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ABSTRACT

Statistical Image Reconstruction and Motion Estimatianieage-Guided
Radiotherapy

by
Yong Long

Co-Chairs: Jeffrey A. Fessler and James M. Balter

Image reconstruction and motion estimation are very ingmarfor image-guided radiotherapy
(IGRT). Three-dimensional reconstruction of patient anat using X-ray computed tomography
(CT) allows identification of the location of a tumor priortteatment. The locations of tumors may
change during actual treatment due to movement such asatsgimotion. Motion estimation
helps optimize the accuracy and precision of radiotherapat more of the normal surrounding
tissue can be spared. This dissertation addresses sewp@tant issues related to these two core
components of IGRT.

Firstly, we developed two new separable footprint (SF) gctyr methods for X-ray cone-
beam CT. The SF projectors approximate the voxel footpuntfions as 2D separable functions.
The SF-TR projector uses trapezoid functions in the traasdirection and rectangular functions
in the axial direction, whereas the SF-TT projector usepeizaid functions in both directions.

Both SF projector methods are more accurate than the destdwiven (DD) projector, which is a

Xiii



current state-of-the-art method in the field. The SF-TT getyr is more accurate than the SF-TR
projector for rays associated with large cone angles. Intiaag the SF-TR projector has similar
computation speed with the DD projector and the SF-TT ptojas about two times slower.

Secondly, we proposed a statistical penalized weightest-Eguares (PWLS) method with
edge-preserving regularization to reconstruct two basasenals from a single-energy CT scan
acquired with differential filtration, such as a split filtera bow-tie filter. It requires only the use
of suitable filters between the X-ray tube and the patient béth filtration methods, the proposed
PWLS method reconstructed soft tissue and bone images witbrIRMS errors, reduced the
beam-hardening artifacts much more effectively and preddower noise, as compared with the
traditional non-iterative Joseph and Spital method.

Thirdly, we conducted an objective characterization ofitfileience of rotational arc length on
accuracy of motion estimation for projection-to-volumegtting during rotational therapy. Simu-
lations illustrate the potential accuracy of limited-aaglojection-to-volume alignment. Registra-
tion accuracy can be sensitive to angular center, tends ltmier along direction of the projection

set, and tends to decrease away from the rotation center.
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CHAPTER 1

Introduction

1.1 Image-Guided Radiotherapy (IGRT)

Radiotherapy is a treatment method for cancer and otheasksé\bout 40% of cancer patients
have radiotherapy as part of their treatment [118]. Ra@i@tpy uses “radiation”, usually X-rays,
to destroy cancer tissue. The radiation dosage is spetadgltyed for each patient, according to the
position, size and shape of the tumor, the patient’s bodpesivathat area and the patient’s general
health [119]. Since its first use to treat cancer, radiognetas continued to evolve with numerous
changes and developments to accomplish its ultimate gafexttive destruction of cancer tissue
while delivering a minimal dose of radiation to adjacentltigatissues [52].

X-ray Computed Tomography (CT) scanners were introductadhnic practice in the early
1970s [7]. This machine takes a series of 2D projection grdiohs of the patient’s tumor and
internal organs at different angles while the X-ray sountates around the patient. These radio-
graphs are put together by reconstruction methods to oataimimage of the anatomy of the body
being scanned. This 3D image of spatial distribution ofratédion coefficients shows where the
tumor is, how big it is and how close major body organs are ¢éotteatment area, which enables
physicians to plan radiotherapy beams more precisely [116]

However, the locations of tumors may change during treatmhea to constant movement such



as respiratory motion [12,138]. Some tumors in the thoraaoid abdominal regions may move as
much as 3 cm peak-to-peak during radiotherapy treatmenhniques such as Intensity Modulated
Radiotherapy (IMRT) [113] minimize the dose to surroundimgmal critical structures, using
beam shaping devices such as “multi-leaf” collimatorsdlslutters) to allow shape and intensity
changes of radiation beams during treatment. Image-guatidtherapy (IGRT) [117] is evolving
to provide improved planar or X-ray volume imaging duringgttment. The movement of the target
tumor and critical organs can be estimated by registrateiwéen a reference image taken before
treatment and these image data obtained during treatmdrg.|loCal configuration information
enables doctors to target the radiation beam at tumorsgaigcand consequently spare the normal

surrounding tissue.

1.2 Image Reconstruction for X-Ray Computed Tomography
(CT)

Iterative statistical methods for 3D tomographic imagerestruction [34,74,147] offer numer-
ous advantages such as the potential for improved imagéyaatl reduced dose, as compared to
the conventional methods such as filtered back-projec&@¥P] [30]. They are based on models
for measurement statistics and physics, and can easilypacate prior information, the system
geometry and the detector response.

The main disadvantage of statistical reconstruction naghse the longer computation time
of iterative algorithms that are usually required to mirgmicertain cost functions. For most
iterative reconstruction methods, each iteration requoee forward projection and one back-
projection, where the forward projection is roughly a detcred evaluation of the Radon trans-
form, and the back-projector is the adjoint of the forwardjpctor. These operations are the

primary computational bottleneck in iterative reconstimt methods, particularly in 3D image



reconstruction. A variety of methods for 3D forward and b@ckjection have been proposed
[9, 14,26, 38,79-81,93, 120, 167]. All of them provide sorampromise between computational
complexity and accuracy. We discuss projector methods ap@in 3.

Material attenuation coefficients depend on the energyeirtbident photons. An X-ray beam
in clinical practice is usually composed of individual pbie$ with a wide range of energies, and
each photon energy is attenuated differently by the obj€&bis energy dependence causes arti-
facts in reconstructed images, such as beam-hardenifgctst[18]. The beam becomes “harder”
(its mean energy increases) as it passes through the olgieatige the lower-energy photons are
absorbed more rapidly than the higher-energy photons. diésgy dependence also allows the
possibility of basis-material decomposition [5, 48, 6641112, 144]. For radiotherapy, an accurate
image of attenuation coefficients at a higher treatmentggnean be synthesized by combining
component images separated at low diagnose energies. dthigage image ensures precise does
calculation, enhances visualization and thus segmentatianatomy for radiotherapy treatment
planing, and may lead to future improvements in reducinggienartifacts from highly attenuating
materials.

Dual-energy (DE) CT methods are the most common approachesdonstructing two basis
materials (soft-tissue and bone). However, DECT methogigire either two scans or specialized
scanner design, such as such as fast kVp-switching [48db@];source CT [112] and dual-layer
detectors [39,61]. We propose an alternative method in @@ndpwhich uses measurements from

a single-energy scan acquired differential filtration,tsas a X-ray split or bow-tie filter.

1.3 Motion Estimation for IGRT

Motion estimation provides movement information of the turand other critical organs to

improve the effectiveness and efficiency of radiotherapgtinent. In general, 3D CT volumes are



available before treatment and can be used as referencesnabgile 2D projection radiographs at
a limited range of angles are acquired during treatmentrd aige two classes of methods for esti-
mating motion during treatment. One may reconstruct 3Detavglumes using those radiographs
from limited angles, and then carry out 3D-3D image domagisteation between a reference
image and target images. Such reconstructions are caltedsynthesis [41,67,124,150]. One
may also use 2D-3D image registration technology to estomamotion directly from those radio-
graphs without reconstruction [77,95,106,114,115,158,163,164]. When the angular range of
the CT scan is too smalk( 60°), the reconstructed images are corrupted with artifacestdyoor
sampling, which affects the consequent image registratoshort angular range also affects the
performance of 2D-3D image registration due to limited defation information presented in the
projection direction. We investigate the influence of amguhnge to 2D-3D image registration in
Chapter 5. This investigation may help determine the triig@ssociated with various parameters
for position monitoring, such as projection arrangemeats&/dose, and temporal/spatial accuracy

limits [11, 90, 109, 140].

1.4 Contributions and QOutline

Image reconstruction and motion estimation are very ingrdffior IGRT. This thesis addresses
several important issues related to these two core comp&nen

We developed two new separable footprint (SF) projectohiods that approximate the voxel
footprint functions as 2D separable functions. Becaus@é@®teparability of these footprint func-
tions, calculating their integrals over a detector cellrisagly simplified and can be implemented
efficiently. The SF-TR projector uses trapezoid functianthie transaxial direction and rectangu-
lar functions in the axial direction, whereas the SF-TT pctpr uses trapezoid functions in both

directions. Simulations and experiments showed that bBtpr§jector methods are more accurate



than the distance-driven (DD) projector [26], which is areuat state-of-the-art method in the field.
The SF-TT projector is more accurate than the SF-TR projéotaays associated with large cone
angles. The SF-TR projector has similar computation spatidtiie DD projector and the SF-TT
projector is about two times slower. To save computationraathtain relative accuracy, one may
use the SF-TR projector for voxels that are near the X-raycsplane, where the cone angles are
small and the rectangle approximation is reasonable, amthesSF-TT projector for other voxels
associated with large cone angles.

We proposed a statistical penalized weighted least-sg(B&/LS) method with edge-preserving
regularizer for two-material decomposition from a singlegergy CT scan acquired with differen-
tial X-ray filters, split and bow-tie filters. Differentiallfration produced incident spectra vari-
ation among projection rays. We also proposed an optinazdtansfer method with separable
guadratic surrogates to monotonically decrease the PWIsEfaaction which was non-convex
and non-linear. We first reconstructed the bone-correcBfe images using the Joseph and Spital
method, and separated the soft and bone components by hdlités initialize the iterative algo-
rithm. The proposed PWLS method reconstructed soft tisadébane components with 2Z5and
40% lower RMS errors respectively, and reconstructed densiity $um of soft tissue and bone)
images and linear attenuation coefficient images at 511 Kawv40% lower RMS errors than the
JS-FBP method. The PWLS images produced less beam-hagdemifacts and noise than the
JS-FBP method. The split and bow-tie filter led to similaults

We investigated the fundamental accuracy limit of estingatocal configuration of tumors
using projection-to-volume alignment between a small apraf radiographs acquired during arc
therapy and a reference CT volume. The projection-to-velaiignment procedure used a non-
rigid model to describe motion in thorax area, a cost fumctionsisting of a least-squared error

metric and a simple regularizer that encourages local filikty and a 4-level multi-resolution



scheme with a conjugate gradient method to optimize the fomstion. The performed exper-
iments demonstrated the potential accuracy of limitedepgojection-to-volume registration.
Registration accuracy can be sensitive to angular cergrdstto be larger along the projection
direction, and tends to decrease away from the rotatiorecemhereas registration accuracy tends
to be maintained at different noise levels and extents adrd&dition. This investigation indicates
the potential of position monitoring of high contrast tumaduring treatment using a small spread
of projections without implanted markers.

This thesis is organized as follows. Chapter 2 briefly introgs the background on princi-
ples of X-ray CT, image registration and optimization tf@nsnethods. Chapter 3 introduces our
proposed 3D forward and back-projection methods for X-rdyuSing separable footprints (SF).
Chapter 4 presents the proposed PWLS method for two-mbkdecamposition from a single scan.
Chapter 5 describes our investigation into the influenceofength on accuracy of motion esti-
mation for projection-to-volume targeting during rotatad therapy. Finally, we summarize our

work and future research directions in Chapter 6.



CHAPTER 2

Background

2.1 Principles of X-Ray CT

X-ray CT produces images of the X-ray attenuation coefficadrthe object or patient being
scanned. A typical construction of a X-ray scanner involaesource and a detector array (see
Fig. 2.1). The source and the detector array are fixed witheetsto each other in space on a C-
arm or a gantry and trace a path or orbit around the patierdg.sbairce produces incoherent X-ray
radiation and detectors record the intensity of the raoinaéxiting the patient. As the source and
the detector array scan the patient, each source positobdetector element pair corresponds to a
thin beam of radiation that passes through the patient gmrésents one measurement. The final
image is generated from these measurements utilizing tie panciple that the internal structure

of the body can be reconstructed from multiple X-ray prajats.
2.1.1 General Measurement Model

We adopt the following general model to describe the measene physics for X-ray CT. The
detector measures X-ray photon emerging from the objedt@at> 1 different incident spectra.
Based on current technology, different incident spectra loa realized by either scanning with

different X-ray spectra, such as fast kVp-switching [4§,&0d dual-source CT [112], or by dual-



X-ray source

Figure 2.1: Schematic diagram of a X-ray scanner.

layer detectors [39, 61]. Lét;,, denote the measurement for the &y, which is theith ray for
the mth energy scan, wheme = 1,..., My, i = 1,..., Ng, and Ny is the number of rays. For
notational simplicity we assume that the same number ofaeyseasured for each incident spec-
trum, but the physics model and methods presented in theedétion can be easily generalized
to cases where different incident spectra have differentler of recorded rays. For a rd,, of

infinitesimal width, the mean of the projection measuremenuld be expressed as:

EulYim| = Uim = /[Z- &) exp(—/ﬁv w(Z, &) dﬁ) d€ +7rim, (2.1)

wherep(Z, £) denotes the 3D unknowspatially- and energy-dependent attenuation distribution,
fcim -d¢ denotes the “line integral” function along ling,,,, and the incident X-ray intensity,,, (£)
incorporates the source spectrum and the detector gaireality; the measurements suffer from
background signals such as Compton scatter, dark currdm@ise. The ensemble mean of those
effects (for the ray’,,,) is denoted as;,,. We treat eacH,,,(£) andr;,, as known nonnegative
quantities. In practicd,,,(£) can be determined by careful calibration [122], apgare estimated
by some preprocessing steps prior to iterative reconstnu¢25, 156, 157].

From (2.1), we see thatthe CT measuremémsb}f\f1 indirectly correspond to the projections

of an object’s attenuation coefficientz, £). The overall goal of X-ray CT image reconstruction



is to reconstruct(z, £) from {V;,, }ir4,.
2.1.2 Cone-Beam Geometry

Any reconstruction method must account for the geometnhefitnaging system, which is
“hidden” in the line integrals{fﬁim -d¢} in (2.1). This section elaborates on the geometry and
coordinate systems.

Axial cone-beam projection space is characterized by thm@ependent indicess(t, 3) and
two distance parameterd(,, Dyq), where 5 denotes the angle of the source point counter-
clockwise from they axis, (s,t) denote the detector coordinatds,, denotes the source to ro-
tation center distance ard,q denotes the isocenter to detector distance. (see Fig. h2)axial

cone-beam geometry is a special case of helical cone-beamegey with zero helical pitch.
t

Z —
1 b1
y
e o
NG e Dy
(/// ﬁ ] \)
~._Dbo 0 _ - X
- _ 0 -
Source ~ - s- |- -~ Detector
Source trajectory

Figure 2.2: Axial cone-beam flat-detector geometry.

For simplicity of presentation, we focus on the flat-dete@wial cone-beam geometry (see
Fig. 2.2) hereafter. The formulas here and the methods ipteh& generalize easily to arc detec-
tors and helical geometries.

The source lies on points on a circle of radilg centered at the rotation center on the- 0
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plane. The source positigiy can be parameterized as follows:

—Dyysin 3
Po= | Dy cos G |- (2.2)
0
For simplicity, we present the case of an ideal point soufcéays.
Let (s,t) denote the local coordinates on the 2D detector plane,emhes-axis is perpendicu-
lar to thez-axis, and the-axis is parallel to the-axis. A point on the 2D detector can be expressed

as
s cos 3+ Doq sin 8

P1=|ssin3— Dygcosf | > (2.3)
t
whereDyq = Dy — Dy is the isocenter to detector distance. The direction veadtarray fromp,

to p; can then be expressed as

. D1 — Do
€ = 1 =
le—poH
scos 3 + Dggsin 8 sin  cos #
1
= in 3 — = | _ cos y , 2.4
/DLt 2t ssin 3 — Dgq cos 3 cos p cos @ (2.4)
t sin 6
where
vo= v(s)éarctan< i ) (2.5)
Dsd
A
o = @(s,06)=(s)+ 08 (2.6)
0 — 0(s,t) 2 —arctan | —— |, 2.7)

andy andd denote the azimuthal and polar angle of the ray figno p, respectively.
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Thecone-beam projectionof a 3D objectu(¥), wherez = (x,y, z), are given by
pstg) = [ u@a 29
L(s,t,03)
where the integral is along the line segment:

L(s,t,8) = {po+Le:Le0,Ly]}
L, 2 Dt 2.9)

For a pointt = (z, y, z) between the source and detector, the azimuthal and pol&sanithe

1>

ray connecting the source amdare

o(Bx,y) = ﬂ+arctan<%) (2.10)

0(3;x,y,z) = —arctan - '
(5:2,4,2) t (¢<Tp<ﬁ;x,y>>2+<ds<ﬂ;x>y>>2>

(2.11)
The projected coordinate oft is
(32, y)
T(B;2,y) = Dya——=—-+, 2.12
(5 y) dds(ﬁ; x,y) ( )
where
VAN .
(B, y) = xcosf+ ysinf,
A
ds(ﬁaxvy) = DSO_TJ_(ﬁ;xay)a
7.(8;x,y) = —xsin § + ycos (5. (2.13)

The projected coordinate is

. o Dsd
LBz, y,2) = Zids(ﬂ; o) (2.14)
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Given the points in the support of a 3D objeqtr), the support of its cone-beam projection
function on the detector plane can be determined by #red¢ coordinates of projections of those
points. Note that a object close to the source has a biggeosuiihan the same object close to the
detector.

In practice, it is not feasible to evaluate the cone-bearjeptions (2.8) of an arbitrary object
w1(Z) on the fly. All the existing projectors make approximatiof®at computing them based
on the features of the geometry of imaging system and thecbligelf, as do our proposed SF

projectors (Chapter 3).
2.1.3 Image Reconstruction Methods

The overall goal of x-ray CT image reconstruction is to restaunct the underlying object be-

ing imaged from the projection measurements, particulafly, £) from {Yim}fvdl in transmission

tomography. Image reconstruction methods or algorithns lga divided into two main cate-
gories: analytical methods, such as filtered back-praec{FBP) and its extension, Feldkamp
(FDK) cone-beam approach [30], and iterative methods, sischtatistical methods. Weighted

least squares (WLS) and penalized likelihood (PL) recoesibn are statistical reconstruction

methods.
Feldkamp (FDK) Cone-Beam Approach

Filtered backprojection (FBP) is the most common analytieeonstruction technique that is
based on the Radon transform. The basic idea behind thisoshétho “smear” measured sino-
gram values back into the object space along the correspgmdys. This operation is called the
backprojection operator that is thadjoint operator of the forward projection operation or Radon

transform.
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FDK approach [30] is the extension of FBP for axial cone-bg@wmetry. The basic idea of
the FDK method is to filter the data measured along each roweofletector as if it were part
of a 2D fan-beam acquisition, and then to perform 3D baclqatajn. With this approximation,
the central slice is reconstructed exactly as it would be dryventional 2D fan-beam methods,
whereas the non-central slices have artifacts that ineregs distance from the central slice.

Conventional analytical methods, including FBP and FDKuasesingle monoenergetic prop-
erty of the X-ray spectrum:

Iim(€) = Li(€) 6(€ — &), (2.15)

where&, denotes the single energy, at(d) denotes a Dirac impulse. We ignore the indefrom
now on sincel/, = 1 for single energy measurements. Under this assumptiomé&aa intensities

in (2.1) simplifies to

Yi = Li(&) exp (—/ (@, &) dé) + 75 (2.16)
L;
The estimated line integrals 2 fci wu(¥, &) d¢ can be obtained by taking the logarithm of the
measurements:
R L
0,2 log< i ) ~ / (7, &) de. (2.17)
Yi — 15 L;

For cone-beam geometry, the goal of FDK image reconstnudési¢o estimate:(¥) at energy
&, from measured cone-beam projectiqi(s, ¢; 5) (akin to /;) that are obtained from (noisy)
samples of projection data using (2.17).

The FDK algorithm for a flat-detector axial cone-beam scaonasists of the following steps
[30].

e Step 1. Compute weighted projections

Dyy+/1 Dy)?
VD + 8%+ 12

ﬁ(&tﬁ) :wl(s>t)ﬁ(s>t;ﬁ)> wl(s,t) =
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e Step 2. Filter each row of those projections using a ramg filte):

P(s,t;8) = p(s, t; B) * h(s). (2.19)

The frequency response of ramp filte(s) is H (v) = |v|.

e Step 3. Perform weighted cone-beam backprojection of thilbseed projections:

1 2 Dsd Dsd
. _ 4 . ) d
/L(.T,y,Z) 2/0 w2(x7y>ﬁ)p<Dso_yﬁx,6’7 Dso—y527 ﬂ) 67
D,
wy(z,y,3) = m> (2.20)

where the factor[%_d% is a magnification factor, and the rotated coordinétesy;) is defined
aszg 2 x cos 3 + ysin 8 andyg 2 5 sin 3 + y cos (3.
In reality, the ideal ramp filter cannot be implemented orcidite data and must be set zero
beyond certain cutoff frequency. Also note that ramp filtepdifies noise. Therefore, an optimal

reconstruction is not possible for FDK approach from noisyjgctions.
Statistical Image Reconstruction

Statistical image reconstruction methods are based onureraent statistics and physics mod-
els and offer numerous advantages, such as the potentiahjpooved bias-variance performance
and providing quantitatively accurate CT values.

For the case of normal clinical exposures, the X-ray CT messants are often modeled as the
sum of aPoisson distribution representing photon-counting statisticd J2and a zero-mean normal

distribution representing additive electronic noise:
Yim ~ Poisson{%;,,} + N (0, Uf), (2.21)

whereo, denotes the standard deviation of electronic noise. Becéi81) does not leads to a

tractable likelihood function, an approximate shifted92on likelihood function that matches the
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first and second moments is often used [131, 157]:
Yim + 0c ~ Poisson{ g, + 02} . (2.22)
Absorbing the electronic noise intg,,, we obtain the following measurement statistics

Yim ~ Poisson{/]z- (5)exp(_/£

We discretize the continuous attenuation functigf, £) and parameterize it using basis func-

(Z, ) dz) de +rim} . (2.23)

im

tions that are separable in both the spatial and energy dimes[5, 24,48, 142, 144] as follows,

Lo Np

p(EE) = BE) bi() xy (2.24)

I=1 j=1
where 5,(€) is the energy-dependent mass attenuation coefficient dtthmaterial type (units
cm?/g), {b;(Z)} are unitless spatial basis functions, ang is the unknown density of th&h
material type in thgth voxel (units g/cn). Now the reconstruction goal becomes to estimate the
object{x;;}>*, from {V,}.

