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ABSTRACT

Statistical Image Reconstruction and Motion Estimation for Image-Guided
Radiotherapy

by

Yong Long

Co-Chairs: Jeffrey A. Fessler and James M. Balter

Image reconstruction and motion estimation are very important for image-guided radiotherapy

(IGRT). Three-dimensional reconstruction of patient anatomy using X-ray computed tomography

(CT) allows identification of the location of a tumor prior totreatment. The locations of tumors may

change during actual treatment due to movement such as respiratory motion. Motion estimation

helps optimize the accuracy and precision of radiotherapy so that more of the normal surrounding

tissue can be spared. This dissertation addresses several important issues related to these two core

components of IGRT.

Firstly, we developed two new separable footprint (SF) projector methods for X-ray cone-

beam CT. The SF projectors approximate the voxel footprint functions as 2D separable functions.

The SF-TR projector uses trapezoid functions in the transaxial direction and rectangular functions

in the axial direction, whereas the SF-TT projector uses trapezoid functions in both directions.

Both SF projector methods are more accurate than the distance-driven (DD) projector, which is a

xiii



current state-of-the-art method in the field. The SF-TT projector is more accurate than the SF-TR

projector for rays associated with large cone angles. In addition, the SF-TR projector has similar

computation speed with the DD projector and the SF-TT projector is about two times slower.

Secondly, we proposed a statistical penalized weighted least-squares (PWLS) method with

edge-preserving regularization to reconstruct two basis materials from a single-energy CT scan

acquired with differential filtration, such as a split filteror a bow-tie filter. It requires only the use

of suitable filters between the X-ray tube and the patient. For both filtration methods, the proposed

PWLS method reconstructed soft tissue and bone images with lower RMS errors, reduced the

beam-hardening artifacts much more effectively and produced lower noise, as compared with the

traditional non-iterative Joseph and Spital method.

Thirdly, we conducted an objective characterization of theinfluence of rotational arc length on

accuracy of motion estimation for projection-to-volume targeting during rotational therapy. Simu-

lations illustrate the potential accuracy of limited-angle projection-to-volume alignment. Registra-

tion accuracy can be sensitive to angular center, tends to belower along direction of the projection

set, and tends to decrease away from the rotation center.

xiv



CHAPTER 1

Introduction

1.1 Image-Guided Radiotherapy (IGRT)

Radiotherapy is a treatment method for cancer and other disease. About 40% of cancer patients

have radiotherapy as part of their treatment [118]. Radiotherapy uses “radiation”, usually X-rays,

to destroy cancer tissue. The radiation dosage is speciallytailored for each patient, according to the

position, size and shape of the tumor, the patient’s body shape in that area and the patient’s general

health [119]. Since its first use to treat cancer, radiotherapy has continued to evolve with numerous

changes and developments to accomplish its ultimate goal ofeffective destruction of cancer tissue

while delivering a minimal dose of radiation to adjacent healthy tissues [52].

X-ray Computed Tomography (CT) scanners were introduced into clinic practice in the early

1970s [7]. This machine takes a series of 2D projection radiographs of the patient’s tumor and

internal organs at different angles while the X-ray source rotates around the patient. These radio-

graphs are put together by reconstruction methods to obtaina 3D image of the anatomy of the body

being scanned. This 3D image of spatial distribution of attenuation coefficients shows where the

tumor is, how big it is and how close major body organs are to the treatment area, which enables

physicians to plan radiotherapy beams more precisely [116].

However, the locations of tumors may change during treatment due to constant movement such

1



2

as respiratory motion [12, 138]. Some tumors in the thoracicand abdominal regions may move as

much as 3 cm peak-to-peak during radiotherapy treatment. Techniques such as Intensity Modulated

Radiotherapy (IMRT) [113] minimize the dose to surroundingnormal critical structures, using

beam shaping devices such as “multi-leaf” collimators (lead shutters) to allow shape and intensity

changes of radiation beams during treatment. Image-guidedradiotherapy (IGRT) [117] is evolving

to provide improved planar or X-ray volume imaging during treatment. The movement of the target

tumor and critical organs can be estimated by registration between a reference image taken before

treatment and these image data obtained during treatment. The local configuration information

enables doctors to target the radiation beam at tumors precisely, and consequently spare the normal

surrounding tissue.

1.2 Image Reconstruction for X-Ray Computed Tomography
(CT)

Iterative statistical methods for 3D tomographic image reconstruction [34,74,147] offer numer-

ous advantages such as the potential for improved image quality and reduced dose, as compared to

the conventional methods such as filtered back-projection (FBP) [30]. They are based on models

for measurement statistics and physics, and can easily incorporate prior information, the system

geometry and the detector response.

The main disadvantage of statistical reconstruction methods is the longer computation time

of iterative algorithms that are usually required to minimize certain cost functions. For most

iterative reconstruction methods, each iteration requires one forward projection and one back-

projection, where the forward projection is roughly a discretized evaluation of the Radon trans-

form, and the back-projector is the adjoint of the forward projector. These operations are the

primary computational bottleneck in iterative reconstruction methods, particularly in 3D image
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reconstruction. A variety of methods for 3D forward and back-projection have been proposed

[9, 14, 26, 38, 79–81, 93, 120, 167]. All of them provide some compromise between computational

complexity and accuracy. We discuss projector methods in Chapter 3.

Material attenuation coefficients depend on the energy of the incident photons. An X-ray beam

in clinical practice is usually composed of individual photons with a wide range of energies, and

each photon energy is attenuated differently by the object.This energy dependence causes arti-

facts in reconstructed images, such as beam-hardening artifacts [18]. The beam becomes “harder”

(its mean energy increases) as it passes through the object because the lower-energy photons are

absorbed more rapidly than the higher-energy photons. Thisenergy dependence also allows the

possibility of basis-material decomposition [5,48,66,104,142,144]. For radiotherapy, an accurate

image of attenuation coefficients at a higher treatment energy can be synthesized by combining

component images separated at low diagnose energies. This accurate image ensures precise does

calculation, enhances visualization and thus segmentation of anatomy for radiotherapy treatment

planing, and may lead to future improvements in reducing image artifacts from highly attenuating

materials.

Dual-energy (DE) CT methods are the most common approaches for reconstructing two basis

materials (soft-tissue and bone). However, DECT methods require either two scans or specialized

scanner design, such as such as fast kVp-switching [48, 50],dual-source CT [112] and dual-layer

detectors [39,61]. We propose an alternative method in Chapter 4, which uses measurements from

a single-energy scan acquired differential filtration, such as a X-ray split or bow-tie filter.

1.3 Motion Estimation for IGRT

Motion estimation provides movement information of the tumor and other critical organs to

improve the effectiveness and efficiency of radiotherapy treatment. In general, 3D CT volumes are
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available before treatment and can be used as reference images, while 2D projection radiographs at

a limited range of angles are acquired during treatment. There are two classes of methods for esti-

mating motion during treatment. One may reconstruct 3D target volumes using those radiographs

from limited angles, and then carry out 3D-3D image domain registration between a reference

image and target images. Such reconstructions are called tomosynthesis [41, 67, 124, 150]. One

may also use 2D-3D image registration technology to estimation motion directly from those radio-

graphs without reconstruction [77,95,106,114,115,155,158,163,164]. When the angular range of

the CT scan is too small (< 60◦), the reconstructed images are corrupted with artifacts due to poor

sampling, which affects the consequent image registration. A short angular range also affects the

performance of 2D-3D image registration due to limited deformation information presented in the

projection direction. We investigate the influence of angular range to 2D-3D image registration in

Chapter 5. This investigation may help determine the tradeoffs associated with various parameters

for position monitoring, such as projection arrangement, noise/dose, and temporal/spatial accuracy

limits [11,90,109,140].

1.4 Contributions and Outline

Image reconstruction and motion estimation are very important for IGRT. This thesis addresses

several important issues related to these two core components.

We developed two new separable footprint (SF) projector methods that approximate the voxel

footprint functions as 2D separable functions. Because of the separability of these footprint func-

tions, calculating their integrals over a detector cell is greatly simplified and can be implemented

efficiently. The SF-TR projector uses trapezoid functions in the transaxial direction and rectangu-

lar functions in the axial direction, whereas the SF-TT projector uses trapezoid functions in both

directions. Simulations and experiments showed that both SF projector methods are more accurate



5

than the distance-driven (DD) projector [26], which is a current state-of-the-art method in the field.

The SF-TT projector is more accurate than the SF-TR projector for rays associated with large cone

angles. The SF-TR projector has similar computation speed with the DD projector and the SF-TT

projector is about two times slower. To save computation andmaintain relative accuracy, one may

use the SF-TR projector for voxels that are near the X-ray source plane, where the cone angles are

small and the rectangle approximation is reasonable, and use the SF-TT projector for other voxels

associated with large cone angles.

We proposed a statistical penalized weighted least-squares (PWLS) method with edge-preserving

regularizer for two-material decomposition from a single-energy CT scan acquired with differen-

tial X-ray filters, split and bow-tie filters. Differential filtration produced incident spectra vari-

ation among projection rays. We also proposed an optimization transfer method with separable

quadratic surrogates to monotonically decrease the PWLS cost function which was non-convex

and non-linear. We first reconstructed the bone-corrected FBP images using the Joseph and Spital

method, and separated the soft and bone components by a threshold to initialize the iterative algo-

rithm. The proposed PWLS method reconstructed soft tissue and bone components with 25% and

40% lower RMS errors respectively, and reconstructed density (the sum of soft tissue and bone)

images and linear attenuation coefficient images at 511 Kev with 40% lower RMS errors than the

JS-FBP method. The PWLS images produced less beam-hardening artifacts and noise than the

JS-FBP method. The split and bow-tie filter led to similar results.

We investigated the fundamental accuracy limit of estimating local configuration of tumors

using projection-to-volume alignment between a small spread of radiographs acquired during arc

therapy and a reference CT volume. The projection-to-volume alignment procedure used a non-

rigid model to describe motion in thorax area, a cost function consisting of a least-squared error

metric and a simple regularizer that encourages local invertibility and a 4-level multi-resolution
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scheme with a conjugate gradient method to optimize the costfunction. The performed exper-

iments demonstrated the potential accuracy of limited-angle projection-to-volume registration.

Registration accuracy can be sensitive to angular center, tends to be larger along the projection

direction, and tends to decrease away from the rotation center, whereas registration accuracy tends

to be maintained at different noise levels and extents of deformation. This investigation indicates

the potential of position monitoring of high contrast tumors during treatment using a small spread

of projections without implanted markers.

This thesis is organized as follows. Chapter 2 briefly introduces the background on princi-

ples of X-ray CT, image registration and optimization transfer methods. Chapter 3 introduces our

proposed 3D forward and back-projection methods for X-ray CT using separable footprints (SF).

Chapter 4 presents the proposed PWLS method for two-material decomposition from a single scan.

Chapter 5 describes our investigation into the influence of arc length on accuracy of motion esti-

mation for projection-to-volume targeting during rotational therapy. Finally, we summarize our

work and future research directions in Chapter 6.



CHAPTER 2

Background

2.1 Principles of X-Ray CT

X-ray CT produces images of the X-ray attenuation coefficient of the object or patient being

scanned. A typical construction of a X-ray scanner involvesa source and a detector array (see

Fig. 2.1). The source and the detector array are fixed with respect to each other in space on a C-

arm or a gantry and trace a path or orbit around the patient. The source produces incoherent X-ray

radiation and detectors record the intensity of the radiation exiting the patient. As the source and

the detector array scan the patient, each source position and detector element pair corresponds to a

thin beam of radiation that passes through the patient and represents one measurement. The final

image is generated from these measurements utilizing the basic principle that the internal structure

of the body can be reconstructed from multiple X-ray projections.

2.1.1 General Measurement Model

We adopt the following general model to describe the measurement physics for X-ray CT. The

detector measures X-ray photon emerging from the object atM0 ≥ 1 different incident spectra.

Based on current technology, different incident spectra can be realized by either scanning with

different X-ray spectra, such as fast kVp-switching [48,50] and dual-source CT [112], or by dual-

7
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Gantry

X-ray source

Cone of X-ray

Detector

Patient

Figure 2.1: Schematic diagram of a X-ray scanner.

layer detectors [39, 61]. LetYim denote the measurement for the rayLim which is theith ray for

themth energy scan, wherem = 1, . . . ,M0, i = 1, . . . , Nd, andNd is the number of rays. For

notational simplicity we assume that the same number of raysare measured for each incident spec-

trum, but the physics model and methods presented in this dissertation can be easily generalized

to cases where different incident spectra have different number of recorded rays. For a rayLim of

infinitesimal width, the mean of the projection measurements could be expressed as:

Eµ[Yim] = ȳim
△
=

∫

Iim(E) exp

(

−
∫

Lim

µ(~x, E) dℓ

)

dE +rim, (2.1)

whereµ(~x, E) denotes the 3D unknownspatially- and energy-dependent attenuation distribution,
∫

Lim
· dℓ denotes the “line integral” function along lineLim, and the incident X-ray intensityIim(E)

incorporates the source spectrum and the detector gain. In reality, the measurements suffer from

background signals such as Compton scatter, dark current and noise. The ensemble mean of those

effects (for the rayLim) is denoted asrim. We treat eachIim(E) andrim as known nonnegative

quantities. In practice,Iim(E) can be determined by careful calibration [122], andrim are estimated

by some preprocessing steps prior to iterative reconstruction [25,156,157].

From (2.1), we see that the CT measurements{Yim}Nd

i=1 indirectly correspond to the projections

of an object’s attenuation coefficientµ(~x, E). The overall goal of X-ray CT image reconstruction
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is to reconstructµ(~x, E) from {Yim}Nd

i=1.

2.1.2 Cone-Beam Geometry

Any reconstruction method must account for the geometry of the imaging system, which is

“hidden” in the line integrals{
∫

Lim
· dℓ} in (2.1). This section elaborates on the geometry and

coordinate systems.

Axial cone-beam projection space is characterized by threeindependent indices (s, t, β) and

two distance parameters (Ds0, D0d), whereβ denotes the angle of the source point counter-

clockwise from they axis, (s,t) denote the detector coordinates,Ds0 denotes the source to ro-

tation center distance andD0d denotes the isocenter to detector distance. (see Fig. 2.2).The axial

cone-beam geometry is a special case of helical cone-beam geometry with zero helical pitch.

Ds0

D0d

β

Source trajectory

Source Detector

s

t

o

o x

y

z

~p0

~p1

~e

Figure 2.2: Axial cone-beam flat-detector geometry.

For simplicity of presentation, we focus on the flat-detector axial cone-beam geometry (see

Fig. 2.2) hereafter. The formulas here and the methods in Chapter 3 generalize easily to arc detec-

tors and helical geometries.

The source lies on points on a circle of radiusDs0 centered at the rotation center on thez = 0
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plane. The source position~p0 can be parameterized as follows:

~p0 =















−Ds0 sin β

Ds0 cos β

0















. (2.2)

For simplicity, we present the case of an ideal point source of X-rays.

Let (s,t) denote the local coordinates on the 2D detector plane, where thes-axis is perpendicu-

lar to thez-axis, and thet-axis is parallel to thez-axis. A point on the 2D detector can be expressed

as

~p1 =















s cosβ +D0d sin β

s sin β −D0d cosβ

t















, (2.3)

whereD0d = Dsd −Ds0 is the isocenter to detector distance. The direction vectorof a ray from~p0

to ~p1 can then be expressed as

~e =
~p1 − ~p0

‖~p1 − ~p0‖

=
1

√

D2
sd + s2 + t2















s cosβ +Dsd sin β

s sin β −Dsd cosβ

t















=















sinϕ cos θ

− cosϕ cos θ

sin θ















, (2.4)

where

γ = γ(s)
△
= arctan

(

s

Dsd

)

(2.5)

ϕ = ϕ(s, β)
△
= γ(s) + β (2.6)

θ = θ(s, t)
△
= − arctan

(

t
√

s2 +D2
sd

)

, (2.7)

andϕ andθ denote the azimuthal and polar angle of the ray from~p0 to ~p1 respectively.
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Thecone-beam projectionsof a 3D objectµ(~x), where~x = (x, y, z), are given by

p(s, t; β) =

∫

L(s,t,β)

µ(~x) dℓ, (2.8)

where the integral is along the line segment:

L(s, t, β) = {~p0 + ℓ~e : ℓ ∈ [0, Lp]}

Lp
△
=

√

D2
sd + s2 + t2. (2.9)

For a point~x = (x, y, z) between the source and detector, the azimuthal and polar angles of the

ray connecting the source and~x are

ϕ(β; x, y) = β + arctan

(

τp(β; x, y)

ds(β; x, y)

)

(2.10)

θ(β; x, y, z) = − arctan

(

z
√

(τp(β; x, y))2 + (ds(β; x, y))2

)

.

(2.11)

The projecteds coordinate of~x is

τ(β; x, y) = Dsd
τp(β; x, y)

ds(β; x, y)
, (2.12)

where

τp(β; x, y)
△
= x cos β + y sin β,

ds(β; x, y)
△
= Ds0 − τ⊥(β; x, y),

τ⊥(β; x, y)
△
= −x sin β + y cosβ. (2.13)

The projectedt coordinate is

t(β; x, y, z) = z
Dsd

ds(β; x, y)
. (2.14)
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Given the points in the support of a 3D objectµ(~x), the support of its cone-beam projection

function on the detector plane can be determined by thes andt coordinates of projections of those

points. Note that a object close to the source has a bigger support than the same object close to the

detector.

In practice, it is not feasible to evaluate the cone-beam projections (2.8) of an arbitrary object

µ(~x) on the fly. All the existing projectors make approximations about computing them based

on the features of the geometry of imaging system and the object itself, as do our proposed SF

projectors (Chapter 3).

2.1.3 Image Reconstruction Methods

The overall goal of x-ray CT image reconstruction is to reconstruct the underlying object be-

ing imaged from the projection measurements, particularlyµ(~x, E) from {Yim}Nd

i=1 in transmission

tomography. Image reconstruction methods or algorithms can be divided into two main cate-

gories: analytical methods, such as filtered back-projection (FBP) and its extension, Feldkamp

(FDK) cone-beam approach [30], and iterative methods, suchas statistical methods. Weighted

least squares (WLS) and penalized likelihood (PL) reconstruction are statistical reconstruction

methods.

Feldkamp (FDK) Cone-Beam Approach

Filtered backprojection (FBP) is the most common analytical reconstruction technique that is

based on the Radon transform. The basic idea behind this method is to “smear” measured sino-

gram values back into the object space along the corresponding rays. This operation is called the

backprojection operator that is theadjoint operator of the forward projection operation or Radon

transform.
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FDK approach [30] is the extension of FBP for axial cone-beamgeometry. The basic idea of

the FDK method is to filter the data measured along each row of the detector as if it were part

of a 2D fan-beam acquisition, and then to perform 3D backprojection. With this approximation,

the central slice is reconstructed exactly as it would be by conventional 2D fan-beam methods,

whereas the non-central slices have artifacts that increase with distance from the central slice.

Conventional analytical methods, including FBP and FDK, assumesingle monoenergetic prop-

erty of the X-ray spectrum:

Iim(E) = Ii(E) δ(E − E0), (2.15)

whereE0 denotes the single energy, andδ(·) denotes a Dirac impulse. We ignore the indexm from

now on sinceM0 = 1 for single energy measurements. Under this assumption, themean intensities

in (2.1) simplifies to

ȳi = Ii(E0) exp

(

−
∫

Li

µ(~x, E0) dℓ

)

+ ri. (2.16)

The estimated line integralsℓi
△
=
∫

Li
µ(~x, E0) dℓ can be obtained by taking the logarithm of the

measurements:

ℓ̂i
△
= log

(

Ii
yi − ri

)

≈
∫

Li

µ(~x, E0) dℓ . (2.17)

For cone-beam geometry, the goal of FDK image reconstruction is to estimateµ(~x) at energy

E0, from measured cone-beam projectionsp̂(s, t; β) (akin to ℓ̂i) that are obtained from (noisy)

samples of projection data using (2.17).

The FDK algorithm for a flat-detector axial cone-beam scanner consists of the following steps

[30].

• Step 1. Compute weighted projections

p̃(s, t; β) = w1(s, t) p̂(s, t; β), w1(s, t) =
Ds0

√

1 + (t/Dsd)2

√

D2
sd + s2 + t2

. (2.18)



14

• Step 2. Filter each row of those projections using a ramp filter h(s):

p̌(s, t; β) = p̃(s, t; β) ∗ h(s). (2.19)

The frequency response of ramp filterh(s) isH(ν) = |ν|.

• Step 3. Perform weighted cone-beam backprojection of thosefiltered projections:

µ̂(x, y, z) =
1

2

∫ 2π

0

w2(x, y, β) p̌

(

Dsd

Ds0 − yβ
xβ,

Dsd

Ds0 − yβ
z; β

)

dβ,

w2(x, y, β) =
D2

sd

(Ds0 − yβ)2
, (2.20)

where the factor Dsd

Ds0−yβ
is a magnification factor, and the rotated coordinates(xβ, yβ) is defined

asxβ
△
= x cos β + y sin β andyβ

△
= −x sin β + y cosβ.

In reality, the ideal ramp filter cannot be implemented on discrete data and must be set zero

beyond certain cutoff frequency. Also note that ramp filter amplifies noise. Therefore, an optimal

reconstruction is not possible for FDK approach from noisy projections.

Statistical Image Reconstruction

Statistical image reconstruction methods are based on measurement statistics and physics mod-

els and offer numerous advantages, such as the potential forimproved bias-variance performance

and providing quantitatively accurate CT values.

For the case of normal clinical exposures, the X-ray CT measurements are often modeled as the

sum of aPoisson distribution representing photon-counting statistics (2.1) and a zero-mean normal

distribution representing additive electronic noise:

Yim ∼ Poisson{ȳim}+ N
(

0, σ2
e

)

, (2.21)

whereσe denotes the standard deviation of electronic noise. Because (2.21) does not leads to a

tractable likelihood function, an approximate shifted Poisson likelihood function that matches the
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first and second moments is often used [131,157]:

Yim + σe ∼ Poisson
{

ȳim + σ2
e

}

. (2.22)

Absorbing the electronic noise intorim, we obtain the following measurement statistics

Yim ∼ Poisson

{
∫

Iim(E) exp

(

−
∫

Lim

µ(~x, E) dℓ

)

dE +rim

}

. (2.23)

We discretize the continuous attenuation functionµ(~x, E) and parameterize it using basis func-

tions that are separable in both the spatial and energy dimensions [5,24,48,142,144] as follows,

µ(~x, E) =

L0
∑

l=1

Np
∑

j=1

βl(E) bj(~x)xlj (2.24)

whereβl(E) is the energy-dependent mass attenuation coefficient of thelth material type (units

cm2/g), {bj(~x)} are unitless spatial basis functions, andxlj is the unknown density of thelth

material type in thejth voxel (units g/cm3). Now the reconstruction goal becomes to estimate the

object{xlj}Np

j=1 from {Yim}Nd

i=1.

