
TOPICS IN PDE-BASED IMAGE PROCESSING

by

Catherine Mareva Dupuis

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2010

Doctoral Committee:

Associate Professor Selim Esedoḡlu, Co-Chair
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ABSTRACT

The content of this dissertation lies at the intersection of analysis and applications of

PDE to image processing and computer vision applications. In the first part of this the-

sis, we propose efficient and accurate algorithms for computing certain area preserving

geometric motions of curves in the plane, such as area preserving motion by curvature.

These schemes are based on a new class of diffusion generated motion algorithms using

signed distance functions. In particular, they alternate two very simple and fast operations,

namely convolution with the Gaussian kernel and construction of the distance function,

to generate the desired geometric flow in an unconditionally stable manner. We present

applications of these area preserving flows to large scale simulations of coarsening, and

inverse problems.

In the second part of this dissertation, we study the discrete version of a family of ill-

posed, nonlinear diffusion equations of order 2n. The fourth order (n = 2) version of these

equations constitutes our main motivation, as it appears prominently in image processing

and computer vision literature. It was proposed by You and Kaveh as a model for denoising

images while maintaining sharp object boundaries (edges). The second order equation

(n = 1) corresponds to another famous model from image processing, namely Perona and

Malik’s anisotropic diffusion, and was studied in earlier papers. The equations studied

in this paper are high order analogues of the Perona-Malik equation, and like the second

order model, their continuum versions violate parabolicity and hence lack well-posedness

theory. We follow a recent technique from Kohn and Otto, and prove a weak upper bound

xii



on the coarsening rate of the discrete in space version of these high order equations in any

space dimension, for a large class of diffusivities. Numerical experiments indicate that the

bounds are close to being optimal, and are typically observed.

xiii



CHAPTER I

Introduction

Introduced in the eighteenth century, Partial Differential Equations (PDE) are an impor-

tant part of mathematical analysis that benefit from a strong and well established theory.

Originally descended from physics, they have been extensively developed in mathematics,

and later on in biology, finance and more recently in image processing. Other approaches

that are widely used in imaging science include stochastic modeling (mostly based on

Markov random field theory [44, 47, 61]) and wavelets (emerged from 1-D signal process-

ing theory [62, 21, 29, 30, 31, 32]). This dissertation focuses on some PDE-based methods

for image analysis.

One of the oldest concerns in image processing relates to image restoration (including

denoising) and image enhancement. It is well known that most real images are degraded

by the presence of noise and/or blur. Such corruption is unavoidable and usually origi-

nates in the input device that creates, transmits or records images (e.g., scanner, digital

camera, sensor, etc.). These fluctuations in the pixel values of images render their analysis

or processing difficult to perform with good success. A preprocessing step to remove or

diminish the effects of such degradation is therefore necessary. Even now, such prepro-

cessing is performed in most applications.
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1.1 Image Restoration

In mathematics we define a grayscale image f0 : Ω ⊂ Rd 7−→ [0, 1] (d = 2, 3) to

be a real, measurable and bounded function, defined on the image domain Ω, typically a

rectangle (e.g., the computer screen). The value of the function f0(x) represents the grey

level intensity or brightness of the image at location x. Typically, an image represents

a scene containing a background and several objects. In addition, it is common that the

values of an image inside the background and inside each object are smoothly varying, but

are discontinuous or change abruptly across object boundaries (edges), thus creating large

image gradients at these locations. We define edges as the locations where the gradient

|∇ f | is large due to a discontinuity or a sharp transition in the image intensity.

The usual presence of noise in an image introduces some random perturbation of the

image values, leading to a degraded image. We define the observed image f (a degraded

version of the real image f0) to be the following:

(1.1) f (x) = f0 + n(x),

where n is an additive noise (typically modeled as Gaussian). To account for the blur that

may also corrupt the image, one may consider the more complicated model

(1.2) f (y) = (A f0)(y) + n(y),

where A is a linear operator representing the blur (usually a convolution). Such models

lead to very interesting mathematics related to inverse problems as in the imaging section

of Chapter II. In the rest of this section however, we consider the simpler denoising model

(1.1) with associated problem: Given f , reconstruct f0, knowing (1.1).



3

1.1.1 Gaussian Filtering

In the classical theory, denoising is performed using a low-pass filter. This theory

comes from Marr and Hildreth [63] and was later improved by Canny [14]. The low-pass

filtering is done by convolving the image with Gaussians of increasing variance t (e.g.,

time). Witkin [99] observed that convolving the image with a Gaussian kernel of variance

t was equivalent to solving the heat equation with the observed image f given as initial

data

(1.3)






ut(x, t) = ∆u(x, t)

u(x, 0) = f (x),

the solution of which is given in one dimension by

u(x, t) = (Gt ∗ f )(x) for t > 0,

where Gσ(x) = 1√
4πσ

e−
x2

4σ is the one dimensional Gaussian kernel. Using this technique,

the detection of an edge is done in the following way: x is determined to be an edge at

scale
√

t if ∆u(x, t) changes sign and if |∇u(x, t)| is “large”. The last condition relies on a

threshold defined initially and chosen a priori. In this context “large” means larger than

the assigned threshold. Depending on the choice of threshold, small edges may be omitted

if the threshold is too large, or some noise edges may still be kept if the threshold is too

small. This shows one of the difficulties of this technique. Another observed problem is

the location of the detected edges in low resolution images that is often shifted from their

true location. This is caused by the smoothing effect of the convolution with Gaussian

kernels, which blurs the edges and also moves their location. It is therefore necessary to

introduce some locally high-pass filter to avoid losing the edges.



4

1.1.2 Energy minimization

It turns out that problem (1.3) can be recast into a variational approach with the L2

energy

(1.4) E(u) =

∫

Ω

|∇u|2dx.

In this case, the energy E is minimized when u is the steady state solution of (1.3) with

initial condition u(x, 0) = f (x). In particular, the PDE described in (1.3) is gradient descent

for E in equation (1.4). If we rewrite this constrained minimization as an unconstrained

one, we obtain the following minimization problem

(1.5) min
u

{

F(u) :=

∫

Ω

| f − u|2dx + λ

∫

Ω

|∇u|2dx

}

.

The first term in F measures the fidelity to the data f , while the second term forces the

solution u to be regular (in this case smooth), thus accounting for the blurring. The param-

eter λ is a Lagrange multiplier weighing the relative importance of the two terms in (1.5).

The L2 regularization was first introduced in 1977 by Tikhonov and Arsenin [92], and is

sometimes referred to as Tikhonov regularization.

As noticed in the previous section, the solution to (1.3) and equivalently (1.5) intro-

duces an oversmoothing leading to blurry images. Such oversmoothing can be explained

by looking at the energy (1.5). The Lp norm with p = 2 of the gradient allows us to re-

move noise but unfortunately penalizes too much the gradients corresponding to edges.

One should then decrease p to preserve edges as much as possible. Some work in this

direction was done by Rudin, Osher and Fatemi [81] where they replaced the L2 norm

by an L1 norm of the gradient, also called total variation. They considered the following

minimization

(1.6) min
u

{

G(u) =

∫

Ω

| f − u|2dx + λ

∫

Ω

|∇u|dx

}

.
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This minimization is solved in the space of bounded variations (BV(Ω)) which allows for

discontinuous functions. Such space is very appropriate for computer vision applications

since most images have discontinuities across edges. In their implementation, Rudin et

al. dynamically updated the Lagrange multiplier λ(t). Their result was quite satisfactory

since the solution u approached a denoised version of the original image as t → ∞, while

keeping the edges relatively sharp and removing any spurious oscillations.

1.1.3 Nonlinear Diffusion

A different approach consists in looking for a restored image as a version of the initial

image at a special scale. More precisely, the image u can be embedded in an evolution

process u(t, x). At time t = 0, u(0, x) = f (x), where f is the observed image. As an

attempt to restore an image while maintaining its edges sharp, Perona and Malik [76, 77]

proposed the following nonlinear evolution equation

(1.7)






ut = ∇. (g (|∇u|)∇u)

u(x, 0) = f (x),

where g is a bounded, non-increasing positive function such that limx→∞ g(x) = 0 and

g(0) = 1. It is easy to understand how the diffusion becomes spatially adaptive: if the im-

age gradient is small, g will be close to one and the image will diffuse at this location. On

the other hand, if the image gradient is large (e.g., close to an edge), g will be close to zero,

and hence will almost stop the diffusion and keep the edges sharp. The model (1.7) consti-

tutes the first instance of a nonlinear PDE arising in image processing and computer vision

applications. Perona and Malik’s goal was to devise a method for gradually simplifying

(or coarsening) an image by diffusing out its details, starting with the smallest scales. An

important point was to keep object boundaries (i.e., edges) in the image – where the image

intensity is expected to be discontinuous or rapidly changing – sharp during the diffusion,

until their abrupt disappearance at some point in the coarsening process. In their papers
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[76, 77], Perona and Malik proposed and experimented with two choices of g:

g(x) = e−(
x
b )

2

,(1.8a)

and g(x) =
1

1 +
(

x
b

)2
,(1.8b)

where b is a constant that acts like a contrast threshold to be chosen by the user. The

second choice of g given in (1.8b) is the most commonly used diffusivity in applications

of the model, and constitutes what is typically meant by the Perona-Malik model in the

literature.

The time evolution of the (discretized) PDE generates “cartoon-like” images that get

simpler with time, while maintaining sharp edges as was intended. An example of the

Perona-Malik evolution on an image is shown in Figure 1.1. Unfortunately, the Perona-

Malik model turns out to be ill-posed. To see this, consider (1.7) in one space dimension

ut = (R(ux)x),

where R(x) = xg(|x|), (R : R 7−→ R), and g is as in (1.8). Expanding the right hand side we

obtain

ut = R′(ux)uxx,

which becomes backwards parabolic when R′(ux) < 0. For the two choices of g given

in (1.8), R is non-increasing whenever the gradient is large. Thus, in the regions of the

image with large gradient, the process can be interpreted as a backward heat equation.

The situation is the same in higher space dimensions. The ill-posedness signifies that (1.7)

may not have a solution in general. A very practical implication of this ill-posedness is

that similar initial images may lead to completely divergent evolutions and hence very

dissimilar output images at the end of the processing.

Consequently, there is no complete well-posedness theory for (1.7) despite many efforts

towards establishing rigorous results [9, 45, 46, 49, 57]. Another active line of research
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Figure 1.1: Simplification (or coarsening) of the boat image when taken as initial condition for the Perona and Malik equation.
Figure 1.1(a) shows the original image, and Figures 1.1(b), 1.1(c) and 1.1(d) display the image at later times in the
evolution.

towards understanding (1.7) considers its discrete in-space version [33, 34, 37], while

others focus on studying its regularizations to obtain a well-posed equation [2, 7, 8, 18,

71]. Nevertheless, in practice, the Perona-Malik equation is much better behaved than

expected, however, this phenomenon is still unexplained. It is likely that the behavior of

the associated discrete problem does not reflect the ill-posedness of the continuous version,

but this should be investigated further.

The gradual simplification of an image resulting from its evolution according to (1.7)

can also be described by coarsening which produces at any time t > 0 a simplified version
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(in this case piecewise constant) of the original image f . Thus in addition to denoising,

the Perona-Malik process may provide a segmentation of the original image f at any scale

t, although in practice (1.7) is rarely used solely for this purpose. Nevertheless, this shows

that image denoising (and more generally image restoration) and segmentation are not

totally disconnected, even though the segmentation problem has its own objectives and its

own methodology.

1.2 Image Segmentation

Segmentation is typically used to locate objects or their boundaries (edges) in an image.

The goal of segmentation is therefore to partition an image into its constituent parts to

obtain a simplified image that is more meaningful and easier to analyze. Equivalently,

one would like to have a simplified version of the image made of homogeneous regions

that share certain visual characteristics. In particular, the image value should be smoothly

varying inside each region, and discontinuous across their boundaries.

There are two main approaches to segmentation: the first one aims at detecting the con-

tours of the objects lying in the original image f . The principle behind these edge detection

techniques consists in matching deformable curves to the contours of objects by means of

an energy functional. Examples of edge detection models include geodesic active con-

tours [16, 17] and its precursor the Kass, Witkin and Terzopoulos model [55] (also known

as snakes). The second approach consists in constructing an approximation of the original

image f made up of distinct homogeneous regions separated by sharp discontinuities.

The well-known Mumford and Shah functional follows the second approach and con-

stitutes one of the most studied segmentation models in the computer vision and image

processing literature.
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1.2.1 Mumford-Shah Functional

In this section, we consider Ω a bounded open set of Rd, where d is the dimension

(either 2 or 3), and f is the observed image to be segmented. In their pioneering work of

1989, Mumford and Shah [70] looked for a segmentation of a piecewise smooth image f

into n smoothly varying regions Ri, i = 1, · · · , n, n ∈ N∗, separated by a boundary Γ (the

set of discontinuities). The image domain Ω is therefore the union of the n regions and the

interface Γ:

Ω = R1 ∪ R2 ∪ · · · ∪ Rn ∪ Γ.

Note that in this definition, Γ can contain open and closed curves. The Mumford-Shah

energy functional to be minimized measures the discrepancy between the given image f

and the current segmentation image u, with segmentation interface Γ. It is given by

(1.9) E(u,Γ) := λ

∫

Ω

(u − f )2dx + µ

∫

Ω\Γ
|∇u|2 dx + |Γ|,

where |Γ| is the total length of the arcs making up Γ, and λ and µ are positive constants.

The Mumford-Shah minimization problem becomes

(1.10) min
u,Γ

{

E(u,Γ) = λ

∫

Ω

(u − f )2dx + µ

∫

Ω\Γ
|∇u|2 dx + |Γ|

}

.

In other words, the minimization (1.10) searches for a pair (u,Γ), where Γ ⊂ Ω is the

set of discontinuities and |Γ| is the length of the curves making up Γ. The first term in

the Mumford-Shah energy (1.9) is the usual fidelity term which measures the misfit be-

tween the given image f and the output image u. By minimizing E this term looks for

images u that are close to f . The second term is a regularization term which measures the

smoothness of the image u inside each region Ri. By minimizing E, it ensures that u has

slow variation inside each region. The third term penalizes the length of the boundaries so

that the segmentation is achieved using the shortest interface. The presence of this term
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ensures that no trivial segmentation is obtained and also provides a way to select a scale

in the segmentation. Each of the three terms described in (1.9) is equally important, and

removing any one of them would lead to a trivial segmentation. Indeed if the first term is

removed, the minimizer is trivially Γ = Ø and u = 0. If only the second term is removed,

the minimizer is u = f and Γ = Ø. Now if E does not contain the length term, take Γ to be

a fine grid of N horizontal and vertical lines and let u be constant on each of the N2 grid

squares (the constant is the average of f on each grid square). We can see that by letting

N → ∞, we can make E as small as desired. Hence all three terms are necessary.

The lack of differentiability of the Mumford and Shah functional (1.9) for a suitable

norm, does not allow the use of Euler-Lagrange equations. Moreover, the discretization

of the discontinuity set Γ is a complex problem. It is therefore common to approximate

the Mumford-Shah functional by a sequence of regular functionals Eǫ(u,Γ) defined on

Sobolev spaces. As ǫ → 0, the sequence of functionals Eǫ Γ-converges to the origi-

nal Mumford-Shah functional, where the notion of Γ-convergence was introduced by De

Giorgi to give meaning to the convergence of a sequence of functionals [27, 26]. Several

ways of approximating the Mumford-Shah functional have been proposed in the litera-

ture, (see e.g. [10, 11, 19, 20, 48]) but the most commonly used in applications is the one

proposed by Ambrosio and Tortorelli [3].

1.2.2 Ambrosio and Tortorelli’s Approximation of the Mumford-Shah Functional

Ambrosio and Tortorelli [3] showed that the Mumford-Shah functional can be approx-

imated by the following sequence of elliptic functionals

(1.11) Eǫ(z, u) = λ

∫

Ω

( f − u)2dx +

∫

Ω

z2|∇u|2dx + µ

∫

Ω





(

1 − z2
)

4ǫ
+ ǫ |∇z|2




dx,

where u, z ∈ W1,2(Ω \ Γ) and ǫ > 0. Intuitively, the image domain Ω and interface Γ

are replaced by the “interface-detection” function z which takes the value zero around Γ
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and one everywhere else. The small parameter ǫ describes the thickness of the tubular

neighborhood of Γ in which the function z makes the transition between zero and one. The

term
∫

Ω





(

1 − z2
)

4ǫ
+ ǫ |∇z|2




dx

approximates the length term |Γ| in the Γ-convergence sense. As ǫ → 0, the function

z becomes steeper around Γ and converges to a function Z which takes the value zero

on Γ and one everywhere else. Ambrosio and Tortorelli [3] proved that the sequence of

functionals (1.11) Γ-converges to the Mumford-Shah functional as ǫ → 0.

We observe that Ambrosio and Tortorelli’s approximation is an example of a phase-

field method which is a numerical technique for solving interfacial problems (see Sec-

tion 1.3.2). A natural method to numerically compute a solution of the Mumford and Shah

minimization problem is to consider one of its approximations (the most common being

the Ambrosio and Tortorelli’s approximation) and then discretize it using for example a

finite difference scheme. However, since the full model can be quite difficult to implement,

it is typical to consider simplified versions of the Mumford-Shah functional. One of the

most popular simplifications considers the restriction of the Mumford and Shah energy

(1.9) to piecewise constant functions. This simplified model was first introduced by Chan

and Vese [23].

1.2.3 The Chan-Vese Model

Chan and Vese [23] proposed to simplify the full Mumford and Shah functional by

restricting its minimization to piecewise constant functions of the form

(1.12) u(x) = c11Σ(x) + c21Σc(x),
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where c1 and c2 are constants, and Σ is the objects set. Note that Σ may have several con-

nected components. In this setting, Chan and Vese looked at the following minimization

(1.13) min
Σ,c1,c2

{

E(c1, c2,Γ) = λ1

∫

Σ

( f − c1)2dx + λ2

∫

Σc

( f − c2)2dx + µ|∂Σ| + ν|Σ|
}

,

where |Σ| denotes the area of the set Σ, |∂Σ| its perimeter, and ν, λ1, λ2 and µ are posi-

tive parameters. Note that this is more general than (1.9) restricted to piecewise constant

functions, since the piecewise constant Mumford-Shah model is a particular case of the

minimization (1.13) when ν = 0, λ1 = λ2 = 1. An important advantage of this framework

over previous methods (e.g. snakes and active contours [16, 17, 55]) is that the stopping

criterion does not depend on the image gradient. This makes the model more robust. Be-

sides, it is observed that the numerical method used by Chan and Vese is able to find

features that are difficult to get, such as interior contours of objects, and seems to avoid

getting stuck in local minima.

Chan and Vese implemented (1.13) using the level set method (see Section 1.3.3),

however piecewise constant models such as (1.13) can also be treated via the phase-field

method. In this case, the functional E(c1, c2,Γ) in (1.13) is approximated by a sequence of

functionals

(1.14)

Eǫ(c1, c2, z) = λ1

∫

Ω

| f − c1|2z2dx + λ2

∫

Ω

| f − c2|2(1 − z)2dx + µ

∫

Ω

(

W(z)

ǫ
+ ǫ|∇z|2

)

dx,

where W(z) = z2(1 − z)2 is often called the double well potential. Intuitively, the double

well potential function forces the function z to be one in Σ and zero in Σc. On the interface

∂Σ, z makes a transition between zero and one on an ǫ-thick layer. The term

∫

Ω

(

W(z)

ǫ
+ ǫ |∇z|2

)

dx

approximates the length term |∂Σ| in the Γ-convergence sense, as shown by Modica and
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Mortola in [68]. The sequence of functionals (1.14) therefore Γ-converges to the original

energy E(c1, c2,Γ) defined in equation (1.12).

Vese and Chan also generalized their piecewise constant model to a multiphase compo-

nent framework with n constants instead of two [96]. In their implementation, they used

only log n level set functions (which is the minimum needed). In addition, they extended

the model to piecewise smooth functions with spatially dependent constants ci. In both

cases, their numerical implementation using the level set method, which was quite simple,

provided good results.

1.3 Numerical Methods for Curve Evolution

Computing the motion of interfaces, e.g., curves in the plane or surfaces in space, is

an essential component of many applications. For instance, in image processing and com-

puter vision, many popular variational models for segmentation and reconstruction involve

initializing a curve or surface and then evolving it towards features that are of interest (e.g.,

edges). Typically, the resulting motion is by a normal speed that includes geometric terms

such as curvature of the interface and its derivatives. Due to recent research in this direc-

tion, there is now a wide variety of numerical schemes for simulating geometric motions

of interfaces including front tracking, phase-field, level set and diffusion generated motion

algorithms.

1.3.1 Front Tracking

Front tracking methods [13] involve an explicit discretization of the interface and ap-

proximate its motion by moving marker particles representing the interface. The two main

benefits of front tracking methods are computational speed and high accuracy. In particu-

lar, these methods are very well suited for two dimensional motions of curves that do not

cross. However, they become very difficult to implement whenever topological changes
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occur, particularly in dimensions higher than two. Another problem with explicit methods

is that they become unstable as the points of the interface get close to each other, or inac-

curate as the points move away from each other. This makes it necessary to reparameterize

and redistribute the points regularly throughout the computations, which is a major draw-

back since every reparameterization slightly moves the location of the interface, hence

leading to algorithms that can often get stuck.

1.3.2 Phase-Field Method

The phase-field method uses an implicit representation of the interface through an aux-

iliary field variable (the “phase field”), which takes different values in different phases. In

the simplest case, the phase field takes two different values (for example 0 and 1) in each

of the phases, with a smooth transition around the interface. The thickness of the transition

layer around the interface, usually denoted ǫ, is a parameter in the scheme. Examples of

phase field methods include Ambrosio and Tortorelli’s approximation of the full Mumford-

Shah functional and the approximation of the piecewise constant Mumford-Shah model,

described by equation (1.11) and (1.14) respectively. Like the level set technique (see

Section 1.3.3), the implicit representation of the interface enables this method to natu-

rally handle topological changes. However, there are a few difficulties with the phase-field

technique: first, the small parameter ǫ contributes to the stiffness of the problem, namely

computations can take a very long time since the small parameter ǫ appears in a disadvan-

tageous way in the CFL condition. Second, the ǫ-thick transition layer in the phase-field

function needs to be resolved for accurate results, leading to impracticable sizes since the

grid size ∆x needs to be small enough to resolve the transition. Thus in practice, accuracy

near the interface is often lost.
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1.3.3 Level Set Method

The level set method is an implicit scheme introduced by Osher and Sethian in [73] as

a simple way to compute and analyze the motion of an interface Γ bounding a region Σ.

Note that the region Σmay have several connected components. Assuming Γmoves under

the velocity field ~v, the idea of the level set technique is to embed the interface Γ as the

zero level set of a smooth (at least Lipschitz continuous) function φ(x, t) such that

Γ(t) = {x : φ(x, t) = 0} ,

where φ is positive inside Γ and negative outside:

Σ(t) = {x : φ(x, t) > 0}.

