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ABSTRACT

ACCELERATED STATISTICAL IMAGE RECONSTRUCTION ALGORITHMS AND

SIMPLIFIED COST FUNCTIONS FOR X-RAY COMPUTED TOMOGRAPHY

by

Somesh Srivastava

Chair: Prof. Jeffrey A. Fessler

Statistical image reconstruction methods are poised to replace traditional methods like fil-

tered back-projection (FBP) in commercial X-ray computed tomography (CT) scanners.

Statistical methods offer many advantages over FBP, including incorporating physical ef-

fects and physical constraints, modeling of complex imaging geometries, and imaging at

lower X-ray doses. But, the use of statistical methods is limited due to many practical

problems. This thesis proposes methods to improve four aspects of statistical methods:

reconstruction time, beam hardening, non-negativity constraints, and organ motion. To

reduce the reconstruction time, several novel iterative algorithms are proposed that are

adapted to multi-core computing, including a hybrid ordered subsets (OS) / iterative coor-

dinate descent (ICD) approach. This approach leads to a reduction in reconstruction time,

and it also makes the ICD algorithm robust to the initial guess image. Statistical methods

have accounted for beam hardening by using more information than needed by traditional

FBP-based methods like the Joseph-Spital (JS) method. This thesis proposes a statistical

method that uses exactly the same beam hardening information as the JS method while

suppressing beam hardening artifacts. Directly imposing the non-negativity constraints

xi



can increase the computation time of algorithms such as the preconditioned conjugate

gradient (PCG) method. This thesis proposes a modification of the penalized-likelihood

cost function for monoenergetic transmission tomography, and a corresponding PCG algo-

rithm, that reduce reconstruction time when enforcing nonnegativity. Organ motion during

a scan causes image artifacts, and in some cases these artifacts are more apparent when

standard statistical methods are used. A preliminary simulation study of a new approach

to remove motion artifacts is presented. The distinguishing feature of this approach is that

it does not require any new information from the scanner. The target applications of this

research effort are 3-D volume reconstructions for axial cone-beam and helical cone-beam

scanning geometries of multislice CT (MSCT) scanners.
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CHAPTER 1

Introduction

X-ray Computed Tomography (CT) is a valuable tool in medical diagnosis. It produces

sharp millimeter scale resolution images of the anatomy of a patient by imaging a physical

property of the body tissues known as the X-ray attenuation coefficient. Recent advance-

ments in X-ray imaging technology have produced spectacular medical applications. Foe

example, videos of the heart have been produced using Multislice CT (MSCT) scanners,

due to the development of high-speed gantries and multi-row detectors. All these techno-

logical developments and applications pose new challenges to image reconstruction.

Image reconstruction is the process of mathematically computing the image of the pa-

tient or object being scanned in a X-ray CT scanner. The inputs to the mathematical com-

putation are the observations produced by the scanner, its physical characteristics, and its

instrument settings for a particular scan. Image reconstruction faces many challenges from

the latest scanners. One challenge is the complex nature of the data collection geometries.

Another one arises from the need to reduce the amount of X-ray exposure to the patient,

also known as the X-ray dose. A reduced X-ray dose is considered better for the general

well-being of the patient. Also, competing imaging technologies like Magnetic resonance

imaging (MRI) do not use ionizing radiation and are almost completely harmless. Unless

image reconstruction methods are improved, reconstructed images at reduced X-ray dose

1
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are noisy. This thesis explores new image reconstruction methods that try to overcome the

above challenges and many more.

Two major families of image reconstruction methods for X-ray CT are the Filtered

back-projection (FBP) methods, and the Statistical methods. FBP is the traditional method

of image reconstruction, whereas statistical methods are more recent. Statistical methods

are much more flexible than FBP, because modeling observation statistics, data collection

geometry, physical effects, and physical constraints on the image is easier with statistical

methods. Derivation of FBP-based methods that model all of the above has proved to

be difficult. But, statistical methods suffer from one major drawback when compared to

FBP–excessive computation time. A major portion of the research effort presented in this

thesis is aimed at reducing the computation time of statistical methods.

A statistical image reconstruction method consists of two components: a cost function

and an algorithm. The cost function is a mathematical function that maps the reconstructed

image into the real-number line. The reconstructed image is a general term that can refer to

a slice through the patient, or a stack of slices (also known as a volume), or a time sequence

of a slice or a volume. The observations made during a scan, physical characteristics of

the scanner, and scanner instrument settings participate as components of the cost function.

Cost functions in X-ray CT are considered to have the property that their minimum/minima

are close to the true nature of patient anatomy. The algorithm is a numerical method that

finds the image that minimizes the cost function. That is how an algorithm together with a

cost function produces an image of the patient. Algorithms that minimize the cost function

in one step are rare. Most algorithms are iterative, i.e., they start with a coarse initial guess

and refine it over and over in such a way that the refinements possess lower and lower

values of the cost function. The computation that produces each consecutive refinement is

called an iteration. An iterative algorithm executes iterations until certain criteria, known
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as convergence criteria, are met. This thesis investigates new cost functions and iterative

algorithms for X-ray CT.

The computation time of an iterative algorithm is a product of two numbers: the num-

ber of iterations and the average time taken to execute one iteration. The number of it-

erations required by an iterative algorithm to meet a certain convergence criteria roughly

defines its convergence rate. Thus, using iterative algorithms with faster convergence rates

can reduce the overall compute time. The following algorithms are known to have high

convergence rate apart from other desirable properties: Ordered-subsets (OS, also known

as block-gradient), Preconditoned conjugate gradient (PCG), and Iterative coordinate de-

scent (ICD). Convergence rate can be further increased by creating new algorithms that

somehow combine one or more of the algorithms listed above. This approach of combin-

ing algorithms, called the hybrid-algorithm approach here, is developed and tested in this

thesis.

But, improvements in convergence rate alone are not expected to be sufficient to make

iterative algorithms practical. The time taken to execute one iteration must also be re-

duced. Compute time per iteration can be reduced by using faster computers. And faster

computers nowadays, are parallel, i.e., they are constructed by creating a network of a

large number of microprocessors. This approach of using a parallel computer to reduce

per-iteration compute time is termed as the parallel-computation approach here. To sum-

marize, this thesis explores two approaches to reduce the compute time of a statistical im-

age reconstruction method: the hybrid-algorithm approach and the parallel-computation

approach.

While reducing computation time is necessary to make statistical methods practical, it

is also necessary to adapt them to correct for various kinds of image artifacts. An image

artifact can be broadly defined as the systematic deviation of the reconstructed image from
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the true nature of the patient or object being scanned. Image artifacts can possibly obscure

and/or distort important image features, which could in turn effect the patient diagnosis.

Artifacts appear in images when the reconstruction method, whether FBP or Statistical,

fails to account for one or more physical properties and/or physical effects in its mathe-

matical computations. Out of the many physical properties and physical effects that when

ignored can cause artifacts, three are studied in this thesis: non-negative nature of the

X-ray attenuation coefficient, beam hardening, and organ motion.

X-ray attenuation coefficient is the physical property whose image is created by an

X-ray CT scanner. It has non-negative values. If an image reconstruction method does

not impose the non-negativity constraint on the image voxels (or, pixels), some voxels,

especially those in the air regions, can become negative. This is a non-physical result and

hence may be undesirable. Once can impose the non-negativity constraint on the image

by using non-negatively constrained cost-function minimization methods. The imposition

of the non-negativity constraint is trivial in OS-based and ICD-based algorithms. But,

the direct imposition of the non-negativity constraint in PCG-based algorithms causes the

compute time to increase by nearly 50%. In this thesis, a simple modification of the cost

function is developed. Applying PCG-based algorithms to this modified cost function

controls negative pixels to some extent and does not incur a large compute time penalty.

Beam hardening is accounted for in FBP using a post-processing method called the

Joseph and Spital (JS) method. The JS method can be applied to statistical methods pro-

vided beam hardening information is excluded from the cost function. A better strategy

is to include beam hardening in the cost function rather than work around beam harden-

ing using the JS method. Inclusion of beam hardening in the cost function is especially

beneficial when the X-ray dose is low. A cost function that includes beam hardening is

developed and studied in this thesis.
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Organ motion can cause artifacts in images produced using cost functions that ignore

its occurrence. In chest scans, lungs and the heart are almost always moving while the

scan is taken. One solution would be to stop or reduce organ motion using external in-

struments like those used for breath-hold techniques. But, not all scans can be taken while

using such techniques. An alternative solution would be to detect organ motion from the

data collected by the scanner and model it within the cost function. One such solution is

developed and tested for a simulated, single-slice, fan-beam scan in this thesis.