For simplicity, we use themonoenergetic measurement model given in (2.16) to demonstrate

the ideas behind statistical image reconstruction. In the case of a single monoenergetic source, we

usually assume

µ(~x, E0) =

Np
∑

j=1

β(E0) bj(~x)xj (2.25)

for some spatial basis functionsbj(·), such as cubic voxels. Substituting into (2.16) yields

ȳi = Ii(E0) e− β(E0)[Ax]i + ri, (2.26)

whereA is the system matrix with entries

aij
△
=

∫

Li

bj(~x) dℓ . (2.27)
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Then (2.23) simplifies to

Yi ∼ Poisson
{

Ii(E0) e− β(E0)[Ax]i + ri

}

(2.28)

The reconstruction goal is to estimate the vector of linear attenuation coefficient valuesx =

(x1, . . . , xNp) from {Yi}Nd

i=1.

Penalized-Likelihood (PL) Reconstruction

For the mono-energetic and single material object model (2.28), the negative log-likelihood has

the form

−L(x) =

Nd
∑

i=1

{

Yi log
(

Ȳi(x)
)

−Ȳi(x)
}

=

Nd
∑

i=1

{

Yi log
(

Ii(E0) e− β(E0)[Ax]i + ri

)

−
(

Ii(E0) e−β(E0)[Ax]i + ri

)}

(2.29)

where Ȳi(x)
△
= E[Yi|x] is the mean of the measurement data along pathLi (We simplify the

subscript1i to i ). Objective functions based solely on the negative log-likelihood (2.29) per-

form poorly due to the ill-conditioned nature of tomographic reconstruction. Unregularized meth-

ods provide increasingly noisy images with iteration [132]. To remedy this problem, we add a

roughness penalty term or “prior” [36] to the negative log-likelihood, resulting in the following

penalized-likelihood (PL) cost function:

Ψ(x) = −L(x) + βR(x), (2.30)

where the (pairwise) penalty term has the following form

R(x) =

Np
∑

j=1

∑

k∈Nj

ψ(xj − xk), (2.31)

whereψ(·) is an edge-preserving potential function [42,70] andNj is some neighborhood of voxel

j.
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The effect of the penalty term is to discourage disparities between neighboring voxel values,

while the effect of the first term in (2.30) is to encourage agreement with the measured data. These

are usually conflicting goals, and the smoothing parameterβ controls the trade-off between the

two.

Penalized Weighted Least-Squares (PWLS) Reconstruction

The Poisson log-likelihood in (2.29) is based on the statistical properties of the tomographic

reconstruction problem. However, because Poisson negative log-likelihood (2.29) is non-convex

and non-quadratic, the minimization algorithms required can be complex. To simplify, one can

apply a second-order Taylor expansion to the Poisson log-likelihood in (2.29) [31, 32, 125]. This

quadratic approximation leads to weighted least squares (WLS) likelihood function:

−L(x) =

Nd
∑

i=1

wi
1

2
(− log(Yi)−[Ax]i)

2, (2.32)

wherewi values are statistical weighting factors that depend on themodel for the measurement

statistics. For the case of regular Poisson likelihood,wi ≈ (Ȳi(x)−ri)2

Ȳi(x)
. For large means,i.e., high

incident intensitiesIi(E0), the Poisson distribution is approximately Gaussian by theCentral Limit

Theorem [13]. Gaussian approximation could also lead to theWLS likelihood function (2.32).

Plugging (2.32) into (2.30) yields penalized weighted least squares (PWLS) cost function. In

practice, one often uses simplywi = Yi.

Gradient-based iterative optimization algorithms are often applied to minimize (2.30) subject

to certain object constraints such as non-negativity:

x̂ = arg min
x≥0

Ψ(x) . (2.33)

The column gradient of the cost function in (2.30) has the follow matrix form:

∇Ψ(x) = −A′ diag
{

Yi/Ȳi(x) − 1
}

∇xȲ(x) + β∇R. (2.34)
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From (2.28) and (2.34), we can see that one forward projection and one backprojection are involved

in each iteration. Therefore, fast forward and back-projectors are essential in computation time

reduction. This is the main motivation for our work on the development of fast and accurate 3D

forward and back projectors in Chapter 3.

Iterative Reconstruction of A Region of Interest (ROI)

In many cases, the region of interest (ROI) needed for diagnosis is much smaller than the field

of view (FOV) that covers the whole irradiated volume. One such application is cardiac cone-beam

CT, where the heart defines the ROI. When the ROI is known in advance,e.g., from a scout scan,

a ROI reconstruction could save resources in terms of computation time and memory use.

For exact and approximative analytical reconstruction methods based on FBP, ROI reconstruc-

tion is possible without any extra effort. However, iterative reconstruction methods use the forward

projection and the measurement to calculate an update that improves the image. This implies the

requirement that the entire FOV has to be reconstructed thatcontributed to the absorption. Ziegler

et al. [168] proposed the following solution to iterative reconstruction of a ROI.

Let p = Ax denote the forward projection of the density vectorx = (x1, . . . , xnp). The

general idea of iterative ROI reconstruction consists of five consecutive steps.

1. Iterative reconstruction of the whole FOV, yielding an initial estimatex̂ = (x̂1, . . . , x̂Np) of

x.

2. Definex̂mask = (x̂1m1, . . . , x̂NpmNp) wherem = (m1, . . . , mNp) with 0 ≤ mj ≤ 1(j =

1, . . . , Np) is a mask vector setting the densityx̂ of the object, inside the ROI to zero and

provides a smooth transition from the ROI to the remaining voxels.

3. Computepout = Ax̂mask which is the forward projection of the masked density imagex̂mask.

4. Obtain the projection of ROI,proi = p− pout.



19

5. Iterative reconstruction of the ROI only withproi. Due to the transition zone, the region of

this reconstruction needs to be extended slightly from the predetermined ROI.

The re-projection through the density image with the removed ROI has to model the geom-

etry of the initial measurement properly, because the calculation of the difference between the

re-projection and the measurement is not consistent otherwise. This can only be achieved by accu-

rate 3D projectors.

2.1.4 Beam-Hardening Correction

A X-ray beam is composed of photons with a broad energy spectrum. Beam hardening is the

phenomenon that the mean energy of a X-ray beam increases as it penetrates through an object

because the lower energy photons are absorbed more readily than the higher energy photons. If

this beam-harding effect is ignored, two types of artifactswill appear in the reconstructed images:

cupping and streaks. The cupping artifacts are caused by thefact that the X-rays passing through

the middle of an object are hardened more than the ones passing through the edges because they

are passing through more material. As the beam becomes harder, the rate at which it is attenuated

decreases. The resultant profiles through the reconstructed image of a uniform cylindrical object

display a cupped shape compared to the ideal profiles withoutbeam hardening. Streak artifacts are

typically present between two dense objects, such as two bony regions of the body. These artifacts

are caused by the fact the portion of the beam passing throughone of the dense objects at certain

X-ray source positions is hardened less than when it passes through both objects at other source

positions.

Current beam-hardening correction methods can be divided into single-energy [3, 28, 29, 57,

69, 135] and dual-energy [5, 35, 37, 48, 104, 144] correctiontechniques. Most methods are based

on classifying the object materials into two categories: soft tissue and bone. “Soft tissue” means
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Figure 2.3: Energy-dependent mass attenuation coefficientsβl(E) for bone, fat and water.

any tissue whose mass attenuation coefficient is sufficiently close to that of water. Fig. 2.3 shows

typical mass attenuation coefficients for water, fat and bone. The curves of water and fat almost

overlap. Water and bone corrections are the two most commonly used single-energy techniques.

The water correction technique assumes the object consistsof only water equivalent materials

and corrects the measurements prior to reconstruction [43,133]. This often leads to suboptimal

correction, especially for non-homogeneous objects with high density areas, like bones. Bone cor-

rection techniques usually perform water correction first and then perform additional correction for

bone [57]. Dual-energy (DE) CT imaging is considered as a more theoretically elegant approach

to eliminate beam hardening artifact [28]. Typically, thistechnique uses two sets of measurements,

one at a lower energy and the other at a higher energy, to estimate two basis material (e.g., soft-

tissue and bone) images. An attenuation coefficient image can in principle be presented at any

energy, free from beam hardening artifacts. Typical DECT methods require either two data acqui-

sitions or specialized scanner designs, such as fast kVp-switching, dual-source CT and dual-layer
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detectors. Several methods have been developed to reduce beam-hardening artifacts from recon-

structed soft tissue and bone images from one CT scan and a single tube voltage setting through

special filtration [121, 123, 146]. We summarize the water and bone correction techniques here,

and describe the DECT method in Chapter 4.

Assume two basis materials, soft tissue and bone, are present, i.e.,

µ(~x, E) = βS(E) ρS(~x) + βB(E) ρB(~x), (2.35)

whereβS(E) andβB(E) are the energy-dependent mass attenuation coefficients of soft tissue (wa-

ter) and bone, andρS(~x) andρB(~x) are the density of soft tissue and bone at spatial location~x

respectively. Water and bone correction require only one single scan,i.e., M0 = 1, and (2.1)

becomes

Eµ[Yi] = ȳi
△
=

∫

Ii(E) exp

(

−
∫

Li

µ(~x, E) dℓ

)

dE +ri. (2.36)

Combining the measurement model (2.36) and the object model(2.35), the mean of measurements

can be represented as follows

ȳi = Ii e
− fi(TS,i,TB,i) + ri, (2.37)

where

fi(TS,i, TB,i)
△
= − log

{
∫

Ii(E)

Ii
e−(βS(E) TS,i+βB(E) TB,i) dE

}

(2.38)

Ii
△
=

∫

Ii(E) dE . (2.39)

The nonlinear functionsfi(TS,i, TB,i) characterize the beam hardening caused by polychromatic

source spectra. The total intensityIi of the incident spectrum for theith ray is defined in (2.39).

The line integral functionsTS,i andTB,i are defined as

TS,i

△
=

∫

Li

ρS(~x) dℓ (2.40)

TB,i

△
=

∫

Li

ρB(~x) dℓ . (2.41)
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Given measurements̄yi, thefi(TS,i, TB,i) values are usually estimated by inverting (2.37) as fol-

lows:

f̂i
△
= − log

(

Yi − ri

Ii

)

. (2.42)

Water Correction

Most clinical CT scanners use the water correction method toeliminate the cupping artifacts in

soft tissues. This method assumes only soft tissues are present,i.e., (2.35) becomes

µ(~x, E) = βS(E) ρS(~x). (2.43)

Ignore the path-dependent subscripti hereafter and define functionfS(Te) as

fS(Te)
△
= f(Te, 0), (2.44)

whereTe is the ”effective water path length”.

Fig. 2.3 shows the mass attenuation coefficient of waterβS(E) from NIST web pages1. Given

the incident spectrum for each pathLi, i.e., assumingIi(E) is known, one can exactly evaluate

fS(Te) for various known thicknesses ofTe using (2.38). Without the knowledge of the spectrum,

one can scan water-only calibration phantoms with a known shape (usually a cylinder) and calcu-

late the line integral functionTe along different paths. ThenfS(Te) is known as a function ofTe.

With fS(Te) tabulated, one can estimatêTe using interpolation from

T̂e
△
= f−1

S

(

f̂
)

, (2.45)

assuminĝf ≈ fS(Te) for someTe. One also can approximatef−1
S

using a polynomial function. An

empirical method [133] is proposed to perform water correction, requiring neither knowledge of

1 http://physics.nist.gov/PhysRefData/XrayMassCoef/Co mTab/water.html
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the spectrum or of the attenuation coefficients, nor the exact knowledge of the calibration phantom

size and position.

One can apply the regular FDK method mentioned in Section 2.1.3 to the estimated line in-

tegralsT̂e to obtain the estimated densitŷρe(~x), and then multiplŷρe(~x) by the mass attenuation

coefficient of soft tissueβS(E0) at energyE0 to yield the attenuation imageµ(~x, E0). Compar-

ing equations (2.17) and (2.45), one can see that water-corrected reconstruction partially takes

into account the polyenergetic property of the incident spectrum by estimatinĝTe by inverting the

beam-hardening functionfS.

Bone Correction

Since the human body does not consist of only soft tissues, the reconstructed image using the

water-corrected method will be biased. Therefore, furthercorrection for high-density materials,

mainly bones, is often required. We review the well-known bone correction method proposed by

Joseph and Spital [57], which we call the JS-FBP Method in this thesis.

Mass attenuation coefficients of soft tissueβS(E) and boneβB(E) are energy-dependent. Define

λ as the ratio

λ(E) = βB(E) / βS(E) . (2.46)

If λ were completely independent of energy, then the soft tissuecorrection function (2.45) would

lead to artifact-free reconstructions, where the output would be an “effective density”

ρe(~x) = ρS(~x) + λρB(~x). (2.47)

The natural physical interpretation of this equation is that 1 g/cm3 of bone is effectivelyλ times

more dense than 1 g/cm3 of soft tissue. Simply using the water correction function (2.45) will
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generate a series of “effective water path lengths”:

T̂e = T̂S + λiT̂B. (2.48)

The main problem is thatλi is both path and energy dependent. This leads to inconsistent projec-

tion data that causes artifacts. In fact, the exact density that appears for lineLi will be a function

of both the thickness of water equivalent substanceTS and boneTB in the path.

The JS-FBP method can be described as follows:

1. Perform water-corrected reconstruction to obtain an “effective density” imagêρe(~x) from T̂e

using the method mentioned in Section 2.1.4.

2. Segment the regions ofρ̂e(~x) that exceed a given thresholdρ1 as bone regions.

This step assumes that all significant densities encountered in human body are basically

“bone like”. It is stated in [57] that even without polychromatic effects, the combined effect

of the initial water-corrected reconstruction and the finite beam width is to enlarge the bones

in such a way that many values ofρ̂e(~x) are seriously overestimated. Settingρ1 = 1.4g/cm3,

40% above soft tissue density was found to be able to provide satisfactory results.

3. Forward project the estimated bone image and divide it byλ0 to obtainT̂B, the estimate of

bone density integral.

One can inspect actualλi values in (2.48) from a few projections and select a typical value

to beλ0. λi is a rather slowly varying function ofTB, and the value ofλi obtained are rather

insensitive toλ0 [57].

4. Modify the water equivalent lengtĥTe according to

T0 = T̂e + (λ0 − λi)T̂B. (2.49)



25

λi(TS, TB) is the function that satisfiesf(TS, TB) = fS(TS + λi(TS, TB)TB, 0). One can

solve this equation numerically to obtain the values ofλi as a function ofTS andTB. It

was shown [57] that ifTB is small enough,

λi ≈ A−BTB, (2.50)

where

A =
〈βB(E)〉
〈βS(E)〉

B =
TB

2 〈βS(E)〉

〈

(

TB − TS

〈TB〉
〈TS〉

)2
〉

, (2.51)

and〈·〉 indicates averaging over the energy spectrum of the transmitted beam. It is practical

to estimate the detected spectrum by averaging the exiting spectra of various rays through

the object.

5. Apply analytical reconstruction method, such as FBP or FDK, or an iterative reconstruction

method, to the modified line integralsT0 to obtain the final corrected density image.

2.2 2D-3D Image Registration

Image registration is the process of overlaying two images of the same object taken at different

times, from different viewpoints, and/or by different imaging technologies [169]. Mathematically,

given a continuous-space reference imagef ref (~r) (where~r
△
= (x, y, z)) and a target imagef tar (~r),

the task of image registration is to find a geometric transformationT : R
3 → R

3 such thatT f ref (~r)

is similar tof tar (~r). Applications of image registration in medicine include combining images of

the same subject from different modalities (CT, PET, MRI, etc.), aligning temporal sequences of

images to compensate for motion of the subject between scans, image guidance during interven-

tions and aligning images from multiple subjects in cohort studies [44].
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However, for some applications a target image whose dimension is the same as the reference

image is not available. For example, 3D CT images are used forclinical diagnosis and treatment

planning, while 2D X-ray fluoroscopy or electronic portal images are acquired during treatment.

These 2D images are real-time, but they lack the spatial information contained in 3D CT images.

There are also some important anatomical features which arenot visualized well in these 2D im-

ages, but can be observed in 3D CT images. 2D-3D image registration is a technology to achieve

this kind of registration [76,107].

2D-3D image registration is the process of aligning a 3D reference imagef ref (~r) to a series of

target 2D projection imagesyn for n = 1, . . . , N whereN is the number of projection views. It

assumes that the reference image can be converted to simulated projection images, such as digitally

rendered radiographs (DRR) by system operatorsAϕn
: L2(R) → ℓ2 which captures the physics

and geometries of the imaging modality used to produce the target 2D images,i.e., Aϕn
f ref (~r)

corresponds toyn which is the projection image at angleϕn. A transformationT is found by

comparing these simulated projection images{Aϕn
f ref (~r)}N

n=1 with the target images{yn}N
n=1.

2D-3D image registration has been widely used for patient set up estimation in radiotherapy system

[4,63] and motion estimation for targeting treatment [77,95,106,114,115,155,158,163,164].

In general, 2D-3D image registration is posed as an optimization problem as follows

T̂ = arg min
T ∈Strans

Sim ({yn} , {Aϕn
T f ref (~r)}) +R(T ), (2.52)

whereStrans is the set of desired geometric transformations, such as nonrigid transformations,

Sim(·, ·) is an intensity-based similarity measure, andR(T ) is a penalty function that discourages

undesiredT . Except the three essential parts of image domain registration, similarity measure,

geometric transformation and penalty function, 2D-3D registration has another important compo-

nent, the system operator. We briefly review the first three ingredients in the following sections
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and discuss the system operator in Chapter 3.

2.2.1 Similarity Measures

There are two types of differences between target projection images and DRRs of the reference

image: one is associated with the changes in the imaged object and the other is due to differences in

image formation. Image registration is aimed to express thefirst type of difference geometrically.

Prior knowledge about this difference determines the choice of geometric transformation. For ex-

ample, nonrigid transformation for soft-tissue deformation and rigid transformation for movement

in bony areas. The second type of difference determines the choice of similarity measure. The sum

of squared difference (SSD) metric can meaningfully compare images from the same modality,

Sim ({yn} , {Aϕn
}) =

1

2

N
∑

n=1

‖yn −Aϕn
T f ref (~r)‖2

. (2.53)

To use this metric, the X-ray energies should be the same for imaging the reference CT volume and

the projection images, and extra efforts may be needed to correct the imaging artifacts caused by

Compton scatter, beam hardening and presence of the radiotherapy table during treatment [164].

The SSD measure is the focus of this thesis.

Correlation-based metric compares images in terms of the correlation coefficient of their inten-

sities [76, 164]. Images taken at different X-ray energy spectra are expected to have linearly re-

lated intensities. Mutual information criterion is usefulfor inter-modality registration. It assumes

that the co-occurrence of the most probable values in the twoimages is maximized at registra-

tion [62,76].

2.2.2 Nonrigid Deformation Model

Nonrigid transformation is suitable to describe changes insoft-tissue, such as the liver, heart

and lung. We use a parametrized deformation model based on cubic B-splines [151]. Denote the
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operatorT (~r; α) : R
3 → R

3 that represents a nonrigid transformation described by unknown

parametersα
△
= (αX ,αY ,αZ) ∈ R

Nα as

T (~r; α) = ~r + D(~r; α), (2.54)

where~r
△
= (x, y, z), x, y andz denote the left-right (LR), posterior-anterior (AP), superior-inferior

(SI) direction respectively,D(~r; α) = (DX(~r; α),DY (~r; α),DZ(~r; α)) is the deformation map

operator modeled by a tensor product of cubic B-splinesβ3 as

DC(~r; α) =

LC
∑

l=1

αClβ3(
x

∆X
−mXl)β3(

y

∆Y
−mY l)β3(

z

∆Z
−mZl), (2.55)

whereC ∈ {X, Y, Z}, ∆c is the knot spacing in theC direction, and(mXl, mY l, mZl), l =

1, . . . , LC are the knot coordinates.

Rather than operate on a continuous reference imagef ref (~r), we represent it as a discretized

object by a common basis function, such as cubic B-splines, as follows:

f ref (x, y, z) =

Np
∑

k=1

ukwk (x, y, z) , (2.56)

where

wk (x, y, z) = β3(x− xk)β3(y − yk)β3(z − zk), (2.57)

u = (u1, . . . , uNp) is the vector of basis coefficients computed from the sample values off ref (~r)

by recursive digital filtering [151], and integer coordinates (xk, yk, zk) denote centers of basis

functions. We denote the reference image coefficient vectorasf ref whosej-th component is

f ref

j

△
= f ref (xj , yj, zj) . (2.58)

Apply the same basis expansion model (2.56) to a target imagef tar (~r) to obtain a target image

coefficient vectorf tar.
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We next represent the transformation and deformation map operator in matrix-vector notation

[53]. DefineνX , νY , andνZ , all in R
Np , as the vectors whosej-th components arexj , yj, andzj

respectively, andν
△
= (νX ,νY ,νZ) . Define the matricesBX , BY , andBZ to have entries

[BC ]jl
△
= β3(

xj

∆X
−mXl)β3(

yj

∆Y
−mY l)β3(

zj

∆Z
−mZl), C ∈ {X, Y, Z}, (2.59)

and

B
△
=















BX

BY

BZ















. (2.60)

Define the deformation map vectorD(α) : R
3Np → R

3Np

D(α)
△
= (DX(α),DY (α),DZ(α)) = Bα = (BXαX ,BY αY ,BZαZ) . (2.61)

Assuming that the target imagef tar is deformable fromf ref, the geometric correspondence

between them is

f tar = T (α)f ref, (2.62)

whereT (α) : R
Np → R

Np denotes the operator that mapsf ref to f tar and the expression for the

j-th element is

f tar

j = [T (α)f ref]j = f src

(

[ν + Bα]j

)

=

Np
∑

k=1

ukwk

(

[ν + Bα]j

)

. (2.63)

Define the matrixW (α) to have entries

[W (α)]jk
△
= wk([ν + Bα]j). (2.64)

Thus, (2.58) and (2.63) can be re-expressed in the matrix-vector form

f ref = W (0)u

T (α)f ref = W (α)u. (2.65)
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2.2.3 Regularization of Image Registration

Since typical transformation estimation problem is ill-posed, a regularizer is usually used to

encourage desired transformations. The choice of regularizer is based on motion priors, such as

smoothness, invertibility and tissue rigidity.

Chunet al. [23] proposed a simple regularizer for B-spline nonrigid image registration. This

penalty method yields much more realistic deformation for breathing motion than unconstrained

registration methods. Moreover, it is much simpler and faster than the traditional Jacobian de-

terminant penalty and is more memory efficient. It is computationally expensive to calculate the

Jacobian determinants or its gradient due to additional B-spline interpolations of the partial deriva-

tive of a deformation. This quadratic-like regularizer enforces a sufficient condition for invert-

ibililty directly on the B-spline deformation coefficients, so it does not require additional B-spline

interpolations beyond the interpolations needed for the data fitting term. It also encourages the

smoothness of deformations inherently because it constrains the differences between adjacent de-

formation coefficients. In addition, its first and second derivatives are simple and convenient for

use in optimization algorithms.