The motion of the curve Γ is obtained by convecting the values of φ with the velocity field

~v in the following way:

∂φ

∂t
+ ~v.∇φ = 0,

or equivalently

(1.15)
∂φ

∂t
+ vN |∇φ| = 0,

where vN is the normal component of ~v defined as vN = ~v · ∇u

|∇u| . We observe that the

velocity field ~v is only defined on the interface Γ and is arbitrary elsewhere. This brings

forth the first issue of the level set technique, namely the problem of velocity extension.

The velocity field ~v is a priori only known on the interface, but is needed further away

from the boundary to evolve φ according to equation (1.15) at least in a neighborhood of

the interface. It is therefore necessary to extend ~v to a smooth velocity field defined on

a neighborhood of Γ. There are several ways to extend the velocity, one of the simplest

being the extension of the velocity as a constant in the direction normal to the interface.
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For more details on velocity extensions, we refer the reader to the book by Osher and

Fedkiw [72] and the work of Tsai and Osher [94]. The second important issue of the level

set method pertains to the reinitialization of the level set function. During the evolution,

φ might either become too steep (in which case the algorithm can get stuck) or too flat (in

which case instabilities are created). It is therefore necessary to periodically reinitialize

the level set function to the signed distance function to the zero level set of φ. The zero

level set of course remains unchanged. More details about this technique can be found in

[72, 94].

Despite these issues, the level set technique remains very powerful. In particular, nu-

merical implementations of (1.15) are simple and convenient, especially considering the

fact that (1.15) can handle topological changes, which explicit methods (e.g. front track-

ing, etc.) cannot do easily. In the level set formulation, the curvature of the curve Γ(t) can

be written as

(1.16) κ = ∇ ·
( ∇φ
|∇φ|

)

.

Moreover, the characteristic function of the set Σ, 1Σ(x), can also be written using the level

set function φ as

1Σ(x) = H(φ(x)),

where H is the one dimensional Heaviside function. The line or surface integral of a

quantity ρ can therefore be written as

(1.17)

∫

Rd

ρ(x, t)|∇H(φ)|dx,

and the surface or volume integral of g over Σ as

(1.18)

∫

Rd

ρ(x, t)H(φ)dx,

where d is the dimension, either 2 or 3.
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1.3.4 Diffusion Generated Motion

In this section, we describe two variants of a general class of algorithms called diffu-

sion generated motion. The approach is based on alternately diffusing and resetting to its

original type, the initial level set describing the interface (e.g., characteristic function or

signed distance function).

The Merriman, Bence and Osher (MBO) scheme

The first diffusion generated motion algorithm (also called MBO scheme) was intro-

duced by Merriman, Bence and Osher [65, 66, 67] as an efficient way to generate the

motion of an interface by its mean curvature (or simply the curvature in 2D). The MBO al-

gorithm is obtained by time splitting the well-known Allen-Cahn phase-field equation for

motion by mean curvature. The resulting scheme alternates two steps, namely convolution

and thresholding. More precisely, consider a set Σ in the domain Ω ⊂ R2, with boundary

∂Σ evolving with normal speed vN = κ, where κ(x) is the mean curvature of the interface

∂Σ at the point x ∈ ∂Σ. Then ∂Σ is the 1
2

level set of the characteristic function 1Σ of the

set Σ:

∂Σ =:

{

x : 1Σ(x) =
1

2

}

.

Given an initial set Σ0 defined through its characteristic function χ0 := 1Σ0
, and a time step

size δt > 0, the MBO scheme generates a discrete sequence {Σ j} j∈N at subsequent times

j(δt) in the following way: from the set Σ j−1, obtain the set Σ j by alternating between the

following two operations:

1. Diffusion step. From the set Σ j−1 defined through its characteristic function χ j−1 :=

1Σ j−1
at ( j − 1)δt, solve the following initial value problem for a length of time δt:






ut = ∆u

u(x, 0) = χ j−1(x),
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which is equivalent to forming the function

L(x) =
(

Gt ∗ χ j−1

)

(x),

where Gt is the d-dimensional Gaussian kernel given by

(1.19) Gt(x) =
1

(4πt)
d
2

e
−|x|2

4t .

2. Sharpening step.

χ j(x) =






0 if L(x) < 1
2
,

1 else.

The location of the interface ∂Σ j is given by the level set
{

x ∈ Ω : χ j(x) = 1
2

}

. The time

discretization {∂Σ j} j∈N has been proven to convergence to motion by mean curvature in the

limit δt → 0+ (see [6, 39, 64]). One of the main advantages of this algorithm is its uncon-

ditional stability. In fact, the scheme remains monotone (i.e., preserves the order of sets)

for all choices of δt, independent of the spatial resolution. In addition, its computational

complexity is low (O(N log N) due to the FFT used in the convolution step), which makes

it computationally more attractive than standard level set techniques that involve the solu-

tion of a nonlinear and degenerate PDE [73]. Nevertheless, there exist some semi-implicit

schemes for level set methods introduced by Smereka in [91]. Several generalizations of

the basic MBO scheme have been proposed for generating more complicated interfacial

motions including anisotropic curvature motion, motion by curvature plus constant, and

motion of multiple junctions [36, 64, 83, 84, 85, 86, 87, 88].

Despite its computational advantages, the MBO scheme inherits a major drawback

from its construction using characteristic functions, namely inaccuracy of uniform grids.

Indeed, characteristic functions cannot resolve the location of the interface better than

the spatial grid size. Consequently, unless the grid size is refined concurrently with the
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time step size, the approximate motion generated by the scheme gets stuck. . It is there-

fore necessary to discretize the scheme with methods that can provide subgrid accuracy

in the location of the interface. This was done by Ruuth in [84] through the efficient use

of an unequally spaced FFT. Such an adaptive strategy is especially needed for simulating

high-order motions.

To address this issue, Esedoḡlu, Ruuth and Tsai [35] proposed to represent the inter-

face using signed distance functions rather than characteristic functions. Their choice was

motivated by the fact that unlike characteristic functions, signed distance functions can be

represented on uniform grids at subgrid accuracies due to their Lipschitz continuity.

Diffusion Generated Motion using Signed Distance Functions

Esedoḡlu, Ruuth and Tsai [35] recently proposed a new class of algorithms that gener-

ates a variety of interfacial motions with high accuracy on uniform grids. These algorithms

are similar to the MBO scheme in flavor – they also alternate two steps with the diffusion

step being in character the same – but they differ by the fact that they use the signed dis-

tance function to the interface instead of the characteristic function of the region. The new

schemes thus simulate the motion of an interface by alternately diffusing and redistancing

the signed distance function to the interface. The diffusion step consists of convolving the

signed distance function with an appropriate kernel, usually chosen to be the Gaussian ker-

nel, and the redistancing step simply consists of constructing the signed distance function

to the interface from the previously diffused signed distance function (which at that point

is no longer a signed distance function to the interface). The redistancing step replaces in

essence the computationally very efficient thresholding step (i.e., sharpening step) of the

MBO scheme. However, no efficiency is lost by having to construct the signed distance

function to the interface every two steps, since there exist fast algorithms for computing

signed distance functions (e.g., fast marching, fast sweeping, etc. [24, 82, 90, 93, 95]).
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This new class of diffusion generated motion algorithms therefore provides an efficient

and highly accurate technique for simulating a wide range of interfacial motions. Among

such motions are the ones with normal speed

vN = κ + S ,

where κ is the mean curvature and S : Rd → R a given function, for which we describe

the scheme. From an initial set Σ0 defined through its signed distance function d0(x) and

a time step size δt > 0, generate a time discrete approximation {∂Σ j} j∈N at times j (δt) by

alternating the following two operations:

1. Diffusion step. From the set Σ j−1 defined through its signed distance function d j−1 at

time ( j − 1)δt, form the level set function

L(x) =
(

Gt ∗ d j−1

)

(x) + S j−1(x) (δt) ,

where Gt is given in (1.19).

2. Redistancing step. Construct d j, the signed distance function to the zero level set of

L, defining the new set Σ j (and thus its boundary ∂Σ j)

d j(x) = Redist(L(x)).

High order in time versions of these schemes may also be obtained by combining two

updates in time, with time step δt and 2δt respectively.

1.4 Contribution and Organization of this Dissertation

This dissertation provides both computational and theoretical results with applications

to image processing and computer vision.

In the realm of applications, we propose efficient and accurate algorithms for com-

puting certain area preserving geometric motions of curves in the plane, such as area
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preserving motion by curvature. Our schemes are based on the class of diffusion gen-

erated motion using signed distance functions introduced by Esedoḡlu, Ruuth and Tsai

[35], and thus generate the desired geometric flow in an unconditionally stable manner.

We check the numerical convergence of these algorithms and provide a few test prob-

lems that demonstrate their high accuracy. In addition, we present applications of these

area preserving flows to large scale simulations of area preserving motion by curvature

and inverse problems. The large scale computations of area preserving curvature motions

are made possible by the computational efficiency of our schemes (which allows for very

large grid sizes) and their unconditional stability (which allows us to take adaptive time

steps). In the second application of our area preserving schemes, we investigate whether

certain commonly used regularizations in medical imaging inverse problems (e.g. tomog-

raphy) introduce significant bias in reconstructions. One such regularization (as used in

the Mumford-Shah functional [70]) takes the form of a penalty on the perimeter of recon-

structed objects. We propose a reconstruction algorithm based on area preserving flows,

and show that perimeter regularizations do indeed introduce some shrinkage. We compare

the performance of our area preserving flows with the performance of a Mumford-Shah

based model (using perimeter regularization) and show that our model provides improved

results over the Mumford-Shah based model.

The second topic of this dissertation relates to coarsening in high order analogues of

the Perona-Malik equation. These high order analogues include the You-Kaveh equation

[100] proposed as an improvement over the Perona-Malik model, especially regarding

the staircasing artifact introduced by the Perona-Malik evolution. In this dissertation, we

study the discrete version of a family of ill-posed, nonlinear diffusion equations of order

2n. The fourth order (n = 2) version of these equations constitutes our main motivation,

as it appears prominently in the image processing and computer vision literature. It was
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proposed by You and Kaveh as a model for denoising images while maintaining sharp

object boundaries. We follow a recent technique by Kohn and Otto, and prove a weak

upper bound on the coarsening rate of the discrete in space version of these equations in

any space dimension. Numerical experiments indicate that the bounds are close to being

optimal, and are typically observed. These bounds provide a first step towards understand-

ing the gradual simplification of an image occuring through a denoising process, with the

ultimate goal of automatically selecting the stopping time of the evolution for a given level

of image simplification.

The remaining chapters of this thesis are as follows. Chapter II introduces new algo-

rithms for area preserving flows and provides applications to large scale simulations of

area preserving curvature motion and inverse problems, while Chapter III focuses on the

rigorous result related to coarsening in high order ill-posed nonlinear diffusion equations

for image processing. To conclude, we discuss the relevance of our results in Chapter IV,

and propose natural and new directions for future research.



CHAPTER II

Algorithms for Area Preserving Flows and Applications

2.1 Introduction

Motion by mean curvature has been extensively studied in the mathematics literature

[41, 43, 54] and in applications such as crystal growth and image processing [1, 69]. Under

this geometric flow each point x on a curve Γmoves with normal velocity vN = κ(x), where

κ(x) is the mean curvature of the curve at x ∈ Γ. It is also called the Euclidean curve

shortening flow since the Euclidean perimeter of a curve shrinks as quickly as possible

when evolving according to this motion. In addition, convex curves shrink to a point

in finite time [43, 54]. Several algorithms have been proposed to simulate this motion,

such as finite elements [97], level set methods [73, 91] and diffusion generated motion

techniques [65, 67, 84]. A variant of this motion is the geometric flow that decreases the

total perimeter of a collection of curves as quickly as possible while preserving the total

enclosed area: it is referred to as area (or volume) preserving mean curvature motion. This

motion finds applications in various fields including image processing [15, 42], and arises

physically as a limit of the nonlocal Allen-Cahn equation modeling the phase separation in

binary alloys [12, 50, 80]. The area preserving mean curvature motion is described by the

normal velocity vN = κ − κ̄, where κ̄ denotes the average mean curvature of the collection

of curves. Several schemes based on the level set method [15, 75, 102] and threshold

23
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dynamics [89] have been proposed for approximating this motion.

We describe new schemes for area preserving flows based on a new class of algorithms

that generate the desired interfacial motion by alternating two simple and efficient steps:

construction of the signed distance function, and convolution with a kernel (usually a

Gaussian kernel). The resulting schemes are unconditionally stable, and have low, namely

O(N log N), per time step cost, where N is the total number of grid points. In addition, we

present applications of these efficient area preserving algorithms to large scale simulations

of area preserving curvature motion, and to image reconstruction from medical imaging

inverse problems.

2.2 Proposed schemes

In this section we introduce our area preserving schemes, and present systematic studies

of their numerical convergence and accuracy.

2.2.1 Algorithms for area preserving flows

Building on the distance function dynamics for curvature motions described in Chap-

ter I, we propose new and efficient algorithms for area preserving flows in two dimensions.

These algorithms generate interfacial motions with normal velocities

(2.1) vN = κ − κ̄ + S ,

where κ denotes the curvature, κ̄ the average curvature and S = S (x, t) is an additional

normal speed term that may depend on space and time. Such terms arise for example

in computer vision applications from data fitting terms in variational models (see Sec-

tion 2.4). The core of our algorithm is the scheme for area preserving curvature motion

which evolves interfaces with normal velocity vN = κ − κ̄. Under this motion, m disjoint

curves Γi will evolve to decrease their total length while maintaining the total enclosed
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area constant. In our algorithms, we use the fact that both κ and κ̄ can be calculated very

easily using the signed distance function to the interface.

Let us now recall a few well known properties of the signed distance function that hold

more generally in Rn (see e.g. [28, 40]). Consider the set Σ ⊂ Ω defined through its signed

distance function d, and let ∂Σ be its boundary. The first property of d is based on the

fact that the normals to a smooth interface do not focus immediately, so that the signed

distance function is smooth in a tubular neighborhood T of ∂Σ, and linear with slope one

along the normals, namely

(2.2) |∇d| = 1 for all x ∈ T, with boundary condition d|x∈∂Σ = 0.

The second property is that the Laplacian of the signed distance function d at a point x

gives, up to a multiplicative constant depending on the dimension, the mean curvature of

the isosurface of d passing through x:

(2.3) ∆d(x) = (n − 1)H(x),

where H(x) denotes the mean curvature of the level set {ξ : d(ξ) = d(x)}, and n is the

dimension. In two dimensions, we will denote κ(x) the curvature of the curve ∂Σ = {ξ :

d(ξ) = 0}, so that equation (2.3) simplifies to

(2.4) ∆d(x) = κ(x).

Before moving on to the expression of the average curvature κ̄ in terms of the signed

distance function d, we need to recall some simple definitions and properties. The average

curvature of a curve C is defined as

(2.5) κ̄ =
1

|C|

∫

C

κds,
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where |C| denotes the length of the curve C. For a two dimensional connected set Σ of

genus p, the average curvature of its boundary ∂Σ can be expressed as

κ̄ =
2π (1 − p)

|∂Σ| ,

where |∂Σ| is the total length of the boundary of Σ. The genus number p can be interpreted

as the number of “holes” in the set Σ. If the set Σ is made up of K connected components

Σ =
⋃K

j=1 Σ j, with Σ j being a surface of genus p j, then the average curvature of ∂Σ becomes

(2.6) κ̄ =
2π

(

K −∑K
j=1 p j

)

|∂Σ| ,

From expression (2.6), we see that the only quantity left to compute is the perimeter of the

set Σ,

|∂Σ| =
∫

∂Σ

ds

=

∫

∂Σ

|∇d|2ds
(

since by definition of the signed distance function, |∇d| = 1
)

=

∫

∂Σ

∇d · ν ds (where ν = |∇d| is the outward unit normal)

=

∫

Σ

∆d dx.
(

by the divergence Theorem
)

Thus we have

(2.7) |∂Σ| =
∫

Σ

∆d dx,

which provides a simple relation between the length of the boundary of a set and its signed

distance function. In our computations, we use equations (2.6) and (2.7) to compute the

average curvature of a set. Notice that all the computations are done using only the signed

distance function to the interface. Note also that under area preserving curvature motion,

the boundaries of sets will evolve to decrease their total length while maintaining the total

surface area at its initial value. Consequently, the final state of the evolution is a disk with
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area equal to the initial total area. In particular, disks preserve their circular symmetry

under this motion (one disk is stationary).

The complete algorithm for the general motion with normal speed vN = κ − κ̄ + S

builds on the area preserving curvature motion scheme by simply shifting the location of

the redistancing process by a constant determined by S (x, t). For clarity in the description

of the algorithms, we define

#{d > 0} := number of connected components of {x : d(x) > 0} .

Algorithm 1. Given the initial set Σ0 defined through its signed distance function d0(x)

and a time step δt > 0, generate the sets Σ j via their signed distance functions d j(x) at the

subsequent discrete times t = j(δt) by alternating the following steps:

1. Using Gt in (1.19), form

L(x) =
(

d j−1 ∗Gδt

)

(x) −
2π

(

#{d j−1 > 0} − #{d j−1 < 0} + 1
)

∫

d j−1>0
∆d j−1(x)dx

(δt) + S j−1(x)(δt).

2. Construct the signed distance function d j using

d j(x) = Redist(L(x)).

We also propose a second-order in time version of Algorithm 1 to achieve quadratic

convergence in time.
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Algorithm 2. Multi-step, second-order in time version. Given the initial set Σ0 defined

through its signed distance function d0(x) and a time step δt > 0, generate the sets Σ j

via their signed distance functions d j(x) at the subsequent discrete times t = j(δt) by

alternating the following steps:

1. Using Gt in (1.19), form

L1(x) =
(

d j−2 ∗G2δt

)

(x) −
2π

(

#{d j−2 > 0} − #{d j−2 < 0} + 1
)

∫

d j−2>0
∆d j−2(x)dx

(2δt) + S j−2(x)(2δt)

L2(x) =
(

d j−1 ∗Gδt

)

(x) −
2π

(

#{d j−1 > 0} − #{d j−1 < 0} + 1
)

∫

d j−1>0
∆d j−1(x)dx

(δt) + S j−1(x)(δt).

2. Construct the signed distance function d j using

d j(x) = Redist

(

1

3
(4L2(x) − L1(x))

)

.

The overall computational complexity of the general algorithm is O(N log N). Indeed,

counting connected components can be performed in O(N) operations where N is the total

number of grid points. The convolution is done in O(N log N) operations using the FFT.

Also there exist algorithms, such as fast marching and fast sweeping, that construct the

signed distance function in O(N log N) operations [24, 82, 90, 93, 95]. All the other terms

used in the scheme, including the integral, can be done in O(N) operations. Thus, we see

that the per time step cost of the complete algorithm is O(N log N). In addition, due to its

unconditional stability, there is no restriction on the time step size.

In the case of area preserving curvature motion (i.e., for S = 0), we propose slightly

modified versions of Algorithms 1 and 2 that consist in matching exactly, at each time

step j (δt), the current area with the initial area. This strategy is similiar to the one used

by Ruuth and Wetton [89] in the case of threshold dynamics for area preserving curvature
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motion. For clarity of the exposition, we define the area operator A : C2(R2,R) → R

applied to a smooth function φ to be

A (φ) :=

∫

φ(x)>0

dx = |{x : φ(x) > 0}| ,

which computes the area of the zero super level set of φ. Now the idea behind the mod-

ification of Algorithms 1 and 2 is to use Newton’s method at each time step to find the

stationary point λ∗j of the function λ j 7→ a(λ j) − a0, where a0 is the initial area, and a(λ j)

the current area at time step j defined as

a(λ j) = A
(

d j−1 ∗Gδt − λ j

)

.

The initial condition for the Newton iteration is taken to be

λ0
j =

2π
(

#{d j−1 > 0} − #{d j−1 < 0} + 1
)

∫

d j−1>0
∆d j−1(x)dx

(δt),

which approximates the average curvature. Note that this expression is used in Algo-

rithms 1 and 2. The signed distance function d j is then constructed using

d j = Redist
(

d j−1 ∗Gδt − λ∗j
)

.

To modify Algorithm 2, we proceed in the same way, namely at each time step j (δt), we

compute λ∗
j,1 and λ∗

j,2 coming from the result of a Newton iteration using d j−2 with time

step 2δt and d j−1 with time step δt respectively. The final update in this case becomes

(2.8) d j = Redist

(

1

3

(

4
(

d j−1 ∗Gδt − λ∗j,2
)

−
(

d j−2 ∗Gδt − λ∗j,1
))
)

.

The modified algorithm reads as follows
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Algorithm 3. Area Preserving Curvature Motion. Given the initial set Σ0 with area a0

defined through its signed distance function d0(x), a time step δt > 0 and a constant η > 0,

generate the sets Σ j via their signed distance functions d j(x) at the subsequent discrete

times t = j(δt) by alternating the following steps:

1. Using Newton’s method with initial guess

λ0
j =

2π
(

#{d j−1 > 0} − #{d j−1 < 0} + 1
)

∫

d j−1>0
∆d j−1(x)dx

(δt),

find λ∗j such that
∣
∣
∣
∣A

(

d j−1 ∗Gδt − λ∗j
)

− a0

∣
∣
∣
∣ < η, and form

L(x) =
(

d j−1 ∗Gδt

)

(x) − λ∗j.

2. Construct the signed distance function d j using

d j(x) = Redist(L(x)).

The multi-step version of Algorithm 3 can be obtained by following the same pattern

as Algorithm 2 and using the update described in equation (2.8).
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Algorithm 4. Area Preserving Curvature Motion: second-order in time version. Given

Σ0 with area a0 having distance function d0(x), δt > 0 and η > 0, generate Σ j at times

t = j(δt) by alternating the following steps:

1. Using Newton’s method with initial guesses

λ0
j,1 =

2π
(

#{d j−2 > 0} − #{d j−2 < 0} + 1
)

∫

d j−2>0
∆d j−2(x)dx

(δt)

and λ0
j,2 =

2π
(

#{d j−1 > 0} − #{d j−1 < 0} + 1
)

∫

d j−1>0
∆d j−1(x)dx

(δt),

find λ∗
j,1 and λ∗

j,2 such that
∣
∣
∣
∣A

(

d j−2 ∗Gδt − λ∗j,1
)

− a0

∣
∣
∣
∣ < η and

∣
∣
∣
∣A

(

d j−1 ∗Gδt − λ∗j,2
)

− a0

∣
∣
∣
∣ < η,

and form

L1(x) =
(

d j−2 ∗Gδt

)

(x) − λ∗j,1

L2(x) =
(

d j−2 ∗Gδt

)

(x) − λ∗j,2.

2. Construct the signed distance function d j using

d j(x) = Redist

(

1

3
(4L2(x) − L1(x))

)

.

Note that although Algorithms 3 and 4 preserve area more accurately than Algorithms 1

and 2, they will be inapplicable in situations where the total area may change due to the

presence of a non-zero term S , such as the imaging application described in Section 2.4.