For simplicity, we use thenonoenergetic measurement model given in (2.16) to demonstrate

the ideas behind statistical image reconstruction. In #se ©f a single monoenergetic source, we

usually assume
Np
(T, E0) = B(Eo) bj(E) z; (2.25)
j=1

for some spatial basis functiohg ), such as cubic voxels. Substituting into (2.16) yields
Ui = Li(&) e~ AT 4y (2.26)
whereA is the system matrix with entries

ai; £ /E b (%) de. (2.27)
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Then (2.23) simplifies to
Y, ~ Poisson{]z-(c‘:o) e~ Afo)[Azl 4 7‘,'} (2.28)

The reconstruction goal is to estimate the vector of lindsgnaiation coefficient values =
(z1,...,zy,) from {V;} N .

Penalized-Likelihood (PL) Reconstruction

For the mono-energetic and single material object mod28(2the negative log-likelihood has

the form
Ng ~ ~
~L(z) = Z{nlog(m(w» ~Yi(x)}
Ny
= Z {YZ- log (IZ-(SO) e~ Afo)lAzl 4 n-) — (IZ-(EO) e~ Afo)lAxli | n)} (2.29)

whereY;(x) 2 E[Y;|z| is the mean of the measurement data along gatfWe simplify the
subscriptli to 7 ). Objective functions based solely on the negative loghiifood (2.29) per-
form poorly due to the ill-conditioned nature of tomographéconstruction. Unregularized meth-
ods provide increasingly noisy images with iteration [132p remedy this problem, we add a
roughness penalty term or “prior” [36] to the negative ldkglihood, resulting in the following

penalized-likelihood (PL) cost function:
V(x) =—L(x) + fR(x), (2.30)
where the (pairwise) penalty term has the following form

R(@) =" 3 wla; — ), @3y

J=1 keN;

where)(-) is an edge-preserving potential function [42, 70] avids some neighborhood of voxel

g
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The effect of the penalty term is to discourage disparitesvieen neighboring voxel values,
while the effect of the first term in (2.30) is to encouragesggnent with the measured data. These
are usually conflicting goals, and the smoothing paraméteontrols the trade-off between the
two.

Penalized Weighted Least-Squares (PWLS) Reconstruction

The Poisson log-likelihood in (2.29) is based on the siatibproperties of the tomographic
reconstruction problem. However, because Poisson neglatyvlikelihood (2.29) is non-convex
and non-quadratic, the minimization algorithms requirad be complex. To simplify, one can
apply a second-order Taylor expansion to the Poisson lagithiood in (2.29) [31, 32,125]. This

guadratic approximation leads to weighted least squarésS)Wkelihood function:

~L@) = 3wy (— log(Y:) ~[Aa],)* (2.32)

wherew; values are statistical weighting factors that depend onrtbdel for the measurement

statistics. For the case of regular Poisson likelihaodz % For large means,e., high
incident intensitieg; (&), the Poisson distribution is approximately Gaussian byQ@etral Limit
Theorem [13]. Gaussian approximation could also lead tohe likelihood function (2.32).
Plugging (2.32) into (2.30) yields penalized weighted festpiares (PWLS) cost function. In
practice, one often uses simply = Y;.

Gradient-based iterative optimization algorithms arewfapplied to minimize (2.30) subject

to certain object constraints such as non-negativity:

& =argmin ¥(x). (2.33)

x>0

The column gradient of the cost function in (2.30) has thimWimatrix form:

VU(x) =—A'diag{Y;/Yi(x) — 1} V,Y(x) + SVR. (2.34)
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From (2.28) and (2.34), we can see that one forward projectml one backprojection are involved
in each iteration. Therefore, fast forward and back-prgjecare essential in computation time
reduction. This is the main motivation for our work on the diepment of fast and accurate 3D
forward and back projectors in Chapter 3.

Iterative Reconstruction of A Region of Interest (ROI)

In many cases, the region of interest (ROI) needed for disigne much smaller than the field
of view (FOV) that covers the whole irradiated volume. Onetsapplication is cardiac cone-beam
CT, where the heart defines the ROI. When the ROI is known iamlcke.g., from a scout scan,
a ROI reconstruction could save resources in terms of coatipattime and memory use.

For exact and approximative analytical reconstructionhoés based on FBP, ROI reconstruc-
tion is possible without any extra effort. However, itevatreconstruction methods use the forward
projection and the measurement to calculate an updatentipsoves the image. This implies the
requirement that the entire FOV has to be reconstructecctidtibuted to the absorption. Ziegler
et al. [168] proposed the following solution to iterative recanstion of a ROI.

Let p = Az denote the forward projection of the density vecior= (zy,...,z,,). The

general idea of iterative ROI reconstruction consists & éonsecutive steps.

1. Iterative reconstruction of the whole FOV, yielding aitial estimatez = (1,..., 2y, ) of

.

2. Definez e = (T1mya, ..., Ty, my,) Wherem = (mq,...,my,) With0 < m; < 1(j =
1,...,N,) is a mask vector setting the densityof the object, inside the ROI to zero and

provides a smooth transition from the ROI to the remainingels.
3. Compute,.; = Az, Which is the forward projection of the masked density image,..

4. Obtain the projection of ROb,s;i = P — Pout-
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5. lterative reconstruction of the ROI only wigh,;. Due to the transition zone, the region of

this reconstruction needs to be extended slightly from tieegtermined ROI.

The re-projection through the density image with the rendoR©®I1 has to model the geom-
etry of the initial measurement properly, because the taicm of the difference between the
re-projection and the measurement is not consistent oteenwhis can only be achieved by accu-

rate 3D projectors.
2.1.4 Beam-Hardening Correction

A X-ray beam is composed of photons with a broad energy spectBeam hardening is the
phenomenon that the mean energy of a X-ray beam increasép@setrates through an object
because the lower energy photons are absorbed more reldiiythe higher energy photons. If
this beam-harding effect is ignored, two types of artifagiiappear in the reconstructed images:
cupping and streaks. The cupping artifacts are caused biathéhat the X-rays passing through
the middle of an object are hardened more than the ones gadsough the edges because they
are passing through more material. As the beam becomesrhtreeate at which it is attenuated
decreases. The resultant profiles through the reconstructage of a uniform cylindrical object
display a cupped shape compared to the ideal profiles wittearn hardening. Streak artifacts are
typically present between two dense objects, such as twy tegions of the body. These artifacts
are caused by the fact the portion of the beam passing thronglof the dense objects at certain
X-ray source positions is hardened less than when it pabksesgh both objects at other source
positions.

Current beam-hardening correction methods can be divididsingle-energy [3, 28, 29, 57,
69, 135] and dual-energy [5, 35, 37, 48, 104, 144] correctimmniques. Most methods are based

on classifying the object materials into two categoriedt sesue and bone. “Soft tissue” means
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Figure 2.3: Energy-dependent mass attenuation coefficigf#) for bone, fat and water.

any tissue whose mass attenuation coefficient is suffigieftke to that of water. Fig. 2.3 shows
typical mass attenuation coefficients for water, fat andebofhe curves of water and fat almost
overlap. Water and bone corrections are the two most comynedd single-energy techniques.
The water correction technique assumes the object cordisialy water equivalent materials
and corrects the measurements prior to reconstructionlB&, This often leads to suboptimal
correction, especially for non-homogeneous objects wigh density areas, like bones. Bone cor-
rection techniques usually perform water correction firgt then perform additional correction for
bone [57]. Dual-energy (DE) CT imaging is considered as aentioeoretically elegant approach
to eliminate beam hardening artifact [28]. Typically, ttéshnique uses two sets of measurements,
one at a lower energy and the other at a higher energy, to &stitwo basis materiak@., soft-
tissue and bone) images. An attenuation coefficient imagarcarinciple be presented at any
energy, free from beam hardening artifacts. Typical DECThuods require either two data acqui-

sitions or specialized scanner designs, such as fast k\g¥sng, dual-source CT and dual-layer
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detectors. Several methods have been developed to redasetmrdening artifacts from recon-
structed soft tissue and bone images from one CT scan andle sutbe voltage setting through
special filtration [121, 123, 146]. We summarize the watet hone correction techniques here,
and describe the DECT method in Chapter 4.

Assume two basis materials, soft tissue and bone, are fgrésen

(@, &) = Bs(&) ps(T) + Bs(E) ps(T), (2.35)
where,(£) and 55 (E) are the energy-dependent mass attenuation coefficientdtdaissue (wa-
ter) and bone, and, (%) and p, (%) are the density of soft tissue and bone at spatial location
respectively. Water and bone correction require only omglsiscanj.e.,, M, = 1, and (2.1)
becomes

B[] = g 2 / I(E) exp <— /E (7, €) dz) A€ 47, (2.36)
Combining the measurement model (2.36) and the object nfa®8), the mean of measurements

can be represented as follows

Gi = Lo  HTseT0) 4oy (2.37)

where
fiTe, Th) 2 —lo { @e—(ﬁﬂgﬁsﬁﬁﬁ”&i)dg} (2.38)
L 2 / () dE (2.39)

The nonlinear functiong;(7s,, T5.) characterize the beam hardening caused by polychromatic
source spectra. The total intensityof the incident spectrum for thih ray is defined in (2.39).

The line integral function¥’s; and7; ; are defined as

II>

T., /E pel@) e (2.40)

7

1>

T,, //; | pu() de . (2.41)
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Given measurements, the f;(Ts., T;) values are usually estimated by inverting (2.37) as fol-

lows:

R A
fi & —log< = ”). (2.42)

Water Correction

Most clinical CT scanners use the water correction meth@dinoinate the cupping artifacts in

soft tissues. This method assumes only soft tissues arerres., (2.35) becomes

(T, E) = Bs(E) ps(T). (2.43)

Ignore the path-dependent subsciipereafter and define functiofy(7.) as

2

fs(Te) = (T, 0), (2.44)

whereT, is the "effective water path length”.

Fig. 2.3 shows the mass attenuation coefficient of watef) from NIST web page's Given
the incident spectrum for each pafh, i.e., assuming/;(€) is known, one can exactly evaluate
fs(T) for various known thicknesses @f using (2.38). Without the knowledge of the spectrum,
one can scan water-only calibration phantoms with a knovapslfusually a cylinder) and calcu-
late the line integral functioff, along different paths. Thefi(7.) is known as a function of..

With f,(T.) tabulated, one can estimate using interpolation from
A A _ ~
1.2 1 (f), (2.45)

assuming’ ~ fs(T.) for someT,. One also can approximafe! using a polynomial function. An

empirical method [133] is proposed to perform water coigttrequiring neither knowledge of

1 http://physics.nist.gov/PhysRefData/XrayMassCoef/Co mTab/water.html
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the spectrum or of the attenuation coefficients, nor thetdxamvledge of the calibration phantom
size and position.

One can apply the regular FDK method mentioned in Sectior8 2dlthe estimated line in-
tegrals7, to obtain the estimated density(z), and then multiplyj. () by the mass attenuation
coefficient of soft tissuess (&) at energyé, to yield the attenuation image(r, &). Compar-
ing equations (2.17) and (2.45), one can see that wateeated reconstruction partially takes
into account the polyenergetic property of the incidentspen by estimating, by inverting the

beam-hardening functiof.
Bone Correction

Since the human body does not consist of only soft tissueggitonstructed image using the
water-corrected method will be biased. Therefore, furt@rection for high-density materials,
mainly bones, is often required. We review the well-knowmd&aorrection method proposed by
Joseph and Spital [57], which we call the JS-FBP Method mitinesis.

Mass attenuation coefficients of soft tissiu¢€ ) and bones; (£) are energy-dependent. Define

A as the ratio

AME) = Bs(E) [ Bs(E) - (2.46)
If A were completely independent of energy, then the soft tissaection function (2.45) would
lead to artifact-free reconstructions, where the outputlde an “effective density”

pe(Z) = ps(T) + Aps (). (2.47)

The natural physical interpretation of this equation igt thg/cn? of bone is effectively\ times

more dense than 1 g/énof soft tissue. Simply using the water correction functi@mg) will
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generate a series of “effective water path lengths”:
Te — TS _'_ )\ZTB (2.48)

The main problem is thaY; is both path and energy dependent. This leads to inconsatejec-
tion data that causes artifacts. In fact, the exact dens#tyappears for lin€; will be a function
of both the thickness of water equivalent substdficand bon€l’,; in the path.

The JS-FBP method can be described as follows:

1. Perform water-corrected reconstruction to obtain afetive density” imagée. (z) from T,

using the method mentioned in Section 2.1.4.

2. Segment the regions pf(Z) that exceed a given threshgig as bone regions.

This step assumes that all significant densities encouhiarbuman body are basically
“bone like”. It is stated in [57] that even without polychratit effects, the combined effect
of the initial water-corrected reconstruction and the érieam width is to enlarge the bones
in such a way that many values @f(¥) are seriously overestimated. Settimg= 1.4g/cn?,

40% above soft tissue density was found to be able to providsfaatory results.

3. Forward project the estimated bone image and divide ikJoto obtain7}, the estimate of

bone density integral.

One can inspect actua} values in (2.48) from a few projections and select a typicdlie
to be),. \; is a rather slowly varying function df;, and the value ok; obtained are rather

insensitive ta\, [57].

4. Modify the water equivalent lengfh. according to

To=T.+ (Mo — X)T. (2.49)
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\i(Ts, Ty) is the function that satisfieg(7s,75) = fs(Ts + Ni(Ts,T5) Ts,0). One can
solve this equation numerically to obtain the values\phs a function ofl; and 7. It

was shown [57] that if ; is small enough,

i~ A — BT, (2.50)
where
(Bs(8))
4= 6E)
_ T (T
P= 2<@<6>><<T3 &) > (251

and(-) indicates averaging over the energy spectrum of the trattesthitbeam. It is practical
to estimate the detected spectrum by averaging the exifiagtsa of various rays through

the object.

5. Apply analytical reconstruction method, such as FBP oKF@r an iterative reconstruction

method, to the modified line integrdl$ to obtain the final corrected density image.

2.2 2D-3D Image Registration

Image registration is the process of overlaying two imadesesame object taken at different
times, from different viewpoints, and/or by different imag technologies [169]. Mathematically,
given a continuous-space reference image(r) (wherer 2 (x,y, z)) and a targetimagg"™ (),
the task of image registration is to find a geometric tramsfition7 : R® — R3 such thaZ /= (7)
is similar to f*** (+*). Applications of image registration in medicine includerdzning images of
the same subject from different modalities (CT, PET, MR¢, etaligning temporal sequences of
images to compensate for motion of the subject between staage guidance during interven-

tions and aligning images from multiple subjects in cohtutges [44].
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However, for some applications a target image whose dimarisithe same as the reference
image is not available. For example, 3D CT images are usedifocal diagnosis and treatment
planning, while 2D X-ray fluoroscopy or electronic portaldges are acquired during treatment.
These 2D images are real-time, but they lack the spatiainmdition contained in 3D CT images.
There are also some important anatomical features which@reisualized well in these 2D im-
ages, but can be observed in 3D CT images. 2D-3D image ratyistris a technology to achieve
this kind of registration [76, 107].

2D-3D image registration is the process of aligning a 3Dregfee image™' (7) to a series of
target 2D projection imageg, forn = 1,..., N whereN is the number of projection views. It
assumes that the reference image can be converted to sashplajection images, such as digitally
rendered radiographs (DRR) by system operatss : £o(R) — ¢, which captures the physics
and geometries of the imaging modality used to produce tiget@D imagesi.e., A, f* (7)
corresponds tay,, which is the projection image at angjg,. A transformation7 is found by
comparing these simulated projection imades,, /' (F)}ff:l with the target image$yn}fj:1.
2D-3D image registration has been widely used for patienigestimation in radiotherapy system

[4,63] and motion estimation for targeting treatment [A&,, 806,114,115, 155,158,163, 164].

In general, 2D-3D image registration is posed as an optimizgproblem as follows

~

T = arg min Sy, {yn} {AL T (F)}) + R(T), (2.52)

where S;,..s IS the set of desired geometric transformations, such asigidriransformations,
Sim (-, +) is an intensity-based similarity measure, @\@") is a penalty function that discourages
undesired? . Except the three essential parts of image domain regtrasimilarity measure,
geometric transformation and penalty function, 2D-3D s&gition has another important compo-

nent, the system operator. We briefly review the first thregddients in the following sections
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and discuss the system operator in Chapter 3.
2.2.1 Similarity Measures

There are two types of differences between target projeatages and DRRs of the reference
image: one is associated with the changes in the imagedtainjdthe other is due to differences in
image formation. Image registration is aimed to expressithetype of difference geometrically.
Prior knowledge about this difference determines the @hofgeometric transformation. For ex-
ample, nonrigid transformation for soft-tissue deforraatand rigid transformation for movement
in bony areas. The second type of difference determinedthiee of similarity measure. The sum

of squared difference (SSD) metric can meaningfully coraparages from the same modality,

N
Sin ({11 = 3 Dl = Ao, T () (2:53)

To use this metric, the X-ray energies should be the sametaging the reference CT volume and
the projection images, and extra efforts may be needed teddhe imaging artifacts caused by
Compton scatter, beam hardening and presence of the rathpthtable during treatment [164].
The SSD measure is the focus of this thesis.

Correlation-based metric compares images in terms of threladion coefficient of their inten-
sities [76, 164]. Images taken at different X-ray energyctijgeare expected to have linearly re-
lated intensities. Mutual information criterion is usefat inter-modality registration. It assumes
that the co-occurrence of the most probable values in theinveges is maximized at registra-

tion [62, 76].
2.2.2 Nonrigid Deformation Model

Nonrigid transformation is suitable to describe changesoift-tissue, such as the liver, heart

and lung. We use a parametrized deformation model basedlma Besplines [151]. Denote the
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operator? (7; ) : R® — R3 that represents a nonrigid transformation described bynawk

parametersy 2 (ax,ay,ay) € RN as
T (F,a) =7+ D(F; o), (2.54)

wherer 2 (z,y, ), x, y andz denote the left-right (LR), posterior-anterior (AP), stipeinferior
(SI) direction respectivelyD(7; ) = (Dx(7; @), Dy (7¥; &), Dz(7; ¢)) is the deformation map

operator modeled by a tensor product of cubic B-splifieas

L¢
De (75 o) = ;040153(& - le)ﬂ?’(Aiy - mYlWB(AiZ —maz), (2.55)

whereC' € {X,Y,Z}, A. is the knot spacing in th€' direction, and(mx,, my;,mz),l =
1,..., L are the knot coordinates.
Rather than operate on a continuous reference inf&g&~), we represent it as a discretized

object by a common basis function, such as cubic B-splireefllws:

NP
fref (.T,y,Z) - Zukwk (x,y,z) ) (256)
k=1
where
w (7, Y, 2) = B3(x — 2x) B3(y — &) Bs(2 — 1), (2.57)
u = (uq,...,uy,) is the vector of basis coefficients computed from the samagliges of /™" ()

by recursive digital filtering [151], and integer coordieatxy, v, z;) denote centers of basis

functions. We denote the reference image coefficient vestgre whosej-th component is
[t = 1 (.95, 25) - (2.58)

Apply the same basis expansion model (2.56) to a target infage) to obtain a target image

coefficient vectorf .
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We next represent the transformation and deformation mapabqr in matrix-vector notation
[53]. Definevy, vy, anduy, all in R, as the vectors whoseth components are;, y;, andz;

respectively, ana 2 (vx,vy,vyz) . Define the matrice®8y, By, and B to have entries

[Bclj, = 53(% - mxz)ﬁ?)(Ay—i - myz)ﬁ:a(z—jz —mz), Ce{X)Y,Z}, (2.59)
and ) }
By
A
B = By ) (2.60)
B

Define the deformation map vect®(a) : R3» — R3M

2

D(a) = (Dx(a), Dy(e), Dz(a)) = Ba = (Bxax, Byay, Bzayz) . (2.61)

Assuming that the target imagg® is deformable fromf™, the geometric correspondence
between them is
f=T(e)f*, (2.62)
whereT (o) : R — RM» denotes the operator that maps’ to £ and the expression for the

j-th element is

Np
[ = [T() <, = f ([u + Ba] j) =3 w ([u + Ba] j) . (2.63)
k=1
Define the matrib3 («) to have entries
(W ()] = wil[v + Bal,). (2.64)

Thus, (2.58) and (2.63) can be re-expressed in the matdteréorm

fref _ W(O)u

Ta)f* = W (a)u. (2.65)
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2.2.3 Regqularization of Image Registration

Since typical transformation estimation problem is illspd, a regularizer is usually used to
encourage desired transformations. The choice of regelais based on motion priors, such as
smoothness, invertibility and tissue rigidity.

Chunet al. [23] proposed a simple regularizer for B-spline nonrigicame registration. This
penalty method yields much more realistic deformation fialthing motion than unconstrained
registration methods. Moreover, it is much simpler andefiagitan the traditional Jacobian de-
terminant penalty and is more memory efficient. It is compatelly expensive to calculate the
Jacobian determinants or its gradient due to additionglBws interpolations of the partial deriva-
tive of a deformation. This quadratic-like regularizer emies a sufficient condition for invert-
ibililty directly on the B-spline deformation coefficientso it does not require additional B-spline
interpolations beyond the interpolations needed for the @iling term. It also encourages the
smoothness of deformations inherently because it constthe differences between adjacent de-
formation coefficients. In addition, its first and secondiives are simple and convenient for

use in optimization algorithms.