2.3 Optimization Transfer Principle

Optimization is a very important part of problems involvingmaximizing/minimizing cost func-

tions, such as image reconstruction and image registration. Optimization transfer method2 converts

optimizing difficult cost functions to optimizing a sequence of relatively simpler surrogate func-

2This technique is also called “iterative majorization”, “majorize, minimize” and “minorize, maximize”.
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tions [27,51,71,72]. Mathematically, consider a minimization problem

arg min
x∈C

Ψ(x), (2.66)

whereC ⊂ R
Np is the valid parameter space (e.g., x � 0). At thenth iteration optimization transfer

approach replaces the cost functionΨ that is difficult to minimize with a surrogate functionφ(n)(x)

that is easier to minimize and satisfies the following conditions:

φ(n)
(

x(n)
)

= Ψ
(

x(n)
)

, x(n) ∈ C, “matchedΨ value”

φ(n)(x) ≥ Ψ(x), x ∈ C, “lies above”. (2.67)

After choosing a surrogateφ(n)(x) in the “S-step”, a minimizerx(n+1) of φ(n)(x) is found in the

“M-step”:

x(n+1) △
= arg min

x∈C
φ(n)(x) . (2.68)

Repeating the “S-step” and “M-step” iteratively, one obtains a sequence of vectors
{

x(n)
}

that

monotonically decrease the original cost functionΨ. The monotonicity is guaranteed by the sur-

rogate conditions (2.67).

In general, the surrogate functions are specially designedfor a cost function (or a kind of cost

functions) of interest. Hunteret al. [51] summarized surrogate design techniques as: (a) avoid-

ing large matrix inversions, (b) linearizing an optimization problem, (c) separating the parameters

of an optimization problem, (d) dealing with equality and inequality constraints gracefully, or (e)

turning a nondifferentiable problem into a smooth problem.The choice of surrogate functions is

essential to the success of optimization transfer method. To achieve fast convergence rate, one

wants curvatures of surrogate functions to be as small as possible while satisfying the required

conditions (2.67). To achieve easy optimization in the “M-step”, one wants simple surrogate func-

tions, such as quadratic surrogates. Since it is usually difficult to find surrogate functions that fit

all the desired conditions, the choice of surrogate functions is something of an art.
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Three-Dimensional Forward and Back-Projection Methods1

Iterative statistical methods for 3D tomographic image reconstruction [34,74,147] offer numer-

ous advantages such as the potential for improved image quality and reduced dose, as compared to

the conventional methods such as filtered back-projection (FBP) [30]. They are based on models

for measurement statistics and physics, and can easily incorporate prior information, the system

geometry and the detector response.

The main disadvantage of statistical reconstruction methods is the longer computation time of

iterative algorithms that are usually required to minimizecertain cost functions. For most iterative

reconstruction methods, each iteration requires one forward projection and one back-projection,

where the forward projection is roughly a discretized evaluation of the Radon transform, and the

back-projector is the adjoint of the forward projector. These operations are the primary computa-

tional bottleneck in iterative reconstruction methods, particularly in 3D image reconstruction. For-

ward projector methods are also useful for making digitallyrendered radiographs (DRR) [14,134].

Traditional forward and back-projectors compute the intersection lengths between each to-

mographic ray and each image basis function. Many methods for accelerating this process have

1This chapter is based on materials from [79–81,84].

32
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been proposed,e.g., [56, 99–101, 108, 130, 166]. Due to the finite size of detector cells, aver-

aging the intersection lengths over each detector cell is considered to be a more precise mod-

eling [15, 19, 26, 126, 128, 167]. Mathematically, it is akinto computing the convolution of the

footprint of each basis function and some detector blur, such as a 2D rectangular function.

Any projector method must account for the geometry of the imaging system. Cone-beam ge-

ometries are needed for axial and helical cone-beam X-ray computed tomography (CT). In 3D

parallel-beam geometry projection space, there are four independent indices(u, v, ϕ, θ). The ray

direction is specified by(ϕ, θ) whereϕ and θ denote the azimuthal and polar angle of the ray

respectively and(u, v) denote the local coordinates on a 2D area detector. In contrast, axial cone-

beam projection space is characterized by three independent indices(s, t, β) and two distance

parameters(Ds0, D0d), whereβ denotes the angle of the source point counter-clockwise from the

y axis,(s, t) denote the detector coordinates,Ds0 denotes the source to rotation center distance and

D0d denotes the isocenter to detector distance. (See Fig. 2.2).The axial cone-beam geometry is a

special case of helical cone-beam geometry with zero helical pitch.

The divergence of tomographic rays in the cone-beam geometry causes depth-dependent mag-

nification of image basis functions,i.e., voxels close to the X-ray source cast larger shadows on

the detector than voxels close to the detector. This complication does not appear in the parallel-

beam geometry. Therefore, many existing projection and back-projection methods designed for

3D parallel-beam geometry [15,45,94,126,128] are not directly suitable for cone-beam geometry.

A variety of projection methods for 3D cone-beam geometrieshave been proposed [9, 14,

26, 38, 93, 120, 167]. All methods provide some compromise between computational complexity

and accuracy. Among these, spherically symmetric basis functions (blobs) [93, 167] have many

advantages over simple cubic voxels or other basis functions for the image representation,e.g., their

appearance is independent of the viewing angle. However, evaluating integrals of their footprint
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functions is computationally intensive. Ziegleret al. [167] stored these integrals in a lookup-table.

If optimized blobs are used and high accuracy is desired, thecomputation of forward and back-

projection is still expensive due to loading a large table and the fact that blobs intersect many more

tomographic rays than voxels.

Rectification techniques [120] were introduced to accelerate the computation of cone-beam

forward and backward projections. Riddellet al. [120] resampled the original data to planes that

are aligned with two of the reconstructed volume main axes, so that the original cone-beam geom-

etry can be replaced by a simpler geometry that involves onlya succession of plane magnifications.

In iterative methods, resampled measurements can simplifyforward and back-projection each it-

eration. However, resampling involves interpolation thatmay slightly decrease spatial resolution.

Another drawback of this method is that the usual assumptionof statistical independence of the

original projection data samples no longer holds after rectification, since interpolation introduces

statistical correlations.

The distance-driven (DD) projector [26] is a current state-of-the-art method. It maps the hor-

izontal and vertical boundaries of the image voxels and detector cells onto a common plane such

asxz or yz plane, approximating their shapes by rectangles. (This step is akin to rectification). It

calculates the lengths of overlap along thex (or y) direction and along thez direction, and then

multiplies them to get the area of overlap. The DD projector has the largest errors for azimuthal

angles of the X-ray source that are around odd multiples ofπ/4, because the transaxial footprint is

approximately triangular rather than rectangular at thoseangles.

This paper describes two new approaches for 3D forward and back-projection that we call the

separable footprint (SF) projectors: the SF-TR [79] and SF-TT [80] projector. They approximate

the voxel footprint functions as 2D separable functions. This approximation is reasonable for typi-

cal axial or helical cone-beam CT geometries. The separability of these footprint functions greatly
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simplifies the calculation of their integrals over a detector cell and allows efficient implementation

of the SF projectors. The SF-TR projector uses trapezoid functions in the transaxial direction and

rectangular functions in the axial direction, whereas the SF-TT projector uses trapezoid functions

in both directions. It is accurate to use rectangle approximation in the axial direction for cone-

beam geometries with small cone angles (< 2◦) such as the multi-slice detector geometries, and

to use trapezoid approximation for CT systems with larger cone angles (> 10◦) such as flat-panel

detector geometries.

Our studies showed that both SF projector methods are more accurate than the distance-driven

(DD) projector. In particular, the SF methods reduce the errors around odd multiples ofπ/4 seen

with DD. The SF-TT projector is more accurate than the SF-TR projector for voxels associated

with large cone angles. The SF-TR projector has similar computation speed with the DD projector

and the SF-TT projector is about2 times slower.

To balance computation and accuracy, one may combine the SF-TR and SF-TT projector, that

is, to use the SF-TR projector for voxels associated with small cone angles such as voxels near

the plane of the X-ray source where the rectangle approximation is adequate, and use the SF-TT

projector for voxels associated with larger cone angles.

The organization of this paper is as follows. Section 3.1 describes the cone-beam 3D system

model. and presents the analytical formula of cone-beam projections of voxel basis functions. Sec-

tion 3.2 introduces the SF projectors and contrasts the SF projectors with DD projector. Section 3.3

gives simulation results, including accuracy and speed comparison between the SF-TR, SF-TT and

DD projector as stand-alone modules and within iterative reconstruction. Finally, conclusions are

presented in Section 3.4.
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3.1 Cone-Beam Projection

3.1.1 Cone-Beam System Model

In the practice of iterative image reconstruction, rather than operating on a continuous object

f(~x), we forward project a discretized object represented by a common basis functionβ0(~x) su-

perimposed on aN1 ×N2 ×N3 Cartesian grid as follows:

f(~x) =
∑

~n

f [~n] β0

(

(~x− ~c[~n]) ⊘ ~∆
)

, (3.1)

where the sum is over theN1 × N2 × N3 lattice that is estimated and~c[~n] = (c1[~n], c2[~n], c3[~n])

denotes the center of the~nth basis function and~n = (n1, n2, n3) ∈ Z
3. The grid spacing is

~∆ = (∆1,∆2,∆3), and⊘ denotes element-wise division. We consider the case∆1 = ±∆2

hereafter, but we allow∆1 6= ∆3, because voxels are often not cubic.

Most projection/back-projection methods use a linear model that ignores the ”exponential edge

gradient effect” caused by the nonlinearity of Beer’s law [40, 58]. We adopt the same type of

approximation here. Assume that the detector blurh(s, t) is shift invariant, independent ofβ, and

acts only along thes andt coordinates. Then the ideal noiseless projections satisfy

ȳβ[sk, tl] =

∫∫

h(sk − s, tl − t)p(s, t; β)dsdt, (3.2)

wherep(s, t; β) is the 3D projection off(~x) given by (2.8), and(sk, tl) denotes the center of

detector cell specified by indices(k, l). The methods we present are applicable to arbitrary samples

(sk, tl), but for simplicity of presentation and implementation we focus on the case of uniformly
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spaced samples:

sk = (k − ws)∆S, k = 0, . . . , Ns − 1,

tl = (l − wt)∆T, l = 0, . . . , Nt − 1,

ws = (Ns − 1)/2 + cs,

wt = (Nt − 1)/2 + ct, (3.3)

where∆S and∆T denote the sample spacing ins andt respectively. The user-selectable parameters

cs andct denote offsets for the detector,e.g., cs = 1/4 corresponds to a quarter detector offset

[73,102].

Substituting the basis expansion model (3.1) for the objectinto (3.2) and using (2.8) leads to

the linear model

ȳβ[sk, tl] =
∑

~n

aβ[sk, tl;~n]f [~n], (3.4)

where the elements of system matrixA are samples of the following cone-beam projection of a

single basis function centered at~c[~n]:

aβ[sk, tl;~n] = F (sk, tl; β;~n), (3.5)

where the “blurred footprint” function is

F (sk, tl; β;~n)
△
=

∫∫

h(sk − s, tl − t)q(s, t; β;~n)dsdt, (3.6)

andq(s, t; β;~n) denotes the cone-beam footprint of basis functionβ0

(

(~x− ~c[~n]) ⊘ ~∆
)

, i.e.,

q(s, t; β;~n) =

∫

L(s,t,β)

β0

(

(~x− ~c[~n]) ⊘ ~∆
)

dℓ . (3.7)

Computing the footprint of the voxel is also known as “splatting” [153].

The goal of forward projectors is to compute (3.4) rapidly but accurately. Although the system

matrixA is sparse, it is impractical to precompute and store even thenonzero system matrix values
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for the problem sizes of interest in cone-beam CT, so practical methods (including our proposed

approach) essentially compute those values on the fly.

We focus on a simple separable model for the detector blur

h(s, t) =
1

rsrt
rect

(

s

rs

)

rect

(

t

rt

)

, (3.8)

wherers andrt denote the width alongs and t respectively. This model accounts for the finite

size of the detector elements. Note thatrs andrt can differ from the sample spacingsk − sk−1 and

tl − tl−1 to account for detector gaps.

3.1.2 Footprints of Voxel Basis Functions

We focus on cubic voxel basis functions hereafter, but one could derive analytical formulas for

footprints of other basis functions. The cubic voxel basis function is given by,

β0(~x) = rect(x) rect(y) rect(z)

= 1{|x|≤1/2} 1{|y|≤1/2} 1{|z|≤1/2}, (3.9)

where 1{·} denotes the indicator function.

Substituting (3.9) into (3.7), the analytical formula for the cone-beam projection footprint of

the~nth basis function is:

q(s, t; β;~n) =

∫ Lp

0

β0

(

(~p0 + ℓ~e− ~c[~n]) ⊘ ~∆
)

dℓ

=

∫ Lp

0

1{|d1+ℓe1|≤∆1/2} 1{|d2+ℓe2|≤∆2/2}

1{|d3+ℓe3|≤∆3/2} dℓ

= a1 · a2 · a3 · [ℓmax − ℓmin]+ , (3.10)



39

where~e = (e1, e2, e3) was defined in (2.4),[x]+
△
= max(x, 0) and

~d
△
= ~p0 − ~c[~n] = (d1, d2, d3),

a1 =











1{|d1|≤∆1/2}, sinϕ = 0

1, sinϕ 6= 0,

a2 =











1{|d2|≤∆2/2}, cosϕ = 0

1, cosϕ 6= 0,

a3 =











1{|d3|≤∆3/2}, sinθ = 0

1, sinθ 6= 0,

ℓmax = min
{

Lp, ℓ
1
+, ℓ

2
+, ℓ

3
+

}

,

ℓmin = max
{

0, ℓ1−, ℓ
2
−, ℓ

3
−

}

,

ℓi+ =











max
{

~∆i/2−di

ei
, −

~∆i/2−di

ei

}

, ei 6= 0

∞, ei = 0,

ℓi− =











min
{

~∆i/2−di

ei
, −

~∆i/2−di

ei

}

, ei 6= 0

−∞, ei = 0.

(3.11)

For typical cone-beam geometries, polar anglesθ of rays are much smaller than90◦, so there is

no need to consider the case ofcosθ = 0. Combining (3.5), (3.6) and (3.10) yields the “ideal”

projector for cubic voxels in cone-beam CT.

3.2 Separable Footprint (SF) Projector

It would be expensive to exactly compute the true footprint (3.10) and the “blurred footprint”

(3.6) for the voxel basis function on the fly, so appropriate approximations of the “blurred footprint”

(3.6) are needed to simplify the double integral calculation.
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Figure 3.1: Exact footprint functionsq(s, t; β;~n) and their profiles for 1mm3 voxels centered at the
origin (left), (100, 150, 15) mm (center) and(93, 93, 93) mm (right).
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To explore alternatives, we simulated a flat-detector cone-beam geometry withDs0 = 541 mm

andDsd = 949 mm. We computed cone-beam projections of voxels analytically using (3.10) at

sample locations(n∆S, m∆T) where∆S = ∆T = 0.001 mm andn,m ∈ Z. The left column of

Fig. 3.1 shows the exact footprint function and its profiles for a voxel with∆1 = ∆2 = ∆3 = 1 mm

centered at the origin whenβ = 30◦. The center column of Fig. 3.1 shows those of a voxel centered

at(100, 150, 15) mm whenβ = 0◦. The azimuthal and polar angle of the ray connecting the source

and this voxel center are14.3◦ and2.1◦ respectively. The cone angle of a typical64-slice cone-

beam CT geometry is about2◦. The right column of Fig. 3.1 shows those of a voxel centered at

(93, 93, 93) mm whenβ = 0◦. The azimuthal and polar angle of the ray connecting the source

and this voxel center are11.7◦ and11.5◦ respectively. The cone angle of a typical cone-beam CT

geometry with40 × 40 cm2 flat-panel detector is about12◦. The first two true footprints look like

2D separable functions. The third footprint is approximately separable except for small areas at

the upper left and lower right corner.

Inspired by shapes of the true footprints (see Fig. 3.1), we approximate them as follows,

q(s, t; β;~n) ≈ qap(s, t; β;~n)
△
= l(s, t; β;~n)qsf(s, t; β;~n), (3.12)

whereqsf(s, t; β;~n) denotes a 2D separable function with unit maximum amplitude,

qsf(s, t; β;~n)
△
= q1(s; β;~n)q2(t; β;~n), (3.13)

whereq1(s; β;~n) andq2(t; β;~n) denote the approximating functions ins and t respectively. In

(3.12),l(s, t; β;~n) denotes the “amplitude” ofqsf(s, t; β;~n).

For small basis functions and narrow blursh(s, t), the angles of rays within each detector cell

that intersect each basis function are very similar, sol(s, t; β;~n) is much smoother thanh(s, t) and
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q(s, t; β;~n). Substituting (3.12) into (3.6) leads to

F (s, t; β;~n) ≈ Fsf(s, t; β;~n)

△
= h(s, t) ∗∗ [l(s, t; β;~n)qsf(s, t; β;~n)]

≈ l(s, t; β;~n) [h(s, t) ∗∗ qsf(s, t; β;~n)] (3.14)

where the inequality uses the fact thatl(s, t; β;~n) is approximately a constant over each detector

cell. The valuel(sk, tl; β;~n) denotes this constant for detector cell(sk, tl), and∗∗ denotes 2D

convolution

If the detector blur is also modeled as separable,i.e.,

h(s, t) = h1(s)h2(t), (3.15)

then the blurred footprint functions (3.14) have the following separable approximation:

Fsf(sk, tl; β;~n) = l(sk, tl; β;~n)F1(sk; β;~n)F2(tl; β;~n), (3.16)

where

F1(sk; β;~n)
△
=

∫

h1(sk − s)q1(s; β;~n)ds

F2(tl; β;~n)
△
=

∫

h2(tl − t)q2(t; β;~n)dt. (3.17)

3.2.1 Amplitude Approximation Methods

One natural choice for the amplitude functionl(·) is the following voxel-dependent factor that

we call the A3 method:

l(sk, tl; β;~n) = l3(β;~n)
△
= lϕ0 · lθ0 (3.18)
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where

lϕ0

△
=

∆1

max{| cos(ϕ0) |, | sin(ϕ0) |}
(3.19)

lθ0

△
=

1

| cos(θ0) |
, (3.20)

whereϕ0 = ϕ0(β, ~n) andθ0 = θ0(β, ~n) denote the azimuthal and polar angles of the ray con-

necting the source and center of the~nth voxel. They can be computed by (2.10) and (2.11).

Since this voxel-dependent amplitude depends on angles(θ0, ϕ0) andβ, the approximated foot-

print qap(s, t; β;~n) is separable with respect tos and t too. However, the dependence on voxel

centers~c[~n] requires expensive computation. One must computeN1 ×N2 ×N3 ×Nβ differentlθ0

values andN1×N2×Nβ differentlϕ0 values, whereNβ denotes the number of projection views. In

addition, computinglθ0 andlϕ0 for each voxel at each projection view involves either trigonometric

operations (cos, sin andtan−1 ) or square and square root operations to directly evaluatecos and

sin.

To accelerate computation of the SF projector, we propose a voxel-ray-dependent amplitude

named the A2 method:

l2(sk, tl; β;~n)
△
= lϕ0 · lθ(sk,tl) (3.21)

lθ(sk,tl)
△
=

1

| cos(θ(sk, tl))|
, (3.22)

whereθ(sk, tl) given in (2.7) is the polar angle of the ray connecting the source and detector center

(sk, tl). There are many fewer tomographic rays (Ns×Nt) than voxels in a 3D image (N1×N2×N3)

andθ(sk, tl) does not depend onβ for flat detector geometries (see (2.7)), so using (3.21) saves

substantial computation versus (3.18).
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We also investigated a ray-dependent amplitude named the A1method:

l1(sk, tl; β)
△
= lϕ(sk;β) · lθ(sk ,tl) (3.23)

lϕ(sk;β)
△
=

∆1

max{| cos(ϕ(sk; β))|, | sin(ϕ(sk; β))|} ,

(3.24)

whereϕ(sk; β) given in (2.6) is the azimuthal angle of the ray connecting the source and detector

cell center(sk, tl). For eachβ, there areNs different lϕ(sk;β) for the A1 method andN1 × N2

differentlϕ0 for the A2 method.

These amplitude methods are similar to Joseph’s method [56]where the triangular footprint

function is scaled by1/max(| cosϕ|, | sinϕ|) for 2D fan-beam geometry. All three methods have

similar accuracies, but the A3 method is much slower than theother two (see Section 3.3.1). Thus

we do not recommend using the A3 amplitude in the SF projectormethod. Hereafter, we refer to

(3.16) with either (3.21) or (3.23) as “the SF method”.

3.2.2 SF Projector with Trapezoid/Rectangle Function (SF-TR)

Inspired by the shapes of the true footprints associated with small cone angles (see the first two

columns of Fig. 3.1), we approximate them as 2D separable functions with trapezoid functions

in the transaxial direction and rectangular functions in the axial direction. This approximation is

reasonable for typical multi-slice cone-beam geometries,where the azimuthal anglesϕ of rays

cover the entire360◦ range since the X-ray source rotates around thez axis, whereas the polar

anglesθ of rays are small (less than2◦) since the cone angle is small.
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The approximating function in thes direction is

q1(s; β;~n)
△
= trap(s; τ0, τ1, τ2, τ3)

=







































s−τ0
τ1−τ0

, τ0 < s < τ1

1, τ1 ≤ s ≤ τ2

τ3−s
τ3−τ2

, τ2 < s < τ3

0, otherwise

, (3.25)

whereτ0, τ1, τ2 andτ3 denote vertices of the trapezoid function that we choose to match the ex-

act locations of those of the true footprint function in thes direction. They are the projecteds

coodinates of four corner points located at(c1[~n] ± ∆1/2, c2[~n] ± ∆2/2) for all z.

The approximating function in thet direction is

q2(t; β;~n)
△
= rect

(

t− t0
wt0

)

, (3.26)

where

t0
△
=

t+ + t−
2

,

wt0
△
= t+ − t−, (3.27)

wheret+ and t− denote the boundaries of the rectangular function which we choose to be the

projectedt coordinates of the two endpoints of the axial midline of the voxel. Those endpoints are

located at~c[~n] ± (0, 0,∆3/2). Givenβ and a point~x = (x, y, z), the projecteds andt coordinate

of this point can be computed by (2.12) and (2.14). Since the boundaries of the separable function

are determined by the projections of boundaries of the voxelbasis function under the cone-beam

geometry, the depth-dependent magnification is accuratelymodeled.

The blurred footprint functions (3.17) of this SF-TR projector are

F1(sk; β;~n) =
1

rs
γ
(

sk −
rs
2
, sk +

rs
2

)

, (3.28)
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and

F2(tl; β;~n) =
1

rt

[

min(tl +
rt
2
, t+) − max(tl −

rt
2
, t−)

]

+
, (3.29)

where

γ(s1, s2)
△
=

∫ s2

s1

trap(s; τ0, τ1, τ2, τ3) ds

= γ1(max(s1, τ0), min(s2, τ1))

+γ2(max(s1, τ1), min(s2, τ2))

+γ3(max(s1, τ2), min(s2, τ3)),

γ1(b1, b2)
△
=

1

2(τ1 − τ0)
[(b2 − τ0)

2 − (b1 − τ0)
2] 1{b2>b1},

γ2(b1, b2)
△
= (b2 − b1) 1{b2>b1},

γ3(b1, b2)
△
=

1

2(τ3 − τ2)
[(b1 − τ3)

2 − (b2 − τ3)
2] 1{b2>b1}. (3.30)

3.2.3 SF Projector with Trapezoid/Trapezoid Function (SF-TT)

Inspired by the shape of true footprint of a voxel associatedwith large cone angles (see the last

column of Fig. 3.1), we approximate it as a 2D separable function with trapezoid functions inboth

the transaxial and axial direction. This trapezoid approximation in axial direction is reasonable for

cone-beam geometries with large cone anlges (> 10◦) such as flat-panel detector geometries.