X-ray CT scanners targeted by the statistical image reconstruction methods devel-

oped in this thesis are the Multislice CT (MSCT) (also known as, Multidetector row CT

(MDCT)) X-ray scanners. These scanners are the current state-of-the-art in gantry based

X-ray scanners. Diagnostic applications of these scanners like cardiovascular require non-

standard data-collection geometries. Statistical methods handle non-standard geometries

better than FBP, making them indispensable for image reconstruction in MSCT scanners.

The statistical image reconstruction methods developed in this thesis are tested for data

obtained from two standard geometries: axial cone-beam and helical cone-beam. These

methods are flexible enough to handle non-standard geometries.

This thesis is organized as follows. Chapter 2 presents background information on X-

ray CT and statistical image reconstruction methods. Chapter 3 presents the modified cost

function developed here that controls negative pixels while maintaining a low computa-

tion time in PCG algorithms. Chapter 4 presents the investigation of the cost function that

employs beam-hardening parameters used by the JS method. Chapter 5 presents the pre-

liminary investigation of a statistical image reconstruction method to control organ-motion

artifacts. Chapter 6 compares OS and PCG algorithms in simulated single-slice fan-beam

scans. Chapter 7 describes the algorithm acceleration techniques developed using the

hybrid-algorithm and parallel-computation approaches. Chapter 8 presents algorithm de-
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signs that can be used to further accelerate algorithms. Finally, Chapter 9 presents the

conclusions of this thesis and future research work that can be done based on it.

1.1 Contributions

Chapter 3

• A new cost function and a correspoding PCG algorithm were proposed to control

negative pixels in PCG algorithms. Compared to the current method of imposing the

non-negativity constraint in PCG algorithms, the proposed PCG algorithm reduces

execution time by a third while controlling negative pixels.

Chapter 4

• A new cost function that incorporates the beam hardening information used by the

JS method was developed. Current statistical methods for beam hardening correction

require more information than the JS method, whereas the proposed method uses

only the information used by the JS method to correct the beam hardening artifacts.

Chapter 5

• A new statistical method to reduce organ motion artifacts was developed. Current

methods for compensating for organ motion require measurement of signals other

than the singoram from the scanner. Preliminary investigations of the proposed

method indicate that it can compensate for organ motion by using the sinogram only.

Chapter 6

• A new PCG algorithm that is guaranteed to minimize non-quadratic cost functions

was developed. Current PCG algorithms are not guaranteed to find the minimum of

non-quadratic cost functions.

• A comparison of OS-based and PCG-based algorithms was carried out. It was found
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that OS algorithms converge faster then PCG algorithms to the solution in the initial

iterations. But, the iterates of the OS algorithm stop approaching the solution after

a few iterations. Thus, OS algorithms are desirable only if a quick, sub-optimal

solution is sufficient.

Chapter 7

• A new algorithm, the hybrid OS-ICD algorithm, was developed, and a comparison

of its properties with those of an existing algorithm, the ICD algorithm, carried out.

The hybrid OS-ICD algorithm can potentially better the reconstruction time of the

ICD algorithm. The hybrid OS-ICD algorithm also makes the ICD algorithm robust

to the initial guess image.

• Parallel computation was demonstrated to reduce the per-iteration compute time by

a large amount in OS-based algorithms. For a computer with 8 parallel processors, a

speedup of around 7 was observed.

Chapter 8

• A new algorithm that combines ideas from OS and PCG was derived. This derivation

is a step towards further speeding up OS algorithms.

• A new algorithm that is similar to the PWLS OS SPS algorithm but saves com-

pute time by calling computationally expensive non-quadratic functions far lesser

number of times was derived. This derivation is a step towards speeding up the

PWLS OS SPS algorithm.

• A new surrogate of the cost function that separates a regularized statistical estimation

problem into P regularized statistical estimation problems was derived in the context

of parallel computation for X-ray CT. The number of times the P problems exchange

values of iterates of the parameter segments they are individually responsible for
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can be controlled with this new surrogate. Thus, the reduction of inter-processor

communication in parallel computers can be investigated using the new surrogate.



CHAPTER 2

Background

This chapter describes the basic working of an X-ray CT imaging system and the sta-

tistical method of image reconstruction. Section 2.1 describes the basic concepts behind

an X-ray CT system. Section 2.2 describes the issues surrounding the sampling of the

observation space and the parameter space (i.e., the space of the reconstructed quantity).

The statistical reconstruction method computes the reconstructed image by the following

steps.

1. Assigning a statistical model to the observations (Section 2.3)

2. Choosing a system model (Section 2.4)

3. Including physical effects like beam hardening (Section 2.5)

4. Formulating a cost function (Section 2.6)

5. Choosing a minimization algorithm (Section 2.7)

Section 2.8 describes the reconstruction issues and analytical reconstruction methods in

cone-beam geometry.

2.1 Basic concepts

X-ray CT produces images of the X-ray attenuation coefficient of the object or patient

being scanned. A typical construction of a X-ray scanner involves a source and a detector

9
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Figure 2.1: Schematic diagram of a X-ray scanner.

array (see Fig. 2.1). The source and the detector array are fixed with respect to each

other in space on a C-arm or a gantry and trace a path or orbit around the patient. The

source is an incoherent source of X-ray radiation and detectors record the intensity of the

radiation exiting the patient. As the source and the detector array scan the patient, each

source position and detector element pair cause a thin beam of radiation to pass through the

patient and represent one observation. Let nd be the total number of such source position

and detector element pairs and i be the index numbering them. If the intensity of this

beam of radiation, before (Iin,i) and after (Iout,i) passing through the patient is known,

then Beer’s law provides the total attenuation experienced by the beam:

Iout,i = Iin,i exp

(

−
∫

Li

µ(r)dr

)

,(2.1)

where, Li is the path of the ray through the patient and µ(r) is the distribution of X-ray

attenuation coefficient in the patient as a function of position in the co-ordinate system

fixed to the room. Thus, the observations indirectly measure the line integral of the X-

ray attenuation coefficient through the patient. All image reconstruction methods whether

analytical (like FBP) or statistical, attempt to recover µ(r) from the observations {Iout,i :

i = 1, . . . , nd}. Note that (2.1) assumes that the X-ray photons in an X-ray beam have the
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same energy, i.e., the X-rays used are monoenergetic. This law has to be modified for the

more practical case of polyenergetic X-rays as shown in Section 2.5.

The physical units of µ(r) are cm−1. The more commonly used units for µ(r) are the

Hounsfield units (HU). The conversion from cm−1 to HU is :

µ(in HU) = 1000
µ− µwater
µwater − µair

.

This scale gives a value of -1000 and 0 to air and water respectively. This makes the pro-

cess of representing attenuation using unsigned numbers a little cumbersome. So, we add

1000 to µ values in HU and continue to call it HU which effectively makes the formula :

µ(in HU) = 1000(µ− µair)/(µwater − µair).
1

The sinogram of a single slice of the object is a two dimensional function that contains

the line-integral values through the object. Its first argument is the source position (as an

angle) and the second argument is the angular location of the detector from the center of

the detector array. Note that the ideal sinogram is a function of continuous parameters

whereas the observed sinogram discretizes the parameters. Thus, a finite number of in-

tegrals through the slice are being used to reconstruct samples of a continuous function

µ(r). This observation intuitively indicates that the amount of detail of an object that can

be reconstructed is determined by the number of sinogram bins in the observed sinogram.

The linear transform that maps the continuous image to the continuous sinogram is called

the Radon transform. The inversion of the Radon transform can be carried out exactly

using mathematical analysis by the Central Slice Theorem or the FBP method [46]. But,

discretization of the arguments in the observed sinogram leads to approximations being

made to the original theory.