A variant of area preserving curvature motion considers component-wise area preserv-

ing curvature motion. In this case, the area of each connected component is preserved

during the entire evolution rather than the total area. This variant is used in the imaging

application of Section 2.4, where each connected component represents a different object

in the image. For simplicity in the description of the component-wise algorithm, we define
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the following function:

Lout = ComponentwiseAP (L, d, δt)

1. Find the number of connected components q of the set Σ defined through its signed

distance function d

2. For each of the connected component Σk, extract its signed distance function dk (k =

1 · · · q)

(a) Compute the local average curvature

κ̄k =
2π

(

2 − #{dk < 0}
)

∫

dk>0
∆dk(x)dx

(b) In an ǫ-neighborhood of Σk, update

L(xk) = L(xk) − κ̄k(δt),

for xk ∈ Nǫ (Σk), where Nǫ (Σk) =: {x : |x − y| < ǫ, y ∈ Σk, ǫ > 0}.

3. Lout = L; Return Lout.

The component-wise area preserving algorithm reads as follows:
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Algorithm 5. Component-wise Area Preserving Flow. Given the initial set Σ0 defined

through its signed distance function d0(x) and a time step δt > 0, generate the sets Σ j via

their signed distance function d j(x) at the subsequent discrete times t = j(δt) by alternat-

ing:

1. Using Gt in (1.19), form

L(x) = d j−1 ∗Gδt + S j−1(δt).

2. Update L using

L = ComponentwiseAP
(

L, d j−1, δt
)

.

3. Construct the signed distance function d j using

d j(x) = Redist(L(x)).

The second order in time version of Algorithm 5 is obtained by following the idea used

in Algorithms 2 and 4.

2.2.2 Numerical convergence study

In this section we describe some convergence studies done with the algorithms for

area preserving curvature motion introduced in the previous section. In the computa-

tions presented below, we used a second order accurate procedure to construct the signed

distance function in a tubular neighborhood of the interface. For details on more so-

phisticated algorithms for constructing signed distance functions, we refer the reader to

[22, 24, 82, 90, 93, 101].

We investigate the convergence of Algorithms 1 and 2 for S = 0, i.e., for the area

preserving curvature motion algorithm. The results are displayed in Tables 2.1 and 2.2.

The convergence test is done on an ellipse and the evolution is computed over the time
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interval [0, 0.01]. The initial condition is an ellipse E with major axis a = 0.45 and minor

axis b = 0.2 on the domain [0, 1]2. The major and minor axes of the final curve (which

is no longer an ellipse) are 0.4 and 0.22 respectively. At the final time T = 0.01 we

measure the quantity
∫

Σ(T )
(x2 + y2)dΩ, where Σ(t) ∈ R2 evolves under area preserving

curvature motion with initial condition Σ(0) = E. We compare this quantity with the

exact quantity
∫

Σe(T )
(x2 + y2)dΩ, where the exact evolution Σe(t) is computed using a front

tracking technique with a very fine discretization of the parameterized curve. We also

display the error in area and its associated convergence rate.

Resolution # of Time Steps Relative error in
∫

Σ(T )

(

x2 + y2
)

dΩ (in %) Order Error in area Order

33 × 33 20 0.0167 – 0.000921 –

65 × 65 40 0.3218 −4.27 0.000561 0.72

129 × 129 80 0.2046 0.65 0.000271 1.05

257 × 257 160 0.1002 1.03 0.000120 1.18

513 × 513 320 0.0487 1.04 0.000055 1.12

1025 × 1025 640 0.0240 1.02 0.0000263 1.06

2049 × 2049 1280 0.0119 1.01 0.0000128 1.03

Table 2.1: Convergence of Algorithm 1 for S = 0. The initial condition is an ellipse with major axis a = 0.45 and minor axis b = 0.2
on [0, 1]2. The evolution was computed for t ∈ [0, 0.01].

Resolution # of Time Steps Relative error in
∫

Σ(T )

(

x2 + y2
)

dΩ (in %) Order Error in area Order

33 × 33 20 0.8098 – 0.00164 –

65 × 65 40 0.4919 0.72 0.000710 1.20

129 × 129 80 0.0951 2.37 0.000150 2.24

257 × 257 160 0.00738 3.69 0.0000210 2.84

513 × 513 320 0.000928 2.99 0.00000434 2.27

1025 × 1025 640 0.000196 2.25 0.00000109 1.99

2049 × 2049 1280 0.00000915 4.42 0.000000265 2.04

Table 2.2: Convergence of Algorithm 2 for S = 0. The initial condition is an ellipse with major axis a = 0.45 and minor axis b = 0.2
on [0, 1]2. The evolution was computed for t ∈ [0, 0.01].

As can be seen in Table 2.1, Algorithm 1 settles into a clearly first order convergence

rate. Table 2.2 shows the convergence rate for Algorithm 2, which on this example turns

out to be significantly higher than second order, perhaps due to some cancellation of errors.

In any case, Algorithm 2 achieves very high accuracy even on very modest sized grids.

We now present the convergence of Algorithms 3 and 4 on the same ellipse test. The
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results are displayed in Tables 2.3 and 2.4 respectively. We stress that these last two

algorithms cannot be extended to the more general velocity (2.1) with nonzero S (x, t). In

both convergence tests, the area was preserved up to an error of 10−14 or less. Table 2.3

displays the convergence of Algorithm 3 and Table 2.4 the convergence of Algorithm 4.

Resolution # of Time Steps Relative error in
∫

Σ(T )

(

x2 + y2
)

dΩ (in %) Order

33 × 33 20 0.6256 –

65 × 65 40 0.0588 3.41

129 × 129 80 0.0213 1.47

257 × 257 160 0.0194 0.13

513 × 513 320 0.0117 0.73

1025 × 1025 640 0.00631 0.89

2049 × 2049 1280 0.00327 0.95

Table 2.3: Convergence of Algorithm 3. The initial condition is an ellipse with major axis a = 0.45 and minor axis b = 0.2 on [0, 1]2.
The evolution was computed for t ∈ [0, 0.01].

Resolution # of Time Steps Relative error in
∫

Σ(T )

(

x2 + y2
)

dΩ (in %) Order

33 × 33 20 0.3040 –

65 × 65 40 0.0112 4.76

129 × 129 80 0.00735 0.61

257 × 257 160 0.00689 0.09

513 × 513 320 0.00197 1.81

1025 × 1025 640 0.000488 2.01

2049 × 2049 1280 0.000117 2.06

Table 2.4: Convergence of Algorithm 4. The initial condition is an ellipse with major axis a = 0.45 and minor axis b = 0.2 on [0, 1]2.
The evolution was computed for t ∈ [0, 0.01].

In addition to the convergence studies described above, we tested our area preserving

curvature motion algorithm on an initial configuration containing three circles with radii

0.15, 0.2 and 0.22 on [0, 1]2. Since circles remain circles under this motion, we monitored

the evolution of each of the three radii for t ∈ [0, 0.1], and compared it with the exact

evolution obtained by numerical integration of the coupled ODEs for the radii. The circles

were placed far apart initially so that no collision occurred during the evolution. Figure 2.1

shows the three circles in the initial condition (thick line) and the final curves at time

t = 0.1 (fine line). The computed evolution of the three radii is compared to the exact one

in Figure 2.2.
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Evolution of three circles under area preserving curvature motion
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Figure 2.1: Evolution of three circles under area preserving curvature motion for t ∈ [0, 0.1]. The initial condition is shown by the
thick curves, and the final curves at t = 0.1 are displayed by the thin curves. In this configuration, the largest circle grew
while the other two shrunk (the smallest one actually disappeared).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time

Radius of smallest circle

 

 

ODE

32
2

128
2

512
2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Time

Radius of middle sized circle

 

 

ODE

32
2

128
2

512
2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Time

Radius of largest circle

 

 

ODE

32
2

128
2

512
2

0.015 0.02 0.025 0.03 0.035
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time

Radius of smallest circle (enlarged view)

 

 

ODE

32
2

128
2

512
2

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
0.2

0.205

0.21

0.215

0.22

Time

Radius of middle sized circle (enlarged view)

 

 

ODE

32
2

128
2

512
2

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
0.24

0.242

0.244

0.246

0.248

0.25

0.252

0.254

0.256

0.258

0.26

Time

Radius of largest circle (enlarged view)

 

 

ODE

32
2

128
2

512
2

Figure 2.2: Comparison between the evolutions of the exact and computed radii obtained from three initial circles taken as initial
condition and evolved under area preserving curvature motion. The initial three circles have the following radii: 0.15, 0.2
and 0.22. In each of the plots, we superimpose the exact evolution (in bold) and the evolution of the radii computed on
a 322, 1282 and 5122 grid. The top row shows the entire evolution, while the bottom row shows an enlarged view of the
plots where the graph is not differentiable (corresponding to the disappearance of the smallest circle). This computation
was performed with Algorithm 4.



37

2.3 Application: large scale simulations of area preserving curvature motion

In this section, we demonstrate the capacity of our proposed algorithms to handle large

scale simulations with very good accuracy.

2.3.1 Curve shortening at various area fractions

Geometrically in two dimensions, the area preserving curvature flow describes the

shortening of a curve (or interface) separating two phases, while maintaining the area

of each phase equal to their respective initial area. A natural question therefore arises: at

what rate does the total length of the curve decrease? Scaling arguments [25] suggest that

the total length L decreases as a power law in time according to

L(t) ∼ t−
1
2 .

Dai [25] also obtained a rigorous result for the rate of decrease of L in the case of a dilute

mixture. Specifically, he showed that for a collection of non-intersecting and convex plane

curves, the total length L(t) cannot decrease faster than t−
1
2 in a time average sense. In

the simplified case that Dai considered, there is no coalescence and the only singularity

is the disappearance of curves. In the general case however, collisions of curves will

occur causing singularities in the curvature to appear at the times of first intersections. In

fact, at the points of intersections, the curvature will be infinite, leading to an immediate

smoothing and a fast decay of the sum of the lengths pertaining to the merging curves.

Figure 2.3 illustrates this point on a simple example of two curves intersecting each other

during their evolution under area preserving curvature motion.

In this context, we refer to the phase enclosed by the curves as Phase 1. Phase 2 de-

notes its complement. As a demonstration of the proposed algorithms, we present some

simulations of area preserving curvature motion on very large collections of closed curves

(or droplets). We also measure certain statistics related to the configurations of droplets
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Figure 2.3: Coalescence of two curves during their evolution under area preserving curvature motion. Figure 2.3(a) shows the initial
condition and Figure 2.3(b) displays the new curve just as the two previous ones collided. The curvature of the new
curve is very large at the point of intersection. Figure 2.3(c) shows the new curve shortly after the collision occured
superimposed with the curve shown in Figure 2.3(b).

during their evolution. As Otto observed, there is no lower bound possible on the energy

(length) that would hold for any initial data. It should not be difficult to construct con-

figurations of droplets that would coarsen faster. In this work, we are concentrating on

the area preserving curvature motion evolution of droplets starting from random initial

data. In particular, we are interested in the effect of collisions that occur throughout the

evolution. Due to the high accuracy achieved by our algorithms, we were able to resolve

droplets with width and length as small as 15 pixels. As a result, our simulations evolved

configurations containing up to 25000 droplets on a 40972 grid. Our computations con-

sidered various area fractions of Phase 1 ranging from 10% to 50%, which equivalently

considered area fractions of Phase 2 ranging from 50% to 90%.

2.3.2 Numerical results

In this section, we present the results of our simulations. We construct the initial data

by generating random sets of points from a uniform distribution, and placing a disk cen-

tered at each of the points with radius randomly chosen from a uniform distribution. The

droplets are obtained by taking the union of the disks. From such initial configurations
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(i.e., randomly generated droplet configurations), it would be reasonable to expect a cer-

tain collision rate during the evolution under area preserving curvature motion. Figure 2.4

illustrates the area preserving motion by curvature evolution on initial data with 10% and

40% area fraction. To avoid boundary effects, the computations are done on a slightly

larger domain than [0, 1]2. Additionally, to prevent premature mergings of nearby droplets,

we divide, at each time step of the computations, the sets of droplets into subsets contain-

ing droplets that are further apart, and update the signed distance function of each subset

separately. This allows individual grains to evolve independently. Last, since the average

size of the droplets increases during the evolution, we perform our computations using an

adaptive time step regulated by the value of the average size of the droplets. This adap-

tivity is made possible by the unconditional stability of our algorithms. In Figure 2.5,

we demonstrate that taking larger time steps does not significantly change the configura-

tions of droplets; indeed even with large time steps, the algorithm is able to resolve the

dynamics.

The first quantity that we study, is the rate of decrease of the total length L. Figure 2.6

compares the rate of decrease of L (which is also the energy dissipated by the evolution)

with the theoretical bound t−
1
2 for various area fractions. Note that there are rigorous results

indicating this bound only in the case of convex curves that never collide. Nevertheless,

for these randomly generated initial conditions, the rate of decrease of L, obtained from

our computations, closely follows the theoretical bound.

Another quantity that we study is the number of connected components K in the con-

figurations of droplets. Based on the rate of decay of L, and using a simple heuristic

argument on a uniform configuration of disks, we can show that the number of connected

components should essentially decay as 1
t
. In Figure 2.7 we compare the numerically ob-

served rate of decrease of K for various area fractions with the bound 1
t
. For the randomly
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generated initial conditions chosen in our simulations, the plots show very good agree-

ment between the computed rate and the bound 1
t
. Intuition also suggests that at any given

time, a certain population of droplets will be just about to collide, generating configura-

tions at which the energy decrease rate must be elevated (the proportion of droplets just

about to collide to all droplets would of course depend on the area fraction). However, it

appears that even if collisions between droplets cause a deviation in the coarsening rate,

our numerical experiments, despite their large size, are still not large enough to discern

such a difference – perhaps the effect is very small. Nevertheless, as one would expect,

we observe in our numerical simulations that at any time during the evolution (outside

of the transient initial period and the final stage where only a few droplets remain), there

is a constant proportion of eccentric droplets (i.e., droplets that are the result of a recent

collision). This observation agrees with the expectation that collisions occur at a definite

rate in proportion to the number of droplets. To exhibit this behavior, we measure the

isoperimetric ratio

(2.9) I(C) :=
P2

A

of each droplet to characterize their shape. In (2.9), C is a closed curve, P is its perimeter

and A its area. Since the isoperimetric ratio is minimized by a circle, we have that for any

closed curve

I ≥ 4π ∼ 12.57,

where I = 4π when C is a circle. For an ellipse with minor axis b and major axis a = 3b,

the isoperimetric ratio is approximately I ∼ 18.95. For a more ellongated ellipse with mi-

nor axis b and major axis a = 4b the isoperimetric ratio is approximately I ∼ 23.42. From

these references, we look at the proportion of droplets with isoperimetric ratio I > 20.

Figure 2.8 shows the distribution of isoperimetric ratios at different times throughout the
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evolution for a configuration of droplets with 50% area fraction. Table 2.5 displays the

proportion of eccentric droplets for the various area fractions studied in our computations.

Figure 2.9 shows the proportion of eccentric droplets and the total number of droplets for

configurations with area fractions 30%, 40% and 50%. In each case, the proportion of

eccentric droplets decreases very quickly during the transient initial phase (as is the total

number of droplets) and then stabilizes itself around a constant value. The proportion of

eccentric droplets remains constant until the total number of droplets becomes too small.

Area fraction Proportion of # of droplets at onset # of droplets at the end

eccentric droplets of constant proportion of constant proportion

10% 0.12% 5054 193

20% 0.46% 2623 78

30% 1.18% 2932 91

40% 2.49% 2766 34

50% 3.81% 3885 49

Table 2.5: Proportion of eccentric droplets (the isoperimetric ratio of which satisfies I > 20) for various area fractions. The propor-
tion of eccentric droplets increases with the area fraction, as one would expect.
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t is 0 (enlarged view): 10% area fraction
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Figure 2.4: Evolution of two configurations of droplets under area preserving curvature motion. The left-hand column displays
the evolution of a configuration of droplets with 10% area fraction. The right-hand column shows the evolution for a
configuration with 40% area fraction. Because of the very large number of droplets in the early configurations, we only
show a subset of these configurations in the top two plots. These subsets have been enlarged for a better view.
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Figure 2.5: Comparison of two configurations of droplets obtained by computing their evolution with the standard time step (δt) and
the adaptive one 4δt. In this example, δt = 4.7710−7. Figure 2.5(a) shows the initial configuration and Figure 2.5(b) dis-
plays the configurations obtained from computations using δt and 4δt. Except for minor differences, both computations
are able to resolve the dynamics, thus allowing the use of larger time steps.
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Figure 2.6: Loglog plot of the total length L of the boundary of all droplets (also the energy being decreased by the evolution) versus

time for various area fractions. The thick line corresponds to the theoretical bound t−
1
2 . From top to bottom, and left to

right, the plots correspond to area fractions ranging from 10% to 50%. The plots acknowledge good agreement between

the theoretical bound t−
1
2 and the numerically observed rates (fine line).
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Figure 2.7: Loglog plot of the number of connected components K versus time for various area fractions. From top to bottom, and
left to right, the plots correspond to area fractions ranging from 10% to 50%. The plots acknowledge good agreement
between the bound 1

t
(thick line) and the numerically observed rates (fine line).
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Figure 2.8: Time evolution of the distribution of isoperimetric ratios computed from the evolution of an initial configuration of
droplets with 50% area fraction under area preserving curvature motion. During the evolution, the distribution of isoperi-
metric ratios remains quite wide. This width underlines the existence, at all times, of a certain proportion of droplets that
resulted from collisions.
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Figure 2.9: Proportions of eccentric droplets (i.e. with isoperimetric ratio I > 20) in the case of 30%, 40% and 50% area fraction.
Figures 2.9(d), 2.9(e) and 2.9(f) clearly show that after a transient initial time, the proportion of eccentric droplets seems
to stabilize around a constant value. Figures 2.9(a), 2.9(b) and 2.9(c) corroborate the fact that the proportion of eccentric
droplets remains constant from the time when the total number of droplets is on average 3000 until the time when it is
around 50.
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2.4 Application to inverse problems

In this section, we investigate the application of area preserving flows to certain inverse

problems that arise in medical imaging, such as tomographic inversion. In particular, we

study whether the common choice of perimeter penalty as a regularization term, for exam-

ple as in the Mumford-Shah functional [70], leads to significant bias in reconstructions,

and explore the use of area preserving curvature motion as a regularization that may abate

such artifacts.

2.4.1 Preliminaries

The well known Mumford and Shah model [70] has been extensively used as a regular-

izer in inverse problems (see e.g. [4, 5, 53, 79]). When the forward map (i.e., the observed

quantity) is modeled as

(2.10) g(y) = (A f0)(y) + n(y),

where f0 is the unknown original image to be recovered, A is an operator and n is noise,

these models have the general form

(2.11) E(u,Γ) = λ

∫

Ω

(g − Au)2dy + µ

∫

Ω\Γ
|∇u|2 dx + |Γ|,

where Γ is the discontinuity set of u and |Γ| the total length of the arcs making up Γ.

The minimizer u0 of (2.11) gives an approximation to the original image f0. In a number

of applications, the original image can be assumed to be well approximated either by

a piecewise constant or a simpler piecewise smooth image. In those cases, simplified

versions such as piecewise constant Mumford-Shah (see for example the Chan-Vese model

in [23]) constitute popular alternatives to (2.11).

We consider images f0 that can be accurately approximated by multi-phase piecewise
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smooth functions u. In particular, we consider two-phase and four-phase approximations,

(2.12) u(x) = c1(x)1Σ(x) + c2(x)1Σc(x),

and

(2.13) u(x) = c1(x)1Σ1
⋂

Σc
2

⋂

Σc
3
(x) + c2(x)1Σ2

(x) + c3(x)1Σ3
(x) + c4(x)1Σc

1
(x),

where Σi ⊆ Ω may be multiply connected, and ci are smooth functions. The particular

choice of four-phase solution (2.13) is motivated by the specific characteristics of typical

images of CT scans (e.g., lungs) as illustrated in Figure 2.10. In the case where the func-

Σ1

Σ2

Σ3

Σ2

c
Σ1

Figure 2.10: Illustration of the four-phase image model described in equation (2.13).

tions ci are constant, equations (2.12) and (2.13) represent piecewise constant solutions.

Note that there are several ways of writing a four-phase solution, one obvious way being

u(x) = c11Σ1
⋂

Σ2
(x) + c21Σ1

⋂

Σc
2
+ c31Σc

1

⋂

Σ2
+ c41Σc

1

⋂

Σc
2

which only uses two sets Σ1 and Σ2.

This four-phase model was used for example in [38].

For simplicity in the next two sections, we restrict our exposition to two-phase solu-

tions. The generalization to four phases follows easily from the two-phase case.

2.4.2 Mumford-Shah based flows and their area preserving analogues

Within the setting introduced in the previous section, we now describe two related mod-

els. The first one is variational and a variant of the Mumford-Shah functional (thus using

perimeter regularization). The second one inspires itself from the first one but replaces
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the curvature motion term (obtained from perimeter regularization) by the area preserving

curvature motion.

Mumford-Shah based flows

We consider observed images g as in (2.10), where A is a linear operator (e.g., partial

Fourier or Radon transform). We will also look at the special case A = I, which is the

denoising problem. In the general case, and using our model (2.12), we consider the

following minimization:

(2.14) min
Σ,c1,c2

{

E(Σ, c1, c2) := Per(Σ) + λ

∫

Ω′

(

g(y) − (A [c1(x)1Σ + c2(x)1Σc]) (y)
)2

dy

+ µ

(∫

Ω

|∇c1|2dx +

∫

Ω

|∇c2|2dx

)}

,

where the operator A maps functions defined on Ω to functions defined on Ω′. In the limit

µ→ ∞, (2.14) reduces to the simpler minimization

(2.15) min
Σ,c1,c2

{

E(Σ, c1, c2) := Per(Σ) + λ

∫

Ω′

(

g(y) − (A [c11Σ + c21Σc]) (y)
)2

dy

}

,

where ci are constant. We remark that the energy written in (2.14) is not the Mumford-Shah

model (2.11) restricted to two-phase, piecewise smooth solutions. The difference lies in

the regularization terms; in our case, the Dirichlet energy of the functions ci are integrated

over the whole domain Ω, whereas in the Mumford-Shah model, the Dirichlet energy of

the functions ci are integrated over the set of points x ∈ Ω on which the solution u takes the

values ci(x). The latter was considered by Vese and Chan with A = I as an improvement

over the piecewise constant Mumford-Shah model [96]. However, their piecewise smooth

Mumford-Shah model is not lower semi-continuous, and is thus likely to be ill-posed (see

Appendix A). To regain lower semi-continuity, it is necessary to consider the lower semi-

continuous envelope of their piecewise smooth model, which unfortunately turns out to

be like the full Mumford-Shah model. The simplification made in the piecewise smooth
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model is thus lost in its lower semi-continuous envelope. In contrast, our model (2.14)

is well-posed. Moreover, for computational purposes, (2.14) is much easier to deal with,

since unlike the Vese-Chan model, it avoids the complication of boundary conditions that

need to be imposed along the moving contour.