Along s, the SF-TT projector uses the same trapezoid approximationas the SF-TR projector.

The trapezoid footprint and the blurred footprint are givenin (3.25) and (3.28).

The approximated footprint function int is

q2(t; β;~n)
△
= trap(t; ξ0, ξ1, ξ2, ξ3) , (3.31)

whereξ0, ξ1, ξ2 andξ3 denote vertices of the trapezoid function.ξ0 andξ1 are the smallest and

largest one of the projectedt coordinates of the lower four corners of the~nth voxel located at
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(c1[~n] ± ∆1/2, c2[~n] ± ∆2/2, c3[~n] − ∆3/2), andξ2 andξ3 are the smallest and largest one of the

projectedt coordinates of the upper four corners located at(c1[~n] ± ∆1/2, c2[~n] ± ∆2/2, c3[~n] +

∆3/2). The blurred footprint function int is

F2(tl; β;~n) =
1

rt
γ
(

tl −
rt
2
, tl +

rt
2

)

, (3.32)

whereγ is given in (3.30).

By choosing the vertices of the approximating footprints tomatch the projections of the voxel

boundaries, the approximation adapts to the relative positions of the source, voxels and detector,

as true footprints do. Take a voxel centered at the origin as an example. Its axial footprint is

approximately a rectangular function (see the left figure inthe third row of Fig. 3.1), instead of a

trapezoid function. For this voxeltrap(t; ξ0, ξ1, ξ2, ξ3) is almost a rectangle becauseξ0 ≈ ξ1 and

ξ2 ≈ ξ3 becauseξ0, ξ1, ξ2 andξ3 are the projectedt coordinates of four axial boundaries of this

voxel.

3.2.4 Implementation of SF projector

We use the system matrix model (3.5) with the separable footprint approach (3.16) for both

forward and back projection, which ensures that the SF forward and back projector are exact adjoint

operators of each other.

Table 3.1 summaries the SF-TR projector with the A1 amplitude method (SF-TR-A1) and

with the A2 method (SF-TR-A2) for a given projection view angle β. Implementating the SF-TT

projector with these two amplitude methods is similar. Implementation of the back-projector is

similar, except for scaling the projections at the beginning instead of the end. The key to effi-

cient implementation of this method is to make the inner loopoverz (or equivalently overtl) [59],

because the values ofF1(sk; β;~n) are independent ofz and tl so they are precomputed prior to
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For each rown1 = 0, 1, . . . , N1 − 1 of f [~n]:
1. For each columnn2 = 0, 1, . . . , N2 − 1:

(a) Compute trapezoid verticesτ0, τ1, τ2, τ3 in (3.25) using (2.12).

(b) Determine indices (sk values) of detector cells intersecting withq1(s; β;~n) in s using
support[τ0, τ3] and coordinates of detector cell centers and spacing given in (3.3).

(c) Compute transaxial footprintF1(sk; β;~n) using (3.28) for all thesesk values and store
them.

(d) Computelϕ0 using (3.19) (SF-TR-A2 only)

(e) Compute first values oft± in (3.27).

(f) For each slicen3 = 0, 1, . . . , N3 − 1:

i. Determine indices (tl values) of detector cells intersecting withq2(t; β;~n) in t
using support[t−, t+] and coordinates of detector cell centers and spacing given
in (3.3).

ii. For eachtl value:

A. ComputeF2(tl; β;~n) using (3.29).

B. For eachsk value:

• Compute projectionp(sk, tl; β;~n) where
p = f [~n]F1(sk; β;~n)F2(tl; β;~n) for SF-TR-A1,
p = f [~n]lϕ0F1(sk; β;~n)F2(tl; β;~n) for SF-TR-A2.

• Updatet± incrementally .

Scale all the projections byl1(sk, tl; β) using (3.23) for SF-TR-A1 or bylθ(sk ,tl) using (3.22) for
SF-TR-A2.

Table 3.1: Pseudo-code for the SF-TR forward projector withthe A1 amplitude method (SF-TR-
A1) and the A2 method (SF-TR-A2).
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that loop. Because (2.14) is linear inz, the first value oft± for a given(x, y) position can be

computed prior to the inner loop overz, and subsequent values can be computed by simple incre-

mental updates,cf. [22]. Thus only simple arithmetic operations and conditionals are needed for

evaluatingF2(tl; β;~n) in that inner loop; all trigonometric computations occur outside that loop.

Note that this separable footprint approach does not appearto be particularly advantageous for

2D fan-beam forward and backprojection because computing the transaxial footprintF1(sk; β;~n)

requires trigonometric operations. The compute efficiencyhere comes from the simple rectangular

footprint approximation in the axial direction. More computation is needed for the SF-TT method

because it uses trapezoids in the axial direction instead rectangles.

The implementation of amplitudel(sk, tl; β;~n) in (3.16) for the A1 and A2 methods are differ-

ent. For the A1 method, for eachβ the amplitudel1(sk, tl; β) is implemented by scaling projections

outside the loop over voxels since it depends on detector cells only. For the A2 method, we imple-

mented the two terms (lϕ0 andlθ(sk,tl)) of l2(sk, tl; β;~n) separately. We scaled the projections by

lθ(sk,tl) outside of the loop over voxels and computedlϕ0 outside the inner loop overz since it does

not depend onz.

The SF methods requireO(N4) operations for forward/back projection of aN3 volume to/from

N3 samples of the cone-beam projections. There existO(N3 logN) methods for back-projection

[8, 16, 17]. However, those algorithms may not capture the distance-dependent effect of detector

blur incorporated in the model (3.5). In 2D one can use the Fourier Slice Theorem to develop

O(N2 logN) methods [165], but it is unclear how to generalize those to 3Daxial and helical CT

efficiently.
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3.2.5 SF Compared with Distance-Driven (DD) Projector

To compare the SF projector with the DD projector, we formulate the DD method in the context

of cone-beam system model. The original publication [26] gives only a procedural description

rather than an explicit model. The DD method maps the horizontal and vertical boundaries of the

image voxels and detector cells to a common plane, such asxz- or yz-plane, which we call the

hv plane. It evaluates the system matrix elements (3.5) and the3D X-ray transform of voxel basis

functions (3.7) by approximations on thehv plane instead of the detector plane,i.e., thest plane.

The DD projector approximates the footprint function (3.7)as follows,

q(s, t; β;~n) ≈ qdd(h, v; β;~n) = ∆1 rect

(

h− τh0

wh

)

rect

(

v − τv0

wv

)

, (3.33)

where

τh0 =
τh1 + τh2

2
, wh = τh2 − τh1, τh2 ≥ τh1,

τv0 =
τv1 + τv2

2
, wv = τv2 − τv1, τv2 ≥ τv1,

whereτh1 andτh2 denote the projectedh coordinates of transaxial boundaries of a voxel centered

at~c[~n], andτv1 andτv2 denote the projectedv coordinates of axial boundaries of this voxel.

Similar to the shift invariant blur function (3.8) acting alongs andt axes, the DD method uses

a shift variant blur function along theh andv axes that depends onβ, sk andtl, i.e.,

hdd(h, v; sk, tl; β) = ldd(sk, tl; β)
1

rhrv
rect

(

h− dh0

rh

)

rect

(

v − dv0

rv

)

, (3.34)

where

ldd(sk, tl; β) =











1
| cos(θ(sk,tl))|·| cos(ϕ(sk;β))|

, | cosβ| ≥ | sinβ|
1

| cos(θ(sk,tl))|·| sin(ϕ(sk;β))| , | cosβ| < | sin β|

dh0 =
dh1 + dh2

2
, rh = dh2 − dh1, dh2 ≥ dh1,

dv0 =
dv1 + dv2

2
, rv = dv2 − dv1, dv2 ≥ dv1,
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wheredh1 anddh2 denote the projectedh coordinates of boundaries of detector cell(sk, tl) in the

s direction, anddv1 anddv2 denote the projectedv coordinates of boundaries of this detector cell

in thet direction.

Then the DD method approximates the “blurred footprint” functions (3.5) as follows,

F (sk, tl; β;~n) ≈ Fdd(sk, tl; β;~n)

=

∫∫

hdd(h, v; sk, tl; β)qdd(h, v; β;~n)dhdv

=

∫ dh2

dh1

∫ dv2

dv1

1

rhrv
ldd(sk, tl; β)qd(h, v; β;~n)dhdv

=
1

rhrv
ldd(sk, tl; β) [min(τh2, dh2) − max(τh1, dh1)]+

[min(τv2, dv2) − max(τv1, dv1)]+ . (3.35)

The DD method essentially approximates the voxel footprints using rectangles in both direc-

tions on a common plane such asxz or yz plane. Due to the full360◦ rotation in the transaxial

direction, the rectangular function used in the DD method isa poor approximation to the true foot-

print function (see Fig. 3.1). It also uses the separable andshift-invariant detector blur (3.8) on the

detector plane. However, the approximated separable detector blurs on the common plane based

on the mapped boundaries of original detector blurs are no longer shift invariant. This appears to

prevent using the inner loop oversk that aids efficiency of the SF methods (see Table 3.1).

3.3 Simulation Results

To evaluate our proposed SF-TR and ST-TT projectors, we compared them with the DD pro-

jector, a current start-of-the-art method. We compared their accuracy and speed as single modules

and within iterative reconstruction methods.
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3.3.1 Forward and Back-Projector as Single Modules

We simulated an axial cone-beam flat-detector X-ray CT system with a detector size ofNs ×

Nt = 512 × 512 cells spaced by∆S = ∆T = 1 mm withNβ = 984 angles over360◦. The source

to detector distanceDsd is 949 mm, and the source to rotation center distanceDs0 is 541 mm. We

included a rectangular detector response (3.8) withrs = ∆S andrt = ∆T.

We implemented the SF-TR and SF-TT projector in an ANSI C routine. The DD projector was

provided by De Manet al., also implemented as ANSI C too. All used single precision. For both

the SF methods and the DD method we used POSIX threads to parallelize the operations. For the

forward projector each thread works on different projection views, whereas for the back projector

each thread works on different image rows (n2).

Maximum Errors of Forward Projectors

We define the maximum error as

em(β;~n) = max
s,t∈R

|F (s, t; β;~n) − Fap(s, t; β;~n)| , (3.36)

whereFap is any of the approximate blurred footprints by the SF-TR, SF-TT and DD methods.

We generated the true blurred footprintF (s, t; β;~n) in (3.6) by linearly averaging1000 × 1000

analytical line integrals of rays sampled over each detector cell. We computed the line integral of

each ray by the exact method described in (3.10).

We compared the maximum errors of these forward projectors for a voxel with∆1 = ∆2 =

∆3 = 1mm centered at the origin. Since the voxel is centered at the origins of all axes, we choose

Nβ = 180 angles over only90◦ rotation. Fig. 3.2 shows the errors on a logarithmic scale. We

compared the proposed three amplitude methods by combiningthem with the SF-TR projector.

The errors of the A1 method are slightly larger than those of the A2 and A3 method; the biggest
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difference, atβ = 45◦, is only 3.4 × 10−4. The error curves of the A2 and A3 methods overlap

with each other. For the SF-TT projector, we plotted only theA1 and A2 methods because the

combination of the SF-TT projector and A3 method is computationally much slower but only

slightly improves accuracy. For the same amplitude method,the error curves of the SF-TR and

SF-TT method overlap. The reason is that the rectangular andtrapezoid approximation are very

similar for a voxel centered at the origin ofz axis. All the SF methods have smaller errors than

the DD method,i.e., the maximum error of the DD projector is about652 times larger than the

proposed SF methods with the A1 amplitude, and2.6× 103 times larger than the SF methods with

the A2 amplitude whenβ = 45◦.

Fig. 3.2 also compares the maximum errors of these forward projectors for a voxel centered

at (100, 150, -100) mm. We chooseNβ = 720 angles over360◦ rotation. The error curves of

the SF-TR projector with three amplitude methods overlap and the curves of the SF-TT projector

with the A1 and A2 amplitude methods overlap with each other,demonstrating again that these

three amplitude methods have similar accuracies. For voxels associated with large cone angles, the

SF-TT projector is more accurate than the SF-TR projector. The maximum errors of the DD and

SF-TR projector are about13 and3 times of that of the SF-TT projector respectively.

RMS Errors of Forward Projectors

We define the root mean square (RMS) error of the footprint approximationFap(·) as

er(β;~n) =

√

1

(s+ − s−)(t+ − t−)

∫ s+

s−

∫ t+

t−

(F (s, t; β;~n) − Fap(s, t; β;~n))2 dsdt, (3.37)

where[s−, s+] and [t−, t+] denote the unions of the boundaries of the true footprintF (s, t; β;~n)

and approximated footprintFap(s, t; β;~n) in s andt direction.

We also compared the RMS errors of the SF-TR, SF-TT and DD projectors for these two voxels

described above. Fig. 3.3 shows the errors on a logarithmic scale. The results showed similar
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Figure 3.2: Maximum error comparison between the forward DD, SF-TR and SF-TT projector
for a voxel centered at the origin (left) and a voxel centered at(100, 150,−100) mm
(right).
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Projectors DD SF-TR-A1 SF-TR-A2 SF-TR-A3 SF-TT-A1 SF-TT-A2
Forward time (seconds) 46 35 35 59 91 91

Backward time (seconds) 49 44 45 63 92 93

Table 3.2: Speed comparison of DD, SF-TR and SF-TT forward and back projectors.

trends as the maximum errors . The three amplitude methods have similar accuracies. For voxels

associated with small cone angles, the SF-TT and SF-TR projector have similar accuracies, while

for voxels associated with large cone angles, the SF-TT projector is more accurate than the SF-TR

projector. All the SF methods have smaller errors than the DDmethod. For the voxel centered

at the origin, the RMS error of the DD projector is about456 times larger than the proposed SF

methods with the A1 amplitude, and1.7 × 103 times larger than the SF methods with the A2

amplitude whenβ = 45◦. For the other voxel, the RMS errors of the DD and SF-TR projector are

about8 and5 times of that of the SF-TT projector respectively.

Speed of Forward and Back-Projectors

We compared computation times of the DD, SF-TR and SF-TT forward and backward projec-

tors using an image with a size ofN1 = 512, N2 = 512, N3 = 128 and a spacing of∆1 = ∆2 =

∆3 = 0.5 mm in thex, y, z direction respectively. We evaluated the elapsed time using the average

of 5 projector runs on a 8-core Sun Fire X2270 server with 2.66GHz Xeon X5500 processors.

Because of the “hyperthreading” of these Nehalem cores, we used 16 POSIX threads. (We found

that using 16 threads reduced computation time by only about10% compared to using 8 threads.)

Table 3.2 summarizes the computation times. For the SF-TR projector, the A1 and A2 ampli-

tude methods have similar speed, but the A3 method is about50% slower. The computation times

of the SF-TR and DD projector are about the same, whereas the SF-TT projector is about 2 times

slower. Although execution times depend on code implementation, we expect SF-TR and DD to

have fairly similar compute times because the inner loop over z involves similar simple arithmetic



56

operations for both methods.

3.3.2 Forward and Back-Projector within Iterative Reconstruction

Since the A1 and A2 amplitude methods have similar accuracy and speed, we compared the DD

and SF projectors (SF-TR and SF-TT) within iterative image reconstructions with the A1 method

for simplicity.

SF-TR vs. DD

In many cases, the region of interest (ROI) needed for diagnosis is much smaller than the

scanner field of view (FOV). ROI reconstruction can save computation time and memory. Ziegler

et al. [168] proposed the following approach for iterative reconstruction of a ROI.

1. Iterative reconstruction of the whole FOV, yielding an initial estimatex̂FOV of xFOV which is

the vector of basis coefficients of the objectf(~x), i.e., f [~n] in (3.1).

2. Definex̂m
FOV = x̂FOV · m wherem = (m1, . . . , mp) with 0 ≤ mj ≤ 1 (j = 1, . . . , p) is

a mask vector setting the estimated object, inside the ROI tozero and providing a smooth

transition from the ROI to the remaining voxels.

3. Computepout = Ax̂m
FOV

which is the forward projection of the masked objectx̂m
FOV

.

4. Compute the projection of ROI,proi = y − pout wherey is the measured data.

5. Iterative reconstruction of the ROI only fromproi. Due to the transition zone, the region of

this reconstruction needs to be extended slightly from the predetermined ROI.

This method requires accurate forward and back projectors.Errors in step 2, where re-projection

of the masked image is computed, can greatly affect the results of subsequent iterative ROI recon-

struction. Moreover, for general iterative image reconstruction, even small approximation errors
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might accumulate after many iterations. We evaluated the accuracy of our proposed SF-TR pro-

jector and the DD projector in this iterative ROI reconstruction method.

We simulated the geometry of a GE LightSpeed X-ray CT system with an arc detector of888

detector channels for 64 slices (Ns = 888, Nt = 64) by Nβ = 984 views over360◦. The size of

each detector cell was∆S × ∆T = 1.0239 × 1.0964mm2. The source to detector distance was

Dsd = 949.075mm, and the source to rotation center distance wasDs0 = 541mm. We included a

quarter detector offset in thes direction to reduce aliasing.

We used a modified 3D Shepp-Logan digital phantom that has ellipsoids centered at thez = 0

plane to evaluate the projectors. The brain-size field of view (FOV) was250 × 250 × 40mm3,

sampled into256 × 256 × 64 voxels with a coarse resolution of0.9766 × 0.9766 × 0.6250mm3.

We simulated noiseless cone-beam projection measurementsfrom the Shepp-Logan phantom

by linearly averaging8×8 analytical rays [60, p. 104] sampled across each detector cell. Noiseless

data is used because we want to focus on projector accuracy. We scaled the line integrals by a

chosen factor to set their maximum value to about 5.

We chose a ROI centered at the rotation center that covered about 48.8 × 48.8 × 12.5mm3

(50 × 50 × 20 voxels with the coarse resolution). The transition zone surrounds the ROI, and

covers about13.7 × 13.7 × 5mm3 (14 × 14 × 8 voxels with the coarse resolution). To construct

masked imageŝxm
FOV

, we removed the ROI and smoothly weighted the voxels corresponding to the

transition zone by a 3D separable Gaussian function. Fig. 3.4 shows different views ofxFOV with

the transition zone superimposed on it in the first row.

We implemented iterative image reconstruction of the entire FOV with these two projector/ back-

projector methods. We ran 300 iterations of the conjugate gradient algorithm, initialized with

reconstruction by the FDK method [30], for the following penalized weighted least-squares cost
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Figure 3.4: Shepp-Logan digital phantoms in Hounsfield units. The first, second and third columns
show axial, coronal and sagittal views respectively.
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Figure 3.5: Axial views of FOV imageŝxSF−TR
FOV and x̂DD

FOV reconstructed by the iterative method
(PWLS-CG) using the SF and DD method respectively.Left: SF-TR projector;Right:
DD projector.
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function with an edge-preserving penalty function (PWLS-CG):

Φ(xFOV) =
∑

i

wi
1

2
(yi − [AxFOV]i)

2 + βR(xFOV) (3.38)

R(xFOV) =
∑

k

ψ([CxFOV]k), (3.39)

whereyi is the negativelog of the measured cone-beam projection,wi values are statistical weight-

ing factors,A is the system matrix,C is a differencing matrix andψ(t) is the potential function.

We used the hyperbola:

ψ(t) =
δ2

3





√

1 + 3

(

t

δ

)2

− 1



 . (3.40)

For this simulation, we usedwi = exp(−yi), β = 4 andδ = 5 Hounsfield units (HU).

Fig. 3.5 shows axial views of the reconstructed imagesx̂SF−TR
FOV

andx̂DD
FOV

by the iterative method

(PWLS-CG) using the SF-TR and DD method respectively. We computed the maximum error,

maxj |x̂j − xj |, and root-mean-square (RMS) error,
√

1
N

∑N
j=1(x̂j − xj)2. The maximum and

RMS errors ofx̂SF−TR
FOV

andx̂DD
FOV

are close because the errors are dominated by the axial cone-beam

artifacts due to the poor sampling (not truncation) at the off-axis slices, but the DD method causes

artifacts that are obvious around the top and bottom areas. Similar artifacts of the DD method were

reported in [145].

We applied the PWLS-CG iterative method mentioned above with β = 1 andδ = 1HU to

reconstruct estimated ROI imagesx̂SF−TR
ROI

andx̂DD
ROI

of 256× 256× 64 voxels with a fine resolution

of 0.2441× 0.2441× 0.3125mm3. The domains of̂xSF−TR
ROI

andx̂DD
ROI

covered the ROI and transition

zone (see Fig. 3.4). For this image geometry, we also generated a Shepp-Logan reference image

xROI from the same ellipsoid parameters used to generatexFOV. Fig. 3.4 shows different views of

xROI in the second row. The fine sampling ofxROI is 1/4 and1/2 of the coarse sampling ofxFOV

in the transaxial and axial direction respectively, and hasa size of200 × 200 × 40.
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Fig. 3.6 shows the axial view of reconstructed imagesx̂SF−TR
ROI andx̂DD

ROI by the iterative method

(PWLS-CG) using the SF-TR and DD projector. The maximum errors are 20 HU and 105 HU

for the SF and DD method respectively and the RMS errors are 1.6 HU and 2.8 HU. The SF-TR

projector provides lower artifact levels than the DD projector. The rectangle approximation in the

transaxial direction of the DD method resulted in larger errors in the reprojection step and caused

more errors when resolution changed from coarse to fine. The rectangle approximation basically

blurs corners of image voxels, and the level of blur varies for different image voxel sizes.

We also reconstructed full FOV images (not shown) at a fine resolution,i.e., 1024×1024×128

voxels with a spacing of0.2441 × 0.2442 × 0.3125mm3. There were no apparent artifacts in both

reconstructed images using the SF-TR and DD method and the maximum and RMS errors were

similar. It seems that the aliasing artifacts in the reconstruction by the DD method were removed by

fine sampling [161,162]. For smaller transaxial voxel sizes, the difference between the rectangular

(DD method) and trapezoid (SF-TR) approximation becomes less visible.

SF-TR vs. SF-TT

We compared the SF-TR and SF-TT projectors by reconstructing an image under an axial cone-

beam CT system with largest cone angle of15◦ or so using these two methods [80]. We expected

to see differences in some off-axis slices of the reconstructed images because the trapezoid ap-

proximation of the SF-TT method is more realistic than the rectangle approximation of the SF-TR

method especially for voxels far away from the origin. Nevertheless, we did not see obvious visual

difference, and the maximum and RMS errors were similar. It appears that the axial cone-beam

artifacts due to poor sampling (not truncation) at the off-axis slices dominate other effects in the

reconstructed images, such as the errors caused by rectangle approximation. Further research will

evaluate these two projectors within iterative reconstruction methods under other CT geometries
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where the off-axis sampling is better, such as helical scans, yet where the cone angle is large

enough to differentiate the SF-TR and SF-TT method .