1Images stored in HU are required to be converted to cm−1 in order to be used in computations. Assume µair ≈
0cm−1 and µwater ≈ 0.2cm−1 (at 100keV) [46]. ⇒ µ = (µHU/1000) ∗ µwater = (µHU/1000) ∗ 0.2cm−1. Thus,

µ(in cm−1) = 2 × 10−4µHU .
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Various deviations from the idealized model of (2.1) occur due to low dose, instrumen-

tation features and X-ray photon scattering. Lower dose is one of the major challenges to

X-ray CT. To achieve a lower dose, one or more of the following are required: (a) lower X-

ray tube voltage, (b) lower X-ray tube current, and (c) lower scan time. Lower tube voltage

leads to lower photon energy and increases beam-hardening. Increased beam-hardening

changes (2.1) entirely (see Section 2.5). Lower tube current leads to lower signal-to-noise

ratio (SNR) in the observations making the noise in the observations significant. Some

kind of denoising of the observations becomes necessary [43]. An intuitively more satis-

fying approach, the statistical image reconstruction approach, is to estimate the parameters

of the distribution of the observations, which are nothing but the image pixels, rather than

denoise the observations. The approach of denoising the observations is called the sino-

gram precorrection approach in which the sinogram is modified prior to reconstruction in

order to account for noise and/or physical effects. Both approaches have their advantages

and disadvantages and are being currently investigated by various researchers. Lower scan

time increases the afterglow effect and requires a high speed gantry and detectors with

faster response times. Lower scan times also mitigate motion artifacts due to voluntary

and involuntary patient motion. Instrumentation of an actual X-ray CT scanner also causes

distortions in the measurements, e.g., off-focal radiation, cross-talk, finite source spot size,

finite detector size etc. [31]. Scattering of X-ray photons is also becoming significant due

to the increased cone-angle of the radiation in 3-D systems [69]. In conclusion, an ideal re-

construction method should account for all of the above practical considerations to obtain

an accurate reconstruction of the object or patient being imaged.
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2.2 Sampling

Sampling is the process of representing a continuous image µ(r) with a finite number

of bits in a computer. The continuous image µ(r) is discretized in both space (and time)

and amplitude (i.e., a fixed number of bits are assigned to each basis coefficient). The

continuous image space is assumed to have a countable basis out of which a finite set is

chosen to approximate it: {bj(r) : j = 1, . . . , np}. µ is the vector of coefficients of this

truncated basis representation. Thus, the image is represented as:

µ(r) ≈
np
∑

j=1

µjbj(r).

The individual basis functions are located at different points in space (and time) and can

be at different scales or the same scale. This choice can influence convergence rate in

statistical methods if the initial guess is far away from the minimum, e.g., when starting

with a zero image. If the initial image is close to the minimum then basis at the finest scale

suffices. Substituting the above expression for µ(r) in the line integral expression of (2.1)

we have,

∫

Li

µ(r)dr ≈
∫

Li

np
∑

j=1

µjbj(r)dr =

np
∑

j=1

µj

∫

Li

bj(r)dr =

np
∑

j=1

Gijµj
△
= [Gµ]i,

where,Gij
△
=

∫

Li

bj(r)dr.

Thus, the matrix G plays the role of the integration operation in (2.1) and is called the

X-ray CT system model or system model for short. The operation Gµ is known as the

forward projection operation. The transpose operation of G is called the back projection

operation. Forward and back projections take up most of the computation time in statistical

image reconstruction methods.

The choice of the basis functions for µ(r) is important because it determines the accu-

racy of representation of the continuous image and also influences the implementation of
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the system model. One would prefer a basis representation that performs fast forward and

back projections in the system model without compromising representation accuracy. The

pixel basis that involves rect functions is one of the simplest. It is intuitively easy to under-

stand and its consequences are thus easy to control. Its implementation in system models

(see Section 2.4) is also simpler and relatively computationally inexpensive. However,

its main disadvantage is that it is not smooth and its Fourier transform has very a large

side-lobe amplitude. This large side-lobe amplitude could amplify errors. This is because

the image reconstruction process is basically the Radon inversion operation. The inver-

sion process carries out differentiation of sinogram data from a single row (i.e. angle).

The magnitude of the Fourier transform of the differentiation operation in 1-dimension

increases linearly with frequency with slope 1. If the object has inaccuracies in represen-

tation at higher frequencies, e.g. due to large side-lobes of the basis functions, these will be

amplified by the differentiation operation. An alternative is to use smoother basis functions

like B-splines [29]. The Radon transform for images represented on a grid (as opposed

to continuous functions), as is done above, has been an object of study due to the inexact

implementation of the Central slice theorem using discretized image and sinograms. A

notion of Radon transform for discrete data which is both theoretically satisfactory and

practically useful (very low condition numbers) is presented in [4].

Field of view (FOV) considerations are important from a practical and as well as a

theoretical point of view. Here, FOV is defined as the region in space within which a

given X-ray CT imaging system can reconstruct the object to a high degree of accuracy.

In 2-dimensional fan-beam tomography, there exists a circle within which each pixel of

the object has a ray passing through it from each position of the source. We use this

circle as a rough measure of FOV. The relation between detector size, number of source

angles, image resolution and FOV for fan-beam tomography was derived in [48] . In the
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3-dimensional case, Tuy’s condition determines the FOV (see Section 2.8).

2.3 Assigning a statistical model to the observations

The noise present in the observations can be modeled using a probability density func-

tion (or probability mass function). The observations may also be effected by other phys-

ical processes which are assumed to be accounted for using appropriate sinogram pre-

correction techniques. The observations yi obtained by the scanner are pre-corrected to

obtain y̌i, which are then used for reconstruction (e.g. see Section 4.1). The statistics

mainly depend on the physical processes operating within the detector system. A detailed

analysis is presented in [19]. The models investigated in [19] are : (a) Compound Poisson

and (b) Compound Poisson with Gaussian readout noise. However, the following simple

models have been found satisfactory in current practice :

1. Poisson [1, 23] : A detailed observation model for an X-ray CT system has been

investigated in [43]. We use a simplified version of [43, Eq. 9] here. For a source-

detector-pair i, bi is the initial intensity of the beam expressed as number of counts

(also called blank-scan counts) and ri accounts for the read-out noise (also called

random counts) and scatter. The observations are assumed to be distributed as :

y̌i ∼ Poisson
{

bie
−[Gµ]i + ri

}

.(2.2)

2. Weighted least squares (WLS) ( [23, 56]) : The negative log-likelihood of (2.2) is

approximated using a quadratic function in [23]. This quadratic approximation leads

us to the following variable transformation: ľi
△
= ln( bi−ri

y̌i
). The quadratic approxi-

mation implies that ľi is a Gaussian random variable. The parameters of the quadratic

approximation suggest that the mean and variance of ľi are [Gµ]i and y̌
obs
i /(y̌obsi −ri)2
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respectively. By abusing notation a little bit we write :

ľi ∼ N
(

[Gµ]i,
y̌obsi

(y̌obsi − ri)2

)

(2.3)

One could also use elementary probability theorems and simplifying assumptions to

arrive at the above approximate distribution. Most of the algorithms in this thesis are

based on either (2.2) or (2.3).

2.4 Choosing a system model

G models the integral operation over the part of the image covered by a ray that is

passing from the source to the detector. It is one of the key components of a statistical

method – the choice of the system model affects both image quality and reconstruction

time. The operator G is also called the forward-projection operation and is computation-

ally intensive. The various approaches to implementing a system-model can be divided

into three categories : direct [13], Fourier [70] and hierarchical [6, 7]. Direct approaches

(distance-driven forward and backprojectors [13]) have been used in the current work due

to the availability of a high speed numerical implementation from our collaborators at

General Electric Healthcare Inc.. Blob-based system models for SPECT have been inves-

tigated in [68]. Finite-sized sources can be modeled by modifyingG by post-multiplying

it by a sparse square matrix of size nd × nd; G is said to be in a factored form when this

post-multiplication is performed. Having G in a factored form causes the OS method to

become sub-optimal 2. This necessitates the use of PCG-based algorithms. Other physical

processes that could possibly be accounted for using the system model are afterglow [32]

and scatter [69]. A preliminary analysis points to a factored system matrix in these cases

also.

2Whether OS methods will still work in presence of factored system matrices needs to be checked using experiments.
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Storage of the entire matrix G is not possible, even in a sparse format. The domain

and range sizes of G for a medium-sized helical cone beam reconstruction problem are

both in the range of 200 million. After sparsity considerations, the number of non-zero

entries in G would be of the order of 100 billion and would occupy atleast 1 terabyte

of memory. Computation and storage of G is time consuming and requires excessive

computer resources. Thus, the entries of G are computed when the need to access them

arises during computation.