2.3 Optimization Transfer Principle

Optimization is a very important part of problems involvimgximizing/minimizing cost func-
tions, such as image reconstruction and image registra@ptimization transfer methdaonverts

optimizing difficult cost functions to optimizing a sequenaf relatively simpler surrogate func-

2This technique is also called “iterative majorization”, 4jarize, minimize” and “minorize, maximize”.
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tions [27,51, 71, 72]. Mathematically, consider a minintiza problem

arg min ¥ (x), (2.66)

xeC

whereC C R isthe valid parameter spaced., = 0). At thenth iteration optimization transfer
approach replaces the cost functibrthat is difficult to minimize with a surrogate functier® (x)

that is easier to minimize and satisfies the following candi:
o™ (z™) = T(zM™), =z ecC, “matched? value”
o™ (x) > VY(x), xeC, ‘liesabove’ (2.67)

After choosing a surrogate™ (z) in the “S-step”, a minimizex ™+ of ™ () is found in the
“M-step™

(D) 2 argenclin ™ (x). (2.68)
Repeating the “S-step” and “M-step” iteratively, one obtaa sequence of vecto{ac(")} that
monotonically decrease the original cost functibn The monotonicity is guaranteed by the sur-
rogate conditions (2.67).

In general, the surrogate functions are specially desidmea cost function (or a kind of cost
functions) of interest. Hunteat al. [51] summarized surrogate design techniques as: (a) avoid-
ing large matrix inversions, (b) linearizing an optimizatiproblem, (c) separating the parameters
of an optimization problem, (d) dealing with equality anéduiality constraints gracefully, or (e)
turning a nondifferentiable problem into a smooth problérhe choice of surrogate functions is
essential to the success of optimization transfer methadachieve fast convergence rate, one
wants curvatures of surrogate functions to be as small asiljeswhile satisfying the required
conditions (2.67). To achieve easy optimization in the “tdpS, one wants simple surrogate func-

tions, such as quadratic surrogates. Since it is usualficdlif to find surrogate functions that fit

all the desired conditions, the choice of surrogate fumstis something of an art.



CHAPTER 3

Three-Dimensional Forward and Back-Projection Methods*

Iterative statistical methods for 3D tomographic imagerestruction [34,74,147] offer numer-
ous advantages such as the potential for improved imagéyaat reduced dose, as compared to
the conventional methods such as filtered back-projec&@P] [30]. They are based on models
for measurement statistics and physics, and can easilypacate prior information, the system
geometry and the detector response.

The main disadvantage of statistical reconstruction nugth®the longer computation time of
iterative algorithms that are usually required to minimizetain cost functions. For most iterative
reconstruction methods, each iteration requires one fahypweojection and one back-projection,
where the forward projection is roughly a discretized easibn of the Radon transform, and the
back-projector is the adjoint of the forward projector. $heperations are the primary computa-
tional bottleneck in iterative reconstruction methodstipalarly in 3D image reconstruction. For-
ward projector methods are also useful for making digiteglydered radiographs (DRR) [14,134].

Traditional forward and back-projectors compute the seetion lengths between each to-

mographic ray and each image basis function. Many methadackelerating this process have

1This chapter is based on materials from [79-81, 84].

32
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been proposece.g., [56,99-101, 108, 130, 166]. Due to the finite size of detecalls, aver-
aging the intersection lengths over each detector cell isidered to be a more precise mod-
eling [15, 19, 26, 126, 128, 167]. Mathematically, it is akincomputing the convolution of the
footprint of each basis function and some detector bluthsisca 2D rectangular function.

Any projector method must account for the geometry of thegimg system. Cone-beam ge-
ometries are needed for axial and helical cone-beam X-raypabed tomography (CT). In 3D
parallel-beam geometry projection space, there are falgpandent indicegu, v, ¢, 0). The ray
direction is specified by, §) wherep and# denote the azimuthal and polar angle of the ray
respectively andu, v) denote the local coordinates on a 2D area detector. In sing&sial cone-
beam projection space is characterized by three indepémaices (s, ¢, 5) and two distance
parameters Dy, Doq ), Where3 denotes the angle of the source point counter-clockwige tre
y axis, (s, t) denote the detector coordinatés, denotes the source to rotation center distance and
Dyq denotes the isocenter to detector distance. (See Fig. Th2)axial cone-beam geometry is a
special case of helical cone-beam geometry with zero Heditzzh.

The divergence of tomographic rays in the cone-beam gegroatises depth-dependent mag-
nification of image basis functiongg., voxels close to the X-ray source cast larger shadows on
the detector than voxels close to the detector. This comipdic does not appear in the parallel-
beam geometry. Therefore, many existing projection and-pagcjection methods designed for
3D parallel-beam geometry [15,45,94,126, 128] are nottlyeuitable for cone-beam geometry.

A variety of projection methods for 3D cone-beam geomethase been proposed [9, 14,
26, 38,93,120,167]. All methods provide some compromigevéen computational complexity
and accuracy. Among these, spherically symmetric basistifums (blobs) [93, 167] have many
advantages over simple cubic voxels or other basis funefimrthe image representatiag., their

appearance is independent of the viewing angle. Howevalyating integrals of their footprint
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functions is computationally intensive. Ziegktral. [167] stored these integrals in a lookup-table.
If optimized blobs are used and high accuracy is desiredctineputation of forward and back-
projection is still expensive due to loading a large table e fact that blobs intersect many more
tomographic rays than voxels.

Rectification techniques [120] were introduced to accédethe computation of cone-beam
forward and backward projections. Riddellal. [120] resampled the original data to planes that
are aligned with two of the reconstructed volume main axe#hat the original cone-beam geom-
etry can be replaced by a simpler geometry that involves aslyccession of plane magnifications.
In iterative methods, resampled measurements can sinfphfyard and back-projection each it-
eration. However, resampling involves interpolation tmaty slightly decrease spatial resolution.
Another drawback of this method is that the usual assumpmtiatatistical independence of the
original projection data samples no longer holds afterifieation, since interpolation introduces
statistical correlations.

The distance-driven (DD) projector [26] is a current statehe-art method. It maps the hor-
izontal and vertical boundaries of the image voxels andateteells onto a common plane such
asxz or yz plane, approximating their shapes by rectangles. (Thisistakin to rectification). It
calculates the lengths of overlap along théor y) direction and along the direction, and then
multiplies them to get the area of overlap. The DD projectas the largest errors for azimuthal
angles of the X-ray source that are around odd multiples/df because the transaxial footprint is
approximately triangular rather than rectangular at theosges.

This paper describes two new approaches for 3D forward aoklpeojection that we call the
separable footprint (SF) projectors: the SF-TR [79] andTSH80] projector. They approximate
the voxel footprint functions as 2D separable functionss HBpproximation is reasonable for typi-

cal axial or helical cone-beam CT geometries. The sepdrabilthese footprint functions greatly
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simplifies the calculation of their integrals over a detectll and allows efficient implementation
of the SF projectors. The SF-TR projector uses trapezoidtions in the transaxial direction and
rectangular functions in the axial direction, whereas tReT3 projector uses trapezoid functions
in both directions. It is accurate to use rectangle apprakion in the axial direction for cone-
beam geometries with small cone angles°) such as the multi-slice detector geometries, and
to use trapezoid approximation for CT systems with largerecangles$ 10°) such as flat-panel
detector geometries.

Our studies showed that both SF projector methods are motgate than the distance-driven
(DD) projector. In particular, the SF methods reduce thersraround odd multiples of /4 seen
with DD. The SF-TT projector is more accurate than the SF-T&jegtor for voxels associated
with large cone angles. The SF-TR projector has similar agtatpon speed with the DD projector
and the SF-TT projector is aboitimes slower.

To balance computation and accuracy, one may combine thERS&nd SF-TT projector, that
is, to use the SF-TR projector for voxels associated withllsoome angles such as voxels near
the plane of the X-ray source where the rectangle approxamas adequate, and use the SF-TT
projector for voxels associated with larger cone angles.

The organization of this paper is as follows. Section 3.Icdless the cone-beam 3D system
model. and presents the analytical formula of cone-beafegqions of voxel basis functions. Sec-
tion 3.2 introduces the SF projectors and contrasts the §Eqiors with DD projector. Section 3.3
gives simulation results, including accuracy and speedpesison between the SF-TR, SF-TT and
DD projector as stand-alone modules and within iteratie®nstruction. Finally, conclusions are

presented in Section 3.4.
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3.1 Cone-Beam Projection

3.1.1 Cone-Beam System Model

In the practice of iterative image reconstruction, rattamt operating on a continuous object
f(Z), we forward project a discretized object represented byranson basis functionj, () su-

perimposed on &; x N, x N3 Cartesian grid as follows:

£(@) =3 1 o (@ ~ i) @ &) (3.1

where the sum is over th¥; x N, x Nj lattice that is estimated andii] = (c,[7], c27i], c3[7])
denotes the center of théh basis function andi = (n;,n.,n3) € Z3. The grid spacing is
A = (A1, As, A3), and® denotes element-wise division. We consider the case= +A,
hereafter, but we allowA; # A3, because voxels are often not cubic.

Most projection/back-projection methods use a linear rhtide ignores the "exponential edge
gradient effect” caused by the nonlinearity of Beer’s laW,[88]. We adopt the same type of

approximation here. Assume that the detector blur ¢) is shift invariant, independent of, and

acts only along the andt coordinates. Then the ideal noiseless projections satisfy

Uslsk, ti] = // h(sk — s,t; — t)p(s,t; B)dsdt, (3.2)

wherep(s, t; 3) is the 3D projection off (Z) given by (2.8), and s, ;) denotes the center of
detector cell specified by indicés, [). The methods we present are applicable to arbitrary samples

(sk, 1), but for simplicity of presentation and implementation weds on the case of uniformly
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spaced samples:

s = (k—ws)Ag, k=0,...,Ny—1,
tl == (l—wt>AT, ZZO,...,Nt—]_,
we = (Na—1)/2 +c.,

wy = (Ny—1)/24 ¢, (3.3)

whereAg andA . denote the sample spacingsiandt respectively. The user-selectable parameters
¢s andc, denote offsets for the detectag., ¢; = 1/4 corresponds to a quarter detector offset
[73,102].

Substituting the basis expansion model (3.1) for the obeot(3.2) and using (2.8) leads to

the linear model

Uslsi,tl] = D aglse, ti; 1] £ [, (3.4)

—

n

where the elements of system matAxare samples of the following cone-beam projection of a

single basis function centered@&]:
aglsi, t; 1) = F (s, t; B 10), (3.5)
where the “blurred footprint” function is
F(si, t; B 71) = // h(sk — s, — )q(s, t; 3; W) dsdt, (3.6)

andq(s, t; 3; i7) denotes the cone-beam footprint of basis funct&htﬁ(f —dnl) @ &) ,i.e,

q(s,t; 85 1) =/

Go <(f — i) @ &) de. (3.7)
L(s,t,3)

Computing the footprint of the voxel is also known as “spiegt [153].
The goal of forward projectors is to compute (3.4) rapidly docurately. Although the system

matrix A is sparse, it is impractical to precompute and store evendheero system matrix values
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for the problem sizes of interest in cone-beam CT, so pralctieethods (including our proposed
approach) essentially compute those values on the fly.

We focus on a simple separable model for the detector blur

1
rect (i) rect (i), (3.8)
TsTy Ts Tt

wherer, andr, denote the width along andt respectively. This model accounts for the finite

h(s,t) =

size of the detector elements. Note thaandr; can differ from the sample spacisg — s,_; and

t; — t,_1 to account for detector gaps.
3.1.2 Footprints of Voxel Basis Functions

We focus on cubic voxel basis functions hereafter, but onddoderive analytical formulas for

footprints of other basis functions. The cubic voxel basisction is given by,
Bo(Z) = rect(x)rect(y)rect(z)
= Locyn Lgwcz Loy, (3.9)

where 1, denotes the indicator function.
Substituting (3.9) into (3.7), the analytical formula ftwetcone-beam projection footprint of

therith basis function is:

q(s,t; B; 1) /OLp ﬂo((ﬁo +0é— di]) @ 5) de

Lp
= Ljarveeri<an/zy Liisttesi<ansoy

L1t tesi<ag 2y Al

= a1-G2-0Ag- [gmax - gmin]+ 5 (310)
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wheree' = (ey, eo, e3) Was defined in (2.4)x] 2 max(z,0) and

— A 5 _
d = po— E[n] = (d1>d2>d3),
4
Ljasi<arszy, sing =0
a; =
1, sing # 0,
\
4
L{jas|<a0/2: cosp =0
a9 =
1, cosp # 0,
\
4
Ljasi<as/ay, sind =0
as =
1, sinf) #£ 0,

lax = min{Lp,fi,fi,ﬁi},

Upin = max {0,012 %}

(

A;)2—d; —R;/2—d;
, max / / e; #0
y/— e; € ’
L=
o0, €; = Oa
\
( — —
. Al 2—di —Ai 2—di
, min / , /_ e; #0
/i - € ) € )
—00, e; = 0.

(3.11)

For typical cone-beam geometries, polar angles rays are much smaller th&®°, so there is
no need to consider the casewtd = 0. Combining (3.5), (3.6) and (3.10) yields the “ideal”

projector for cubic voxels in cone-beam CT.

3.2 Separable Footprint (SF) Projector

It would be expensive to exactly compute the true footpd1@) and the “blurred footprint”
(3.6) for the voxel basis function on the fly, so approprigteraximations of the “blurred footprint”

(3.6) are needed to simplify the double integral calculatio
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Figure 3.1: Exact footprint functiong s, ¢; 3; 1) and their profiles for Imrhvoxels centered at the
origin (left), (100, 150, 15) mm (center) and (93, 93, 93) mm (right).
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To explore alternatives, we simulated a flat-detector dogen geometry witthy, = 541 mm
and Dy = 949 mm. We computed cone-beam projections of voxels analficaing (3.10) at
sample locationgnAg, mA;) whereAg = A = 0.001 mm andn, m € Z. The left column of
Fig. 3.1 shows the exact footprint function and its profilesa voxel withA; = Ay = A3 = 1mm
centered at the origin wheh= 30°. The center column of Fig. 3.1 shows those of a voxel centered
at(100, 150, 15) mm wheng = 0°. The azimuthal and polar angle of the ray connecting thecgour
and this voxel center aret.3° and2.1° respectively. The cone angle of a typi¢dtslice cone-
beam CT geometry is abot. The right column of Fig. 3.1 shows those of a voxel centeted a
(93,93,93) mm wheng = 0°. The azimuthal and polar angle of the ray connecting thecgour
and this voxel center arel.7° and11.5° respectively. The cone angle of a typical cone-beam CT
geometry with40 x 40 cm? flat-panel detector is abow2®. The first two true footprints look like
2D separable functions. The third footprint is approxinhaseparable except for small areas at
the upper left and lower right corner.

Inspired by shapes of the true footprints (see Fig. 3.1), p@aimate them as follows,
05, 31 70) & qup(5, 15 33 7) = U(s,1; 31 7)que (s, 1: B3 ), (3.12)
wheregy (s, t; 3; 1) denotes a 2D separable function with unit maximum amplitude
Gt (5,1 5:7) 2 a1 (51 03 ) g (£ 3: 7), (3.13)

whereq, (s; 3;7) and g (t; 5; 1) denote the approximating functions snand¢ respectively. In
(3.12),I(s, t; 5; 77) denotes the “amplitude” af(s, t; 3;17).
For small basis functions and narrow blurss;, t), the angles of rays within each detector cell

that intersect each basis function are very similaf(sg; ; 77) is much smoother thak(s, ¢) and
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q(s, t; B;m). Substituting (3.12) into (3.6) leads to

F(S,t;ﬁ;ﬁ) ~ st(S,t;ﬁ;ﬁ)
2 (s, ) #x [U(s, t; B; 1) gse (s, £ 5; 7))

U(s,t; B; 1) [P(s,t) *x qs (s, t; B85 71)] (3.14)

Q

where the inequality uses the fact th@t, ¢; 5; 77) is approximately a constant over each detector
cell. The valuel(sy, t;; 3;7) denotes this constant for detector cgll.,, ¢;), andx denotes 2D
convolution

If the detector blur is also modeled as separaitde,

h(s,t) = hi(s)ha(t), (3.15)

then the blurred footprint functions (3.14) have the follogvseparable approximation:

Fyt (s, ti; B; 1) = U(sk, t; B 10) Fy (i B 1) Fa(ty; B3 1), (3.16)

where

II>

Fi(sy; 05 1) /hl(sk — 5)q1(s; B;M)ds

Ra(tsgim) 2 [ halt ~ taalts i (3.17)
3.2.1 Amplitude Approximation Methods

One natural choice for the amplitude functitip) is the following voxel-dependent factor that

we call the A3 method:

sk, t; B 71) = I3(B71) 2 1y - I, (3.18)
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where

Ay

>

] 3.19

wo max{| cos(¢o) |, | sin(eo) [} 349
A 1

L, 2 m) (3.20)

wherep, = ¢o(5,1) andf, = 6y(5, ) denote the azimuthal and polar angles of the ray con-
necting the source and center of thth voxel. They can be computed by (2.10) and (2.11).
Since this voxel-dependent amplitude depends on arigles,) and 3, the approximated foot-
print ¢., (s, t; 5; 1) is separable with respect toandt too. However, the dependence on voxel
centers?]7i] requires expensive computation. One must compgte: N» x N3 x N differentiy,
values andV; x N, x Ng differentl,, values, whereV; denotes the number of projection views. In
addition, computindy, andi,, for each voxel at each projection view involves either trigmetric
operations ¢os, sin andtan™ ) or square and square root operations to directly evakuatand
sin.

To accelerate computation of the SF projector, we proposexalyray-dependent amplitude

named the A2 method:

o A
l2($k’7 tlv ﬁ? n) = lcp() . l@(sk,tl) (321)

1
| s 1 3.22
0(sk,t1) \ Cos(ﬁ(sk, tl))| 7 | )

>

wherefd(s, t;) givenin (2.7) is the polar angle of the ray connecting thes®and detector center
(sk,t;). There are many fewer tomographic rayé & /V;) than voxels in a 3D imagée\(; x N, x N3)
andf(sy, t;) does not depend of for flat detector geometries (see (2.7)), so using (3.21g¢sav

substantial computation versus (3.18).
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We also investigated a ray-dependent amplitude named theethiod:

>

L(se,ti; 8) = losws)  losin) (3.23)
l Ay
e Tax{[cos(p (s B)], | sin(e(sw; B)]}

[ >

(3.24)

wherep(si; 3) given in (2.6) is the azimuthal angle of the ray connectirgggburce and detector
cell center(sy,t;). For each3, there areN; differenti,,.s for the A1l method andvV;, x N,
differentl,, for the A2 method.

These amplitude methods are similar to Joseph’s methodwWheéle the triangular footprint
function is scaled by / max(| cos ¢, | sin ¢|) for 2D fan-beam geometry. All three methods have
similar accuracies, but the A3 method is much slower thamther two (see Section 3.3.1). Thus
we do not recommend using the A3 amplitude in the SF projentthod. Hereafter, we refer to

(3.16) with either (3.21) or (3.23) as “the SF method”.
3.2.2 SF Projector with Trapezoid/Rectangle Function (SFR)

Inspired by the shapes of the true footprints associateusmitall cone angles (see the first two
columns of Fig. 3.1), we approximate them as 2D separabletifums with trapezoid functions
in the transaxial direction and rectangular functions ia éixial direction. This approximation is
reasonable for typical multi-slice cone-beam geometndsre the azimuthal angles of rays
cover the entire860° range since the X-ray source rotates aroundzlaxis, whereas the polar

angle9) of rays are small (less tha) since the cone angle is small.
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The approximating function in thedirection is

R A
ql(saﬁ7n) = trap(8;7—077—177—277—3)
(

—fl__?o, To<s<T
L, 1<s<m
= , (3.25)
T3—S
o, T2 <8<
0, otherwise

\

wherery, 71, 7, and 3 denote vertices of the trapezoid function that we chooseadttimthe ex-
act locations of those of the true footprint function in theirection. They are the projected
coodinates of four corner points located at[77] + A, /2, co[7i] £ Ay/2) for all z.

The approximating function in thiedirection is

as(t: 3 7) 2 rect (t - t“), (3.26)
Wio
where
t é t_;,_ + t_
0o — 2 )
Wy — t_;,_ — t_, (327)

wheret, andt_ denote the boundaries of the rectangular function which a@se to be the
projected: coordinates of the two endpoints of the axial midline of tb&el. Those endpoints are
located ati] + (0,0, As/2). Giveng and a point? = (z,y, z), the projecteds and¢ coordinate
of this point can be computed by (2.12) and (2.14). Since thmbaries of the separable function
are determined by the projections of boundaries of the vbasis function under the cone-beam
geometry, the depth-dependent magnification is accurateljeled.

The blurred footprint functions (3.17) of this SF-TR prdjcare

o1 Ts Ts
Fi(swi :70) = =7 (s = Sse+ 5 ). (3.28)
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and
1
Fy(t 37) = — [min(ty + 2, ,) = max(t — )] (3.29)
Tt 2 2 +
where
A 52
7(81782> - / trap(3§7_0>7—1>7—277—3) dS
=~ (max(sy, 79), min(sg, 7))
+72(max(sy, 71 ), min(ss, 72))
+73(max(sy, 72), min(ss, 73)),
b)) 2 by — ) — (b — )] L
1\Y1, U2 2(7_1 — 7_0) 2 0 1 0 {b2>b1}>
72(617 b2) é (bQ - bl) 1{b2>b1}7
A 1
V3(b1,b2) = m[(bl —73)% = (b2 = 73)*) Ly} (3.30)

3.2.3 SF Projector with Trapezoid/Trapezoid Function (SFIT)

Inspired by the shape of true footprint of a voxel associatitd large cone angles (see the last
column of Fig. 3.1), we approximate it as a 2D separable fanaetith trapezoid functions iboth
the transaxial and axial direction. This trapezoid appration in axial direction is reasonable for
cone-beam geometries with large cone anlges({°) such as flat-panel detector geometries.

