based

on [1–3]). It then presents several advanced MR imaging techniques that are the

bases of later chapters. It concludes with an overview of several image reconstruction

concepts that are used throughout this work.

2.1 MRI Background

Magnetic resonance imaging is a non-invasive medical imaging modality that has

gained widespread acceptance due to its flexibility and its lack of ionizing radiation

[4]. It uses three types of electromagnetic fields to image both body tissue and its

metabolic properties: the main magnetic field (B0), the radiofrequency (RF) field

(B1), and field gradients (G). It is the interaction of these fields with certain types

of atoms in the body that gives rise to MRI [1].
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2.1.1 Magnetic Moments and Electromagnetic Fields

Spins

In MRI, a spin is an atom that has an odd number of protons or neutrons and

thus possesses a property called nuclear spin angular momentum. Hydrogen (1H)

is the most studied spin in the body as it is the most common (present in H2O)

and produces the largest signal [1]. Spins can be thought of in a classical sense as

electrically charged, spinning gyroscopes that generate a magnetic dipole moment

co-linear to their angular momentum [4, 5]. Under normal circumstances, the spins

in the body do not exhibit a net magnetic moment as they are randomly oriented [1].

However, they can be manipulating into generating MR signals using electromagnetic

fields [2].

Main magnetic field (B0)

Spins align either parallel or anti-parallel to an external magnetic field, B0 [4].

The direction of B0 is typically referred to as the longitudinal or z-direction [1].

The parallel orientation is the lower energy state and thus, there will be marginally

more spins in this direction. This imbalance results in a net magnetic moment in

the z-direction with magnitude proportional to the number of spins per unit volume,

M0 [2].

If a spin is tipped from its alignment, it will precess around the z-direction at the

Larmor frequency, ω. The value of this frequency is dictated by the Larmor equation

(2.1) ω = γB ,

where γ is the gyromagnetic ratio (a fixed value specific to each atom) and B is the

magnetic field strength. Hydrogen has γ/2π = 42.58 MHz/T, which yields a Larmor

frequency of 63 MHz for a typical field strength of 1.5 T [1,2].
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Radiofrequency field (B1)

Spins in the presence of B0 are resonant in the sense that they can be excited out

of equilibrium. This is done by applying a radiofrequency field (B1), rotating at the

Larmor frequency, in the plane perpendicular to the z-direction (referred to as the

transverse or xy-plane) [1]. In the classical sense, the effect of the B1 field can be

viewed as applying a torque to the spinning gyroscopes and tipping them towards the

xy-plane [4]. The degree of tipping, referred to as the tip angle, is determined by the

duration and strength of B1 (usually on the order of microteslas and milliseconds) [1].

For a single excitation, a 90◦ tip angle is often used as it causes the net magnetization

to lie entirely in the xy-plane which results in a strong signal [1, 3].

Field gradients (G)

Localizing components of a signal generated within a uniform magnetic field (e.g.,

B0) is difficult as all of the spins of a specific type are excited by, and precess at,

the same frequency (ω0 = γB0). To counter this, linear-gradient magnetic fields

(G) are added to B0. The direction of these field gradients is the same as B0, but

their magnitudes vary linearly in either the x, y, or z-direction [1]. Thus, the spatial

location of a spin, (x, y, z), is encoded in its frequency:

(2.2) ω(x, y, z) = γ(B0 + Gxx + Gyy + Gzz),

where Gx, Gy, and Gz are the magnetization gradients in the x, y, and z directions,

respectively [2, 6].

Relaxation and the Bloch equation

After B1 has ceased, the spins precess back to equilibrium in a process called relax-

ation [2]. There are two dominant forms of relaxation: longitudinal and transverse.
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Longitudinal relaxation is the return to equilibrium of the z-direction magnetization

and is described by

(2.3) Mz(t) = M0(1 − e−t/T1),

where Mz(t) is the magnitude of the magnetization in the z-direction at time t, M0

is the steady state magnetization (which is parallel to B0)
1, and T1 is the spin-lattice

time constant.2 T1 accounts for the exchange of energy between the spins and their

atomic surroundings and is thus tissue dependent [1,4]. Transverse relaxation is the

decay of the magnetization in the xy-plane and is described by

(2.4) Mxy(t) = M0e
−t/T2 ,

where Mxy is the magnitude of the magnetization in the xy-plane and T2 is the

spin-spin time constant which accounts for the inter-spin interactions [1, 5]. Typical

values of T1 are 100-2000 ms, while typical values of T2 are 10-300 ms [1].

Macroscopically, the net magnetization vector of the excited spins, M, can be

thought of as precessing back to equilibrium at the Larmor frequency. The Bloch

equation describes this time-varying behavior:

(2.5)
dM

dt
= M × γB − Mx i + My j

T2

− (Mz − M0) k

T1

,

where Mx and My are the magnitudes of the magnetization in the x and y directions,

i, j,k are the unit-length vectors corresponding to the x, y, z directions, and B is

the combination of the previously discussed magnetic fields [1]. This rotating vector

induces an electromotive force in a receive coil placed next to the patient [1]. It is

1To better differentiate between the magnetic field strength (B) and magnetization (M), it helps
to consider the units. The units of B are Tesla or N ·A−1 ·m−1 whereas the units of M are A ·m−1.

2This equation assumes a 90◦ excitation.
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this induced force that makes up the measured signal in MRI. Thus, an MR signal

equation can be determined by solving the Bloch equation [2].3

2.1.2 Acquiring MR Imaging Data

A typical MRI acquisition involves two stages [1]. In the first stage, excitation, B1

is used to excite a volume of spins and the field gradients G are used to encode spatial

location. In the second stage, reception, the precessing transverse magnetization is

measured using a receive coil. The reception stage is typically short in duration so

as to only measure the signal when it is excited, and not when it has returned to

equilibrium. Thus, this process of excitation and reception is repeated many times

during the acquisition of a single image to capture all of the required information [1].

Excitation

Excitation is the process of tipping the spins from equilibrium using B1. There

are two types of excitation: non-selective and selective [1]. Non-selective excitation

excites the entire volume of spins by applying B1 in the presence of only B0. The

receive coil then detects signal from the entire volume and 3-D imaging techniques

are required to distinguish signal locations [1]. Selective excitation excites only a

specific region of the volume by adding field gradients to B0 during the excitation.

Typically, the selected region is a thin slice which allows for 2-D imaging techniques.

For example, a slice perpendicular to the z-direction can be excited by applying Gz

during excitation. By doing so, the Larmor frequency of each spin depends on its

z-location (ω(z) = γ(B0 + Gzz)). As B1 only excites spins with the same frequency,

the location and shape of the excited slice can be controlled using the frequency and

shape of the RF pulse [1].

3There is no known closed-form solution for the general Bloch equation with all fields present;
however, solutions exist under certain reasonable assumptions [2].
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Reception

In the common case of the RF field being inactive (B1 = 0) during reception, the

Bloch equation (2.5) can be solved to yield an equation describing the behaviour of

the local transverse magnetization, M(~r, t), after excitation:

(2.6) M(~r, t) = M(~r, 0)e−t/T2(~r)e−iω0texp

(

−iγ

∫ t

0

G(τ) · ~r dτ

)

where M(~r, 0) is the initial transverse magnetization, ~r = [x y z], and

G · ~r = Gxx + Gyy + Gzz [1].

The receive coil detects changes in the flux within the xy-plane [1], so assuming

it has uniform sensitivity, the detected signal is proportional to

(2.7) sr(t) =

∫

vol

M(~r, t) dV.

Substituting (2.6) into this equation yields,

(2.8) sr(t) =

∫∫∫

M(~r, 0)e−t/T2(~r)e−iω0texp

(

−iγ

∫ t

0

G(τ) · ~r dτ

)

dx dy dz.

Assuming that a perfectly rectangular slice parallel to the z-direction is excited, that

Gz is off during receiving, and that the acquisition time is short enough that the T2

decay term is virtually constant over the readout, (2.8) is demodulated at frequency

ω0 to obtain an equation for the 2-D imaging signal:

(2.9) sxy(t) =

∫∫

m(x, y)exp

(

−iγ

∫ t

0

Gx(τ)x + Gy(τ)y dτ

)

dx dy,

where

(2.10) m(x, y) ≈
∫

M(~r, 0)e−TE/T2(~r) dz

is the integral of the magnetization over the slice which is actually a function of both

the magnetic properties of the object being scanned (e.g., spin density, T1, and T2)
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as well as the scan parameters such as the echo time, TE, which is approximately the

time when the readout occurs [1, 5].4

Equation (2.9) can be written in terms of spatial frequency (referred to as k -space

in the MR literature) to obtain the essential 2-D imaging signal equation:

s(t) =

∫∫

m(x, y)e−i2π(kx(t)x+ky(t)y) dx dy,

= F2D{m(x, y)}
∣
∣
∣

kx(t)
ky(t)

(2.11)

where

kx(t) =
γ

2π

∫ t

0

Gx(τ) dτ and ky(t) =
γ

2π

∫ t

0

Gy(τ) dτ(2.12)

are the k -space (spatial frequency) sample locations with units cycles/cm [1,5].

The magnitude and duration of the gradients are designed so that the signal

equation adequately samples k -space. The manner in which k -space is sampled is

referred to as the sampling trajectory. The most common trajectories acquire an

evenly spaced grid of k -space locations, referred to as Cartesian sampling [6]. Such

an acquisition is beneficial as it allows for the reconstruction of the image using

inverse fast-Fourier transform (FFT) techniques.

Noise

The noise in the MR signal is predominantly from random spin fluctuations within

the patient and thermal noise resulting from resistance in the receive coil. As such, it

is modeled as complex, additive white noise with a Gaussian probability distribution

[7]. In the case of fully sampled Cartesian imaging, the noise in the reconstructed

image is also white Gaussian as the discrete Fourier transform (DFT) is unitary.

43-D MRI is a simple extension of the 2-D signal equation presented in this section. The
difference is that the entire volume is excited and Gz is applied in the same manner as Gx and Gy

(usually after excitation).
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Complex MR images are often viewed as magnitude images, in this situation the

noise in the object voxels has a Rician distribution [7]. In the case of undersampled

imaging, the noise may no longer have a white Gaussian distribution as the associated

transforms are typically non-unitary.

2.1.3 Discrete Image Model

To create a discrete image, the signal equation (2.11) is sampled to collect a

series of complex valued MR measurements, {y1, . . . , ynd
}. These measurements are

modeled as

(2.13) yi = s(ti) + ǫi, i = 1, . . . , nd,

where ti is the time index of the ith measurement and ǫ is additive noise [3, 8]. To

facilitate computer processing, the object m(~r) is also paramaterized using a linear

combination of np evenly spaced spatial basis functions, b:

(2.14) m(~r) =

np∑

j=1

xjb(~r − ~xj),

where ~xj is the spatial location corresponding to coefficient xj [3]. The signal equation

(2.11) then becomes

s(ti) =

∫
[

np∑

j=1

xjb(~r − ~xj)

]

e−i2π~k(ti)·~r d~r

=

np∑

j=1

aijxj,

(2.15)

where

(2.16) aij =

∫

b(~r − ~xj) e−i2π~k(ti)·~r d~r,
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and ~k(ti) is the k -space sample location at time ti [3]. Equation (2.16) can be further

simplified through a change of variables, yielding

aij =

∫

b(~q) e−i2π~k(ti)·(~q+~xj) d~q

= e−i2π~k(ti)·~xj

∫

b(~q) e−i2π~k(ti)·~q d~q

= e−i2π~k(ti)·~xjB{~k(ti)},

(2.17)

where B{~k} is the Fourier transform of the basis function evaluated at ~k [3]. For

simplicity, we consider impulse basis functions in our subsequent analysis. Thus,

B{~k} = 1 for all ~k and the signal equation in (2.15) becomes

(2.18) s(ti) =

np∑

j=1

xje
−i2π~k(ti)·~xj ,

which, in the case of evenly spaced basis functions (and assuming Cartesian k -space

sampling), is the DFT of {x1, . . . , xnp
} evaluated at ~k(ti).

From (2.18), the measurement model can be written in the following matrix-

vector form:

(2.19) y = Ax + ǫ,

where

(2.20) y =










y1

...

ynd










, ǫ =










ǫ1

...

ǫnd










, x =










x1

...

xnp










and [A](i,j) = e−i2π~k(ti)·~xj which is the element of A in the ith row and jth column

[3,8]. Thus, the image reconstruction problem becomes one of estimating the np long

parameter vector, x, from the nd measurements, y.

In many applications, the k -space samples are evenly spaced and the acquisition

is designed so that np = nd with A being a Fourier encoding matrix. Then, the
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measurement noise is often ignored and the magnetization image, x̂, is reconstructed

using an inverse fast-Fourier transform. If np = nd but noise is significant, the mag-

netization image may be reconstructed using regularized estimation techniques such

as penalized-likelihood methods. If nd ≪ np, more advanced regularized estimation

techniques such as compressed sensing or parallel imaging techniques may be used

(see Section 2.4).

2.2 Main Magnetic Field Inhomogeneity (∆B0)

Up to this point, the main magnetic field (B0) has been assumed to be spatially

uniform over the entire field-of-view. However, there are several common sources of

field inhomogeneity. First, typical main magnetic field coil designs result in non-

uniform magnetic fields over large field-of-views and although shimming can reduce

the degree of this inhomogeneity, it fails to eliminate it [4, p. 837]. Second, differ-

ences in the bulk magnetic susceptibility of tissues in the patient can result in large

distortions in the main magnetic field [4, p. 762]. These distortions are particularly

prevalent at air-tissue interfaces such as the lungs and at the surfaces of metallic

implants.

To determine the effects of this inhomogeneity on the reconstructed image,

we return to (2.2). Adding the field inhomogeneity at spatial location (x, y, z),

∆B0(x, y, z), yields

(2.21) ω(x, y, z) = γ(B0 + ∆B0(x, y, z) + Gxx + Gyy + Gzz).
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Using this new term in (2.9) and ignoring inhomogeneity in the z-direction5 gives

(2.22)

sxy(t) =

∫∫

m(x, y)exp (−iγ∆B0(x, y)t) exp

(

−iγ

∫ t

0

Gx(τ)x + Gy(τ)y dτ

)

dx dy,

resulting in the following modified signal equation

s(t) =

∫∫

m(x, y)e−iγ∆B0(x,y)te−i2π(kx(t)x+ky(t)y)dx dy,

= F2D{m(x, y)e−iγ∆B0(x,y)t}
∣
∣
∣

kx(t)
ky(t)

.

(2.23)

Thus, the acquired signal is equal to the Fourier transform of the product of the

magnetization image and a complex exponential containing the term γ∆B0(x, y)t,

which has units of radians.

The additional complex exponential term resulting from magnetic field inhomo-

geneity can cause several types of artifacts and distortions including scaling, stretch-

ing, and the addition of phase in the reconstructed image (see [4, Chap. 20]). These

effects are particularly noticeable in scans with long readout times (as the value in the

complex exponential term increases linearly with time) such as echo-planar imaging

(EPI) and spiral acquisitions [9]. In these situations, it can be advantageous to esti-

mate the field inhomogeneity which can then be used to perform field-corrected MR

image reconstruction (e.g. [8–10]). Chapter IV addresses this estimation problem.

One possible source of confusion on this subject stems from the terminology used

in field inhomogeneity estimation. In many of these works, the authors imply that the

term ’field map’ refers to the field inhomogeneity at each voxel in the field-of-view.

However, they are actually estimating the difference in the rotational frequency at

5Z-direction inhomogeneity in 2-D imaging can alter the shape of the selected slice and the
perceived location of tissue within that slice; however, this is an acceptable approximation for thin
slices.
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each voxel:

(2.24) ∆ω(x, y) = γ∆B0(x, y).

For most problems, the true magnetic field inhomogeneity can be determined from

this term [11]; however, more advanced methods are required in the presence of

chemical shift (see Section 2.3 and Chapter V for additional details).

2.3 Chemical Shift and Water-Fat Imaging

Depending upon the molecule in which they are present, hydrogen protons may

experience slightly different magnetic environments [4, p. 7]. This can cause different

tissues within B0 to be under slightly different effective magnetic fields, and thus,

have local Larmor frequencies shifted from the expected ω0. The degree of shift is

described by the ’chemical shift’ δ of the molecule, which is defined as

(2.25) δ =
−∆ω

ω0

and usually expressed in units of parts-per-million (ppm) [4, p. 200]. In cases of

known ω0 (i.e., a specific magnetic field strength), it is common to state the resulting

frequency shift ∆ω rather than the chemical shift.

To analyze the effects of chemical shift on the reconstructed image, we modify

(2.2) by adding the frequency shift at spatial location (x, y), −∆ω(x, y):

(2.26) ω(x, y, z) = γ(B0 + Gxx + Gyy + Gzz) − ∆ω(x, y).

Following the same steps as Section 2.2, we arrive at the following signal equation:

s(t) =

∫∫

m(x, y)ei∆ω(x,y)te−i2π(kx(t)x+ky(t)y)dx dy,

= F2D{m(x, y)ei∆ω(x,y)t}
∣
∣
∣

kx(t)
ky(t)

.

(2.27)
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The resulting acquired signal is equal to the Fourier transform of the product of

the magnetization image and a complex exponential which, like in the case of field

inhomogeneity, can result in artifacts and distortions in the reconstructed images.

One particularly challenging situation where chemical shift artifacts can occur is

when imaging objects with both water and fatty tissue. The electronic configuration

of triglyceride molecules in the fatty tissue shields the protons resulting in a chem-

ical shift δ of approximately 3.5 ppm [12].6 Thus, the frequency shift of the fatty

tissue ∆ωfat is approximately 220 Hz for a 1.5 T scan. The resulting signal equation

(ignoring field inhomogeneity and other sources of chemical shift) can be modeled

as [12]

(2.28) s(t) = F2D{w(x, y) + f(x, y)ei∆ωfatt}
∣
∣
∣

kx(t)
ky(t)

where w(x, y) and f(x, y) are the water and fat components of the magnetization at

(x, y) respectively [14]. If not properly accounted for, the chemical shift will cause

the fat component of the image to spatially shift relative to the water component [4].

Chapter V addresses water-fat imaging techniques that account for the chemical

shift.

2.4 Accelerated MR Imaging

Section 2.1 describes how traditional MRI provides a means for signal localization

by encoding object contrast in the spatial-frequency domain using field gradients

(G) [15]. The limitation of this approach is that only one k -space position can be

sampled at a time. There are also physical and physiological limits on how fast

k -space can be sampled [15]. Thus, to accelerate the acquisition of MR images, we

6The true chemical shift of fatty tissue is a spectrum with several distinct peaks [13]; however,
most methods focus on the main peak.
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must reduce the number of k -space samples. However, reducing the number of k -

space samples for a given image violates the Nyquist criterion, resulting in aliasing

artifacts in conventional reconstructions [16]. In this thesis, we use two accelerated

MR imaging techniques capable of reconstructing images from undersampled k -space

data: parallel imaging and compressed sensing.

2.4.1 Parallel Imaging

The previous derivation of the signal equation assumed that the receive coil had

uniform sensitivity. However, for surface coils, the contribution of the object magneti-

zation to the measured signal varies markedly with spatial location [15]. Knowledge

of this varying sensitivity can be used to derive additional information about the

spatial distribution of the magnetization. Furthermore, coil sensitivity is a receiver

specific property. Thus, several distinct samples of the object can be simultaneously

acquired by using multiple receive coils in parallel. This additional information

presents the possibility of accurate reconstruction from highly undersampled k -space

data and forms the basis of parallel MRI acceleration methods such as Sensitivity

Encoding (SENSE) [15] and Generalized Autocalibrating Partially Parallel Acquisi-

tions (GRAPPA) [17]. We focus on SENSE imaging as it is the underlying method

of Chapter III.

SENSE imaging

In SENSE imaging, the signal equation (2.11) for each receive coil becomes

sl(t) =

∫∫

m(x, y)cl(x, y)e−i2π(kx(t)x+ky(t)y)dx dy

= F2D{m(x, y)cl(x, y)}
∣
∣
∣

kx(t)
ky(t)

,

(2.29)
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where cl(x, y) is the sensitivity of the lth coil at spatial location (x, y). Sampling and

discretizing this equation as in Section 2.1.3 yields

(2.30) y = Bx + ǫ, y =










y1

...

yL










, B =










AC1

...

ACL










,

where yl ∈ C
nd is the measurement vector from the lth coil, x ∈ C

np is the desired

magnetization image, Cl = diag {clj} with clj denoting the jth coefficient of the

the lth parametrized sensitivity profile, A is the Fourier encoding matrix, ǫ ∈ C
np

accounts for the measurement noise, and L denotes the number of coils.

Since the sensitivity profiles differ, the system of equations in (2.30) is overdeter-

mined in the usual case where Lnd > np. Thus, given the sensitivity profiles Cl, the

underlying image x can be reconstructed using either a least-squares or penalized

least-squares method. Although the problem remains overdetermined for reduction

factors of up to L, traditional parallel imaging methods (e.g., [15]) cannot achieve

such extreme acceleration rates in practice due to increased noise levels and coil

coupling. However, recent advances in sparse reconstruction, such as compressed

sensing [16, 18, 19], have allowed for parallel imaging with such levels of accelera-

tion [20,21].

The major limitation of this method is that precise sensitivity profiles are nec-

essary to obtain accurate reconstructions of x [22]. These profiles cannot be pre-

computed as they depend on varying environmental factors such as coupling with

dielectric materials in the body [23]. Instead, they must be estimated from data

collected at the time of each scan. Chapter III addresses this estimation problem.
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2.4.2 Compressed Sensing

Compressed sensing (CS) provides a framework for accurately reconstructing a

signal from far fewer samples than dictated by the Nyquist criterion [24]. CS theory

states that a signal can be reconstructed with reasonable accuracy from a small num-

ber of samples if three conditions hold [16]. First, the desired signal or its transform

must have a sparse representation. Second, any undersampling artifacts in the spar-

sifying domain resulting from a linear reconstruction should be incoherent. Third,

the reconstruction must be performed using a nonlinear method which enforces both

data consistency and sparsity [16,25].

MRI satisfies these three requirements and is thus a good candidate for the appli-

cation of CS [16]. First, nearly all MR images are sparse in some transform domain

(often the wavelet transform domain or the domain of spatial finite differences) [25].

Second, a high degree of incoherence is guaranteed if the k -space samples are se-

lected at random [19]. This condition is not practical in 2-D Cartesian MRI as

sampling trajectories must follow relatively smooth paths due to physiological and

physical constraints. However, by using randomly selected phase encode lines in 3-D

Cartesian MRI, such sampling can be achieved for 2-D cross sections. Third, several

nonlinear reconstruction methods have been proposed for MR imaging including the

following optimization problem:

(2.31) x̂ = arg min
x

||Ψx||1 s.t. ||Fux − y||2 < λ,

where Ψ is the sparsifying transform, Fu is the corresponding undersampled Fourier

operator, and λ is a parameter that controls the degree of data consistency [16]. We

explore several minimization strategies for cost functions with this form in Chapter V.
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Optimization Transfer Method [3]

Repeat until stop criterion is satisfied:

1. Select a surrogate function Φ(n) that satisfies (2.32).

2. Find x(n+1) s.t. Φ(n)(x(n+1)) ≤ Φ(n)(x(n)).

3. n = n + 1.