2.5 Including physical effects like beam hardening

Beam hardening is the phenomenon in which the mean energy of the photons of an

X-ray beam increases as the beam progresses through the body. This happens because the

materials that make up the human body attenuate lower energy photons more than higher

energy photons. This causes the Beer’s Law of (2.1) to no longer hold, and has to be

replaced as shown below. Neglecting beam hardening in images in two types of artifacts:

cupping and streaks. Some form of beam hardening correction is necessary if an accurate

measurement of the X-ray attenuation coefficient is desired. A general introduction to the

interaction of X-ray photons with matter and beam hardening can be found in [46].

In current clinical CT practice, most physical effects are corrected for using sinogram

pre-correction techniques, which are usually deterministic methods. The JS method is the

preferred method for beam hardening sinogram pre-correction. However, with reducing

dose, inclusion of the physical effects into the model and the cost function becomes nec-

essary. In the rest of this section, the distribution of the observation that includes the beam

hardening effect is derived.
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The Poisson model is modified to include the beam-hardening effect as follows [20] :

yi ∼ Poisson

{
∫

Ii(E)e
−

R

Li
µ(r,E)dr

dE + ri

}

,

where, Ii(E) is the energy spectrum of the incident X-rays, µ(r, E) is the X-ray attenuation

coefficient for energy E at location r in the object. The attenuation coefficient is the

product of mass attenuation coefficientm(E) and the material density ρ(r) [46] :

µ(r, E) = m(E)ρ(r).

Note thatm and ρ depend only on E and r respectively.

The tissues within the body can be divided into two types, soft-tissue and bone, on

the basis of variation of m(E) with respect to E . The mass-attenuation coefficient of the

various types soft-tissues like muscle, fat, breast etc., are similar to water. Therefore, the

terms water and soft-tissue are used interchangeably. This simplistic classification into

two classes removes the most apparent beam hardening artifacts, but it does not yield

accurate CT numbers, especially in single-energy abdominal scans [54]. Dual-energy CT

has been shown to quantify fat content more accurately [54, 67], but has not yet replaced

single-energy CT, which continues to be the standard. The field of X-ray CT technology

is moving towards the implementation of dual-energy CT by developing new detectors,

X-ray tubes, and scanning methods.

The X-ray attenuation at a point can be written as the sum of attenuation due to the two

substances as follows:

µ(r, E) = µS(r, E) + µB(r, E) = mS(E) · fS(r)ρ(r) +mB(E) · fB(r)ρ(r)

ρ(r) is the total material density at location r. fS(r) is the relative amount of soft tissue

present at point r and its value varies from 0 to 1. Values of fS(r) and fB(r) can be found

by image segmentation [20] or can be fixed as a function of density ρ(r) [21]. The latter
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approach is possible because the densities of soft-tissues like brain, muscle and lung are

close to water, i.e., 1.0 g/cc and the density of bone tissue is close to 1.9 g/cc. The images

currently being produced are at such a coarse scale (about a millimeter) and the structure

of bone tissue is such that the number of pixels involving purely the bone tissue is small.

As a consequence, many pixels are partly bone and partly soft-tissue and image quality

is influenced by how accurately the fractions are obtained. Thus, the distribution of the

observations that incorporate the beam-hardening effect can be written as :

yi ∼ Poisson
{

bie
−fi(TS,i,TB,i) + ri

}

,(2.4)

fi(TS,i, TB,i)
△
= − ln

∫

Ii(E)

bi
e(−mS(E)TS,i−mB(E)TB,i)dE ,

bi
△
=

∫

Ii(E)dE ,

TS,i
△
=

∫

Li

fS(r)ρ(r)dr ≈ [GISρ]i,

TB,i
△
=

∫

Li

fB(r)ρ(r)dr ≈ [GIBρ]i,

ρ is the vector of density values of the image and IS and IB are diagonal matrices contain-

ing the pixelized values of fS and fB .
3 We use this model in Chapter 4.

2.6 Formulating a cost function

The cost function consists of the negative log-likelihood function, which is computed

from the statistical models obtained above. A penalty function or a Bayesian prior on the

image is added to the likelihood depending on additional requirements. Additional require-

ments include statistical priors on the image, edge preservation, increased noise reduction,

non-negative image pixels, space-invariant image resolution and space-invariant image

noise. The penalty function also assists in faster convergence. It has been observed that

3The unit of ρ is g/cc. The value is easily converted to HU by multiplying it by 1000.
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the condition number of the problem is reduced by regularization, thus speeding conver-

gence. The negative log-likelihood for the Poisson and WLS cases with beam-hardening

pre-corrected is :

−L(µ) =

nd
∑

i=1

hi([Gµ]i),(2.5)

hi(ti) =



















ȳi − y̌i ln(ȳi), ȳi = bie
−ti + ri, Poisson,

1
2
y̌i(ti − ľi)

2, WLS.

When beam-hardening is taken into account in the Poissonmodel, the negative log-likelihood

is :

−L(ρ) =

nd
∑

i=1

hi(ȳi),(2.6)

hi(ȳi) = ȳi − yi ln(ȳi),

ȳi = bi exp(−fi([GISρ]i, [GIBρ]i)) + ri,

where, fi was defined in (2.4).

2.6.1 Regularization

A penalty function or regularization function is added to the negative log-likelihood

and is usually of the form :

R(µ) =

nK
∑

k=1

ψk([Cµ]k).(2.7)

The main goals of the penalty function are to reduce noise and preserve edges. This is

done by discouraging the differences between neighboring image pixels from becoming

too large. The difference between the pixels of the kth pixel pair are denoted by [Cµ]k.

ψk is called the potential function and its form denotes the amount of regularization for a

particular value of the pixel difference. Choice of ψk influences the reconstructed image.
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ψ(t) ωψ(t)
Quadratic t2/2 1

Huber

{

t2/2 |t| ≤ δ

δ|t| − δ2/2 |t| > δ

{

1 |t| ≤ δ

δ/|t| |t| > δ

Hyperbola δ2[
√

1 + (t/δ)2 − 1] 1√
1+(t/δ)2

q-GGMRF [61]
|t|p

1+|t/δ|p−q

|t|p−2

1+|t/δ|p−q (p− (p− q) |t/δ|p−q

1+|t/δ|p−q )

Generalized Fair [24] δ2

2b3 (2b(b− a)|t/δ| 1+a|t/δ|
1+b|t/δ|

+ab2|t/δ|2
+2(a− b) log(1 + b|t/δ|))

Table 2.1: Expressions for potential functions, ψ(t), and corresponding weighting functions, ωψ(t).

For example, when ψk is a quadratic function the edges in the reconstructed image are

smooth. In order to prevent this, a non-quadratic function that is not too large for large

values of the pixel differences, like the Huber function, is used [34]. The potential func-

tions used and investigated in this thesis are listed in Table 2.1. The field of regularization

design involves choosing a penalty function to meet a specific aim. It is inspired by a large

number of fields like robust statistics, total variation methods, and diffusion equations.

The parameters of the penalty function (embedded inside ψk) could be space-variant

or space-invariant. Space-invariant parameters mean that β and other parameters of non-

quadratic regularization, e.g., δ in Huber potential function, do not depend on the location

of the pixels. It has been shown in [26] that space-invariant penalties can lead to a space-

variant local impulse response; some areas of the reconstructed image are more blurred

than the others. The penalty function suggested in [26] adjusts the penalty function pa-

rameters so that a near uniform impulse response can be achieved. This penalty function

is referred to as the space-variant penalty. The preconditioners of PCG algorithms are

different when different penalties are used (see Section 2.7.3).

Thus, the overall cost function is :

Φ(µ) = −L(µ) + βR(µ).

β is a positive parameter that decides how “strong” the regularization is. If the observed
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data is relatively noise-free then the preferred value of β would be small and vice versa.

The method of choosing β is to first create reconstructions at different β values, and then

choose the β according to some criterion. Various criteria like L-curves, cross-validation,

local-resolution and bias-variance trade-off have been suggested in literature. The β so

chosen would not only depend on the noise-level of the observations (i.e., initial source

intensity) but also on the rough size of the patient. So, a table of β values will have to be

created during the calibration of the scanner and its reconstruction software.

2.6.2 Cost function properties

The cost function constructed above has to be minimized in order to compute the re-

constructed image. A few questions have to be addressed at this point :

• Does a minimum exist?

• Do images close to the minimum or images with sufficiently low cost function value

possess satisfactory image properties?

• If a minimum exists, is it unique?

• Are minima of the cost function global or local?

• Do local minima possess satisfactory image properties?