In the next paragraph, we briefly present how to compute the minimizer of (2.14) and

(2.15) using the level set method since the equations obtained from the level set formula-

tion of (2.14) and (2.15) using gradient descent serve as a starting point for our proposed

area preserving flows. We define ∂Σ to be the interface between the sets Σ and Σc, and em-

bed ∂Σ as the zero level set of a smooth function φ(x, t), namely Γ(t) = {x ∈ Ω : φ(x, t) =

0}, with Σ(t) = {x ∈ Ω : φ(x, t) > 0}. By rewriting (2.14) in terms of φ, we obtain the

minimization

(2.16)

min
φ,c1,c2

{

E(φ, c1, c2) :=

∫

Ω

|∇H(φ)|dx + λ

∫

Ω′

(

g(y) − (

A
[

c1H(φ) + c2 (1 − H(φ))
])

(y)
)2

dy

+ µ

(∫

Ω

|∇c1|2dx +

∫

Ω

|∇c2|2dx

)}

,

where H is the one-dimensional Heaviside function. Using gradient descent on E in (2.16),

we deduce the following evolutions for φ and ci:

(2.17) φt = |∇φ|
(

κ + 2λA∗
(

g − A
[

c1H(φ) + c2 (1 − H(φ))
] )

(c1 − c2)
)

,

and

∂c1

∂t
= µ∆c1 + λA∗

[

g − A (c1H(φ) + c2(1 − H(φ)))
]

H(φ),(2.18a)

∂c2

∂t
= µ∆c2 + λA∗

[

g − A (c1H(φ) + c2(1 − H(φ)))
]

(1 − H(φ)) ,(2.18b)

where κ(x) = ∇ ·
(∇φ(x)

|∇φ|

)

is the curvature of the interface Γ at the point x ∈ Γ, and A∗ is

the adjoint operator of A. In the piecewise constant case, the optimality conditions for the
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constants ci become

c1 =

∫

Ω
A∗

[

g − A
[

c2(1 − H(φ))
] ]

H(φ)dx
∫

Ω
A∗

[

AH(φ)
]

H(φ)dx
,(2.19a)

c2 =

∫

Ω
A∗

[

g − A
[

c1H(φ)
] ]

(1 − H(φ))dx
∫

Ω
A∗

[

A(1 − H(φ))
]

(1 − H(φ))dx
.(2.19b)

Equation (2.17) is still valid for piecewise constant solutions.

In the next section, we describe the area preserving segmentation flow and motivate its

use using the Mumford-Shah based model we just described.

Area Preserving flows

The minimization of the Mumford-Shah based functional (2.14) seeks a piecewise

smooth function approximating a given image by penalizing, among other things, the

length of the boundaries between each of the regions contained in the image. In particu-

lar, this penalization ensures that no trivial segmentation is obtained. However, the length

term penalty can sometimes lead to a shrinkage of the interface around the objects to be

detected. In fact, in the absence of fidelity, the level set evolution seeking the minimizer of

the Mumford-Shah based functional reduces to curvature motion. This is easy to see using

equation (2.17) describing the level set evolution. This equation describes the motion of

an interface ∂Σ with normal velocity

(2.20) vN = κ + 2λA∗
(

g − A
[

c1H(φ) + c2 (1 − H(φ))
] )

(c1 − c2) .

With no fidelity term (i.e., λ = 0), the motion reduces to the evolution of ∂Σ with normal

velocity vN = κ, which is nothing else than motion by curvature. As noted in Chapter I,

this motion shrinks curves to a point. To remove this shrinkage, we replace the curvature

motion term by the area preserving curvature motion and propose the following flow:

(2.21) φt = |∇φ|
(

κ − κ̄ + 2λA∗
(

g − A
[

c1H(φ) + c2 (1 − H(φ))
] )

(c1 − c2)
)

.
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Equation (2.21) can be described as the area preserving curvature motion combined with

the flow obtained from the fidelity term in the Mumford-Shah based functional. Note that

this flow applies to both piecewise constant and piecewise smooth images. In the complete

area preserving update, the evolutions of ci described in (2.18a) and (2.18b) for piecewise

smooth solutions and the optimality conditions for the constants ci given by equations

(2.19a) and (2.19b) remain the same. An important point about these area preserving

flows is that contrary to (2.17), it is not clear whether (2.21) is variational, in other words

we do not know whether (2.21) is gradient descent for an energy in a specific metric.

Considering equation (2.21), we see that in absence of fidelity term, the evolution pro-

ceeds as a regular area preserving curvature motion. As described earlier, this motion

preserves the total area of all the connected components during the evolution. The ad-

vantage of this default motion (i.e. when λ = 0) is that no shrinkage is induced by the

model. However, even though the total area is preserved, this default motion will eventu-

ally merge all connected components into one component (this is the coarsening behavior

observed in the previous application) with area equal to the initial total area. To remove

this property (undesirable in this particular image processing application), we replace the

usual area preserving flow by a component-wise area preserving flow that preserves the

area of each of the connected components rather than their total area. Note that unlike the

area preserving curvature motion of Section 2.3, we are not specifying the area of each

region. The areas may change due to the fidelity term.

2.4.3 Algorithms

In this section, we apply the ideas developed in Section 2.2 for rapid and accurate com-

putation of area preserving curvature flows for the Mumford-Shah based reconstruction

models discussed in the previous sections.
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Mumford-Shah based flows

We recall that in the general piecewise smooth case with operator, the Mumford-Shah

based flow for the level set function φ simulates the motion of an interface defined through

the level set function φ with normal velocity given by equation (2.20). To simulate this

evolution using signed distance functions, we simply replace the level set function φ by

the signed distance function to the interface (denoted d). At each time step in the complete

algorithm, we alternate between the update of the functions ci by solving the PDEs (2.18a)

and (2.18b) for a length of time δt, and the update of the signed distance function d. For

clarity in the exposition of the algorithm, we define the following update function:

[c1out, c2out] = Update c (c1, c2, d, g, δt),

1. Form the right-hand sides

RHS1 = FFT
{

c1 + λδtA
∗
[

g − A (c1H(d) + c2(1 − H(d)))
]

H(d)
}

,

RHS2 = FFT
{

c2 + λδtA
∗
[

g − A (c1H(d) + c2(1 − H(d)))
]

(1 − H(d))
}

.

2. Update c1 and c2

c1out = real

(

IFFT

(

RHS1

I + µδt∆

))

,

c2out = real

(

IFFT

(

RHS2

I + µδt∆

))

.

3. Return c1out and c2out.

The algorithm for the Mumford-Shah based flow is given below.
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Algorithm 6. Mumford-Shah based flow. Given the initial set Σ0 defined through its

signed distance function d0(x), initial functions c0
i

and a time step size δt > 0, generate the

sets Σ j via their signed distance function d j(x), and the functions c
j

i
at subsequent discrete

times t = j(δt) by alternating the following three operations:

1. Update the functions c
j

1 and c
j

2:

[c
j

1, c
j

2] = Update c
(

c
j−1

1 , c
j−1

2 , d j−1, g, δt
)

2. Form the function

L(x) =
(

Gδt ∗ d j−1

)

(x) + (δt)S j− 1
2
(x),

where

(2.22) S j− 1
2
= 2λA∗

(

g − A
[

c
j

1(x)H(d j−1) + c
j

2(x)
(

1 − H
(

d j−1

))] ) (

c
j

1 − c
j

2

)

.

3. Construct the distance function d j using

d j(x) = Redist(L(x)).

Area preserving flows

At each time step in the complete algorithm for the area preserving flows, we alternate

between the update of the functions ci and the update of the signed distance function d. As

discussed earlier, the functions ci in the area preserving flows follow the same updates as

in the Mumford-Shah based flow. The complete algorithm for area preserving flow builds

on Algorithm 5 and uses the function ComponentwiseAP described in Section 2.2.



55

Algorithm 7. Area Preserving flow. Given the initial set Σ0 defined through its signed

distance function d0(x), initial functions c0
i

and a time step size δt > 0, generate the sets Σ j

via their signed distance function d j(x), and the functions c
j

i
at subsequent discrete times

t = j(δt) by alternating

1. Update the functions c
j

1 and c
j

2:

[c
j

1, c
j

2] = Update c
(

c
j−1

1 , c
j−1

2 , d j−1, g, δt
)

2. Form the functions

L(x) =
(

Gδt ∗ d j

)

(x) + (δt)S j− 1
2
(x)

Lo(x) = ComponentwiseAP
(

L, d j, δt
)

(2.23)

where S j− 1
2

is given by equation (2.22).

3. Construct signed distance function d j by

d j(x) = Redist(Lo(x)).

Proposed implementation

In this section we describe a specific part of the implementation of Algorithms 6 and 7

that involves replacing step 2 with the solution of a linear parabolic PDE. This approach,

introduced by Esedoḡlu and Tsai in [38], aims at alleviating numerical instabilities created

by the use of large δt, or large fidelity constant λ (from the additional term S ). As described

in the two previous sections, the second step of Algorithms 6 and 7 involves convolving

the signed distance function d j with a Gaussian kernel, and then translating the resulting

level set by (δt)S j− 1
2

(and −κ̄ j(δt) in the area preserving case). When δt or λ are large, this

translation can lead to numerical instabilities.

Following Esedogl̄u and Tsai’s idea [38], we replace the diffusion step of our algorithm
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by the solution of the following initial value problem

(2.24)






ut = ∆u + 2λ̃ (Tb − (Ta + Tb)u) ,

u(x, 0) = dΣ(x) +
1

2
,

where the terms Ta and Tb depend on the fidelity term; in particular, they only depend on

the functions ci, the given image and the parameters λ and µ. In particular, Ta and Tb take

on different values, depending on which type of solution and which type of model we are

using, namely piecewise smooth versus piecewise constant, two-phase versus four-phase,

and operator (A , I) versus identity operator. Note that the initial condition of (2.24) is a

shifted signed distance function to the interface ∂Σ. The shift, and in particular the value

of the shifting constant will be made clear in the next calculations. This shift is necessary

to obtain the correct fidelity term. We present the PDE method for general Ta and Tb.

We first consider the one-dimensional version of (2.24)

(2.25)






ψt = ψxx + 2λ̃ (Tb − (Ta + Tb)ψ) on R × R+

ψ(x, 0) = dR(x) +
1

2
= d̃R(x),

where d̃R(x) is the signed distance function to the interface {0} ∪ {R} for R > 0, i.e.,

{0} ∪ {R} is the zero level set of d̃R(x). Figure 2.11 shows the graph of the 1D signed

distance function d̃R. The solution of (2.25) is given by

0 R x

d(x)

Figure 2.11: One dimensional signed distance function d̃R to the interface {0} ∪ {R}.

ψ(x, t) = e−2λ̃(Ta+Tb)t

{
(

Gt ∗ d̃R

)

(x) +
Tb

Ta + Tb

(

e2λ̃(Ta+Tb)t − 1
)
}

,
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where Gt is the one dimensional Gausian kernel given in (1.19). The goal of the next

calculations is to determine the location of the interface ∂Σ after a time δt, where δt is

assumed to be small. In particular, starting from the interface at x = 0 at time t = 0, we

compute its new location ℓ(δt) at time δt. For this, we assume that since δt is small, the

solution ψ is a shifted signed distance function to the new interface at δt. At x = 0 we have

(

Gt ∗ d̃R

)

(0) = 1
2
+ (Gt ∗ dR) (0) +O(δt2) = 1

2
+O(δt2) (see [36] for expansions of (Gt ∗ dR)

around 0). We therefore obtain

ψ(0, δt) =
(

1 − 2λ̃ (Ta + Tb) δt + O(δt2)
)
{

1

2
+

Tb

Ta + Tb

(

2λ̃ (Ta + Tb) δt
)

+ O(δt2)

}

=
1

2
+ 2λ̃Tbδt − λ̃ (Ta + Tb) δt + O(δt2)

=
1

2
+ λ̃ (Tb − Ta) δt + O(δt2).

Thus

(2.26) ψ(0, δt) ≈ 1

2
+ λ̃ (Tb − Ta) δt.

Now we look at the spatial derivative of ψ around x = 0

∂xψ(x, δt) = e−2λ̃(Ta+Tb)δt
∂
(

Gt ∗ d̃R

)

(x)

∂x
,

with

∂
(

Gt ∗ d̃R

)

(x)

∂x
=

−1

2δt
√

4πδt

∫ ∞

−∞
(x − y)e

(x−y)2

4δt d̃R(y)dy.

Since d̃R(y) = y + 1
2
O(δt2) around y = 0, we conclude that

∂
(

Gt ∗ d̃R

)

(0)

∂x
=

1

2δt

1√
4πδt

∫ ∞

−∞
y2e−

y2

4δt dy

︸                     ︷︷                     ︸

=2δt

+
1

4δt

1√
4πδt

∫ ∞

−∞
ye−

y2

4δt dy

︸                   ︷︷                   ︸

=0

+O(δt)

= 1 + O(δt).

Thus

(2.27) ∂xψ(0, δt) ≈ e−2λ̃(Ta+Tb)δt ≈ 1.
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If we take δt small enough, the solution ψ of (2.25) with the shifted signed distance func-

tion d̃R taken as initial condition should still be close to the same shifted signed distance

function. Thus, starting with an interface located at x = 0, we want to measure the location

of the interface at time δt. The location of the interface at time δt is noted ℓ(δt), and by

definition satisfies ψ (ℓ(δt), δt) = 1
2

(the interface at δt is situated on the 1
2

level set of the

signed distance function ψ). We now expand ψ (ℓ(δt), δt) around x = 0 to obtain

ψ (ℓ(δt), δt) = ψ(0, δt) + ℓ∂xψ(0, δt) + O(|ℓ|2).

Since ℓ(δt) is defined such that ψ (ℓ(δt), δt) = 1
2
, the interface located at x = 0 at t = 0

moves to the location

(2.28) ℓ(δt) ≈ λ̃ (Ta − Tb) δt,

at t = δt.

In two dimensions, the initial value problem (2.25) becomes

(2.29)






ut = ∆u + 2λ̃ (Tb − (Ta + Tb)u) on R × R+

u(x, 0) = dΣ(x) +
1

2
= d̃Σ(x),

In the same way, we consider the solution of (2.29) for a short time δt in a neighborhood

of a point x ∈ ∂Σ. Following [38], we consider the ansatz

(2.30) u(x, t) = ψ
(

d̃Σ(t)(x), t
)

as a candidate for the solution of (2.29). Using (2.30) we obtain

ut(x, t) = ψx

(

d̃Σ(t)(x), t
)
(

∂d̃Σ(t)(x)

∂t

)

+ ψt

(

d̃Σ(t)(x), t
)

= ψx

(

d̃Σ(t)(x), t
)
(

∂d̃Σ(t)(x)

∂t

)

+ ψxx

(

d̃Σ(t)(x), t
)

+ 2λ̃ (Tb − (Ta + Tb)ψ(x, t)) .(2.31)

In addition, we have

(2.32) ∆u(x, t) = ψx

(

d̃Σ(t)(x), t
)

∆d̃Σ(t)(x) + ψxx

(

d̃Σ(t)(x), t
)

|∇d̃Σ(t)(x)|2.
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Since d̃ is a signed distance function, it satisfies |∇d̃Σ(t)(x)|2 = 1. Moreover, since d̃ is a

shifted signed distance function to ∂Σ, we know that on the curve ∂Σ, ∆d̃Σ(t)(x) is equal to

the curvature. Combining (2.31) and (2.32), we obtain

(2.33)

ut(x, t) = ∆u(x, t) + 2λ̃ (Tb − (Ta + Tb)u(x, t)) + ψx

(

d̃Σ(t)(x), t
)
(

∂d̃Σ(t)(x)

∂t
− ∆d̃Σ(t)(x)

)

.

Hence, if the curve ∂Σ(t) evolves under curvature motion described by

(2.34)
∂d̃Σ(t)(x)

∂t
= ∆d̃Σ(t)(x) = κ(∂Σ(t)),

then ansatz (2.30) satisfies equation (2.29) on ∂Σ(t). Now we consider the parameterized

curve Γ evolving under the following motion

(2.35)






∂Γ(t)

∂t
=

[

κ(Γ(t)) + λ̃ (Tb − Ta)
]

~N(Γ(t))

Γ(0) = ∂F(0),

where the curve ∂F(t) (the set F(t) is a subset of R2) evolves under curvature motion given

in (2.34). Note that the second term in the normal velocity under which the curve Γ is

evolving, is the speed of the one-dimensional profile obtained in equation (2.28). Using

the fact that ∂F(t) moves under curvature motion, and using the result of equation (2.28)

for the one-dimensional profile, we obtain

(2.36)

{

x ∈ R2 : u(x, δt) =
1

2

}

≈ Γ(x, δt).

Thus, for small enough time δt, the half level set of the solution u of the initial value

problem (2.29), evolves the interface ∂Σ(t) from a given initial interface ∂Σ, with normal

velocity vN = κ + λ̃ (Tb − Ta). The half level set of u becomes the zero level set of ũ by

the shift ũ(x, t) = u(x, t) − 1
2
. From equation (2.17) we can relate the parameter λ̃ with the

fidelity parameter λ as

λ̃ = 2λ.



60

with

Ta = 0,

Tb = A∗
[

g − A
[

c1H(φ) + c2 (1 − H(φ))
]]

(c1 − c2) .

(2.37)

If A = I, we have λ̃ = λ and

Ta = (c1 − g)2,

Tb = (c2 − g)2.

(2.38)

Note that (2.37) does not reduce to (2.38) when A = I. The result obtained in (2.38) uses a

few simplifications that are not possible in the more general case with operator. The area

preserving algorithm using the PDE implementation is given below. The Mumford-Shah

based algorithm is obtained similarly.
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Algorithm 8. Area Preserving flow with PDE implementation. Given the initial set Σ0

defined through its signed distance function d0(x), initial functions c0
i

and a time step size

δt > 0, generate the sets Σ j via their signed distance functions d j(x), and the functions c
j

i

at subsequent discrete times t = j(δt) by alternating the following steps:

1. Update the functions c
j

1 and c
j

2:

[c
j

1, c
j

2] = Update c
(

c
j−1

1 , c
j−1

2 , d j−1, g, δt
)

2. Compute the solution L(x, δt) to the initial value problem (2.29):






Lt = ∆L + 2λ̃ (Tb − (Ta + Tb)L) on R × R+

L(x, 0) = dΣ(x) + 1
2
= d̃Σ(x),

with Ta = 0 and Tb = A∗
[

g − A
[

c
j

1H(d j−1) + c
j

2

(

1 − H(d j−1)
)]] (

c
j

1 − c
j

2

)

.

3. Form Lo using

Lo(x) = ComponentwiseAP
(

L, d j, δt
)

4. Construct signed distance function d j by

d j(x) = Redist(Lo(x)).

Using the same technique, we can obtain the expressions of Ta and Tb for the four-phase

model.

2.4.4 Comparisons and applications

In this section, we compare the performance of the Mumford-Shah based model with

the performance of the area preserving flow on a simple theoretical example, and in nu-

merical experiments.
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A simple example

In this section we consider a very simple but illustrative example on which we compare

the performance of the two-phase, piecewise constant Mumford-Shah based flow, with the

performance of the two-phase, piecewise constant area preserving flow in the setting where

A = I in (2.21). In particular, the goal is to demonstrate that there exists a range of values

for the parameter λ for which the Mumford-Shah based flow will introduce a shrinkage.

On the other hand, on the same image, the area preserving flow will never introduce a

shrinkage, regardless of the choice of parameter λ. We consider a simple example on

which the area preserving flow is equivalent to the 2-means algorithm, namely we consider

an image with a circular object. It is easy to see that if the image contains a circular object,

then its boundary will be a circle and its curvature will be equal to its average curvature.

Thus if we start the area preserving flow with a circle as initial condition, the circle will

remain a circle during the entire evolution (by symmetry), and the term κ− κ̄ in the normal

velocity of the area preserving flow will therefore be zero. In this case, the normal velocity

reduces to

vN = λ
(

(c2 − g)2 − (c1 − g)2
)

,

and is nothing else than the 2-means algorithm, looking for 2 regions in the image, with

values c1 in one and c2 in the other. In this case, there is no geometric term. We can

see already that the sign of vN will determine in which direction the contour will move,

regardless of the choice of λ (assuming λ > 0). In this particular example, the sign of the

difference
(

(c2 − g)2 − (c1 − g)2
)

for any λ > 0, will determine the direction of evolution.

If λ = 0, the radius of the final contour will be the radius of the circle with the same area

as the initial contour.

We consider the image domain Ω to be the ball of radius R centered at 0, denoted
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B(0,R), and f0 to be the image defined in polar coordinates on Ω as

(2.39) f0(r, θ) =






I1 if 0 ≤ r < r1,

a − r
b

if r1 ≤ r < r2,

0 if r2 ≤ r ≤ R,

where a = r2I1−r1I2

r2−r1
, b = r2−r1

I1−I2
, and r1, r2, I1 and I2 are constants to be adjusted. By

construction f0 is rotationally invariant and can be obtained by rotating the profile graphed

in Figure 2.12. Figure 2.13 shows the image f0 from two different perspectives: as a

grayscale image and as a surface.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

r

Profile f
0
(r)

Figure 2.12: Profile f0(r) = f0(r, θ) for any 0 ≤ θ < 2π.

The object we want to detect is the clear disk with external boundary being the circle of

radius r2 (largest circle) centered at zero. Thus we would like to have a model that finds this

clear disk without introducing a shrinkage. We will show that for a range of values of the

parameter λ, the minimizer of the Mumford-Shah based flow is a circle of radius rmin < r2,

thus demonstrating that the Mumford-Shah based flow does indeed introduce a shrinkage.

On the other-hand, for any choice of fidelity parameter λ > 0, the area preserving flow will

not introduce a shrinkage.
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Simple example
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Figure 2.13: Left: gray scale display of image f0. Right: surface plot of image f0.

We now calculate the expression of the two-phase, piecewise constant Mumford-Shah

based energy functional, denoted EMS t, in the case where the observed image is given by

f0 in (2.39). By symmetry, (since f0 is rotationally invariant), we know that the minimizer

Σ of EMS t will be a disk of radius rmin centered at 0, (0 < rmin ≤ R). Thus, to determine

rmin, we work out the expression of EMS t in the case where Σ is a disk of radius r centered

at 0, and minimize EMS t with respect to r. In the piecewise constant case with A = I, the

optimal constants c1 and c2 are given by

c1 =

∫

Σ
gdx

|Σ| , and c2 =

∫

Σc gdx

|Σc| ,

which are a particular case of equations (2.19a) and (2.19b). In the case where g = f0 and

Σ is a disk of radius r centered at 0, we obtain the following optimal constants c1 and c2:

(2.40) c1(r) =






I1 if 0 ≤ r < r1,

1
r2

[

I1r2
1 + 2

(

a
2

(

r2 − r2
1

)

− r3−r3
1

3b

)]

if r1 ≤ r < r2,

1
r2

[

I1r2
1 +

r2−r1

3
(r2 (1 + 2I2) + r1 (2 + I2))

]

if r2 ≤ R,
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and

(2.41) c2(r) =






1
R2−r2

[

I1

(

r2
1 − r2

)

+ 2
(

a
2

(

r2
2 − r2

1

)

− r3
2
−r3

1

3b

)]

if 0 ≤ r < r1,

1

(R2−r2)

[

2
(

a
2

(

r2
2 − r2

)

− r3
2
−r3

3b

)]

if r1 ≤ r < r2,

0 if r2 ≤ R.