Along s, the SF-TT projector uses the same trapezoid approximasahe SF-TR projector.
The trapezoid footprint and the blurred footprint are giwex3.25) and (3.28).

The approximated footprint function inis

go(t; B:7) 2 trap(t; €, &1, &0, Es) (3.31)

whereéy, &1, & and &3 denote vertices of the trapezoid functio§, and &; are the smallest and

largest one of the projectedcoordinates of the lower four corners of thigh voxel located at
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(c1[7T] £ A1/2, co[n] £ Ag/2, 5[] — A3/2), and&, and&s are the smallest and largest one of the
projectedt coordinates of the upper four corners locatedcatii| + A1 /2, co[7i] £ Ag/2, c3[7] +

A3/2). The blurred footprint function im is

. 1 T T
Fy(t; 85 1) = ot <tl - §t>tl + §t> , (3:32)
t

where~ is given in (3.30).

By choosing the vertices of the approximating footprintsiatch the projections of the voxel
boundaries, the approximation adapts to the relative ipositof the source, voxels and detector,
as true footprints do. Take a voxel centered at the originmaexample. Its axial footprint is
approximately a rectangular function (see the left figuréhmthird row of Fig. 3.1), instead of a
trapezoid function. For this voxetrap(¢; &, &1, &2, €3) is almost a rectangle becauge~ &; and
& ~ &3 becaus€), &, & ands are the projected coordinates of four axial boundaries of this

voxel.

3.2.4 Implementation of SF projector

We use the system matrix model (3.5) with the separable fowtppproach (3.16) for both
forward and back projection, which ensures that the SF fahaad back projector are exact adjoint
operators of each other.

Table 3.1 summaries the SF-TR projector with the A1 ampétadethod (SF-TR-A1) and
with the A2 method (SF-TR-A2) for a given projection view &g. Implementating the SF-TT
projector with these two amplitude methods is similar. lempéntation of the back-projector is
similar, except for scaling the projections at the begignimstead of the end. The key to effi-
cient implementation of this method is to make the inner loegr z (or equivalently ovet;) [59],

because the values @f (s;; 3; 1) are independent of and¢; so they are precomputed prior to
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Foreachrown; =0,1,..., Ny — 1 of f[n]:
1. For each columnn, =0,1,..., Ny — 1:

(&) Compute trapezoid verticeg, 71, 72, 73 in (3.25) using (2.12).
support|r, 73] and coordinates of detector cell centers and spacing givEéh3).

them.
(d) Computd,,, using (3.19) (SF-TR-A2 only)
(e) Compute first values af. in (3.27).
() Foreachslicen; =0,1,..., N3 —1:
i. Determine indicest( values) of detector cells intersecting wigh(¢; 5;177) in ¢
using supportt_, t+] and coordinates of detector cell centers and spacing
in (3.3).
il. For eacht; value:
A. ComputeF;(t;; ;1) using (3.29).
B. For eachs;, value:

e Compute projectiop(sy, t;; 5; 1) where

p = flAlFi(sy; B; 1) Fa(t; B; 7T) for SF-TR-AL,

p = fl)ly, Fi(sk; ;1) Fy(ty; B; i) for SE-TR-A2.
e Updatet.. incrementally .

Scale all the projections bly(sy, #;; 3) using (3.23) for SF-TR-AL or by, .,y using (3.22) fq
SF-TR-A2.

(b) Determine indicess( values) of detector cells intersecting with(s; 3; 77) in s using

(c) Compute transaxial footprit, (sy; 5; 77) using (3.28) for all these, values and store

given

-

Table 3.1: Pseudo-code for the SF-TR forward projector withAl amplitude method (SF-TR-

Al) and the A2 method (SF-TR-A2).
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that loop. Because (2.14) is linear in the first value oft.. for a given(x,y) position can be
computed prior to the inner loop over and subsequent values can be computed by simple incre-
mental updatesf. [22]. Thus only simple arithmetic operations and condisilsrare needed for
evaluatingFy(t;; 3; 1) in that inner loop; all trigonometric computations occutside that loop.
Note that this separable footprint approach does not appelae particularly advantageous for
2D fan-beam forward and backprojection because computi@gransaxial footprint; (sy; 3; 77)
requires trigonometric operations. The compute efficidmene comes from the simple rectangular
footprint approximation in the axial direction. More comation is needed for the SF-TT method
because it uses trapezoids in the axial direction insteztdmgles.

The implementation of amplitudésy, ¢;; 5; 77) in (3.16) for the A1 and A2 methods are differ-
ent. For the A1 method, for eaghthe amplitudé, (s, ¢;; 3) is implemented by scaling projections
outside the loop over voxels since it depends on detectls aely. For the A2 method, we imple-
mented the two termd.( andlys, +,)) of l2(sk, t;; 3; 1) separately. We scaled the projections by
lo(s, +,) OUtside of the loop over voxels and computgdoutside the inner loop oversince it does
not depend on.

The SF methods require(N*) operations for forward/back projection of\& volume to/from
N3 samples of the cone-beam projections. There &X{$¢* log V) methods for back-projection
[8,16,17]. However, those algorithms may not capture tis¢éadice-dependent effect of detector
blur incorporated in the model (3.5). In 2D one can use theriEo&lice Theorem to develop
O(N?log N) methods [165], but it is unclear how to generalize those ta8R@l and helical CT

efficiently.
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3.2.5 SF Compared with Distance-Driven (DD) Projector

To compare the SF projector with the DD projector, we forneithe DD method in the context
of cone-beam system model. The original publication [2&kgionly a procedural description
rather than an explicit model. The DD method maps the hota@nd vertical boundaries of the
image voxels and detector cells to a common plane, suah-aser yz-plane, which we call the
hv plane. It evaluates the system matrix elements (3.5) an@@he-ray transform of voxel basis
functions (3.7) by approximations on the plane instead of the detector plane,, thest plane.

The DD projector approximates the footprint function (3ag)follows,

h—Tth -
Q5.1 5:75) ~ qua(hv; B:71) = A, rect( " 0) rect(” “’0), (3.33)
Wk, Wy,
where

hi+Th

Thy = %, wp, = Thy — Thy, Thy > Thy,
TV + TU2

TO = T Wy =TUy—TU, T > Ty,

whererh, andth, denote the projecteld coordinates of transaxial boundaries of a voxel centered
atclri], andrv; andrv, denote the projectedcoordinates of axial boundaries of this voxel.
Similar to the shift invariant blur function (3.8) actingoalg s andt axes, the DD method uses

a shift variant blur function along theandv axes that depends ¢h s, andt,, i.e.,

1 h —dh —d
haa(h,v; sk, ti; 3) = laa(sk, t1; B) feCt( 0) feCt<v UO)> (3.34)
ThTy Th Ty
where
1 —=, |cosB| > |sin |
ldd(Sk, t ﬁ) _ | cos(0(sk,t1))]| cos(p(sk;3))|
1 -
TeotBG A sy | cos Bl < [sinp|
dh dh
dhy = % v = dhy — dhy.  dhs > dhy,
d d
dvy = u, ry = dvy — dvy, dvy > duvq,

2
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wheredh; anddh, denote the projectekl coordinates of boundaries of detector ¢gjl, ¢;) in the
s direction, andiv; anddv, denote the projected coordinates of boundaries of this detector cell
in thet direction.

Then the DD method approximates the “blurred footprint”dtions (3.5) as follows,

F(sp,ti; 8;1) ~  Faa(sk, ti; 5;7)

= // haa(h, v; sk, ti; 3)qaa(h, v; B; 7)dhdv

dhs pdus 1
= / laa(sk, ti; B)qa(h, v; B; 1) dhdv
d

h1 dvy rhrv

1 .
= . ldd(ska tl; ﬁ) [mln(ThQ, dhg) — max(Thl, dhl)]+

h'v

[min(7vs, dvy) — max(rvy, dvy)], . (3.35)

The DD method essentially approximates the voxel footprusing rectangles in both direc-
tions on a common plane such @as or yz plane. Due to the fulB60° rotation in the transaxial
direction, the rectangular function used in the DD methaap®or approximation to the true foot-
print function (see Fig. 3.1). It also uses the separablesarftdinvariant detector blur (3.8) on the
detector plane. However, the approximated separabletdetalars on the common plane based
on the mapped boundaries of original detector blurs are ngdoshift invariant. This appears to

prevent using the inner loop ovey that aids efficiency of the SF methods (see Table 3.1).

3.3 Simulation Results

To evaluate our proposed SF-TR and ST-TT projectors, we apeapthem with the DD pro-
jector, a current start-of-the-art method. We compared Heeuracy and speed as single modules

and within iterative reconstruction methods.
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3.3.1 Forward and Back-Projector as Single Modules

We simulated an axial cone-beam flat-detector X-ray CT systith a detector size ol x
N; = 512 x 512 cells spaced bA; = A, = 1 mm with Nz = 984 angles oveB60°. The source
to detector distanc®., is 949 mm, and the source to rotation center distabggis 541 mm. We
included a rectangular detector response (3.8) with Ag andr; = A..

We implemented the SF-TR and SF-TT projector in an ANSI CineutThe DD projector was
provided by De Maret al., also implemented as ANSI C too. All used single precisioor. Foth
the SF methods and the DD method we used POSIX threads tdetiaeathe operations. For the
forward projector each thread works on different projectiwews, whereas for the back projector

each thread works on different image rowis )
Maximum Errors of Forward Projectors

We define the maximum error as
em(B;1) = H%aﬁzglF(s,t;ﬁ;ﬁ) — Fop(s,t; ;1) (3.36)
s,te

where F,, is any of the approximate blurred footprints by the SF-TR;T9Fand DD methods.
We generated the true blurred footprifts, ¢; 5; 77) in (3.6) by linearly averaging000 x 1000
analytical line integrals of rays sampled over each detam. We computed the line integral of
each ray by the exact method described in (3.10).

We compared the maximum errors of these forward projectmrsfvoxel withA; = A, =
Az = 1mm centered at the origin. Since the voxel is centered atiilgens of all axes, we choose
N3z = 180 angles over only0° rotation. Fig. 3.2 shows the errors on a logarithmic scalee W
compared the proposed three amplitude methods by combiher with the SF-TR projector.

The errors of the A1 method are slightly larger than thosehefA2 and A3 method; the biggest
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difference, at3 = 45°, is only 3.4 x 10~*. The error curves of the A2 and A3 methods overlap
with each other. For the SF-TT projector, we plotted only Afeand A2 methods because the
combination of the SF-TT projector and A3 method is compaitetly much slower but only
slightly improves accuracy. For the same amplitude methiwgl error curves of the SF-TR and
SF-TT method overlap. The reason is that the rectangulatrapeézoid approximation are very
similar for a voxel centered at the origin efaxis. All the SF methods have smaller errors than
the DD methodj.e., the maximum error of the DD projector is abaiii2 times larger than the
proposed SF methods with the A1 amplitude, artdx 102 times larger than the SF methods with
the A2 amplitude whep = 45°.

Fig. 3.2 also compares the maximum errors of these forwangegtors for a voxel centered
at (100, 150, -100) mm. We choo$é; = 720 angles oveB60° rotation. The error curves of
the SF-TR projector with three amplitude methods overlapthe curves of the SF-TT projector
with the A1 and A2 amplitude methods overlap with each otdemonstrating again that these
three amplitude methods have similar accuracies. For g@gdociated with large cone angles, the
SF-TT projector is more accurate than the SF-TR projectbe maximum errors of the DD and

SF-TR projector are abouB and3 times of that of the SF-TT projector respectively.
RMS Errors of Forward Projectors

We define the root mean square (RMS) error of the footprint@gmation F,,(-) as

er(5:7) = \/ e [ s - Ry @37
where[s_, s, ] and[t_, ¢, ] denote the unions of the boundaries of the true footpfrity, ¢; 5; 77)
and approximated footprirf,, (s, ¢; 3; 77) in s andt direction.

We also compared the RMS errors of the SF-TR, SF-TT and D2ptojs for these two voxels

described above. Fig. 3.3 shows the errors on a logarithoates The results showed similar
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Figure 3.2: Maximum error comparison between the forward, 3B-TR and SF-TT projector
for a voxel centered at the origimeft) and a voxel centered &t00, 150, —100) mm

(right).
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Figure 3.3: RMS error comparison between the forward DD, T®and SF-TT projector for a
voxel centered at the origimeft) and a voxel centered &t00, 150, —100) mm (right).
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Projectors DD | SF-TR-Al| SF-TR-A2| SF-TR-A3| SF-TT-A1 | SF-TT-A2
Forward time (seconds) 46 35 35 59 91 91
Backward time (seconds) 49 44 45 63 92 93

Table 3.2: Speed comparison of DD, SF-TR and SF-TT forwadleatk projectors.

trends as the maximum errors . The three amplitude methodsdimilar accuracies. For voxels
associated with small cone angles, the SF-TT and SF-TRqtasjhave similar accuracies, while
for voxels associated with large cone angles, the SF-TTeptof is more accurate than the SF-TR
projector. All the SF methods have smaller errors than therbdhod. For the voxel centered
at the origin, the RMS error of the DD projector is abdéat times larger than the proposed SF
methods with the A1 amplitude, and7 x 10% times larger than the SF methods with the A2
amplitude wherp = 45°. For the other voxel, the RMS errors of the DD and SF-TR ptojeare
about8 and5 times of that of the SF-TT projector respectively.
Speed of Forward and Back-Projectors

We compared computation times of the DD, SF-TR and SF-TTdodvand backward projec-
tors using an image with a size o8f; = 512, N, = 512, N3 = 128 and a spacing of\; = A, =
As = 0.5 mmin thez, y, z direction respectively. We evaluated the elapsed timegisie average
of 5 projector runs on a 8-core Sun Fire X2270 server with 2366z Xeon X5500 processors.
Because of the “hyperthreading” of these Nehalem cores,sgd @6 POSIX threads. (We found
that using 16 threads reduced computation time by only ab@ut compared to using 8 threads.)

Table 3.2 summarizes the computation times. For the SF-oiegor, the A1 and A2 ampli-
tude methods have similar speed, but the A3 method is a@ltétislower. The computation times
of the SF-TR and DD projector are about the same, whereasRIelr'rojector is about 2 times
slower. Although execution times depend on code implentemave expect SF-TR and DD to

have fairly similar compute times because the inner loop ewevolves similar simple arithmetic
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operations for both methods.
3.3.2 Forward and Back-Projector within Iterative Reconstuction

Since the A1 and A2 amplitude methods have similar accunadyspeed, we compared the DD
and SF projectors (SF-TR and SF-TT) within iterative imageonstructions with the A1 method

for simplicity.
SF-TR vs. DD

In many cases, the region of interest (ROI) needed for disigne much smaller than the
scanner field of view (FOV). ROI reconstruction can save catafion time and memory. Ziegler

et al. [168] proposed the following approach for iterative redomstion of a ROI.

1. Iterative reconstruction of the whole FOV, yielding artial estimatez,... of xxo. Which is

the vector of basis coefficients of the objgcr), i.e., f[7i] in (3.1).

2. Definezy,, = Troy - m Wherem = (my,...,m,) With0 < m; < 1(j =1,...,p)is
a mask vector setting the estimated object, inside the R@étto and providing a smooth

transition from the ROI to the remaining voxels.

3. Computep,s = Az

FOV

which is the forward projection of the masked obje¢t,., .
4. Compute the projection of ROb,.; = y — pouwt Wherey is the measured data.

5. Iterative reconstruction of the ROI only from,;. Due to the transition zone, the region of

this reconstruction needs to be extended slightly from tieegtermined ROI.

This method requires accurate forward and back projeckrsrs in step 2, where re-projection
of the masked image is computed, can greatly affect theteesbisubsequent iterative ROI recon-

struction. Moreover, for general iterative image recamson, even small approximation errors
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might accumulate after many iterations. We evaluated tearacy of our proposed SF-TR pro-
jector and the DD projector in this iterative ROI reconstioie method.

We simulated the geometry of a GE LightSpeed X-ray CT systémawn arc detector 088
detector channels for 64 sliced'{ = 888, N, = 64) by N3 = 984 views over360°. The size of
each detector cell wad; x A, = 1.0239 x 1.0964mm?. The source to detector distance was
D.q = 949.075mm, and the source to rotation center distance Was= 541mm. We included a
guarter detector offset in thedirection to reduce aliasing.

We used a modified 3D Shepp-Logan digital phantom that hgiseitls centered at the= 0
plane to evaluate the projectors. The brain-size field ofv\(([EOV) was250 x 250 x 40mn?,
sampled int®56 x 256 x 64 voxels with a coarse resolution 619766 x 0.9766 x 0.6250mm?.

We simulated noiseless cone-beam projection measurerinentshe Shepp-Logan phantom
by linearly averagin@ x 8 analytical rays [60, p. 104] sampled across each detedioNmseless
data is used because we want to focus on projector accuraeyscéled the line integrals by a
chosen factor to set their maximum value to about 5.

We chose a ROI centered at the rotation center that covereat 4B.8 x 48.8 x 12.5mm?
(50 x 50 x 20 voxels with the coarse resolution). The transition zoneaurds the ROI, and
covers aboul 3.7 x 13.7 x 5mm?® (14 x 14 x 8 voxels with the coarse resolution). To construct
masked images}. ., we removed the ROI and smoothly weighted the voxels cooredipg to the
transition zone by a 3D separable Gaussian function. Higsiows different views af .. with
the transition zone superimposed on it in the first row.

We implemented iterative image reconstruction of the eV with these two projector/ back-
projector methods. We ran 300 iterations of the conjugaselignt algorithm, initialized with

reconstruction by the FDK method [30], for the following jpdined weighted least-squares cost
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(a) FOV images.
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(b) ROl images.

Figure 3.4: Shepp-Logan digital phantoms in Hounsfieldaurite first, second and third columns

show axial, coronal and sagittal views respectively.

Figure 3.5: Axial views of FOV images;. ™ andz}.), reconstructed by the iterative method

FOV

(PWLS-CG) using the SF and DD method respectivegit: SF-TR projectorRight:
DD projector.
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Figure 3.6: Axial views of ROI images;" ™ and z.C, reconstructed by the iterative method
(PWLS-CG) using the SF-TR and DD method respectivélgft: SF-TR projector;
Right: DD projector.
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function with an edge-preserving penalty function (PWLS)C

R(wFOV> = Zw([cmFOV]k‘)a (3.39)

wherey; is the negativéog of the measured cone-beam projectienyalues are statistical weight-
ing factors,A is the system matrixC is a differencing matrix and(¢) is the potential function.

We used the hyperbola:

2
w(t) = %2 143 (%) 1. (3.40)

For this simulation, we used; = exp(—y;), 5 = 4 andé = 5 Hounsfield units (HU).
Fig. 3.5 shows axial views of the reconstructed imagigs™ andxp), by the iterative method

FOV

(PWLS-CG) using the SF-TR and DD method respectively. Wepmded the maximum error,

max; |Z; — x;|, and root-mean-square (RMS) errqﬂ% Zj.vzl(:%j —2;)2. The maximum and
RMS errors ofz{e M andxy)), are close because the errors are dominated by the axialleare-
artifacts due to the poor sampling (not truncation) at theaafs slices, but the DD method causes
artifacts that are obvious around the top and bottom areaslaartifacts of the DD method were
reported in [145].

We applied the PWLS-CG iterative method mentioned abovh @it= 1 andé = 1HU to
reconstruct estimated ROl imaged ™ andxz.>, of 256 x 256 x 64 voxels with a fine resolution

I ROI

of 0.2441 x 0.2441 x 0.3125mm?. The domains of35 ™ andz>, covered the ROl and transition
zone (see Fig. 3.4). For this image geometry, we also gasteeShepp-Logan reference image
o from the same ellipsoid parameters used to genatate. Fig. 3.4 shows different views of
Zrop IN the second row. The fine sampling®f,, is 1/4 andl /2 of the coarse sampling afy.

in the transaxial and axial direction respectively, anddaie 0f200 x 200 x 40.
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Fig. 3.6 shows the axial view of reconstructed imaggs'™ andx;, by the iterative method
(PWLS-CG) using the SF-TR and DD projector. The maximumrsreose 20 HU and 105 HU
for the SF and DD method respectively and the RMS errors &¢ilU and 2.8 HU. The SF-TR
projector provides lower artifact levels than the DD progecThe rectangle approximation in the
transaxial direction of the DD method resulted in largepesrin the reprojection step and caused
more errors when resolution changed from coarse to fine. &timmgle approximation basically
blurs corners of image voxels, and the level of blur variegiiierent image voxel sizes.

We also reconstructed full FOV images (not shown) at a fineluéi®n,i.e., 1024 x 1024 x 128
voxels with a spacing af.2441 x 0.2442 x 0.3125mm?. There were no apparent artifacts in both
reconstructed images using the SF-TR and DD method and tRenma and RMS errors were
similar. It seems that the aliasing artifacts in the recartsion by the DD method were removed by

fine sampling [161,162]. For smaller transaxial voxel sjzles difference between the rectangular

(DD method) and trapezoid (SF-TR) approximation becomes\esible.
SF-TRvs. SF-TT

We compared the SF-TR and SF-TT projectors by reconstigiatirimage under an axial cone-
beam CT system with largest cone angld &f or so using these two methods [80]. We expected
to see differences in some off-axis slices of the reconsttlionages because the trapezoid ap-
proximation of the SF-TT method is more realistic than thetaegle approximation of the SF-TR
method especially for voxels far away from the origin. Neékeless, we did not see obvious visual
difference, and the maximum and RMS errors were similarpfiears that the axial cone-beam
artifacts due to poor sampling (not truncation) at the adalices dominate other effects in the
reconstructed images, such as the errors caused by rest@mgloximation. Further research will

evaluate these two projectors within iterative recongtoamcmethods under other CT geometries



62

where the off-axis sampling is better, such as helical scgeswhere the cone angle is large

enough to differentiate the SF-TR and SF-TT method .