Figure 2.1: Overview of the optimization transfer method.

2.5 Optimization Transfer Methods

Many of the methods in this thesis indirectly estimate parameters through the

minimization of specially designed cost functions. Optimization transfer methods

provide powerful tools for minimizing the complicated cost functions that are of-

ten encountered in medical imaging. They allow for more specialized solutions to

problems than those typically obtained from the standard steepest descent meth-

ods [3,26]. As summarized in Fig. 2.1, the premise behind optimization transfer is to

replace the original cost function Ψ with a simpler surrogate function, Φ(n). As long

as this surrogate function satisfies the following surrogate conditions, the minimizer

of this function will also reduce the original cost function [3]:

Φ(n)(x(n)) = Ψ(x(n))

Φ(n)(x) ≥ Ψ(x) ∀x
(2.32)

In fact, the surrogate function only needs to be reduced and not fully minimized.

By iteratively constructing and minimizing a surrogate function at each estimate, we

are guaranteed to monotonically decrease the original cost function [3].

2.6 Augmented Lagrangian Methods

The augmented Lagrangian (AL) method is a minimization technique that adds

Lagrange multiplier estimates to the function being minimized, thus reducing the
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Augmented Lagrangian Method

Initialize: x(0) and γ(0).
Select µ0 and set k = 0.
Repeat until stop criterion is achieved:

1. Find x(k+1) that approximately minimizes L(·, γ(k), µk),

2. γ(k+1) = γ(k) + µk

(
Ax(k+1) − c

)
,

3. Choose µk+1 ≥ µk,

4. k = k + 1.

Figure 2.2: Overview of the general AL method [27, Ch. 17].

ill-conditioning that is commonly encountered by other penalty methods such as

quadratic penalties [27, Ch. 17]. Although there are more general forms of the

AL method, we consider the following equality-constrained optimization problem

commonly encountered in medical imaging:

(2.33) arg min
x

f(x) s.t. Ax = c,

where x ∈ R
N , f is a real, closed, proper convex function, A ∈ R

M×N , and c = R
M

[27, 28]. The AL method introduces a vector of Lagrange multipliers γ ∈ R
M to

(2.33), resulting in the following AL function:

(2.34) L(x,γ, µ) = f(x) + 〈Ax − c,γ〉 +
µ

2
‖Ax − c‖2

2,

where µ > 0 is an AL parameter [27,28]. The resulting AL method finds a minimizer

of the original problem (2.33) by updating the estimates for x and γ as outlined

in Fig. 2.2. One important distinction between AL and simpler penalty methods is

that, for typical problems and assuming a sufficiently large µ0, the value of µ does

not need to be increased with iteration to ensure convergence [29].

In this thesis, we will often use a scaled AL algorithm similar to the ones pre-

sented in [21, 28] as it is a more natural form for complex valued variables. This

reformulation is found by completing the square in (2.34) and ignoring the constant
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Scaled Augmented Lagrangian Method

Initialize: x(0) and η(0).
Select µ0 and set k = 0.
Repeat until stop criterion is achieved:

1. Find x(k+1) that approximately minimizes L(·, η(k), µk),

2. η(k+1) = η(k) −
(
Ax(k+1) − c

)
,

3. Choose µk+1 ≥ µk,

4. k = k + 1.

Figure 2.3: Overview of a scaled AL method based on [21,28].

terms:

(2.35) L(x,η, µ) = f(x) +
µ

2
‖Ax − c − η‖2

2,

where η , − 1
µ
γ. This results in the modified AL method outlined in Fig. 2.3.

A special case of the AL algorithm is the alternating direction method of multi-

pliers (ADMM) where the optimization problem is of the form

(2.36) arg min
x,z

f(x) + g(z) s.t. Ax + Bz = c,

with g denoting a real closed, proper, convex function, z ∈ R
L, and B ∈ R

M×L

[28, 30]. The resulting scaled AL function is

(2.37) LM(x, z,η, µ) = f(x) + g(z) +
µ

2
‖Ax + Bz − c − η‖2

2.

The ADMM approach uses one pass of the Gauss-Seidel method to approximately

find the joint minimizer of (2.37) [28]. The resulting algorithm, Fig. 2.4, is guaran-

teed to converge as long as the minimization errors in the variable update steps are

absolutely summable [30].7

There are numerous convergence properties for the AL and ADMM algorithms

proven for the case of real valued data [28,30]. However, the same cannot be said for

7Assuming the AL function has a saddle point [28].
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Alternating Direction Method of Multipliers

Initialize: x(0), z(0), and γ(0).
Select µ0 and set k = 0.
Repeat until stop criterion is achieved:

1. Find x(k+1) that approximately minimizes LM (·, z(k), η(k), µk),

2. Find z(k+1) that approximately minimizes LM (x(k+1), ·, η(k), µk),

3. η(k+1) = η(k) −
(
Ax(k+1) + Bz(k+1) − c

)
,

4. Choose µk+1 ≥ µk,

5. k = k + 1.

Figure 2.4: Overview of the ADMM [30].

the complex valued data typically encountered in MRI. Still, these algorithms behave

similarly when applied to complex valued experimental data and in some cases we

have extended the existing proofs to this setting (e.g., Chapter III).8

2.7 Sparse Cholesky Factorization

Many of the regularized estimation methods in this thesis involve inverting a

Hessian matrix of the following form:

(2.38) H = D + λCTC

where D ∈ C
N is a diagonal matrix, N is the number of elements being estimated,

λ is a regularization parameter, and C ∈ R
M×N is a finite differencing matrix. How-

ever, the size of H for typical data sets renders brute force inversion techniques

computationally infeasible. Whereas an efficient solution might exist for the block

tri-diagonal structure of H produced by first-order finite differences [31], there are no

such algorithms for the block penta-diagonal with penta-diagonal block structures

associated with the more common second-order finite differences (see Fig. 2.5). Fur-

thermore, the addition of the diagonal matrix limits the applicability of circulant

8If using complex valued data, the AL function is better described by
L(x,γ, µ) = f(x) + real{〈Ax − c,γ〉} + µ

2
‖Ax − c‖2

2
.
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inversion techniques (see Section 3.1). There are, however, several efficient methods

for solving a linear system of equations based on H, which is sufficient to solve these

regularized estimation problems. One such method that we use in this thesis is sparse

Cholesky factorization [32].

Since H is positive definite,9 Cholesky factorization can solve H−1x for arbitrary

x. This is done by first using Cholesky factorization to compute a lower triangu-

lar matrix L such that H = LLT and then using L to solve the linear system of

equations through forward and backward substitution [33]. For a dense matrix, this

approach has a cost of O(N3/3), which is approximately two times more efficient

than similar techniques such as LU factorization [34]; however, for sparse matrices,

standard Cholesky factorization may be inefficient as it can result in significant in-

filling. In these situations, sparse Cholesky factorization techniques are used where

a permutation matrix P is included in the decomposition (i.e., H = PLLTPT) to

reduce the degree of infilling within L. The resulting algorithm has a much lower

cost than traditional Cholesky factorization of sparse matrices, with the exact degree

of savings depending on P. The experiments in this thesis use the CHOLMOD [32]

implementation of sparse Cholesky factorization which uses approximate minimum

degree ordering to determine an appropriate permutation matrix.

We evaluated the sparse Cholesky operation on Hessian matrices for varying

image sizes where D = I and C is a 2-D, second-order finite differencing matrix.

Fig. 2.5 shows the non-zero elements of one such Hessian matrix as well as the non-

zero elements in the L matrix generated by CHOLMOD. Clearly, there is only modest

infilling in the lower triangular matrix. Table 2.1 presents the time and memory

required to compute H−1x for x = 1 (with double precision) using the CHOLMOD

9This requires at least one element of D to be positive, which is usually true for any non-trivial
imaging problem.
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1 256

1

256

1 256

1

256

Figure 2.5: Example of the non-zero elements of a Hessian matrix with D = I and a full
2-D second-order C (left) and the corresponding L matrix created by CHOLMOD (right).

Table 2.1: CHOLDMOD H−1x Computation Times and Memory Usage

Image Size (pixels) Time Solving (s) Peak Memory (MB)

16 × 16 0.001 0.2

32 × 32 0.006 1.0

64 × 64 0.035 5.6

128 × 128 0.224 28

256 × 256 1.237 143

512 × 512 7.003 715

1024 × 1024 274.548 3193

2048 × 2048 OUT OF MEMORY

implementation included in MATLAB on a workstation with a 2.66 GHz, quad-core

Intel Xeon CPU and 8 GB of memory. These experimental results demonstrate that

the CHOLMOD method is efficient in both computation and memory requirements

for small 2-D problems; however, it becomes computationally infeasible for larger

problems. We therefore also investigate other methods for solving problems with

such Hessian matrices in this thesis.
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2.8 Spatial Resolution Analysis of Regularized Estimators

Many of the estimation methods found in this thesis use regularization to in-

corporate a priori information. Typically, these methods require the selection of a

regularization parameter value that controls the influence of the regularization term

on the estimate. Analyzing the spatial resolution properties of such estimators can

assist with the selection of this parameter [3, 9, 35].

The spatial resolution of an estimator is described using its local impulse response,

which is the effect that a perturbation of a single pixel of the true, noiseless object

x ∈ C
N has on the estimate x̂ [3, 35]:

(2.39) l̄(j)(y;x) , lim
ǫ→0

x̂(y + [ȳ(x + ǫ ej) − ȳ(x)]) − x̂(y)

ǫ
= ∇x̂(y)∇ȳ(x)ej,

where y ∈ C
M is the measurement vector, ȳ is the measurement vector from an ideal

system (i.e., no noise), and ej ∈ R
N is the standard basis vector corresponding to

the pixel being investigated (in this case, the jth).

For implied estimators based on the general cost function

(2.40) x̂(y) = arg min
x

Ψ(x,y),

the estimator gradient is

(2.41) ∇x̂(y) =
[
∇[2,0]Ψ(x̂(y),y)

]−1 [
−∇[1,1]Ψ(x̂(y),y)

]

where ∇[2,0]Ψ(x,y) ∈ C
N×N with

[
∇[2,0]Ψ(x,y)

]

(j,k)
= ∂2

∂xj∂xk
Ψ(x,y) and

∇[1,1]Ψ(x,y) ∈ C
N×M with

[
∇[1,1]Ψ(x,y)

]

(j,k)
= ∂2

∂xj∂yk
Ψ(x,y) [3, 35]. This assumes

that Ψ(x,y) has a unique minimizer for each y, that the required derivatives ex-

ist, and that the Hessian matrix ∇[2,0]Ψ(x,y) is invertible [3]. The resulting local

impulse response is given by

(2.42) l̄(j)(y;x) =
[
∇[2,0]Ψ(x̂(y),y)

]−1 [
−∇[1,1]Ψ(x̂(y),y)

]
∇ȳ(x)ej.



31

Most of the regularized estimation methods found in this thesis are penalized-

likelihood estimators which have the form

(2.43) Φ(x,y) = L(x,y) + R(x),

where L is the negative log-likelihood and R is the regularizer [3]. For these methods,

the impulse response of (2.39) is approximately equal to

(2.44) l̄(j)(y;x) ≈
[
∇[2,0]L (x̂(ȳ), ȳ(x)) + ∇2R (x̂(ȳ))

]−1 ∇[2,0]L (x̂(ȳ), ȳ(x)) ej,

where ∇2R is the Hessian of R [3].10

These resolution analysis techniques are used to relate the field map estimators in

Chapters IV and V resulting in an effective water-fat imaging initialization method

as outlined in Chapter V.

10Assuming the usual case that the negative log-likelihood with noiseless data ȳ(x) is minimized
by the truth x.
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CHAPTER III

Receive Coil Sensitivity Estimation

In this chapter, we develop and analyze algorithms for regularized sensitivity

profile estimation. In Section 3.1, we present a regularized sensitivity profile esti-

mator as well as an augmented Lagrangian based algorithm that can significantly

accelerate the estimation process.1 Section 3.2 presents additional analysis of the

regularized sensitivity profile estimator as well as alternative AL based minimization

algorithms.2

3.1 Accelerated Computation of Regularized Sensitivity
Profile Estimates

3.1.1 Introduction

Accurate radio-frequency coil sensitivity profiles are required in many parallel

imaging applications (e.g., sensitivity encoding (SENSE) [2], simultaneous acquisi-

tion of spatial harmonics (SMASH) [3], and k-t SENSE [4]). Due to coil deformation

during patient setup and dielectric coupling, these profiles must be determined at

the time of acquisition [5]. One common approach is to perform a calibration scan

prior to the parallel imaging acquisition in which images from a large body coil and

1This section is based on the published paper [1].
2This section is based on the supplementary material that accompanies [1].
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multiple surface coils are acquired and reconstructed. Since the body coil has near

uniform sensitivity, its image can be used in conjunction with a surface coil image

to estimate the surface coil sensitivity profile.3

The most straightforward method to estimate the coil sensitivity is to compute

the ratio of the surface coil image voxel values (zi) to the body coil image voxel

values (yi), zi/yi. However, ratio estimates can be corrupted by measurement noise,

particularly in low signal regions. Furthermore, such estimates can have sharp dis-

continuities at object edges, contrary to the smooth nature of true coil sensitivity

profiles [7]. It is also desirable to have reasonable sensitivity estimates in any low

signal regions surrounding the object to avoid reconstruction artifacts that could

arise due to patient motion [8]. The ratio estimator, however, does not extrapolate;

thus, improved estimation methods can be beneficial.

One approach to generate smooth sensitivity estimates is to measure only the

center of k -space [8]. Although simple, this approach does not accurately estimate

sensitivities near object edges and can introduce Gibbs ringing artifacts. Filtering

procedures have also been proposed including polynomial fitting [2, 9–11], wavelet

denoising [12], and using thin-plate splines [13]. These methods do not completely

eliminate the Gibbs ringing, while selecting a particular basis function is complicated

by the varying size of low signal regions within the images [7,14]. Furthermore, many

of these methods disregard the non-stationary variance of the noise in the ratio

estimates. In contrast, regularized estimation methods [7, 15, 16] provide smooth

sensitivity estimates and are capable of extrapolation without explicit basis function

selection or filtering. These methods, however, can be computationally expensive

for large problems [7] and this cost is compounded by the large number of coils

3This work differs from correction methods such as [6] in that we are estimating the receive coil
sensitivity profile for use in subsequent parallel imaging reconstruction methods.
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in some arrays [17]. Although sensitivity estimation can be performed off-line, the

computational costs of regularized methods can increase the overall compute times

of parallel imaging.

In this chapter, we take a regularized approach and pose sensitivity estimation

as the minimization of a quadratic cost function like in [7]. The large matrices in the

cost function prevent one from computing a simple, non-iterative solution. Instead,

iterative methods must be used for large data sets; however, traditional methods

like conjugate gradient (CG) converge slowly for this problem [7, 18]. Augmented

Lagrangian (AL) based minimization techniques [19], and the related Bregman iter-

ations method [20], have been used to accelerate convergence in imaging problems

such as denoising [21] and reconstruction [21–29]. Those papers primarily focus on

problems that contain non-differentiable regularization terms such as those based

on the ℓ1-norm. However, the underlying theory applies to a wide variety of opti-

mization problems, including the quadratic problem considered here. We therefore

propose a new AL based method for estimating sensitivity profiles. To derive this

method, we introduce a reformulation of the finite differencing matrix and a subse-

quent variable splitting that lead to an algorithm with exact alternating minimization

steps. This algorithm is equivalent to an alternating direction method of multipli-

ers (ADMM) [30] formulation, which provides a guarantee of convergence. We also

explore a variation of this algorithm that updates the Lagrange multipliers between

alternating minimization steps. Such variations have been found to improve the

convergence rates of other AL based algorithms [31].

Section 3.1.2 presents the derivation of our ADMM algorithm and its intermediate

updating variant. Section 3.1.3 compares the convergence speeds of these algorithms

with those of CG based methods by performing experiments on both simulated and
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real data. Section 3.1.4 discusses the results of these experiments and additional

properties of the algorithms. Section 3.1.5 concludes by discussing other problems

that have quadratic cost functions where our methods may provide an improvement

over the traditional techniques.

3.1.2 Materials and Methods

This section introduces our proposed methods for MR coil sensitivity estimation.

We begin by posing the estimator as an optimization problem. We then outline the

general approach used to solve this problem and present our specific algorithm, with

variations, in detail.

Cost function formulation

Regularized methods for MR coil sensitivity estimation are both robust to noise

and effective at extrapolating the estimate in regions of low signal [7, 16]. These

methods avoid computing the quotient (zi/yi) by finding the minimizer of a cost

function containing a data-fidelity term and a regularization term that promotes

smoothness in the estimate. Similar to [7, 15], we estimate the sensitivity profile by

minimizing a weighted sum of quadratic terms:

(3.1) ŝ , arg min
s

1

2
‖z − Ds‖2

W
+

λ

2
‖Rs‖2

2,

where s = [s1, . . . , sN ]T with si ∈ C denoting the desired coil sensitivity at the ith

voxel and N denoting the number of voxels,4 z = [z1, . . . , zN ]T with zi ∈ C denoting

the surface coil image value at the ith voxel, D = diag {yi} is a diagonal matrix

containing the body coil image voxel values (yi ∈ C), R ∈ R
M×N is a finite differ-

encing matrix for the case of non-periodic boundary conditions with M sets of finite

4This chapter uses s to refer to coil sensitivities. This is the same variable as c from Section 2.4.1
but is named differently to match the corresponding publication.
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differences, and λ > 0 is a regularization coefficient. Additionally, W = diag {wi}

is a diagonal weighting matrix (with wi ∈ [0, 1]) that allows us to ensure that the

estimate is based primarily on voxels that provide meaningful sensitivity informa-

tion. Note that a finite differencing matrix with non-periodic boundary conditions is

necessary as periodic boundary conditions introduce errors at the edges of the image

that can propagate and corrupt the estimate near the object voxels.5

Equation (3.1) has a quadratic cost function and therefore has the closed-form

solution ŝ = [DHWD+λRHR]−1DHWz where XH denotes the Hermitian transpose

of X; however, computing this solution is impractical due to the size and complexity

of R. Memory constraints further restrict the use of other direct methods, such as

Cholesky factorization, for large problems like 3-D data sets. Furthermore, standard

iterative solution methods, such as CG, exhibit slow converge for this problem even

when using carefully selected preconditioners [32]. To address this, we propose an

augmented Lagrangian method to minimize the cost function, the development of

which consists of three stages [22]. First, we use variable splitting [27, 33] to con-

vert the unconstrained optimization problem into an equivalent constrained problem,

thereby decoupling the effects of the matrices in (3.1). Second, we introduce vec-

tor Lagrange multipliers and express the constrained problem in an AL framework.

Third, we solve the resulting AL problem using an alternating minimization scheme.

ADMM–Circ: ADMM sensitivity estimation algorithm with circulant
substeps

Directly applying variable splitting to (3.1) results in an AL algorithm requiring

an approximate solution for one of the alternating minimization steps due to the

complexity of the finite differencing matrix R [18]. Section 3.2.2 presents one such

5See Section 3.2.6 for additional details.
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Figure 3.1: The matrices R, B, and C for the case of 1D second-order finite differences.
The top and bottom rows of C compute the difference between the first and last pixels,
hence the need for the mask B.

algorithm, ADMM–CG. We can avoid this complication if we focus on traditional

finite differencing matrices (those with spatially invariant stencils). For such regu-

larizers, we can express the finite differencing matrix as R = BC where C ∈ R
M×N

is a typical finite differencing matrix for the case of periodic boundary conditions,

containing additional non-zero rows that penalize the differences between voxels on

opposing boundaries of the image, and B ∈ {0, 1}M×M is a diagonal matrix that

contains a mask to eliminate the effects of the added rows. The additional non-zero

rows in C ensure that CHC is block circulant with circulant blocks unlike R. Fig. 3.1

illustrates these matrices for the case of 1D second-order finite differences. We then

write the estimation problem in (3.1) as

(3.2) ŝ = arg min
s

1

2
‖z − Ds‖2

W
+

λ

2
‖BCs‖2

2.

We introduce two splitting variables, u0 ∈ C
M and u1 ∈ C

N , to this new formu-

lation to decouple the matrices D, B, and C. The resulting equivalent constrained

optimization problem is

(3.3) ŝ = arg min
s,u0,u1

1

2
‖z − Du1‖2

W
+

λ

2
‖Bu0‖2

2 s.t. u1 = s and u0 = Cs.
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Solving this constrained optimization problem is exactly equivalent to solving the

unconstrained problem (3.1).

We express (3.3) in the more concise notation:

(3.4) arg min
s,u

1

2
‖h − Au‖2

2 s.t. u = Ts,

where

u ,






u1

u0




 ,T ,






I

C




 ,h ,






W
1

2z

0




 ,A ,






W
1

2D 0

0
√

λB




 ,

and W
1

2 , diag{√wi}.

We then introduce two vectors of Lagrange multipliers, η0 ∈ C
M and η1 ∈ C

N ,

and express (3.4) as an AL problem. We use the general AL formulation outlined

in [22] that incorporates the Lagrange multiplier into the quadratic penalty term.

This formulation is a natural extension of the traditional AL to the case of complex

values and it simplifies the derivation of the subsequent alternating minimization

steps. The resulting AL function-based minimization problem is

(3.5) arg min
s,u

1

2
‖h − Au‖2

2 +
1

2
‖u − Ts − η‖2

V
,

where

η ,






η1

η0




 , V ,






ν1I 0

0 ν0I




 ,

and ν0, ν1 > 0 are AL penalty parameters that influence the convergence rate of the

algorithm but do not affect the final estimate [28].

Traditional AL methods would require jointly minimizing (3.5) over the vectors

s and u; however, such an approach is computationally expensive for typical image

sizes. Instead, we use a block Gauss–Seidel type alternating minimization strategy

that has been effective in solving other AL problems [21, 30] in which we alternate
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between minimizing (3.5) independently with respect to s and u as follows:

s(j+1) = arg min
s

1

2
‖u(j) − Ts − η(j)‖2

V
,(3.6)

u(j+1) = arg min
u

1

2
‖h − Au‖2

2 +
1

2
‖u − Ts(j+1) − η(j)‖2

V
.(3.7)

Update (3.7) has a simple closed-form solution:

(3.8) u(j+1) =
(
AHA + V

)−1 [
AHh + V(Ts(j+1) + η(j))

]
.

In fact, the block diagonal structures of A and V decouple the update of u into two

parallel updates in terms of u1 and u0:

u
(j+1)
1 = D−1

2

[

DHWz + ν1(s
(j+1) + η

(j)
1 )

]

,(3.9)

u
(j+1)
0 = B−1

2 (Cs(j+1) + η
(j)
0 ),(3.10)

where B2 , λ
ν0

BHB+ I and D2 , DHWD+ ν1I are both diagonal matrices that are

trivial to invert. The closed-form update for s may at first appear more complicated

to compute:

s(j+1) =
(
THVT

)−1
THV

(
u(j) − η(j)

)

=
(
ν1I + ν0C

HC
)−1

[

ν0C
H(u

(j)
0 − η

(j)
0 ) + ν1(u

(j)
1 − η

(j)
1 )

]

.