With expressions (2.40) and (2.41) for the constants c1 and c2, we calculate the exact

expression of EMS t(r), in the case where Σ = B(0, r), and obtain

(2.42)

EMS t(r) =






2r + λ (c2(r) − I1)2
(

r2
1 − r2

)

+ 2λg2(r2, r1) + λc2(r)2
(

R2 − r2
2

)

if 0 ≤ r < r1,

2r + λ (c1(r) − I1)2 r2
1 + 2λ

[

g1(r, r1) + g2(r2, r)
]

+ λc2(r)2
(

R2 − r2
2

)

if r1 ≤ r < r2,

2r + λr2
1

(c1r − I1)2
+ 2λ

[
r4

2
−r4

1

4b2 +
2(c1(r)−a)(r3

2
−r3

1)
3b

+ 1
2

(c1(r) − a)2
(

r2
2 − r2

1

)]

if r2 ≤ R.

where gi(r, p) =
r4−p4

4b2 +
2(ci(r)−a)(r3−p3)

3b
+ 1

2
(ci(r) − a)2

(

r2 − p2
)

, for i = 1, 2.

Minimizing (2.42) with respect to r, gives us rmin, the optimal radius for the minimizing

disk. Since (2.42) was too complicated to minimize exactly, we graphed the energy EMS t

for various choices of images g, namely different choices of r1, r2, I1 and I2, and differ-

ent choices of parameter λ, and found images g on which the minimizer rmin was strictly

smaller than r2 for a nontrivial range of λ values. Figure 2.14 was obtained for the partic-

ular choices of r1 = 0.3, r2 = 1, I1 = 3.1 and I2 = 1. The left-hand graph of Figure 2.14

shows the energy EMS t for the following choice of parameter λ: λ = 0, 0.39, 0.61, 0.99.

We see that for the first two choices of λ, the minimizer rmin is equal to zero, which means

that the initial contour shrinks to zero and no object is detected. On the other hand, if

λ = 0.39, rmin = 0.71 < r2 = 1 and for λ = 0.99, rmin = 0.84 < r2 = 1, which in both cases

shows a shrinkage in the final contour. The right-hand side graph shows the evolution of

the minimizer rmin of the Mumford-Shah based energy functional, and the radius found by

the area preserving flow. Both graph are plotted for 0 ≤ λ ≤ 10. We see that in the area

preserving case, the minimizer rmin is always r2 = 1 (except in the absence of fidelity, i.e.,
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λ = 0 case). On the other hand, we clearly see that the minimizer of the Mumford-Shah

based energy grows towards r2 before reaching it for a certain value of λ (in this example,

the critical value of λ is around 10). The advantage of the area preserving flow is that there

is no adjustement of the parameter λ in order to avoid shrinkage, which makes it more

robust.
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Figure 2.14: The left-hand graph shows the Mumford-Shah based energy EMS t for λ = 0, 0.39, 0.61, 0.99. For λ < 0.6, the min-
imizer rmin is just zero. For λ = 0.61, the minimizer rmin is 0.71 < r2 = 1 and for λ = 0.99, the minimizer rmin is
0.84 < r2 = 1. The right-hand graph shows the evolution of rmin as a function of λ, (0 ≤ λ ≤ 10), for the Mumford-Shah
based flow (dashed line) and the area preserving flow (solid line).

Figure 2.15 shows the simple image f0 superimposed with the final contours obtained

from the Mumford-Shah based flow and the area preserving flow in the case λ = 0.61.

The contours are graphed using the exact values of rmin obtained above. These are not the

result of numerical experiments.

Numerical results

In this section, we focus on studying the effect of standard perimeter regularizations

on image reconstructions given from measurements. In particular, we compare the per-

formance of the Mumford-Shah based flow (using perimeter regularization) to the one of

our area preserving flow on simple scenarios inspired from medical imaging applications.

The results demonstrate that perimeter regularization does indeed introduce a shrinking
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Simple example with MS type and AP contours for ! = 0.61
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Figure 2.15: Simple image f0 with the final contours graphed for λ = 0.61. The yellow circle is the final contour for the area
preserving flow and the blue circle is the minimizer of the Mumford-Shah based energy functional. We see that for this
particular value of λ, the Mumford-Shah based flow introduces quite a significant shrinkage.

bias. Figure 2.16 illustrates this point on a simple inverse problem. In this example, we re-

constructed the image using only 11% of the Fourier coefficients and used noiseless data.

We repeated the test with noisy data and reconstructed the image with 35% of the noisy

Fourier coefficients. The noisy example is illustrated in Figure 2.18. Figures 2.17 and

2.19 show the original image superimposed with the contours of the objects found by the

Mumford-Shah based flow and the area preserving flow. In these computations, we used

the four-phase, piecewise smooth model.
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Original image and initial contours
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Reconstruction using MStype flow, 11 % kept, fid is0.16842
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Reconstruction using AP flow, 11 % kept, fid is0.16842
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Figure 2.16: Synthetic image reconstructions comparing the loss of small scale features due to regularizations. 2.16(a): original
image superimposed with the initial curves, 2.16(b): direct Fourier inversion of the observations (i.e. 11 % of the
Fourier coefficients), 2.16(c): reconstruction obtained with the Mumford-Shah based flow (the boundaries of the small
feature shrunk to zero), 2.16(d): reconstruction obtained using the area preserving flow.
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Original image and final contours using MStype flow
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Figure 2.17: Contours found by the Mumford-Shah based flow and by the area preserving flow. Figure 2.17(a) shows the contours
obtained by the Mumford-Shah based model and Figure 2.17(b) displays the contours obtained by the area preserving
flow.
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Original image and initial contours
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Reconstruction using MStype flow, 35 % kept, fid is0.071429
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Reconstruction using AP flow, 35 % kept, fid is0.064286
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Figure 2.18: Synthetic image reconstructions comparing the loss of small scale features due to regularizations. 2.18(a): original
image superimposed with the initial curves, 2.18(b): direct Fourier inversion of the observations (i.e. 35 % of the noisy
Fourier coefficients), 2.18(c): reconstruction obtained with the Mumford-Shah based flow (the boundaries of the small
feature shrunk to zero), 2.18(d): reconstruction obtained using the area preserving flow. In this example, the SNR of
the observed datum g is 3.88 dB.
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Original image and contours found by MStype flow
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Figure 2.19: Contours found by the Mumford-Shah based flow and by the area preserving flow. Figure 2.19(a) shows the contours
obtained by the Mumford-Shah based model and Figure 2.19(b) displays the contours obtained by the area preserving
flow.
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2.5 Conclusion

We described efficient and highly accurate algorithms for simulating general area pre-

serving flows in the plane, with normal velocities of the form vN = κ− κ̄+ S . Our schemes

are based on a diffusion-generated motion approach using signed distance functions, thus

making them more accurate than the standard threshold dynamics based schemes. Addi-

tionally, we proposed both first-order and second-order in time version of our algorithms

and carried out tests to check their numerical convergence and accuracy. We presented two

different applications of our new schemes. The first application demonstrated the ability

of our algorithms to handle large scale computations due to its high accuracy and compu-

tational efficiency. In particular, our schemes were able to simulate the coarsening of large

configurations of droplets under area preserving curvature motion. In addition, the results

of our computations allowed us to perform some interesting statistical measurements on

the configurations of droplets. The second application investigated the effect of perimeter

regularization used in inverse problems on reconstructed images. We showed that the area

preserving flow was able to detect small round objects with a lower fidelity constant than a

Mumford-Shah based flow (i.e., using perimeter regularization), thus finding small round

objects for a wider range of fidelity constants than the Mumford-Shah based model. This

indicates that area preserving flows might be less sensitive to parameters than Mumford-

Shah based flows.

The next chapter of this dissertation is the analytical part, and is devoted to a rigorous

analysis of the coarsening rate of some high-order PDE models used in image processing

applications.



CHAPTER III

Coarsening in High Order, Discrete, Ill-Posed Diffusion Equations

3.1 Introduction

As discussed in the introduction, the well-known model of Perona-Malik [76, 77] con-

stitutes the first nonlinear equation proposed for image processing and computer vision

applications. Their idea was to create an improved scale-space analysis that would gradu-

ally smooth the image away from the edges. We recall their model (1.7)






ut = ∇. (g (|∇u|)∇u)

u(x, 0) = f (x),

where g is a bounded, non-increasing positive function such that limx→∞ g(x) = 0 and

g(0) = 1 allowing the spatial diffusion to become spatially adaptive. It turns out that

such choice for g lead to an ill-posed model, which at the location of large gradients (i.e.,

edges) acts as a backward. heat equation. Additionally, one significant practical caveat of

this model is the staircasing artifact which produces “blocky” images, namely regions of

moderately large gradient in the image develop flat regions separated by spurious edges.

In fact, the staircasing instability of the Perona-Malik model is best explained in the one

dimensional case where the solution u develops steps which merge together to create larger

steps as the solution evolves in time. The result is an image that looks “blocky”. The illus-

tration of the Perona-Malik evolution on an image was displayed in Chapter I, Figure 1.1.

73
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You and Kaveh [100] introduced a nonlinear, fourth-order PDE as an improvement of

the Perona-Malik model, particularly with regard to the staircasing artifact. In their model,

the image gradually turns into a simpler and simpler piecewise linear image (as opposed

to piecewise constant), which greatly abates the staircasing effect. Their fourth order PDE

is

(3.1) ut = −∆ (R(∆u)) subject to u(x, 0) = f (x),

where R(x) = xg(|x|) and g is the same nonlinear diffusivity as utilized in the Perona-

Malik model. Like the Perona-Malik evolution, (3.1) generates coarser resolution images

from a given one taken as initial condition, while preserving sharp contours and smoothing

everything else. Numerical simulations with this PDE give similar results to Perona and

Malik’s in terms of noise removal and edge preservation but the staircasing artifact is

almost completely absent. Figure 3.1 shows the evolution of the boat image according to

the You and Kaveh equation.

However, being the fourth order analogue of the Perona-Malik model, the You-Kaveh

model inherits the same ill-posedness issues as its progenitor. Some analysis of this PDE

has been carried out by Greer and Bertozzi in [52], where they show that smooth traveling

wave solutions of the one dimensional You-Kaveh PDE do not exist for sufficiently large

jump heights. Their conclusion conjectures that the You-Kaveh equation has finite time

singularities in uxx, just as the Perona-Malik equation has finite time singularities in the

slope ux [51, 56].

Motivated by You and Kaveh’s fourth order analogue of the Perona-Malik model, we

consider the following family of 2n-th order nonlinear diffusion equations (n ∈ N∗):

(3.2) ut =






−∆ n
2 (R(∆

n
2 u(x))) if n is even,

∇ · ∆n−1R(∇∆ n−1
2 u(x)) if n is odd.
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Figure 3.1: Simplification (or coarsening) of an image according the You and Kaveh equation. Figure 3.1(a) shows the original
image, and Figures 3.1(b), 3.1(c) and 3.1(d) display the image at later times in the evolution.

For n = 1 equation (3.2) becomes the well-known Perona-Malik model, and for n = 2 we

recover the You-Kaveh model. We prove rigorous upper bounds on the coarsening rate of

(3.2) in any dimension d ∈ N∗, for a large class of diffusivities R that include the original

choices of Perona-Malik and You-Kaveh.

Upper bounds on the coarsening rate of second order, discrete, ill-posed diffusion equa-

tions (based on the Perona-Malik model) were obtained in [34] and improved in [37] for

a large class of diffusivities. In this thesis we consider the same class of diffusivities as

in [37] and prove analogous bounds for the 2n-th order equation (3.2) in any space di-

mension. However, our results and arguments differ from [34, 37] in several ways. First
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of all, in the present thesis we work in the more general 2n-th order setting. Secondly,

the rigorous bounds in [34, 37] are stated in terms of the decrease rate of the energy of the

system (a somewhat abstract quantity), whereas the real quantity of interest in applications

is the edge density in the solutions (equivalently, the number of “spikes” in its derivative).

Indeed, the numerical experiments – unlike the rigorous results – presented in these pa-

pers are in terms of the spike density in the derivative of the solution, and even though the

spike density and the energy can be related to each other through a heuristic argument, it is

desirable to have a completely rigorous statement directly in terms of the spike density of

the solution. In the present thesis, we replace the heuristic step by a rigorous argument and

therefore obtain rigorous bounds for the spike density. Third, unlike in the second order

case, the high order models we consider lack a maximum principle, which requires certain

arguments to be modified. In particular, the construction of the test function needed to

estimate the bounds in the low dimensional case is different from the construction used in

[34, 37]. Our construction is simple and more general than the one proposed in these pre-

vious papers. Finally, it should be mentioned that the discrete PDEs considered in [34, 37]

are only related to the Perona-Malik scheme in one space dimension; in higher dimen-

sions, the correspondence between the image processing model and the PDEs considered

in the afore-mentioned papers is lost. In this thesis, the fourth order PDEs considered and

the theory developed for them corresponds to the relevant image processing model – the

You-Kaveh model – in all space dimensions. For the general 2n-th order PDEs, the corre-

spondence between the theory and the model exists in all space dimensions whenever n is

even.

As in the second order case, the high order discrete-in-space equations exhibit an insta-

bility that very rapidly leads to the formation of spikes or discontinuities of width exactly

one grid point, starting from generic initial data. These singular structures then interact
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without changing their location: small ones get absorbed by larger ones, leading to fewer

and larger structures and a corresponding increase in the length scale of the solution as

measured by e.g. the average distance between the structures. We call the rate of increase

of this quantity the coarsening rate.

In computer vision and image processing applications, the coarsening of the You-Kaveh

flow can be observed as the noisy image gradually simplifies into a piecewise linear ap-

proximation by merging neighboring regions and preserving their edges. The rate at which

this coarsening takes place is therefore crucial since it could provide a way to automati-

cally stop the evolution at a given level of simplification in the image. Moreover, such

an analysis would provide insight into the effect of different diffusivities on the dynamics.

Our method is based on a recent technique developed by Kohn and Otto [58] for energy

driven systems. This method uses the energy E of the system and a length scale quantity

L in two inequalities: a dissipation inequality that involves dL
dt

and dE
dt

, and an interpolation

inequality between L and E. Combined with an ODE argument, these inequalities lead to

a lower bound on the time-average of the energy which is equivalent to an upper bound

on the coarsening rate. We present our results in any space dimension. For simplicity and

clarity purposes, we present a detailed study of the fourth order case (corresponding to

the You-Kaveh model from image processing), and then indicate how the results extend to

higher order analogues.

3.2 Analysis of the You-Kaveh model

3.2.1 The equations

We consider the fourth order ill-posed nonlinear PDE proposed by You and Kaveh

[100]

(3.3) ut = −∆ (g (∆u)∆u) ,
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and let R(s) = sg(s), so that equation (3.3) becomes

(3.4) ut = −∆ (R (∆u)) .

If we let v = ∆u and take the Laplacian of equation (3.4), we obtain the following equation

for v:

(3.5) vt = −∆2(R(v)).

In the rest of this section, we will study the discrete version of equation (3.5) on [0, 1]d for

a large class of diffusivities R, where d ∈ N∗ is the spatial dimension.

3.2.2 The scheme

We work on a uniform discretization of the domain [0, 1]d and let δ = 1
N

denote

the grid size in each of the coordinate directions. Consider the unit-spaced lattice L =

{0, 1, · · · ,N − 1}d and let i ∈ L be the vector (i1, · · · , i j, · · · , id) ∈ L corresponding to the

point ( i1
N
, · · · , i j

N
, · · · , id

N
) in [0, 1]d. Define the discrete Laplacian operator ∆δ operating on

the grid function v at the point i ∈ L to be

∆δvi :=

d∑

j=1

D+j,δD
−
j,δvi,

where

D+j,δvi :=
vi+e j
− vi

δ
=

vi1,··· ,i j+1,··· ,id − vi1,··· ,i j,··· ,id

δ
,

and

D−j,δvi :=
vi − vi−e j

δ
=

vi1,··· ,i j,··· ,id − vi1,··· ,i j−1,··· ,id

δ
,

are forward and backward difference quotients respectively, in the jth coordinate direction,

for 1 ≤ j ≤ d. The “fourth order” discrete system that we consider is the following natural
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spatial finite difference discretization of (3.5)

(3.6)
dvi

dt
= −∆2

δ (R(vi)) , i ∈ L.

This discrete in space, continuum in time version of (3.5) is equivalent to the discretization

of the You-Kaveh model used in practice in image processing applications.

We impose periodic boundary conditions on (3.6), which means that we identify the

lattice L with Zd on which for any integer 0 ≤ i j ≤ N − 1 and k j ∈ Z, 0 ≤ j ≤ N − 1, the

point (i1 + k1N, · · · , id + kdN) is identified with (i1, · · · , id). This periodicity ensures that

the dynamics of (3.6) leave the total mass

(3.7) µ :=
1

Nd

∑

i∈L
vi

unchanged. This system also has a non-increasing energy

(3.8) E(v) =
1

Nd

∑

i∈L
f (vi),

where the density function f is defined as

(3.9) f (x) =

∫ x

0

R(ξ)dξ,

for x ∈ R. For smooth and strictly convex energy densities f , solutions generated by the

scheme (3.6) would be expected to converge (as h → 0+) to the solution of the parabolic

PDE (3.5) on [0, 1]d, with periodic boundary conditions. In this thesis, however, we con-

sider non-convex even energy densities f that satisfy f (x) > η|x|α for some constant η > 0,

α ∈ [0, 1[, and all |x| large enough. Moreover, for x ≥ 0, the functions f will be assumed

to be strictly convex near 0, concave for large x, and have only one inflection point b > 0.

By symmetry, ±b are the two inflection points of f on R. Since (3.5) can be expanded as

vt = −∆2(R(v)) = −R′(v)∆2v + F(v,∇v,∇2v,∇3v)
︸                ︷︷                ︸

Lower Order Terms

,
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we see that equation (3.5) becomes backward parabolic whenever R′(v) < 0, which occurs

whenever |v| is large enough. Consequently, there is no complete well-posedness theory

for equation (3.5). Furthermore, we make the following assumptions on R:

1. R : R→ R is smooth,

2. R′(x) > 0 on [−b, b[,

3. R′(x) < 0 on ] −∞,−b[
⋃

]b,∞[, and

4. R(0) ≤ limx→±∞ R(x).

In image processing applications, a common choice for the diffusivity R is

(3.10) R(x) =
x

1 +
(

x
b

)2
,

which corresponds to the choice of g given in (1.8b). The corresponding density function

f of (3.10) is the logarithmic density function

(3.11) f (x) =
b

2
ln

(

1 +
(

x

b

)2
)

, b > 0.

However, other choices of R leading to backwards parabolic behavior are regularly used

in applications. The practical implications of the choice of the diffusivity R on results has

often been raised in the engineering literature (see e.g. [78]) and is still a current topic of

research. As an illustration, Figure 3.2 shows the graph of f , R and R′, where the density

function f is as in (3.11).
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Figure 3.2: Functions f , R and R′ with R(x) = x

1+x2 and f (x) = 1
2 ln

(

1 + x2
)

. The changes in concavity of the function f , which
occur at ±1, are shown by the two dotted vertical lines.

3.2.3 Terminology and basic setup

The system (3.6) is gradient descent for the energy E defined in (3.8) with respect to

the discrete H−2 norm. This norm can be expressed by duality as

(3.12) ||v||H−2 :=





sup
φ

1

Nd

∑

i∈L
(vi − µ)φi :

1

Nd

∑

i∈L
(∆δ(φi))

2 ≤ 1





.

If the initial data of (3.6) satisfies vi ∈ ] − b, b[ so that it lies completely in the forward

parabolic regime, the evolution proceeds as a typical parabolic smoothing, at least for

small time. If on the other hand the initial data’s mean value µ satisfies

|µ| > b,

then part of the mass of the data sits in the ill-posed regime ] − ∞,−b[
⋃

]b,∞[ for all

time, due to the conservation of mass. In this case, instabilities in the form of spikes

rapidly develop from the initial data and start to interact, gradually decreasing in number
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but growing in size. These spikes are located at the grid points where the solution exceeds

the parabolicity threshold b. We therefore use the following terminology:

There is a spike at the j-th grid point if |v j| ≥ b.

Each spike is supported by one grid-point and remains at that grid location during the entire

evolution of the equation. However, while the location of each spike is fixed, their height

varies. Each spike either grows, or shrinks, and may eventually disappear as its mass is

absorbed by others. Indeed, the concavity of f on ] − ∞,−b[
⋃

]b,∞[ encourages the

accumulation of mass into fewer and higher spikes during the evolution. Smaller spikes

thus get absorbed into larger ones until, generically, only one spike containing most of

the mass remains; this is what we mean by coarsening of the system in this thesis. An

example of this coarsening is shown in Figure 3.3. During the evolution, the average

distance between spikes is observed to increase, and constitutes a natural length scale for

the system.

The length scale L should be inversely proportional to the number of spikes K and

therefore should behave something like

(3.13) L ∼ 1

Kβ
,

where β > 0 may depend on the spatial dimension. In addition, since f is an increasing

function of |v| for v ∈ R, most of the energy is initially contained in the spikes, which

suggests

(3.14) E ∼ Kγ

Nd
,

where γ > 0. Both γ and β are parameters to be identified. The interpolation inequality

that we need relates the energy E and the length scale L in a one-sided version of

EL
γ
β ∼ C(N),
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Figure 3.3: One dimensional evolution of (3.6) for N = 150 and initial solution vi(0) = 3
2 +10−3 sin(πx) with x ∈ [0, 1]. The solution

quickly forms spikes whose number decreases as some of them shrink and disappear, while others grow taller to preserve
the total mass.

where C(N) is a constant depending only on N. So if we had a length scale L that be-

haved as in equation (3.13), we could then use the relation (3.14) to immediately have the

interpolation inequality

EL
γ
β ∼ 1

Nd
.

A natural choice for the length scale quantity L is therefore L = 1
Kβ , but the decay relation

would then be hard to prove since it relates dL
dt

and dE
dt

, and thus would involve differentiat-

ing L = 1
Kβ which is a discrete function of time. For these reasons, we choose

(3.15) L = ||v||H−2 ,

which is motivated by the fact that the system (3.6) is gradient descent for the energy E

defined in (3.8) with respect to the discrete H−2 norm. This choice is also similar to length
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scales used in [34, 58, 59, 74]. In particular, L as given in (3.15) will imply the following

scaling between the length scale L and the number of spikes K

L ∼






1

K
2
d

for 1 ≤ d ≤ 3,

1√
K

for d ≥ 4.

In the next section, we will study the stability of all the steady state solutions of the one

dimensional system in the case of the logarithmic density function (3.11). The results

show that solutions with more than two spikes, together with the constant solution equal

to b or −b (depending on the sign of µ), are unstable. The single spike solution (obtained

when |µ| > b) and the constant solution with values in ] − b, b[ (obtained when |µ| < b)

are both stable. We note that these stability results can easily be generalized to the more

general density functions f that are considered in this thesis.

3.2.4 Stability of stationary states

In the one dimensional case, the scheme becomes

(3.16)
dvi

dt
= −(D+δ D−δ )2 (R (vi)) , 0 ≤ i ≤ N − 1,

where

D+h vi =
vi+1 − vi

δ
,

and

D−h vi =
vi − vi−1

δ
,

are forward and backward difference quotients.