3.4 Conclusion

We presented two new 3D forward and back projector for X-rdy 8F-TR and SF-TT. Sim-
ulation results have shown that the SF-TR projector is morei@ate with similar computation
speed than the DD projector, and the SF-TT projector is moearate but computationally slower
than the SF-TR projector. The DD projector is particuladydrable relative to other previously
published projectors in terms of the balance between spedeuracy. The SF-TR method uses
trapezoid functions in the transaxial direction and regtdar functions in the axial direction, while
the SF-TT method uses trapezoid functions in both direstidrhe rectangular approximation in
the axial direction is adequate for CT systems with smallkecangles, such as the multi-slice ge-
ometries. The trapezoid approximation is more realisticgeometries with large cone angles,
such as the flat-panel detector geometries. To balanceaycand computation, we recommend
to combine the SF-TR and SF-TT method, which is to use the Blpfbjector for voxels corre-
sponding to small cone angles and to use the SF-TT projeatafoikels corresponding to larger
cone angles.

The model and simulations here considered an ideal pointsou-or a finite sized X-ray
source there would be more blur and it is possible that thierdifices between the SF and DD
methods would be smaller.

Approximating the footprint functions as 2D separable fiorts is the key contribution of
this approach. Since the separability greatly simplifiesdalculation of integrals of the footprint
functions, using more accurate functions in the transaamal axial direction is possible without

complicating significantly the calculations.
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The computational efficiency of the SF methods rely on tharagsion that the verticak) axis
of the detector plane is parallel to the rotation axis. If teeector plane is slightly rotated then
slight interpolation would be needed to resample onto doatds that are parallel to the rotation
axis.

Although we focused on voxel basis functions in this paper,idea of 2D separable footprint
approximation could also be applied to other basis funestiaith separability in the axial and
transaxial directions, with appropriate choices of fuocs.

Further research will address the implementation of the ®keptors based on graphics pro-
cessing unit (GPU) programming techniques [110, 134, 184inprove the speed. Implement-
ing the SF projectors on field-programmable gate array (FPiGAnother future research topic

[64, 65].



CHAPTER 4

Two-Material Decomposition from A Single CT Scan Using
Statistical Image Reconstructiont

Clinical CT scans are taken at the diagnostic range of X-reeyges of 30 to 150 Kev [87], and
images of linear attenuation coefficients at these eneggeseconstructed. However, attenuation
coefficients at higher energies are often required in médipplications. Radiotherapy desires
attenuation images in the Mev range for precise dose cdionland segmentation of anatomy
for treatment planing [10, 127]. PET/CT scanners demand r@istnission images at 511 Kev
for attenuation correction of PET emission images [66, 10Bhus the attenuation coefficients
at a lower energy must be converted to a higher energy. Tlkeane bne-to-one correspondence
between attenuation coefficients at two different energeesuse attenuation coefficients depend
on materials’ densities and atomic numbers in a mixture 188]. Two materials with different
atomic numbers may have similar attenuation coefficiermsaenergy, but different coefficients at
another energy. Basis material decomposition has beemgeddo solve this conversion problem.
An accurate image of attenuation coefficients of a mixturargt effective energy of interest can

be synthesized by combining component images separat¢degtemergies.

1This chapter is based on material from [85].

64
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Dual-energy (DE) CT methods, pioneered by Alvarez and Mskiost al. [5, 6, 88,92, 139],
are the most predominant approaches for reconstructindptscs materialse(g., soft-tissue and
bone). They decomposed the energy dependence of attamaagfficients into two components,
one approximated the photoelectric interaction and am@yeroximated Compton scattering, and
separated these two components from two sets of measureatemio different source energies.
Using singular value decomposition, Lehmann and Alvar&} §howed that two basis materials
are sufficient to present the energy dependence informati@nmixture if operating far from
the K-edges of any component material. Although DECT metheere originally proposed in
the late 1970s and early 1980s, only recently DECT scanreszarbe clinically available with
technological developments, such as fast kVp-switchingl-dource CT and dual-layer detectors.
These new technigues have brought renewed interest in DBZ A8, 50,61, 66, 78,86, 103, 104,
112,112,144,160].

FBP based methods dominated DECT reconstruction untildhg £990s, when a few alge-
braic iterative methods [68, 91, 97] were proposed. FBP odstare known for amplifying noise
due to the use of non-ideal ramp filter. Algebraic methodsiogrove the accuracy relative to
FBP methods, but they do not account for noise statisticsofrast, statistical image reconstruc-
tion methods [35, 37,48, 104, 144] based on the physical haddee CT system and a statistical
model can obtain lower noise images.

However, typical DECT methods require either two scans ecshized scanner designs [146].
Several methods have been developed to reconstruct twe aderials from one CT scan of a
single tube voltage setting. Ritchings and Pullan [121]ehdescribed a technique for acquiring
dual energy data by filtering alternate detectors. Althotighis a single scan method, it is dose
inefficient, since the photons stopped by the filters contelio patient dose but not to the signal,

and the angular spatial resolution is decreased by a fa€tovad More recently, Taschereaat
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al. [146] retrofitted a preclinical microCT scanner through &efilwheel to alternate two beam
filters between successive projections. One filter provadiesv energy beam while the other filter
provides a high energy beam. MicroCT scanners rotate velgtslower than typical CT scanners,
so alternating beam filters may not be feasible for typical€€@nners. Rutt and Fenster [123]
proposed a split filter technique which requires only a samguddition of pre-patient filters to a
conventional scanner. A split filter has two parts, a right-filker and a left half-filter, and these
two parts consist of different materials or thicknessedit 8iper technique screens the two halves
of the X-ray beam differently at one projection angle. Usi6g° rotation of the X-ray source, the
whole scanned object is exposed to two incident spectradifiirent effective energies. For the
2D fan-beam geometry, every path in the patient cross secto easily be measured with two
different beam filtration during a single scan. Rutt and femnfirst separated the data obtained
through the right half-filter from those through the leftfafilter to form two sets of measurements
at dual energies, and then followed the decomposition nadgthaposed by Alvarez and Macovski
et al. in [5]. They presented a general derivation of noise anslysidual energy analysis and
applied it to determine the optimal parameters for the djilé@r scans. To simplify the split-
filter design optimization, they assumed the right half+fieas unfiltered in all calculations. They
concluded that 1 mm copper across half the fan beam with matfdh of the other half is the
optimal filtration parameters for photoelectric/Comptoraging.

We propose a statistical penalized weighted least-sq(RWES) method with edge-preserving
regularization to reconstruct two basis materiasg.( soft tissue and bone) from a single-energy
CT scan. This method exploits the incident spectra diffeeesf rays created by filtration, such as
split and bow-tie filters.

Separation of measurements obtained by the right half-aitel left half-filter is not required

for the statistical method since it models the physics of ¢Steans. In addition, for axial and heli-



67

cal cone beam CT geometries, most paths in the patient areeegured by exactly two different
incident spectra created by split filters. The choice of mateand thickness for the right and left
half-filter should provide sufficient difference betweee tiight and left spectra to minimize the
ill-conditioning of this material decomposition probleffaschereast al. [146] alternated a filter
of 2 mm aluminum and the other filter of 2Q0n molybdenum between successive projections to
obtain dual-energy measurements. The Al filter screened@ytlow energy X-rays, while the
Mo filter greatly reduced the spectrum above 20 KeV becasgd¢ @bsorption edge is at 20 KeV.
The Al filter produced “soft” beams while the Mo filter producéhard” beams. They proved
that the spectra between the “soft” and “hard” beams haveerift difference for the dual-energy
material decomposition problem. We borrowed this designofar split filter. For a simulated
spectrum with X-ray tube voltage of 80 kVp, this split filtenopluced “soft” beams with effective
energies of 49 keV and “hard” beams with effective energfes8ckeV.

Bow-tie filters are commonly employed in CT scanners to reduatensity variations across
detector elements. They harden the portions of the X-raynbibat will pass through the thinner
parts of the object by filtering out the lower-energy compaseDue to different extent of filtration
to each radiation ray in the beam and the rotation of the Xsmyce, the whole scanned object is
exposed to incident spectra with different effective erergMost image reconstruction methods,
including the DECT methods, assume the incident spectruadsnstant for all radiation rays
in the presence of bow-tie filters. In contrast, we use théfereinces to reconstruct two basis
materials from CT measurements at a single energy. We sietukatypical body bow-tie filter
that consists of aluminum, graphite, copper and titaniumr. &simulated spectrum with X-ray
tube voltage of 80 kVp, the effective energies are 49 keV &/ for the rays at the edge and
center of the bow-tie filter respectively.

We proposed an optimization transfer method with sepamgieratic surrogates to monoton-
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ically decrease the PWLS cost function. We first reconséidiche bone-corrected FBP images
using the Joseph and Spital method [57], and separated fihiessae and bone components by a
threshold to initialize the iterative optimization alghwin. We used the ordered subsets approach
to accelerate the convergence to a good local minimum.

Experiments showed that the proposed PWLS method was abdedastruct soft tissue and
bone components from a single-energy scan acquired wiithesyl bow-tie X-ray filters. The split
and bow-tie filtration had similar results. For both filtiimethods, the RMS errors of the soft
tissue and bone images reconstructed by the PWLS methodaberd 75; and 604 of those
of the traditional non-iterative JS- FBP method respettiveor the density (sum of soft tissue
and bone) and linear attenuation coefficient images at 5¥1tke RMS errors of the PWLS with
both filtration were 4@ of those by the JS-FBP method. The PWLS method reduced time-bea
hardening artifacts much more effectively than the JS-FBfhod which is known for mitigating
these artifacts. The PWLS method also produced lower noise.

The organization of this chapter is as follows. Section 44cadbes the differential filtration
technique for producing spectra with different effectiveemgies. Section 4.2 introduces the pro-
posed PWLS reconstruction method. Section 4.3 discussegptimization method with separable

guadratic surrogates. Section 4.4 shows simulation iesslhg split and bow-tie filters.

4.1 Differential Filtration

X-ray filters attenuate X-rays by different amounts depegdin the X-ray photon energy.
Given a X-ray spectrum, filters of different materials occknesses create different exiting spectra.

We investigate spectra differences produced by split and tfilters.
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fan beam

A \X-ray tube

Figure 4.1: Schematic diagram of a fan-beam CT scanner withpositions of X-ray source and
split-filter assembly.

4.1.1 Split Filtration

The split filter technique was proposed by Rutt and Fenst2B][in 1980. A split-filter is
composed of two parts, a right half-filter R and a left halfefilL. Filters R and L are made of
different materials or thicknesses. Split-filters are tedanear the X-ray tube to filter two halves
of the X-ray beam differently. Fig. 4.1 shows a schematigiien of a fan beam CT scanner with
two positions of X-ray tube and split-filter assembly. ThéhR in the object is passed through by
two rays. One is the ray screened by filter R at position A, tiheois the ray screened by filter L
at position B from the opposite side of the object. Similagigch path in the cross section will be
filtered differently since two opposing rays originatedfropposite halves of the fan pass through
it. Most DECT methods acquire dual energy information by tseans or specialized scanner
designs, such as fast kVp-switching, dual-source CT or-thyadr detectors. In contrast, the split-
filter technique produces two spectra with different effecenergies by two different beam filters.

The split-filter technique is independent of the CT scanm@ngetry, and therefore can be applied
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to any existing scanner that perforr®&)° scans. The implementation of this technique requires
only the attachment and alignment of the filters between thayxtube and the patient.

The choice of material and thickness for the right and leti¢fishould provide sufficient dif-
ferences between the right and left spectra to produce eherlgy measurements. We use 2 mm
aluminum across half the fan beam with 206 molybdenum of the other half. The Al filter
screens out very low energy X-rays, while the Mo filter grgatiduces the spectrum above 20 KeV
because its K absorption edge is at 20 KeV [146]. The Al filledpces “soft” beams while the
Mo filter produces “hard” beams. Fig. 4.2 shows the spectated by this design of split filter
for a simulated spectrum with X-ray tube voltage of 80 kVp.eTeffective energies are 49 keV

and 58 keV for the “soft” and “hard” spectrum respectively.

1o split 1o bow-tie

——2mmAl
- - 200pm Mo

A |

T il
A
e =260 / \ \
o
//
/

Eneroy eV] Eneroy eVl
Figure 4.2:Left: Spectra produced by a split filter for a simulated spectruth Wiray tube voltage
of 80 kVp. The split filter consists of 2 mm aluminum producisgft” spectra and
200m molybdenum producing “hard” spectra. The effective eigsrgre 49 keV and
58 keV respectivelyRight: Sample spectra at four fan angles screened by a body bow-
tie filter. v denotes the fan angle. The effective energies are 49, 5IndS&keV for
the spectra &6°, 14°, 10° and(° respectively.
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4.1.2 Bow-tie Filtration

Bow-tie filters are commonly used in CT scanners to minimigensity variations across de-
tector cells. They harden the portions of the X-ray beamwhidpass through the thinner parts of
the object by filtering out the lower-energy components. fhieknesses of bow-tie filters increase
gradually from the center to the edge. The X-ray spectra ngraut from different locations along
bow-tie filters vary due to different extents of filtration.sildg 360° rotation of the source, the
scanned object is exposed to incident spectra with diffeeffective energies. We simulated a
typical body bow-tie filter that consists of aluminum, graphcopper and titanium. Fig. 4.2 also
shows spectra at four fan angl@sq, 14°, 10° and0°) filtered by the simulated bow-tie filter. Their

effective energies are 49, 51, 53 and 56 keV respectively.

4.2 Penalized Weighted Least-Squares (PWLS) Reconstruoti

Clinthorne and Sukovic [24, 141-144] have investigated B\dpproaches for dual-energy
and triple-energy CT reconstruction. They assumed momngetie source spectra. Huh and
Fessler [48,50] proposed a PWLS method for DECT that indudeomplete polyenergetic source
spectrum model. We adopt this polyenergetic PWLS methodtimate two basis materials from
a single scan,e., My = 1 andLy = 2in (4.1).

Combining the general measurement model (2.1) and the tolmjedel (2.24), the mean of

measurements can be represented as follows,

gz‘m - ]zm e fim(8:()) + Tim, (41)
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form=1,...,Myandl =1,..., Ly, where

Fom(s:) = —10gvim(s;) (4.2)
Vim(8i) 2 / Pim(E) e AE) 51 4g (4.3)
Pin(€) = Tn(€) /Tim (4.4)

Lm 2 / Lim(€) dE . (4.5)

The nonlinear functiorf;,,(x) characterizes the beam hardening caused by polychronuatices
spectra. The total intensitl,, for the mth energy scan and théh ray is defined in (4.5). The

sinogram vectos;(x) and mass attenuation veci8(<) are defined as

si(@) 2 (su(@),....sim,(2))
BE) £ (Bi(E),...,Br,(E))
sulz) = [Am));,, (4.6)

where A denotes theéVy x N, system matrix with entries

2 (@) ar. 4.7
as /L A7) 4.7)

The image vectorig = (z1,..., @, ..., x1,) € RV forx, = (v, ..., 3y, ..., zy,). Given

noisy measurements,,, the f;,, values are usually estimated by inverting (4.1) as follows:

P Y;m - Iim
fim 2 —log(%) ) (4.8)

Component images are then estimated fromfthevalues in (4.8) by minimizing a PWLS cost

function subject to box constraints on the elements af follows:

x = argmin ¥Y(x) (4.9)
oo, 2
V@) 23D Suim (fim— fim(sz-(:c))> + R(x), (4.10)

i=1 m=1
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wherew,,, = Y;,, values are statistical weighting factors depending ondeuisikelihood, and
x_ > 0 andz, are determined by the prior knowledge of ranges of mateaalmonent values.

The edge-preserving regularizer tefdfx) is

Lo
R(z) = BiRi(m), (4.11)
=1
where
NP
Ri(x) = Z Z iy — k) (4.12)
J=1 keNy;

) = (z( 1+3(§l) 1), (4.13)

where\V;; is some neighborhood of voxe},;. The regularization parametefs and¢, can be

chosen differently for different materials according teittproperties.

4.3 Optimization Algorithm

Because the cost functidn(x) in (4.10) is difficult to minimize directly, we apply optirmation
transfer principles to develop an algorithm that monotalycdecreased (x) each iteration. We
ignore the regularizer term (4.11) hereafter since thelehging part is the nonlinear least-squares
not the penalty function and the extension to PWLS is sttéogivard [34].

Define the vector beam-hardening function as

Fi(s) & (falsa)s -, s (80)) (4.14)

and rewrite the cost function (4.10) (ignore the regularteem) as

Na Mo

U(s(z)) = Z Vilsi(@) =)D Winlsi(®)), (4.15)

i=1 m=1
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where
A Ly, 2
U,(s;) = 3 fi— fi(si) W, (4.16)
A 2
‘I’zm(sz) é %wim <f7,m_f7,m(32)) ) (4-17)

andW; = diag{w,...,w;n,} . We first find a quadratic surrogate function fdr,,(s;) since
the cost function,(s;) is already additively separable in terms@fand then find a separable

guadratic surrogate function af by applying De Pierro’s additive convexity trick [2,27].
4.3.1 Separable Quadratic Surrogate of Sinogram Vector

The separable quadratic surrogate functié?‘?(si) with respect tos; at thenth iteration that

satisfies the surrogate conditions given in (2.67) has th@dog form

Ngq My
oM (s) =3 il (si), (4.18)
i=1 m=1
where
n n)\/ n 1 1)\ / £ n
a0 (51) = Wan(s5) (5 = 5"V Wi (8”) +5 (5 = 51" Cim(si = s1),  (4.19)

wheres!™ 2 s,(z™).

7

We use a bound on the Hessianlof, as the curvatur€,,,. The gradient and Hessian 9t,,

are
¥ Uin(s:) = —twin (fin = fin(5)) ¥ fin(s) (4.20)
V2U,n(s:) = Hi(s;)+ Ha(sy), (4.21)
where
Hy(8:) 2 wimV fim(8:) Y fim(s:) (4.22)

1>

Ha(s) = win (fin = Fin(5)) (=9 fin(s1)) . (4.23)
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V andV denote the column and row gradients respectively.

We ignoreH, in (4.23) when finding an upper bound fét,,, since in practice we would hope
thatﬁ-m ~ fim(si(x)). Itis stated in [111, p. 542] that the ter(rfim — fm) should be the random
measurement error of each point for a successful model.€Ffos can have either sign, and should
in general be uncorrelated with the model. Therefore, therse derivative termél, tend to cancel
out when summed over It is also mentioned that inclusion of the second-deneaterm can in
fact be destabilizing if the model fits badly or is contam@thby outlier points that are unlikely to
be offset by compensating points of opposite sign. Thusgta simplifies to finding a positive
non-negative matrixC;,,, such thatC,,,, = H,(s;),Vs;. By calculation described in Appendix A.2,
we choose

Cim = ||V fim(0)||” I. (4.24)

4.3.2 Separable Quadratic Surrogate of Image Vector

. A . . N,
Define vectorr; = (71, ...,2L,;), and rewrite the sinogram vector agz) = > ., a;;T;.

The surrogate functio@&”)(si) is a nonseparable quadratic functionaaf Nonseparable surro-
gates are inconvenient for simultaneous update algorimdsfor enforcing the box constraint in
(4.9). To derive a simple simultaneous update algorithrighfally parallelizable and suitable for
ordered-subsets implementation [2, 47], we find next a séyp@amuadratic surrogateg")(w) by
applying De Pierro’s additive convexity trick [2, 27].

By derivations described in Appendix A.3, a separable catdasurrogate that satisfies the

conditions (2.67) has the form

gzﬁgn) (x) = \I/(w(”)) +(x — ™)'V \I/(a:(”)) —i—%(a: - w(”))'diag{dl(?)}(a: — ™), (4.25)
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where
M NSNS e
dlj - Z Z 7T_ZJ |:Cim] u ’ (426)
i=1 m=1
Ja S
(077
Ty = a; N a; — Z ‘CLU|. (427)

Because thisbé”)(w) is a separable quadratic function, it is trivial to minimizeading to the
following parallelizable iteration:

n n H 1 n y
"t = [w( ) — dlag{w} VU (2 ))] , j=1,...,N,. (4.28)
+

lj

4.4 Simulation Results

To evaluate the proposed PWLS method, we reconstructedissifie and bone images of a
NCAT chest phantom [129] from a single-energy CT scan usisgraulated split and bow-tie
filter. We generated the density images by simply adding dfetssue and bone components,
and synthesized the linear attenuation coefficient imag&d h keV by linearly combining the
reconstructed components with their mass attenuatioricegits at that energy. We compared the
soft tissue, bone, density and linear attenuation coefii&d&1 keV reconstructed by the JS-FBP
and proposed PWLS method. We also compared the result inogpsit and bow-tie filtration.

Fig. 4.3 shows the NCAT object used in the computer simutatithe units otr are physical
density (g/c) and were assigned to 1.0 for soft tissue, 0.5 for lungs, dr5pine and 2.0 for
ribs. The lungs and soft tissue had the “soft tissue” charatics shown in Fig. 2.3, and the
spine and ribs had the “bone” characteristics of Fig. 2.3e irhages weré12 x 512 and the
pixel size was 1 mm. This chest phantom is unrealistic sinesetshould be marrow (“soft tissue”
characteristics) inside the cortical bones. Solid bongsagte the beam-hardening effects, which

helps to compare the extent that the proposed PWLS and JSvieBid reduce these artifacts.
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We simulated the geometry of a GE LightSpeed X-ray CT fanybggstem with an arc detector
of 888 detector channels by 984 views 0860°. The size of each detector cell was 1.0239 mm.
The source to detector distance wag = 949.075mm, and the source to rotation center distance
wasD,, = 541mm. We included a quarter detector offset to reduce aliasvgused the distance-
driven (DD) projector [26] to generate projections of theetiobject.