(3.11)

However, since CHC is block circulant with circulant blocks, CHC = QHΦQ where Q

is a (multidimensional) discrete Fourier transform (DFT) matrix and Φ is a diagonal

matrix containing the spectrum of the convolution kernel of CHC. Substituting this

decomposition into (3.11) yields:

(3.12) s(j+1) = QHΦ−1
2 Q

[

ν0C
H(u

(j)
0 − η

(j)
0 ) + ν1(u

(j)
1 − η

(j)
1 )

]

,

where Φ2 , ν1I+ν0Φ. This formulation is simpler to compute since Φ2 is a diagonal

matrix and we implement Q efficiently using fast Fourier transforms (FFTs).
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ADMM–Circ

Initialize: u
(0)
1 = s(0), u

(0)
0 = Cs(0), η

(0)
0 = 0,

η
(0)
1 = 0 and j = 0.

Set D−1
2 =

[
DHWD + ν1I

]−1
and z2 = DHWz.

Set B−1
2 =

[
λ
ν0

BHB + I
]−1

.

Set Φ−1
2 = [ν1I + ν0Φ]−1.

Repeat until stop criterion is achieved:

1. s(j+1) from (3.12) exactly,

2. u
(j+1)
1 = D−1

2

[

z2 + ν1(s
(j+1) + η

(j)
1 )

]

,

u
(j+1)
0 = B−1

2 (Cs(j+1) + η
(j)
0 ),

3. η
(j+1)
1 = η

(j)
1 − (u

(j+1)
1 − s(j+1)),

η
(j+1)
0 = η

(j)
0 − (u

(j+1)
0 − Cs(j+1)),

4. j = j + 1.

Figure 3.2: Overview of the ADMM–Circ algorithm. Note that Cs(j+1) only needs to be
computed once per iteration.

Fig. 3.2 summarizes the resulting sensitivity profile estimation algorithm,

ADMM–Circ. Each stage of the proposed algorithm consists of an exact, non-

iterative update. Furthermore, it can be shown that the steps in this formulation

are identical to those of an ADMM algorithm applied to the real valued case where

we treat the complex valued terms as a stack of their real and imaginary compo-

nents. As discussed in Section 3.1.4, this equivalence allows us to conclude that the

ADMM–Circ algorithm converges to the solution of (3.1). In contrast, the parallel

imaging reconstruction algorithm in [22] is an AL method that lacks a convergence

proof due to the type of splitting used.

Alternating minimization with intermediate updating

Updating the Lagrange multipliers η between each alternating minimization step

has been shown to increase the convergence rates of several AL based algorithms [31].

We also explore this variation in our proposed algorithm by updating the relevant
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ADMM–Circ–IU

Initialize: u
(0)
1 = s(0), u

(0)
0 = Cs(0), η

(0)
0 = 0,

η
(0)
1 = 0 and j = 0.

Set D−1
2 =

[
DHWD + ν1I

]−1
and z2 = DHWz.

Set B−1
2 =

[
λ
ν0

BHB + I
]−1

.

Set Φ−1
2 = [ν1I + ν0Φ]−1.

Repeat until stop criterion is achieved:

1. s(j+1) from (3.12) exactly,

2. η
(j+1/2)
1 = η

(j)
1 − (u

(j)
1 − s(j+1)),

η
(j+1/2)
0 = η

(j)
0 − (u

(j)
0 − Cs(j+1)),

3. u
(j+1)
1 = D−1

2

[

z2 + ν1(s
(j+1) + η

(j+1/2)
1 )

]

,

u
(j+1)
0 = B−1

2 (Cs(j+1) + η
(j+1/2)
0 ),

4. η
(j+1)
1 = η

(j+1/2)
1 − (u

(j+1)
1 − s(j+1)),

η
(j+1)
0 = η

(j+1/2)
0 − (u

(j+1)
0 − Cs(j+1)),

5. j = j + 1.

Figure 3.3: The ADMM–Circ algorithm with intermediate Lagrange multiplier updating
(ADMM–Circ–IU). Note that Cs(j+1) only needs to be computed once per iteration.

Lagrange multipliers after each alternating minimization step, Fig. 3.3. The resulting

algorithm, ADMM–Circ–IU, requires no additional variables and the added updates

(Step 2) are computationally inexpensive. Section 3.1.4 describes the convergence

properties of such adaptations.

Parameter selection

Regularized methods require the selection of a regularization parameter, λ in

(3.1), which controls the smoothness of the sensitivity profile. We discuss how λ is

selected for typical problems in Section 3.1.3.

In addition, our proposed AL methods require that we specify values for the AL

penalty parameters ν0 and ν1. Following [22], we determine the parameter values

using the condition numbers of the matrices requiring inversion in the alternating
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minimization steps. For both the ADMM–Circ method and its variation, we consider

the matrices B2, Φ2, and D2. We normalize the coil images before performing the

estimate; thus, the condition number of D2, κ(D2), is (1+ν1)/(d
2
min+ν1) where d2

min is

the smallest diagonal element of DHWD. Furthermore, effective weighting matrices

should have near zero values to remove the effects of noise in the low signal regions of

the body coil image. Thus, d2
min ≈ 0 and κ(D2) does not typically depend on the data.

We therefore set our parameters by considering the condition numbers of the other

two matrices, κ(B2) and κ(Φ2). Through extensive numerical simulation, we found

that setting ν0 such that κ(B2) ∈ [225, 400] and then ν1 such that κ(Φ2) ∈ [200, 1000]

provided good convergence rates for a variety of data sets.

3.1.3 Results

We evaluated our proposed sensitivity estimation methods using two very differ-

ent data sets. The first experiment used simulated brain data whereas the second

used real breast phantom data. Previous publications investigated the accuracy of

similar regularized estimators [7]; however, there have been few comparisons with

other methods concerning their effects on SENSE reconstruction quality. We there-

fore included an illustration of the improved SENSE reconstruction quality obtained

from using regularized sensitivity estimates over standard techniques in Section 3.2.

The focus of this section is on accelerating these algorithms and thus, in this section,

we compare the convergence speeds of our AL algorithms with those of conventional

CG and PCG with the following circulant preconditioner (PCG–Circ):

(3.13) PC = QH (I + λΩ)Q,

where Ω is a diagonal matrix containing the spectrum of the convolution kernel of

RHR [34].
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We initialized each algorithm with a sensitivity profile comprising the standard

ratio estimate over the object voxels and the mean magnitude and phase of these

values over the non-object voxels. All of the algorithms were implemented in MAT-

LAB (The MathWorks, Natick, MA, USA) and the experiments were run on a PC

with a 2.66 GHz, quad-core Intel Xeon CPU.

We compared the convergence properties of the algorithms using the normalized

ℓ2-distance between the current estimate, s(j), and the minimizer of (3.1), ŝ:

(3.14) D(s(j)) =
‖s(j) − ŝ‖2

‖ŝ‖2

.

We focused on 2-D estimation problems so that we could use Cholesky factorization to

determine a non-iterative “exact” solution to (3.1). Using this non-iterative solution

for ŝ avoids favoring a specific iterative algorithm.

Cost function setup

In defining the estimation problem (3.1), we chose a second-order finite differ-

encing matrix for R as it resulted in more accurate sensitivity estimates than both

first-order and fourth-order finite differences (results not shown). We used a binary

mask, created by thresholding the body coil image, for the weighting matrix W.

This ensured that the majority of voxels in the object support were included in the

estimate, while limiting the number of noisy, non-object voxels.

We selected the AL penalty parameters ν0 and ν1 for both experiments using

the same set of condition numbers. In particular, we selected ν0 and ν1 such that

κ(B2) = 255 and κ(Φ2) = 650 for both the ADMM–Circ and ADMM–Circ–IU algo-

rithms.
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Figure 3.4: The (a) magnitude and (b) phase (masked) of the body coil image for the
simulated brain data.

Simulated brain data

Our first experiment used a 256× 192 pixel, T1 weighted, transverse plane brain

image from the BrainWeb database [35] (1 mm isotroptic in-plane resolution, slice

thickness = 1 mm, no noise). To create a more realistic MR image, we added a

slowly varying phase component to the brain image. We then added complex random

Gaussian noise to create a body coil image, y, with a signal-to-noise ratio6 (SNR) of

10. Fig. 3.4 presents the magnitude and phase of the resulting body coil image.

We simulated sensitivity profiles for four circular coils placed just outside the

field-of-view (FOV) using an analytic method [36]. These sensitivities were then

combined with our complex brain image and complex random Gaussian noise to

create four surface coil images, z, with SNRs of approximately 10. Fig. 3.5 presents

the true sensitivities and their corresponding surface coil images.

We estimated the coil sensitivities using our proposed AL methods and the two

CG methods. We set λ = 25 as this value produced accurate estimates (compared

to the truth) over both the high intensity voxels and their surrounding regions. We

ran 20 000 iterations of each method to ensure convergence. All of the algorithms

converged to a normalized ℓ2-distance of less than -200 dB from, and appeared nearly

6SNR = µo/σb where µo is the mean of the magnitudes of the non-zero object pixels in the true
image and σb is the standard deviation of the background pixels in the noisy image.
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Figure 3.5: The magnitudes of the (a) simulated sensitivity profiles and the (b) simulated
surface coil images for the brain data.
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Figure 3.6: The magnitudes of the (a) estimated sensitivity profiles and (b) their percentage
difference to the true sensitivities for the simulated brain data.

identical to, the Cholesky based solution ŝ. Fig. 3.6 presents the estimated coil

sensitivities as well as their percentage difference to the truth. The convergence

rates of the algorithms were similar for all four coils so we present the results for

one representative coil. Fig. 3.7 plots D(s(j)) with respect to both iteration and

time for the bottom left coil in Fig. 3.5. ADMM–Circ–IU was the fastest algorithm,

converging to within D(s(j)) = 0.1 % in approximately 85 seconds. PCG–Circ was

faster than ADMM–Circ with convergence times of nearly 130 and 165 seconds,

respectively. Conventional CG took by far the longest time at 535 seconds.
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Figure 3.7: Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)), with respect to
iteration (left) and time (right) for the bottom left brain data surface coil image in Fig. 3.5.
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Figure 3.8: The magnitude of the breast phantom body coil image.

Breast phantom data

Our second experiment used a breast phantom consisting of two containers plas-

tered with vegetable shortening and filled with “Super Stuff” bolus material (Radi-

ation Products Design Inc., Albertville, MN, USA). Calibration data was acquired

using four surface coils and one body coil on a Philips 3T scanner (TR = 4.6 ms,

TE = 1.7 ms, matrix = 384 × 96). We reconstructed four surface coil images and

one body coil image, each 384×96 pixels, using an inverse FFT. Figs. 3.8 and 3.9(a)

show the magnitudes of the body coil image and surface coil images, respectively.

This data set presents several challenges for sensitivity estimation due to the place-

ment of coils near the center of the FOV and because of large regions of low signal

both within and outside the object.

To determine a suitable regularization parameter, λ, we first estimated the coil

sensitivities using the CG method for several values of λ. We then performed two-

fold accelerated SENSE reconstructions [2] using each set of estimated sensitivities
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Figure 3.9: The magnitudes of the (a) breast phantom surface coil images and the (b)
corresponding estimated sensitivity profiles.

and compared the resulting images to the body coil image (not shown). We selected

λ = 27 as its corresponding reconstructed image had minimal artifacts and matched

closely to the body coil image.

We estimated the coil sensitivities using our proposed AL methods and the two

CG methods. We ran 20 000 iterations of each algorithm to ensure that convergence

was achieved. Again, the resulting estimates all converged to a normalized ℓ2-distance

of less than -200 dB from the Cholesky based solution ŝ. Fig. 3.9(b) presents the

estimated coil sensitivities. The convergence rates of the algorithms were similar

for all four coils so we present the results for one representative coil. Fig. 3.10

plots D(s(j)) with respect to both iteration and time for the bottom left coil in

Fig. 3.9. ADMM–Circ–IU was again the fastest algorithm, converging to within

D(s(j)) = 0.1 % in approximately 50 seconds. Unlike in the brain data experiment,

ADMM–Circ had a similar convergence rate to PCG–Circ with both algorithms

requiring approximately 100 seconds. Conventional CG again took the longest time

at 445 seconds.
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Figure 3.10: Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)), with respect
to iteration (left) and time (right) for the bottom left breast data surface coil image in
Fig. 3.9.

3.1.4 Discussion

The sensitivity estimates generated by minimizing the cost function in (3.1) are

smooth like true coil sensitivity profiles. As further discussed in Section 3.2.4, the

sensitivity estimates of the brain data are highly accurate over the object and sur-

rounding pixels. The largest errors are at the extreme corners of the image where

there is no information about the true sensitivities. The flexibility of the regularized

estimation method is highlighted in the breast phantom experiment by its ability to

simultaneously estimate the sensitivity within both breasts and smoothly extrapo-

late over the regions in-between. This is particularly evident for the coils that have

near uniform sensitivity over a single breast (the top right and bottom left coils in

Fig. 3.9). As illustrated in Section 3.2.4, SENSE reconstructions performed with

these sensitivity profiles were artifact free unlike those created using low-pass filter

techniques.

ADMM–Circ–IU was the fastest method in all experiments requiring as little as

half the time of PCG–Circ and a ninth the time of conventional CG. ADMM–Circ,

although much faster than the CG based methods over the first few iterations, had

similar convergence times to PCG–Circ in our breast experiment and was slower
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in our simulated brain experiment. Thus, using intermediate updating significantly

accelerated our ADMM algorithm. The CG algorithm remained the slowest method

in all experiments. Interestingly, the relative convergence rate of the PCG–Circ al-

gorithm depended on the experimental data. This behavior is partly a result of the

varying accuracy of the preconditioner used in the PCG algorithm. Specifically, the

circulant preconditioner used an identity matrix in place of the weighted body coil

image voxel intensities (i.e., I + λRHR for DHWD + λRHR). This approximation

works best for images that have few low signal voxels as is apparent from the de-

creased performance of the PCG–Circ algorithm on the breast data compared to the

simulated brain data which has a higher percentage of voxels with significant signal.

In contrast, our proposed ADMM algorithms do not require such approximations

and their convergence speeds are therefore more robust to differences in the data.

Table 3.1 presents the approximate number of complex multiplication and ad-

dition operations required by an iteration of each algorithm. For typical finite dif-

ferencing matrices, ADMM–Circ–IU, ADMM–Circ, and PCG–Circ require a similar

number of operations, whereas traditional CG requires fewer operations per itera-

tion. The effect of these varying costs per iteration is highlighted by contrasting the

convergence rates of each algorithm in terms of iteration and time as seen in Figs.

3.7 and 3.10. As with time, ADMM–Circ–IU needed approximately half as many

iterations as PCG–Circ and ADMM–Circ. CG required significantly more iterations

to converge than the other algorithms, offsetting any savings in cost per iteration.

The convergence curves for our ADMM methods exhibited non-monotonic be-

havior with respect to D(s(j)). We found that the degree of non-monotonicity was

influenced by the choice of AL penalty parameters, ν0 and ν1. In fact, the pa-

rameter settings that provided the fastest convergence rates typically resulted in
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Table 3.1: Approximate Number of Complex Arithmetic Operations Per Iteration for the
Case of Second-Order Finite Differences

Estimator Number of Operations

ADMM–Circ–IU 19N + 13Ma+ 2 · OFFT
b

ADMM–Circ 17N + 11M + 2 · OFFT

PCG–Circ 23N + 11M + 2 · OFFT

CG 22N + 11M

a M ≈ 4N for 2-D problems.
b OFFT denotes the cost of the FFT operations

(O(N log(N))).

non-monotonicity in the D(s(j)) plots.

All of our proposed algorithms converged to the solution of (3.1) in every ex-

periment. As discussed after (3.12), our ADMM–Circ algorithm is equivalent to an

ADMM algorithm with exact update steps. We can therefore conclude that this

algorithm converges to the solution of (3.1) as per [30, Th. 8]. Our intermediate

updating variant, ADMM–Circ–IU, does not have the exact formulation outlined in

the hypothesis of [30, Th. 8]. However, a guarantee of convergence exists for similar

ADMM variants with symmetric Lagrange multiplier updating [31]. We are currently

investigating an extension of this proof to ADMM–Circ–IU.

The convergence rates of our proposed algorithms were robust to the particular

choice of condition numbers used to determine the AL penalty parameters ν0 and

ν1. In fact, we used the same condition numbers for our two very different experi-

ments. Furthermore, our fastest algorithm, ADMM–Circ–IU, remained faster than

PCG–Circ for κ(B2) values nearly two times larger and smaller than the optimal

value and for κ(Φ2) values three times larger or smaller than optimal. We also ex-

plored varying the λ value in our experiments and found that this set of condition

numbers consistently worked well. The choice of the best condition numbers does

not depend on the surface coil image. Therefore, if one wanted to fine-tune the
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convergence rate of the algorithms, a single coil of a multi-coil array would suffice.

It is a common practice in medical imaging to restrict estimates and reconstruc-

tions to within masked regions to improve both their computation time and qual-

ity over the region. If this is done for simple problems like our simulated brain

data, which requires minimal interpolation within the object support, then the

PCG–Circ algorithm estimating within a masked region will converge faster than

our ADMM–Circ methods estimating over the entire FOV. However, this is not the

case for more complicated problems like our breast phantom data. In particular, we

found that our ADMM–Circ–IU algorithm, estimating over the full FOV, converged

to D(s(j)) = 0.1 % at the same speed or faster than a PCG–Circ algorithm estimating

within a masked region consisting of a convex hull7 surrounding the object support,

Fig. 3.11. Furthermore, the quality of the unmasked ADMM–Circ–IU estimates was

similar to that of the masked PCG estimates over the masked region. This is par-

tially because the weighting matrix W minimizes the impact of noisy voxels outside

of the object support. A major disadvantage of masking is that the lack of an esti-

mate outside the mask can lead to significant SENSE reconstruction artifacts if the

object moves into this region during acquisition [8]. Thus, the mask would have to

be carefully selected with this in mind. We therefore followed existing work [7] and

focused on algorithms without support masks.

In addition to the algorithms presented in this section and Section 3.2, we also

explored AL algorithms that incorporated simpler variable splittings. For instance,

we introduced the single splitting variable u0 = Rs to (3.1) and similarly, u0 = Cs

to (3.2). The AL formulations used to minimize the resulting cost functions had only

two update equations. However, one of these equations required an approximate it-

7See Section 3.2.5 for an illustration of why a convex hull is required.
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Figure 3.11: Plots of D(s(j)) with respect to time for ADMM–Circ–IU and PCG–Circ
without masks, as well as PCG–Circ using masks with various degrees of dilation (5, 10,
20 pixels), applied to the bottom left breast data surface coil image in Fig. 3.9. For each
case, the ŝ used in D(s(j)) is the regularized solution for the appropriate mask.

erative solution and the resulting AL algorithms were highly sensitive to inaccuracies

in the approximation. In fact, when using PCG for the approximate update step,

the optimal number of inner PCG iterations was so large that the overall algorithms

were slower than regular CG. Curiously, this is the type of splitting that is used in

the popular split Bregman approaches [21], although there it is used in cases where

RHR is circulant.

If the body coil data y is not available, one could use the square-root of the sum-

of-squares of the surface coil images in its place [10, 37, 38]. Our algorithms would

remain the same and only the elements of D would change. However, it may be

more desirable in this situation to perform joint estimation of the final image and

the sensitivity profiles (e.g., [10]). Such algorithms are more complicated to compute

than (3.1) and might also benefit from an ADMM reformulation.

3.1.5 Conclusions

We developed a new iterative method, ADMM–Circ, using variable splitting and

AL strategies that accelerates the regularized estimation of MR coil sensitivities. By
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separating the finite differencing matrix for the case of non-periodic boundary condi-

tions into a finite differencing matrix for the case of periodic boundary conditions and

a diagonal masking matrix, we were able to find a variable splitting strategy that re-

sulted in an algorithm with exact update steps. Additionally, we demonstrated that

intermediate updating of the Lagrange multipliers significantly accelerated our pro-

posed AL algorithm. Our fastest method, ADMM–Circ–IU, had convergence speeds

up to twice those of the PCG method with a circulant preconditioner.

More generally, we illustrated how AL methods can be used to accelerate conver-

gence for imaging problems with certain classes of quadratic cost functions. There

are many areas in MR imaging where similar cost functions are used. For instance,

B0 and B+
1 map estimation can be performed by minimizing cost functions with

quadratic regularization terms over the image domain [39–41]. One specific applica-

tion is proposed in Chapter V.

3.2 Additional Topics in Regularized Sensitivity Profile Es-
timation

3.2.1 Introduction

This section contains further analysis of the regularized sensitivity profile estima-

tion method presented in Section 3.1. It begins by exploring several other variable

splittings that lead to similar AL estimation algorithms. Specifically, Section 3.2.2

presents a second ADMM algorithm for sensitivity profile estimation, while Sec-

tion 3.2.3 presents an alternate formulation that leads to an AL (but not ADMM)

estimation algorithm with similar performance. We then demonstrate several aspects

that must be considered when implementing the regularized estimator in a clinical

setting. In particular, Section 3.2.4 illustrates the improved SENSE reconstruction

quality resulting from using regularized sensitivity estimates compared to traditional
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ratio based estimates. Section 3.2.5 demonstrates why a dilated convex hull surround-

ing the object voxels should be used for an estimation mask. Section 3.2.6 illustrates

the importance of using a finite differencing matrix with non-periodic boundary con-

ditions in our estimator (3.1).

3.2.2 ADMM Estimation Algorithm with Conjugate Gradient Substeps

In this section we present and evaluate a second AL algorithm, ADMM–CG,

which does not use the reformulation of the finite differencing matrix as discussed

in Section 3.1.2. We begin with the derivation of the algorithm which uses the same

techniques as ADMM–Circ. We then compare this new algorithm to the methods

presented in Section 3.1 using the same data sets and briefly discuss its properties.

Method derivation

We begin our derivation by introducing two new variables, u0 ∈ C
M and u1 ∈ C

N ,

to the initial cost function in (3.1). The purpose of these variables is to isolate the

finite differencing matrix R from the diagonal matrix D. The resulting constrained

optimization problem is

(3.15) ŝ , arg min
s,u0,u1

1

2
‖z − Du1‖2

W
+

λ

2
‖u0‖2

2 s.t. u1 = s and u0 = Rs.

Solving this constrained optimization problem is exactly equivalent to solving the

unconstrained problem (3.1).

As in (3.4), we can express (3.15) in the more concise notation:

(3.16) ŝ = arg min
s,u

1

2
‖h − Ku‖2

2 s.t. u = Gs,

where u and h were defined in (3.4),

G ,






I

R




 , and K ,






W
1

2D 0

0
√

λI




 .
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We then tackle (3.16) using the previously described AL formalism and obtain the

following AL function-based minimization problem:

(3.17) arg min
s,u

1

2
‖h − Ku‖2

2 +
1

2
‖u − Gs − η‖2

V
,

where η and V were defined in (3.5).

Due to the complexity of jointly minimizing (3.17) over s and u, we again consider

an alternating minimization scheme. In particular, we sequentially solve the following

set of equations:

s(j+1) = arg min
s

1

2
‖u(j) − Gs − η(j)‖2

V
,(3.18)

u(j+1) = arg min
u

1

2
‖h − Ku‖2

2 +
1

2
‖u − Gs(j+1) − η(j)‖2

V
.(3.19)

As with ADMM–Circ, the update equation for u, (3.19), has a simple closed-form

solution which can be decoupled into two parallel updates in terms of u1 and u0 due

to the block diagonal structures of K and V:

u
(j+1)
1 = D−1

2

[

DHWz + ν1(s
(j+1) + η

(j)
1 )

]

,(3.20)

u
(j+1)
0 =

ν0

ν0 + λ

(

Rs(j+1) + η
(j)
0

)

.(3.21)

where D2 , DHWD + ν1I is a diagonal matrix.