Steady states

To find the steady states of (3.16) we need to solve

dvi

dt
= 0, ∀ i ∈ [0, · · · ,N − 1],
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i.e.,

(

D+δ D−δ
)2

(R (vi)) = 0, ∀ i ∈ [0, · · · ,N − 1].

Using the periodic boundary conditions we obtain

(3.17) R(vi) = C, ∀ i ∈ [0, · · · ,N − 1],

where C ∈ R is a constant. Since the range of s 7→ R(s) = s

1+( s
b

)2 on R is [− b
2
, b

2
] we see

that − b
2
≤ C ≤ b

2
. We now consider three different cases:

1. C = 0

Then vi = 0 ∀i ∈ [0, · · · ,N − 1], which violates the conservation of mass (3.7) for

µ , 0. Thus if µ , 0, v = 0 is not a feasible solution.

If µ = 0 however, the solution v = 0 is asymptotically stable.

2. C = b
2

or C = −b
2

(a) If C = b
2
, then vi = b, ∀i ∈ [0, · · · ,N − 1].

(b) If C = −b
2
, then vi = −b, ∀ i ∈ [0, · · · ,N − 1].

3. 0 < C < b
2

or −b
2
< C < 0.

(a) If 0 < C < b
2
, then (3.17) has two solutions that we call v+ and v−, with

0 < v− < b < v+ < ∞.

Also the condition R(v−) = R(v+) gives

(3.18) v+ =
b2

v−
.

Now we define K (1 ≤ K ≤ N − 1) to be the number of grid points that have the

value v+. Conservation of mass (3.7) then implies

(3.19) Kv+ + (N − K)v− = Nµ.
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We note that for K = 0, the steady state solution is just the constant solution

with value v− = µ, which happens when 0 < µ < b. Similarly, when K = N,

the steady state is the constant solution with value v+ = µ, which occurs when

µ > b. For 1 ≤ K ≤ N − 1, we use equations (3.18) and (3.19) to solve for v−

and v+ and obtain the following result:

Under the condition µ ≥ µK,N with µK,N =
2b
√

K(N−K)

N
, we have the existence of

two real solutions v+ and v− with value

(3.20)






v+ =
Nµ+
√

(Nµ)2−4K(N−K)b2

2K
,

v− =
Nµ−
√

(Nµ)2−4K(N−K)b2

2(N−K)
.

(b) If −b
2
< C < 0, (3.17) has two solutions that we call v+ and v−, with −∞ < v+ <

−b < v− < 0. Using similar calculations we obtain the following:

For 1 ≤ K ≤ N − 1, and under the condition µ ≤ −µK,N , we have the existence of

two real solutions v+ and v− with value

(3.21)






v+ =
Nµ−
√

(Nµ)2−4K(N−K)b2

2K
,

v− =
Nµ+
√

(Nµ)2−4K(N−K)b2

2(N−K)
.

For K = 0, the steady state solution is the constant solution with value v− = µ,

which happens in the case −b < µ < 0, and for K = N, the steady state is the

constant solution with value v+ = µ, which occurs when µ < −b.

So the steady states of equation (3.16) are vectors v with K grid points with value v+

and (N −K) grid points with value v−, for 1 ≤ K ≤ N −1. The condition on µ ensures
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the existence of v+ and v− as real solutions. If |µ| < µK,N for 1 ≤ K ≤ N − 1, there

are no real solutions v+ and v−. The steady state solution with K = 0 is the constant

solution v = µ, which occurs when |µ| < b. Similarly, the steady state solution with

K = N is the constant solution v = µ, in the case |µ| > b. Note that µK,N ≤ b, for all

0 ≤ K ≤ N. µK,N is only needed for 1 ≤ K ≤ N − 1, but it is also defined for K = 0

and K = N. In particular, µ0,N = µN,N = 0.

Lemma III.1. Suppose |µ| > µ1,N and let v− be as in (3.20) or (3.21) for K = 1, namely

v− =
Nµ −

√

(Nµ)2 − 4(N − 1)b2

2(N − 1)
or v− =

Nµ +
√

(Nµ)2 − 4(N − 1)b2

2(N − 1)
.

Then

(N − 1)v2
− < b2.

Proof: For either v− above, we obtain after simplification

(N − 1)v2
− =

2
4(N−1)

(Nµ)2




1 −

√

1 − 4(N − 1)b2

(Nµ)2




− b2,

with 0 < 4(N−1)

(Nµ)2 < 1
b2 . Now we consider the function k(x) = 1

x

(

1 −
√

1 − b2x
)

where

x ∈]0, 1
b2 [. Since the range of the function k is ]b2

2
, b2[, ∀x ∈]0, 1

b2 [, we obtain

2k

(

4(N − 1)

(Nµ)2

)

− b2 = (N − 1)v2
− < b2,

which proves the lemma. �

We note that if K = 1 and |µ| = µ1,N then (N − 1)v2
− = b2, leading to

(3.22) v+ = b
√

N − 1 and v− =
b√

N − 1
.

Stability analysis

In this section, we study the stability of the steady states using energy based arguments

that easily generalize to higher dimensions. In [98], Witelski et al. studied the stability
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of the steady states of a similar system using linearization. Their analysis was done in the

one dimensional case only.

Proposition III.2. Equilibrium solutions with K ≥ 2 are unstable.

For the proof, we refer to the one of Proposition 4 in Witelski et al. [98].

Proposition III.3. For |µ| < b, the equilibrium solution with K = 0 (i.e., vi = v− = µ,

∀ i ∈ [0, · · · ,N − 1]) is stable.

Proof: We prove this result by considering the energy functional (3.8)

E(v) =
1

N

N−1∑

i=0

f (vi),

where f is as in (3.9), and checking whether any perturbation of the constant steady state

v− can result in a decrease in energy. We thus consider the minimization problem

(3.23) min
v

E(v) such that

N−1∑

i=0

(vi − v−)
2 ≤ ǫ and

1

N

N−1∑

i=0

vi = v− = µ,

for ǫ > 0. Suppose the minimum of the energy is reached at a certain vm which is not

constant, i.e., ∃ i1 and i2 ∈ [0, · · · ,N − 1] such that vm
i1

is the smallest value, vm
i2

the largest

value, and vm
i1
, vm

i2
.

Now define ṽm as

ṽm
i =






vm
i
∀ i ∈ [0, · · · ,N − 1] \ {i1, i2}

vm
i2

if i = i1

vm
i1

if i = i2.

Trivially E(vm) = E(ṽm). Now we choose ǫ small enough so that none of the values of vm

reside outside the interval ] − b, b[, namely

|vm
i | < b , ∀ i ∈ [0, · · · ,N − 1].
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Since f is strictly convex on ] − b, b[, we have

f

(
vm

i
+ ṽm

i

2

)

=
1

2

(

f
(

vm
i

)

+ f
(

ṽm
i

))

, ∀ i ∈ [0, · · · ,N − 1] \ {i1, i2},

f

(
vm

i1
+ ṽm

i1

2

)

= f

(
vm

i1
+ vm

i2

2

)

<
1

2

(

f
(

vm
i1

)

+ f
(

vm
i2

))

,

and similarly for i = i2. We therefore obtain

E

(

vm + ṽm

2

)

<
1

2
(E(vm) + E(ṽm)) = E(vm),

contradicting the assumption that vm achieves the minimum of the energy. The constant

solution is therefore the only one that minimizes the energy and thus is asymptotically

stable. �

Proposition III.4. Assume N ≥ 3. For µ = b, the constant equilibrium solution v ≡ b is

unstable. Similarly, for µ = −b the constant equilibrium solution v ≡ −b is unstable.

Proof: We prove the lemma for the constant solution v ≡ b. The proof for v ≡ −b is

analogous. We choose an integer M ∈ [2,N − 1] and perturb the equilibrium solution in

the following way: we increase one grid point from b to b + ǫ and decrease M other grid

points from b to b − ǫ/M where ǫ > 0 will be determined later. The remaining grid points

have value b. We define v0 to be the constant solution equal to b and by vǫ the perturbed

solution. We note that ||vǫ − v0||2 =
√

M + 1

NM
ǫ.

Now we will show that vǫ decreases the energy, i.e.,

(3.24) ∀ M ∈ [2,N − 1],∃ ǫ > 0 such that E(vǫ) < E(v0).

Calculating the energy for both v0 and vǫ we obtain

E(v0) = f (b),
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and

E(vǫ) =
1

N

(

(N − M − 1) f (b) + M f (b − ǫ

M
) + f (b + ǫ)

)

.

Subtracting E(v0) from E(vǫ) , we obtain

E(vǫ) − E(v0) =
1

N

((

M f (b − ǫ

M
) + f (b + ǫ)

)

− (M + 1) f (b)
)

=
ζ(ǫ)

N
,

where ζ(ǫ) =
(

M f (b − ǫ
M

) + f (b + ǫ)
)

− (M + 1) f (b).

We now show that ∃ ǫ > 0 such that ζ(ǫ) < 0. Replacing f by its expression we obtain

ζ(ǫ) =
b

2
ln





(

1 − ǫ

bM
+

1

2

(
ǫ

bM

)2
)M (

1 +
ǫ

b
+

1

2

(
ǫ

b

)2
)

 =
b

2
ln

(

ς
(
ǫ

b

))

,

where ς(x) =
(

1 − x
M
+ 1

2

(
x
M

)2
)M

(1 + x + x2

2
) for x > 0. ς satisfies the following properties

on R+:

ς(x) < 1 for x ∈]0,M − 1[.

This therefore implies that

∃ ǫ ∈ ]0, b(M − 1)[, such that ς
(
ǫ

b

)

< 1,

and thus shows (3.24). �

Proposition III.5. If |µ| > µ1,N , then the equilibrium solution with K = 1 is asymptotically

stable. If |µ| = µ1,K , then the equilibrium solution with K = 1 is unstable.

Proof: We consider µ positive but the proof for µ negative is completely similar.

Let µ ≥ µ1,N . We define v0 to be the equilibrium solution and i0 the grid point at

which v0 takes the value v+. Recall that since v0 is the equilibrium solution for K = 1 and

µ ≥ µ1,N , v0
i
= v− for all i , i0. Consider the minimization problem
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min
v

E(v) such that

N−1∑

i=0

(vi − v0
i )2 ≤ ǫ and

N−1∑

i=0

vi = Nµ,

with ǫ > 0.

We first consider all perturbations that only affect the (N − 1) grid points with value v−.

In this case, we can use the analysis done for K = 0 since the mass of the (N−1) perturbed

grid points is preserved. We therefore know that the minimum of the energy is reached

when the (N − 1) grid points have the same constant value v−.

Now we consider all the perturbations that also perturb the grid point at i0. We define

δm

N
, 0 to be the change of mass of the (N − 1) remaining grid points. The value of the

grid point at i0 is now v+ + δm. Since the value of this grid point is determined for each

δm, we can look at all the perturbations that change the mass of the (N − 1) remaining grid

points by δm

N
. Here again, we can apply the analysis done for K = 0 with the condition on

the mass in equation (3.23) replaced by

1

N

∑

i,i0

vi =
N − 1

N
v− −

δm

N
,

since we choose ǫ small enough so that the perturbed (N − 1) grid points stay strictly

between −b and b. We can therefore conclude that the energy is minimized if the (N − 1)

remaining grid points have a constant value v− − δm

N−1
. Consequently the solution that

minimizes the energy with vi0 = v+ + δm is

v
p

i
=






v+ + δm if i = i0

v− − δm

N−1
i , i0.

Now we consider the energy associated to the solution vp

E(vp) =
1

N

(

f (v+ + δm) + (N − 1) f

(

v− −
δm

N − 1

))

.
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Differentiating with respect to δm and evaluating at δm = 0 gives

dE(vp)

dδm

∣
∣
∣
∣
δm=0
=

1

N
(R(v+) − R(v−)) = 0,

since R(v−) = R(v+). Differentiating again with respect to δm and evaluating at δm = 0 we

obtain

d2E(vp)

dδ2
m

∣
∣
∣
∣
δm=0
=

1

N

(

1

N − 1
− v2

−
b2

)

R′(v−).

• Now suppose µ > µ1,N .

Using Lemma III.1 we know that 1
N−1
− v2

−
b2 > 0, which shows that

d2E(vp)

dδ2
m

∣
∣
∣
∣
δm=0

> 0.

Thus the solution v0 is asymptotically stable.

• Now suppose µ = µ1,N .

In this case, as noted at the end of Lemma III.1, we have

(N − 1)v2
− = b2,

which leads to

d2E(vp)

dδ2
m

∣
∣
∣
∣
δm=0
=

1

N

(

1

N − 1
− v2

−
b2

)

R′(v−) = 0.

Continuing to differentiate, we look at the third derivative of the energy with respect

to δm and obtain

d3E(vp)

dδ3
m

∣
∣
∣
∣
δm=0
=

1

N

(

R′′(v+) −
1

(N − 1)2
R′′(v−)

)

.

Using the expressions for v+ and v− in (3.22) we obtain

d3E(vp)

dδ3
m

∣
∣
∣
∣
δm=0
=

2
√

N − 1

bN3

N − 2

N − 1
=

2(N − 2)

bN3
√

N − 1
,

which is strictly positive for N ≥ 3. The steady state v0 is therefore a saddle point in

the energy landscape and thus is unstable. �
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Remark. The stability analysis carried out for the one dimensional system can easily

be generalized to the d dimensional system, for any d ∈ N∗, since it is only based on

energy arguments which do not depend on the dimension.

3.3 Upper bounds on the coarsening rate of You-Kaveh type models

Following [37], we introduce the model density functions

(3.25) Fα(x) :=






0 if 0 ≤ |x| ≤ b

|x − b|α if |x| > b,

where b > 0 and α ∈ [0, 1[. Our results are obtained for general density functions f ≥ ηFα

for some constant η > 0. Without loss of generality, we work with positive initial data,

i.e., vi(0) ≥ 0, for all i ∈ L.

For the statement of Theorem III.6, we introduce the following functions:

σ = σ(d) =






2−
4d(1−α)

4+d(1−α)

(
d(1−α)+4

4−d(1−α)

) 4−d(1−α)
d(1−α)+4

if 1 ≤ d ≤ 3,

2−
4(1−α)

2−α
(

2−α
α

) α
2−α

if d ≥ 4,

and

ρ = ρ(d) =






2
d(1−α)

2

(
d(1−α)+4

4−d(1−α)

) 4−d(1−α)
2d(1−α)

if 1 ≤ d ≤ 3,

22(1−α)
(

2−α
α

) α
2(1−α)

if d ≥ 4.

Theorem III.6. Let d ∈ N∗ and f be the energy density function such that f ≥ ηFα for

some η > 0, where Fα is defined in (3.25). Let E be as in (3.8), where v is the solution of

(3.6). Assume µ > b and

E(0) <
1

12

η(µ − b)2−α

µ2(1−α)
.

Then there exist universal constants Cl < ∞ and Ch < ∞, such that, if we let T∗ be as

(3.26) T∗ = T∗(d) =






ρ

C1−α
l

Nd(1−α)L(0)
4+d(1−α)

2 if 1 ≤ d ≤ 3,

ρ

C1−α
h

N4(1−α)L(0)2(2−α) if d ≥ 4,

we have
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• If 1 ≤ d ≤ 3,

1

T

∫ T

0

E2dt ≥ σC
8(1−α)

4+d(1−α)

l

[

(N4T )−
d(1−α)

d(1−α)+4

]2

,

provided T ≥ T∗.

• If d ≥ 4,

1

T

∫ T

0

E2dt ≥ σC
2(1−α)

2−α
h

[

(N4T )−
1−α
2−α

]2
,

provided T ≥ T∗.

The constants Cl and Ch are given by the interpolation inequalities (3.28) and (3.29) re-

spectively.

3.3.1 Decay relation

In this section, we establish the first ingredient for applying Kohn and Otto’s technique

to our problem, namely the decay relation, also called the dissipation inequality.

Lemma III.7.
∣
∣
∣
dL
dt

∣
∣
∣ ≤

(

−dE
dt

) 1
2
.

Proof: Since the system (3.6) is gradient descent for the energy E with respect to the

discrete H−2 norm, we can write

vt = −∇vE,

where the gradient is defined with respect to the discrete H−2 norm. Differentiating E with

respect to t, we get

dE

dt
= 〈∇vE, vt〉H−2 = −||vt||2H−2 .

Now differentiating L2 = ||v||2
H−2 with respect to t, we obtain

∣
∣
∣
∣
∣
2L

dL

dt

∣
∣
∣
∣
∣
= 2 |〈vt, v〉H−2 | ≤ 2||vt||H−2 ||v||H−2 = 2L||vt||H−2 ,
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using the Cauchy-Schwartz inequality. We therefore obtain

∣
∣
∣
∣
∣

dL

dt

∣
∣
∣
∣
∣
≤ ||vt||H−2 =

(

−dE

dt

) 1
2

,

thus proving the lemma. �

3.3.2 Interpolation inequality

In this section, we establish the second ingredient for applying Kohn and Otto’s tech-

nique to our problem: the interpolation inequality.

Lemma III.8. Let the length scale L be defined as in (3.15) and let µ > b. Assume f ≥ ηFα

for some constant η > 0 and α ∈ [0, 1[. Let the energy E be defined as in (3.8), where v is

the solution of (3.6), and assume

(3.27) E(0) <
1

12

η(µ − b)2−α

µ2(1−α)
.

Then

• If 1 ≤ d ≤ 3

(3.28) E
1

1−α L
d
2 ≥ Cl

Nd
,

for some Cl > 0 depending only on µ, b and α.

• If d ≥ 4

(3.29) E
1

1−α L2 ≥ Ch

N4
,

for some Ch > 0 depending only on µ, b and α.
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We write EFα , the energy associated to the energy density function Fα defined in (3.25).

Note that it suffices to consider the case f = Fα since if an interpolation inequality EFαLβ ≥

θ > 0 holds, and f ≥ ηFα, then ELβ ≥ ηθ. Similarly, the condition E < Cη implies

EFα < C. We therefore prove the interpolation inequality for the case f = Fα. In the proof,

we write E for EFα . As in [37], we prove the interpolation inequality in two steps and start

by showing that the typical positive spike height is greater than E
−1

1−α in Lemma III.9. We

note that Lemma III.9 is similar to Lemma 4 in [37], except that here we only consider

the large positive spikes. If Lemma III.9 was the direct extension of Lemma 4 in [37], we

would have considered all the large spikes (i.e., both negative and positive).

Lemma III.9. Define the typical positive spike height h as

(3.30) h :=

(

µ − b

3

) 1
1−α

E
−1

1−α .

Define also the two sets Slp and Slb consisting of the large positive spikes, and points where

the solution vi is less than b (i.e. negative spikes and non spikes) respectively:

Slp := {i ∈ L : vi − b > h} ,(3.31)

and Slb := {i ∈ L : vi ≤ b} .

Then

1

Nd

∑

i:b<vi≤b+h

(vi − b) ≤ µ − b

3
,

and thus

1

Nd

∑

i∈Slp∪ Slb

(vi − b) ≥ 2

3
(µ − b).
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Proof:

∑

i:b<vi≤b+h

(vi − b) =
∑

i:b<vi≤b+h

(vi − b)α(vi − b)1−α

≤ max
i:b<vi≤b+h

(vi − b)1−α
∑

i:b<vi≤b+h

(vi − b)α

≤ h1−α
∑

i:b≤vi≤b+h

vαi

≤ Ndh1−αE =
Nd(µ − b)

3
.

Thus using the conservation of mass

1

Nd

∑

i∈Slp∪ Slb

(vi − b) +
1

Nd

∑

i:b<vi≤b+h

(vi − b) = µ − b,

we obtain

1

Nd

∑

i∈Slp∪ Slb

(vi − b) = (µ − b) − 1

Nd

∑

i:b<vi≤b+h

(vi − b)

≥ 2

3
(µ − b).

This finishes the proof. �

In the proof of the interpolation inequality, we need to show that the proportion of large

positive spikes is bounded from above by
µ

h
. For clarity purposes, we put this result in

Lemma III.10. We note that in the second order case (see [37]), since the data v is positive

for all times, Lemma III.10 is simply the Chebyshev inequality. For higher order cases

however, the result is slightly more complicated to prove due to the loss of positivity in the

data.
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Lemma III.10. Let the typical positive spike height h be defined as in (3.30) and let the

set of large positive spikes Slp be defined as in (3.31). We define |Slp| to be the number of

large positive spikes. Then

|Slp|
Nd
≤ µ

h
.

Proof:

E =
1

Nd

∑

i:|vi |≥b

|vi|α

≥ 1

Nd

∑

i:vi≥b+h

vαi

≥ |Slp|
Nd

(b + h)α ≥ |Slp|
Nd

hα.

Using the definition of h in (3.30), we obtain

h
1

1−α ≤
(

µ − b

3

) 1
1−α

(

Nd

|Slp|

) 1
1−α

,

and thus

|Slp|h ≤
(

µ − b

3

)

Nd ≤ µ
3

Nd ≤ Ndµ. �

Proof of Lemma III.8:

To estimate L = ||v||H−2 , we make use of its duality definition given in (3.12). In partic-

ular, recall from (3.12)

(3.32) L ≥
1

Nd

∑

i∈L(vi − µ)ϕi

||ϕ||H2

,

where ||ϕ||2
H2 =

1
Nd

∑

i∈L (∆δϕi)
2 . We also note that the smallness condition (3.27) on E

implies

(3.33) h > 4
1

1−α
µ2

µ − b
.
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Case 1: Let 1 ≤ d ≤ 3.

In this case, we use a test function ϕ adapted to the large positive spikes. To construct

this test function we consider a function F ∈ C∞c
(

R
d,R+

)

, with support contained in

[

− 1
2
, 1

2

]d
and L1 norm equal to 1, e.g.

F (x) =






C0e
−1

( 1
4
−|x|2) if |x| < 1

2

0 if |x| ≥ 1
2
,

where the constant C0 is chosen such that
∫

Rd F (x)dx = 1. We also let

(3.34) k =

⌊(

µ − b

4µ2
h + 1

)⌋ 1
d

,

where h is the typical positive spike height defined in (3.30). The integer k is related to the

radius (in number of grid points) of the cube on which the rescaled version of the function

F will be supported.

For p = (p1, · · · , pd) ∈ Slp and j ∈ {1, 2, · · · , d}, we define the set S m
j

as

S m
j := {q ∈ {0, 1, · · · ,N − 1} : |q − p j|N ≤ m},

where |r − s|N = minℓ∈N |r − s + ℓN| is the distance modulo N between the integers r and s

in {0, 1, · · · ,N − 1}. Now for m ∈ N∗ and p in Slp, we define the cube Qm(p) as

(3.35) Qm(p) := S m
1 × · · · × S m

d .

In other words, Qm(p) is the cube of radius m (in number of grid points) centered at the

large positive spike located at p ∈ Slp. The cube Qm(p) thus contains (2m+1)d grid points.

We now assume k is divisible by 4 (if not, the proof follows similarly with k
4

and k
2

replaced

by
⌊

k
4

⌋

and 2
⌊

k
4

⌋

respectively), and define the two sets Σ1 and Σ2 as

Σ1 =
⋃

p∈Slp

Q k
4
(p),
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and

Σ2 =
⋃

p∈Slp

Q k
2
(p).