We simulated an incident spectrum of the X-ray tube voltag@OakVp. Fig. 4.2 shows the
exiting spectra of this source spectrum screened by thefielf and body bow-tie filter described
in Section 4.1.

We simulated noiseless measuremeptsusing (4.1) and the spectra shown in Fig. 4.2. To
the noiseless measuremefis, we added Poisson distributed noise correspondingtincident
photons per ray to “soft” rays screened by the Al filter of tpétdilter. For “hard” rays and rays
passing through the simulated bow-tie filter, we added Bais®ise corresponding t°7;/7;
incident photons per ray whefgand/; denote the total intensity of the current ray and the “soft”
ray respectively. Fig. 4.4 shows the logarithm sinograrimestes/;,, described in (4.8) as com-
puted from the original noisy measuremehts. The visible straight line in the left sinogram was
caused by the split filtration.

We first reconstructed FBP images using the water-cornectiethod and the bone-correction
JS method described in Section 2.1.4. Fig. 4.5 shows the EB#hstructions and their absolute
error images. The RMS errors were 0.14 gfcamnd 3.3<102 g/cn? for the water and bone
corrected FBP images using the split filtration, and 0.15ng/and 3.1x10~2 g/cn? respectively
using the bow-tie filtration. The water corrected FBP hadhisicant errors in the bone regions,
while the JS-FBP greatly reduced them.

For the two cases of filtration, we separated the soft tiskows in Fig. 4.6 and bone compo-

nent shown in Fig. 4.7 from the JS-FBP reconstructions usithgeshold of 1.2 g/chto initialize
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the iterative optimization algorithm. We choge = 5, = 27% andé, = 6, = 0.01 for soft tis-
sue and bone components for both filtration methods. We r@nitéfations of the optimization
transfer algorithm described in Section 4.3 with 41 sub&etccelerate the “convergence” to the
initialization. We enforced box constraints with a lowernd of O for both soft tissue and bone
and upper bounds of 1.2 g/érand 2 g/cm for soft tissue and bone respectively.

The soft tissue, bone and density images reconstructedebySH-BP and proposed PWLS
method using split and bow-tie filtration were shown in Fig,&ig. 4.7 and Fig. 4.8 respectively.
Their RMS errors are summarized in Table 4.1. For both fitratnethods, the RMS errors of the
soft tissue and bone images reconstructed by the PWLS methi@dabout 7% and 604 of those
of the traditional non-iterative JS- FBP method respedttivéor the density images, the RMS
errors of the PWLS method using both filtration were abouyt 40 those by the JS-FBP method.
The PWLS method removed the beam hardening artifacts mucé efiectively than the JS-FBP
method which is known for mitigating these artifacts.

We synthesized the linear attenuation coefficient imag&4 hkeV by linearly combining the
reconstructed components with their mass attenuatiorficiegits at that energy. Fig. 4.9 shows
these attenuation images by the JS-FBP and PWLS method.afge of true linear attenuation
coefficients was [0 0.18] cmt. The reconstructed images were shown in a more sensitivénge
window ([0.08, 0.12] cm?) to highlight the beam-hardening effects. The PWLS imageklass
beam-hardening artifacts. Table 4.1 also shows the RMS3serithe RMS errors of the PWLS
method using both filtration were about4®f those by the JS-FBP method.

Fig. 4.10 shows vertical profiles through the true and egthaoft tissue, bone components
and the linear attenuation coefficient images at 511 keV by®&FBP and PWLS methods. The
green line in the true linear attenuation image in Fig. 4Hdwss the profile locations. The proposed

PWLS method produced lower noise than the JS-FBP methodpibifibkes showed negative bias
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in the soft tissue regions and positive bias in the bone regio the soft component, and similar
opposite biases in the bone component. Profiles at othetiddsashowed similar bias problem.
We have also applied the proposed PWLS method to a moretreaisulated phantom that
had marrow (soft tissue characteristics) inside corticalds. This bias phenomenon remained.
We found this bias problem is sensitive to regularizer coigfits; in (4.11) and edge-preserving
parameters; in (4.13). Increasing,; ando, caused more bias but less noise, while decreasing them
led to less bias but more noise. The choice of parametersi@mnuaterial component influenced
the reconstructed image of another component.

Fig. 4.11 compares the profiles of the PWLS results usinggliessid bow-tie filters. The split
and bow-tie filtration had similar results, which was alsod@strated by reconstructed images in

Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9 and by the RMi®rs in Table 4.1.

Soft tissue Bone

1 . Q 1
512 0 512
1 512 1

Figure 4.3: True soft tissue, bone and density map (softeissbone) of a NCAT chest phantom.

Density

Split Bow-tie
Method || soft | bone| density| attenuation| soft | bone| density| attenuation
JS-FBP|| 4.0 | 34 3.2 3.0 40| 3.3 3.0 2.8
PWLS | 3.0| 2.0 1.2 1.2 3.0 2.0 1.2 1.3

Table 4.1: RMS error comparison of reconstructed imageshbyJS-FBP and proposed PWLS
method using split and bow-tie filtration. The units afe2g/cm 2 for the soft tissue,
bone and density images, ah@i->cm~! for the linear attenuation coefficient images at
511 keV.
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Figure 4.4: Logarithm sinogram estimatgs, using the simulated split filterlLgft) and bow-tie
filter (Right).

4.5 Discussion and Conclusion

We have presented a statistical PWLS method for two-méateicomposition from a single-
energy CT scan acquired with a X-ray split filter or a bow-tieefi

To monotonically decrease the PWLS cost function which was-convex and non-linear,
we presented an optimization transfer method with separgbadratic surrogates. To obtain a
good initialization for the iterative optimization, we fireeconstructed the bone-corrected FBP
images using the Joseph and Spital method [57], and segdhstesoft and bone components by
a threshold. We used the ordered subsets approach to atediee convergence to a good local
minimum. We enforced box constraints on both soft tissue laoke estimates, but found the
reconstruction results were insensitive to the bounds sfdomstraints.

Experiments showed that the proposed PWLS method recatetirgoft tissue and bone com-
ponents with 2% and 40% lower RMS errors respectively, and reconstructed densiigy $um of
soft tissue and bone) images and linear attenuation caeffiehages at 511 Kev with 4Dlower

RMS errors than the JS-FBP method. The PWLS images had feeaen{hardening artifacts and
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Figure 4.5: Water and bone corrected FBP and their absoftdeimmages using split and bow-tie

filtration.



82

JS-FBP

0

512

a) Split filtration.
JS-EBP (2) Sp

(b) Bow-tie filtration.
PWLS

(c) Split filtration.

PWLS

1 . w 1
512 o 512
1 512

(d) Bow-tie filtration.

1 512

Figure 4.6: Soft tissue images and their absolute erromsoucted by the JS-FBP and proposed
PWLS method using split and bow-tie filtration.
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Figure 4.7: Bone images and their absolute errors recartstiuby the JS-FBP and proposed
PWLS method using split and bow-tie filtration.
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(b) Bow-tie filtration.

Figure 4.8: Density maps (the sum of soft tissue and bonees)agconstructed by the JS-FBP
and PWLS method using split and bow-tie filtration. The insage shown in a more
sensitive viewing window ([0.8, 1.2] g/cth
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Figure 4.9: Linear attenuation coefficient images at 511 ketbnstructed by the JS-FBP and
PWLS method using split and bow-tie filtration. The rangeraétlinear attenuation
coefficients was [0 0.18] cmi. The images are shown in a more sensitive viewing
window ([0.08, 0.12] cm') to highlight the beam-hardening effects.



86

T T
1 w ‘ 1 - f ,\v\
— | — “
| |
CYE | CYE |
O osf | O g8l |
~ ~
o) ()]
—_ —_
> >
= true =
) o6t JS-FBP 0 osf
C pwlis C tue
G) G) JS-FBP
© © L
0.4 04
02t B 02t ‘
| \
|
| 1
| |
| w [
0 & 4 4 L L L | 0 & 4 4 L L L |
280 290 300 310 320 330 340 350 360 280 290 300 310 320 330 340 350 360
16 16
14t 14t
Lowm ] Lommn ]
CYE 12t CYE 12t
O O
~ ~
o) o)
=, =,
> >
= true =
) —s— JS-FBP )
C osF —e— pwis C osF
Q 5] true
o o —s— JS-FBP
06 06 o pwls
0.4 0.4
|
0.2t f E 0.2t |
. ‘ ‘ ‘ M@g‘fjl ‘ . . égggggl ‘ ‘ ‘ Wm | ‘
280 290 300 310 320 330 340 350 360 280 290 300 310 320 330 340 350 360
0.16 0.16
0.15 0.15
0.14 0.14

=10.13 =10.13
— —
‘E ‘E
0.12 0.12
O O
—_— —_
0.11 0.11
0.1 0.1
0.09 0.09
0.08 L L L L L L L 0.08 L L L L L L L
280 290 300 310 320 330 340 350 360 280 290 300 310 320 330 340 350 360

(c) Linear attenuation.
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the linear attenuation coefficient images by the JS-FBP anil$ method using
split (left) and bow-tie (ight) filtration. The green line in the true density image
in Fig. 4.11 shows profile locations.
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lower noise than the JS-FBP method. The bow-tie filtratiavdpced similar results as the split
filtration. We did not compare the spatial resolutions obrestructions by the JS-FBP and PWLS
methods, because it is not easy to evaluate the spatialitesoproperties of reconstruction meth-
ods with edge-preserving regularization [33, 136, 137].weeer, the profiles in Fig. 4.10 looks

similar.

The role of the split or bow-tie filter is to create differesdeetween incident spectra to reduce
the ill-conditioning of the problem of decomposing two nraks from one single-energy CT scan.
We simulated a split filter with 2 mm aluminum across half tha beam and 20@m molyb-
denum of the other half [146] . The simulated body bow-tieefitontains aluminum, graphite,
copper and titanium. Performed experiments showed ourlateulifilters provide sufficient spec-
tra differences for the PWLS method to reconstruct sofutsand bone components. We believe
other choices of materials and thickness for the split anvd-tiefilters or other types of differential
filtration could lead to similar or even better results foe foroposed PWLS method. Optimizing
the materials and thickness or the types of differentialafiibn is not our focus. We simulated
an incident spectrum for an 80 kVp of the X-ray tube voltagene@ould choose other X-ray
tube voltages. Different voltage settings could affectdbgree of spectral separation produced by
split and bow-tie filters, and consequently could changedhenstructed component images. The
radiation dose should be carefully adjusted accordinge¢onay tube voltage.

A fundamental limitation of using differential filtrationith a single-energy scan is the in-
evitable overlap of the filtered spectra (see Fig. 4.2). Weeekthat DECT methods are superior
from the standpoint of spectral differences that may leadetber reconstructed component im-
age quality. However, the differential filtration requiresly the attachment and alignment of the
metal filters on the X-ray tube housing. Another problem ahgglifferential filtration is to pre-

cisely align the filters and rotational center in order to@sgthe isocenter area to different spectra
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which helps reconstructing component images in that areasiWulated a 2D fan-beam system
to evaluate the proposed PWLS method. For this geometrip, gath in the patient cross section
is measured with two different beam filtration created by & &fter during a single360° rotation
scan. However, for typical clinical CT systems, such aslada helical cone beam geometries,
most tilted paths in the patient are not passed by two diftareident spectra. This problem re-
mains to be addressed for practical use of split filters. \&fe akpect the results could be sensitive
to model mismatch, such as Compton scatter or imperfectisphecodels.

The PWLS cost function has four parameters, two reguladaefficientsf; in (4.11) and two
edge-preserving parameteysin (4.13). We found slight negative bias in the soft tissugiars
and positive bias in the bone regions in the soft componendtsanilar opposite biases in the bone
component. This bias problem is sensitive to these paramdtereasing them caused more bias
but less noise, while decreasing them led to less bias bu¢é maise. The choice of parameters
for one material component influenced the reconstructedétd another component. Huh and
Fessler [49] used a material-cross penalty for DECT recoosbn. This penalty used the prior
knowledge that different component images have similaeextga. One could also consider this
basis material reconstruction problem as a classificatioblpm, since most pixels either have soft
tissue characteristics or bone characteristics [29]. Befunctions could be designed based on
this prior knowledge. Choosing regularizers for the PWLShod and optimizing its parameters
need further investigation.

Two component images are not enough for some medical apiphsa[78, 89, 96]. When
guantifying the concentration of iron in a fatty liver, imegyof three constitute materials, iron, fat
and tissue, are required. For the purpose of radiotherapgidition to soft-tissue and bone it is
also better to know the distribution a third material, sustcalcium, metal (gold) or iodine. An

interesting future research would be to extend this PWLShoteto three-material decomposition
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from dual-energy CT scan (such as fast kVp-switching and-goarce CT) acquired with a split
or bow-tie filter. The use of filtration for DECT creates diftatial spectra to the original spectra
at two source voltage settings, which would provide addalanformation for separating three

materials.



CHAPTER 5

Accuracy Estimation for Projection-to-Volume Targeting
During Rotational Therapy: A Feasibility Study *

The rapid adoption of two technologies, arc therapies [169] and cone-beam CT [21, 54,
55, 98], have brought to the forefront a number of investayet about optimizing the use of pro-
jection radiographs and reference volumes for targetiegtinent. While a significant number of
investigations are ongoing into optimizing reconstructémd use of cone beam CT, a smaller but
highly relevant path of investigation is similarly beingrpued in using subsets of projections from
a rotational series for alignment and reconstruction.

Such experiments fall into two primary classes of operatibime first involves reconstructing
volumetric images from subsets of projections acquired oottional arcs of various lengths.
For longer arcs, these backprojections yield volumetriages with fairly uniform resolution,
while for shorter (typically 45-90 degree) arcs, the ret¢nrion yields volumes with spatially
varying resolution. Such reconstructions generally ammésl tomosynthesis, and have been eval-
uated from both kilovoltage as well as megavoltage prapastifor use in image guided radiother-

apy [41,67,124,150]. There is a special case of tomosyistlusing a fixed set of projections

1This chapter is based on material from [82, 83].
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(more complex than an arc) [90]. These reconstructed vosuametypically aligned directly to the
reference CT scan.

A different approach involves relating the new projectidirectly to the reference CT without
reconstruction. Such projection-to-volume alignmenteskpents have been performed for some
time [4,63]. More recently, the series of projections acgiduring arc rotations has been used to
estimate motion and deformation parameters [77,95, 1@5, 1116, 155,158, 163, 164].

This area of research is highly promising. As the amountfafrmation needed to estimate the
position, pose, configuration, and finally motion of a patisrreduced, the temporal resolution
of updates to the patient state improves. In this investigaimethods for estimating the local
configuration of a lung tumor are tested, and an evaluationade of the influence of rotational

arc length on maximum achievable accuracy.

5.1 Materials and Methods

5.1.1 Projection-to-Volume Registration

We assume a static reference volugfie/, such as a breath-hold planning CT, is available,
and we record a sequence of cone-beam projection views ofiteti-angle scan, denoted as
forn = 1,..., N whereN is the number of projection views. The current experimestages
that movement during the limited projection arc is negligitOne can imagine that a continuous
relationship exists between temporal resolution and apaticuracy. The current investigation
focuses on the spatial accuracy under ideal conditions @meéement between projections). While
one can assume that movement during rotation would dectbassccuracy of measurements, it
is our expectation that further studies will be able to edtprior models for estimating motion
during rotational arcse(g., Refs. [77,164]), but that it is unlikely that such methods cecover

spatial information at accuracies higher than the curreation-free estimations are capable of.
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We estimate the local configuration of a lung tumor using tets ®f data, the reference volume
fr" and projection viewy,,.

A nonrigid model is suitable to describe changes in thoraxfigaration during breathing or
as varying between breath held states. We use the cubiciBespbnrigid motion model given
in (2.55), and assume a target imaffer is deformable fromf™* (See (2.62)). We estimate the

deformation parametegs by minimizing the following regularized cost function:

a = argminV¥(a)

V() = L(a)+vR (), (5.1)

whereL () is the data fidelity termR («) is the regularization function, and scatacontrols the
trade-off between them.
We focus on the least-squared error metric, because alhtestigations in this paper are based

on the same patient and imaging modality. The metric is esga@ as,

2 (5.2)

1Y |
L(a) = 53 lyn — Ay, T(e) f
n=1

whereA,, denotes the system matrix with size/gf x NV, at projection angle,, that is the angle

of the source point counter-clockwise from thaxis (see Fig. 5.2),, = (Ynds-- s Ynds -« > Yn.Ny)

is thenth cone-beam CT projection vied; () is given in (2.62) and (2.63). In practiag, is
estimated from the transmitted intensi¥y,, which is degraded by noise that dominated by the
Poisson effect [1]. For simplicity, assuming a monoenecgabdel and ignoring the background
signals such as Compton scatter, dark current and noise,esgride the Poisson statistics as

follows,

Y, ; ~ POiSsoR I, e ¥}, (5.3)

where I, ; denotes the incident intensity that incorporates the soapectrum and the detector
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gain. The projection viewy,, is estimated fron’,, as follows,

]nl
An = 1 — . 5.4
Yn,l Og(”ﬂ) (5.4)

To encourage local invertibility and smoothness of chamiyesto local respiratory motion and
its variations, we adopted a simple regularizer propose@lmynet al. [23], which is introduced
in Section 2.2.3. In this investigation we used the samenmpai@r settings as in Section IV-D of
Ref. [23].

For optimization of the the cost function (5.1), a conjugatadient (CG) method was used.
The line search step size was determined by one step of Newtathod. To avoid local minima
and accelerate the optimization procedure, we appliecead-multi-resolution scheme [152]. We
ran 100 iterations of conjugate gradient optimization for the fitgee levels of resolution anid0
iterations for the finest resolution. Large number of itenas were used to ensure convergence.

Since this paper is a study of estimation accuracy, the ctettipa time is not the major concern.

5.1.2 Investigating the Influence of Rotational Arc Length

Experimental Setup

We acquired three 3D thorax volumes, two at different inlsidges and one at exhale state,
from a lung cancer patient by breath-held diagnostic CT. @hale CT volume was chosen as the
referencef™, while the other inhale and the exhale volume were treatedifsesent targets for
evaluation. The volume size wa$2 x 512 x 96 with spacing 0f).9375 x 0.9375 x 3mm? in the
x,y andz direction respectively.

Two deformation maps were obtained by regularized B-sptioerigid registration [23] be-
tween reference and each of the target volumes. The B-spbimieol knots were placed uniformly

in CT volumes with a spacing @fx 8 x 4 voxels. Two synthetic CT volumes (see Fig. 5.1), one at
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Figure 5.1: Axial (eft), sagittal €enter) and coronal viewsr(ght) of reference, target volumes and
reference volume within a ROI overlaid with example radiahali for analysis.
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inhale and another at exhale, were obtained by warping fieeargce volume with corresponding
estimated deformation maps in a fashion similar to thatiegph previous research (Ref. [164]).
These two synthetic CT volumes were used as new targetsteteasf'* and f', for subsequent
investigations of influence of rotational arc length on aacy of estimated local deformation
around the tumor. The B-spline control knots were also mlagaformly in CT volumes with a
spacing o x 8 x 4 voxels, implying64 x 64 x 24 = 98304 unknown deformation parameters to
be estimated.

We simulated an axial cone-beam flat-detector X-ray CT systéh a detector size df12 x
512 cells spaced by x Imn?. The source to detector distancelis)0mm, and the source to
rotation center distance i$00mm.

Since our focus is the local configuration of a lung tumor Sige5.1), we set the tumor center
in the reference volume as the rotation center to make seréotial areas around it in the target
volumes are always covered by X-rays emitting from the sewtcany projection angle. As a
result, other structures away from the tumor, such as theuaabones in the lower right or left

sides (see Fig. 5.1), might be truncated at certain prgeangles.
Investigation Design

Typically the X-ray source rotates around the patient, &td of projection views are acquired
to perform projection-to-volume alignment. In this papee investigate deformation estimation
accuracy with limited-angle scans (see Fig. 5.2). In addjtthe angular center may affect the es-
timation accuracy. Without loss of generality, we chosedhaingular center§, 45° and90°) and
six angular rangesl@°, 18°,24°, 36°,60° and 90°) with 2° angular spacing between projections.
(We examined smaller angular spacingslofand0.5°, and found performances very similar to

that of2°). Using the case di° center and 2° range as an example, we performed projection-to-
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90°

angular range

Figure 5.2: Schematic diagram of limited-angle scans cedtat(0°, 45° and90°. p ando are
the axes along and orthogonal to the ray connecting the >oayce and the detector
center for the limited-angle scan centered &t

volume alignment between projection views franangles (6°, —4°, —2°,0°, 2°, 4° and6°) and
the reference volume. Alignments on angular range3606f and180°([—90°, 90°]) were investi-
gated too.

We also studied the influence of extent of deformation. Wesiered the deformation between
two different inhale volumes as small, and the deformatietwieen inhale and exhale volumes
large. We called the former amall deformation case and the lattetarge deformation case. The
experiments were executed on both cases.

In summary, we studied a total df) registration examinations. For each (small and large)
deformation case we test@d examinations that include tt8$0° and 180° scan and anothei

limited-angle scansgs(angular ranges & centers).

5.2 Results and Discussion

In this section, we summarize the error of tumor center sinift deformation estimation within

a region of interest (ROI) around the tumor. We computed ther @ising the true deformation
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maps between the reference and synthetic target volumesnparison to the experimental align-

ment estimates from various angular centers and ranges.
5.2.1 Noiseless Projection Views

We generated noiseless projection views of target volunf&s &and fi=*) at certain angles
using a distance-driven (DD) forward projector [26] fdr,. The projection-to-volume registra-
tion described in Section 5.1.1 was performed between theserated projection views and the

reference volume.