3.4 Conclusion

We presented two new 3D forward and back projector for X-ray CT: SF-TR and SF-TT. Sim-

ulation results have shown that the SF-TR projector is more accurate with similar computation

speed than the DD projector, and the SF-TT projector is more accurate but computationally slower

than the SF-TR projector. The DD projector is particularly favorable relative to other previously

published projectors in terms of the balance between speed and accuracy. The SF-TR method uses

trapezoid functions in the transaxial direction and rectangular functions in the axial direction, while

the SF-TT method uses trapezoid functions in both directions. The rectangular approximation in

the axial direction is adequate for CT systems with small cone angles, such as the multi-slice ge-

ometries. The trapezoid approximation is more realistic for geometries with large cone angles,

such as the flat-panel detector geometries. To balance accuracy and computation, we recommend

to combine the SF-TR and SF-TT method, which is to use the SF-TR projector for voxels corre-

sponding to small cone angles and to use the SF-TT projector for voxels corresponding to larger

cone angles.

The model and simulations here considered an ideal point source. For a finite sized X-ray

source there would be more blur and it is possible that the differences between the SF and DD

methods would be smaller.

Approximating the footprint functions as 2D separable functions is the key contribution of

this approach. Since the separability greatly simplifies the calculation of integrals of the footprint

functions, using more accurate functions in the transaxialand axial direction is possible without

complicating significantly the calculations.
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The computational efficiency of the SF methods rely on the assumption that the vertical (t) axis

of the detector plane is parallel to the rotation axis. If thedetector plane is slightly rotated then

slight interpolation would be needed to resample onto coordinates that are parallel to the rotation

axis.

Although we focused on voxel basis functions in this paper, the idea of 2D separable footprint

approximation could also be applied to other basis functions with separability in the axial and

transaxial directions, with appropriate choices of functions.

Further research will address the implementation of the SF projectors based on graphics pro-

cessing unit (GPU) programming techniques [110, 134, 154] to improve the speed. Implement-

ing the SF projectors on field-programmable gate array (FPGA) is another future research topic

[64,65].



CHAPTER 4

Two-Material Decomposition from A Single CT Scan Using
Statistical Image Reconstruction1

Clinical CT scans are taken at the diagnostic range of X-ray energies of 30 to 150 Kev [87], and

images of linear attenuation coefficients at these energiesare reconstructed. However, attenuation

coefficients at higher energies are often required in medical applications. Radiotherapy desires

attenuation images in the Mev range for precise dose calculation and segmentation of anatomy

for treatment planing [10, 127]. PET/CT scanners demand CT transmission images at 511 Kev

for attenuation correction of PET emission images [66, 104]. Thus the attenuation coefficients

at a lower energy must be converted to a higher energy. There is no one-to-one correspondence

between attenuation coefficients at two different energiesbecause attenuation coefficients depend

on materials’ densities and atomic numbers in a mixture [66,127]. Two materials with different

atomic numbers may have similar attenuation coefficients atone energy, but different coefficients at

another energy. Basis material decomposition has been proposed to solve this conversion problem.

An accurate image of attenuation coefficients of a mixture atany effective energy of interest can

be synthesized by combining component images separated at other energies.

1This chapter is based on material from [85].

64
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Dual-energy (DE) CT methods, pioneered by Alvarez and Macovski et al. [5, 6, 88, 92, 139],

are the most predominant approaches for reconstructing twobasis materials (e.g., soft-tissue and

bone). They decomposed the energy dependence of attenuation coefficients into two components,

one approximated the photoelectric interaction and another approximated Compton scattering, and

separated these two components from two sets of measurements at two different source energies.

Using singular value decomposition, Lehmann and Alvarez [75] showed that two basis materials

are sufficient to present the energy dependence informationin a mixture if operating far from

the K-edges of any component material. Although DECT methods were originally proposed in

the late 1970s and early 1980s, only recently DECT scanners became clinically available with

technological developments, such as fast kVp-switching, dual-source CT and dual-layer detectors.

These new techniques have brought renewed interest in DECT [39, 48, 50, 61, 66, 78, 86, 103, 104,

112,112,144,160].

FBP based methods dominated DECT reconstruction until the early 1990s, when a few alge-

braic iterative methods [68, 91, 97] were proposed. FBP methods are known for amplifying noise

due to the use of non-ideal ramp filter. Algebraic methods canimprove the accuracy relative to

FBP methods, but they do not account for noise statistics. Incontrast, statistical image reconstruc-

tion methods [35, 37, 48, 104, 144] based on the physical model of the CT system and a statistical

model can obtain lower noise images.

However, typical DECT methods require either two scans or specialized scanner designs [146].

Several methods have been developed to reconstruct two basis materials from one CT scan of a

single tube voltage setting. Ritchings and Pullan [121] have described a technique for acquiring

dual energy data by filtering alternate detectors. Althoughthis is a single scan method, it is dose

inefficient, since the photons stopped by the filters contribute to patient dose but not to the signal,

and the angular spatial resolution is decreased by a factor of two. More recently, Taschereauet
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al. [146] retrofitted a preclinical microCT scanner through a filter wheel to alternate two beam

filters between successive projections. One filter providesa low energy beam while the other filter

provides a high energy beam. MicroCT scanners rotate relatively slower than typical CT scanners,

so alternating beam filters may not be feasible for typical CTscanners. Rutt and Fenster [123]

proposed a split filter technique which requires only a simple addition of pre-patient filters to a

conventional scanner. A split filter has two parts, a right half-filter and a left half-filter, and these

two parts consist of different materials or thicknesses. Split filter technique screens the two halves

of the X-ray beam differently at one projection angle. Using360◦ rotation of the X-ray source, the

whole scanned object is exposed to two incident spectra withdifferent effective energies. For the

2D fan-beam geometry, every path in the patient cross section can easily be measured with two

different beam filtration during a single scan. Rutt and Fenster first separated the data obtained

through the right half-filter from those through the left half-filter to form two sets of measurements

at dual energies, and then followed the decomposition method proposed by Alvarez and Macovski

et al. in [5]. They presented a general derivation of noise analysis in dual energy analysis and

applied it to determine the optimal parameters for the split-filter scans. To simplify the split-

filter design optimization, they assumed the right half-fanwas unfiltered in all calculations. They

concluded that 1 mm copper across half the fan beam with no filtration of the other half is the

optimal filtration parameters for photoelectric/Compton imaging.

We propose a statistical penalized weighted least-squares(PWLS) method with edge-preserving

regularization to reconstruct two basis materials (e.g., soft tissue and bone) from a single-energy

CT scan. This method exploits the incident spectra difference of rays created by filtration, such as

split and bow-tie filters.

Separation of measurements obtained by the right half-filter and left half-filter is not required

for the statistical method since it models the physics of CT systems. In addition, for axial and heli-
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cal cone beam CT geometries, most paths in the patient are notmeasured by exactly two different

incident spectra created by split filters. The choice of material and thickness for the right and left

half-filter should provide sufficient difference between the right and left spectra to minimize the

ill-conditioning of this material decomposition problem.Taschereauet al. [146] alternated a filter

of 2 mm aluminum and the other filter of 200µm molybdenum between successive projections to

obtain dual-energy measurements. The Al filter screened outvery low energy X-rays, while the

Mo filter greatly reduced the spectrum above 20 KeV because its K absorption edge is at 20 KeV.

The Al filter produced “soft” beams while the Mo filter produced “hard” beams. They proved

that the spectra between the “soft” and “hard” beams have sufficient difference for the dual-energy

material decomposition problem. We borrowed this design for our split filter. For a simulated

spectrum with X-ray tube voltage of 80 kVp, this split filter produced “soft” beams with effective

energies of 49 keV and “hard” beams with effective energies of 58 keV.

Bow-tie filters are commonly employed in CT scanners to reduce intensity variations across

detector elements. They harden the portions of the X-ray beam that will pass through the thinner

parts of the object by filtering out the lower-energy components. Due to different extent of filtration

to each radiation ray in the beam and the rotation of the X-raysource, the whole scanned object is

exposed to incident spectra with different effective energies. Most image reconstruction methods,

including the DECT methods, assume the incident spectrum isa constant for all radiation rays

in the presence of bow-tie filters. In contrast, we use these differences to reconstruct two basis

materials from CT measurements at a single energy. We simulated a typical body bow-tie filter

that consists of aluminum, graphite, copper and titanium. For a simulated spectrum with X-ray

tube voltage of 80 kVp, the effective energies are 49 keV and 56 keV for the rays at the edge and

center of the bow-tie filter respectively.

We proposed an optimization transfer method with separablequadratic surrogates to monoton-
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ically decrease the PWLS cost function. We first reconstructed the bone-corrected FBP images

using the Joseph and Spital method [57], and separated the soft tissue and bone components by a

threshold to initialize the iterative optimization algorithm. We used the ordered subsets approach

to accelerate the convergence to a good local minimum.

Experiments showed that the proposed PWLS method was able toreconstruct soft tissue and

bone components from a single-energy scan acquired with split and bow-tie X-ray filters. The split

and bow-tie filtration had similar results. For both filtration methods, the RMS errors of the soft

tissue and bone images reconstructed by the PWLS method wereabout 75% and 60% of those

of the traditional non-iterative JS- FBP method respectively. For the density (sum of soft tissue

and bone) and linear attenuation coefficient images at 511 keV, the RMS errors of the PWLS with

both filtration were 40% of those by the JS-FBP method. The PWLS method reduced the beam-

hardening artifacts much more effectively than the JS-FBP method which is known for mitigating

these artifacts. The PWLS method also produced lower noise.

The organization of this chapter is as follows. Section 4.1 describes the differential filtration

technique for producing spectra with different effective energies. Section 4.2 introduces the pro-

posed PWLS reconstruction method. Section 4.3 discusses the optimization method with separable

quadratic surrogates. Section 4.4 shows simulation results using split and bow-tie filters.

4.1 Differential Filtration

X-ray filters attenuate X-rays by different amounts depending on the X-ray photon energy.

Given a X-ray spectrum, filters of different materials or thicknesses create different exiting spectra.

We investigate spectra differences produced by split and bow-tie filters.
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Figure 4.1: Schematic diagram of a fan-beam CT scanner with two positions of X-ray source and
split-filter assembly.

4.1.1 Split Filtration

The split filter technique was proposed by Rutt and Fenster [123] in 1980. A split-filter is

composed of two parts, a right half-filter R and a left half-filter L. Filters R and L are made of

different materials or thicknesses. Split-filters are located near the X-ray tube to filter two halves

of the X-ray beam differently. Fig. 4.1 shows a schematic diagram of a fan beam CT scanner with

two positions of X-ray tube and split-filter assembly. The path P in the object is passed through by

two rays. One is the ray screened by filter R at position A, the other is the ray screened by filter L

at position B from the opposite side of the object. Similarly, each path in the cross section will be

filtered differently since two opposing rays originated from opposite halves of the fan pass through

it. Most DECT methods acquire dual energy information by twoscans or specialized scanner

designs, such as fast kVp-switching, dual-source CT or dual-layer detectors. In contrast, the split-

filter technique produces two spectra with different effective energies by two different beam filters.

The split-filter technique is independent of the CT scanner geometry, and therefore can be applied
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to any existing scanner that performs360◦ scans. The implementation of this technique requires

only the attachment and alignment of the filters between the X-ray tube and the patient.

The choice of material and thickness for the right and left filter should provide sufficient dif-

ferences between the right and left spectra to produce dual-energy measurements. We use 2 mm

aluminum across half the fan beam with 200µm molybdenum of the other half. The Al filter

screens out very low energy X-rays, while the Mo filter greatly reduces the spectrum above 20 KeV

because its K absorption edge is at 20 KeV [146]. The Al filter produces “soft” beams while the

Mo filter produces “hard” beams. Fig. 4.2 shows the spectra created by this design of split filter

for a simulated spectrum with X-ray tube voltage of 80 kVp. The effective energies are 49 keV

and 58 keV for the “soft” and “hard” spectrum respectively.

0 49 58 80
0

x 10
10

Energy [keV]

I1
(E

)

 

 
split

2 mm Al
200µm Mo

0 495153 56 80
0

x 10
10

Energy [keV]

I1
(E

)

 

 

γ = 26◦

γ = 14◦

γ = 10◦
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Figure 4.2:Left: Spectra produced by a split filter for a simulated spectrum with X-ray tube voltage
of 80 kVp. The split filter consists of 2 mm aluminum producing”soft” spectra and
200µm molybdenum producing “hard” spectra. The effective energies are 49 keV and
58 keV respectively.Right: Sample spectra at four fan angles screened by a body bow-
tie filter. γ denotes the fan angle. The effective energies are 49, 51, 53 and 56 keV for
the spectra at26◦, 14◦, 10◦ and0◦ respectively.
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4.1.2 Bow-tie Filtration

Bow-tie filters are commonly used in CT scanners to minimize intensity variations across de-

tector cells. They harden the portions of the X-ray beam thatwill pass through the thinner parts of

the object by filtering out the lower-energy components. Thethicknesses of bow-tie filters increase

gradually from the center to the edge. The X-ray spectra coming out from different locations along

bow-tie filters vary due to different extents of filtration. Using 360◦ rotation of the source, the

scanned object is exposed to incident spectra with different effective energies. We simulated a

typical body bow-tie filter that consists of aluminum, graphite, copper and titanium. Fig. 4.2 also

shows spectra at four fan angles (26◦, 14◦, 10◦ and0◦) filtered by the simulated bow-tie filter. Their

effective energies are 49, 51, 53 and 56 keV respectively.

4.2 Penalized Weighted Least-Squares (PWLS) Reconstruction

Clinthorne and Sukovic [24, 141–144] have investigated PWLS approaches for dual-energy

and triple-energy CT reconstruction. They assumed monoenergetic source spectra. Huh and

Fessler [48,50] proposed a PWLS method for DECT that included a complete polyenergetic source

spectrum model. We adopt this polyenergetic PWLS method to estimate two basis materials from

a single scan,i.e.,M0 = 1 andL0 = 2 in (4.1).

Combining the general measurement model (2.1) and the object model (2.24), the mean of

measurements can be represented as follows,

ȳim = Iim e− fim(si(x)) + rim, (4.1)
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for m = 1, . . . ,M0 andl = 1, . . . , L0, where

fim(si)
△
= − log vim(si) (4.2)

vim(si)
△
=

∫

pim(E) e−β(E) ·si dE (4.3)

pim(E)
△
= Iim(E) /Iim (4.4)

Iim
△
=

∫

Iim(E) dE . (4.5)

The nonlinear functionfim(x) characterizes the beam hardening caused by polychromatic source

spectra. The total intensityIim for themth energy scan and theith ray is defined in (4.5). The

sinogram vectorsi(x) and mass attenuation vectorβ(E) are defined as

si(x)
△
= (si1(x), . . . , siL0(x))

β(E)
△
= (β1(E), . . . , βL0(E))

sil(x)
△
= [Axl]i, , (4.6)

whereA denotes theNd ×Np system matrix with entries

aij
△
=

∫

Li

bj(~x) dℓ . (4.7)

The image vector isx = (x1, . . . ,xl, . . . ,xL0) ∈ R
Np×L0 for xl = (xl1, . . . , xlj, . . . , xlNp). Given

noisy measurementsYim, thefim values are usually estimated by inverting (4.1) as follows:

f̂im
△
= − log

(

Yim − rim

Iim

)

. (4.8)

Component images are then estimated from thef̂im values in (4.8) by minimizing a PWLS cost

function subject to box constraints on the elements ofx as follows:

x̂ = arg min
x−≤xlj≤x+

Ψ(x) (4.9)

Ψ(x)
△
=

Nd
∑

i=1

M0
∑

m=1

1

2
wim

(

f̂im − fim(si(x))
)2

+R(x), (4.10)
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wherewim = Yim values are statistical weighting factors depending on Poisson likelihood, and

x− ≥ 0 andx+ are determined by the prior knowledge of ranges of material component values.

The edge-preserving regularizer termR(x) is

R(x) =

L0
∑

l=1

βlRl(xl), (4.11)

where

Rl(xl) =

Np
∑

j=1

∑

k∈Nlj

ψl(xlj − xlk) (4.12)

ψl(t) =
δ2
l

3





√

1 + 3

(

t

δl

)2

− 1



 , (4.13)

whereNlj is some neighborhood of voxelxlj . The regularization parametersβl and δl can be

chosen differently for different materials according to their properties.

4.3 Optimization Algorithm

Because the cost functionΨ(x) in (4.10) is difficult to minimize directly, we apply optimization

transfer principles to develop an algorithm that monotonically decreasesΨ(x) each iteration. We

ignore the regularizer term (4.11) hereafter since the challenging part is the nonlinear least-squares

not the penalty function and the extension to PWLS is straightforward [34].

Define the vector beam-hardening function as

fi(si)
△
= (fi1(si), . . . , fiM0(si)) (4.14)

and rewrite the cost function (4.10) (ignore the regularizer term) as

Ψ(s(x)) =

Nd
∑

i=1

Ψi(si(x)) =

Nd
∑

i=1

M0
∑

m=1

Ψim(si(x)), (4.15)
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where

Ψi(si)
△
=

1

2

∥

∥

∥
f̂i −fi(si)

∥

∥

∥

2

Wi

(4.16)

Ψim(si)
△
=

1

2
wim

(

f̂im − fim(si)
)2

, (4.17)

andWi = diag {wi1, . . . , wiM0} . We first find a quadratic surrogate function forΨim(si) since

the cost functionΨi(si) is already additively separable in terms ofs, and then find a separable

quadratic surrogate function ofx by applying De Pierro’s additive convexity trick [2,27].

4.3.1 Separable Quadratic Surrogate of Sinogram Vector

The separable quadratic surrogate functionφ
(n)
1 (si) with respect tosi at thenth iteration that

satisfies the surrogate conditions given in (2.67) has the following form

φ
(n)
1 (si) =

Nd
∑

i=1

M0
∑

m=1

q
(n)
im (si), (4.18)

where

q
(n)
im (si)

△
= Ψim(si) +(si − s

(n)
i )′∇Ψim

(

s
(n)
i

)

+
1

2
(si − s

(n)
i )′C̃im(si − s

(n)
i ), (4.19)

wheres
(n)
i

△
= si(x

(n)).

We use a bound on the Hessian ofΨim as the curvaturẽCim. The gradient and Hessian ofΨim

are

∇Ψim(si) = −wim

(

f̂im − fim(si)
)

∇ fim(si) (4.20)

∇2 Ψim(si) = H1(si) +H2(si), (4.21)

where

H1(si)
△
= wim∇ fim(si)∇ fim(si) (4.22)

H2(si)
△
= wim

(

f̂im − fim(si)
)

(

−∇2 fim(si)
)

. (4.23)
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∇ and∇ denote the column and row gradients respectively.

We ignoreH2 in (4.23) when finding an upper bound forΨim since in practice we would hope

thatf̂im ≈ fim(si(x̂)). It is stated in [111, p. 542] that the term
(

f̂im − fim

)

should be the random

measurement error of each point for a successful model. Thiserror can have either sign, and should

in general be uncorrelated with the model. Therefore, the second derivative termsH2 tend to cancel

out when summed overi. It is also mentioned that inclusion of the second-derivative term can in

fact be destabilizing if the model fits badly or is contaminated by outlier points that are unlikely to

be offset by compensating points of opposite sign. Thus, thegoal simplifies to finding a positive

non-negative matrix̃Cim such thatC̃im � H1(si), ∀si. By calculation described in Appendix A.2,

we choose

C̃im = ‖∇ fim(0)‖2
I. (4.24)

4.3.2 Separable Quadratic Surrogate of Image Vector

Define vectorxj
△
= (x1j , . . . , xL0j) , and rewrite the sinogram vector assi(x) =

∑Np

j=1 aijxj.

The surrogate functionφ(n)
1 (si) is a nonseparable quadratic function ofx. Nonseparable surro-

gates are inconvenient for simultaneous update algorithmsand for enforcing the box constraint in

(4.9). To derive a simple simultaneous update algorithm that is fully parallelizable and suitable for

ordered-subsets implementation [2, 47], we find next a separable quadratic surrogateφ(n)
2 (x) by

applying De Pierro’s additive convexity trick [2,27].

By derivations described in Appendix A.3, a separable quadratic surrogate that satisfies the

conditions (2.67) has the form

φ
(n)
2 (x) = Ψ

(

x(n)
)

+(x − x(n))′∇Ψ
(

x(n)
)

+
1

2
(x − x(n))′ diag

{

d
(n)
lj

}

(x − x(n)), (4.25)
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where

d
(n)
lj =

Nd
∑

i=1

M0
∑

m=1

a2
ij

πij

[

C̃im

]

ll
, (4.26)

πij =
|aij |
ai

, ai =

Np
∑

j=1

|aij|. (4.27)

Because thisφ(n)
2 (x) is a separable quadratic function, it is trivial to minimize, leading to the

following parallelizable iteration:

x(n+1) =

[

x(n) − diag

{

1

d
(n)
lj

}

∇Ψ
(

x(n)
)

]

+

, j = 1, . . . , Np. (4.28)

4.4 Simulation Results

To evaluate the proposed PWLS method, we reconstructed softtissue and bone images of a

NCAT chest phantom [129] from a single-energy CT scan using asimulated split and bow-tie

filter. We generated the density images by simply adding the soft tissue and bone components,

and synthesized the linear attenuation coefficient images at 511 keV by linearly combining the

reconstructed components with their mass attenuation coefficients at that energy. We compared the

soft tissue, bone, density and linear attenuation coefficient 511 keV reconstructed by the JS-FBP

and proposed PWLS method. We also compared the result imagesof split and bow-tie filtration.

Fig. 4.3 shows the NCAT object used in the computer simulation. The units ofx are physical

density (g/cm3) and were assigned to 1.0 for soft tissue, 0.5 for lungs, 1.5 for spine and 2.0 for

ribs. The lungs and soft tissue had the “soft tissue” characteristics shown in Fig. 2.3, and the

spine and ribs had the “bone” characteristics of Fig. 2.3. The images were512 × 512 and the

pixel size was 1 mm. This chest phantom is unrealistic since there should be marrow (“soft tissue”

characteristics) inside the cortical bones. Solid bones aggravate the beam-hardening effects, which

helps to compare the extent that the proposed PWLS and JS-FBPmethod reduce these artifacts.



77

We simulated the geometry of a GE LightSpeed X-ray CT fan-beam system with an arc detector

of 888 detector channels by 984 views over360◦. The size of each detector cell was 1.0239 mm.

The source to detector distance wasDsd = 949.075mm, and the source to rotation center distance

wasDs0 = 541mm. We included a quarter detector offset to reduce aliasing. We used the distance-

driven (DD) projector [26] to generate projections of the true object.

We simulated an incident spectrum of the X-ray tube voltage at 80 kVp. Fig. 4.2 shows the

exiting spectra of this source spectrum screened by the split filter and body bow-tie filter described

in Section 4.1.

We simulated noiseless measurementsȳim using (4.1) and the spectra shown in Fig. 4.2. To

the noiseless measurementsȳim, we added Poisson distributed noise corresponding to106 incident

photons per ray to “soft” rays screened by the Al filter of the split filter. For “hard” rays and rays

passing through the simulated bow-tie filter, we added Poisson noise corresponding to106Ii/Ij

incident photons per ray whereIi andIj denote the total intensity of the current ray and the “soft”

ray respectively. Fig. 4.4 shows the logarithm sinogram estimatesf̂im described in (4.8) as com-

puted from the original noisy measurementsYim. The visible straight line in the left sinogram was

caused by the split filtration.