Σ1 is the union of all the cubes of radius k
4

centered at the large positive spikes, and Σ2 is

the union of all the cubes of radius k
2

centered at the large positive spikes. Σ2 is therefore

a dilated version of Σ1, with dilation factor 2.

We now consider the restriction of the functionF on its support
[

−1
2
, 1

2

]d
, and rescale it by a

factor of 2N
k

on
[

−1
2
, 1

2

]d
. The rescaled version F

(
2N
k

x
)

defined on
[

−1
2
, 1

2

]d
is then extended

to Rd by periodicity with period 1. We define F
(

2N
k

x
)

to be the extended function. We

now define the vector F on Zd as

Fi =

(

2N

k

)d ? i
N
+ 1

2N

i
N
− 1

2N

F
(

2N

k
x

)

dx,

= Nd

∫ i
k
2

+ 1

2 k
2

i
k
2

− 1

2 k
2

F (x) dx.

The normalization factor
(

2N
k

)d
ensures that

1

Nd

∑

i∈L
Fi = ||F ||L1(Rd ,R+) = 1.

By construction, the support of the restricted vector F to the lattice L is contained in the

cube Q k
4
(0). Moreover since kd is proportional to h, which is an increasing quantity, we

see that the size of the support of the vector F also increases as the system coarsens.

The test function ϕ is now defined on the lattice L, as the discrete circular convolution

between the vector F and the characteristic function of the set Σ1:

(3.36) ϕi =
1

Nd

∑

j∈L
(χΣ1

) j Fi− j, for i ∈ L.

Claim:

(3.37) ϕi =






1 if i ∈ Slp

0 if i ∈ (
◦
Σ2)c

ai else, where 0 ≤ ai ≤ 1.
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For clarity purposes, the proof of the claim is provided at the end of the section. Figures

3.4 and 3.5 illustrate the construction of the test function ϕ in the one dimensional case.

0 100 200 300 400 500 600 700 800 900 1000
0
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1

x

Characteristic function of Σ
1

Figure 3.4: Characteristic function of the set Σ1. The dashed
lines represent the locations of the large positive
spikes.
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Example of the construction of the test function in dimension 1

Figure 3.5: The dashed lines represent the locations of the large
positive spikes.

Remark 1. As in [37], the test function ϕ is chosen to be as flat as possible, but localized

enough for the term (3.38) to dominate (3.39) in the estimation of the length scale L.

We first bound the numerator of (3.32) from below and estimate

1

Nd

∑

i∈L
viϕi ≥

1

Nd

∑

i∈L
(vi − b)ϕi

=
1

Nd

∑

i∈Slp

(vi − b) +
1

Nd

∑

i:b<vi≤b+h

(vi − b)ϕi +
1

Nd

∑

i∈Slb

(vi − b)ϕi

≥ 1

Nd

∑

i∈Slp∪ Slb

(vi − b)

≥ 2

3
(µ − b)

(

using Lemma III.9
)

.

(3.38)

Remark 2. The properties of ϕ given in (3.37) show that the support of the test function ϕ

is a subset of Σ2 with ϕ vanishing at the boundaries of Σ2. We can therefore write

ϕi = (χΣ2
)i





1

Nd

∑

j∈Q k
4

(i)

(χΣ1
) j Fi− j





≤ (χΣ2
)i, i ∈ L.
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We therefore estimate

µ

Nd

∑

i∈L
ϕi ≤

µ

Nd

∑

i∈L
(χΣ2

)i

≤ µ

Nd

∑

p∈Slp

∑

i∈Q k
2

(p)

1

=
µ|Slp|

Nd
kd

≤ µ
2

h
kd (

by Lemma III.10
)

≤ µ − b

4
+
µ2

h

(

using kd ≤ µ − b

4µ2
h + 1 from (3.34)

)

≤ µ − b

4
+

(

1

4

) 1
1−α

(µ − b)

(

using h > 4
1

1−α
µ2

(µ − b)
from (3.33)

)

≤ µ − b

2
,

(3.39)

which combined with (3.38) gives

(3.40)
1

Nd

∑

i∈L
(vi − µ)ϕi ≥

µ − b

6
.

We now estimate the H2 norm of ϕ and first obtain a pointwise upper bound on |∆δϕi|:

|∆δϕi| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

(χΣ2
)i





1

Nd

∑

j∈Q k
4

(i)

(χΣ1
) j ∆δFi− j





∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ (χΣ2
)i

1

Nd

∑

j∈Q k
4

(i)

∣
∣
∣(χΣ1

) j ∆δFi− j

∣
∣
∣

= (χΣ2
)i

(

2N

k

)2
1

Nd

∑

j∈Q k
4

(i)

∣
∣
∣
∣(χΣ1

) j ∆ 2
k
Fi− j

∣
∣
∣
∣

≤ (χΣ2
)i

(

2N

k

)2
1

Nd

∑

j∈Q k
4

(i)

∣
∣
∣
∣∆ 2

k
Fi− j

∣
∣
∣
∣

= (χΣ2
)i

(

2N

k

)2
1

Nd

∑

j∈Q k
4

(0)

∣
∣
∣
∣∆ 2

k
F j

∣
∣
∣
∣

︸               ︷︷               ︸

≤||∆F ||
L1(Rd ,R+)

≤ (χΣ2
)i

(

2N

k

)2

||∆F ||L1(Rd ,R+).
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For clarity, we let C1 = 4||∆F ||L1(Rd ,R+) and estimate the H2 norm of ϕ:

||ϕ||2
H2 ≤

1

Nd

∑

i∈L
(∆δϕi)

2

≤ C2
1

(
N

k

)4 1

Nd

∑

i∈L
(χΣ2

)i

≤ C2
1

(
N

k

)4 1

Nd

∑

p∈Slp

∑

i∈Q k
2

(p)

1




since Σ2 =

⋃

p∈Slp

Q k
2
(p)





= C2
1

(
N

k

)4 |Slp|
Nd

kd.

Thus

||ϕ||2
H2 ≤ C2

1N4kd−4
|Slp|
Nd

≤
µC2

1

h
N4kd−4 (

by Lemma III.10
)

≤
µC2

1

h
N4

(

4µ2

(µ − b)h

) 4
d
−1 (

using kd ≥ µ − b

4µ2
h from (3.34) since 1 ≤ d < 4

)

≤ µC2
1

(

4µ2

µ − b

) 4
d
−1

N4

h
4
d

.

The final estimate is

(3.41) ||ϕ||H2 ≤ βN2

h
2
d

,

with β = C1

√

µ
(

4µ2

µ−b

) 4
d
−1

.
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Now using the definition of L, we have

L = ||v||H−2 ≥ 1

Nd

∑

i∈L
(vi − µ)

ϕi

||ϕ||H2

≥ h
2
d

6βN2
(µ − b)

(

using (3.41) and (3.40)
)

=
1

6N2

E
−2

d(1−α) (µ − b)
2

d(1−α)+1

3
2

d(1−α)β

(

using the definition of h in (3.30)
)

=
λE

−2
d(1−α)

N2
,

where λ = 1
6

(µ−b)
2

d(1−α)
+1

3
2

d(1−α) β
. Now, letting Cl = λ

d
2 , we can write the above inequality as

(3.42) E
1

1−α L
d
2 ≥ Cl

Nd
,

which proves the first part of Lemma III.8.

Remark 3: The particular profile of the test function ϕ does not play much of a role in

the determination of the coarsening rate. What matters is how the support of the smooth

function F scales with k, and through k, h. In fact, any function in the space C∞c (Rd,R+)

will give the same coarsening rate. We also note that this construction differs from the

constructions given in [34] and [37]. In particular, it makes more transparent how the

spatial dimension d and the order of the equation n completely determine the coarsening

rate.

Case 2: Let d ≥ 4.

In this case we define the test function ϕ on the lattice L as the characteristic function

of the set of large positive spikes Slp, namely ϕ = χSlp
. We remark that contrary to the low

dimensional case (1 ≤ d ≤ 3), the test function is chosen to be supported on single spikes.



105

We first estimate its H2 norm

||ϕ||2
H2 ≤

8|Slp|d
Nd−4

≤ 8dN4µ

h

(

using Lemma III.10
)

,

and obtain

(3.43) ||ϕ||H2 ≤ 2N2

√

2dµ

h
.

Now we estimate

1

Nd

∑

i∈L
(vi − µ)ϕi =

1

Nd

∑

i∈Slp

(vi − µ)

≥ 1

Nd

∑

i∈Slp

(vi − b) − µ |Slp|
Nd

≥ 1

Nd

∑

i∈Slp∪ Slb

(vi − b) − µ
2

h

(

using Lemma III.10
)

≥ 2

3
(µ − b) − µ

2

h

(

using Lemma III.9
)

≥ 2

3
(µ − b) − µ − b

4

(

using h > 4
1

1−α
µ2

(µ − b)
from (3.33)

)

≥ 5

12
(µ − b).

Therefore

(3.44)
1

Nd

∑

i∈L
(vi − µ)ϕi ≥

5

12
(µ − b).

Combining estimates (3.43) and (3.44), we obtain

L = ||v||H−2 ≥ 1

||ϕ||H2 Nd

∑

i∈L
(vi − µ)ϕi

≥ 5(µ − b)

24
√

2dN2

√

h

µ

= 5
(µ − b)

3−2α
2(1−α) E

−1
2(1−α)

24
√

6dµN2

(

using the definition of h in (3.30)
)

.
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Letting Ch =
25(µ−b)

3−2α
1−α

3456dµ
, we can write the above inequality as

(3.45) E
1

1−α L2 ≥ Ch

N4
,

which proves the second part of Lemma III.8. �

Combining the decay relation with the interpolation inequality, and using Kohn and

Otto’s ODE argument [58], we obtain the result of Theorem III.6.

Proof of the claim:

By construction, 0 ≤ ϕi ≤ 1 for all i ∈ L. We have ϕi ≥ 0 because it is the sum of

positive quantities, and ϕi ≤ 1 because the vector F is normalized to sum up to 1. Also

we note that ϕi can be written as

ϕi =
1

Nd

∑

j∈Q k
4

(i)

(χΣ1
) j Fi− j,

since the support of the restricted vector F to the lattice L is contained in the cube Q k
4
(0).

• Now suppose i ∈ Slp. Since Σ1 =
⋃

p∈Slp
Q k

4
(p), we know that Q k

4
(i) ⊂ Σ1, which

implies (χΣ1
) j = 1 for j ∈ Q k

4
(i). Thus ϕi simplifies to

ϕi =
1

Nd

∑

j∈Q k
4

(i)

Fi− j =
1

Nd

∑

j∈Q k
4

(0)

F j =
1

Nd

∑

j∈{− N
2 ,− N

2 +1,··· , N
2 }d
F j = 1.

• Now suppose i ∈ (
◦
Σ2)c. Since Σ2 is a dilated version by 2 of Σ1, we have by construc-

tion

For all i ∈ (
◦
Σ2)c and j ∈ Σ1, |iq − jq|N ≥

k

4
, for all 1 ≤ q ≤ d.

Therefore, if i ∈ (
◦
Σ2)c, we have Q k

4
(i) ⊂ (Σ1)c which implies (χΣ1

) j = 0 for j ∈ Q k
4
(i).

Thus

ϕi =
1

Nd

∑

j∈Q k
4

(i)

(χΣ1
) j Fi− j = 0. �
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3.3.3 Rigorous result in terms of the spike density

In this section, we establish the rigorous result of Theorem III.6 in terms of the spike

density. In other words, we show that for a certain interval of time, namely until the spike

density gets low, the time-average of the spike density is bounded from below by a function

of time that decays with the rate indicated by the one obtained in Theorem III.6.

We introduce the following notation. Let K(t) be the number of spikes at time t, and let

T∗ be as in (3.26). Define also I(T ) to be

(3.46) I(T ) =

? T

0

(

K(t)

Nd

)2(1−α)

dt.

Corollary III.11. Let γ ∈]0, 1[. Assume there exists a constant θ > 0 such that f (x) ≤ θ|x|α

for all |x| large enough, and assume also that µ is large enough such that f (µ) ≤ θµα. If

I(T∗) > γ, then define T ∗ to be the first time at which I equals γ, i.e.,

T ∗ = min{t ≥ T∗ : I(t) = γ}.

Then for T ∈ [T∗,T
∗] and under the assumptions of Theorem III.6, there exist constants

C1 < ∞ and C2 < ∞, such that

• If 1 ≤ d ≤ 3,

I(T ) ≥ C1

[

(N4T )−
d

d(1−α)+4

]2(1−α)
.

• If d ≥ 4,

I(T ) ≥ C2

[

(N4T )−
1

2−α
]2(1−α)

.

Proof: Let S be the set of spikes and suppose I(T∗) > γ, which by definition implies
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I(T ) ≥ γ for T ∈ [T∗,T
∗]. We define the energy of the spikes ES to be

ES :=
1

Nd

∑

i∈S
f (vi),

and the energy of the non-spikes ENS to be

ENS :=
1

Nd

∑

i∈L\S
f (vi),

where f is the energy density function. Then E = ENS + ES . We also define the mass of

the spikes to be µS :=
1

Nd

∑

i∈S
vi and the mass of the non-spikes to be µNS :=

1

Nd

∑

i∈L\S
vi.

We easily see that

ENS =
1

Nd

∑

i:|vi |<b

f (vi) ≤ f (b).

For ES , we have

ES ≤ max





ES :

1

Nd

∑

i∈S
vi = µS





.

Using the concavity of the function f for |x| > b, we can show that the maximum of the

energy ES is reached when all the spikes have the same height |vi| = NdµS

K
, assuming their

mass µS is fixed. Moreover, since the heights of the non-spikes is always greater than −b,

we can bound their mass µNS from below as

µNS ≥ −
(

1 − K

Nd

)

b,

and deduce that

NdµS

K
≤ Nd

K
(µ + b) − b.

Therefore

E ≤ f (b) +
K

Nd
f

(

Nd

K
(µ + b) − b

)

≤ f (b) + θ
K

Nd

(

Nd

K
(µ + b) − b

)α (

since
Nd

K
(µ + b) − b > µ

)

.

≤ f (b) + θ
K

Nd

(

2
Nd

K
µ

)α

(since b + µ < 2µ)

= f (b) + (2µ)αθ
(

K

Nd

)1−α
.
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Squaring both sides, we obtain

E2 ≤ 2

(

f (b)2 + (2µ)2αθ2
(

K

Nd

)2(1−α)
)

,

whose time-average satisfies

I(T ) =

? T

0

(
K

Nd

)2(1−α)

dt ≥ 1

λ1(θ)µ2α

(? T

0

E2dt − 2 f (b)2

)

,

where λ1(θ) = 22α+1θ2. If T ∈ [T∗,T
∗], we have by assumption that I(T ) ≥ γ, which

implies

2 f (b)2

λ1(θ)µ2α
≤ λ2(γ)I(T ),

with λ2(γ) =
2 f (b)2

γλ1(θ)µ2α . Moreover, if T ∈ [T∗,T
∗], we can apply Theorem III.6 and therefore

obtain

I(T ) ≥






σC

8(1−α)
4+d(1−α)
l

(1+λ2(γ))λ1(θ)µ2α

[

(N4T )−
d(1−α)

d(1−α)+4

]2

if 1 ≤ d ≤ 3,

σC

2(1−α)
2−α

h

(1+λ2(γ))λ1(θ)µ2α

[

(N4T )−
1−α
2−α

]2
if d ≥ 4.

This finishes the proof. �

Remark. Since I(T ∗) = γ, we can bound T ∗ from below by

T ∗ ≥ 1

N4






T 0
l
=





σC

8(1−α)
4+d(1−α)
l

2(4αµ2αθ2γ+ f (b)2)





d(1−α)+4
2d(1−α)

if 1 ≤ d ≤ 3,

T 0
h
=





σC

2(1−α)
2−α

h

2(4αµ2αθ2γ+ f (b)2)





2−α
2(1−α)

if d ≥ 4.

For µ large, Cl (3.42) scales like µ
2α+d(1−α)

2(1−α) and Ch (3.45) scales like µ
2−α
1−α , which implies

T 0
l ∼





µ
4(2α+d(1−α))

4+d(1−α)

γµ2α + f (b)2





d(1−α)+4
2d(1−α)

and T 0
r ∼

(

µ2

γµ2α + f (b)2

) 2−α
2(1−α)

.

Since µ is fixed, we can choose γ > 0 such that γµ2α = O(1) and obtain

T 0
l ∼ µ

2(2α+d(1−α))
d(1−α) and T 0

r ∼ µ
2−α
1−α .

Since both exponents 2(2α+d(1−α))

d(1−α)
and 2−α

1−α are greater or equal to 2 for any α ∈ [0, 1[, we see

that T 0
l

and T 0
r can be very large. Thus T ∗ can be very large, which implies that Corollary

III.11 can be valid for a very long time.



110

3.4 Upper bounds on coarsening for the 2n-th order equations

3.4.1 Equations and scheme

More generally, we study the following 2n-th order equation

(3.47) vt = (−1)n+1∆n(R(v)),

for n ∈ N∗. We note that for n even, equation (3.47) is closely related to equation (3.2)

ut = −∆
n
2 (R(∆

n
2 u(x))).

Taking the Laplacian raised to n
2

of both sides of equation (3.2) and setting v = ∆
n
2 u, we

see that v satisfies (3.47) if u satisfies (3.2). For n odd, the connection is only true in the

one dimensional case. To see that let’s recall the one dimensional equation (3.2)

(3.48) ut = ∂
n
xR(∂n

xu(x)).

Taking n partial derivatives in x of both sides of equation (3.48) and setting v = ∂n
xu, we

see that v satisfies the one dimensional equation (3.47) if u satisfies (3.48).

We now discretize (3.47) on the same grid [0, 1]d, and consider the system vi satisfying

the system of ODEs

(3.49)
dvi

dt
= (−1)n+1(∆δ)

n (R(vi)) , i ∈ L.

We recall that we use periodic boundary conditions. Like (3.6), the system (3.49) is gradi-

ent descent for the energy E defined in (3.8) with respect to the discrete H−n norm

||v||H−n :=






{

supφ
1

Nd

∑

i∈L(vi − µ)φi : 1
Nd

∑

i∈L
(

(∆δ)
n
2 φi

)2 ≤ 1
}

if n is even,
{

supφ
1

Nd

∑

i∈L(vi − µ)φi : 1
Nd

∑

i∈L

∣
∣
∣
∣
∣

(

∇δ∆
n−1

2

δ

)

φi

∣
∣
∣
∣
∣

2

≤ 1

}

if n is odd.

Like (3.6), if the initial data has some mass in the ill-posed regime, the evolution of (3.49)

gives rise to spikes whose coarsening behavior is very similar to the coarsening of (3.6).
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Thus we define our length scale quantity L as

(3.50) L := ||v||H−n .

When chosen this way, we see that L scales with the number of spikes K as

L ∼






1

K
n
d

for 1 ≤ d ≤ 2n − 1,

1√
K

for d ≥ 2n.

3.4.2 Main result

We introduce the following functions

σ̃ = σ̃(d) =






2−
4d(1−α)

2n+d(1−α)

(
d(1−α)+2n

2n−d(1−α)

) 2n−d(1−α)
d(1−α)+2n

if 1 ≤ d ≤ 2n − 1,

2−
4(1−α)

2−α
(

2−α
α

) α
2−α

if d ≥ 2n,

and

ρ̃ = ρ̃(d) =






2
d(1−α)

n

(
d(1−α)+2n

2n−d(1−α)

) 2n−d(1−α)
2d(1−α)

if 1 ≤ d ≤ 2n − 1,

22(1−α)
(

2−α
α

) α
2(1−α)

if d ≥ 2n.

Theorem III.12. Let d ∈ N∗ and let f be the energy density function such that f ≥ ηFα

for some η > 0, where Fα is defined in (3.25). Let E be as in (3.8) where v is the solution

of (3.49). Assume µ > b and

E(0) <
1

12

η(µ − b)2−α

µ2(1−α)
.

Then there exist universal constants C̃l < ∞ and C̃h < ∞, such that, if we let T̃∗ be as

(3.51) T̃∗ = T̃∗(d) =






ρ̃

C̃l
1−α Nd(1−α)L(0)

2n+d(1−α)
n if 1 ≤ d ≤ 2n − 1,

ρ̃

C̃h
1−α N2n(1−α)L(0)2(2−α) if d ≥ 2n,

we have

• If 1 ≤ d ≤ 2n − 1,

1

T

∫ T

0

E2dt ≥ σ̃C̃l

4n(1−α)
2n+d(1−α)

[

(N2nT )−
d(1−α)

d(1−α)+2n

]2

,

provided T ≥ T̃∗.
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• If d ≥ 2n,

1

T

∫ T

0

E2dt ≥ σ̃C̃h

2(1−α)
2−α

[

(N2nT )−
1−α
2−α

]2
,

provided T ≥ T̃∗.

The constants C̃l and C̃h are given by the interpolation inequalities (3.52) and (3.53) re-

spectively.

3.4.3 Decay relation and interpolation inequality

To prove Theorem III.12, we use the same argument as in the fourth order case, and

establish a decay relation and an interpolation inequality. The decay relation remains the

same as in the fourth order case since it only relies on the gradient descent property of the

scheme. The difference lies in the interpolation inequality.

Lemma III.13. Let the length scale L be defined as in (3.50) and let µ > b. Assume

f ≥ ηFα for some constant η > 0 and α ∈ [0, 1[. Let the energy E be defined as in (3.8)

where v is the solution of (3.49), and assume

E(0) <
1

12

η(µ − b)2−α

µ2(1−α)
.

Then

• If 1 ≤ d ≤ 2n − 1

(3.52) E
1

1−α L
d
n ≥ C̃l

Nd
,

for some C̃l > 0 depending only on µ, b, n and α.

• If d ≥ 2n
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(3.53) E
1

1−α L2 ≥ C̃h

N2n
,

for some C̃h > 0 depending only on µ, b, n and α.

Outline of the proof: This proof very closely follows the proof of Lemma III.8. In

particular, we keep all the definitions introduced there, like the positive spike height h

and the number of grid points k. Lemmas III.9 and III.10 therefore remain true. We also

note that the only difference between the general case and the fourth order case is in the

definition of L. In particular, the choice of test functions remains the same as in the fourth

order case. Thus, estimates (3.40) and (3.44) still hold.

• Let 1 ≤ d ≤ 2n − 1.

We define the test function ϕ as in (3.36) since the function F is infinitely differen-

tiable, and estimate the Hn norm of ϕ as in the fourth order case. In particular, |∆δϕi|

is replaced by

∣
∣
∣
∣
∣

(

∆
n
2

δ

)

ϕi

∣
∣
∣
∣
∣
if n is even or

∣
∣
∣
∣
∣

(

∇δ∆
n−1

2

δ

)

ϕi

∣
∣
∣
∣
∣
if n is odd. The final estimate is

(3.54) ||ϕ||2Hn ≤ β̃Nn

h
2n
d

,

where h is defined in (3.30) and β̃ is a constant depending only on µ, b, n and F .