Accuracy of Tumor Center Shift

We calculated the absolute error of estimated tumor cehiétris C' direction by
ES§ = |Dc(7y; &) — Do (s o) | (5.5)

wherea denotes the estimated motion parameté@(ﬁ); &) denotes the estimated tumor center
shift in C' direction, D (7; o) denotes the true tumor center shiftdhdirection andr, denotes
the coordinates of the tumor center.

The true shifts of tumor center are2.21mm, —2.46mm and0.56mm in z, y andz direction
respectively for the small deformation case, an@92mm, 6.17mm and1.53mm in z, y and z
direction respectively for the large deformation. Tabl& Shows the absolute errors of tumor
center shift when the angular ranges 366° and180°. The absolute errors are all beléda mm,
except the error 06.13mm in z direction for the large deformation case. Since the trué shi
1.53mm for this case and the spacing@imm in z direction, this).13mm error is small.

The projection views are approximately line integrals gloays passing from the X-ray source
to the detector cells [26]. With limited-angle scans, thfeimation about deformation along the

projection direction is limited. Realizing this propentye used a 3D coordinate system with new
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small deformation|| large defmoration
direction|| X y z X y z
360° 0.06| 0.08| 0.03 || 0.09| 0.06| 0.08
180° 0.08| 0.07| 0.001| 0.08| 0.05]| 0.13

Table 5.1: Absolute errors (mm) for angular ranges@f> and180°([—90°,90°]).
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(a) Small deformation case.
The true shift i90.56mm in z direction.
Left: Angular center iss = 0°. The true shifts are-2.46mm and—2.21mm inp ando direction respectively.
Center: Angular center is? = 45°. The true shifts are-0.18mm and—3.30mm in p ando direction respectively.
Right: Angular center ig3 = 90°. The true shifts are-2.21mm and—2.46mm in p ando direction respectively.
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(b) Large deformation case.
The true shift isl.53mm in z direction.
Left: Angular center ig5 = 0°. The true shifts ar6.17mm and0.92mm in p ando direction respectively.
Center: Angular center is3 = 45°. The true shifts ar6.01mm and3.71mm inp ando direction respectively.
Right: Angular center ig3 = 90°. The true shifts are-0.92mm and6.17mm inp ando direction respectively.

Figure 5.3: Absolute errors (mm) of tumor center shift.
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axes to evaluate estimation accuracy. We rotated the 3Qicw@de system aroundby the central
projection angleyy, and denoted the axes@s andz wherep ando are the axes along (parallel to)
and orthogonal to the ray connecting the X-ray source andétector center respectively. Fig. 5.2
shows thep ando directions whenp, = 45°. The corresponding coordinates on fhando axes

are:

p = —xsin(py)+ycos(pg)

o = wcos(po)+ysin(po) . (5.6)

Fig. 5.3 shows the absolute errors of tumor center shift Witlited-angle scans centered at
0°, 45° and 90° for both the small and large deformation cases. The erroh@ptdirection is
bigger than that in the and = direction because only limited shape information can beaektd
from projection views along the projection direction. Threoes of the(° center scans are larger
than those oft5° and90° center scans. When angular range is smaller @ténthe estimation
accuracy improves quickly with the increase of angular earand the estimation errors of the
large deformation case are slightly higher than those ofsthall deformation case. When the
angular range exceeds®, the errors are withiimm for the0° center scans, and withih5mm

for others.

Deformation Accuracy within A ROI

Since the goal is to study estimation accuracy of the locafigaration of a lung tumor, we
chose a region of interest (ROI) centered at the tumor camieevaluated deformation estimation
accuracy within this ROI. The ROI is a cylinder with heightaradius ofécm, i.e., a diameter of
128 voxels and height 020 voxels. The tumor center is also the rotation center, whicdrgntees

the ROI is covered by the field of view (FOV) of radiation at gmpjection angle. Fig. 5.1 (d)
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small deformation large deformation
angular rangé80° || angular rang860° || angular rangé80° || angular rang860°
direction|| X y z X y z X y z X y z

mean || 0.08| 0.07| 0.09 | 0.05| 0.05| 0.07 || 0.06| 0.07| 0.08 | 0.05| 0.06| 0.06
max 1.06|1.38| 1.83| 0.84| 0.77| 1.06 || 0.54| 0.75| 1.74 | 0.44| 0.75| 0.62
o 0.10| 0.10| 0.11 | 0.06| 0.06| 0.08 || 0.07| 0.07| 0.09 | 0.05| 0.07| 0.06

Table 5.2: Mean, maximum and standard deviatiai absolute errors of estimated displacements
with angular ranges aff80°([—90°, 90°]) and360°.

shows axial, sagittal and coronal views of the referencamel within ROI.
We evaluated absolute errors of estimated deformationiotpm a set of9, such as the ROI,

by meanE¢, maximumES and standard deviatioBS in C direction as follows

1 L -
EY = EZ‘DC(W;@)—DC(W?O‘)‘
JjeS
B = max|Do(#; &) — Do o)
je

~ 2
Do(7y: &) — Dol )| — BF ) (5.7)

1
Cc
By = \/|S|—1]Z€;<

wherea denotes the estimated motion parametBys(7;; &) andD¢(7;; o) denote the estimated
and true displacement at th¢h point in S in the C' direction respectively, and; denotes the
coordinates of thgth point.

Table 5.2 shows the mean, max and standard deviation ofastiideformation for the angular
ranges of360° and 180°. The errors are very small, which demonstrates that theeptigin-to-
volume method described in Section 5.1.1 works well.

Fig. 5.4, Fig. 5.5 and Fig. 5.6 show the mean, max and stard#aidtion of estimated defor-
mation of all the studied limited-angle scan cases. In gégnealues of these measures decrease
with increasing angular range. Fé5° and90° center cases, the errors and standard deviation in
the p direction are bigger than those in theandz direction and the errors of the large deforma-

tion case are slightly bigger than those of the small deftionacase. The mean absolute error is
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(b) Large deformation case.

Figure 5.4: Mean absolute errors (mm) of estimated defaonatithin ROI. Left: Angular center
is 3 = 0°. Center: Angular center is3 = 45°. Right: Angular center is3 = 90°.
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(b) Large deformation case.

Figure 5.5: Maximum absolute errors (mm) of estimated de&dion within ROI.Left: Angular
center iss = 0°. Center: Angular center i = 45°. Right: Angular center ig} = 90°.
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(b) Large deformation case.

Figure 5.6: Standard deviation of absolute errors (mm) bifreged deformation within ROLéft:
Angular center igi = 0°. Center: Angular center i3 = 45°. Right: Angular center is
B =90°.
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Figure 5.7: Histograms in thedirection (eft), p direction Center) andz direction ¢ight) within
the ROI for the small deformation case.
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Figure 5.8: Meanlgft) and maximum right) absolute errors of estimated displacements within
ROI for a limited-angle scan with range ®8° centered ab°. The horizontal axis
denotes radial distance to the tumor center. The errors vadoellated among points
within cylindrical shells centered at the tumor center.

below0.5mm for angular ranges greater thagf. For the0° center cases, the errors and standard
deviation are larger than those 4i#° and90° center cases and the error in thdirection is larger
than that in the ando direction.

The maximum absolute error and standard deviation of thiédarangle scans centered(ét
are much larger than those of other cases, especially farttal deformation case with angular
range smaller thaB6°. We chose the scan with rangel®® centered ab° for the small deforma-
tion case as an example to investigate more details aboaesthmeated deformation.

Fig. 5.7(a) shows histograms of true absolute deformatitmmthe ROI and Fig. 5.7(b) shows
histograms of absolute errors of estimated displacemenitsnithe ROI for a limited-angle scan
with range of18° centered ab° for the small deformation case. Only a small percentage of
voxels have large absolute errors in thdirection. For this case of a limited-angle scan, we also
calculated mean and maximum errors among points within aesege of cylindrical shells (with
thickness ofimm ) centered at the tumor center. The left panel of Fig. 5 slfdws an axial view

of 4 such cylinders. Fig. 5.8 shows these errors versuslrdditance to the tumor center. With
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increasing radial distance, the errors in theirection increase, especially when radial distance is
greater thar30mm. The maximum errors in this direction happened at the Ipamiion inside the
chest wall. The errors in thedirection are small and increase slowly. The errors ingtldéection
remain at the same level.

The shape information that can be estimated from limitegleaprojections depends on the
angular center, especially when angular ranges are smialpgears that the truncation 6f
scans affects estimation accuracy more severely than atatiser centers. Since the deformation
model covers the whole thorax, truncation outside the RIlisluences estimation accuracy in
all regions. This influence becomes more obvious when rafiséance from the rotation center
(tumor center) increases.ge., as the distance to truncated parts decreases. One reastire fo
large errors in: is that the voxel size in is three times of those im andy. The poor sampling
(not truncation) associated with cone-beam CT geometriyeabtf-axis slices may also influence

accuracy.
5.2.2 Noisy Projection Views

We generated noiseless projection viayyf target volumesf'* and f'*") using the distance-
driven (DD) method [26], generated transmitted intensilg, using (5.3) with7,,; being 10°
and10? counts per ray for alh and/, and then estimated noisy projection viegysusing (5.4).
The projection-to-volume registration described in Satth.1.1 was performed between these
estimated projectiong, and the reference volume.

We tested estimation accuracy on noisy projections of aéidhangle scan with angular range
of 24° centered atl5° of the small deformation case. Table 5.3 shows absolutese(nom) of
tumor center shifts for the tested limited-angle scan. & shows mean, maximum and stan-

dard deviation of absolute errors of estimated displacesneithin ROI for this scan. We denote
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p direction o direction z direction
intensity || I¢ I° I I Ib I I I I
error || 0.80|0.85/0.91( 0.01|0.10| 0.46| 0.15| 0.69| 1.45

Table 5.3: Absolute errors (mm) of tumor center shifts fomaited-angle scan with range af°
centered atl5° of the small deformation casd® stands for the case of no noigé,
stands for the case whdh,,, = 10° counts per ray, anéf stands for the case when
I, = 10* counts per ray.

p direction o direction z direction
intensity || I¢ I° I I I° I I I I
mean || 0.51| 0.51| 0.64| 0.08| 0.10| 0.18| 0.19| 0.26| 0.41
max | 4.31|4.14| 4.23| 1.08| 1.25| 1.17| 2.60| 3.27| 3.76
o 0.58| 0.57| 0.63| 0.08| 0.10| 0.16| 0.21| 0.27| 0.39

Table 5.4: Mean, maximum and standard deviatiar absolute errors of estimated displacements
within ROI for a limited-angle scan with range @fl° centered atl5° of the small
deformation casel® stands for the case of no noigestands for the case whép, ,, =
10° counts per ray, antf stands for the case whdp, ,, = 10* counts per ray.

noiseless experiments &s hoisy experiments witl, ; = 10° counts per ray as land noisy ex-
periments with7,,; = 10* counts per ray as’lin these tables. The errors of experimeritsie
smaller than those of land F. The errors increase when incident intendity decreasing, but the
errors in thep direction change very slowly. It appears that the errorfi@ptdirection are dnomi-
nated by limited shape information that can be extractea fimited-angle projections. The error

differences between experimentsaind P are smaller than those between experiméehémt F.

5.3 Conclusion

We also tested a registration method that consists of twas stehe first step was rigid projection-
to-volume registration of the whole FOV to roughly align tvbole thorax. The second step was
projection-to-volume registration of a ROI around the tunvehich only estimates local transla-
tion in each direction. However this method did not work wadtause the rigid FOV registration

was not robust to nonrigid motion of the FOV, the translatiootion is too simple for movement
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within ROI, and the results of second step were very serditithe choices of ROIs, such as how
big the ROI should be.

The experiments performed demonstrate the significant abaflinformation present to aid
limited angle projection-to-volume alignment. They alsghtight some of the trends in degener-
acy of such alignments from limited angular samples, bothfasction of direction relative to the
projection set as well as distance from the rotation cetttes.hoped that such experiments can be
used to guide optimal development of radiographic alignnaea monitoring methods that max-
imize the prior knowledge available in radiotherapy taiggtapplications to minimize the time,
radiographic dose, and computational resources needga$itron monitoring during treatment.

This set of experiments presented both small as well as $a@e deformations typically found
in the thorax of a radiotherapy patient. While we used a aeédion associated with variations in
breathing states, we do not propose this methodology ad fotaoacking breathing. It is impor-
tant to understand the information limits in rotational jexdion-to-volume registration, as these
will impact not only the complexity and operational paraerstof positioning or tracking method-
ologies, but more importantly may indicate optimal desifgradiographic localization technology
integrated with linear accelerators. As a number of conéigans have been proposed and intro-
duced studies such as this may help determine the tradessftxiated with various parameters

such as projection arrangement, noise/dose, and temguaitilll accuracy limits [11,90,109, 140].



CHAPTER 6

Conclusion and Future Work

6.1 Summary

This dissertation addressed issues related to image regotien and motion estimation for
image-guided radiotherapy (IGRT). We described forward laack projection methods for X-ray
cone-beam CT, discussed basis material reconstruatign $oft tissue and bone) using statisti-
cal reconstruction methods, and investigated estimationracy of limited angle projection-to-
volume alignment.

Chapter 3 developed two new approaches for 3D forward anktpigection that we call the
separable footprint (SF) projectors: the SF-TR and SF-Tolegtor. They approximate the voxel
footprint functions as 2D separable functions. The seplisabf these footprint functions greatly
simplifies the calculation of their integrals over a detecell and allows efficient implementa-
tion of the SF projectors. The SF-TR projector uses trafkfzoictions in the transaxial direction
and rectangular functions in the axial direction, wheré&sSF-TT projector uses trapezoid func-
tions in both directions. Simulation results showed that$ifr-TR projector is more accurate with
similar computation speed than the DD projector, and th& $projector is more accurate but
computationally slower than the SF-TR projector. The DDjgxtor is particularly favorable rela-

tive to other previously published projectors in terms @& thalance between speed and accuracy.

108
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To balance accuracy and computation, we recommend to cenioenSF-TR and SF-TT method,
which is to use the SF-TR projector for voxels correspondmgmall cone angles and to use the
SF-TT projector for voxels corresponding to larger conelesg

Chapter 4 proposed a statistical PWLS method with edgespriesgy regularizer for two-material
decomposition from a single-energy CT scan acquired witkrintial X-ray filters, split and bow-
tie filters. We simulated a split filter with 2 mm aluminum agschalf the fan beam and 2@n
molybdenum of the other half. The simulated body bow-ti@ffitontains aluminum, graphite,
copper and titanium. We also proposed an optimization temmsethod with separable quadratic
surrogates to monotonically decrease the PWLS cost fumetioich was non-convex and non-
linear. The proposed PWLS method with both filtration re¢arded soft tissue and bone com-
ponents with 2% and 40% lower RMS errors respectively, and reconstructed dentiy gum of
soft tissue and bone) images and linear attenuation caeffiehages at 511 Kev with 4Dlower
RMS errors than the JS-FBP method. The PWLS images prodaessdkam-hardening artifacts
and noise than the JS-FBP method. The split and bow-tie liéiteto similar results.

Chapter 5 tested the projection-to-volume alignment ftinesting the local configuration of a
lung tumor, and evaluated the influence of rotational argtielon maximum achievable accuracy.
The experiments performed demonstrated the significantiatrad information present to aid lim-
ited angle projection-to-volume alignment. They also hgjited some of the trends in degeneracy
of such alignments from limited angular samples, both asetion of direction relative to the pro-
jection set as well as distance from the rotation centers hdped that such experiments can be
used to guide optimal development of radiographic alignnaex monitoring methods that max-
imize the prior knowledge available in radiotherapy taiggtapplications to minimize the time,

radiographic dose, and computational resources needga$itron monitoring during treatment.
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6.2 Future Work

e We have implemented the proposed two new SF projectors inl AN®utine and demon-
strated their fast speed. Implementing the SF projectassdan graphics processing unit
(GPU) programming techniques could further improve theedpf54]. It needs special
considerations of how to perform parallel computing whildizing the properties of the SF
projectors. The SF projectors approximated the voxel footgpunctions as 2D separable
function that simplified calculation of 2D integral into tvl® integrals that can be imple-
mented simultaneously. Implementing the SF projectorsad-firogrammable gate array

(FPGA) is another future research topic [64, 65].

e We have proposed a statistical PWLS to reconstruct two maédeirom one single scan
using differential filtration. One future work is to extersid method to reconstruct three
bases from dual-energy scan acquired with differentiabfilbn. Two component images are
not enough for some medical applications liu:09:gio, mewadol0:mmd, maddah:10:pmv.
When quantifying the concentration of iron in a fatty livenages of three constitute mate-
rials, iron, fat and tissue, are required [78]. For the pggof radiotherapy, in addition to
soft-tissue and bone itis also better to know the distrdyué third material, such as calcium,
metal (gold) or iodine. In principle, two basis material@imixture can be accurately sepa-
rated from DECT measurements [75,78]. &l. [160] provided a third criterion of volume
conservation assumption to separate three materials dt@jr. The volume conservation
assumed that the sum of the volumes of three component rilatequals the the volume of
their mixture. Considering that volume conservation is al@tays true, Liuet al. [78] as-
sumed mass conservation that the sum of the masses of thtexatsadoes not change while

mixing them. They proposed a post-reconstruction (imageaio) decomposition method,
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which first individually reconstructed two images using teais of measurements at low and
high energies, and then obtained basis images from theseetw@ostructed images. Com-
bining filtration with DECT would create different spectrain the original spectra at two
source voltage settings, which would provide additionfdrimation for reconstructing three

materials.

e The PWLS method proposed in Chapter 4 used edge-preseegudarizers. Each mate-
rial component has a regularizer coefficient and edge-preggparameter. We have found
the image quality in terms of noise and estimation bias wasigee to these parameters.
The choice of parameters for one material component infle@nice reconstructed image
of another component. Huh and Fessler [49] used a matenak@enalty for DECT re-
construction. This penalty used the prior knowledge thtieint component images have
similar edge area. Material decomposition could also beidemned as a classification prob-
lem, since most pixels either have soft tissue charadiesistr bone characteristics [29].
Designing penalty functions based on such prior knowledgg improve reconstruction
results. Future research could investigate optimal pgriafictions and parameters for the

PWLS method.

e We have presented an optimization transfer method withrabpgaquadratic surrogates for
the PWLS cost with edge-preserving penalty in Chapter 4.tliermaterial decomposition
problem, soft tissue and bone values are both estimatechédr jgixel. It is still practical to
have nonseparable quadratic surrogate functions for eé&ehljecause inversion of thex 2
curvature matrix is doable. The question is now what kindwf/ature matrix is optimal.

Appendix B described preliminary study on this future work.

e We have simulated an incident spectrum for an X-ray tubeageltat 80 kVp to test the pro-
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posed PWLS method for two-material decomposition from angle-energy scan acquired
with differential filtration. The spectra produced by oumsilated split and bow-tie filter
have significant overlap for this 80 kVp voltage setting. Hwer, the spectral differences
across rays were sufficient for two-material reconstructieuture work could investigate the
influence of X-ray tube voltages on the degree of spectradrsgijon produced by split and
bow-tie X-ray filters and qualities of reconstructed comg@ainimages. One should consider

the radiation dose while choosing different voltages.

We have showed simulation results of the proposed PWLS rddtr@a 2D fan-beam geom-
etry. In order to apply this method to real data, severaltprakissues need to be addressed.
It requires precisely alignment of the bow-tie or split fileend rotational center in order to
expose the isocenter area to different spectra which hetpmstructing component images
in that area. Bow-tie filters are commonly used in CT scanrmrsusing split filters needs
further considerations. For 2D fan-beam geometries, eath ip the patient cross section
is measured with two different beam filtration created by & &fier during a single360°
rotation scan. However, for typical clinical CT systemg;isas axial and helical cone beam

geometries, most tilted paths are not measured by exaablyliffierent incident spectra.

Chapter 5 conducted an objective characterization of tfleence of rotational arc length
on motion estimation accuracy for projection-to-volumegéing during rotational therapy.
It was an experimental investigation based on thorax CTmekiof a lung cancer patient.
Future research could analyze bounds of estimated dispkus from a small spread of

projections, such as Bayesian lower bounds [148, 149].

The experiments performed in Chapter 5 demonstrated tmafisant amount of informa-

tion present to aid limited angle projection-to-volumegatinent. However, the estimation
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errors in the projection direction were bigger than the ogibnal and axial directions since
only limited shape information can be extracted from progtviews along that direction.
Future research could address how to improve the estimatioaracy along the projection
direction. Design penalty based on prior knowledge of shafmemation along the projec-
tion direction would improve the estimation accuracy ofited angle projection-to-volume
registration. It would also be helpful to use limited-anglejections that acquired along

directions that are orthogonal to each other.
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APPENDIX A

Surrogate Function Design

A.1 Local Properties of Beam-Hardening Function

The vector beam-hardening function defined in (4.14) hagyadientV f; (a M, x L, matrix)

with elements

_Bisl Uz'm(s>

Vim(8)

a% fonl8) = [ £i(8)],, = _ / G (€. 8) BU(E) dE. (A1)

where we define the following probability density function:
Gim(€:8) = Dim(€) € A2 [ 13, (5)

Because the gradient vecterf; always has positive element,, is a monotone increasing func-
tion.

The properties of;,,, for small material thicknessesd,, for s &~ 0) can be useful. In particular:

[V fl(s)]ml = Bimh (A2)

s=

where we define the following “effective” mass attenuatioefticient:

Byt 2 / B1(E) pum(€) dE . (A3)
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We aggregate thesg, , values into a\f, x L, matrix B; having entries

[Bi]ml - ﬁiml' (A-4)

In matrix form, (A.2) becomes

s=0

In particular, if the source spectra are monoenergesic, p;, () = (€ — &), then

iml —

Gi(E) and thef; functions are linear in their arguments:

Lo
fz‘(S) = B;s, fim(sz’> = Zﬂl(gm) Sil-
=1

For polyenergetic measurements, thefunctions are somewhat nonlinear, where the degree
of nonlinearity depends on the spectrum and the mass attenuaefficients. In particular, using

the concavity ofog, one can show that

Lo LO
Fin(s) < 3 ([ o) )0 ) 1= 3 B = (B,
I=1 I=1
due to the beam hardening effect. So fhg surface always lies below its tangent plane at zero.
Concavity

One can show that,,(s) is concave, i.e., —V? f;,.(s) is a nonnegative definitg, x L, matrix.