We first reconstructed FBP images using the water-correction method and the bone-correction

JS method described in Section 2.1.4. Fig. 4.5 shows the FBP reconstructions and their absolute

error images. The RMS errors were 0.14 g/cm3 and 3.3×10−2 g/cm3 for the water and bone

corrected FBP images using the split filtration, and 0.15 g/cm3 and 3.1×10−2 g/cm3 respectively

using the bow-tie filtration. The water corrected FBP had significant errors in the bone regions,

while the JS-FBP greatly reduced them.

For the two cases of filtration, we separated the soft tissue shown in Fig. 4.6 and bone compo-

nent shown in Fig. 4.7 from the JS-FBP reconstructions usinga threshold of 1.2 g/cm3 to initialize
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the iterative optimization algorithm. We choseβ1 = β2 = 2−8 andδ1 = δ2 = 0.01 for soft tis-

sue and bone components for both filtration methods. We ran 500 iterations of the optimization

transfer algorithm described in Section 4.3 with 41 subsetsto accelerate the “convergence” to the

initialization. We enforced box constraints with a lower bound of 0 for both soft tissue and bone

and upper bounds of 1.2 g/cm3 and 2 g/cm3 for soft tissue and bone respectively.

The soft tissue, bone and density images reconstructed by the JS-FBP and proposed PWLS

method using split and bow-tie filtration were shown in Fig. 4.6, Fig. 4.7 and Fig. 4.8 respectively.

Their RMS errors are summarized in Table 4.1. For both filtration methods, the RMS errors of the

soft tissue and bone images reconstructed by the PWLS methodwere about 75% and 60% of those

of the traditional non-iterative JS- FBP method respectively. For the density images, the RMS

errors of the PWLS method using both filtration were about 40% of those by the JS-FBP method.

The PWLS method removed the beam hardening artifacts much more effectively than the JS-FBP

method which is known for mitigating these artifacts.

We synthesized the linear attenuation coefficient images at511 keV by linearly combining the

reconstructed components with their mass attenuation coefficients at that energy. Fig. 4.9 shows

these attenuation images by the JS-FBP and PWLS method. The range of true linear attenuation

coefficients was [0 0.18] cm−1. The reconstructed images were shown in a more sensitive viewing

window ([0.08, 0.12] cm−1) to highlight the beam-hardening effects. The PWLS images had less

beam-hardening artifacts. Table 4.1 also shows the RMS errors. The RMS errors of the PWLS

method using both filtration were about 40% of those by the JS-FBP method.

Fig. 4.10 shows vertical profiles through the true and estimated soft tissue, bone components

and the linear attenuation coefficient images at 511 keV by the JS-FBP and PWLS methods. The

green line in the true linear attenuation image in Fig. 4.11 shows the profile locations. The proposed

PWLS method produced lower noise than the JS-FBP method. Theprofiles showed negative bias
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in the soft tissue regions and positive bias in the bone regions in the soft component, and similar

opposite biases in the bone component. Profiles at other locations showed similar bias problem.

We have also applied the proposed PWLS method to a more realistic simulated phantom that

had marrow (soft tissue characteristics) inside cortical bones. This bias phenomenon remained.

We found this bias problem is sensitive to regularizer coefficientsβl in (4.11) and edge-preserving

parametersδl in (4.13). Increasingβl andδl caused more bias but less noise, while decreasing them

led to less bias but more noise. The choice of parameters for one material component influenced

the reconstructed image of another component.

Fig. 4.11 compares the profiles of the PWLS results using the split and bow-tie filters. The split

and bow-tie filtration had similar results, which was also demonstrated by reconstructed images in

Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9 and by the RMS errors in Table 4.1.
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Figure 4.3: True soft tissue, bone and density map (soft tissue+ bone) of a NCAT chest phantom.

Split Bow-tie
Method soft bone density attenuation soft bone density attenuation
JS-FBP 4.0 3.4 3.2 3.0 4.0 3.3 3.0 2.8
PWLS 3.0 2.0 1.2 1.2 3.0 2.0 1.2 1.3

Table 4.1: RMS error comparison of reconstructed images by the JS-FBP and proposed PWLS
method using split and bow-tie filtration. The units are10−2g/cm−3 for the soft tissue,
bone and density images, and10−3cm−1 for the linear attenuation coefficient images at
511 keV.
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Figure 4.4: Logarithm sinogram estimatesf̂im using the simulated split filter (Left) and bow-tie
filter (Right).

4.5 Discussion and Conclusion

We have presented a statistical PWLS method for two-material decomposition from a single-

energy CT scan acquired with a X-ray split filter or a bow-tie filter.

To monotonically decrease the PWLS cost function which was non-convex and non-linear,

we presented an optimization transfer method with separable quadratic surrogates. To obtain a

good initialization for the iterative optimization, we first reconstructed the bone-corrected FBP

images using the Joseph and Spital method [57], and separated the soft and bone components by

a threshold. We used the ordered subsets approach to accelerate the convergence to a good local

minimum. We enforced box constraints on both soft tissue andbone estimates, but found the

reconstruction results were insensitive to the bounds of box constraints.

Experiments showed that the proposed PWLS method reconstructed soft tissue and bone com-

ponents with 25% and 40% lower RMS errors respectively, and reconstructed density (the sum of

soft tissue and bone) images and linear attenuation coefficient images at 511 Kev with 40% lower

RMS errors than the JS-FBP method. The PWLS images had fewer beam-hardening artifacts and
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Figure 4.5: Water and bone corrected FBP and their absolute error images using split and bow-tie
filtration.
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Figure 4.6: Soft tissue images and their absolute errors reconstructed by the JS-FBP and proposed
PWLS method using split and bow-tie filtration.
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Figure 4.7: Bone images and their absolute errors reconstructed by the JS-FBP and proposed
PWLS method using split and bow-tie filtration.
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Figure 4.8: Density maps (the sum of soft tissue and bone images) reconstructed by the JS-FBP
and PWLS method using split and bow-tie filtration. The images are shown in a more
sensitive viewing window ([0.8, 1.2] g/cm3).
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Figure 4.9: Linear attenuation coefficient images at 511 keVreconstructed by the JS-FBP and
PWLS method using split and bow-tie filtration. The range of true linear attenuation
coefficients was [0 0.18] cm−1. The images are shown in a more sensitive viewing
window ([0.08, 0.12] cm−1) to highlight the beam-hardening effects.



86

280 290 300 310 320 330 340 350 360
0

0.2

0.4

0.6

0.8

1

 

 

true
JS−FBP
pwls

de
ns

ity
[g

/c
m3

]

280 290 300 310 320 330 340 350 360
0

0.2

0.4

0.6

0.8

1

 

 

true
JS−FBP
pwlsde

ns
ity

[g
/c

m3
]

(a) Soft tissue.

280 290 300 310 320 330 340 350 360
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

true
JS−FBP
pwls

de
ns

ity
[g

/c
m3

]

280 290 300 310 320 330 340 350 360
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

true
JS−FBP
pwls

de
ns

ity
[g

/c
m3

]

(b) Bone.
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Figure 4.10: Vertical profiles through the true and estimated soft tissue, bone components and
the linear attenuation coefficient images by the JS-FBP and PWLS method using
split (left) and bow-tie (right) filtration. The green line in the true density image
in Fig. 4.11 shows profile locations.



87

280 290 300 310 320 330 340 350 360
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

true

bowtie

split

soft tissue

de
ns

ity
[g

/c
m3

]

280 290 300 310 320 330 340 350 360
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

true

bowtie

split

bone

de
ns

ity
[g

/c
m3

]

280 290 300 310 320 330 340 350 360
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

 

 

true

bowtie

split

linear attenuation

µ
[c

m
−

1
]

 

 

1 512

1

512   0

0.2
linear attenuation

Figure 4.11: Vertical profiles of PWLS method using the simulated bow-tie and split filter. The
green line in the true linear attenuation image at 511 keV shows the location of profiles
in this figure and Fig. 4.10.
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lower noise than the JS-FBP method. The bow-tie filtration produced similar results as the split

filtration. We did not compare the spatial resolutions of reconstructions by the JS-FBP and PWLS

methods, because it is not easy to evaluate the spatial resolution properties of reconstruction meth-

ods with edge-preserving regularization [33, 136, 137]. However, the profiles in Fig. 4.10 looks

similar.

The role of the split or bow-tie filter is to create differences between incident spectra to reduce

the ill-conditioning of the problem of decomposing two materials from one single-energy CT scan.

We simulated a split filter with 2 mm aluminum across half the fan beam and 200µm molyb-

denum of the other half [146] . The simulated body bow-tie filter contains aluminum, graphite,

copper and titanium. Performed experiments showed our simulated filters provide sufficient spec-

tra differences for the PWLS method to reconstruct soft tissue and bone components. We believe

other choices of materials and thickness for the split and bow-tie filters or other types of differential

filtration could lead to similar or even better results for the proposed PWLS method. Optimizing

the materials and thickness or the types of differential filtration is not our focus. We simulated

an incident spectrum for an 80 kVp of the X-ray tube voltage. One could choose other X-ray

tube voltages. Different voltage settings could affect thedegree of spectral separation produced by

split and bow-tie filters, and consequently could change thereconstructed component images. The

radiation dose should be carefully adjusted according to the X-ray tube voltage.

A fundamental limitation of using differential filtration with a single-energy scan is the in-

evitable overlap of the filtered spectra (see Fig. 4.2). We expect that DECT methods are superior

from the standpoint of spectral differences that may lead tobetter reconstructed component im-

age quality. However, the differential filtration requiresonly the attachment and alignment of the

metal filters on the X-ray tube housing. Another problem of using differential filtration is to pre-

cisely align the filters and rotational center in order to expose the isocenter area to different spectra
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which helps reconstructing component images in that area. We simulated a 2D fan-beam system

to evaluate the proposed PWLS method. For this geometry, each path in the patient cross section

is measured with two different beam filtration created by a split filter during a single360◦ rotation

scan. However, for typical clinical CT systems, such as axial and helical cone beam geometries,

most tilted paths in the patient are not passed by two different incident spectra. This problem re-

mains to be addressed for practical use of split filters. We also expect the results could be sensitive

to model mismatch, such as Compton scatter or imperfect spectral models.

The PWLS cost function has four parameters, two regularizercoefficientsβl in (4.11) and two

edge-preserving parametersδl in (4.13). We found slight negative bias in the soft tissue regions

and positive bias in the bone regions in the soft component, and similar opposite biases in the bone

component. This bias problem is sensitive to these parameters. Increasing them caused more bias

but less noise, while decreasing them led to less bias but more noise. The choice of parameters

for one material component influenced the reconstructed image of another component. Huh and

Fessler [49] used a material-cross penalty for DECT reconstruction. This penalty used the prior

knowledge that different component images have similar edge area. One could also consider this

basis material reconstruction problem as a classification problem, since most pixels either have soft

tissue characteristics or bone characteristics [29]. Penalty functions could be designed based on

this prior knowledge. Choosing regularizers for the PWLS method and optimizing its parameters

need further investigation.

Two component images are not enough for some medical applications [78, 89, 96]. When

quantifying the concentration of iron in a fatty liver, images of three constitute materials, iron, fat

and tissue, are required. For the purpose of radiotherapy, in addition to soft-tissue and bone it is

also better to know the distribution a third material, such as calcium, metal (gold) or iodine. An

interesting future research would be to extend this PWLS method to three-material decomposition
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from dual-energy CT scan (such as fast kVp-switching and dual-source CT) acquired with a split

or bow-tie filter. The use of filtration for DECT creates differential spectra to the original spectra

at two source voltage settings, which would provide additional information for separating three

materials.



CHAPTER 5

Accuracy Estimation for Projection-to-Volume Targeting
During Rotational Therapy: A Feasibility Study 1

The rapid adoption of two technologies, arc therapies [105,159] and cone-beam CT [21, 54,

55, 98], have brought to the forefront a number of investigations about optimizing the use of pro-

jection radiographs and reference volumes for targeting treatment. While a significant number of

investigations are ongoing into optimizing reconstruction and use of cone beam CT, a smaller but

highly relevant path of investigation is similarly being pursued in using subsets of projections from

a rotational series for alignment and reconstruction.

Such experiments fall into two primary classes of operation. The first involves reconstructing

volumetric images from subsets of projections acquired over rotational arcs of various lengths.

For longer arcs, these backprojections yield volumetric images with fairly uniform resolution,

while for shorter (typically 45-90 degree) arcs, the reconstruction yields volumes with spatially

varying resolution. Such reconstructions generally are termed tomosynthesis, and have been eval-

uated from both kilovoltage as well as megavoltage projections for use in image guided radiother-

apy [41, 67, 124, 150]. There is a special case of tomosynthesis using a fixed set of projections

1This chapter is based on material from [82,83].
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(more complex than an arc) [90]. These reconstructed volumes are typically aligned directly to the

reference CT scan.

A different approach involves relating the new projectionsdirectly to the reference CT without

reconstruction. Such projection-to-volume alignment experiments have been performed for some

time [4,63]. More recently, the series of projections acquired during arc rotations has been used to

estimate motion and deformation parameters [77,95,106,114,115,155,158,163,164].

This area of research is highly promising. As the amount of information needed to estimate the

position, pose, configuration, and finally motion of a patient is reduced, the temporal resolution

of updates to the patient state improves. In this investigation, methods for estimating the local

configuration of a lung tumor are tested, and an evaluation ismade of the influence of rotational

arc length on maximum achievable accuracy.

5.1 Materials and Methods

5.1.1 Projection-to-Volume Registration

We assume a static reference volumef ref, such as a breath-hold planning CT, is available,

and we record a sequence of cone-beam projection views of a limited-angle scan, denoted asyn

for n = 1, . . . , N whereN is the number of projection views. The current experiment assumes

that movement during the limited projection arc is negligible. One can imagine that a continuous

relationship exists between temporal resolution and spatial accuracy. The current investigation

focuses on the spatial accuracy under ideal conditions (no movement between projections). While

one can assume that movement during rotation would decreasethe accuracy of measurements, it

is our expectation that further studies will be able to extend prior models for estimating motion

during rotational arcs (e.g., Refs. [77, 164]), but that it is unlikely that such methods can recover

spatial information at accuracies higher than the current motion-free estimations are capable of.
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We estimate the local configuration of a lung tumor using two sets of data, the reference volume

f ref and projection viewsyn.

A nonrigid model is suitable to describe changes in thorax configuration during breathing or

as varying between breath held states. We use the cubic B-spline nonrigid motion model given

in (2.55), and assume a target imagef tar is deformable fromf ref (See (2.62)). We estimate the

deformation parametersα by minimizing the following regularized cost function:

α̂ = arg min
α

Ψ(α)

Ψ(α) = L (α) + γR (α) , (5.1)

whereL (α) is the data fidelity term,R (α) is the regularization function, and scalarγ controls the

trade-off between them.

We focus on the least-squared error metric, because all the investigations in this paper are based

on the same patient and imaging modality. The metric is expressed as,

L (α) =
1

2

N
∑

n=1

‖yn − Aϕn
T (α)f ref‖2 , (5.2)

whereAϕn
denotes the system matrix with size ofNd ×Np at projection angleϕn that is the angle

of the source point counter-clockwise from they axis (see Fig. 5.2),yn
△
= (yn,1, . . . , yn,l, . . . , yn,Nd

)

is thenth cone-beam CT projection view,T (α) is given in (2.62) and (2.63). In practiceyn is

estimated from the transmitted intensityYn which is degraded by noise that dominated by the

Poisson effect [1]. For simplicity, assuming a monoenergetic model and ignoring the background

signals such as Compton scatter, dark current and noise, we describe the Poisson statistics as

follows,

Yn,l ∼ Poisson{In,le
−yn,l}, (5.3)

whereIn,l denotes the incident intensity that incorporates the source spectrum and the detector
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gain. The projection viewyn is estimated fromYn as follows,

ŷn,l = log

(

In,l

Yn,l

)

. (5.4)

To encourage local invertibility and smoothness of changesdue to local respiratory motion and

its variations, we adopted a simple regularizer proposed byChunet al. [23], which is introduced

in Section 2.2.3. In this investigation we used the same parameter settings as in Section IV-D of

Ref. [23].

For optimization of the the cost function (5.1), a conjugategradient (CG) method was used.

The line search step size was determined by one step of Newton’s method. To avoid local minima

and accelerate the optimization procedure, we applied a 4-level multi-resolution scheme [152]. We

ran100 iterations of conjugate gradient optimization for the firstthree levels of resolution and150

iterations for the finest resolution. Large number of iterations were used to ensure convergence.

Since this paper is a study of estimation accuracy, the computation time is not the major concern.

5.1.2 Investigating the Influence of Rotational Arc Length

Experimental Setup

We acquired three 3D thorax volumes, two at different inhalestates and one at exhale state,

from a lung cancer patient by breath-held diagnostic CT. Oneinhale CT volume was chosen as the

referencef ref, while the other inhale and the exhale volume were treated asdifferent targets for

evaluation. The volume size was512 × 512 × 96 with spacing of0.9375 × 0.9375 × 3mm3 in the

x, y andz direction respectively.

Two deformation maps were obtained by regularized B-splinenonrigid registration [23] be-

tween reference and each of the target volumes. The B-splinecontrol knots were placed uniformly

in CT volumes with a spacing of8×8×4 voxels. Two synthetic CT volumes (see Fig. 5.1), one at
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Figure 5.1: Axial (left), sagittal (center) and coronal views (right) of reference, target volumes and
reference volume within a ROI overlaid with example radial annuli for analysis.
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inhale and another at exhale, were obtained by warping the reference volume with corresponding

estimated deformation maps in a fashion similar to that applied in previous research (Ref. [164]).

These two synthetic CT volumes were used as new targets, denoted asf tar
in

andf tar
ex

, for subsequent

investigations of influence of rotational arc length on accuracy of estimated local deformation

around the tumor. The B-spline control knots were also placed uniformly in CT volumes with a

spacing of8× 8× 4 voxels, implying64× 64× 24 = 98304 unknown deformation parameters to

be estimated.

We simulated an axial cone-beam flat-detector X-ray CT system with a detector size of512 ×

512 cells spaced by1 × 1mm2. The source to detector distance is1500mm, and the source to

rotation center distance is1000mm.

Since our focus is the local configuration of a lung tumor (seeFig. 5.1), we set the tumor center

in the reference volume as the rotation center to make sure the local areas around it in the target

volumes are always covered by X-rays emitting from the source at any projection angle. As a

result, other structures away from the tumor, such as the scapular bones in the lower right or left

sides (see Fig. 5.1), might be truncated at certain projection angles.

Investigation Design

Typically the X-ray source rotates around the patient, and360◦ of projection views are acquired

to perform projection-to-volume alignment. In this paper,we investigate deformation estimation

accuracy with limited-angle scans (see Fig. 5.2). In addition, the angular center may affect the es-

timation accuracy. Without loss of generality, we chose three angular centers (0◦, 45◦ and90◦) and

six angular ranges (12◦, 18◦, 24◦, 36◦, 60◦ and90◦) with 2◦ angular spacing between projections.

(We examined smaller angular spacings of1◦ and0.5◦, and found performances very similar to

that of2◦). Using the case of0◦ center and12◦ range as an example, we performed projection-to-
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Figure 5.2: Schematic diagram of limited-angle scans centered at0◦, 45◦ and90◦. p ando are
the axes along and orthogonal to the ray connecting the X-raysource and the detector
center for the limited-angle scan centered at45◦.

volume alignment between projection views from7 angles (−6◦,−4◦,−2◦, 0◦, 2◦, 4◦ and6◦) and

the reference volume. Alignments on angular ranges of360◦ and180◦([−90◦, 90◦]) were investi-

gated too.

We also studied the influence of extent of deformation. We considered the deformation between

two different inhale volumes as small, and the deformation between inhale and exhale volumes

large. We called the former assmall deformation case and the latterlarge deformation case. The

experiments were executed on both cases.

In summary, we studied a total of40 registration examinations. For each (small and large)

deformation case we tested20 examinations that include the360◦ and180◦ scan and another18

limited-angle scans (6 angular ranges at3 centers).

5.2 Results and Discussion

In this section, we summarize the error of tumor center shiftand deformation estimation within

a region of interest (ROI) around the tumor. We computed the error using the true deformation
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maps between the reference and synthetic target volumes in comparison to the experimental align-

ment estimates from various angular centers and ranges.

5.2.1 Noiseless Projection Views

We generated noiseless projection views of target volumes (f tar
in and f tar

ex ) at certain angles

using a distance-driven (DD) forward projector [26] forAϕ. The projection-to-volume registra-

tion described in Section 5.1.1 was performed between thesegenerated projection views and the

reference volume.

Accuracy of Tumor Center Shift

We calculated the absolute error of estimated tumor center shift in C direction by

EC
0 =

∣

∣

∣
D̂C(~r0; α̂) −DC(~r0; α)

∣

∣

∣
, (5.5)

whereα̂ denotes the estimated motion parameters,D̂C(~r0; α̂) denotes the estimated tumor center

shift in C direction,DC(~r0; α) denotes the true tumor center shift inC direction and~r0 denotes

the coordinates of the tumor center.

The true shifts of tumor center are−2.21mm,−2.46mm and0.56mm in x, y andz direction

respectively for the small deformation case, and−0.92mm, 6.17mm and1.53mm in x, y andz

direction respectively for the large deformation. Table 5.1 shows the absolute errors of tumor

center shift when the angular ranges are360◦ and180◦. The absolute errors are all below0.1mm,

except the error of0.13mm in z direction for the large deformation case. Since the true shift is

1.53mm for this case and the spacing is3mm in z direction, this0.13mm error is small.

The projection views are approximately line integrals along rays passing from the X-ray source

to the detector cells [26]. With limited-angle scans, the information about deformation along the

projection direction is limited. Realizing this property,we used a 3D coordinate system with new
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small deformation large defmoration
direction x y z x y z

360◦ 0.06 0.08 0.03 0.09 0.06 0.08
180◦ 0.08 0.07 0.001 0.08 0.05 0.13

Table 5.1: Absolute errors (mm) for angular ranges of360◦ and180◦([−90◦, 90◦]).
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(a) Small deformation case.
The true shift is0.56mm inz direction.

Left: Angular center isβ = 0
◦. The true shifts are−2.46mm and−2.21mm inp ando direction respectively.

Center: Angular center isβ = 45
◦. The true shifts are−0.18mm and−3.30mm inp ando direction respectively.

Right: Angular center isβ = 90
◦. The true shifts are−2.21mm and−2.46mm inp ando direction respectively.
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Figure 5.3: Absolute errors (mm) of tumor center shift.
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axes to evaluate estimation accuracy. We rotated the 3D coordinate system aroundz by the central

projection angleϕ0, and denoted the axes asp, o andz wherep ando are the axes along (parallel to)

and orthogonal to the ray connecting the X-ray source and thedetector center respectively. Fig. 5.2

shows thep ando directions whenϕ0 = 45◦. The corresponding coordinates on thep ando axes

are:

p = −x sin(ϕ0) +y cos(ϕ0)

o = x cos(ϕ0)+y sin(ϕ0) . (5.6)

Fig. 5.3 shows the absolute errors of tumor center shift withlimited-angle scans centered at

0◦, 45◦ and90◦ for both the small and large deformation cases. The error in the p direction is

bigger than that in theo andz direction because only limited shape information can be extracted

from projection views along the projection direction. The errors of the0◦ center scans are larger

than those of45◦ and90◦ center scans. When angular range is smaller than36◦, the estimation

accuracy improves quickly with the increase of angular range, and the estimation errors of the

large deformation case are slightly higher than those of thesmall deformation case. When the

angular range exceeds36◦, the errors are within1mm for the0◦ center scans, and within0.5mm

for others.