Equation (3.18) does not have an efficient closed-form solution due to the size

and complexity of R. Instead, we approximately solve (3.18) using several iterations

of the preconditioned conjugate gradient (PCG) method with warm starting, the

optimal number of which is determined empirically. We design the specific precon-

ditioner, P, by considering the closed-form solution of (3.18):

(3.22) G2s
(j+1) = GHV

(
u(j) − η(j)

)
,

where G2 = GHVG = ν1I + ν0R
HR. Our goal is to create an easily invertible P

that preconditions G2 to obtain fast convergence for this subproblem. For typical
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ADMM–CG

Initialize: u
(0)
1 = s(0), u

(0)
0 = Rs(0), η

(0)
0 = 0, η

(0)
1 = 0 and j = 0.

Set D−1
2 =

[
DHWD + ν1I

]−1
and z2 = DHWz.

Repeat until stop criterion is achieved:

1. s(j+1) from PCG solution of (3.18) using (3.23).

2. u
(j+1)
1 = D−1

2

[

z2 + ν1(s
(j+1) + η

(j)
1 )

]

,

u
(j+1)
0 = ν0

ν0+λ

(

Rs(j+1) + η
(j)
0

)

,

3. η
(j+1)
1 = η

(j)
1 − (u

(j+1)
1 − s(j+1)),

η
(j+1)
0 = η

(j)
0 − (u

(j+1)
0 − Rs(j+1)),

4. j = j + 1.

Figure 3.12: Overview of the ADMM–CG algorithm. Note that Rs(j+1) only needs to be
computed once per iteration.

finite differencing matrices with non-periodic boundaries, RHR has a near block

circulant with circulant blocks structure. We therefore approximate RHR in our

preconditioner as QHΩQ where Q is a (multidimensional) discrete Fourier transform

(DFT) matrix and Ω is a diagonal matrix containing the spectrum of the convolution

kernel of RHR [34]. Our resulting preconditioner is

(3.23) P = QH (ν1I + ν0Ω)Q.

Fig. 3.12 summarizes the resulting estimation algorithm composed of these update

steps and the corresponding Lagrange multiplier updates, ADMM–CG. Note that

the minimization in Step 1 is inexact, requiring an iterative solution; however, the

optimal number of iterations is typically small. Furthermore, it can be shown that

this algorithm is equivalent to an ADMM algorithm with an approximate update

step for which the errors at each outer iteration can be made absolutely summable

by using enough PCG iterations. We can therefore conclude that this algorithm

converges to the solution of (3.1) as per [30, Th. 8].
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ADMM–CG–IU

Initialize: u
(0)
1 = s(0), u

(0)
0 = Rs(0), η

(0)
0 = 0, η

(0)
1 = 0 and j = 0.

Set D−1
2 =

[
DHWD + ν1I

]−1
and z2 = DHWz.

Repeat until stop criterion is achieved:

1. s(j+1) from PCG solution of (3.18) using (3.23).

2. η
(j+1/2)
1 = η

(j)
1 − (u

(j)
1 − s(j+1)),

η
(j+1/2)
0 = η

(j)
0 − (u

(j)
0 − Rs(j+1)),

3. u
(j+1)
1 = D−1

2

[

z2 + ν1(s
(j+1) + η

(j+1/2)
1 )

]

,

u
(j+1)
0 = ν0

ν0+λ

(

Rs(j+1) + η
(j+1/2)
0

)

,

4. η
(j+1)
1 = η

(j+1/2)
1 − (u

(j+1)
1 − s(j+1)),

η
(j+1)
0 = η

(j+1/2)
0 − (u

(j+1)
0 − Rs(j+1)),

5. j = j + 1.

Figure 3.13: The ADMM–CG algorithm with intermediate Lagrange multiplier updating
(ADMM–CG–IU). Note that Rs(j+1) only needs to be computed once per iteration.

Alternating minimization with intermediate updating

We also explored updating the Lagrange multipliers between each alternating

minimization step. The resulting variation, ADMM–CG–IU, is presented in Fig. 3.13.

As with the ADMM–Circ–IU algorithm, this algorithm lacks a guarantee of con-

vergence although such guarantees exist for similar intermediate updating algo-

rithms [31].

Parameter selection

The parameter selection strategy for our ADMM–CG based algorithms is similar

to the strategy for ADMM–Circ because of the analogous structures of the alternating

minimization steps. The major difference is that the update of u0 in (3.21) does not

require the inversion of a matrix but rather a scalar term. In fact, this scalar term has

the same form as κ(B2) in Section 3.1.2. Subsequently, we found that setting ν0 such

that the scalar ν0+λ
ν0

∈ [200, 400] and then setting ν1 such that κ(G2) ∈ [200, 1000]
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provided reasonable convergence rates.

Results

To evaluate our proposed ADMM–CG based algorithms, we performed the same

experiments as in Section 3.1.3. The cost function was setup as described in Sec-

tion 3.1.3 and the same ratio based estimate was used to initialize the algorithms. We

used a single PCG iteration for the approximate update to s in the ADMM–CG based

algorithms as this provided the fastest convergence rates with respect to time. We

selected the AL penalty parameters ν0 and ν1 for ADMM–CG such that ν0+λ
ν0

= 225

and κ(G2) = 600. As further discussed in Section 3.2.2, the optimal condition num-

bers for ADMM–CG–IU depended on the data and are therefore mentioned in the

appropriate subsections.

(1) Simulated brain data: We ran 20 000 iterations of the ADMM–CG based

algorithms on the simulated brain data described in Section 3.1.3. For the

ADMM–CG–IU algorithm, we selected ν0 and ν1 such that ν0+λ
ν0

= 375 and

κ(G2) = 600. Our proposed ADMM–CG and ADMM–CG–IU algorithms converged

to a normalized ℓ2-distance of less than -200 dB from the Cholesky based solution

to (3.1) and appeared nearly identical to Fig. 3.6. The convergence rates of the

algorithms were similar for all four coils and thus we present the results for the

same coil that was presented in Section 3.1.3. Fig. 3.14 plots D(s(j)) with respect

to both iteration and time for the ADMM–CG based algorithms as well as the al-

gorithms evaluated in Section 3.1.3. ADMM–CG–IU and ADMM–CG were both

slower than PCG–Circ, but faster than conventional CG, reaching D(s(j)) = 0.1 % in

approximately 145 and 185 seconds, respectively.
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Figure 3.14: Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)), with respect
to iteration (left) and time (right) for the bottom left brain data surface coil image in
Fig. 3.5.

(2) Breast phantom data: We also ran 20 000 iterations of the ADMM–CG

based algorithms on the breast phantom data described in Section 3.1.3. For

the ADMM–CG–IU algorithm, we selected ν0 and ν1 such that ν0+λ
ν0

= 250 and

κ(G2) = 600. Again, both of our proposed algorithms converged to a normalized

ℓ2-distance of less than -200 dB from the Cholesky based solution to (3.1) and ap-

peared nearly identical to Fig. 3.9(b). The convergence rates of the algorithms were

similar for all four coils and thus we present the results for the same coil that was

presented in Section 3.1.3. Fig. 3.15 plots D(s(j)) with respect to both iteration and

time for the ADMM–CG based algorithms as well as the algorithms evaluated in

Section 3.1.3. ADMM–CG–IU was faster than both PCG–Circ and regular CG con-

verging within D(s(j)) = 0.1 % in approximately 80 seconds. ADMM–CG was slower

than its intermediate updating counterpart and PCG–Circ with a convergence time

of nearly 120 seconds.

Discussion

The convergence rates with respect to iteration of the ADMM–CG based algo-

rithms were close to their ADMM–Circ counterparts. However, the ADMM–CG

based algorithms were much slower in time due to the added overhead of the PCG
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Figure 3.15: Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)), with respect
to iteration (left) and time (right) for the bottom left breast data surface coil image in
Fig. 3.9.

solution used to approximate Step 1. In fact, even when using only one iteration of

PCG for this approximation, the per iteration costs of the ADMM–CG algorithms

are much higher than those of the ADMM–Circ algorithms, Table 3.2.

The convergence curves of the ADMM–CG based algorithms exhibit a higher rate

of non-monotonic behavior than the ADMM–Circ algorithms. This is partly caused

by the approximate update in Step 1. If we run several more PCG sub-iterations in

Step 1, the convergence curves with respect to iteration of the ADMM–CG algorithms

appear similar to their ADMM–Circ counterparts (although much slower with respect

to time). As with ADMM–Circ, the parameter settings that provided the fastest

convergence rates typically resulted in non-monotonicity in the D(s(j)) plots.

The proposed ADMM–CG–IU algorithm was faster than PCG–Circ in the breast

phantom experiment, but slower in the simulated brain experiment. As discussed in

Section 3.1.4, the relative speed of the PCG–Circ algorithm depends on the accuracy

of the preconditioner in (3.13) and thus on the data. Contrarily, the preconditioning

used for the approximation of Step 1 in the ADMM–CG algorithms does not de-

pend on the data; thus, these algorithms are less sensitive to such differences. The

ADMM–CG algorithm, although initially faster, converged slower than PCG–Circ in
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Table 3.2: Approximate Number of Complex Arithmetic Operations Per Iteration for
ADMM–CG Algorithms

Estimator Number of Operations

ADMM–CG–IU a 28N + 18M + 2 · OFFT
b

ADMM–CG a 26N + 16M + 2 · OFFT

a Step 1 uses a single PCG iteration.
b OFFT denotes the cost of the FFT operations

(O(N log(N))).

both experiments. Therefore, using intermediate updating also significantly acceler-

ated the convergence rates of this ADMM algorithm. All of our proposed algorithms

were significantly faster than traditional CG.

The convergence rates of our proposed ADMM–CG algorithms were robust to

the choice of condition numbers used to determine the AL penalty parameters ν0

and ν1. We found that the convergence rates remained similar for condition numbers

that differed from the optimal values by up to fifty percent. The chosen condition

numbers also worked well for a wide range of regularization parameter values λ.

However, we found that the optimal condition numbers for ADMM–CG–IU depended

on the data unlike for ADMM–CG and the ADMM–Circ based algorithms. Still,

like the ADMM–Circ algorithms, the choice of the optimal condition numbers does

not depend on the surface coil image. Therefore, if one wanted to fine-tune the

convergence rate of the algorithms, a single coil of a multi-coil array would suffice.

3.2.3 AL Estimation Method with Similar Variable Splitting

In formulating our proposed ADMM–Circ algorithm, we originally explored a dif-

ferent variable splitting strategy involving a double splitting within the regularization

term of (3.1) [18,32]:

(3.24) arg min
s,u0

1

2
‖z − Ds‖2

W
+

λ

2
‖Bu0‖2

2 s.t. u0 = Cu1 and u1 = s.
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This variable splitting led to update equations with nearly identical structures to

those of ADMM–Circ. Furthermore, the resulting AL algorithm and its intermedi-

ate updating variation had similar convergence rates to their ADMM counterparts.

However, analyzing the convergence properties of these algorithms was more com-

plicated as they did not have ADMM structures. Thus, we focused on the ADMM

formulations.

3.2.4 Effect on SENSE Reconstruction Quality

The advantages and accuracy of similar regularized sensitivity profile estimators

have been discussed [7, 15]; however, there has been limited investigation into their

effects on SENSE reconstruction quality. We therefore compare the quality of the

SENSE reconstructions created with the coil sensitivities estimated using the regu-

larized method in (3.1) to those estimated using the commonplace ratio and ratio of

low resolution images methods.

Simulated brain data

Our first experiment was performed using the simulated brain data outlined in

Section 3.1.3. We began by simulating a full resolution calibration scan using the

same parameters as Figs. 3.4 and 3.5. Next, we estimated the coil sensitivities from

the resulting body and surface coil images using our regularized method, the ratio

of low resolution images method, and the ratio method.

We implemented the regularized method using our ADMM–Circ–IU algorithm

with the same parameters as in Section 3.1.3. The ratio of low resolution images

method was implemented by taking a set number of samples from the center of k -

space of each coil, zero padding to get 256× 192 element matrices (corresponding to

a 256 mm × 192 mm FOV), and reconstructing low resolution body coil and surface
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coil images using inverse DFTs. Smooth sensitivity estimates were then obtained

by taking the ratio of these low resolution images. We present the results for two

different amounts of sampling. The first uses the center 13 × 9 k -space samples

resulting in sensitivity estimates that extend smoothly to the image edges. The

second uses the center 51× 38 samples which was found to provide the best SENSE

reconstruction quality for this method. In both cases we applied a Hamming window

to the selected k -space data to reduce any Gibbs ringing artifacts. The conventional

ratio estimate (ŝi = zi/yi) was masked to remove the highly corrupt estimates of

the non-object pixels using a binary mask created by thresholding the body coil

image. The resulting sensitivity profile estimates for a single, representative coil are

presented in Fig. 3.16.

As seen in Fig. 3.6, the regularized estimate is very close to the true sensitivity,

differing only at the corners of the image. The minor discrepancies at the corners of

the estimates are in part due to selecting a regularization parameter that emphasized

accuracy over the object pixels and their immediate surrounding area as well as from

the fact that there is no information about the true sensitivity in this region of the

image. The conventional ratio estimate is much noisier over the object pixels and

has no extrapolation. Both low resolution ratio estimates are smooth over the object

support with varying degrees of extrapolation into the surrounding regions. However,

the implicit smoothing of these methods creates inaccuracies in the estimates near

object edges and in areas with predominantly low signal. Furthermore, any voxels

significantly beyond the extrapolated regions exhibit large estimation errors. The

typical errors that result from Gibbs ringing artifacts [7] have been reduced by the

additional windowing.

Data from the four surface coils were then simulated for every other vertical line
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Figure 3.16: Example sensitivity profile estimates for the brain data using (a) the regular-
ized method (b) the ratio of low resolution images method with the center 51×38 samples,
(c) the ratio of low resolution images method with the center 13 × 9 samples, and (d) the
conventional ratio method.

in k -space. SENSE reconstructions [2] were performed using this undersampled data

set and the various sensitivity profile estimates. We restricted the reconstruction to

a masked region found by dilating the threshholded body coil image by two pixels.

These reconstructions and their differences to the truth are presented in Fig. 3.17.

The resulting normalized root-mean-square errors (NRMSE) between the SENSE

reconstructions and the truth are presented in Table 3.3. The regularized method led

to the most accurate SENSE reconstruction in terms of NRMSE as well as the one

with the fewest structural artifacts (beyond the amplified noise inherent to SENSE

reconstruction). The low resolution ratio method with the center 13 × 9 samples

led to the least accurate SENSE reconstruction. It is clear from the artifacts in
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Figure 3.17: Resulting two-fold accelerated SENSE reconstructions for the brain data
using (a) the regularized method (b) the ratio of low resolution images method with the
center 51 × 38 samples, (c) the ratio of low resolution images method with the center
13 × 9 samples, and (d) the conventional ratio method sensitivity profile estimates. The
corresponding differences to the truth are presented below in (e – h). The yellow arrow
specifies an artifact in the SENSE reconstruction caused by inaccurate sensitivity estimates
in a low signal region.

the difference image that oversmoothing led to large inaccuracies in the sensitivity

profile estimates at the object edges. The low resolution ratio method with the

center 51×38 samples led to the second most accurate reconstruction. Although the

effects are less severe than for the 13× 9 case, there are again structural artifacts in

the reconstructions due to inaccurate sensitivity estimates at the object boundaries

and low signal regions within the brain. The conventional ratio method also led to

significant artifacts in the SENSE reconstruction. Specifically, the lack of smoothing

in the sensitivity estimates led to high noise in the SENSE reconstruction, while the

lack of extrapolation resulted in aliased object edges within the final reconstruction.
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Table 3.3: NRMSEs Between the True Brain Images (Stationary and Shifted) and the
SENSE Reconstructions

Regularized Low Res. Ratio Ratio

51 × 38 13 × 9

Shift = 0 0.06 0.07 0.16 0.12

Shift = 2 pixels 0.06 0.07 0.16 0.16

Shifted simulated brain data

One possible complication when performing SENSE imaging is if the patient

moves between the calibration and acquisition scans. In such cases, poorly extrap-

olated sensitivity profile estimates will introduce significant artifacts into the recon-

struction [8]. To evaluate the different sensitivity estimators under such circum-

stances, we simulated a set of two times undersampled surface coil images in which

the brain was moved two pixels to the right with respect to the coil sensitivities and

the field-of-view. We then reconstructed the image using the previously estimated

coil sensitivities over an equally shifted masked region. These reconstructions and

their differences to the shifted truth are presented in Fig. 3.18.

The resulting NRMSEs between the SENSE reconstructions and the true shifted

brain are presented in Table 3.3. The regularized method again led to the most ac-

curate SENSE reconstruction with similar NRMSE and a lack of structural artifacts.

The low resolution ratio method with the center 51 × 38 samples led to the second

most accurate SENSE reconstruction; however, the inaccuracies in the sensitivity es-

timates at the object edges resulted in larger artifacts due to the shift, particularly at

the far right side of the brain. The low resolution ratio method with the center 13×9

samples again resulted in the worst SENSE reconstruction. The shift of two pixels

to the right emphasized the inaccuracies in the estimates near the object edges by

introducing even larger artifacts (not visible with the current contrast windowing).
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Figure 3.18: Resulting two-fold accelerated SENSE reconstructions of a brain shifted two
pixels to the right with respect to Fig. 3.17 using the previous (a) regularized method (b)
the ratio of low resolution images method with the center 51× 38 samples, (c) the ratio of
low resolution images method with the center 13×9 samples, and (d) the conventional ratio
method sensitivity profile estimates. The corresponding differences to the shifted truth are
presented below in (e – h). The yellow arrow indicates an area with increased artifacts due
to inaccuracies in the sensitivity estimates at the object edges.

The SENSE reconstruction based on the conventional ratio method was significantly

affected by the shift. In particular, the lack of any extrapolation in the estimated

sensitivity profiles resulted in large artifacts within the object support.

High SNR simulated brain data

To better illustrate the typical inaccuracies produced by the ratio of low reso-

lution images estimation method, we repeated the previous SENSE reconstruction

experiments using simulated brain data with a higher SNR of 20. The specific body

coil and four surface coil images are presented in Fig. 3.19. We performed sensitiv-

ity estimation using the regularized method and the ratio of low resolution images

method with 51 × 38 samples. The resulting estimates for a representative coil are
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presented in Fig. 3.20.

The sensitivity profile estimates are similar to those for the case of lower SNR

brain data found in Fig. 3.16. The regularized estimate is again very close to the

true sensitivity differing only at the corners of the image. The ratio of low resolution

images estimate is smooth over the object support and exhibits some extrapolation.

However, there are noticeable inaccuracies in areas corresponding to regions of low

signal within the brain.

We performed two-fold accelerated SENSE reconstructions with the higher SNR

brain data and these sensitivity profile estimates. The results for both the case of

no shift between calibration and scan, as well as a two pixel shift, are presented in

Fig. 3.21. As with the case of low SNR brain data, the reconstructions created using

the regularized sensitivity estimate have very low error and no major structural arti-

facts. Furthermore, the two pixel shift had little effect on the reconstruction quality

indicating accurate extrapolation within the estimate. In contrast, the reconstruction

created using the low resolution ratio estimates had several large structural artifacts

(indicated with a yellow arrow) that were a result of the inaccurate sensitivity pro-

file estimates in regions of low signal. The two pixel shift increased these artifacts

indicating inaccurate extrapolation within the sensitivity estimates.

Breast phantom data

We also compared the sensitivity estimation methods using our breast phantom

data from Section 3.1.3. In this case, we estimated the sensitivities of the breast

phantom images presented in Fig. 3.9 using the same four methods as before: the

regularized method with λ = 27, the ratio method, and the low resolution ratio

method with both the center 77 × 19 and center 19 × 5 samples zero padded to
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384× 96 elements. The resulting estimates for a representative coil are presented in

Fig. 3.22.

The regularized estimate is smooth over the entire field-of-view and closely

matches the general trend in the ratio estimate. The low resolution ratio estimate

with the center 77 × 19 samples is reasonably smooth over the object support with

some extrapolation into the surrounding pixels. There are inaccuracies in the esti-

mate near regions of low signal such as at the object edges and over the far right

breast. The low resolution ratio estimate with the center 19× 5 samples is smoother

than the case of 77 × 19 samples and exhibits greater extrapolation. However, this

estimate suffers from oversmoothing and is highly inaccurate at the object edges.

Both of the low resolution ratio methods benefited from using a Hamming window

to reduce the Gibbs ringing artifacts. The ratio estimate is very noisy over the object

pixels and has no extrapolation.

To simulate the minor changes in the data that would occur between a calibration

scan and an acquisition scan, we performed a SENSE reconstruction on a neighboring

two-dimensional slice of our breast phantom data. The fully sampled body and

surface coil images of this slice are presented in Fig. 3.23. First, we undersampled

the surface coil images by selecting every other vertical line in k -space. As was

done for the simulated brain data, we then performed SENSE reconstructions over a

masked region using the previously estimated coil sensitivities. These reconstructions

are presented in Fig. 3.24.

The SENSE reconstruction resulting from the regularized estimate has very high

quality and few visible artifacts when compared to the body coil image in Fig. 3.23(a).

The reconstruction resulting from the low resolution ratio estimate with the center

77×19 samples appears similar to that of the regularized estimate; however, the inner
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parts of the breasts are darker than in the body coil and surface coil images. This

is largely a result of inaccurate sensitivity estimation in these low signal regions.

In addition to the darkening artifact in the low signal regions of the image, the

reconstruction resulting from the low resolution ratio estimate with the center 19×5

samples also has aliased edges of the breasts within the object support (indicated by

a yellow arrow). These are a result of inaccurate sensitivity estimates at the object

edges caused by oversmoothing. The reconstruction resulting from the conventional

ratio estimate is very noisy and has several bright artifacts. This is due to inaccurate

sensitivity estimation over the low signal pixels within the object support and a lack

of extrapolation.