Such questions can be answered by mathematical arguments by using theorems from opti-

mization theory and checked, at least partially, by experiments. The above questions are a

bit more difficult to answer in the constrained case than in the unconstrained case. When

the reconstructed image is constrained to lie within a target set, e.g. when the pixels of

the image are required to be positive, the minimization (or optimization) is said to be con-

strained. Such questions can be posed with respect to the continuous4 image µ(r) instead

4Continuous in the sense of the domain being continuous as opposed to discrete or pixelized.
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of its approximation µ. Some analysis tools consider µ(r) as a distribution rather than a

continuous image. This view aids in a easier handling of edges which are then referred

to as singularities [53]. In this case, analysis requires the slightly more involved concepts

from functional analysis. Analysis using µ is easier due to the use of concepts from linear

algebra e.g. null spaces, matrix rank etc.. The cost function may not be differentiable due

to certain potential functions in the regularization not being differentiable (e.g. broken

parabola) and analysis for non-differentiable functions has to be used. Theoretical an-

swers to such questions allow us to predict the properties of the reconstructed image and

the statistical reconstruction method. Sometimes such theoretical questions are of lesser

importance than the more practical goal of producing an image of acceptable visual quality

in an acceptable amount of time. The above acceptability is with respect to the end-users

of the applications e.g. the radiologists.

In summary, the reconstructed image, µ̂, is related to the cost function, Φ(µ) as fol-

lows :

µ̂ =



































arg minµΦ(µ), (Unconstrained optimization),

arg minµ∈SΦ(µ), S
△
= {µ ∈ Rnp : ∀j = 1, . . . , np, µj ≥ 0}

(Non-negatively constrained optimization).

Depending on factors like the trade-off between accuracy and speed, an unconstrained or

a constrained optimization algorithm is used.

2.7 Choosing a minimization algorithm

The cost function has to be minimized in order to produce a reconstruction. One step

solutions to minimization of cost functions are rare. Instead, one starts with a guess, µ(0),

and proceeds to refine it over and over, attempting to reduce the value of the cost func-

tion at every step. The numerical methods used to minimize the cost functions, known as
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algorithms, are usually based on gradients. Sometimes non-differentiable cost functions

can be approximated by differentiable functions and a reconstruction computed. Two fa-

vorable properties that an algorithm could possess are monotonicity and convergence. An

algorithm is said to be convergent if there exists an image to which the iterates get arbi-

trarily close to. An algorithm is said to be monotonic if each newer iterate achieves a cost

function value that is lesser than or equal to the cost function value of the current iterate.

Most algorithms have a stopping or convergence criteria. For example, if the change in

image pixels or the change in cost function values become too small then the algorithm

is stopped. Sometimes visual quality experienced by an end-user is used as a stopping

criteria. Due to the finite word-length and memory of the computers used, algorithms can

not proceed indefinitely to the theoretical minimum of the cost function and have to be

stopped.

The initial guess is usually an image from a traditional method like FBP. If the cost

function properties do not guarantee convergence to a single global minimum, e.g., if it

has local minima or is non-convex, then a good initial guess is necessary. For convex cost

functions with a unique minimum, a uniform image of zeros suffices as a initializer. But,

the minimization usually takes a larger number of iterations to converge/stop when starting

from a uniform zero image rather than the FBP image, because the former is usually farther

from the minum/minima of the cost function.

The rest of the subsections in this section are organized as follows. The method of opti-

mization transfer in deriving algorithms is described in Section 2.7.1. Various techniques

are suitable to accelerate algorithm convergence for cost functions seen in X-ray CT:

1. Ordered subsets (OS) (Section 2.7.2),

2. Preconditioned conjugate gradient (PCG) (Section 2.7.3), and

3. Incremental Coordinate Descent (ICD) (Section 2.7.4).
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Non-negatively constrained algorithms are described in Section 2.7.5. Finally, the proper-

ties of various algorithms are summarized in Section 2.7.6.

2.7.1 Iterative minimization using optimization transfer

A surrogate of the cost function is a function whose minimization leads to the mini-

mization or reduction of the value of the cost function. Surrogate based optimization algo-

rithms are also referred to as optimization transfer methods or MM algorithms [36]. The

surrogate offers certain advantages like making the function being minimized quadratic

and guaranteeing monotonicity. Surrogates used to be computed by statistical arguments

and resulted in algorithms called EM algorithms. EM algorithms have been included in a

larger set of surrogates that include quadratic functions. The quadratic surrogates afford

faster convergence than EM algorithms and allow the possibility of using unconstrained

and constrained algorithms already invented in the field of quadratic optimization.

Let our initial guess be µ(0), and the iterates computed by an algorithm be µ(n), n =

0, 1, 2, . . .. The surrogate function, φ(µ;µ(n)), of the cost function, Φ(µ), is a function

that is computed at the nth iterate. The surrogate function has the property that reducing

its value, reduces the value of the cost function, i.e., φ(µ(n+1);µ(n)) ≤ φ(µ(n);µ(n)) ⇒

Φ(µ(n+1)) ≤ Φ(µ(n)). Thus, reducing the value of the surrogate function guarantees

a monotonic reduction in the value of the cost function. The following conditions are

sufficient for a function φ(µ;µ(n)) to be a surrogate of a cost function Φ(µ) at the nth

iterate [44, Eq. 2] :

φ(µ(n);µ(n)) = Φ(µ(n)),(2.8)

φ(µ;µ(n)) ≥ Φ(µ), ∀µ ∈ R
n
p .(2.9)

When φ(µ;µ(n)) and Φ(µ) are differentiable, the gradients of the surrogate function and
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the original cost function at the current iterate µ(n) shall be equal :

∂φ(µ;µ(n))

∂µj







µ=µ(n)
=
∂Φ(µ)

∂µj







µ=µ(n)
, j = 1, . . . , np.(2.10)

When a function of the image is of the form Φ(µ) =
∑n′

d

i=1 h
′
i([Aµ]i) then it is said to be

additively-separable. A quadratic surrogate for the above function can be determined if

we majorize each of the terms using :

h′i(t) ≤ q′i(t; s)
△
= h′i(s) + ḣ′i(s)(t− s) + 1

2
c̆′i(s)(t− s)2 and,(2.11)

φ(µ;µ(n))
△
=

n′
d
∑

i=1

q′i([Aµ]i; [Aµ
(n)]i)

Determining the curvatures c̆′i(s) is the crucial computation in the above equation because

it influences the convergence rate to a large extent. In general, the smaller the value of

c̆′i(s), the larger will be the step taken by an algorithm, and faster will be the convergence.

One of the methods to compute curvatures for the negative log-likelihood part is shown

in [1], and for the regularization part in [34].

2.7.2 Ordered subsets (OS)

Ordered subsets or incremental gradient is a method to approximately compute the gra-

dient using only a subset of the observed data. A set of subsets of the observed data is

fixed and the gradient is obtained in a cyclic order from each of them. If each subset pro-

vides nearly the same gradient then the condition is called subset balance. This condition

is vital for the OS approach to work. Using a limited amount of data results in significant

computational savings. Recall from Section 2.6 that the cost function is usually of the

form :

Φ(µ) = −L(µ) + βR(µ), −L(µ) =

nd
∑

i=1

hi([Gµ]i), R(µ) =

nK
∑

k=1

ψk([Cµ]k).
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The OS approximation is used usually for−L(µ). The observed data set {y1, . . . ,ynd} is

divided intoM subsets and −L(µ) can be expressed as : −L(µ) =
∑M

m=1 Φm(µ). Thus,

∇(−L(µ)) =
∑M

m=1 ∇Φm(µ). By the subset-balance condition, ∇Φ1(µ) ≈ ∇Φ2(µ) ≈

· · · ≈ ∇ΦM (µ). Thus, ∇(−L(µ)) ≈ M∇Φm(µ). The gradients computed using OS

are observed to be good approximations only when the iterates are far away from the

minimum. Thus, OS is not suited for stringent convergence criteria. A convergent version

of OS called incremental optimization transfer (IOT) was recently proposed [3] but it

suffers from large memory requirements. The memory requirements of IOT may be too

large for the 3-D helical cone-beam CT application considered in Chapter 7 .

A recent and related OS algorithm is the incremental aggregated gradient (IAG) [9].

A distributed implementation of IAG is also described in the above paper. When IAG

is adapted to the context of X-ray CT, it turns out that the memory requirement of IAG

are atleast one image volume per subset. This memory requirement is so large that IAG

becomes impractical for X-ray CT.