Deformation Accuracy within A ROI

Since the goal is to study estimation accuracy of the local configuration of a lung tumor, we

chose a region of interest (ROI) centered at the tumor centerand evaluated deformation estimation

accuracy within this ROI. The ROI is a cylinder with height and radius of6cm, i.e., a diameter of

128 voxels and height of20 voxels. The tumor center is also the rotation center, which guarantees

the ROI is covered by the field of view (FOV) of radiation at anyprojection angle. Fig. 5.1 (d)
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small deformation large deformation
angular range180◦ angular range360◦ angular range180◦ angular range360◦

direction x y z x y z x y z x y z
mean 0.08 0.07 0.09 0.05 0.05 0.07 0.06 0.07 0.08 0.05 0.06 0.06
max 1.06 1.38 1.83 0.84 0.77 1.06 0.54 0.75 1.74 0.44 0.75 0.62
σ 0.10 0.10 0.11 0.06 0.06 0.08 0.07 0.07 0.09 0.05 0.07 0.06

Table 5.2: Mean, maximum and standard deviationσ of absolute errors of estimated displacements
with angular ranges of180◦([−90◦, 90◦]) and360◦.

shows axial, sagittal and coronal views of the reference volume within ROI.

We evaluated absolute errors of estimated deformation of points in a set ofS, such as the ROI,

by meanEC
1 , maximumEC

2 and standard deviationEC
3 in C direction as follows

EC
1 =

1

|S|
∑

j∈S

∣

∣

∣
D̂C(~rj; α̂) −DC(~rj; α)

∣

∣

∣

EC
2 = max

j∈S

∣

∣

∣
D̂C(~rj; α̂) −DC(~rj; α)

∣

∣

∣

EC
3 =

√

1

|S| − 1

∑

j∈S

(∣

∣

∣
D̂C(~rj; α̂) −DC(~rj; α)

∣

∣

∣
−EC

1

)2

, (5.7)

whereα̂ denotes the estimated motion parameters,D̂C(~rj; α̂) andDC(~rj; α) denote the estimated

and true displacement at thejth point in S in theC direction respectively, and~rj denotes the

coordinates of thejth point.

Table 5.2 shows the mean, max and standard deviation of estimated deformation for the angular

ranges of360◦ and180◦. The errors are very small, which demonstrates that the projection-to-

volume method described in Section 5.1.1 works well.

Fig. 5.4, Fig. 5.5 and Fig. 5.6 show the mean, max and standarddeviation of estimated defor-

mation of all the studied limited-angle scan cases. In general, values of these measures decrease

with increasing angular range. For45◦ and90◦ center cases, the errors and standard deviation in

thep direction are bigger than those in theo andz direction and the errors of the large deforma-

tion case are slightly bigger than those of the small deformation case. The mean absolute error is
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(b) Large deformation case.

Figure 5.4: Mean absolute errors (mm) of estimated deformation within ROI.Left: Angular center
is β = 0◦. Center: Angular center isβ = 45◦. Right: Angular center isβ = 90◦.
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(b) Large deformation case.

Figure 5.5: Maximum absolute errors (mm) of estimated deformation within ROI.Left: Angular
center isβ = 0◦. Center: Angular center isβ = 45◦. Right: Angular center isβ = 90◦.
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(a) Small deformation case.
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(b) Large deformation case.

Figure 5.6: Standard deviation of absolute errors (mm) of estimated deformation within ROI.Left:
Angular center isβ = 0◦. Center: Angular center isβ = 45◦. Right: Angular center is
β = 90◦.
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(a) True absolute deformation.
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(b) Absolute errors of estimated displacements for a limited-angle scan with range of18◦ centered at0◦.

Figure 5.7: Histograms in theo direction (left), p direction (center) andz direction (right) within
the ROI for the small deformation case.
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Figure 5.8: Mean (left) and maximum (right) absolute errors of estimated displacements within
ROI for a limited-angle scan with range of18◦ centered at0◦. The horizontal axis
denotes radial distance to the tumor center. The errors werecalculated among points
within cylindrical shells centered at the tumor center.

below0.5mm for angular ranges greater than36◦. For the0◦ center cases, the errors and standard

deviation are larger than those of45◦ and90◦ center cases and the error in thez direction is larger

than that in thep ando direction.

The maximum absolute error and standard deviation of the limited-angle scans centered at0◦

are much larger than those of other cases, especially for thesmall deformation case with angular

range smaller than36◦. We chose the scan with range of18◦ centered at0◦ for the small deforma-

tion case as an example to investigate more details about theestimated deformation.

Fig. 5.7(a) shows histograms of true absolute deformation within the ROI and Fig. 5.7(b) shows

histograms of absolute errors of estimated displacements within the ROI for a limited-angle scan

with range of18◦ centered at0◦ for the small deformation case. Only a small percentage of

voxels have large absolute errors in thez direction. For this case of a limited-angle scan, we also

calculated mean and maximum errors among points within a sequence of cylindrical shells (with

thickness of1mm ) centered at the tumor center. The left panel of Fig. 5.1 (d) shows an axial view

of 4 such cylinders. Fig. 5.8 shows these errors versus radial distance to the tumor center. With
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increasing radial distance, the errors in thez direction increase, especially when radial distance is

greater than30mm. The maximum errors in this direction happened at the bonyportion inside the

chest wall. The errors in theo direction are small and increase slowly. The errors in thep direction

remain at the same level.

The shape information that can be estimated from limited-angle projections depends on the

angular center, especially when angular ranges are small. It appears that the truncation of0◦

scans affects estimation accuracy more severely than scansat other centers. Since the deformation

model covers the whole thorax, truncation outside the ROI still influences estimation accuracy in

all regions. This influence becomes more obvious when radialdistance from the rotation center

(tumor center) increases,i.e., as the distance to truncated parts decreases. One reason for the

large errors inz is that the voxel size inz is three times of those inx andy. The poor sampling

(not truncation) associated with cone-beam CT geometry at the off-axis slices may also influence

accuracy.

5.2.2 Noisy Projection Views

We generated noiseless projection viewsyn of target volumes (f tar
in

andf tar
ex

) using the distance-

driven (DD) method [26], generated transmitted intensities Yn using (5.3) withIn,l being 105

and104 counts per ray for alln andl, and then estimated noisy projection viewsŷn using (5.4).

The projection-to-volume registration described in Section 5.1.1 was performed between these

estimated projectionŝyn and the reference volume.

We tested estimation accuracy on noisy projections of a limited-angle scan with angular range

of 24◦ centered at45◦ of the small deformation case. Table 5.3 shows absolute errors (mm) of

tumor center shifts for the tested limited-angle scan. Table 5.4 shows mean, maximum and stan-

dard deviation of absolute errors of estimated displacements within ROI for this scan. We denote
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p direction o direction z direction
intensity Ia Ib Ic Ia Ib Ic Ia Ib Ic

error 0.80 0.85 0.91 0.01 0.10 0.46 0.15 0.69 1.45

Table 5.3: Absolute errors (mm) of tumor center shifts for a limited-angle scan with range of24◦

centered at45◦ of the small deformation case.Ia stands for the case of no noise,Ib

stands for the case whenIm,n = 105 counts per ray, andIc stands for the case when
Im,n = 104 counts per ray.

p direction o direction z direction
intensity Ia Ib Ic Ia Ib Ic Ia Ib Ic

mean 0.51 0.51 0.64 0.08 0.10 0.18 0.19 0.26 0.41
max 4.31 4.14 4.23 1.08 1.25 1.17 2.60 3.27 3.76
σ 0.58 0.57 0.63 0.08 0.10 0.16 0.21 0.27 0.39

Table 5.4: Mean, maximum and standard deviationσ of absolute errors of estimated displacements
within ROI for a limited-angle scan with range of24◦ centered at45◦ of the small
deformation case.Ia stands for the case of no noise,Ib stands for the case whenIm,n =
105 counts per ray, andIc stands for the case whenIm,n = 104 counts per ray.

noiseless experiments as Ia, noisy experiments withIn,l = 105 counts per ray as Ib and noisy ex-

periments withIn,l = 104 counts per ray as Ic in these tables. The errors of experiments Ia are

smaller than those of Ib and Ic. The errors increase when incident intensityIn,l decreasing, but the

errors in thep direction change very slowly. It appears that the errors in thep direction are dnomi-

nated by limited shape information that can be extracted from limited-angle projections. The error

differences between experiments Ia and Ib are smaller than those between experiments Ib and Ic.

5.3 Conclusion

We also tested a registration method that consists of two steps. The first step was rigid projection-

to-volume registration of the whole FOV to roughly align thewhole thorax. The second step was

projection-to-volume registration of a ROI around the tumor, which only estimates local transla-

tion in each direction. However this method did not work wellbecause the rigid FOV registration

was not robust to nonrigid motion of the FOV, the translationmotion is too simple for movement
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within ROI, and the results of second step were very sensitive to the choices of ROIs, such as how

big the ROI should be.

The experiments performed demonstrate the significant amount of information present to aid

limited angle projection-to-volume alignment. They also highlight some of the trends in degener-

acy of such alignments from limited angular samples, both asa function of direction relative to the

projection set as well as distance from the rotation center.It is hoped that such experiments can be

used to guide optimal development of radiographic alignment and monitoring methods that max-

imize the prior knowledge available in radiotherapy targeting applications to minimize the time,

radiographic dose, and computational resources needed forposition monitoring during treatment.

This set of experiments presented both small as well as largescale deformations typically found

in the thorax of a radiotherapy patient. While we used a deformation associated with variations in

breathing states, we do not propose this methodology as a tool for tracking breathing. It is impor-

tant to understand the information limits in rotational projection-to-volume registration, as these

will impact not only the complexity and operational parameters of positioning or tracking method-

ologies, but more importantly may indicate optimal design of radiographic localization technology

integrated with linear accelerators. As a number of configurations have been proposed and intro-

duced studies such as this may help determine the tradeoffs associated with various parameters

such as projection arrangement, noise/dose, and temporal/spatial accuracy limits [11,90,109,140].



CHAPTER 6

Conclusion and Future Work

6.1 Summary

This dissertation addressed issues related to image reconstruction and motion estimation for

image-guided radiotherapy (IGRT). We described forward and back projection methods for X-ray

cone-beam CT, discussed basis material reconstruction (e.g., soft tissue and bone) using statisti-

cal reconstruction methods, and investigated estimation accuracy of limited angle projection-to-

volume alignment.

Chapter 3 developed two new approaches for 3D forward and back-projection that we call the

separable footprint (SF) projectors: the SF-TR and SF-TT projector. They approximate the voxel

footprint functions as 2D separable functions. The separability of these footprint functions greatly

simplifies the calculation of their integrals over a detector cell and allows efficient implementa-

tion of the SF projectors. The SF-TR projector uses trapezoid functions in the transaxial direction

and rectangular functions in the axial direction, whereas the SF-TT projector uses trapezoid func-

tions in both directions. Simulation results showed that the SF-TR projector is more accurate with

similar computation speed than the DD projector, and the SF-TT projector is more accurate but

computationally slower than the SF-TR projector. The DD projector is particularly favorable rela-

tive to other previously published projectors in terms of the balance between speed and accuracy.

108
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To balance accuracy and computation, we recommend to combine the SF-TR and SF-TT method,

which is to use the SF-TR projector for voxels correspondingto small cone angles and to use the

SF-TT projector for voxels corresponding to larger cone angles.

Chapter 4 proposed a statistical PWLS method with edge-preserving regularizer for two-material

decomposition from a single-energy CT scan acquired with differential X-ray filters, split and bow-

tie filters. We simulated a split filter with 2 mm aluminum across half the fan beam and 200µm

molybdenum of the other half. The simulated body bow-tie filter contains aluminum, graphite,

copper and titanium. We also proposed an optimization transfer method with separable quadratic

surrogates to monotonically decrease the PWLS cost function which was non-convex and non-

linear. The proposed PWLS method with both filtration reconstructed soft tissue and bone com-

ponents with 25% and 40% lower RMS errors respectively, and reconstructed density (the sum of

soft tissue and bone) images and linear attenuation coefficient images at 511 Kev with 40% lower

RMS errors than the JS-FBP method. The PWLS images produced less beam-hardening artifacts

and noise than the JS-FBP method. The split and bow-tie filterled to similar results.

Chapter 5 tested the projection-to-volume alignment for estimating the local configuration of a

lung tumor, and evaluated the influence of rotational arc length on maximum achievable accuracy.

The experiments performed demonstrated the significant amount of information present to aid lim-

ited angle projection-to-volume alignment. They also highlighted some of the trends in degeneracy

of such alignments from limited angular samples, both as a function of direction relative to the pro-

jection set as well as distance from the rotation center. It is hoped that such experiments can be

used to guide optimal development of radiographic alignment and monitoring methods that max-

imize the prior knowledge available in radiotherapy targeting applications to minimize the time,

radiographic dose, and computational resources needed forposition monitoring during treatment.
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6.2 Future Work

• We have implemented the proposed two new SF projectors in ANSI C routine and demon-

strated their fast speed. Implementing the SF projectors based on graphics processing unit

(GPU) programming techniques could further improve the speed [154]. It needs special

considerations of how to perform parallel computing while utilizing the properties of the SF

projectors. The SF projectors approximated the voxel footprint functions as 2D separable

function that simplified calculation of 2D integral into two1D integrals that can be imple-

mented simultaneously. Implementing the SF projectors on field-programmable gate array

(FPGA) is another future research topic [64,65].

• We have proposed a statistical PWLS to reconstruct two materials from one single scan

using differential filtration. One future work is to extend this method to reconstruct three

bases from dual-energy scan acquired with differential filtration. Two component images are

not enough for some medical applications liu:09:qio, mendonca:10:mmd, maddah:10:pmv.

When quantifying the concentration of iron in a fatty liver,images of three constitute mate-

rials, iron, fat and tissue, are required [78]. For the purpose of radiotherapy, in addition to

soft-tissue and bone it is also better to know the distribution a third material, such as calcium,

metal (gold) or iodine. In principle, two basis materials ina mixture can be accurately sepa-

rated from DECT measurements [75,78]. Yuet al. [160] provided a third criterion of volume

conservation assumption to separate three materials usingDECT. The volume conservation

assumed that the sum of the volumes of three component materials equals the the volume of

their mixture. Considering that volume conservation is notalways true, Liuet al. [78] as-

sumed mass conservation that the sum of the masses of three materials does not change while

mixing them. They proposed a post-reconstruction (image domain) decomposition method,
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which first individually reconstructed two images using twosets of measurements at low and

high energies, and then obtained basis images from these tworeconstructed images. Com-

bining filtration with DECT would create different spectra from the original spectra at two

source voltage settings, which would provide additional information for reconstructing three

materials.

• The PWLS method proposed in Chapter 4 used edge-preserving regularizers. Each mate-

rial component has a regularizer coefficient and edge-preserving parameter. We have found

the image quality in terms of noise and estimation bias was sensitive to these parameters.

The choice of parameters for one material component influenced the reconstructed image

of another component. Huh and Fessler [49] used a material-cross penalty for DECT re-

construction. This penalty used the prior knowledge that different component images have

similar edge area. Material decomposition could also be considered as a classification prob-

lem, since most pixels either have soft tissue characteristics or bone characteristics [29].

Designing penalty functions based on such prior knowledge may improve reconstruction

results. Future research could investigate optimal penalty functions and parameters for the

PWLS method.

• We have presented an optimization transfer method with separable quadratic surrogates for

the PWLS cost with edge-preserving penalty in Chapter 4. Forthis material decomposition

problem, soft tissue and bone values are both estimated for each pixel. It is still practical to

have nonseparable quadratic surrogate functions for each pixel because inversion of the2×2

curvature matrix is doable. The question is now what kind of curvature matrix is optimal.

Appendix B described preliminary study on this future work.

• We have simulated an incident spectrum for an X-ray tube voltage at 80 kVp to test the pro-
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posed PWLS method for two-material decomposition from one single-energy scan acquired

with differential filtration. The spectra produced by our simulated split and bow-tie filter

have significant overlap for this 80 kVp voltage setting. However, the spectral differences

across rays were sufficient for two-material reconstruction. Future work could investigate the

influence of X-ray tube voltages on the degree of spectral separation produced by split and

bow-tie X-ray filters and qualities of reconstructed component images. One should consider

the radiation dose while choosing different voltages.

• We have showed simulation results of the proposed PWLS method for a 2D fan-beam geom-

etry. In order to apply this method to real data, several practical issues need to be addressed.

It requires precisely alignment of the bow-tie or split filter and rotational center in order to

expose the isocenter area to different spectra which helps reconstructing component images

in that area. Bow-tie filters are commonly used in CT scanners, but using split filters needs

further considerations. For 2D fan-beam geometries, each path in the patient cross section

is measured with two different beam filtration created by a split filter during a single360◦

rotation scan. However, for typical clinical CT systems, such as axial and helical cone beam

geometries, most tilted paths are not measured by exactly two different incident spectra.

• Chapter 5 conducted an objective characterization of the influence of rotational arc length

on motion estimation accuracy for projection-to-volume targeting during rotational therapy.

It was an experimental investigation based on thorax CT volumes of a lung cancer patient.

Future research could analyze bounds of estimated displacements from a small spread of

projections, such as Bayesian lower bounds [148,149].

• The experiments performed in Chapter 5 demonstrated the significant amount of informa-

tion present to aid limited angle projection-to-volume alignment. However, the estimation
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errors in the projection direction were bigger than the orthogonal and axial directions since

only limited shape information can be extracted from projection views along that direction.

Future research could address how to improve the estimationaccuracy along the projection

direction. Design penalty based on prior knowledge of shapeinformation along the projec-

tion direction would improve the estimation accuracy of limited angle projection-to-volume

registration. It would also be helpful to use limited-angleprojections that acquired along

directions that are orthogonal to each other.
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APPENDIX A

Surrogate Function Design

A.1 Local Properties of Beam-Hardening Function

The vector beam-hardening function defined in (4.14) has rowgradient∇ fi (aM0×L0 matrix)

with elements

∂

∂sl
fim(s) = [∇ fi(s)]ml =

− ∂
∂sl
vim(s)

vim(s)
=

∫

qim(E , s)βl(E) dE , (A.1)

where we define the following probability density function:

qim(E ; s)
△
= pim(E) e−β(E) ·s / vim(s) .

Because the gradient vector∇ fi always has positive elements,fim is a monotone increasing func-

tion.

The properties offim for small material thicknesses (i.e., for s ≈ 0) can be useful. In particular:

[∇ fi(s)]ml

∣

∣

∣

s=0

= β̄iml, (A.2)

where we define the following “effective” mass attenuation coefficient:

β̄iml

△
=

∫

βl(E) pim(E) dE . (A.3)
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We aggregate thesēβiml values into aM0 × L0 matrixBi having entries

[Bi]ml = β̄iml. (A.4)

In matrix form, (A.2) becomes

∇ fi(s)
∣

∣

∣

s=0

= Bi.

In particular, if the source spectra are monoenergetic,i.e., pim(E) = δ(E − Em), then β̄iml =

βl(Em) and thefi functions are linear in their arguments:

fi(s) = Bis, fim(si) =

L0
∑

l=1

βl(Em) sil.

For polyenergetic measurements, thefi functions are somewhat nonlinear, where the degree

of nonlinearity depends on the spectrum and the mass attenuation coefficients. In particular, using

the concavity oflog, one can show that

fim(s) ≤
L0
∑

l=1

(
∫

pim(E)βl(E) dE
)

sl =

L0
∑

l=1

β̄imlsl = [Bis]m ,

due to the beam hardening effect. So thefim surface always lies below its tangent plane at zero.

Concavity

One can show thatfim(s) is concave, i.e.,−∇2 fim(s) is a nonnegative definiteL0×L0 matrix.

To see this, use (A.1) to show

−∇2 fim(s) =
1

vim(s)
∇2 vim(s)− 1

v2
im(s)

∇ vim(s)∇ vim(s)

=
1

vim(s)
∇2 vim(s)−∇ fim(s) ∇ fim(s)

=

∫

qim(E ; s)β(E)β′(E) dE −
(
∫

qim(E ; s)β(E) dE
)(

∫

qim(E ; s)β(E) dE
)′

.

(A.5)
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Becauseqim is nonnegative and integrates to unity overE , it is a probability density function. So

by Jensen’s inequality:

x′
[

−∇2 fim(s)
]

x =

∫

qim(E ; s) |x · β(E)|2 dE −
∣

∣

∣

∣

∫

qim(E ; s) [x · β(E)] dE
∣

∣

∣

∣

2

≥ 0,

where “′” denotes matrix/vector transpose.

Hence the Hessian matrix−∇2 fim(s) is nonnegative definite for anys, sofim is concave. In

addition, usuallyβl(E) is smallest atEmax, so the “distribution”qim(E ; s) becomes concentrated

aroundEmax as s increases. Thus its “variance,”i.e., ∇2 fim(s), approaches zero for larges,

i.e., fim is asympototically linear [20]. These properties can be useful constraints when fitting

approximations tofim.

A.2 Curvature for Quadratic Surrogate

The key to the curvature derivations is the following inequality. WhenM is real and symmetric

[46, p. 34]:x′Mx ≤ λmax(M) ‖x‖2 , whereλmax(M) denotes the maximum eigenvalue ofM .

So we haveM � λmax(M) I. Because∇ fim(s) has the largest entries whens = 0:

H1(s) = ∇ fim(s)∇ fim(s) � ‖∇ fim(s)‖2
I � ‖∇ fim(0)‖2

I = ‖bim‖2
I

△
= C̃im,

wherebim is the transpose of themth row ofBi.