Discussion

From these experiments, we conclude that the regularized sensitivity estimation

method outlined in (3.1), although more computationally expensive, provides im-

proved sensitivity estimates for use in SENSE reconstructions compared to other

commonly used non-parametric methods. Using a ratio of low resolution images

provides reasonable estimates if the correct number of samples is selected. However,

even after windowing to reduce the Gibbs ringing artifacts, these estimates are typi-

cally inaccurate at object edges and in areas of low signal. This results in artifacts in

the SENSE reconstructions. The lack of smoothing and extrapolation in the conven-

tional ratio method results in SENSE reconstructions that are very noisy and prone

to large artifacts due to motion.
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Figure 3.19: The magnitude of the fully sampled (a) body coil and (b) surface coil images
for our high SNR simulated brain data.
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Figure 3.20: Example sensitivity profile estimates found for the high SNR brain data using
(a) the regularized method and (b) the ratio of low resolution images method with the
center 51 × 38 samples.
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Figure 3.21: Resulting two-fold accelerated SENSE reconstructions of the high SNR simu-
lated brain data. For the case of no shift, (a) and (b) are the reconstructions corresponding
to the regularized method and ratio of low resolution images method, respectively. (c) and
(d) are the corresponding reconstructions for the case of a two pixel shift. The difference
to the truth or shifted truth for each reconstruction is presented below in (e – h).
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Figure 3.22: Example sensitivity profile estimates found for the breast phantom data using
(a) the regularized method (b) the ratio of low resolution images method with the center
77 × 19 samples, and (c) the ratio of low resolution images method with the center 19 × 5
samples, and (d) the conventional ratio method.
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Figure 3.23: The magnitude of the fully sampled (a) body coil and (b) surface coil images
for the neighboring two-dimensional slice of our breast phantom data.
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Figure 3.24: Resulting two-fold accelerated SENSE reconstructions of the neighboring slice
of breast phantom data (Fig. 3.23) using the previous (a) regularized method (b) ratio of
low resolution images method with the center 77 × 19 samples, (c) ratio of low resolution
images method with the center 19×5 samples, and (d) conventional ratio method sensitivity
profile estimates. The arrow in (b) points to a dark region in the reconstruction, while the
arrow in (c) points to a reconstruction artifact caused by inaccurate sensitivity estimation
at object edges.
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3.2.5 Estimation Over a Convex Hull Mask

If estimating over a masked region to reduce computation time, the mask must

be carefully selected to ensure accurate estimates. For data sets with spatially-

contiguous support, such as the simulated brain in Section 3.1.3, this is relatively

trivial; however, this is not the case for more complicated data sets such as our

breast phantom data whose field-of-view (FOV) contains several spatially distinct

objects. Due to the underlying physics, the typical coil sensitivity profile should

smoothly vary across the entire FOV and generally decrease with distance from the

coil. However, using a tight mask isolates the estimate over each object and this

can result in large errors for objects that have low signal or only a few pixels. This

can be avoided by using a mask consisting of a convex hull containing the spatially

distinct objects.

To illustrate this phenomenon, we considered another slice of our breast phantom

data, Fig. 3.25. This image has a small object to the left of the right breast (indicated

by an arrow). We perform regularized estimation over a masked region consisting of

spatially distinct objects as well as a masked region consisting of a convex hull of these

points. Fig. 3.26 contains the two different masks and their corresponding sensitivity

estimates. Fig. 3.27 presents line profiles of the absolute value of the sensitivity

estimates taken horizontally through the center of the FOV for both estimates.

Comparing the two estimates, it is clear that they are similar for regions with

relatively high SNR; however, they differ greatly over the small object next to the

right breast. When using a tight mask, the estimated sensitivity in this region is

very high in comparison to the nearby breast which does not match the underlying

physics. This inaccuracy is a result of the estimate in this region being based on

only a few low signal pixels. In contrast, the convex hull estimate is smooth over the
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Figure 3.25: The magnitude of the (a) body coil and (b) surface coil image for an additional
slice of our breast phantom data. The yellow arrow points to a small object within the
FOV.
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Figure 3.26: The masks for the cases of a (a) convex hull and (b) independent objects.
The corresponding regularized estimates over the masked regions for the (c) convex hull
and (d) independent objects.
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Figure 3.27: Horizontal line profiles taken through the center of the sensitivity estimates
presented in Fig. 3.26.

entire masked region and the estimate over the small object is more realistic. This is

because such a mask enforces smoothness both within and between all of the objects

in the FOV. Thus, a convex hull should be used for the estimation mask to avoid

inaccuracies in the final estimates.

3.2.6 Circulant Versus Non-Circulant Finite Differencing Matrices

In this section we demonstrate the importance of using a finite differencing matrix

for the case of non-periodic boundary conditions (R or BC) rather than a finite

differencing matrix for the case of periodic boundary conditions (C) in our cost

function. Since CHC is block circulant with circulant blocks, we will refer to the

matrix for the case of periodic boundary conditions as the circulant matrix. In

contrast, we will refer to the matrix for the case of non-periodic boundary conditions

as the non-circulant matrix.

The receive coil is usually placed at or just beyond the boundary of the field-

of-view. Since coil sensitivity is a physical phenomenon, its intensity will typically
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decrease with increased distance from the coil. However, if we use a circulant finite

differencing matrix, we will be penalizing differences in the estimated sensitivities at

opposing boundaries of the volume. Since there is often little information about the

sensitivity at the edges of the volume, this penalization will result in a sensitivity esti-

mate that dips near the coil and rises at the opposite side of the field-of-view. This is

a clear mismatch with the underlying physics of the problem. Furthermore, because

of the lack of meaningful information outside of the object voxels, this error will

propagate to the estimate at the edges of the object. These errors within (and just

outside) the object support can generate significant artifacts in SENSE reconstruc-

tions (see Section 3.2.4). Padding the image with zeros will not sufficiently remove

this propagated estimation error. Thus, one must use a more realistic modeling as-

sumption and select a non-circulant finite differencing matrix that avoids penalizing

between opposite boundaries at the expense of increased complexity. To illustrate

these claims, we recreated the estimates found in Section 3.1.3 using both the ex-

isting non-circulant finite differencing matrix (R) and a circulant finite differencing

matrix (C).

Simulated brain data

We present the results for one coil of the simulated brain data. Fig. 3.28 presents

the body coil image, true sensitivity, and resulting surface coil image used in this

experiment. Fig. 3.29 presents the resulting estimates using both the non-circulant

and circulant finite differencing matrices, as well as the percentage difference image

for each estimate compared to the truth.

As stated before, the estimate using the circulant finite differencing matrix dips

before the boundary near the coil and rises at the opposite edge of the field-of-view.
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Figure 3.28: The (a) body coil, (b) true coil sensitivity, and (c) resulting surface coil
magnitude images for the simulated brain data.
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Figure 3.29: The resulting sensitivity estimates for the brain data using a (a) circulant
matrix and a (b) non-circulant matrix. The percentage difference between the truth and
the estimates from the (c) circulant matrix and the (d) non-circulant matrix are shown
below.



84

This results in significant inaccuracies in the estimate at the image boundaries. In

contrast, the estimate using the non-circulant matrix increases smoothly towards the

image boundary closest to the coil. The overall estimation error is therefore much

smaller and is confined to the outer corners of the image.

Fig. 3.30 presents the same estimates as Fig. 3.29, but masked in the spatial

domain to highlight the error over the object support. In these images, we see that

the error in the estimates from the non-circulant matrix has propagated to within

the object support. This highly structured inaccuracy will cause large artifacts in

SENSE reconstructions. In contrast, the error in the estimate from the circulant

matrix is much lower over the entire object support and contains significantly less

structure.

Padded simulated brain data

We also padded the brain data in Fig. 3.28 with zeros to get a 256×256 image (an

addition of 32 pixels to both the left and right sides of the image). Fig. 3.31 presents

the resulting estimates, masked to highlight the error over the object support. Similar

inaccuracies to before are present in the circulant matrix estimate, while the estimate

using the non-circulant matrix continues to have low error. Thus, the zero padding

did not sufficiently mitigate the corruption of the estimate caused by using a circulant

matrix.

Breast phantom data

We performed similar experiments on one coil of our breast phantom data found

in Section 3.1.3. Fig. 3.32 presents the body coil and surface coil images used in this

experiment.

Fig. 3.33 presents the resulting estimates using both the non-circulant and circu-
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Figure 3.30: The same sensitivity estimates for the brain data as in Fig. 3.29 but masked
to highlight the error over the object support. (a) and (c) are the resulting estimate and
percentage difference to the truth, respectively, resulting from a circulant matrix. (b) and
(d) are the same but resulting from a non-circulant matrix.
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Figure 3.31: The masked sensitivity estimates for padded brain data generated using a (a)
circulant matrix and a (b) non-circulant matrix. The masked percentage difference between
the truth and the estimates from the (c) circulant matrix and the (d) non-circulant matrix
are shown below.
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Figure 3.32: The (a) body coil and (c) surface coil magnitude images for the breast phantom
data.
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Figure 3.33: The sensitivity estimates for the breast phantom data generated using a (a)
circulant matrix and a (b) non-circulant matrix.

lant finite differencing matrices. As with the brain data, there is an unrealistic dip

in the estimate near the coil and a rise at the opposing boundary when using the cir-

culant finite differencing matrix, Fig. 3.33(a). The estimate using the non-circulant

matrix is more realistic, Fig. 3.33(b).

Fig. 3.34(a – b) presents the same estimates as Fig. 3.33, but masked in the

spatial domain to highlight the error over the object support. Fig. 3.34(c) shows

the difference between these two estimates. From these images, we see that the

inaccuracies in the estimate at the boundaries of the image caused by the circulant

finite differencing matrix propagated to within the object support. Thus, the need

for a non-circulant finite differencing matrix is also evident for the case of real data.

Discussion

Using a finite differencing matrix for the case of periodic boundary conditions in

our experiments caused substantial errors at the boundaries of the field-of-view and

these propagated to within the object support. Furthermore, padding the images
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Figure 3.34: The same sensitivity estimates for the breast data as in Fig. 3.33 but masked
to highlight the error over the object support. The difference between the estimates in (a)
and (b) is presented in (c).
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did not entirely mitigate the error. As seen in Section 3.2.4, these types of errors

can cause significant artifacts in SENSE reconstructions. However, using a finite

differencing matrix for the case of non-periodic boundary conditions avoided these

errors. Thus, these experiments illustrate the need to use a non-circulant finite

differencing matrix in the regularized estimator of (3.1).

3.2.7 Conclusions

In this section, we have presented two additional AL based minimization methods

as well as analyzed several key aspects of the regularized sensitivity profile estimator.

First, we derived an ADMM based minimization algorithm that does not use the

finite differencing matrix reformulation from Section 3.1. Although this method

was typically faster than the existing CG algorithms, it was significantly slower

than our ADMM–Circ approach. We also presented an alternative variable splitting

that leads to an AL algorithm with similar performance to ADMM-Circ but with

no guarantee of convergence. We validated the improved accuracy of regularized

sensitivity profile estimation methods over heuristic, low-resolution estimators by

comparing SENSE reconstructions created using their estimates. We showed a type

of SENSE reconstruction artifact that can occur when using tight sensitivity profile

estimation masks. Finally, we demonstrated the need for a finite differencing matrix

with non-periodic boundary conditions in our cost function, and thus, the importance

of our proposed variable splitting.
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CHAPTER IV

Main Magnetic Field Inhomogeneity Estimation

Estimating the main magnetic field inhomogeneity is a non-trivial but essential

task for many magnetic resonance imaging techniques (see Section 2.2 for details).

In this chapter, we explore regularized field map estimation for both multiple echo

time field inhomogeneity estimation and water-fat imaging problems. Section 4.1

presents a generalized field map estimation cost function for both problems and

proposes two novel minimization algorithms that reduce the computation time by

over 30 times compared to the existing solutions.1 Section 4.2 explores using edge

preserving regularization to capture discontinuities in the magnetic field that can

occur at tissue interfaces.

4.1 Accelerated Computation of Regularized Field Map Es-
timates

4.1.1 Introduction

Spatial inhomogeneity within the main magnetic field (B0) can degrade many

magnetic resonance imaging (MRI) techniques. For instance, it can cause recon-

struction artifacts particularly for scans with long readout times [2]. Field inho-

mogeneity is also a nuisance parameter in chemical shift based water-fat imaging

1This section is an extension of our earlier work on regularized field estimation [1].
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techniques [3]. However, accurate estimates of the off-resonance frequency induced

by the field inhomogeneity at each voxel (i.e., a field map) can mitigate both of these

issues [2, 4–9].

Numerous methods have been proposed to estimate field maps. One approach

is to acquire multiple scans at different echo times and then estimate the field in-

homogeneity from the phase information in the resulting images [3]. Since field

maps tend to be smooth within tissue [2], many estimates also enforce some form of

smoothness requirement. There are several ways to do this including region growing

techniques [10–15], filtering [16], curve fitting [17–19], multiresolution and subspace

approaches [12,19–21], and graph cut algorithms [22]. The drawbacks of those meth-

ods are that they use heuristic techniques or significant approximations in an attempt

to correct for phase wrapping between the multiple acquisitions. As an alternative,

regularized estimation methods such as [2, 23–25] estimate a smooth field map from

multiple acquisition images while intrinsically accounting for phase wrapping. The

disadvantage of these regularized methods is that they use nonconvex cost functions

that require iterative minimization techniques.

An existing minimization technique for regularized field map estimation uses

optimization transfer principles [26] to create a separable quadratic surrogate (SQS)

[2, 23]. However, that method takes many iterations, and subsequently a long time,

to reach a useful solution. This large computational cost impedes the adoption of

these estimators. Other regularized field map estimation minimization techniques

discretize the solution space [24, 25] and may require a second descent algorithm to

produce sufficiently smooth estimates [25]. Similar cost functions appear in other

medical imaging problems where the parameter of interest is contained within the

phase of the cost function [15,27–30]. Although certain minimization strategies work
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well for these specific problems (e.g., SQS methods [27,28], numerically implemented

conjugate gradient method [29], and linearization techniques [9, 30]), they are not

well suited for the regularized field map estimation problem.

This section presents two new methods that significantly decrease the computa-

tion time of the regularized field map estimators. We begin by extending the SQS

method presented in [2] to a quadratic surrogate for the overall cost function. Our

first method adapts Huber’s algorithm for quadratic surrogates [31] by exploiting

the structure of the Hessian matrix of the quadratic surrogate function. The second

method modifies the nonlinear CG method by using the quadratic surrogate func-

tion to create an efficient monotonic line search as well as an effective preconditioning

matrix. We then compare our methods with the existing SQS method [2] on both

multiple echo time field map estimation and water-fat imaging data sets. We find

that all of the methods converge to similar solutions for these data sets and that our

fastest algorithms do so in less than a thirtieth of the time.

Section 4.1.2 presents a general form for the regularized field map estimation cost

functions from [2,23] and derives our two novel minimization methods. Section 4.1.3

compares the performance of our proposed methods to the existing SQS method

using both multiple echo time field map estimation and water-fat imaging data.

Section 4.1.4 discusses the results and other key aspects of the algorithms, while

Section 4.1.5 concludes.

4.1.2 Materials and Methods

This section proposes two quadratic surrogate based methods for faster compu-

tation of regularized field map estimates.
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Generalized cost function formulation

The regularized field map estimation techniques for both multiple echo time field

map estimation and water-fat imaging use similar image models [2, 23,24]:

(4.1) yℓ
j = eiωjtℓxℓ

j + ǫℓ
j

where yℓ
j ∈ C denotes the jth voxel in the reconstructed image of the ℓth scan, ωj ∈ R

denotes the field map value at voxel j, tℓ denotes the echo time shift of the ℓth scan,

and ǫℓ
j ∈ C denotes the noise. xℓ

j has the following problem-dependent definitions:

(4.2) xℓ
j ,







mj for multiple echo time field map estimation

wj + fje
i2π∆f tℓ for water-fat imaging

where mj, wj, fj ∈ C denote the true magnetization, water component, and fat com-

ponent at voxel j respectively, and ∆f is the known frequency shift of fat relative to

water (Hz).2

Assuming that we have zero-mean, white complex Gaussian noise ǫℓ
j, the joint

maximum-likelihood (ML) estimates are

(4.3) arg min
w,x

N∑

j=1

L∑

l=1

∣
∣yl

j − eiωjtℓxℓ
j

∣
∣
2

where N and L are the number of voxels and scans respectively, w is a vector con-

taining the field map variables, and x is a vector containing either the magnetization

mj or water-fat wj, fj variables as outlined in (4.2) [2, 23,24].

Assuming the field map w is known, the ML estimates (4.3) yield analytic solu-

tions for the unknown image variables found in xℓ
j. Substituting the solution back

into (4.3) and simplifying yields the following negative log-likelihood for field map

2A multipeak fat model such as in [32] would require only minor changes to our algorithms.



98

estimation [2, 33]:

(4.4) ΦF (w) ,

N∑

j=1

L∑

m=1

L∑

p=1

ϕjmp(ωj)

where

(4.5) ϕjmp(ωj) = |gjmp| · [1 − cos(ωj(tm − tp) + ∠gjmp)]

and gjmp = [Gj](m,p) where (m, p) denotes the matrix indices and

Gj = diag{y
j
}HAj(A

H
j Aj)

−1AH
j diag{y

j
} with y

j
= [y1

j , . . . , y
L
j ]T. For multiple

echo time field map estimation [2], we use the approximation Aj = [|y1
j |, . . . , |yL

j |]T.

For water-fat imaging [33], we use the following L× 2 system matrix for each voxel:

(4.6) Aj =













1 ei2π∆f t1

1 ei2π∆f t2

...
...

1 ei2π∆f tL













.

Field maps tend to be smooth within body tissue [2], therefore a spatial reg-

ularizing term is added to the ML estimate to obtain a penalized-likelihood (PL)

estimate [2, 33]. Furthermore, field map estimates are only needed for voxels where

signal is present. We therefore incorporate an estimation mask yielding the final

generalized PL cost function:

(4.7) Ψ(ωs) = Φ(ωs) +
β

2
‖Cωs‖2

2,

where

(4.8) Φ(ωs) ,
∑

j∈Ns

L∑

m=1

L∑

p=1

ϕjmp(ωj),

ωs ∈ R
Ns is a vector containing the field map variables within the estimation mask,
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Ns is the set of voxels within the mask, β is a regularization parameter, and C is a

finite differencing matrix that accounts for the mask.3

Estimators based on minimizing this cost function provide accurate field map esti-

mates [2,23]; however, the cost function is difficult to minimize due to the nonlinear

data-fit terms and the non-separability of the regularizer. Current minimization

strategies use separable quadratic surrogate methods that can take many minutes to

converge for 2-D images [1, 2, 23]. The remainder of this section proposes two new

minimization strategies that reduce the computation time.

Quadratic surrogate function

Following work on similar cost functions [2, 23, 27], we use optimization transfer

principles [26] to derive our minimization strategies. In particular, we use the same

parabolic surrogate functions as in [2] to majorize the sinusoidal data-fit terms ϕjmp:

(4.9) ϕjmp(ωj) ≤ ϕjmp(ω
(n)
j ) + ϕ̇jmp(ω

(n)
j )

(

ωj − ω
(n)
j

)

+

1

2
κjmp

(

sjmp(ω
(n)
j )

) (

ωj − ω
(n)
j

)2

where ω
(n)
j denotes the current field map estimate at voxel j and

(4.10) κjmp(s) , |gjmp| (tm − tp)
2 sin(s)

s

with

(4.11) sjmp(ω) , (ω · (tm − tp) + ∠gjmp) mod π.

are the optimal Huber’s curvatures [2, 31].4

3C can be described in terms of a full FOV finite differencing matrix CF as C = B · CF · M
where B a diagonal matrix with the binary mask along the diagonal and M ∈ {0, 1}N×|Ns| is a tall
matrix that places the masked voxels into their correct positions within the full FOV.

4With Huber’s curvatures, the functions satisfy the following conditions: the surrogate func-
tions are differentiable, they are symmetric, and their curvatures are bounded and monotone non-
increasing for s > 0. It can therefore be concluded that these surrogate functions have the optimal
curvatures of all parabolic surrogate functions for (4.8) [2, 31].
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We substitute these separable surrogate functions into the data-fit term (4.8)

and, unlike in [2], vectorize the problem to obtain the following quadratic surrogate

function for (4.7):

(4.12) Φ(ω(n)
s ) + ∇Φ(ω(n)

s )T(ωs − ω(n)
s )+

1

2
(ωs − ω(n)

s )TD(n)(ωs − ω(n)
s ) +

1

2
βωT

s CTCωs

where ∇ denotes the gradient,

(4.13) D(n) = diag{d(n)
j } with d

(n)
j =

L∑

m=1

L∑

p=1

κjmp

(

sjmp(ω
(n)
j )

)

,

and ω
(n)
s denotes a vector containing the current field map estimates.

The Hessian matrix of this surrogate cost function is Hn = D(n) + βCTC and it

is positive definite as long as at least one value of d
(n)
j is positive (which is true for any

non-trivial problem). Thus, the quadratic surrogate function (4.12) has a unique,

finite minimizer and we use it to derive our two novel minimization strategies.

Method 1: Huber’s algorithm for quadratic surrogates

Although the Hessian matrix of (4.12) is large for typical image sizes (R|Ns|×|Ns|

where |Ns| is the number of voxels within the mask), it is positive definite and has

a sparse banded structure. Sparse Cholesky factorization can therefore be used to

efficiently solve a linear system of equations based on Hn (i.e., solving H−1
n x for

arbitrary x) [34]. Exploiting this efficiency, we use Huber’s algorithm for quadratic

surrogates [31] to obtain the following iterative algorithm for monotonically decreas-

ing the original cost function (4.7):

(4.14) ω(n+1)
s = ω(n)

s − H−1
n ∇Ψ(ω(n)

s ).

Unlike traditional Newton’s method which uses the Hessian of the original cost func-

tion, this minimization strategy guarantees monotonic convergence.
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Method 2: Nonlinear conjugate gradient with a monotonic line search

We alter the nonlinear CG (NCG) method by considering two modifications, both

based on our quadratic surrogates (4.12). First, we derive a monotonic step size line

search algorithm using quadratic surrogates like in [35]. Second, we consider several

quadratic surrogate based preconditioners that may change with iteration.

(1) Monotonic step size line search: The non-quadratic nature of the cost func-

tion (4.7) prevents direct computation of a step size. Instead, we must consider

iterative line search methods. There are many existing line search methods capable

of determining a ’sufficient’ step size [36]. For example, a backtracking line search

incorporating the Armijo rule [37] is a popular choice in medical imaging. The dis-

advantage of many of these methods is that they require multiple costly evaluations

of the original cost function and they have parameter values that must be care-

fully selected given the nonconvex nature of our problem. Instead, we follow [35]

and use a line search method based on Huber’s algorithm for quadratic surrogates.

This particular line search method is guaranteed to monotonically decrease the cost

function.

To create the monotonic line search algorithm, we evaluate the original cost

function (4.7) with respect to a scalar step size variable, α:

(4.15) f(α) = Φ(ωs + αz) +
1

2
β||C(ωs + αz)||22,

where z ∈ R
Ns is the search direction.

We are again confronted with the fact that the data-fit term is nonconvex. Since

this cost function has the same structure as (4.7), we follow the approach in Sec-
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tion 4.1.2 to create the following 1-D quadratic surrogate function:

(4.16) Φ(ωs + α(n)z) + zT∇Φ(ωs + α(n)z)(α − α(n))+

1

2
d(n)

α (α − α(n))2 +
1

2
β||C(ωs + αz)||22,

where

(4.17) d(n)
α =

∑

j∈Ns

L∑

m=1

L∑

p=1

|zj|2κjmp

(
sjmp(ωj + α(n)zj)

)
.

As in Section 4.1.2, we apply Huber’s algorithm for quadratic surrogates to obtain

the final monotonic line search algorithm:

(4.18) α(n+1) = α(n) −
∂

∂α
f(α(n))

d
(n)
α + βzTCTCz

for which βzTCTCz only needs to be computed once.

(2) Preconditioning matrices: We also explored several preconditioners to accel-

erate our CG based algorithm. Since the Hessian of the quadratic surrogate from

Section 4.1.2 is positive definite and already computed during the monotonic line

search, we use it to form our preconditioning matrices instead of the Hessian of the

original cost function (4.7). Our first preconditioning matrix is the diagonal matrix,

PD = diag{Hn}, which can be efficiently implemented. Our second preconditioner

is the full Hessian matrix of the quadratic surrogate PH = Hn which is implemented

using sparse Cholesky factorization like in Section 4.1.2.