2.7.3 Preconditioned conjugate gradient (PCG)

When minimizing a differentiable cost function or its quadratic surrogate, it is neces-

sary to compute the gradient. However, the gradient direction is not the best search direc-

tion. For example, a 2-argument unimodal function with highly elliptical contours has a

gradient at most points in the domain that points in a direction away from the minimum.

In the conjugate gradient method, a better descent direction is produced by combining the

gradient at the current iterate with the descent direction at the previous iterate. The basis

for such a combination is in the theory of Krylov space methods. The Krylov space meth-

ods are applicable here because minimizing a quadratic function is equivalent to solving a

system of equations. This is another motivation for using quadratic surrogates. Numerous
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methods exist even in the conjugate gradient category and one such is outlined below.

Preconditioning is incorporated into the conjugate-gradient method to produce the PCG

method. A preconditioner is an approximation to inverse of the Hessian or an easily in-

vertible matrix that is an approximation to the Hessian. Preconditioning transforms the

variables so as to cause the iterates to converge faster by improving the condition number

of the problem. One notes here that if the preconditioner P is the exact inverse of the

Hessian of a quadratic surrogate then the iteration would converge in one step by using

the Newton’s method. One major advantage of PCG over OS is that any approximation to

the inverse of the Hessian can act as a preconditioner as long as it is positive definite. A

monotonic algorithm will be obtained as long as we have a valid preconditioner. This is

in contrast to the OS based methods where approximate gradient computation results in a

non-monotonic algorithm.

The PCG method computes the descent direction by first computing the gradient. The

gradient is multiplied by a preconditioner matrix to obtain an intermediate vector, p(n).

The previous descent direction is weighted by a factor γ(n) and added to the negative

of the intermediate vector to obtain the final descent direction. The whole procedure is

summarized as follows :

g(n) = ∇Φ(µ)|µ=µ(n), Gradient,

p(n) = Pg(n), Pre-conditioned gradient,

γ(n) =



















0 n = 0,

p(n)T (g(n)−g(n−1))

p(n−1)T g(n−1)
n > 0,

Polak-Ribiere formula,

d(n) = −p(n) + γ(n)d(n−1), Pre-conditioned conjugate gradient direction.

(2.12)

Once the descent direction for either the cost function or its surrogate is determined a step
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size is chosen to compute the new iterate as follows :

µ(n+1) = µ(n) + α(n)d(n)(2.13)

where, α(n) = arg min{α∈R:α≥0}Φ
(n)(µ(n) + αd(n))

This is called a line search. For a quadratic surrogate, this step can be done analytically.

For a non-quadratic function a surrogate over α is computed [25]. Sometimes, the De-

Pierro’s trick [15] is employed to create a surrogate in which the individual pixels are

separated from each other. This permits us to create a pixel update and such a surrogate is

referred to as a separable surrogate.

2.7.4 Iterative Coordinate Descent (ICD)

The iterative coordinate descent algorithm reduces the value of the cost function one

voxel at a time [56, 61]. At a given iterate, all voxels except one are held constant. A

new value of the variable voxel that reduces the cost function value is computed. The next

voxel shall be updated using the newly computed value of the current voxel. This process

is repeated with all voxels, over and over, till convergence criteria are satisfied.

ICD is a convergent algorithmwith a high convergence rate, which makes it a near-ideal

algorithm. However, it has certain drawbacks, one of which we try to overcome using the

hybrid OS-ICD algorithm in Section 7.1.2. ICD has the property that the high frequency

components of the image converge at a high convergence rate, whereas the low frequency

components have a low convergence rate. In some cases, due to the greedy nature of the

algorithm and its high-convergence rate, the voxel values overshoot the minimum/minima,

taking a large number of iterations to converge to the solution. This happens when the

difference between the current iterate and the solution is large. Another drawback is that its

implementations on general-purpose microprocessors have memory bottlenecks. Due to

voxel based nature of the algorithm, the forward and back projector implementations have
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to be voxel based. Voxel-based projector implementations have a highly non-sequential

memory access, causing the microprocessor cache to become useless. Caches are vital in

modern general-purpose microprocessors because the microprocessors are faster than the

random access memory. Without cache utilization code execution slows down. OS and

PCG based methods do not suffer from this drawback because their implementations of

forward and back projectors have more sequential memory access patterns.

2.7.5 Non-negatively constrained algorithms

The algorithms used for constrained (more specifically, non-negatively constrained)

and unconstrained minimization differ a great deal in PCG based algorithms. This is be-

cause the non-negativity constraint makes the line search (2.13) complicated. OS methods

usually require the creation of a separable quadratic surrogate, which makes the applica-

tion of non-negativity constraint trivial. Thus, OS methods are better suited to the appli-

cation of the non-negativity constraint than the PCG based methods. The non-negativity

constraint can be applied easily to ICD based methods also because of their voxel-based

updates.

Numerous methods for applying the non-negativity constraint to gradient based meth-

ods have been described in literature. For example, LBFGS-B algorithm [10] and a method

for handling non-negative components in conjugate direction methods in [28]. Numerous

applications of LBFGS-B algorithm have been investigated, but it has not yet been proven

to be useful for 3-D reconstructions of MSCT data. Other examples are, an interior-point

method for PET [37], and a non-negatively constrained CGmethod for astronomical imag-

ing [5]. All of the above methods are generic in nature, as they use the quasi-Newton

preconditioner.



31

OS PCG ICD

Monotonicity No Yes Yes

Convergence rate High Medium Low

(low frequencies)

Convergence rate High Medium High

(high frequencies)

Memory access Sequential Sequential Non-sequential

Application of non-negativity Easy Hard Easy

constraint

Factored system matrix No Yes Yes

Table 2.2: Properties of candidate algorithms for X-ray CT.

2.7.6 Summary of algorithm properties

OS, PCG, and ICD are candidate algorithms for use in statistical image reconstruction

methods in X-ray CT. Their properties are summarized in Table 2.2. From the table, it is

evident that one single algorithm does not contain all the desirable features. Therefore,

further development of new algorithms is a necessity.

2.8 Cone-beam geometry

A 2-D fan-beam X-ray scanner has a single source and a single row of detectors

(Fig. 2.1) and it collects sinograms for only one slice, in one rotation of the gantry. Mul-

tiple rotations of the gantry and bed positions have to be used to scan multiple slices of

the patient anatomy. The cone-beam geometry is created from the fan-beam geometry by

adding rows of detectors (in the axial-direction) on either side of the central row of de-

tectors (see Fig. 2.2). This allows multiple slices to be scanned in one rotation, hence the

name, Multislice CT (MSCT) scanner. If there is no bed-motion then the source traces

a circular orbit around the patient. Such a data-collection geometry is called the axial

cone-beam geometry. If there is bed motion at a constant speed along with the gantry

rotation, then the source moves in a helical path around the patient and the data-collection

geometry is called the helical cone-beam geometry. Specialized applications of MSCT
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Figure 2.2: Axial and helical cone beam X-ray CT.

scanners e.g., cardiac, create a more complex data-collection geometry by choosing data

from axial or helical scans using an external signal, e.g., electro-cardiogram (ECG). The

reconstruction methods should be flexible enough to reconstruct images from all the above

data-collection geometries.

Not all geometries can be used to reconstruct the region-of-interest correctly; a nec-

essary and sufficient condition for a geometry to be useful was given in [58]. The above

condition (as quoted in [47]) is

If on every plane that intersects the object, there exists at least one cone beam source

point, then one can reconstruct the object.

Another similar condition is the PI-sufficiency condition (as quoted in [52]) is

The so-called PI-sufficiency condition requires that each point must be illuminated by the

source over an angular span of π, as seen from the point.

According to both the above conditions, it is apparent that off-center slices in axial cone-

beam geometry cannot be reconstructed correctly. Helical geometry satisfies the above

conditions if the object lies within the helix. But, if the object extends beyond the size of
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the helix then the above conditions are not satisfied leading to the long object problem.

Various solutions to the long object problem have been suggested in [16, 40, 60].