A.3 Separable Quadratic Surrogates Based on Additive Con-
vexity Trick

We form a separable quadratic surrogate functionφ
(n)
2 (x) with respect tox by using the fol-

lowing trick due to De Pierro [27]:

si(x) =

Np
∑

j=1

aijxj =

Np
∑

j=1

πij

(

aij

πij
(xj − x

(n)
j ) +

Np
∑

j=1

aijx
(n)
j

)

, (A.6)
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provided
∑Np

j=1 πij = 1 andπij is zero only ifaij is zero. If theπij ’s are nonnegative, then we can

apply the convexity inequality to the quadratic functionq(n)
im (si) defined in (4.19) to write

q
(n)
im (si) = q

(n)
im

(

Np
∑

j=1

aijxj

)

= q
(n)
im

(

Np
∑

j=1

πij

(

aij

πij
(xj − x

(n)
j ) +

Np
∑

j=1

aijx
(n)
j

))

≤
Np
∑

j=1

πij q
(n)
im

(

aij

πij

(xj − x
(n)
j ) +

Np
∑

j=1

aijx
(n)
j

)

. (A.7)

Combining these yields the following separable quadratic surrogate forΨ(x):

φ
(n)
1 (si) ≤ φ

(n)
2 (x)

△
=

Np
∑

j=1

φ(n)

j (xj), (A.8)

where

φ(n)

j (xj) =

Nd
∑

i=1

M0
∑

m=1

πij q
(n)
im

(

aij

πij
(xj − x

(n)
j ) +

Np
∑

j=1

aijx
(n)
j

)

. (A.9)

The column gradient∇φ(n)

j has elements

∂

∂xlj
φ(n)

j (xj) =

Nd
∑

i=1

M0
∑

m=1

aij q̇
(n)
im

(

aij

πij
(xj − x

(n)
j ) +

Np
∑

j=1

aijx
(n)
j

)

, (A.10)

so

∂

∂xlj
φ(n)

j (xj)

∣

∣

∣

∣

xj=x
(n)
j

=

Nd
∑

i=1

M0
∑

m=1

aij q̇
(n)
im

(

Np
∑

j=1

aijx
(n)
j

)

=

Nd
∑

i=1

M0
∑

m=1

aij Ψ̇im

(

Np
∑

j=1

aijx
(n)
j

)

=
∂

∂xlj
Ψ
(

x(n)
)

. (A.11)
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The hessianD(n)
j

△
= ∇2 φ(n)

j has elements

[

D
(n)
j

]

lk
=

∂2

∂xlj ∂xkj

φ(n)

j (xj)

=

Nd
∑

i=1

M0
∑

m=1

a2
ij

πij

∂2

∂xlj ∂xkj
q
(n)
im

(

aij

πij
(xj − x

(n)
j ) +

Np
∑

j=1

aijx
(n)
j

)

=

Nd
∑

i=1

M0
∑

m=1

a2
ij

πij

[

C̃im

]

lk
, (A.12)

so

D
(n)
j =

Nd
∑

i=1

M0
∑

m=1

a2
ij

πij
C̃im. (A.13)

Combining the gradient and hessian, the separable quadratic surrogate satisfies the conditions

(2.67) has the form

φ
(n)
2 (x) = Ψ

(

x(n)
)

+∇Ψ
(

x(n)
)

(x − x(n)) +
1

2
(x − x(n))′ diag

{

D
(n)
j

}

(x − x(n)), (A.14)

wherediag
{

D
(n)
j

}

is a block diagonal matrix. Because thisφ(n)
2 (x) is separable quadratic function,

it is trivial to minimize, leading to the following parallelizable iteration:

x
(n+1)
j =

[

x
(n)
j −

[

D
(n)
j

]−1

∇xj
Ψ
(

x(n)
)

]

+

, j = 1, . . . , Np, (A.15)

where∇xj
denotes the gradient with respect toxj. In matrix-vector form, the update is:

x(n+1) =

[

x(n) − diag

{

[

D
(n)
j

]−1
}

∇Ψ
(

x(n)
)

]

+

, (A.16)

which is a kind of diagonally-preconditioned gradient descent algorithm that is guaranteed to

monotonically decrease the cost function each iteration. This algorithm is entirely parallelizable

because all pixels can be updated simultaneously.



120

A.3.1 Curvature of Diagonal Matrix

When the curvaturẽCim given in (4.24) is a diagonal matrix, the separable surrogate and update

described in Section A.3 can be further simplified. Define thelth element ofD(n)
j as

d
(n)
lj

△
=
[

D
(n)
j

]

ll
=

Nd
∑

i=1

M0
∑

m=1

a2
ij

πij

[

C̃im

]

ll
. (A.17)

The separable quadratic surrogate in (A.14) becomes

φ
(n)
2 (x) = Ψ

(

x(n)
)

+∇Ψ
(

x(n)
)

(x − x(n)) +
1

2
(x − x(n))′ diag

{

d
(n)
lj

}

(x − x(n)), (A.18)

and the update in (A.16) becomes

x(n+1) =

[

x(n) − diag

{

1

d
(n)
lj

}

∇Ψ
(

x(n)
)

]

+

. (A.19)



121

APPENDIX B

Optimal Curvature for Two-Dimensional Quadratic Surrogat es

Optimization transfer methods convert the problem of optimizing difficult cost functions to

optimizing a sequence of relatively simpler surrogate functions. They take into account specific

properties of cost functions of interest, and are guaranteed to monotonically decrease the cost func-

tion if suitable surrogate functions are designed. Quadratic surrogates are often desired because

there is a simple closed form solution at the “M-step” (2.68)in the absence of constraints. To

achieve fast convergence rate, one wants curvatures of quadratic surrogate functions to be as small

as possible while satisfying the surrogate conditions (2.67). Since it is usually difficult to find sur-

rogate functions that fit all the desired conditions, the choice of surrogate functions is something

of an art.

Due to the huge size of imaging problems, separable quadratic surrogates are particularly ap-

pealing because one can update all pixels simultaneously. For separable surrogates, the design

problem simplifies to finding a suitable 1D surrogate function. Letψ(t) denote the cost function

andh(t; s) denote a surrogate function that satisfies the following twoconditions:

h(s; s) = ψ(s), ∀s

h(t; s) ≥ ψ(t), ∀t, s. (B.1)



122

For a 1D quadratic surrogate functionh, the optimal curvature can be defined to be the smallest

curvature that still ensures the surrogate conditions (B.1):

c̆opt(ψ, s)
△
= min

{

c ≥ 0 : ψ(s) + ψ̇(s)(t− s) +
1

2
c(t− s)2 ≥ ψ(t), ∀t

}

. (B.2)

For some applications, several related images are estimated at the same time. For example,

DECT methods estimate soft tissue and bone values for each pixel. It can still be practical to have

nonseparable quadratic surrogate functions for each pixelbecause inversion of a2 × 2 or 3 × 3

curvature matrix is doable. The question is now what kind of curvature matrix is optimal. In this

appendix, we define the optimal curvature matrices, discussthe surrogate conditions and optimal

criterions, and derive optimal curvature matrices for several special cases.

B.1 Definition of An Optimal Curvature Matrix

Let φ(n) be a quadratic surrogate function for a cost functionΨ(x) at thenth iteration, having

the following form:

φ(n)(x) = Ψ
(

x(n)
)

+(x − x(n))′∇Ψ
(

x(n)
)

+
1

2
(x − x(n))′Cn(x − x(n)). (B.3)

We define the optimal curvature matrix̃Copt(Ψ,x
(n); C) for a quadratic surrogateφ(n) as follows:

1. Pick a structureC for Cn, e.g., separable quadratic surrogates

C =











Cn =







α1 0

0 α2






: α1, α2 ≥ 0











. (B.4)

2. Require the quadratic surrogateφ(n) to be a majorizer ofΨ, i.e.

Cm = {Cn ∈ C : φ(n)(x) ≥ Ψ(x), ∀x} . (B.5)

Due to their form, quadratic surrogate functions (B.3) always satisfy the equality surrogate

condition.
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3. Pick the optimal curvature by some criterion,e.g.

C̃opt(Ψ,x
(n); C)

△
= arg min

Cn∈Cm

ρ
(

I − C−1
n ∇2 Ψ

(

x(n)
))

, (B.6)

whereρ denotes the spectral radius. The criterion (B.6) is a natural choice because it is

related to convergence rate.

DECT methods are our interest, so we focus on 2D surrogate functions hereafter,i.e., x ∈ R
2.

B.2 Majorization Constraint

For a twice differentiable functionΨ(x), its 2nd-order Taylor series expansion about the current

estimatex(n) is

Ψ(x) = Ψ
(

x(n)
)

+(x − x(n))′∇Ψ
(

x(n)
)

+ (x − x(n))′
[
∫ 1

0

(1 − α)∇2 Ψ
(

αx + (1 − α)x(n)
)

dα

]

(x − x(n)). (B.7)

For φ(n) in (B.3) to be a valid quadratic surrogate, it is sufficient that Cn satisfies the following

conditions:

Cn � ∇2 Ψ(x), ∀x (B.8)

Cn � 0. (B.9)

Let Cs denote the set of matrices satisfying the above sufficient conditions:

Cs =
{

Cn � 0 : Cn � ∇2 Ψ(x), ∀x
}

. (B.10)

We hereafter focus on conditions (B.8) and (B.9) (Cs ⊆ Cm), because they readily ensure the

majorization constraint given in (B.5).
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Typically the curvature matrixCn is designed to be a symmetric positive semidefinite matrix,

i.e., satisfying constraint (B.9). Letz1 andz2 be the orthonormal eigenvectors ofCn, andα =

(α1, α2) whereα1 andα2 are the corresponding eigenvalues. LetQ =

[

z1 z2

]

, thenQQ′ =

Q′Q = I. We can writeCn as

Cn(α,Q) = α1z1z
′
1 + α2z2z

′
2 = QΛ(α)Q′, (B.11)

whereΛ(α) =







α1 0

0 α2






. The condition (B.8) becomes

Cn(α,Q) � ∇2 Ψ(x), ∀x

⇐⇒ y′QΛ(α)Q′y ≥ y′∇2 Ψ(x)y, ∀y, ∀x

⇐⇒ u′Λ(α)u ≥ u′Q′∇2 Ψ(x)Qu, whereu = Q′y, ∀u,x

⇐⇒ u′T (α,x)u ≥ 0, ∀u, ∀x

⇐⇒ λmin (T (α,x)) ≥ 0, ∀x, (B.12)

where

T (α,x)
△
= Λ(α) − Q′∇2 Ψ(x)Q. (B.13)

Here,λ denotes an eigenvalue ofT (α,x) andλmin denotes the smallest one,i.e.,λ = eig{T (α,x)}

andλmin = λmin (T (α,x)) = min{eig{T (α,x)}}. The last equivalence in (B.12) follows from

the fact thatT (α,x) is hermitian symmetric.

B.2.1 Diagonal curvature matrix

The general form of the hessian is∇2 Ψ(x) =







a(x) b(x)

b(x) c(x)






, wherea(x), b(x), c(x) ∈ R.

To simplify the problem, we consider separable surrogate functions,i.e., Q = I. Their curvature
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matrices are diagonal matrices,i.e., Cn(α,Q) = Λ(α). The matrix defined in (B.13) becomes

T (α,x) = Λ(α) −∇2 Ψ(x) =







α1 − a(x) −b(x)

−b(x) α2 − c(x)






.

The determinant ofT (α,x) − λI is

(α1 − a(x) − λ) (α2 − c(x) − λ) − b2(x) = λ2 +Bλ+ C,

where

B = B(α,x)
△
= a(x) + c(x) − α1 − α2

C = C(α,x)
△
= (α1 − a(x)) (α2 − c(x)) − b(x)2.

Let det{T (α,x) − λI} = 0, and then

λ =
1

2

(

−B ±
√
B2 − 4C

)

⇒ λmin =
1

2

(

−B −
√
B2 − 4C

)

,

where

B2 − 4C = (−α1 + α2 + a(x) − c(x))2 + 4b2(x) ≥ 0.

Working on condition (B.12), we have

λmin ≥ 0

⇐⇒ −B −
√
B2 − 4C ≥ 0

⇐⇒
√
B2 − 4C ≤ −B, soB ≤ 0

⇐⇒ B2 − 4C ≤ B2 and B ≤ 0

⇐⇒ C ≥ 0 and B ≤ 0. (B.14)

Thus for general hessians, diagonal curvature matrixCn(α,Q) = Λ(α) is in Cs if and only if
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(α1 − a(x)) (α2 − c(x)) ≥ b2(x), ∀x (B.15)

α1 + α2 ≥ a(x) + c(x) ∀x. (B.16)

We use these conditions to find appropriateα1 andα2 values.

B.2.2 Curvature of Constant Times the Identity Matrix

In this section, we discuss a special case of diagonal curvature matrix: matrix of constant times

the identity matrix. LetCn have the following structure,i.e.,

Cn ∈ C, C = {Cn = αI : α ≥ 0} . (B.17)

The majorization conditions (B.15) and (B.16) simplify to

α2 − α(a(x) + c(x)) + a(x)c(x) − b2(x) ≥ 0, ∀x (B.18)

1

2
(a(x) + c(x)) ≤ α, ∀x. (B.19)

Simplifying (B.18) further leads to

α ≥ 1

2
(a(x) + c(x)) +

1

2

√

(a(x) − c(x))2 + 4b2(x), ∀x

or α ≤ 1

2
(a(x) + c(x)) − 1

2

√

(a(x) − c(x))2 + 4b2(x), ∀x. (B.20)

Combining (B.20) and (B.19), we have

α ≥ 1

2
(a(x) + c(x)) +

1

2

√

(a(x) − c(x))2 + 4b2(x), ∀x. (B.21)

Intuitively, for fast convergence we wantα to be as small as possible subject to (B.21). This is

shown rigorously in following sections.
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B.3 Minimum Spectral Radius Criterion

The local convergence rate of the quadratic surrogate (B.3)is governed by the spectral radius

of I − C−1
n ∇2 Ψ

(

x(n)
)

. It involves inverting the curvature matrix. For simplicitywe focus here

on the minimum spectral radius for separable quadratic surrogates,i.e., Cn =







α1 0

0 α2






where

α1, α2 ≥ 0. Let the hessian matrix have the general form∇2 Ψ
(

x(n)
)

=







an bn

bn cn






where

an = a(x(n)), bn = b(x(n)), cn = c(x(n)). In this section, we ignore the majorization constraint

(B.5), and solve the following minimization problem:

(α̂1, α̂2) = arg min
α1,α2≥0

ρ (D) , D
△
= D(α1, α2) = I −







α1 0

0 α2







−1 





an bn

bn cn






. (B.22)

The minimum valueρ (D(α1, α2)) provides a lower bound on the root convergence factor.

B.3.1 Diagonal Curvature Matrix

Let λ be an eigenvalue ofD, thenρ(D) = maxλ∈eig{D} |λ| . The determinant of(D − λI) is

det{D − λI} = det

















1 − an

α1
− λ − bn

α1

− bn

α2
1 − cn

α2
− λ

















=

(

1 − an

α1
− λ

)(

1 − cn
α2

− λ

)

− b2n
α1α2

= λ2 +B1λ+ C1, (B.23)

where

B1
△
= B1(α1, α2) =

an

α1

+
cn
α2

− 2

C1
△
= C1(α1, α2) =

(

1 − an

α1

)(

1 − cn
α2

)

− b2n
α1α2

. (B.24)
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The eigenvalues satisfydet{D − λI} = 0, and are

λ =
1

2

(

−B1 ±
√

B2
1 − 4C1

)

⇒ ρ =
1

2

(

|B1| +
√

B2
1 − 4C1

)

,

where

B2
1 − 4C1 =

[(

1 − an

α1

)

−
(

1 − cn
α2

)]2

+
4b2n
α1α2

≥ 0.

The minimization problem becomes

(

β̂1, β̂2

)

= arg min
β1,β2∈R

f(β1, β2), f(β1, β2) = |2 − β1 − β2| +
√

(β1 − β2)
2 + 4dnβ1β2,

(B.25)

where

β1 =
an

α1
, β2 =

cn
α2
, dn =

b2n
ancn

.

Let f1(β1, β2) = |2 − β1 − β2| andf2(β1, β2) =
√

(β1 − β2)
2 + 4dnβ1β2.

f2(β1, β2) is symmetric with respect toβ1 andβ2. The first order partial derivative off2(β1, β2)

with respect toβ1 is

∂

∂β1
f2(β1, β2) =

(β1 − β2) + 2dnβ2
√

(β1 − β2)
2 + 4dnβ1β2

.

The second order partial derivative off2(β1, β2) with respect toβ1 is

∂2

∂β2
1

f2(β1, β2) =

√

(β1 − β2)
2 + 4dnβ1β2 − [(β1 − β2) + 2dnβ2]

(β1−β2)+2dnβ2√
(β1−β2)

2+4dnβ1β2

(β1 − β2)
2 + 4dnβ1β2

=
4dnβ

2
2(1 − dn)

[

(β1 − β2)
2 + 4dnβ1β2

]
3
2

.

Assumex(n) is a local minimum ofΨ(x) whereΨ is locally strictly convex, thenancn > b2n and

an, cn > 0, so 0 ≤ dn < 1 . Thusf2(β1, β2) is strictly convex andf(β1, β2) is strictly convex

becausef1(β1, β2) is also strictly convex. It has a unique minimum which has to be atβ1 = β2



129

because it is symmetric with respect toβ1 andβ2. Let z = β1 = β2, then rewritef(β1, β2) as

f(z) = 2 |1 − z| + 2 |z|
√

dn

=



























2z
(√

dn + 1
)

− 2, z ≥ 1

2z
(√

dn − 1
)

+ 2, 0 ≤ z ≤ 1

−2z
(√

dn + 1
)

+ 2, z ≤ 0

. (B.26)

Fig. B.1 shows this 1D functionf(z) whendn = 0.5. More generally, it has a unique minimum at

z = 1 for all 0 ≤ dn < 1. Therefore, the solution to (B.22) is

α̂1 = an, α̂2 = cn. (B.27)

The root convergence factor for this optimum is

ρ2 =
1

2
f(1) =

√

dn. (B.28)

Unfortunately, in general this design does not necessarilysatisfyCn � ∇2 Ψ(x), ∀x, but it does

majorizeΨ(x) locally to x(n).

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

14

z

f(z)

f(
z)

Figure B.1:f(z) whendn = 0.5.

B.3.2 Curvature of Constant Times the Identity Matrix

In this section, we discuss a special case of diagonal curvature matrix: matrix of constant times

the identity matrix. LetCn have the following structure,i.e.,

Cn ∈ C, C = {Cn = αI : α ≥ 0} (B.29)
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The minimizing problem (B.22) simplifies to

α̂ = arg min
α≥0

ρ (D(α)) , D
△
= D(α) = I − 1

α







an bn

bn cn






. (B.30)

Let λ be an eigenvalue ofD, thenρ(D) = maxλ∈eig{D} |λ| . The determinant of(D − λI) is

det{D − λI} = det

















1 − an

α
− λ − bn

α

− bn

α
1 − cn

α
− λ

















=
(

1 − an

α
− λ
)(

1 − cn
α

− λ
)

− b2n
α2

= λ2 +B2λ+ C2,

where

B2
△
= B2(α) =

an + cn
α

− 2

C2
△
= C2(α) =

(

1 − an

α

)(

1 − cn
α

)

− b2n
α2
.

Let det{D − λI} = 0, and then

λ =
1

2

(

−B2 ±
√

B2
2 − 4C2

)

⇒ ρ =
1

2

(

|B2| +
√

B2
2 − 4C2

)

,

where

B2
2 − 4C2 =

[(

1 − an

α

)

−
(

1 − cn
α

)]2

+
4b2n
α2

≥ 0.

The minimizing problem (B.30) becomes

α̂ = arg min
α≥0

f(α), f(α) =

∣

∣

∣

∣

2 − an + cn
α

∣

∣

∣

∣

+

√

(an − cn)2 + 4b2n

α
. (B.31)

We solve it as follows.
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• When
(

2 − an+cn

α

)

≥ 0 ⇒ α ≥ 1
2
(an + cn)

f(α) = 2 +

√

(an − cn)2 + 4b2n − (an + cn)

α

= 2 +

√

(an + cn)2 + 4(b2n − ac) − (an + cn)

α
. (B.32)

Assumex(n) is a local minimum ofΨ(x) whereΨ is locally strictly convex, then

ac > b2n, an > 0, cn > 0 ⇒
√

(an + cn)2 + 4(b2n − ac) − (an + cn) < 0.

f(α) is an increasing function ofα. Therefore,arg minα f(α) = 1
2
(an + cn) whenα ≥

1
2
(an + cn).

• When
(

2 − an+cn

α

)

≤ 0 ⇒ α ≤ 1
2
(an + cn)

f(α) = −2 +

√

(an − cn)2 + 4b2n + (an + cn)

α
. (B.33)

f(α) is a decreasing function ofα. In fact, ifα is too small, then the root convergence factor

ρ = 1
2
f(α) > 1 and the algorithm will diverge (See Fig. B.2). Therefore,arg minα f(α) =

1
2
(an + cn) whenα ≤ 1

2
(an + cn).

Fig. B.2 shows an example of this 1D functionf(α) for an = 1, bn = 1.1 andcn = 4.3. More

generally, it has a unique minimum atα = 1
2
(an + cn) for all ancn > b2n. The solution to (B.30) is

α =
1

2
(an + cn). (B.34)

The root convergence factor in this case is

ρ1 =
1

2
f

(

1

2
(an + cn)

)

=

√

(an − cn)2 + 4b2n

an + cn
. (B.35)

One can verify thatρ1 > ρ2.
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Figure B.2:f(α) for an = 1, bn = 1.1 andcn = 4.3. The minimum is atα = 2.65.

B.4 Optimal Curvatures of Minimum Spectral Radius Crite-
rion

We have derived sufficient conditions (B.15) and (B.16) for the majorization constraint (B.5)

for separable quadratic surrogates. We have found the optimal diagonal curvature matrix (B.27) of

the minimum spectral radius criterion without the majorization constraint. For the curvature matrix

of constant times the identity matrix, a special case of diagonal curvature matrix, the corresponding

results are given in (B.21) and (B.34). In this section, we put the constraints and optimal criterion

together and derive optimal curvatures for separable quadratic surrogates.

B.4.1 Diagonal Curvature Matrix

We find the optimal curvaturẽCopt(Ψ,x
(n); C) satisfying the following definition:

1. Separable quadratic surrogates

C =











Cn = Cn(α1, α2) =







α1 0

0 α2






: α1, α2 ≥ 0











.

2. Cn satisfies the sufficient majorization condition,i.e.

Cn � ∇2 Ψ(x), ∀x

Cn � 0.
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3. The optimal criterion is

(α̂1, α̂2) = arg min
α1,α2≥0

ρ
(

I − C−1
n ∇2 Ψ

(

x(n)
))

.

According to (B.15), (B.16) and (B.22), the minimization problem simplifies to

(α̂1, α̂2) = arg min
α1,α2≥0

f(α1, α2),

f(α1, α2) =

∣

∣

∣

∣

2 − an

α1
− cn
α2

∣

∣

∣

∣

+

√

(

an

α1
− cn
α2

)2

+ 4
b2n
α1α2

s.t. (α1 − a(x)) (α2 − c(x)) ≥ b2(x), ∀x

α1 + α2 ≥ a(x) + c(x) ∀x.

We have not found closed form solution to these conditions.

B.4.2 Curvature of Constant Times the Identity Matrix

We find the optimal curvaturẽCopt(Ψ,x
(n); C) satisfying the following definition:

1. Curvature matrix of constant times the identity matrix

C = {Cn = Cn(α) = αI : α ≥ 0} .

2. Cn satisfies the sufficient majorization condition,i.e.

Cn � ∇2 Ψ(x), ∀x

Cn � 0.

3. The optimal criterion is

α̂ = arg min
α≥0

ρ
(

I − C−1
n ∇2 Ψ

(

x(n)
))

.
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According to (B.21) and (B.30), the minimization problem simplifies to

α̂ = arg min
α≥0

f(α)

f(α) =

∣

∣

∣

∣

2 − an + cn
α

∣

∣

∣

∣

+

√

(an − cn)2 + 4b2n

α

s.t. α ≥ h(x), ∀x

h(x) =
1

2
(a(x) + c(x)) +

1

2

√

(a(x) − c(x))2 + 4b2(x).

Since the majorization constraint (B.21) holds for allx, we haveα ≥ 1
2
(an + cn). According

to the derivation in Section B.3.2,f(α) is an increasing function ofα for this case. Therefore, the

optimal curvature matrix of constant times the identity matrix is

C̃opt = αoptI (B.36)

αopt = max
x

{1

2
(a(x) + c(x)) +

1

2

√

(a(x) − c(x))2 + 4b2(x)
}

. (B.37)

The root convergence factor in this case isρ(αopt) = 1
2
f(αopt).

In future work, it could be interesting to explore the difference between convergence usingαopt

and using (B.34).
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