Combining (3.54) with (3.40), we obtain

L = ||v||H−n ≥ λ̃E−
n

d(1−α)

N2n
,

where λ̃ = 1
6

(µ−b)
2

d(1−α)
+1

3
2

d(1−α) β̃
. Letting C̃l = λ̃

d
n , we obtain

E
1

1−α L
d
n ≥ C̃l

Nd
.

• Let d ≥ 2n.
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We consider the discrete function ϕ = χSlp
as in the fourth order case. An estimate on

its Hn norm gives

||ϕ||2Hn ≤
τ(n)|Slp|d

Nd−2n
,

where τ(n) is a constant depending only on the order of derivatives. It can be worked

out exactly but its exact value does not affect the bound on the coarsening rate. Using

the result of Lemma III.10 we obtain

(3.55) ||ϕ||2Hn ≤ τ(n)dN2nµ

h
.

Combining estimate (3.44) with (3.55) we show that

L = ||v||H−n ≥ 5(µ − b)
3−2α

2(1−α) E−
1

2(1−α)

12Nn
√

3τdµ
.

Letting C̃h =
25(µ−b)

3−2α
1−α

432τdµ
, we can write the above inequality as

E
1

1−α L2 ≥ C̃h

N2n
.

This finishes the proof of Lemma III.13. �

We now establish the analogue of Corollary III.11 and let T̃∗ be as in (3.51).

Corollary III.14. Let I(T ) be as in (3.46) and define T̃ ∗ as in Corollary III.11, with T∗

replaced by T̃∗. Then under the assumptions of Theorem III.12 and Corollary III.11, for

T ∈ [T̃∗, T̃ ∗], there exist constants C̃1 < ∞ and C̃2 < ∞ such that

• If 1 ≤ d ≤ 2n − 1,

I(T ) ≥ C̃1

[

(N2nT )−
d

d(1−α)+2n

]2(1−α)
.

• If d ≥ 2n,

I(T ) ≥ C̃2

[

(N2nT )−
1

2−α
]2(1−α)

.
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The proof is analogous to the one of Corollary III.11.

3.5 Numerical evidence and discussion

In this section, we present numerical experiments for the fourth order (i.e., You-Kaveh)

and sixth order equation corroborating the rigorous statement of Corollary III.14, and dis-

cuss some of the implications of this result in image processing applications.

3.5.1 Numerical results

We show the actual coarsening rate of (3.47) by discretizing the system of ODEs (3.49)

in time and solving it numerically as in [34, 37]. The graphs below show that the coars-

ening rate depends on N as our bounds indicate. We also note that our analysis does

not include the early time dynamics since our results only hold for later times. We let

G(vn
i
) = −∆n

h

(

R(vn
i
)
)

and use the forward Euler method in time

(3.56)
vn+1

i
− vn

i

δt
= G(vn

i ).

As in [37], we choose the following density function f

(3.57) f (x) = (1 + x2)
α
2 ,

with α = 1
2
. As an initial condition, we use a perturbation of vi = 2. Using the result of

Corollary III.11 and Corollary III.14, we have

• In the fourth order case

? T

0

(
K

Nd

)2−2α

dt ≥ C






(

(N4T )
−d

d(1−α)+4

)2−2α
for 1 ≤ d ≤ 3

(

(N4T )
−1

2−α
)2−2α

for d ≥ 4,

for some constant C < ∞.

• In the sixth order case

? T

0

(
K

Nd

)2−2α

dt ≥ C






(

(N6T )
−d

d(1−α)+6

)2−2α
for 1 ≤ d ≤ 5

(

(N6T )
−1

2−α
)2−2α

for d ≥ 6,
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for some constant C < ∞.

In the figures below we show loglog plots of the spike density K

Nd of the solution of

(3.56) versus N2nT , with f defined in (3.57), for n = 2 and n = 3, in support of the

rigorous result stated in Corollary III.14. The rigorous bounds from Theorem III.12 and

Corollary III.14 also lead to the following heuristic scalings for the length scale L

NnL ∼






(

N2nT
) n

d(1−α)+2n
if 1 ≤ d ≤ 2n − 1,

(

N2nT
) 1

2(2−α)
if d ≥ 2n.

We provide plots for the length scale L to corroborate the above scalings. For the fourth

order equation, our numerical results are presented in dimensions two, three, four and

five to illustrate the fact that the coarsening rate does indeed become constant after di-

mension four. Figures 3.6, 3.8, 3.10, and 3.12 show the decay of the spike density K

Nd

versus N2nT , superimposed with the theoretical coarsening rate
(

N2nT
)− d

d(1−α)+2n
in dimen-

sions two, three, four and five respectively. Figures 3.7, 3.9, 3.11, and 3.13 display similar

plots for the length scale L. The last two figures illustrate our numerical results for the

sixth order equation in dimension two. Figure 3.14 shows the plot for the spike density K

Nd

and Figure 3.15 the plot for the length scale L.

The computational results presented below show very good agreement with the theoret-

ical bounds of Sections 3.3 and 3.4 and their implications described above. In particular,

although the rigorous results presented in this thesis are one-sided bounds, as in previous

applications of the Kohn and Otto’s technique, they seem to reflect the typically observed

behavior of the dynamics. Indeed, after a brief initial period of rapid change, in our ex-

periments both the spike density K

Nd and the length scale quantity L settle into a rate that

is remarkably close to the one-sided bounds. Nevertheless, a slight deviation from the

bounds is present in the behavior of K

Nd at dimensions d ≥ 4 for the fourth order (i.e. You-

Kaveh) equation (see Figures 3.10 and 3.12), whereas no such deviation can be discerned
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in our experiments in the behavior of L (see Figures 3.11 and 3.13). A similar slight devi-

ation was observed in [34] for the second order (i.e. Perona-Malik) equation at dimension

d = 2. Based on these cases, it may be reasonable to suspect that in general, for the 2n-th

order equation, the deviation appears at dimension d = 2n, which is when the interpolation

inequality of Lemma III.13 switches from one form to the other.
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Figure 3.6: Experiments done with the two-dimensional You-Kaveh equation (3.6) with f (x) = (1 + x2)
1
4 . The spike density K

N2 is

represented by the dashed lines for N = 175 and N = 200. The coarsening rate (N4T )−
2
5 indicated by the bound obtained

in Theorem III.6 is represented by the solid line. After an initial period, the spikes appear to coarsen at the predicted rate
indicating that the bound seems close to optimal.
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Figure 3.7: Experiments done with the two-dimensional You-Kaveh equation (3.6) with f (x) = (1 + x2)
1
4 . The rate (N4T )

2
5 is

represented by the solid line. The quantity LN2, represented by the dashed lines for N = 175 and N = 200, appears to

coarsen at the rate (N4T )
2
5 after an initial period of time. This shows that after a transient initial time, the length scale L

behaves like L ∼ 1
K

, validating our choice (3.15) as a length scale measure.
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Figure 3.8: Experiments done with the three-dimensional You-Kaveh equation (3.6) with f (x) = (1 + x2)
1
4 . The spike density K

N3 is

represented by the dashed lines for N = 20 and N = 25. The coarsening rate (N4T )−
6
11 indicated by the bound obtained

in Theorem III.6 is represented by the solid line. After an initial period, the spikes appear to coarsen at the predicted rate
indicating that the bound seems close to optimal.
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Figure 3.9: Experiments done with the three-dimensional You-Kaveh equation (3.6) with f (x) = (1 + x2)
1
4 . The rate (N4T )

6
11 is

represented by the solid line. The quantity L
3
2 N3, represented by the dashed lines for N = 20 and N = 25, appears to

coarsen at the rate (N4T )
6

11 after an initial period of time. This shows that after a transient initial time, the length scale
L behaves like L ∼ 1

K
2
3

, validating our choice (3.15) as a length scale measure.
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Figure 3.10: Experiments done with the four-dimensional You-Kaveh equation (3.6) with f (x) = (1+ x2)
1
4 . The spike density K

N4 is

represented by the dashed lines for N = 10 and N = 15. The coarsening rate (N4T )−
2
3 indicated by the bound obtained

in Theorem III.6 is represented by the solid line. After an initial period, the spikes appear to coarsen at the predicted
rate indicating that the bound seems close to optimal.



120

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N
4
T

L
2
N
4

Solid line: (N
4
T)
2/3

Figure 3.11: Experiments done with the four-dimensional You-Kaveh equation (3.6) with f (x) = (1 + x2)
1
4 . The rate (N4T )

2
3 is

represented by the solid line. The quantity L2N4, represented by the dashed lines for N = 10 and N = 15, appears to

coarsen at the rate (N4T )
2
3 after an initial period of time. This shows that after a transient initial time, the length scale

L behaves like L ∼ 1√
K

, validating the choice (3.15) as a length scale measure.
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Figure 3.12: Experiments done with the five-dimensional You-Kaveh equation (3.6) with f (x) = (1 + x2)
1
4 . The spike density

K

N5 is represented by the dashed lines for N = 7. The coarsening rate (N4T )−
2
3 indicated by the bound obtained in

Theorem III.6 is represented by the solid line. After an initial period, the spikes appear to coarsen at the predicted rate
indicating that the bound seems close to optimal and corroborating the fact that the coarsening rate becomes constant
after dimension four.
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Figure 3.13: Experiments done with the five-dimensional You-Kaveh equation (3.6) with f (x) = (1 + x2)
1
4 . The rate (N4T )

2
3 is

represented by the solid line. The quantity L2N4, represented by the dashed lines for N = 7, appears to coarsen at the

rate (N4T )
2
3 after an initial period of time. This shows that after a transient initial time, the length scale L behaves like

L ∼ 1√
K

, as in the four dimensional case.
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Figure 3.14: Experiments done with the two-dimensional sixth-order equation (3.49) with f (x) = (1 + x2)
1
4 . The spike density K

N2

is represented by the dashed lines for N = 30, N = 50 and N = 75. The coarsening rate (N6T )−
2
7 indicated by the

bound obtained in Theorem III.12 is represented by the solid line. After an initial period, the spikes appear to coarsen
at the predicted rate indicating that the bound seems close to optimal.
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Figure 3.15: Experiments done with the two-dimensional sixth order equation (3.49) with f (x) = (1 + x2)
1
4 . The rate (N6T )

2
7 is

represented by the solid line. The quantity L
2
3 N2, represented by the dashed lines for N = 30, N = 50 and N = 75,

appears to coarsen at the rate (N6T )
2
7 after an initial period of time. This shows that after a transient initial time, the

length scale L behaves like L ∼ 1

K
3
2

, validating the choice (3.50) as a length scale measure.

3.5.2 Discussion

In practical applications to image processing of the schemes considered in this thesis

(e.g., the You-Kaveh model (3.6)), a central question is the appropriate choice of param-

eters. In particular, given an image to be simplified (i.e., coarsened), it is often critical to

know when to stop the time evolution of the processing equation. Since the complexity of

an image is generally measured in terms of its “edge content”, Corollary III.14 presented

in Section 3.4 may be interpreted to furnish a partial answer to this question. Although the

results of this thesis cannot provide a universal, absolute value for the time at which a de-

sired level of simplification in the image will be reached, they can be used to infer a scaling

between the evolution time and the level of simplification: indeed, inverting the rigorous
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statement for the spike density given in Corollary III.14, we arrive at the following

(3.58)






T ∼
(

K

Nd

)− d(1−α)+2n
d

if 1 ≤ d ≤ 2n − 1,

T ∼
(

K

Nd

)−(2−α)
if d ≥ 2n,

where T is the time of evolution and K

Nd the spike density. An interesting facet of formula

(3.58) is its dependence on n, the order of the equation up to a factor of two. We see that

in low dimensions, namely 1 ≤ d ≤ 2n− 1 (two, three and four being the most common in

image processing), the coarsening rate (in terms of the exponent) slows down as the order

of the equation increases. In particular, we see that in dimensions one, two and three,

the fourth order You-Kaveh evolution leads to a slower simplification of the image than

the second order Perona-Malik equation, potentially requiring a longer integration time.

This observation concerns the continuous in time versions of the schemes, and is thus in-

dependent of the choice of time-stepping method used for the fully discrete system. It is

an additional factor that needs to be taken into account when assessing the computational

complexity of the various models, together with the usual stability restriction on the time

step size that occurs in explicit schemes (i.e., the CFL condition which gets worse as the

order of the equation increases). At this junction, it is worth mentioning the observation in

[34] that implicit schemes for these ill-posed evolutions do not seem to yield the expected

improvements in complexity: although implicit schemes can indeed be unconditionally

stable, thus allowing for larger time steps, decreasing the number of spikes by a certain

factor requires roughly the same number of time steps as an explicit scheme, regardless of

the step size. A reasonable explanation for this observation is that large time steps cannot

capture accurately enough the evolutions of spikes (a highly non smooth solution) and thus

introduce drastic errors that alter the discrete simulations. There is therefore no real gain

in processing speed by using implicit time-stepping methods for these equations. Never-

theless, despite their additional, inherent computational complexity, these You-Kaveh type
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models find use in image processing due to the improved quality of their results. There is

indeed a trade-off between computational time and quality of the processed image, but the

final choice of which element is more important (i.e., computational speed versus quality

of the results) is in the end up to the practitioner and dependent on the application.



CHAPTER IV

Conclusion and Future Directions

4.1 Conclusion

The results obtained in this dissertation describe computational and analytical research

work in partial differential equations in image processing applications. In the algorithmic

part of this dissertation, we present new algorithms for general area preserving motions in

the plane. These algorithms provide efficient and highly accurate computational tools for

generating area preserving geometric motions and can be applied in many situations and

many applications, including (but not restricted to) image processing and material science.

The second part of this dissertation provides rigorous bounds on the coarsening rates of

nonlinear diffusion equations used to simplify (also denoise) images in computer vision

applications. These bounds are crucial for understanding the coarsening rate of these

nonlinear equations, and are a step towards the automatic determination of the stopping

time of these evolutions, given a desired level of simplification in the resulting image.

In addition to its practical impact, this result provides a novel proof for the interpolation

inequality. The proof is modified from its precursor (second-order case in [34, 37]), and

involves a new construction of the test functions. This novel construction is more general

and provides insight on how the order of the equation and the dimension of the space come

into play in the coarsening rate.
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4.2 Future Directions

In this section, we discuss future directions of research that extend the work accom-

plished in this dissertation.

4.2.1 Volume preserving flows in higher dimensions

A natural extension of our area preserving algorithms described in Chapter II is to

volume preserving flows in dimensions three and higher. This generalization should be

relatively straightforward and would provide efficient and accurate algorithms for area

preserving flows in high dimensions.

4.2.2 Fourth order flow for image segmentation and inverse problems

It would be interesting to investigate a variational alternative to the area preserving

flow, which might be preferred to remove any shrinking bias. For that purpose, consider

a Mumford-Shah based regularization model in which the usual perimeter term in the

Mumford-Shah energy functional is replaced by

(4.1) J =

∫

∂Σ

|κ|dσ.

Like the area preserving flow, this term removes the natural shrinking bias of the Mumford-

Shah model. In particular, J = 2π for any convex curve. The minimization of this new

energy functional leads to a fourth order evolution that can be easily computed using the

new diffusion generated motion algorithms [35].

4.2.3 Second order flow for image segmentation and inverse problems

An alternative to replacing the perimeter term in the Mumford-Shah energy functional

by J in (4.1) as discussed above, would be to modify the perimeter term in the two dimen-
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sional Mumford-shah functional as

Q =
PerΣ√

Area (Σ)
.

In three dimensions, this term would become

Q =
SurfΣ

(Vol (Σ))
2
3

.

This regularization is an isoperimetric ratio for the set Σ and is therefore scaling invariant

and minimum for circles or spheres. Thus, like the area preserving flow, this term removes

the shrinking bias of the Mumford-Shah model. Gradient descent on the complete energy

functional leads to a second order evolution that can also be easily computed using the

new diffusion generated motion algorithms with signed distance functions.

4.2.4 Generalizations to all images

Working with piecewise smooth images as described in Section 2.4 of Chapter II is

actually quite restrictive. An extension to general images, considers an image f , with gray

level f (x) at location x. If we assume a binary expansion of the gray level with 8 digits

(from 0 to 255), we can describe f as

f (x) =

7∑

j=0

2 j1Σ j
(x),

where Σ j is the set of points x, where the binary expansion of f (x) has a 1 in the j-th

bit. Such generalization can be applied to our area preserving flows, as well as to the two

variational models discussed above.

4.2.5 Coarsening in ill-posed diffusion equations for asymptotically constant energy densities

In this dissertation, we have obtained rigorous upper bounds on the coarsening rate of

a family of discrete ill-posed diffusion equations. These bounds are valid for a class of

energy densities f , that in essence grow like a power law t 7→ tα, with α ∈ [0, 1[. One
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unsolved problem is the case of asymptotically constant energy densities that corresponds

to a very fast decay of the function R in (3.2). It would be very interesting to investigate

this case on the Perona-Malik scheme studied in [34, 37]

(4.2)
dvi

dt
= ∆δ (R (vi)) i ∈ L = {0, 1, · · · ,N − 1}d ,

where δ = 1
N

. In this situation, the usual Kohn-Otto framework cannot be applied since the

dynamics is driven by the deviation of the energy from its asymptotic constant. However,

one of our ideas is to obtain a modified version of the Kohn-Otto argument using previous

results on energy densities with power law growth at infinity. The approach would be

to consider a modified energy density f̃ with power law growth at infinity, the energy of

which Ẽ is also decreased by (4.2). Using previous arguments (see [37]), we can relate Ẽ to

the usual length scale L in an interpolation inequality. The more interesting question is now

to prove a suitably modified dissipation inequality between dL
dt

and dẼ
dt

, which combined

with the interpolation inequality previously obtained, would lead to upper bounds on the

coarsening rate of (4.2) for asymptotically constant energy densities. Once obtained for

the second order equation (4.2), this analysis should be relatively easy to extend to high

order diffusion equations using the work described in Chapter III (see also [60]).

4.2.6 Convergence of an algorithm for motions with normal velocities of the form f (κ)

Here we consider the convergence of the new diffusion generated motion algorithms

introduced by Esedoḡlu et al. [35], the extension of which to area preserving curvature

flow was described in Chapter II. It would be interesting to look at the version of this

algorithm that generates motions by vN = f (κ), where f is Lipschitz with constant L f :
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Algorithm: Given the initial set Σ0 through its distance function d0(x) and a time

step δt > 0, generate the sets Σ j via their distance function d j(x) at the subsequent

discrete times t = j(δt) by alternating:

1. With any M ≥ L f , form L(x) = d j + δt f

(

1

Mδt

{

GMδt ∗ d j − d j

}
)

,

2. Construct the distance function d j+1 using d j+1(x) = Redist(L(x)).

A proof of convergence of a similar algorithm for just standard mean curvature motion

was recently given by Chambolle et al. in [22]. Since the algorithm described above is

monotone, we anticipate that an analogous approach may be applicable for these more

general motions.

The ultimate goal is to obtain a proof of convergence for our area preserving diffu-

sion generated motion algorithms. However, due to the non monotonicity of these area

preserving schemes, we feel that a more immediate goal should be geared towards obtain-

ing a convergence proof for the diffusion generated motion algorithms generating motions

with vN = f (κ) described above. From this proof, we expect to acquire some insights

towards obtaining a convergence proof for our area preserving algorithms.
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APPENDIX A

A note on the piecewise smooth model of Vese and Chan

We consider the two phase piecewise smooth model of Vese and Chan [96]:

(A.1)

E (Σ, c1, c2) := Per(Σ)+λ

(∫

Σ

(g − c1)2dx +

∫

Σc

(g − c2)2dx

)

+µ

(∫

Σ

|∇c1|2dx +

∫

Σc

|∇c2|2dx

)

,

where c1 and c2 are smooth functions on the image domain Ω (e.g., Ω = [−5, 5]2). We

show that (A.1) can remain uniformly bounded even as the segmentation converges to a

function that is not “piecewise smooth”, i.e., one that would have infinite energy under any

reasonable interpretation of (A.1). In particular, we exhibit that the lower semi-continuous

envelope of (A.1) would allow cracks, and thus presumably reduce to a model as general

as the original full Mumford-Shah, instead of providing a simplification.

We find an image g, a set Σ, functions c1 and c2 and sequences Σk, ck
1 and ck

2 converging

respectively to Σ, c1 and c2 such that

E(Σ, c1, c2) > lim
k→∞

inf E(Σk, c
k
1, c

k
2).

We consider the observed image g to be

(A.2) g(z) = ℑ
(√

z − 1
√

z + 1
)

,

where z ∈ C. The function g is smooth everywhere except at the branch cut ]− 1, 1[ where

it is discontinuous, as shown in Figure A.1. Thus, its Dirichlet energy on the whole domain
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Figure A.1: Gray scale image of g described by equation (A.2)

Ω is infinite. We denote by Σ the branch cut ] − 1, 1[ and consider the following sequence

of sets Σk:

Σk :=

{

x : |x − y| < 1

k
for all y ∈ Σ

}

.

By construction, the sequence Σk converges to Σ as k → ∞ in L1. We now define the

sequences

ck
1(x) = 0 for all x ∈ Σk and ck

2(x) = g(x) for all x ∈ Σc
k,

and form

(A.3) gk(x) = ck
1(x)1Σ(x) + ck

2(x)1Σc(x).

Note that both ck
1 and ck

2 are smooth on their respective domain of definition. By construc-

tion we have

lim
k→∞

∫

Ω

(gk(x) − g(x))2dx = 0,

since in the limit, g and gk agree everywhere except on the set Σ of measure zero. The

sequence gk thus converges to g in the L2 sense. The energy (A.1) of the limiting functional
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g is thus

E(Σ, 0, g) = Per(Σ) + λ

∫

Σ

g(x)2dx

︸                      ︷︷                      ︸

=0 since Σ has measure zero

+µ

∫

Σ

|∇g|2dx

= µ

∫

Σ

|∇g|2dx.

Since g is discontinuous across the crack ] − 1, 1[,
∫

Σ
|∇g|2dx should be taken as infinite

and so should E(Σ, 0, g).

Now, let’s evaluate (A.1) on gk:

E(Σk, c
k
1, c

k
2) = Per(Σk) + λ

∫

Σk

g(x)2dx + µ

∫

Σc
k

|∇g|2dx

= 2 +
2π

k
+ λ

∫

Σk

g(x)2dx + µ

∫

Σc
k

|∇g|2dx

(

by construction Per(Σk) = 2 +
2π

k

)

≤ 2 +
2π

k
+ λ

∫

Ω

g(x)2dx + µ

∫

Σc

|∇g|2dx.

Since g is smooth on Σc and bounded on Ω, we know that both terms
∫

Ω
g(x)2dx and

∫

Σc |∇g|2dx are finite, namely there exists a constant C < ∞ such that

E(Σk, c
k
1, c

k
2) < C for all k ∈ N∗.

Thus

lim
k→∞

inf E(Σk, c
k
1, c

k
2) < C < E(Σ, 0, g) = E( lim

k→∞
Σk, lim

k→∞
ck

1, lim
k→∞

ck
2),

which shows that (A.1), when relaxed, would assign finite energy to an image with an

open curve as its discontinuity set.
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[36] S. Esedoḡlu, S. J. Ruuth, and R. Tsai. Threshold dynamics for high order geometric motions. Inter-

faces and Free Boundaries, 10(3):263–282, 2008.



137
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