Various analytical methods have been proposed to reconstruct the object from its 3D

projections for both axial and helical cone-beam geometries. Some methods are theoret-

ically exact (based on sound mathematics) while others are approximate (use intuition

or a simplifying observation). A few of the exact methods are due to Grangeat [27],

Tuy [64], Tam [60] and Katsevich [40]. Most exact methods are computationally in-

tensive except [40]. Approximate methods typically require much less computation and

produce satisfactory images along with a small amount of artifact. Computational savings

in approximate methods are typically produced by deriving FBP-like methods i.e. meth-

ods involving one or more of weighting, rebinning, shift-invariant filtering and 3D or 2D

back-projection. A well-known approximate algorithm for axial cone-beam geometry is

the FDK algorithm [22]. The algorithm computes the increment to a voxel due to the

source being located at a particular angle by assuming an equivalent infinitesimal circu-

lar rotation in the tilted plane (the plane of the source and a row of off-center detectors).

Among the plethora of approximate methods the notable ones are the PI-method [63] and

the wedge-beam method of [65]. The PI-method has been expanded in [52] to include the

case when the pitch of the helix is small when compared to the detector-size.

To compute an initializer for iterative reconstruction, an approximate method such as

FBP is sufficient. This is because the iterative reconstruction algorithms shall correct the

artifacts produced due to the inexact analytical reconstruction methods also, apart from

their regular functions like noise reduction.
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Cost function for the non-negativity constraint

A basic property of the X-ray linear attenuation coefficient is that it takes only non-

negative values. FBP and other conventional analytical methods do not take this fact into

account during the inversion process. These methods impose the non-negativity constraint

as an after thought leading to a sub-optimal reconstruction. In contrast to FBP, statistical

methods that use constrained optimization algorithms allow the non-negativity constraint

to be imposed during the inversion process.

As described in Section 2.7, the requirement of low computation time in statistical

methods leads us to use OS and PCG based algorithms. The advantage of OS over PCG

based algorithms is that the imposition of the non-negativity constraint can be donewithout

any compute time overhead. Whereas, in the latter the overhead is 50% (see Section 3.1).

However, incorporation of various physical effects cause the OS methods to become sub-

optimal (see Section 2.4). Moreover, OS has to be replaced by PCG when monotonicity

is desired. This is because monotonicity can be achieved much more easily in PCG when

compared to OS. Therefore, reducing the compute time overhead of PCG based algorithms

is essential if non-negative reconstructions are desired in a reasonable amount of time. In

our solution, we abandon the explicit imposition of the non-negativity constraint and let

regularization control the negative pixels. In order to control the negative pixels further, we

34
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modify the negative log-likelihood (in a manner that bears some likeness to penalty based

constrained optimization [45]). The resulting algorithm is unconstrained, monotonic (in

the modified cost function) and controls negative pixels. The method developed in this

chapter is for the mono-energetic Poisson case but it can be easily extended to the poly-

energetic case.

A general non-negatively constrained image estimate was defined Section 2.7.5, and is

repeated here for convenience :

µ̂ = arg minµ∈SΦ(µ),

Φ(µ) = −L(µ) + βR(µ), −L(µ) =

nd
∑

i=1

hi([Gµ]i), R(µ) =

nK
∑

k=1

ψk([Cµ]k),

where, S
△
= {µ ∈ Rnp : ∀j = 1, . . . , np, µj ≥ 0}, is the non-negative orthant. For the

mono-energetic Poisson case we have,

hi(t) = bie
−t + ri − y̌i ln(bie

−t + ri).(3.1)

After the cost function modification (described below), the image estimate would be ob-

tained through unconstrained optimization as

µ̃ = arg minµ Φ̃(µ),

Φ̃(µ) = −L̃(µ) + βR(µ), −L̃(µ) =

nd
∑

i=1

h̃i([Gµ]i), R(µ) =

nK
∑

k=1

ψk([Cµ]k).

Ideally, one would like to achieve µ̃ ≈ µ̂.

3.1 Increase of compute time in PCG algorithms due to the non-negativity

constraint

We consider the cases of monotonic and non-monotonic PCG algorithms separately.

Amonotonic PCG algorithmmust use quadratic surrogates based on optimal curvatures

[1, PSOC algorithm] in order to monotonically minimize the cost function. But, the PSOC
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Figure 3.1: Plots of hi(t) (solid line) and h̃i(t) (dashed line) for the three categories. ri = 10, bi = 8, and
yi = 4, 15 and 25 in (a), (b) and (c) above respectively. Note that h̃i = hi for t ≥ 0 and differs
only for non-physical values of the attenuation coefficients.

algorithm requires the non-negativity constraint to be enforced on the image at every step

in order to ensure monotonicity. Due to the requirement of the imposition of the non-

negativity constraint in PSOC the line search of (2.13) has to be changed to :

µ(n+1) = [µ(n) + α(n)d(n)]+.(3.2)

The use of line search of (2.13) allows one less forward projection operation per iteration

in the implementation. Thus, using line search of (3.2) raises the computational load by

about 50%.

Non-monotonic PCG algorithms use quadratic surrogates based on the pre-computed

curvatures in order to increase the convergence rate. These algorithms have to use the line

search of (3.2) instead of (2.13) too in order to impose non-negativity. Thus, there is an

overhead of 50% in this case too.

3.2 Cost function modification

In this section the intuition behind the cost function modification is discussed. This is

followed by the definition of the modified likelihood. Next, the quadratic surrogate for
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the modified likelihood is presented. The proof of majorization of the quadratic surrogate

over the modified cost function can be found in Section A.2.2.

The intuition behind the modification of the likelihood is as follows. The negative log

likelihood is a sum of functions, hi, that depend on the values of bi, ri and the measure-

ments y̌i. The arguments of these functions are [Gµ]i. If [Gµ]i is negative then at least

one of the µj’s is negative. This is because the elements of the matrixG are non-negative.

To state more concisely,

(3.3) [Gµ]i < 0 ⇒ ∃ j such that µj < 0.

The condition µj < 0 indicates that µ under consideration is not physically possible.

Thus, we argue that the value of hi for ℓ < 0 is somewhat arbitrary and it is not essential

for it to match the usual log-likelihood function since negative values of ℓ are not physical.

Therefore, we propose to replace the cost functions hi(ℓ) for ℓ < 0 with functions that are

suited to our goal of controlling negative pixels.

The method to derive the modified likelihood is shown below. We divide the rays into

three categories depending on their representative plots in Fig. 3.1 :

Category 1 (Highly attenuated rays) : I1 = {i : y̌i ≤ ri}

Category 2 (Attenuated rays) : I2 = {i : ri < y̌i ≤ ri + bi}

Category 3 (Almost unattenuated rays) : I3 = {i : ri + bi < y̌i}

We propose the following modification to hi. In categories 1 and 2, for t < 0 we replace

hi with a straight line such that the continuity of the function is maintained and the slope

of the line is equal to ḣi(0). A straight line is chosen as opposed to a parabola because it

permits the surrogate to have a low curvature. Low curvatures are advantageous as they
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increase the convergence speed of the algorithm. For categories 1 and 2, we define :

h̃i(t)
△
=



















hi(t), t ≥ 0

hi(0) + ḣi(0)t, t < 0.

In category 3, it is not possible to replace hi for t < 0 with a straight line that has a

negative slope. Having a line with negative slope would make hi non-differentiable. We

reject this choice as we only consider differentiable functions in this report. For sake of

simplicity, we choose a parabola to replace hi for t < 0. The parabola is chosen such that

the continuity of hi and ḣi are maintained. For reasons of computational simplicity, the

curvature of the parabola is computed using [1, eq. 29]. For category 3, we define :

h̃i(t)
△
=



















hi(t), t ≥ 0,

hi(0) + ḣi(0)t+ 1
2

(y̌i−ri)2
y̌i

t2, t < 0.

The new negative log-likelihood can be thus written as follows :

−L̃(µ) =
∑

i∈I1
h̃i([Aµ]i) +

∑

i∈I2
h̃i([Aµ]i) +

∑

i∈I3
h̃i([Aµ]i),(3.4)

h̃i(t)
△
=



























hi(t) if t ≥ 0, i ∈ I1 ∪ I2 ∪ I3,

hi(0) + ḣi(0)t if t < 0, i ∈ I1 ∪ I2,

hi(0) + ḣi(0)t+ 1
2

(yi−ri)2
yi

t2 if t < 0, i ∈ I3.

(3.5)
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A quadratic surrogate of −L̃(µ) was derived as :

φ̃L(µ;µ(n,0)) =

nd
∑

i=1

qLi([Aµ]i; [Aµ
(n,0)]i),(3.6)

qLi(t; s) = h̃i(s) + ˙̃hi(s)(t− s) + 1
2
c̆i(s)(t− s)2,(3.7)

c̆i(s) =



























ḣi(s)−ḣi(0)
s

, s > 0, i ∈ I1 ∪ I2,

ḧi(0), s ≤ 0, i ∈ I1 ∪ I2,
(yi−ri)2

yi
, i ∈ I3,

where, ḧi(t) = d2hi(t)/dt
2.