4.1.3 Results

This section compares our two novel algorithms to the existing SQS minimization

method using both multiple echo time field map estimation and water-fat imaging

data sets.

For all of our experiments, we followed [2] and first normalized the data by di-

viding each image by median{√rj} where rj ,
∑L

m=1

∑L
p=1 |gjmp|(tm − tp)

2 for the
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object voxels. This normalization accounts for some of the R∗
2 effects in the multiple

echo time field estimation data and simplifies selecting the regularization parameter

β [2].

We performed field map estimation with our Huber’s algorithm based method

(4.14) (QS-Huber), our NCG with monotonic line search algorithm (4.18) (NCG-

MLS), our NCG-MLS algorithm with the diagonal preconditioner (NCG-MLS-D),

our NCG-MLS algorithm with the Hessian preconditioner (NCG-MLS-H), and with

the existing SQS algorithm [2]. C was chosen to be a second-order finite differencing

matrix as this provided high quality estimates for each experiment. We used one

line search iteration for NCG-MLS and NCG-MLS-D and three for NCG-MLS-H.5

These parameter values were determined empirically and were not further optimized

for each experiment to demonstrate the robustness of the algorithms.

For each experiment, all of the algorithms were initialized with the same image.

The computation of these images differed between the multiple echo time field map

estimation and water-fat imaging data and is therefore outlined in the corresponding

subsections. Since we have no information about the field map outside of the object

voxels, we restricted the estimates to masked regions. The masks were found by

taking a convex hull around those voxels with significant signal. We dilated the

masks by two voxels to avoid reconstruction artifacts that would otherwise arise

if the patient was to move between calibration and acquisition scans. All of the

algorithms were implemented in MATLAB (The MathWorks, Natick, MA, USA)

and the experiments were run on a PC with a 2.66 GHz, quad-core Intel Xeon CPU.

Although not guaranteed, we found that all of the methods converged to within

machine precision of the same solution for each experiment when using our given

5We determined the conjugate gradient direction using the Polak-Ribiére method [38] as it
typically converges faster on non-quadratic problems than the Fletcher-Reeves approach [39], [36].
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initialization strategies. We therefore compared the convergence rates of each algo-

rithm by computing the root-mean squared difference (RMSD) between the estimate

at each iteration ω
(n)
s and the mean of the final estimates from the two fastest meth-

ods (QS-Huber and NCG-MLS-H) ω̂s:

(4.19) RMSD(ω(n)
s ) =

√

‖ω(n)
s − ω̂s‖2

2

|Ns|
.

Using the mean of two estimates avoids favoring any one of the algorithms.

Multiple echo time field map estimation data

We initialized our multiple echo time field map estimation data using a tightly

masked conventional estimate. This method takes the phase difference of the first

two acquired images as follows [2]:

(4.20) ω̂conv
j = ∠

(
y1

j
∗
y2

j

)
/t1.

Although this conventional estimator does not explicitly account for phase wrapping

and typically produces noisy estimates, it was sufficient for our experiments in that it

has low computational complexity and its estimates resulted in all of the algorithms

converging to within machine precision of the same solution.

We simulated a multiple echo time field map estimation data set using a 128×128

pixel brain image and field map acquired on a 3T GE scanner, Fig. 4.1. We combined

the field map with the brain image to create three acquisition images with relative

echo times tℓ = 0, 2, 10 ms and R∗
2 = 20 s−1. Complex Gaussian noise was also added

to these images so that the SNR ≈ 20 dB. Fig. 4.2 presents the magnitude and phase

of the simulated scan images.

We selected the regularization parameter β = 2−3 as this was found to provide the

most accurate estimates compared to the truth (details not shown). Fig. 4.3 shows
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Figure 4.1: The magnitude of the brain image (left) and the “true” field map in Hz (right)
used to create the simulated multiple echo time field map estimation data.
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Figure 4.2: Simulated magnitude (top) and phase (bottom) images representing three
acquisitions with relative echo times tℓ = 0, 2, 10 ms (from left to right).
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Figure 4.3: The final estimate (left) and its difference to the masked truth (right) in Hz
for the multiple echo time field map estimation data set.

Table 4.1: Convergence Time and Iterations for the Multiple Echo Time Field Map Esti-
mation Data Set

Method
Time (s) Iterations

1 Hz 1 Rad/s 1 Hz 1 Rad/s

SQS [2] 16 48 3800 11400

NCG-MLS 1.1 1.8 98 180

NCG-MLS-D 0.9 1.5 83 150

NCG-MLS-H 0.5 0.9 2 4

QS-Huber 0.5 1.1 2 6

the regularized estimate and its difference to the masked truth for one representative

method (QS-Huber). Fig. 4.4 plots the RMSDs in Hz versus time for all of the

evaluated methods. Table 4.1 presents the time and number of iterations required

to reach an RMSD of 1 Hz and 1 Rad/s for each algorithm.

Water-fat imaging data

We evaluated the algorithms on two water-fat imaging data sets. The first uses

simulated images for which we know the truth. The second is an in-vivo knee data

set.

The conventional estimator used to initialize the experiments in Section 4.1.3 is

unsuitable for the case of water-fat imaging as it does not account for chemical shift

due to fat. Instead, we used an initialization method proposed by [23, 24] in which
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Figure 4.4: Plots of the RMSD in Hz versus computation time for all of the algorithms
evaluated on the multiple echo time field map estimation data set.

we evaluated (4.8) over a discrete set of field map values spaced 2 Hz from −|∆f/2|

to |∆f/2| [23]. Although this method generates noisy estimates, it accounts for the

chemical shift due to fat, has low computational cost, and led to all of the algorithms

converging to within machine precision of the same solution.

We also estimated the fat and water images using the proposed regularized field

map estimates to further validate their accuracy. The water and fat estimation was

performed voxel-wise using the following maximum-likelihood estimator [24,33]:

(4.21)






wj

fj




 =

[
AH

j Aj

]−1
AH

j W(ωj)
Hy

j
,

where W(ωj) , diag{eiωjt1 , . . . , eiωjtL}.

(1) Simulated data: We simulated a water-fat imaging data set by combining

the 256 × 256 pixel water and fat images presented in Fig. 4.5. We integrated a

simulated field map (Fig. 4.5) with the resulting water-fat image to create three

acquisition images with relative echo times tℓ = −0.4, 1.2, 2.8 ms, ∆f = 220 Hz, and
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Figure 4.5: The magnitude of the water image (left), the fat image (center), and true field
map in Hz (right) used to create the simulated water-fat data set.

Table 4.2: Convergence Time and Iterations for the Simulated Water-Fat Data Set

Method
Time (s) Iterations

1 Hz 1 Rad/s 1 Hz 1 Rad/s

SQS [2] 280 2700 22600 218000

NCG-MLS 8.2 26 210 700

NCG-MLS-D 8.0 26 200 690

NCG-MLS-H 1.1 1.5 1 2

QS-Huber 1.0 1.5 1 2

R∗
2 = 20 s−1. Complex noise was also added to these images so that the SNR ≈ 20 dB.

Fig. 4.6 shows the magnitude and phase of the final simulated images.

We selected the regularization parameter β = 29 as this was found to provide the

most accurate estimates compared to the truth (details not shown). Fig. 4.7 shows

the regularized estimate and its difference to the masked truth for one representative

method (QS-Huber). Fig. 4.8 shows the resulting water and fat images generated

using (4.21), while Fig. 4.9 plots the RMSDs in Hz versus time for all of the evaluated

methods. Table 4.2 presents the time and number of iterations required to reach an

RMSD of 1 Hz and 1 Rad/s for each algorithm.

(2) In-vivo knee data: We also evaluated the algorithms on a water-fat imaging

knee data set acquired on a 1.5 T scanner using the IDEAL imaging acquisition

protocol [15]. This data set consisted of three 256 × 256 pixel acquisition images

with relative echo times tℓ = −0.4, 1.2, 2.8 ms and SNR ≈ 35 dB. Fig. 4.10 presents
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Figure 4.6: The magnitude (top) and phase (bottom) of the simulated water-fat scan
images for relative echo times tℓ = −0.4, 1.2, 2.8 ms (from left to right).
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Figure 4.7: The final estimate (left) and its difference to the masked truth (right) in Hz
for the simulated water-fat data set.
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Figure 4.8: The resulting water image (left) and fat image (right) maximum-likelihood
estimates computed using (4.21) and the field map in Fig. 4.7.
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Figure 4.9: Plots of the RMSD in Hz versus time for all of the algorithms evaluated on the
simulated water-fat data set.
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Figure 4.10: The magnitude (top) and phase (bottom) of the knee water-fat images with
relative echo times tℓ = −0.4, 1.2, 2.8 ms (from left to right).

the magnitude and phase of the three scan images.

We selected the regularization parameter β = 28 as this provided high quality

water and fat images. Fig. 4.11 shows the regularized estimate for one representative

method (QS-Huber) and the resulting water and fat images generated using (4.21).

Fig. 4.12 plots the RMSDs in Hz versus time for all of the evaluated methods. Ta-

ble 4.3 presents the time and number of iterations required to reach an RMSD of 1

Hz and 1 Rad/s for each algorithm.

4.1.4 Discussion

Our novel regularized field map estimation methods were more than 30 times

faster than the existing SQS method for multiple echo time field map estimation

and more than 250 times faster for water-fat imaging data. Our fastest methods

were those that used the exact Hessian at each iteration (i.e., QS-Huber and NCG-
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Figure 4.11: The regularized field map estimate in Hz (left), the resulting water image
(center), and the resulting fat image (right) for the knee water-fat data set.
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Figure 4.12: Plots of the RMSD in Hz versus time for all of the algorithms evaluated on
the knee water-fat data set.

Table 4.3: Convergence Time and Iterations for the Knee Water-Fat Data Set

Method
Time (s) Iterations

1 Hz 1 Rad/s 1 Hz 1 Rad/s

SQS [2] 2000 4400 126000 281000

NCG-MLS 23 39 400 700

NCG-MLS-D 24 42 420 740

NCG-MLS-H 2.0 3.1 2 3

QS-Huber 2.2 3.8 2 4
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MLS-H). Our simpler NCG-MLS and NCG-MLS-D algorithms were slower than our

fastest methods, but remained significantly faster than the SQS method. This is

in part because the monotonic line search was able to find a near optimal step size

in only a few iterations due to the similarity between the step size cost function

(4.15) and our quadratic surrogate. The diagonal preconditioner did not drastically

improved the NCG-MLS convergence rate and was actually a detriment for the in-

vivo knee experiment. This preconditioner required additional line search iterations

to realize its full per iteration acceleration; however, these savings were outweighed

by the added computational cost.

Preconditioner computation could be reduced by computing the sparse Cholesky

factorization only once and storing the resulting permutation matrix and the rela-

tively sparse lower triangular matrix for subsequent iterations. The resulting pre-

conditioning steps would require only permuted forward and backward substitutions

making them faster, but with the potential drawback of using a non-updating pre-

conditioner. We did not explore this variation as the current NCG-MLS-H algorithm

already converges in only a few seconds.

Like our QS-Huber method, the existing SQS algorithm can be written as an

application of Huber’s algorithm [2],

(4.22) ω(n+1)
s = ω(n)

s − diag

(

1

d
(n)
j + βcj

)

∇Ψ(ω(n)
s ).

where cj are the elements of |C|T|C|1 with [|C|](m,n) , |[C](m,n)| and 1 denoting a

ones vector [40]. Thus, the SQS method is equivalent to a vectorized quadratic surro-

gate function with a diagonal Hessian matrix. The proposed (non-diagonal) Hessian

based methods converged quickly because their (non-separable) surrogates matched

the original cost function closely. By comparison, the SQS algorithm required or-
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ders of magnitude more iterations to obtain the same solution because the diagonal

Hessian approximation had much higher curvatures. Although each of these itera-

tions had a lower cost than the (non-diagonal) Hessian based methods, the overall

computation time remained much longer.

Although the Hessian based methods require only a few iterations to converge,

the cost per iteration is significantly greater than the other methods and their lower

overall computation time depends on having efficient algorithms for solving expres-

sions with the inverted Hessian matrix. Sparse Cholesky factorization [34] is capable

of quickly performing this task, but at a cost of greater memory usage. For instance,

the sparse Cholesky method included in MATLAB [34] requires 30 MB of memory

for a 128×128 pixel image but needs over 700 MB of memory for a typical 516×516

pixel image when using second-order finite differences (with double precision). Thus,

for large problems such as 3-D data sets, the method may not be tractable even when

using a tight reconstruction mask. In such situations, it may be advantageous to use

an approximation to the full Hessian such as incomplete Cholesky factorization [41].

This change would likely require more iterations of the algorithms, but less cost per

iteration. It may also be worth exploring partitioning the volume into smaller sec-

tions (e.g., 2-D slices), performing the estimation on each partition in parallel, and

then recombining the estimates in a manner that ensures smoothness.

Since field maps are typically smooth over body tissue, low resolution acquisition

images may be sufficient for multiple echo time field map estimation. This would

reduce both the acquisition time and the computation times of the estimation algo-

rithms. It would also greatly reduce the memory requirements of sparse Cholesky

factorization approaches and may allow for the direct application of our fastest meth-

ods to 3-D data sets. However, because full resolution acquisitions are required for
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some water-fat imaging problems (including those in Chapter V), we have focused

on traditional image sizes.

Due to the nonconvex nature of the cost function, the initialization of the al-

gorithms is important for ensuring convergence to a desirable local minimum. We

presented two different initialization strategies that had low computational costs

yet sufficient accuracy for our experimental data sets. If these methods are insuf-

ficient, more computationally intensive initialization strategies may be considered.

First, since field maps are typically smooth, a multiresolution estimate may provide

a reasonable initialization as it would be based on images with higher SNR. One

disadvantage of a multiresolution initialization is that it may be inaccurate at object

edges or near water-fat tissue interfaces. Second, solving a simpler iterative problem

where the sinusoidal data-fit terms in the cost function are replaced with quadratic

functions (rather than using quadratic surrogates to solve the complex, sinusoidal

cost function) has been found to provide good initial field maps for the water-fat field

map estimation problem [23]. Third, using one of the discretized methods outlined

in [24,25] could provide a high quality initialization with no phase wrapping.

The water and fat images estimated from our field maps appear plausible; how-

ever, the maximum-likelihood water-fat estimation method (4.21) did produce some

errors. First, the water-fat images were noisy due to the lack of regularization in the

maximum-likelihood estimator (4.21). To reduce this noise, a joint water-fat, field

map estimation method could be used (see Chapter V). Second, the water and fat

components were not fully separated in the in-vivo knee data estimates. Given that

the simulated data had nearly complete separation, the error in the in-vivo data is

likely a result of using a single peak model for the chemical shift spectrum of fat.

A more accurate multipeak fat model should increase the fat-water separation [14],
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while requiring trivial changes to our algorithms.

Although we have focused on field map estimation problems, our proposed meth-

ods may also provide significant speed improvements in other areas. For instance,

regularized field map estimation is performed as a substep of other iterative algo-

rithms [28]. In such algorithms, any savings provided by our methods would be

magnified by the number of outer iterations. There are also problems that require

minimizing similar cost functions which currently use SQS or numerical approxima-

tions [27, 29, 30]. It may be possible to derive similar fast minimization techniques

for these.

4.1.5 Conclusions

We have presented two methods for minimizing the nonconvex cost function asso-

ciated with regularized field map estimation. Both methods are based on quadratic

surrogate functions that majorize the original cost function. The first method

uses the quadratic surrogate and sparse Cholesky factorization in a Huber’s algo-

rithm based approach. The second method modifies the nonlinear conjugate gradi-

ent method by including a monotonic step size line search algorithm based on the

quadratic surrogate. Our fastest algorithms were those that used the (sparse) Hes-

sian of the quadratic surrogate function. These converged to the same estimate as

the existing separable quadratic surrogate method at least 30 times faster in both

multiple echo time field map estimation and water-fat imaging experiments.

4.2 Edge Preserving Field Map Estimation

4.2.1 Introduction

A primary assumption within [2] is that the magnetic field inhomogeneity is

smooth over the object support. Under this assumption, it is reasonable to as-
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sume that quadratic regularization with a second-order finite differencing matrix

will adequately capture the inhomogeneity. In fact, such regularization has been

used to accurately estimate smooth field maps in both simulated and experimental

settings [2, 14, 23]. However, while the magnetic field is typically smooth over uni-

form tissue, it can have large discontinuities at tissue interfaces (e.g., the surface of

metallic implants and at the boundaries of the lungs and sinuses) [42–46]. In these

regions, using quadratic regularization with second-order finite differences can result

in errors in the field map estimate [14]. In this section, we evaluate the effects of other

regularization strategies (particularly edge preserving regularization and lower-order

finite differences) on field map estimation accuracy.

4.2.2 Field Map Estimation with Edge Preserving Regularization

We consider two different edge preserving regularization functions with low com-

putational costs and simple quadratic surrogate functions. The first is the hyperbola

function [47]

(4.23) RH(x) , δ2
[√

1 + (x/δ)2 − 1
]

,

which has the following Huber’s curvature [48]:

(4.24) cH(x) =
1

√

1 + (x/δ)2
.

The second is the Lange3 [49]

(4.25) RL(x) , δ2

[ |x|
δ

− log

(

1 +
|x|
δ

)]

,

which has the following Huber’s curvature [48]:

(4.26) cL(x) =
1

1 + |x/δ| .
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Figure 4.13: Hyperbola and Lange3 edge preserving functions for several values of δ com-
pared to the standard quadratic function.

Fig. 4.13 compares these two functions to the quadratic function, for varying values

of δ. For a given δ value, the Lange3 function is the most edge preserving out of the

three as it is the “widest” function. Furthermore, a smaller δ parameter corresponds

to greater edge preserving behavior in both edge preserving functions.

These functions replace the quadratic regularization term in (4.7). To solve this

modified problem, we develop parabolic surrogate functions for the new regulariza-

tion terms using the stated Huber’s curvatures. Combining these parabolic functions

with the quadratic surrogate function for the data-fit term, we get overall quadratic

surrogate functions for the modified cost function (4.7) that we can solve using any

of the methods in Section 4.1.

4.2.3 Simulation of Field Inhomogeneity at Tissue Interfaces

Simulations of the magnetic field inhomogeneity at tissue interfaces are needed to

evaluate the different regularization methods. There are several common geometric
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shapes for which there exist analytic formulas for the magnetic field inhomogeneity.

These include a sphere [43, 44], a double walled tube [45], a thin circular disk [44],

and an infinite cylinder [44]; all of which are in a uniform medium. For our exper-

iments, we simulated a sphere of air surrounded by water as this was the closest

representation of a sinus cavity in the head. For magnetic susceptibilities ≪ 1, the

magnetic fields inside the sphere (Bi) and in the surrounding medium (Be) are given

by

Bi ≈ B0

(

1 +
χe

3

)

(4.27)

Be ≈ B0

(

1 +
χe

3
+ r3 (χe − χi)(x

2 + y2 − 2z2)

3(x2 + y2 + z2)5/2

)

(4.28)

where B0 is the static field oriented in the z-direction, r is the radius of the sphere, χi

and χe are the magnetic susceptibilities of the sphere and the surrounding medium

respectively (in SI units), and x, y, z are the Cartesian coordinates [43]. For our

problem of air in water, χi = 0.36 × 10−6 and χe = −9.05 × 10−6 [44].6 The added

term χe/3 is the Lorentz correction which can be accounted for during MR calibration

and is therefore ignored in our experiments [44].

These equations describe the actual magnetic field strength values and not the

frequency ω that is typically estimated using field map estimation (see Section 2.2).

We use (2.24) with the gyromagnetic ratio of hydrogen to convert between the two

terms.

4.2.4 Results

We evaluated the different regularization strategies using a data set that simulates

the field map inhomogeneity resulting from an air cavity in the head (e.g., a sinus).

To do this, we combined a brain magnetization volume with a simulated field map

6A large table of magnetic susceptibilities for different materials can be found in [44].
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Figure 4.14: (a) Tranverse, (b) sagittal, and (c) coronal planes of the BrainWeb volume.

for a sphere of air in water. The simulated brain magnetization volume was the

standard 181 × 217 × 181 voxel, noiseless, 1 mm isotropic resolution, T1 weighted

data set from the BrainWeb database [50]. Fig. 4.14 shows the anatomical planes

through this volume.

To evaluate the effects of an air cavity in the brain, we simulated the field map

that would result from a sphere of air, 5 mm in radius, being placed in an infinite

medium of water using (4.28). We assumed a field strength of 1.5 T and ignored

other possible sources of field inhomogeneity. To mimic the effects of the finite

resolution of a true scan, we computed the field map values at twice the resolution

(ω), determined the resulting oversampled eiωtℓ image for each echo time difference,

and then downsampled these with a 2×2×2 box filter. The sphere of air was aligned

with the upper portion of the sphenoid sinus in the BrainWeb data set and the field

map was oriented as though the body was parallel to the main magnetic field. We

selected the transverse slice at the center of the sphere for our experiments. Fig. 4.15

presents the resulting field map and a diagram highlighting the location of the sphere

with respect to the true magnetization image.

We combined the eiωtℓ images with the brain image to create three acquisition

images with relative echo times tℓ = 0, 1, 8 ms and R∗
2 = 20 s−1. Complex Gaussian

white noise was also added to these images so that the SNR ≈ 20 dB. Fig. 4.16
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Figure 4.15: The simulated field map in Hz (left) and its location with respect to the
magnitude image as identified with the black circle (right).

presents the magnitudes and phase of the final scan images.

We performed regularized field map estimates on this data set for each of the

regularizers listed in Table 4.4. The estimation was performed using the Huber’s al-

gorithm based method outlined in Section 4.1.2 with the appropriate curvatures for

each potential function (see Section 4.2.2). Furthermore, the estimate was restricted

to a mask consisting of a dilated convex hull around the object pixels. We initialized

all of the algorithms with the same conventional estimate and ran each algorithm

until convergence. We computed the root-mean squared error (RMSE) between each

estimate and the true field map7 over the entire mask and over a region of interest

(ROI) primarily containing the simulated sphere as highlighted in Fig. 4.17. A grid

search was used to determine the parameter values for each potential function that

resulted in the estimates with the lowest RMSE and no phase wrapping (phase wrap-

ping was common with very small regularization values). The resulting estimates are

presented in Fig. 4.18 and their corresponding RMSE values are found in Table 4.4.

7The “true” low-resolution field map was created by downsampling the oversampled field map
with a 2×2×2 box filter. This approximation was necessary because the field maps recovered from
the undersampled eiωtℓ images using the conventional method contained phase wrapping, even for
the smallest echo time differences. Although the effect of directly smoothing the field map is not
the same as undersampling the eiωtℓ images, the resulting field map was nearly identical to the
conventional estimate for those pixels without phase wrapping.
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Figure 4.16: Magnitude (top) and phase (bottom) images of the three simulated acquisi-
tions (yl) with tℓ = 0, 1, 8 ms from left to right.
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Figure 4.17: Image highlighting the region of interest used to compute RMSE values.