To see this, use (A.1) to show

V2 fo(s) = Uiml(s)w Vim(8) —%(S)inm(s) V vim(5)
_ #(S)v? Vim(8) =V fn(5) ¥ fim(8)

_ /qim(ggs)ﬂ(gmf(g) 4€ — (/qim(g;s)ﬁ(é’) dé’) </Qim(5§5>ﬂ(5) dé’),.

(A.5)
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Becausey,,, is honnegative and integrates to unity oert is a probability density function. So

by Jensen’s inequality:

& [~V fun()] @ = [ an(Ess) - BE de - \ [ (s o ple) ae >0
where “” denotes matrix/vector transpose.

Hence the Hessian matrixV? f;,,(s) is nonnegative definite for ang; so f;,, is concave. In
addition, usually3,(€) is smallest at,,..x, so the “distribution”y;,,,(£; s) becomes concentrated
around&,,.., as s increases. Thus its “varianceie.,, V? fi,.(s), approaches zero for large
i.e., fin is asympototically linear [20]. These properties can bdulssnstraints when fitting

approximations tq;,,.
A.2 Curvature for Quadratic Surrogate

The key to the curvature derivations is the following indgyaWhen M is real and symmetric
[46, p. 34]: 2’ Mz < Apax (M) |||, Where,...(M) denotes the maximum eigenvaluelef.

So we haveM < \,.x(M) I. BecauséV f;,(s) has the largest entries when= 0:
A ~
Hy(8) =V fim(8)V fim(8) 2NV fim($)I* T XNV fim(0)* T = [|bjm||* I = Cim,

whereb,,, is the transpose of theth row of B;.

A.3 Separable Quadratic Surrogates Based on Additive Con-
vexity Trick

We form a separable quadratic surrogate functzi;éﬂ(:c) with respect tax by using the fol-

lowing trick due to De Pierro [27]:

NP
A5 n n
si(e) =) ayw;=) (W_.j.(-”’j —a)+ ) ayad )> ) (A.6)
. . 1)
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providedzj.v;“’l m;; = 1 andm;; is zero only ifa,; is zero. If ther;;’s are nonnegative, then we can

apply the convexity inequality to the quadratic functqﬁj‘f ) defined in (4.19) to write

Np
an(s) = qi (Z%‘%’)

j=1

Np Np
n Qi n n
g (Z Tij (#(wj - :1:5 ) + Zaijaé )>>

)

Z Tij q (aw )+ Z amaz(n ) . (A.7)

Combining these yields the following separable quadraticogate forl (x):

IA

NP
Mis) <o (@) 2 6(x)), (A.8)

j=1

where

i=1 m=1

Na My
o0 () =D Y iy am (aw ") 4 Zamw ) : (A.9)

The column gradienV ¢{" has elements

N,
a n d 0 a’l n - n
. ¢>< (@)= ay il ( Ly — i)+ ayx! )> , (A.10)

i=1 m=1

SO
a Ng My
KA S z
Tl mj:“’;n) i=1 m=1
d O
=SS (z )
1=1 m=1
0

= 2w U (z™). (A.11)
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The hessiarD](.”) 2 v ;" has elements

D], = g e
T Lk Oxy; Oxy; 7

Nga My 2 8

2
as . a;
_ ij (n) ZJ (n)
- Ly S
— —— T OX1; OXkj 7ng
=1 m=1
Nq My a2

_ ZZ i [ ] (A.12)

zlmlZ

SO

ZZ ' . (A.13)

zlml

Combining the gradient and hessian, the separable quadmatiogate satisfies the conditions

(2.67) has the form
03" (x) = U(z™) +¥ U (™) (z — ™) + ;(m — g™y dlag{D( )}(w —z™),  (A.14)

whereduag{ pi )} is a block diagonal matrix. Because tb& ) is separable quadratic function,
it is trivial to minimize, leading to the following paraliebble iteration:
-1
2 = [mgm - [D](")} V., \I/(a:("))} . j=1,...,N,, (A.15)
+
whereV,, denotes the gradient with respectta In matrix-vector form, the update is:
]~
2D = { dlag{ [DJ"] }V\Il(w(”))} , (A.16)
+
which is a kind of diagonally-preconditioned gradient degcalgorithm that is guaranteed to
monotonically decrease the cost function each iteratidms @lgorithm is entirely parallelizable

because all pixels can be updated simultaneously.
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A.3.1 Curvature of Diagonal Matrix

When the curvatur€;,, given in (4.24) is a diagonal matrix, the separable suregat update

described in Section A.3 can be further simplified. Definelthelement ofD|" as

a2 o] ZZ oy [ (A.17)

=1 m=1 U
The separable quadratic surrogate in (A.14) becomes
n 1
é )(:1:) = \If(w(”)) +V \If(w("))(w — ™)+ 2(:1: — ™) dlag{d )}(:1: —z™),  (A.18)

and the update in (A.16) becomes

1
(n+1) n) (n) A
T = [a: dlag{d(n)} V \I/(w )] . (A.19)
J’_
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APPENDIX B

Optimal Curvature for Two-Dimensional Quadratic Surrogat es

Optimization transfer methods convert the problem of oping difficult cost functions to
optimizing a sequence of relatively simpler surrogate fioms. They take into account specific
properties of cost functions of interest, and are guarahti@enonotonically decrease the cost func-
tion if suitable surrogate functions are designed. Quadgtrrogates are often desired because
there is a simple closed form solution at the “M-step” (2.68}he absence of constraints. To
achieve fast convergence rate, one wants curvatures ofafiaslurrogate functions to be as small
as possible while satisfying the surrogate conditionsAR.8ince it is usually difficult to find sur-
rogate functions that fit all the desired conditions, theichof surrogate functions is something
of an art.

Due to the huge size of imaging problems, separable quadnatiogates are particularly ap-
pealing because one can update all pixels simultaneousllyséparable surrogates, the design
problem simplifies to finding a suitable 1D surrogate funetibet«(¢) denote the cost function

andh(t; s) denote a surrogate function that satisfies the followingt¢aaditions:

h(s;s) = (s), Vs

h(t;s) > (t), Vi, s. (B.1)
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For a 1D quadratic surrogate functian the optimal curvature can be defined to be the smallest

curvature that still ensures the surrogate conditions)(B.1

Copt (¥, 5) £ min {c >0: Y(s) —|—¢(s)(t —s)+ %c(t —5)2 > (), Vt} ) (B.2)

For some applications, several related images are estinaathe same time. For example,
DECT methods estimate soft tissue and bone values for e&eh fiican still be practical to have
nonseparable quadratic surrogate functions for each peehuse inversion ofax 2 or 3 x 3
curvature matrix is doable. The question is now what kindwf/ature matrix is optimal. In this
appendix, we define the optimal curvature matrices, disthessurrogate conditions and optimal

criterions, and derive optimal curvature matrices for salvgpecial cases.

B.1 Definition of An Optimal Curvature Matrix

Let ™ be a quadratic surrogate function for a cost functigix) at thenth iteration, having

the following form:
1
o™ (z) = U (z™) +(z — ™)'V U (™) —1—5(33 — MY C,(x — ™). (B.3)
We define the optimal curvature matdX,,. (¥, 2™; C) for a quadratic surrogaig™ as follows:

1. Pick a structuré€ for C,,, e.qg., separable quadratic surrogates

aq 0
C = Cn = T, > 05p. (B4)
0 9

2. Require the quadratic surrogat® to be a majorizer of, i.e.
Cn=1{C,€C: ¢"(x) > V(x),Vx}. (B.5)

Due to their form, quadratic surrogate functions (B.3) alsvaatisfy the equality surrogate

condition.
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3. Pick the optimal curvature by some criteri@y.

Copt (¥, 2™: C) 2 argminp (I — C,;'V? \If(:v("))) , (B.6)
Ch€eCm

where p denotes the spectral radius. The criterion (B.6) is a nhtlraice because it is

related to convergence rate.

DECT methods are our interest, so we focus on 2D surrogatgifuns hereaftei.e., x ¢ R2.

B.2 Majorization Constraint

For a twice differentiable functio (x), its 2nd-order Taylor series expansion about the current

estimater™ is

Vo) = B(@) 4 - o)V U ()

+ (. — ™) {/01(1 —a)V* ¥ (az + (1 - a)z™) da| (x —2z™). (B.7)

For ¢™ in (B.3) to be a valid quadratic surrogate, it is sufficierdtttt, satisfies the following

conditions:

C, = VVU(x), Ve (B.8)

= 0. (B.9)
Let C, denote the set of matrices satisfying the above sufficiemditons:
Cs = {Cn =0:C, = V2\11(w),v:c}. (B.10)

We hereafter focus on conditions (B.8) and (B.8) (€ C,,), because they readily ensure the

majorization constraint given in (B.5).
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Typically the curvature matrixC,, is designed to be a symmetric positive semidefinite matrix,
i.e., satisfying constraint (B.9). Let; and z, be the orthonormal eigenvectors 6%,, anda =
(a1, ) Wherea; andas, are the corresponding eigenvalues. Lkt { 21 2o } ,thenQQ’ =

Q'Q = I. We can writeC,, as

Cn(a7 Q) = C\51'251'2:1 + QQZQZ; = QA(Q)Q/7 (Bll)

a; 0
whereA(a) = . The condition (B.8) becomes
0 (0%)]

C,(a,Q) = V*V¥(x), Vzx

=  YQANa)Qy>yV'VU(x)y, VyVz
—  UA()u>uQV*V(x)Qu, whereu = Q'y, Vu, x
— UuT(a,z)u>0, Yu,Vr
— A (T(a,@) >0, Va, (B.12)
where
T(a,x) £ Aa) — QV? U (z) Q. (B.13)

Here,\ denotes an eigenvalue®f «, ) and\,,;, denotes the smallest onies., A = eig{T'(a, )}
andAnin = A (T'(a, x)) = min{eig{T (¢, ¢)}}. The last equivalence in (B.12) follows from

the fact thafl'(«, ) is hermitian symmetric.

B.2.1 Diagonal curvature matrix

. a(x) b(x)
The general form of the hessianV& ¥ (x) = , Wherea(z), b(x), c(x) € R.

b(x) cfx)
To simplify the problem, we consider separable surrogatetfons,i.e., Q@ = I. Their curvature
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matrices are diagonal matrices., C,,(a, Q) = A(a). The matrix defined in (B.13) becomes

oy — alx —b(x
T(a,xz) = AMa) — V> U(x) = (®) (®)
—b(x) ay—c(x)

The determinant of'(ax, ) — A1 is
(ay —a(x) — \) (ag — c(x) — A) — b*(x) = N> + BA+C,

where

2

B = B(a,x) a(x) +c(x) —a; — oy

C=Cla,z) £ (a1—a(z))(as—c(x)) — blz)>
Letdet{T(ax,x) — AI} = 0, and then
\ =

(—Bﬂ:\/m> = Ain = <—B— m) ,

N —
N[ =

where

B? —4C = (—ay + as + a(x) — c(x))” + 40*(x) > 0.
Working on condition (B.12), we have
)\min 2 0
—B—-+VvB?—4C >0
VB? —4C < —-B, soB<0

B?—4C<B?> and B<0

[N

C>0 and B<O0.

(B.14)

Thus for general hessians, diagonal curvature mé&ifiko, Q) = A(a) isinC; if and only if
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(1 — a(x)) (g — c(x)) > b*(x), Ve (B.15

a; + ag > a(x) +c(x) Ve (B.16

We use these conditions to find appropriateanda, values.
B.2.2 Curvature of Constant Times the Identity Matrix

In this section, we discuss a special case of diagonal awnevatatrix: matrix of constant times

the identity matrix. LetC,, have the following structure.e.,
C,eC, C={C,=al:a>0}. (B.17)
The majorization conditions (B.15) and (B.16) simplify to

o® — ala(x) + c(x)) + a(x)c(x) — b*(x) > 0, Ve (B.18)

IA
L

%de)+wiw» va. (B.19)

Simplifying (B.18) further leads to

0> 3 (a(@) + (@) + 5/ (a(@) — c(@)? + 42(2), Va
or aS%@@Hﬂ@D—%(d@—d@f+%%m,Vm (B.20)
Combining (B.20) and (B.19), we have
1 1 .
a> 5 (a(x) + c(x)) + 5\/(&(.%) —c(x))” +4b*(x), V. (B.21)

Intuitively, for fast convergence we wantto be as small as possible subject to (B.21). This is

shown rigorously in following sections.
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B.3 Minimum Spectral Radius Criterion

The local convergence rate of the quadratic surrogate ({B.§dverned by the spectral radius

of I — C,'V2¥(z™). It involves inverting the curvature matrix. For simplicitye focus here

aq 0

on the minimum spectral radius for separable quadratiogatesij.e., C,, = where
0 9
. . an b,

a1, > 0. Let the hessian matrix have the general fo‘ﬁﬁ\ll(w(”)) = where
bn  cn

an, = a(z™),b, = bx™),c, = c(x™). In this section, we ignore the majorization constraint

(B.5), and solve the following minimization problem:

-1
a; 0 an,

bn,
(61, 6v) = argminp (D), D 2 D(ay,a0) =1 — . (B.22)

>0
ana2= 0 ay b, ¢n

The minimum value (D(«1, az)) provides a lower bound on the root convergence factor.
B.3.1 Diagonal Curvature Matrix

Let A be an eigenvalue db, thenp(D) = max,c.igpy |A| . The determinant of D — \I) is

1-— Z—” — A —Z—”
det{D — \I} = det ' !
_ba IR
a2 (o)
2
(E) (g
(o7} Qo Q10
= N4+ B+, (B.23)
where
A Qp, Cn
Bl = Bl(al,Oég):— — =2
aq (6]

Ci 2 Cilan,a) = (1 - %) (1 . C—") _ (B.24)
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The eigenvalues satistiet{ D — A\I'} = 0, and are

1 / 1 /

2 2
B2—4c, = |(1-) —(1-= +4b” > 0.
aq (8% [0518%)

The minimization problem becomes

where

(1, 5) = argmin f(50, ), F(Br, B) = 2= Br = Bl + /(51 — B + 4

B1,82€R
(B.25)
where
an, Cn, bi
ﬁl = 52 ) dy, =
o Qg AnCn

Let f1(B1, B2) = |2 — 51 — Bo| @and (B, B2) = \/(ﬂl — 52)2 + 4d,, 31 .
f2(1, B2) is symmetric with respect t6, andj,. The first order partial derivative gk (3;, 52)

with respect tgs, is

(Br = B2) + 2d, 3 .
V(81— B2 + 4d, 1,

The second order partial derivative f( 51, 5) with respect to3; is

é%M&ﬁﬁz

02 \/(ﬁl — B2)? + 4d, 5152 — [(B1 — Bo) + 2dn 3] \/(51—52)+2dn62

_ (B1—B2)*+4dn 3182
0ﬁﬁw”@ a (B1 — B2)? + 4dnB1 B

(81 — Ba)® + 4d,, 51 3] 2

Assumex™ is a local minimum ofl(x) whereV is locally strictly convex, them,,c, > b? and

ap,Cn > 0,500 < d,, < 1. Thus fy(01, 52) is strictly convex andf (3, 3,) is strictly convex

becausef; (1, 32) is also strictly convex. It has a unique minimum which has¢abs; = [,
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because it is symmetric with respectipandj,. Let z = 3, = (35, then rewritef (51, 52) as

f(z) = 2[1=2]+2]2 Vin
(22(\/d7+1)—2, z
= 4 22(Vdy,—1)+2, 0<z<1 -
\—2z(\/£+1)+2, <0

Fig. B.1 shows this 1D functioii(z) whend,, = 0.5. More generally, it has a unique minimum at

v

1
(B.26)

z=1forall0 <d, < 1. Therefore, the solution to (B.22) is

(B.27)

The root convergence factor for this optimum is
1
pr =5/ (1) = V. (B.28)
Unfortunately, in general this design does not necesssailisfy C,, = V2 ¥ (x), Vz, but it does

majorize¥ (x) locally to ™.

f(2)

@

z

Figure B.1:f(z) whend,, = 0.5.

B.3.2 Curvature of Constant Times the Identity Matrix

In this section, we discuss a special case of diagonal awevatatrix: matrix of constant times
the identity matrix. LetC,, have the following structure.e.,

C,eC, C={C,=al:a>0} (B.29)
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The minimizing problem (B.22) simplifies to

. ) A 1| an by
a:argirglnp(D(Oé))a DZD(a):I—a
o= b, ¢y

(B.30)

Let A be an eigenvalue db, thenp(D) = max)c.igp} |A| - The determinant of D — \I) is

- — ) —%”
det{D — A} = det
— 1—2 — )
Qn C, bi
S (B (-goy-
= A4 B+ O,
where
A Ay, + Cp,
By = By(a)= o -2
A (7% Cn, b%
¢ £ Glo)=(1-7) (1-7) - 05

Letdet{ D — AI'} = 0, and then

1 1
)\zi(—BQi\/BS—ZLCE) = P=3 (‘B2|+\/B§_4C2)>
where

praci[(1-%) - (-] + 2 20

The minimizing problem (B.30) becomes

& = argmin f(«), f(a)= '2 —
a>0

We solve it as follows.

(B.31)
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e When(2 — &2t2) > 0 = a > L(a, +¢,)

\/(an — )P 4402 — (an + c)

\/(an + cn)2 +4(2 —ac) — (an, + ¢,)

(67

fla) = 2+

= 2+

(B.32)

Assumez™ is a local minimum ofl’ () whereV is locally strictly convex, then

ac> b2 a, >0,¢c,>0= \/(an+cn)2+4(bi—ac)—(an—l—cn) < 0.

f(a) is an increasing function aof. Therefore,argmin, f(a) = 3(a, + ¢,) whena >

%(an + ¢n).

° When(Q—%) <0=a< %(an—i-cn)

\/(an —p)? + 462 + (an + c)

(67

fla) = -2+ (B.33)

f(«) is a decreasing function ef. In fact, if « is too small, then the root convergence factor

= 1 f(a) > 1 and the algorithm will diverge (See Fig. B.2). Therefareg min,, f(«a) =

A

5(an + c,) Whena < 2 (a, + ¢,).

Fig. B.2 shows an example of this 1D functigtw) for a,, = 1,b, = 1.1 andc, = 4.3. More

generally, it has a unique minimumat= %(an + ¢,) for all a,,c,, > b2. The solution to (B.30) is

a= %(an + cp). (B.34)

The root convergence factor in this case is

(n — o) + 402
p=of G(an+cn>) e - (B.35)

One can verify thap; > p,.



az‘as

Figure B.2: f(«) for a,, = 1,0, = 1.1 and¢,, = 4.3. The minimum is atv = 2.65.
B.4 Optimal Curvatures of Minimum Spectral Radius Crite-
rion

We have derived sufficient conditions (B.15) and (B.16) far tnajorization constraint (B.5)
for separable quadratic surrogates. We have found the aptiiragonal curvature matrix (B.27) of
the minimum spectral radius criterion without the majotiaa constraint. For the curvature matrix
of constant times the identity matrix, a special case ofaladjcurvature matrix, the corresponding
results are given in (B.21) and (B.34). In this section, wetpa constraints and optimal criterion

together and derive optimal curvatures for separable @iadsurrogates.
B.4.1 Diagonal Curvature Matrix
We find the optimal curvatur€,,, (¥, 2); C) satisfying the following definition:

1. Separable quadratic surrogates
C=40C,=Cya,a3) = Do, >0

2. C,, satisfies the sufficient majorization conditiore,

C, = V*V¥(x), Vax

c, = 0
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3. The optimal criterion is

(G1,b9) = argminp (I — C,'V2 ¥ (z™)) .

a1,a2>0

According to (B.15), (B.16) and (B.22), the minimizatioroptem simplifies to

(Gu,d2) = argmin f(aq, as),
a1,02>0
a c a e\ 2 2
flag,a0) = ‘2——”——"4_ (_”__”) g 0n
Q1 g o Qo o109
st (o —a(@) (az — cla)) > P(@), Ve

a; +as > al(x) +c(x) Ve
We have not found closed form solution to these conditions.

B.4.2 Curvature of Constant Times the Identity Matrix

We find the optimal curvatur€,,, (¥, 2; C) satisfying the following definition:

1. Curvature matrix of constant times the identity matrix
C={C,=C,(a)=0al :a>0}.

2. C, satisfies the sufficient majorization conditiorm,

C, = V*V¥(x), Vx

C,

Y

0.

3. The optimal criterion is

& =argminp (I — C,'V? \I/(w(”))) .

a>0
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According to (B.21) and (B.30), the minimization problemmsiifies to

& = ar§>ngin f(a)
an + ¢ a, — ) 402
fla) = ‘2— ";r"+\/( a)+
s.t. a>h(x), Ve
h(w) = 5 (@) + (@) + 3/ (ale) — (@) + 402(z).

Since the majorization constraint (B.21) holds foraliwe havex > 3 (a,, + ¢,). According
to the derivation in Section B.3.Z(«) is an increasing function af for this case. Therefore, the

optimal curvature matrix of constant times the identity nxas

Copt = optl (B.36

Qopt = mMax {% (a(x) +c(x)) + %\/(a(:c) —c(x))’ + 462(:1:)}. (B.37

The root convergence factor in this cas@ (&) = 5 f(opt)-
In future work, it could be interesting to explore the diface between convergence using,

and using (B.34).
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