Table 4.4: RMSE and RMSE Over the ROI in Fig. 4.17 for Varying Regularizers

Function Order of C Reg. Param δ RMSE (Hz) RMSE - ROI (Hz)

Quadratic 2 22 4.46 29.97

Quadratic 1 2−2 4.76 31.89

Hyperbola 1 2−3 26 4.60 30.64

Lange3 1 2−3 26 4.56 30.32

We also present the line profiles of each estimate through the center of the sphere in

Fig. 4.19.

4.2.5 Discussion

The estimate with the lowest RMSE came from the quadratic regularizer with

second-order finite differences as it produced more accurate estimates of the uniform

field away from the sphere. However, this method was highly inaccurate at the

edges of the sphere, something the RMSE metric does not fully capture. The first-

order finite differencing matrix estimators were able to better capture these sharp

discontinuities, but at a cost of higher noise in the uniform regions, and thus, larger

RMSEs. Among these regularizers, the edge preserving penalty functions provided

a marginal improvement (≈ 2%) in RMSE over the standard quadratic potential

function. There was no significant difference between the estimates of the two edge

preserving potential functions.
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Figure 4.18: Magnitudes of the final estimates in Hz from each of the methods in Table 4.4
(left) and their difference in Hz to the truth (right). The order from top to bottom is
quadratic with second-order differences, quadratic with first-order differences, hyperbola
with first-order differences, and Lange3 with first-order differences.
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We can evaluate the ability of each regularizer to capture the sharp edges of

the simulated field map by considering the cross sections of their corresponding

estimates. The performance of the estimators with first-order finite differences were

all similar, capturing part of the steep outer edge but missing the homogeneity in

the center of the sphere. The inability of these methods to capture the field map

within the sphere is not surprising given that there is limited signal in this region.

What is more surprising is the similarity between the quadratic and edge preserving

potential functions when using the same finite differencing matrix. Higher levels of

edge preserving regularization could be used to capture more of the edges; however,

the parameter values required to avoid phase wrapping in this data set resulted in

potential functions with weak levels of edge preserving. The quadratic regularizer

with second-order finite differences did not capture as much of the edge as those with

first-order finite differences and improperly estimated a peak in the center of the

sphere. This is again unsurprising given that second-order finite differences typically

result in smoother estimates and interpolate with higher degrees of freedom over

regions with low signal.

It is possible to preserve more of the edges in the field inhomogeneity with these

regularizers, but such estimates are typically corrupted by noise. Fig. 4.20 shows

one such estimate that was created using first-order finite differences and a quadratic

regularizer with regularization parameter 2−8. The estimate is very noisy and exhibits

significant errors in the low signal regions. This is expected as the parameter value

is small enough that the effect of the regularization term is minimal.
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4.2.6 Conclusions

In this section, we explored using both edge preserving regularization and dif-

ferent finite differencing orders in regularized field map estimation. Only slight

modifications to our algorithms from Section 4.1 were required to incorporate these

changes. Based on experiments using a simulated sphere of air in the sphenoid sinus,

we found that the biggest effect on field map estimation quality was the order of

the finite differencing matrix. In particular, for parameter values that avoided phase

wrapping errors, first-order finite differences resulted in better edge preservation than

second-order finite differences. The use of edge preserving regularization did improve

estimation quality, as measured by RMSE, but only by 2%. The parameter values

that fully captured the sharp discontinuities in the simulated field map resulted in

noisy estimates with significant phase wrapping. This is partially a result of the large

field inhomogeneity values produced by a simulated sphere of air in a 1.5 T magnetic

field. If this experiment was repeated with smaller inhomogeity values, such as those

typically seen in lower resolution in-vivo data, an acceptable compromise may be

available. Furthermore, edge preserving regularization may have a greater impact

on water-fat imaging, which often has a large number of tissue interfaces within the

field-of-view. Such experiments are presented in Chapter VI as future work.
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tions conjuguées,” ESAIM: Mathematical Modelling and Numerical Analysis
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CHAPTER V

Water-Fat Image Reconstruction

In this chapter, we present novel initialization and minimization algorithms for

the compressed sensing based water-fat image reconstruction problem. Our initial-

ization strategy is an extension of our work in Chapter IV, while our minimiza-

tion algorithm builds upon the augmented Lagrangian methods and preconditioning

methods outlined in Chapters III and IV, respectively. The resulting overall min-

imization strategy reduces the time required to compute the water and fat images

by over a factor of 12 compared to the existing Gauss-Newton based nonlinear CG

algorithm in [1].

5.1 Introduction

Simultaneously imaging both water and fat presents a challenge for MRI as the

protons in the fat molecules experience a chemical shift relative to those in water.

If disregarded, this shift can cause artifacts in the reconstructed images (see Sec-

tion 2.3). Furthermore, any main magnetic field inhomogeneity (as described in

Chapter IV) obfuscates the distinction between fat and water components. To over-

come these complications, several types of water-fat MR imaging techniques have

been proposed.
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There are four major classifications of water-fat imaging techniques (see [2, 3]

for thorough reviews). The first is fat suppression in which the fat portion of the

spectrum is excited and crushed prior to acquisition, thereby eliminating it from

the image [4]. The second is water selective excitation, where the pulse sequence is

designed to only excite the water molecules and not the fat [5,6]. The third is steady

state free precession (SSFP) techniques that have carefully designed passbands in the

phase response [2]. The fourth is chemical shift based methods (or Dixon methods)

that encode chemical shift information into the signal phase by acquiring images

at different echo times [1, 7–16]. Chemical shift based methods have increased in

popularity because, unlike the other three water-fat imaging types, they intrinsically

account for field map inhomogeneity and can provide separate water and fat images,

which is beneficial in some clinical settings (e.g., fat quantification [17]) [3].

One of the major limitations of chemical shift based methods is that they require

multiple acquisitions (ranging from 3 to over 10). This results in much longer ac-

quisition times compared to the other water-fat imaging techniques. To address this

limitation, recent work has focused on combining compressed sensing (CS) principles

(see Section 2.4.2) with the existing chemical shift based methods to obtain accurate

reconstructions from significantly less data, and subsequently, shorter acquisition

times [1, 18–20]. The disadvantage of these CS based water-fat imaging methods is

that they are computationally intensive [1, 18–20]. This chapter proposes a method

to reduce the computation time of these estimators.

5.2 Compressed Sensing Based Water-Fat Imaging

We focus on the CS-WF method presented in [1] which uses the most direct

combination of CS and water-fat imaging (other more recent CS based water-fat
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imaging methods [18–20] are extensions of this work). The system model used in [1]

is

(5.1) gl(x) = Fl

[
(ρw + ρfe

2πitl∆f ) · e2πitlφ
]
, l = 1, . . . , L

where L is the number of scans (typically three), gl is the nonlinear measurement

operator (representing the k -space samples for the lth acquisition), Fl ∈ C
K×N is

an undersampled Fourier transform for the lth acquisition, ρw ∈ C
N and ρf ∈ C

N

are the unknown water and fat images respectively, tl ∈ R is the echo time shift of

the lth acquisition, ∆f ∈ R is the (known) frequency shift between water and fat1,

φ ∈ R
N is the unknown field map in Hz, and x = [ρw,ρf ,φ] is the vector of all

unknowns.

The CS-WF method in [1] is derived by combining regularized chemical shift

based water-fat imaging methods [11, 12, 16], which assume smoothness in the field

map φ, with CS concepts, which assume the fat and water images ρ are sparse in a

known domain. The resulting estimator uses the optimization problem

(5.2) arg min
ρ,φ

‖g(x) − y‖2
2 + λρ‖Ψρ‖1 + λφ‖Φφ‖2

2

where λρ and λφ are regularization parameters, Φ ∈ R
M3×N is a finite-differencing

matrix,

(5.3) g(x) =










g1(x)

...

gL(x)










, y =










y1

...

yL










, ρ =






ρw

ρf




 , Ψ =






Ψw 0

0 Ψf






with yl denoting the measured k -space data from the lth acquisition and

Ψw ∈ C
M1×N , Ψf ∈ C

M2×N denoting sparsifying transforms.

1As in Chapter IV, extending the methods in this section to include a linear combination of
several chemical shift values is trivial.
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The difficulty with the CS-WF method is that it requires minimizing a non-

quadratic cost function (5.2) containing the nonlinear g(x) term. The approach

used in [1] is to first linearize the function around the current estimate (i.e.,

g(xn + dx) ≈ g(xn) + dg(xn)dx) to create the modified problem

(5.4) arg min
dρ,dφ

‖g(xn) + dg(xn)dx − y‖2
2 + λρ‖Ψ(ρn + dρ)‖1 + λφ‖Φ(φn + dφ)‖2

2

where dg(xn) is the Jacobian of g(x) evaluated at the current estimate

xn , [ρwn
,ρfn

,φn]. Then after solving (5.4) using a nonlinear CG (NCG) method

(with a corner rounding approximation of the ℓ1-norm as in [21, Appendix]), they

update the estimate using xn+1 = xn + tdx where t is found using backtracking line

search. This is repeated until a stop criterion is achieved.

Although the regularized nature of this method makes it robust to low SNR, it is

computationally intensive [1]. For example, a C-code implementation on a 2.4 GHz

CPU required 9 min to compute an estimate of a 240 × 192 × 54 voxel data set [1].

Other CS based water-fat imaging methods use similar reconstruction algorithms.

Wiens et al. proposed an R∗
2 corrected version of the CS-WF algorithm and used

the same NCG minimization strategy as above [20]. Sharma et al. proposed two

CS based water-fat imaging methods that differ in their field map estimation: one

fitting B-splines [18] and the other using a restricted subspace approach [19]. In

both cases, they used an alternating minimization strategy where they first updated

ρ using a corner rounding approximation and NCG method and then updated φ by

jointly minimizing a linearized cost function using a second corner rounding, NCG

method. All of these methods report MATLAB reconstruction times in the tens of

minutes. We propose a novel minimization strategy, the key difference being the

use of variable splitting and an augmented Lagrangian based method, that greatly
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reduces the estimation time. We also propose a new initialization method that

provides field map estimates with comparable regularization to the CS-WF method.

5.3 Novel Minimization Strategy

Linearizing the signal model in (5.2) is an effective strategy for handling the

nonlinear field inhomogeneity term as only a few outer iterations are required to

converge to a desirable local minimum when using a reasonably accurate initialization

[1]. However, jointly minimizing the resulting linearized cost function like in [1,18–20]

is challenging due to the presence of an ℓ1-norm as well as the sizes and structures

of the sparsifying and finite differencing matrices. In contrast, efficient methods for

solving the linearized cost function (5.4) in terms of only dρ or dφ are easier to

create. We therefore minimize (5.4) using an alternating minimization strategy in

which we sequentially solve for one of dρ or dφ while keeping the other variable

constant:

dρ(k+1) = arg min
dρ

‖g(xn) + Aρn
dρ + Aφn

dφ(k) − y‖2
2 + λρ‖Ψ(ρn + dρ)‖1(5.5)

dφ(k+1) = arg min
dφ

‖g(xn) + Aρn
dρ(k+1) + Aφn

dφ − y‖2
2 + λφ‖Φ(φn + dφ)‖2

2(5.6)

where Aρn
and Aφn

are the portions of the Jacobian matrix corresponding to ρ and

φ respectively (i.e., dg(xn) = [Aρn
Aφn

]). Specifically,

(5.7) Aρn
= FBTn where Tn =













D1 D1e
2πit1∆f

D2 D2e
2πit2∆f

...
...

DL DLe2πitL∆f
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with Dl = diag{e2πiφntl} and FB = diag{Fl}. While,

(5.8) Aφn
= FBCn where Cn =













Ĉ1

Ĉ2

...

ĈL













with Ĉl = diag{2πitlDl(ρwn
+ ρfn

e2πi∆f tl)}.

Although Aφn
and Aρn

contain block matrices with diagonal blocks, the under-

sampled Fourier transform complicates minimizing both (5.5) and (5.6). There are,

however, existing optimization methods that we can adapt to this problem. We

present two such methods, one for (5.5) and one for (5.6).

5.3.1 Water and Fat Images Update (dρ(k+1))

The non-differentiable ℓ1-norm in the cost function of (5.5) prevents the direct

application of traditional descent-based algorithms. Although corner rounding tech-

niques in which the ℓ1-norm is approximated with a hyperbola make a descent-based

approach feasible [21], they result in algorithms with slow convergence, particularly

near local minima [22]. Other methods have been proposed for solving similar cost

functions without the need for corner rounding (e.g., ISTA and its derivatives [23,24],

split-Bregman iterations [25], and augmented Lagrangian (AL) based methods [22]).

The AL approach in [22] was developed to minimize the cost function associated

with parallel MR image reconstruction which has the same structure as (5.5). That

method uses variable splitting to isolate the large matrices (i.e., FB, Tn, Ψ) and

an AL based minimization strategy to obtain faster convergence than its contempo-

raries. We therefore adopt the AL based method for this sub-problem.

Following [22], we introduce three splitting variables u0 ∈ C
N ·L, u1 ∈ C

M1·M2 ,
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and u2 ∈ C
2N to our cost function (5.5):

(5.9) arg min
dρ,u0,u1,u2

‖FBu0−z(k)
n ‖2

2 +λρ‖u1 +dn‖1 s.t. u0 = Tndρ, u1 = Ψu2,u2 = dρ

where z
(k)
n = y−g(xn)−Aφn

dφ(k) and dn = Ψρn. Minimizing this new cost function

is equivalent to solving the original problem in (5.5).

Introducing three vectors of scaled Lagrange multipliers η0 ∈ C
N ·L, η1 ∈ C

M1·M2 ,

and η2 ∈ C
2N leads to the following AL cost function:2

(5.10) ‖FBu0 − z(k)
n ‖2

2 + λρ‖u1 + dn‖1+

µ

2
‖u0 − Tndρ − η0‖2

2 +
µν1

2
‖u1 − Ψu2 − η1‖2

2 +
µν2

2
‖u2 − dρ − η2‖2

2,

where µ, ν1, ν2 > 0 are AL penalty parameters that influence the convergence rate of

the algorithm but do not affect the final estimate for convex problems [22].

We use an alternating minimization strategy outlined in [22] to approximately

minimize the AL based cost function (5.10) jointly in terms of dρ,u0,u1,u2:

u
(j+1)
0 = H−1

µ

[

FH
Bz(k)

n +
µ

2
(Tndρ(j) + η

(j)
0 )

]

,(5.11)

u
(j+1)
1 = shrink

{

Ψu
(j)
2 + η

(j)
1 + dn,

λ

µν1

}

− dn,(5.12)

u
(j+1)
2 = H−1

ν1ν2

[

ΨH(u
(j+1)
1 − η

(j)
1 ) +

ν2

ν1

(dρ(j) + η
(j)
2 )

]

,(5.13)

dρ(j+1) = H−1
ν2

[

TH
n (u

(j+1)
0 − η

(j)
0 ) + ν2(u

(j+1)
2 − η

(j)
2 )

]

(5.14)

where shrink{v, α} , sign{vi}max{|vi| − α, 0} ∀ vi ∈ v and3

Hµ = FH
BFB +

µ

2
I,(5.15)

Hν1ν2 = ΨHΨ +
ν2

ν1

I,(5.16)

Hν2 = TH
nTn + ν2I.(5.17)

2Section 2.6 outlines the relationship between this scaled formulation and the traditional AL
formulation.

3For complex valued data, sign{vi} , vi/|vi| ∀ vi 6= 0.
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AL Algorithm for Computing dρ(k+1)

Initialize variables and set j = 0.
Repeat until stop criterion is achieved:

1. u
(j+1)
0 using (5.11).

2. u
(j+1)
1 using (5.12).

3. u
(j+1)
2 using (5.13).

4. dρ(j+1) using (5.14).

5. η
(j+1)
0 = η

(j)
0 − (u

(j+1)
0 − Tndρ(j+1))

6. η
(j+1)
1 = η

(j)
1 − (u

(j+1)
1 − Ψu

(j+1)
2 )

7. η
(j+1)
2 = η

(j)
2 − (u

(j+1)
2 − dρ(j+1))

8. j = j + 1.

Figure 5.1: AL based minimization algorithm for solving (5.5) [22].

The matrix inversions in these update steps can be efficiently computed for typical

CS-WF parameters. Hµ can be inverted using fast Fourier transforms (FFTs). Hν2

is a 2×2 block matrix whose blocks are scalar multiples of the identity matrix; thus,

H−1
ν2

has a trivial, analytic solution. Since the regularizer in (5.5) is edge preserving,

shift-invariant sparsifying transforms can be used for Ψw and Ψf without the wrap-

around artifacts seen in Section 3.2.6. Thus, Hν1ν2 can be inverted using FFTs (see

Section 3.1.2). If shift-variant sparsifying transforms are used, (5.13) can be updated

using a few iterations of a CG algorithm with a circulant preconditioner and warm

starting [22]. Combining these update steps with the Lagrange multiplier updates

yields our method for updating dρ(k+1) presented in Fig. 5.1.

5.3.2 Field Map Update (dφ(k+1))

As demonstrated in Section 3.2.6, the finite differencing matrix within the

quadratic regularization term Φ must be shift-variant to avoid introducing wrap-

around artifacts into the estimates. Furthermore, the Hessian matrix of the cost

function in (5.6) is not sparse due to the undersampled Fourier transform in the
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data-fit term. Thus, non-iterative methods based on FFTs (i.e., circulant matrices)

or sparse Cholesky factorization cannot be used to minimize (5.6). These approaches

do, however, provide effective preconditioners for descent-based algorithms as demon-

strated in Chapter IV. We therefore solve (5.6) using the CG method preconditioned

with the sparse Hessian matrix of (5.6) for the case of fully sampled data:

(5.18) Pφn
= CH

nCn + λφΦ
HΦ,

which is implemented using sparse Choleksy factorization [26] like in Section 4.1.2.

Although the accuracy of this preconditioner depends on the level of undersampling,

it was highly effective for our 2-D image experiments over a wide range of sam-

pling rates. As discussed in Section 4.1.2, the sparse Cholesky factorization method

may become intractable for large data sets due to memory constraints. Section 5.5

proposes other strategies that are better suited for solving (5.6) in these situations.

5.3.3 Initialization Method

The accuracy of the CS-WF initialization is crucial for obtaining a desirable

local minimum as well as reducing the overall computation time. The initialization

strategy in [1] reconstructs each scan image independently using CS techniques [21]

and then estimates the field map from these images using a region growing method.

Although this approach avoids phase wrapping, the resulting field map initialization

may have errors as the scan images used in its creation were reconstructed from much

less data than (5.2).4 Using this field map estimate φ̂, the water and fat images are

4Changing the sampling pattern between scans ensures that the overall CS reconstruction in
(5.2) has a higher effective rate of k -space sampling than any one of the individual scans.
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estimated voxel-wise by solving the following least-squares problem:






ρ̂w(j)

ρ̂f (j)




 = arg min

ρw(j),ρf (j)

∥
∥
∥
∥
∥
∥
∥

B(j)M






ρw(j)

ρf (j)




 − s(j)

∥
∥
∥
∥
∥
∥
∥

2

2

=
[
MHM

]−1
MHB(j)Hs(j)

(5.19)

where j denotes the voxel index, B(j) = diag
{

[e2πiφ̂(j)t1 , e2πiφ̂(j)t2 , . . . , e2πiφ̂(j)tL ]
}

,

(5.20) M =













1 e2πit1∆f

1 e2πit2∆f

...
...

1 e2πitL∆f













, and s(j) =










s1(j)

...

sL(j)










with sl denoting the lth reconstructed image [1].

We follow the same initialization strategy as [1] except, instead of using a region

growing method, we estimate a smooth field map using our fast regularized field map

estimator from Chapter IV. This estimator reduces any inaccuracies resulting from

the CS reconstruction artifacts and can yield an initialization that is close to the final

field map estimated by (5.2). Furthermore, using this smooth field map estimate in

(5.19) yields more accurate water and fat initialization images than using field maps

containing reconstruction artifacts.

Ideally, the effective level of regularization used in the regularized field map es-

timator from Chapter IV matches that of the CS-WF method. However, using the

same regularization parameter values in both algorithms does not lead to the same

effective level of regularization due to differences in their cost functions. In the fol-

lowing section, we present a method to assist in selecting the parameter values for

both algorithms such that they have similar effective levels of regularization.
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CS-WF resolution analysis

We use resolution analysis (as outlined in Section 2.8) to assist in determining

equivalent regularization parameter values for the regularized field map estimator in

Chapter IV and the CS-WF method (5.2). Specifically, we analyze the local impulse

response of the estimators [27].

The regularized field map estimation cost function (4.7) is a penalized-likelihood

in which the data-fit term is minimized by the truth in the absence of noise. We

therefore use the penalized-likelihood form of the impulse response (2.44) giving

l̄
(j)
R (y; φ) ≈

(
Rj + βΦHΦ

)−1
Rjej,

=
(
I + βR−1

j ΦHΦ
)−1

ej,

≈
(

I +
β

rj

ΦHΦ

)−1

ej

(5.21)

where Rj = diag {rj} with rj =
∑L

m=1

∑L
p=1 |gjmp| (tm − tp)

2 and gjmp as defined in

Chapter IV.

To determine the resolution properties of the CS-WF field map estimate, we

assume we have reasonable estimates of the fat and water images ρ. To address the

nonlinear data-fit term, we follow [27] and first linearize the original cost function

(5.2) around the current estimate φn to get

(5.22) ‖z − Aφn
φ‖2

2 + λφ‖Φφ‖2
2,

where z = y−g([ρ,φn])+Aφn
φn. This linearized cost function has similar properties

to a penalized-likelihood and we therefore use the penalized-likelihood form of the

impulse response (2.44) which only requires the Hessian matrices of the data-fit and

regularization terms evaluated at the truth. The Hessian matrix for the data-fit term
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evaluated at the truth is

(5.23) 2AH
φn

Aφn
= 2

L∑

l=1

(2πtl)
2diag

{[
ρw + ρfe

2πitl∆f
]
· e2πitlφn

}H ·

FH
l Fldiag

{[
ρw + ρfe

2πitl∆f
]
· e2πitlφn

}
,

while the Hessian matrix for the regularization term is

(5.24) 2λφΦ
HΦ.

To simplify the analysis, we assume fully sampled Cartesian data (i.e.,

FH
l Fl = FHF = I ∀ l), and thus,

2AH
φn

Aφn
= 2CH

nCn = 2
L∑

l=1

(2πtl)
2diag

{∣
∣ρw(j) + ρf (j)e

2πitl∆f
∣
∣
2
}

,

≈ 2
L∑

l=1

(2πtl)
2diag

{
|sl(j)|2

}
,

(5.25)

where sl(j) is the jth voxel of the lth reconstructed image, which we assume to have

similar magnitude to the true combined water-fat image (a reasonable assumption

for high quality CS reconstructions). As this approximate Hessian of the data-fit

term is diagonal, the local impulse response is

l̄
(j)
C (y; φ) ≈

(
2CH

nCn + 2λφΦ
HΦ

)−1
2CH

nCnej,

=
(

I + λφ

[
CH

nCn

]−1
ΦHΦ

)−1

ej,

≈
(

I +
λφ

aj

ΦHΦ

)−1

ej

(5.26)

where aj =
∑L

l=1(2πtl)
2 |sl(j)|2.

Since both impulse responses are shift variant, we follow [28] and consider the

median values.5 Assuming the typical case where both estimators use the same

5Ignoring the 2π associated with the Rad/s to Hz conversion, the two median values are close
to one another for typical data sets.
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finite differencing matrix, we can achieve similar degrees of effective regularization

by selecting the regularization parameters β and λφ that balance

(5.27)
β

median
{

∑L
m=1

∑L
p=1 |gjmp| (tm − tp)

2
} =

λφ

median
{

∑L
l=1(2πtl)2 |sl(j)|2

} .

5.4 Results

This section compares our proposed alternating minimization based algorithm

(GN-AM) to the existing linearized, corner rounding CG method (GN-CR) [1] using

the same simulated and in-vivo water-fat imaging data sets as in Chapter IV.

We followed [1] and used shift-invariant first-order finite differencing matrices for

the sparsifying transforms Ψf ,Ψw and a second-order finite differencing matrix with

non-periodic boundary conditions for Φ in all of our experiments. For all of the

algorithms, we ran 10 outer iterations updating the estimates using xn+1 = xn + tdx

where t was computed using a backtracking line search like in [1]. For each data set,

we used two k -space sampling patterns. The first pattern provided an undersampling

factor of 2.5 per scan by randomly undersampling approximately 40% of the k -space

data using a uniform distribution, while including the center 33×33 k -space samples.

The second pattern provided an undersampling factor of 5 per scan by randomly

undersampling approximately 20% of the k -space data using a uniform distribution,

while including the same center k -space samples. In both cases, the undersampling

pattern differed between scans to increase the amount of information available for

the joint reconstruction.6

For our GN-AM algorithm, we used only one alternating minimization iteration

and two iterations of our PCG dφ(k+1) update algorithm. As in [22], we selected

6When using the typical three scans, the overall number of samples for the 2.5 and 5 times
undersampling factors is 120% and 60% of one fully sampled scan, respectively.
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the AL parameters µ, ν1, ν2 for our dρ(k+1) update algorithm using the condition

numbers of the Hessian matrices in the variable update steps of Fig. 5.1. The ac-

tual parameter values differed between data sets and are therefore presented in the

corresponding subsections. For the GN-CR method, we used the corner rounding pa-

rameter h = 10−8, an Armijo backtracking line search (c1 = 10−6, c2 = 0.2) [29], and

determined the conjugate gradient direction using the Fletcher-Reeves method [30]

with a direction reset every 100 iterations.7 To provide a fair comparison, we used

the following diagonal preconditioner for the GN-CR method to balance the weight

of the water-fat image and field map estimation variables:

(5.28) Pn ,










(2L) · I + λρ√
h
DΨ 0 0

0 (2L) · I + λρ√
h
DΨ 0

0 0 2CH
nCn + 2λφDΦ










where DΨ and DΦ are the diagonals of ΨH
wΨw and ΦHΦ respectively.8 We ran our

AL based dρ(k+1) update algorithm and the existing corner rounded CG method until

the normalized root-mean squared difference (NRMSD) between the two most recent

ρ estimates was less than 0.1%, up to a maximum of 150 and 350 iterations for the

GN-AM and GN-CR methods, respectively.9 All of the algorithms were implemented

in MATLAB (The MathWorks, Natick, MA, USA) and the experiments were run on

a PC with a 2.66 GHz, quad-core Intel Xeon CPU.

We computed the initialization images for both algorithms using our method from

Section 5.3.3. We used ISTA [23] and a level-4, orthonormal, Haar wavelet transform

7The Polak-Ribiére method [31] required significantly more resets, resulting in a slower overall
convergence rate for our experiments (results not shown).

8We used an upper bound of the approximate gradient of the linearized cost function with respect
to ρ, 2AH

ρn
Aρn

+λρΨ
HW−1

n Ψ where Wn = diag{wi} and wi =
√

[Ψ(ρn + dρ)]∗i [Ψ(ρn + dρ)]i + h
[21], as it provides an appropriate level of scaling while requiring significantly less computation.

9This stopping criteria matched closely with the empirically determined optimal number of
iterations for the first few outer iterations.
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to compute the CS reconstruction of each scan image. We then estimated the field

maps using the QS-Huber implementation from Chapter IV with a second-order finite

differencing matrix. The regularization parameter for the QS-Huber algorithm was

determined using (5.27) and the particular λφ specified for each experiment (details

of which are in the corresponding subsections). We normalized the k -space data for

each experiment by dividing by the maximum absolute value of the independent CS

reconstructions.

Although not guaranteed, we found that all of the methods converged to similar

estimates. Furthermore, due to the accuracy of our initialization method, the field

map variables converged by less than 1 Hz RMSD over the object pixels in all of our

experiments. We therefore compared the convergence rates of the algorithms using

the NRMSD between the ρ estimate at each iteration and the final ρ estimate of each

algorithm. Although the estimates were computed over the entire field-of-view, we

restricted the calculation of the NRMSD to a masked region consisting of a convex

hull surrounding those pixels containing signal.10

5.4.1 Simulated Water-Fat Imaging Data

We used the same simulated water-fat imaging data as in Chapter IV. In partic-

ular, we combined the 256 × 256 pixel water and fat images with the simulated

field map (Fig. 5.2) to create three acquisition images with relative echo times

tℓ = −0.4, 1.2, 2.8 ms, ∆f = 220 Hz, and R∗
2 = 20 s−1. We randomly undersampled

the data using the previously described sampling schemes to obtain two data sets

with 2.5 and 5 times undersampling factors. Complex Gaussian noise was added to

the k -space data so that the SNR ≈ 26 dB and 23 dB for the 2.5 and 5 times un-

10The relative NRMSD convergence rates of the algorithms were similar when calculated over
the entire field-of-view (results not shown).
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Figure 5.2: The magnitudes of the true water image (left), fat image (center), and field
map in Hz (right) used to create our simulated data set.

dersampling factors, respectively. For the GN-AM method, we determined the AL

parameters for the first iteration by setting the condition numbers of Hµ,Hν1ν2 ,Hν2

to approximately 2, 2, 1.06, respectively. For subsequent iterations, the AL parame-

ters were determined by setting the condition numbers to 5, 17, and 1.

For the 2.5 times undersampled data, we set the regularization parameters to

λρ = 2−6, λφ = 2−6 as this was found to provide the most accurate estimates com-

pared to the truth (details not shown). For the 5 times undersampled data, we

used the same approach to select λρ = 2−5, λφ = 2−6. Figs. 5.3 and 5.4 show the

magnitudes of the initialization images used by both algorithms for the cases of 2.5

and 5 times undersampling factors (masked to show detail over the object pixels).

Figs. 5.5 and 5.6 show the resulting regularized estimates for both methods and their

differences (masked to show detail). Figs. 5.7 and 5.8 are plots of the convergence of

the ρ variables in terms of NRMSDs versus time for both methods, while Table 5.1

contains the times required by each algorithm to converge to 1% NRMSD over the

mask for both 2.5 and 5 times undersampling factors.

5.4.2 In-vivo Knee Water-Fat Imaging Data

We used the same in-vivo knee water-fat imaging data as in Chapter IV. Specif-

ically, we used a data set consisting of three 256× 256 pixel acquisition images with
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Figure 5.3: The (masked) magnitudes of the 2.5 times undersampled simulated data ini-
tialization for the water image (left), fat image (center), and field map in Hz (right) used
by both algorithms.
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Figure 5.4: The (masked) magnitudes of the 5 times undersampled simulated data initial-
ization for the water image (left), fat image (center), and field map in Hz (right) used by
both algorithms.
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Figure 5.5: The (masked) magnitudes of the final estimate of our GN-AM algorithm (left),
the final estimate of the GN-CR algorithm (center), and the difference between these two
estimates (right) for the 2.5 times undersampled simulated data. The top row is the water
image, the center row is the fat image, and the bottom row is the field map estimate in Hz.
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Figure 5.6: The (masked) magnitudes of the final estimate of our GN-AM algorithm (left),
the final estimate of the GN-CR algorithm (center), and the difference between the two
estimates (right) for the 5 times undersampled simulated data. The top row is the water
image, the center row is the fat image, and the bottom row is the field map estimate in Hz.
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Figure 5.7: The NRMSDs versus time for the 2.5 times undersampled simulated water-fat
images estimate ρ = [ρw, ρf ] computed over a mask for both algorithms. The markers
designate the outer iterations for each algorithm.
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Figure 5.8: The NRMSDs versus time for the 5 times undersampled simulated water-fat
images estimate ρ = [ρw, ρf ] computed over a mask for both algorithms. The markers
designate the outer iterations for each algorithm.
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Figure 5.9: The magnitudes of the water image (left), fat image (center), and field map in
Hz (right) estimated from the fully sampled in-vivo knee data set using our initialization
method.

relative echo times tℓ = −0.4, 1.2, 2.8 ms and SNR ≈ 35 dB acquired on a 1.5 T scan-

ner using the IDEAL imaging acquisition protocol [32]. Fig. 5.9 presents the water

image, fat image, and field map estimated using our initialization strategy on the

fully sampled data set. We randomly undersampled the data using the previously

described sampling schemes to obtain data sets with 2.5 and 5 times undersampling

factors and SNR ≈ 40 dB and 37 dB, respectively. For the GN-AM method, we deter-

mined the AL parameters for the first iteration by setting the condition numbers of

Hµ,Hν1ν2 ,Hν2 to approximately 17, 5, 1.06, respectively. For subsequent iterations,

the AL parameters were determined by setting the condition numbers to 5, 17, and 1.

For the 2.5 times undersampled data, we selected the regularization parameters

λρ = 2−7.5, λφ = 2−7 as these provided high quality water and fat images. While

for the 5 times undersampled data, we selected λρ = 2−7, λφ = 2−7. Figs. 5.10 and

5.11 show the magnitudes of the initialization images used by both algorithms for

the cases of 2.5 and 5 times undersampling factors (masked to show detail over the

object pixels). Figs. 5.12 and 5.13 show the resulting regularized estimates for both

methods and their differences (masked to show detail). Figs. 5.14 and 5.15 are plots

of the convergence of the ρ variables in terms of NRMSDs versus time for both

methods, while Table 5.1 contains the times required by each algorithm to converge
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Figure 5.10: The (masked) magnitudes of the 2.5 times undersampled in-vivo knee data
initialization for the water image (left), fat image (center), and field map in Hz (right) used
by both algorithms.
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Figure 5.11: The (masked) magnitudes of the 5 times undersampled in-vivo knee data
initialization for the water image (left), fat image (center), and field map in Hz (right)
used by both algorithms.

to 1% NRMSD over the mask for both 2.5 and 5 times undersampling factors.

5.5 Discussion

Our novel minimization strategy converged at least 12 times faster than the exist-

ing NCG based method (GN-CR) for our 2.5 times undersampled data and 21 times

faster for our 5 times undersampled data. The field map estimates did not change sig-

Table 5.1: Convergence Time to NRMSD = 1% Over Mask

Data Set
Undersampling Time to NRMSD = 1%

Speed Increase
Factor GN-AM GN-CR [1]

Simulated
2.5 4.8 s 58 s 12×
5 7.3 s 160 s 21×

In-vivo Knee
2.5 11 s 270 s 24×
5 12 s 260 s 21×
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Figure 5.12: The (masked) magnitudes of the final estimate of our GN-AM algorithm (left),
the final estimate of the GN-CR algorithm (center), and the difference between the two
estimates (right) for the 2.5 times undersampled in-vivo knee data. The top row is the
water image, the center row is the fat image, and the bottom row is the field map estimate
in Hz.
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Figure 5.13: The (masked) magnitudes of the final estimate of our GN-AM algorithm (left),
the final estimate of the GN-CR algorithm (center), and the difference between the two
estimates (right) for the 5 times undersampled in-vivo knee data. The top row is the water
image, the center row is the fat image, and the bottom row is the field map estimate in Hz.
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Figure 5.14: The NRMSDs versus time for the 2.5 times undersampled in-vivo knee water-
fat images estimate ρ = [ρw, ρf ] computed over a mask for both algorithms. The markers
designate the outer iterations for each algorithm.
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Figure 5.15: The NRMSDs versus time for the 5 times undersampled in-vivo knee water-
fat images estimate ρ = [ρw, ρf ] computed over a mask for both algorithms. The markers
designate the outer iterations for each algorithm.
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nificantly due to the high accuracy of our initialization method. As such, the CS-WF

problem could be solved to a practical level of precision in a single outer iteration.

Furthermore, our accurate field map initialization meant that our proposed GN-AM

method was most efficient when using only one alternating minimization iteration

in which each update was computed to a high degree of convergence. The overall

convergence speeds of both algorithms were primarily related to the minimization of

the water-fat images ρ which the AL based method was capable of performing much

faster than the existing corner rounding NCG method. Had we used the existing

region growing initialization method [1], both algorithms would likely have required

additional outer iterations to converge. Still, our alternating minimization strategy

would solve each of these outer iterations faster.

The convergence of both algorithms slows near the local minima in all of our

experiments. This is primarily caused by the NRMSD based automated stopping

criteria used by the inner minimization algorithms. As both algorithms approach a

local minimum, the improvement obtained with each outer step decreases resulting

in many additional outer steps being required to converge further. However, at

this point only a few iterations of either algorithm are needed to minimize each of

the linearized cost functions. Our current automated stopping criteria results in

too many inner iterations being performed on these later linearized cost functions,

leading to slower than necessary convergence. A better stopping criterion would

decrease the maximum allowable inner iterations with each outer iteration; however,

this more complicated method was not implemented since a practical solution was

always found within the first few outer iterations.

As outlined in Chapter IV, memory constraints can make implementing the Hes-

sian preconditioner of our dφ(k+1) update step using sparse Cholesky factorization
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intractable for 3-D data sets. As an alternative, smaller but less accurate precondi-

tioners can be used such as an FFT implemented circulant preconditioner of the form

PC = |c|maxI+λφΦ
H
CΦC where |c|max is the maximum absolute value of CH

nCn and ΦC

is a shift-invariant approximation of Φ. Although the accuracy of this preconditioner

also depends on the sampling rate, we found that the circulant approximation pro-

vided significant acceleration over standard CG even at 20% undersampling (results

not shown). Other minimization strategies with less dependence on the sampling

rate are also possible. The AL method from our dρ(k+1) update (5.5) can be used

for this problem where the u1 update becomes trivial and the u2 update requires

the minimization of a quadratic function with the Hessian matrix Hφ = ΦHΦ + ν2

ν1
I

(which contains shift-variant terms). Although this update step appears to have

similar complexity to the original problem, the lack of an undersampled Fourier

transform means that sparse Cholesky factorization can solve this problem directly

and our previous preconditioners are more effective. Alternatively, the ADMM al-

gorithm from Chapter III, which was found to be faster than PCG methods for one

specific quadratic problem, could be adapted for our dφ(k+1) update step. However,

this would require an additional variable splitting and a more complicated parameter

selection process.

The optimal AL parameters µ, ν1, ν2 for our dρ(k+1) update change with each

outer iteration due to the update variables dρ, dφ converging to zero. In our ex-

periments, using a fixed set of parameter values led to non-monotonic convergence

in later dρ(k+1) updates. Although any negative effects from this non-monotonic

convergence can be avoided by running a sufficient number of AL iterations, faster

overall convergence is obtained by adjusting the parameter values between outer it-

erations. We empirically selected two sets of parameter values for each experiment,
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one for the first dρ update and the other for subsequent steps. However, determining

an automated parameter selection strategy remains an open problem.

The current AL parameter selection strategy outlined in [22], in which the val-

ues are determined using condition numbers, does not explicitly account for the

undersampling rate. However, we found that this approach was relatively robust

to changes in the regularization and sampling rates. To demonstrate this, we used

the same condition numbers for both undersampling factors in each experiment. Al-

though we could have further optimized our algorithm for each sampling rate, our

GN-AM method remained consistently faster than the existing GN-CR method.

The convergence rate of the existing GN-CR algorithm is highly dependent on the

parameters used in the backtracking line search. Too small of a common ratio and

the line search requires many expensive cost function evaluations; while too large

of a common ratio can result in faulty step sizes. For instance, using the recom-

mended parameter settings from [21] resulted in significantly slower convergence of

the GN-CR algorithm compared to our settings. Alternatively, a monotonic step size

line search algorithm created using optimization transfer principles as in Chapter IV

would avoid this source of complexity. Unlike in Chapter IV, such a monotonic line

search strategy would likely provide only minor overall convergence rate improve-

ments compared to the properly tuned backtracking line search algorithm used in

our experiments due to the convex nature of the linearized problem.

Although the Gauss-Newton like linearization proposed in [1] is an effective

method for handling the nonlinear nature of the field inhomogeneity term in the

cost function (particularly with our accurate initialization strategy), it is compli-

cated by having to select a step size for each update. The backtracking line search

method provided sufficient step sizes for our experiments, but this is not guaranteed
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due to the nonconvex nature of the original cost function (5.2). There would be no

need for step size selection if a surrogate function for the original cost function could

be found like in Chapter IV. The undersampled Fourier transform prevents the di-

rect application of the surrogates in Chapter IV and we must explore other functions

such as those used in [33]. However, finding an appropriate surrogate function for

CS-WF reconstruction remains an open problem.

The water and fat images reconstructed with the CS-WF method were close to

the fully sampled data but did contain a few minor artifacts. For instance, the

reconstructed images had some block-like artifacts (particularly the 5 times under-

sampled data). These were a result of using a first-order finite differencing matrix as

the sparsifying transform and they could be reduced by adding a second sparsifying

transform to the cost function (e.g., orthonormal wavelets) [21]. As with the field

estimation problem shown in Chapter IV, the fat and water components were not

fully separated in the in-vivo data. As previously discussed, the separation could be

improved by using a multipeak fat model, which would require only minor changes

to our algorithms [1]. These modifications to the original cost function (5.2) remain

to be explored.

In our experiments, we found that the estimates from 5 times undersampled data

had more error than those from 3 times undersampling. This was not surprising as

the overall number of samples was far less in the 5 times undersampled case. How-

ever, it would be interesting to investigate the trade-off between the undersampling

rate and the number of acquisitions for a fixed number of samples. For instance,

the same number of samples would be required for three scans with 3 times under-

sampling as for five scans with 5 times undersampling. Our proposed fast algorithm

for computing CS-WF reconstructions, facilitates exploring this question; however,
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such an investigation requires additional data sets with numerous scans that can be

retroactively undersampled.

5.6 Conclusions

We have presented a novel minimization strategy for the compressed sensing

based water-fat image reconstruction problem proposed by [1]. Our method uses the

same linearization technique as the existing minimization method [1] but solves the

linearized problem using an alternating minimization approach in which the water-

fat images are updated using an AL method with variable splitting and the field map

is updated using a CG algorithm with a sparse Hessian matrix preconditioner. We

also introduced a new initialization strategy, based on the regularized field map esti-

mator in Chapter IV, which provides accurate initializations and reduces the number

of outer iterations required for convergence. Our novel minimization algorithm con-

verged at least 12 times faster than the existing minimization strategy (using the

same initialization) for both simulated and in-vivo experiments. This minimization

strategy might also accelerate other CS based water-fat imaging problems that use

both linearization and joint minimization techniques [18–20].
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CHAPTER VI

Conclusions and Future Work

In this thesis, we have explored the regularized estimation of several MR param-

eters. We have addressed aspects related to the estimators themselves as well as

methods for efficiently minimizing their cost functions. There are, however, several

topics that remain to be explored.

All of the regularized estimation methods in this work require the selection of at

least one regularization parameter. We have provided several heuristic methods for

selecting this parameter but no automated processes. There are several possible ap-

proaches for this task including Stein’s unbiased risk estimate (SURE) based methods

(e.g., [1]) and homotopy methods (e.g., [2]). However, all of these approaches face

a similar problem in that those images with the lowest error, as quantified by some

metric, may not be the best for clinical diagnoses. That being said, an advantage

of our accelerated algorithms is that they can efficiently compute several estimates,

with differing regularization parameters, allowing for faster parameter selection. This

contributes to reducing the overall cost of regularized estimation.

In Chapter III, we proposed an ADMM based algorithm that minimizes the

quadratic cost function associated with regularized coil sensitivity estimation in half

the time required by a CG method with a circulant preconditioner. A key develop-
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ment in this algorithm was a novel variable splitting strategy that reformulates the

shift-variant finite differencing matrix to allow for exact, non-iterative update steps.

There are many areas of MR imaging where cost functions with similar structures

are used. For example, B+
1 map estimation can be performed by minimizing cost

functions with quadratic regularization terms over the image domain [3]. This vari-

able splitting technique can also be used to facilitate the application of AL methods

to regularized estimators with reconstruction masks. The extension to these appli-

cations remains unexplored.

In Chapter IV, we developed two minimization methods for the nonconvex cost

function associated with regularized main magnetic field map estimation. Our fastest

methods used sparse Cholesky factorization to achieve estimation times that were

at least 30 times less than the existing SQS method. There are other areas in MR

imaging where similar cost functions are encountered [4–8]. Although our algorithms

have already been adapted to some of these problems [8], they have yet to be applied

to others. One limitation of the sparse Cholesky approach is that memory constraints

render it intractable on 3-D data sets. We have proposed several alternatives to this

problem including segmenting the data into smaller components and using incomplete

sparse Cholesky factorization [9]; however, investigating these alternatives remains

an open problem.

We also explored the effects of edge preserving regularization on magnetic field

map estimation near tissue interfaces. Although our results provided valuable insight

into the importance of the order of the finite differencing matrices, we have yet to

evaluate this modification on real data. Extending this experiment to fat-water

imaging is also a compelling research topic as regularized estimation near the air-

tissue interface has been identified as a challenge in this imaging technique [10].
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In Chapter V, we presented an alternating minimization strategy that acceler-

ated the computation of the CS-WF image reconstruction problem by a factor of

12 over the existing NCG method. Our method used an AL based minimization

strategy to update the water-fat images and a CG method with a sparse Cholesky

preconditioner to update the field map estimate. We also proposed an initializa-

tion strategy based on the regularized field map estimator from Chapter IV. One

complication of our minimization method is that it requires updating the AL pa-

rameters between outer iterations. Although the current heuristic method provides

fast convergence, an automated parameter selection strategy would greatly simplify

the algorithm. Furthermore, all of the current minimization strategies (including our

proposed method) use a Gauss-Newton like linearization for which an appropriate

step size must be selected with each outer iteration. Finding a surrogate function for

the CS-WF image reconstruction cost function would mitigate the need for step size

selection and simplify all of the algorithms (see [11]). Our alternating minimization

strategy could also be applied to other CS based water-fat imaging methods [12–14].

There are several modifications of the original CS-WF cost function [10] that are

of interest. As outlined in Chapter V, the fat and water image reconstructions could

be improved by using multipeak fat models [10] and by adding additional sparsifying

transforms to the cost function [15]. Furthermore, higher quality water and fat

images may be possible by exploiting the fact that the object support in the fat image

is nearly the compliment to that of the water image [10]. Such an extension would

require modifications to both the cost function and our minimization algorithms (see

[16,17]). One modification of particular interest is the introduction of mixed–norms,

which allow for the incorporation of group sparsity [18]. It would also be interesting

to evaluate our algorithms on additional experimental data. First, we could use data
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sets with numerous scans to explore the trade-off between the undersampling rate

and the number of scans in the CS-WF algorithm. Second, it would be clinically

relevant to evaluate the algorithms on real undersampled acquisition data, rather

than the retrospectively undersampled data used in this work.
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