The proof of majorization of φ̃L over−L̃(µ) on S = R
n
p is in Section A.2.2.

3.3 Simulations and results

The modified cost function was initially developed for transmission tomography, but

the monoenergetic Poisson model is applicable to X-ray CT also. Transmission tomogra-

phy is used to obtain attenuation maps for use in PET reconstruction in PET/CT systems.

The simulations and results presented here are for transmission tomography. An algo-

rithm that is well-known, but is missing from the picture here is LBFGS-B. LBFGS-B is

a constrained algorithm for bound constrained minimization. It can be said to be roughly

composed of an active constraint algorithm and an unconstrained algorithm. It is easily

changed into an unconstrained algorithm by disabling all constraints (both in theory and

computer code). LBFGS-B however has the drawback of storing more and more image

sized volumes to increase the convergence rate. This memory-convergence rate trade-off

of LBFGS-B will ultimately decide its use in practical situations.

The size of the attenuation map of the phantom used in the simulations was 128x128

and the size of each pixel was 4 × 4mm. The number of angles was 80 and number of

bins per angle was 136. We used a simple forward and back projector based on simple
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geometrical interpolations to test the algorithms. A mask of support was computed around

the phantom using the true phantom. The mask not only saves computation time by reduc-

ing the number of pixels to be estimated, it also incorporates the information that many

pixels around the image represent air whose attenuation constant is close to zero. Poisson

noise with parameters bi = 106 and ri = 10 was added to the sinogram. Initial estimate

of the attenuation map, µ0, was the FBP reconstruction with negative pixels to zero. The

algorithms compared were

1. Constrained OS algorithm with 5 subsets and precomputed curvatures called OS-

SPS-PC,

2. Unconstrained PCG algorithm with precomputed curvatures using PCG LS QS al-

gorithm (Section 6.1.1) called QS-PCG-PC,

3. Unconstrained PCG algorithm with optimal curvatures using PCG LS QS algorithm

(Section 6.1.1) called QS-PCG-OC, and

4. Unconstrained PCG algorithm on the modified cost function using QS PCG LS al-

gorithm (Section 6.1.3) called QS-PCG-MOD.

Edge-preserving, space-invariant regularization based on the Huber potential function (see

Table 2.1) was used. Its parameters, β and δ, were determined by trial-and-error to produce

acceptable visual quality. The simulations were done usingMATLAB.

The reconstructions from all the algorithms were similar (Fig. 3.2 and Fig. 3.3), and

also had similar properties with respect to the negative pixels (Fig. 3.6). All the uncon-

strained algorithms attained similar values of cost functions (Fig. 3.4 and Fig. 3.5). It is

also observed from these plots that the convergence rate of QS-PCG-MOD was slightly

lower than the other algorithms. This is not a major disadvantage because a good agree-

ment in cost function values is attained in a relatively small number of iterations.
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3.4 Summary

The negative log-likelihood for the monoenergetic and Poisson statistics case was mod-

ified to permit the creation of a monotone, unconstrained PCG algorithm. This algorithm

does not incur the 50% compute time overhead that was incurred with the requirement of

monotonicity in previous PCG algorithms. The non-negativity constraint was not imposed

explicitly and regularization was used to control the negative pixels. Since, the modifi-

cation of the negative log-likelihood is similar to penalty based constrained optimization,

negative pixels can be controlled further by increasing the penalty as the iterations proceed.

Furthermore, the modification of the likelihood was done only for non-physical values of

the image.

True phantom
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128     0
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Figure 3.2: Images of the “True Phantom” and its reconstructions by various algorithms.
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Figure 3.3: The difference images between the reconstructions and the true phantom. NRMSE is defined as

‖[µ(n)]+ − µtrue‖/‖µtrue‖.
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Figure 3.4: Plot showing the variation of Φ(µ) with iteration number and CPU time.
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Figure 3.5: Plot showing the variation of Φ([µ]+) with iteration number and CPU time.
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CHAPTER 4

Simplified cost function for beam hardening

Iterative statistical methods that have been used to account for beam-hardeningmethods

[14, 21] have used physical information that is not required by the JS method [38]. The

disadvantage of the JSmethod is that it was devised for use with FBP reconstruction. Thus,

it is desirable to adapt the JS method to the statistical image reconstruction philosophy.

The simplified cost function developed here accomplishes this goal. The JS method is

described in terms of our notation in Section 4.1. The adaptation of the JS method happens

in a trivial fashion from that description in Section 4.2.

There are two ways of account for beam hardening in statistical methods. The first is

to represent the X-ray attenuation coefficient using physical effects [14]. And the second

is to represent the X-ray attenuation coefficient using basis materials [21]. Both methods

have used more calibration information than is used by the JS method. In this section, we

show how to modify the basis materials approach to use only the information used by the

JS method to correct beam hardening artifacts.

4.1 Sinogram pre-correction for beam hardening : Joseph-Spital (JS)

method

Artifacts due to beam-hardening are of two types : cupping and streaks. Cupping is

observed in all uncorrected reconstructions, whereas streaks are present when bone content

44
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is high in the object. Cupping can be removed by water correction. Water correction is

the process of computing the water-equivalent lengths for each ray. The water-equivalent

lengths are defined as follows. First define, fS(TS)
△
= f(TS, 0). Observe from Fig. 4.1(a)

that fS is an invertible function. It is called the water-correction table in [38]. f
−1
S (li)

△
= T ∗

E

is called the water-equivalent length. If the object consisted of soft-tissue only then T ∗
E

would be the exact line integral of soft tissue density and the cupping would be removed

perfectly. Indeed, this has been found to be the case for abdominal scans [43]. The above

approximation does not hold in head scans as the bone content is relatively higher.

Now, consider the two-material model of Section 2.5, and for simplicity, assume that

the noise is absent. From (2.4), we would have 1 f(TS,i, TB,i) = ln(bi/(yi − ri))
△
= li.

f(TS, TB) is also referred to as the water and bone correction table. This set of equations

can not be solved mathematically for TS,i and TB,i without invoking physical consider-

ations and/or practical observations. This is because for every value of the function f ,

every point on a curve in the (TS,i, TB,i) plane is a solution (see Fig. 4.1(a)). The solutions

for TS,i and TB,i are obtained by dual-energy methods and the JS method in two different

ways. Dual-energy methods gather data at a second energy which provides a second curve

in the (TS,i, TB,i) plane. Thus, TS,i and TB,i are solved for exactly. The JS method esti-

mates the value of TB,i using a practical observation. The estimate of TB,i in turn gives us

the value of TS,i. Even though the JS method is not as rigorous as the Dual-energy meth-

ods, the artifact removal of the JS method has been found to be satisfactory. This gives

the JS method an edge over the dual-energy methods as it uses one less scan and keeps the

radiation dose low.

1There is a possibility of taking log of negative sinogram bins here in regions where yi values are low i.e. rays
passing though a lot of material. The extremely low values of yi cause streaks. The value of yi can be adjusted using an
adaptive trimmed mean filter [30] to prevent noise streaks. A simpler solution could simply increase the offending values

in order to provide non-negative line integrals. The second approach can cause bias and streaks in the reconstructions.
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The water equivalent-lengths of bone regions are roughly in proportion to the density

ratio of bone to soft-tissue. But, the effect is non-linear due to the fact that mS(E) and

mB(E) are not related by a constant ratio at every energy [38]. To state the above fact

in terms of f , the non-linear nature of f is responsible for beam-hardening artifacts [38].

Non-linearity of f increases with a decrease in voltage setting of the X-ray tube. γ(TS, TB)

is defined as the scaling required for the bone-tissue density length (TB) to obtain the

water-equivalent length i.e. it must satisfy : f(TS, TB) = f(TS + γ(TS, TB)TB, 0). One

can easily show that γ (see Fig. 4.1(b)) defined as follows, satisfies the above requirement :

γ(TS, TB) =



















f−1
S

(f(TS ,TB))−TS
TB

TB 6= 0,

limT→0
f−1
S

(f(TS ,T ))−TS
T

TB = 0.

Joseph and Spital found that 2 γ(TS, TB) is approximated adequately by A−BTB , where

A and B are free tuning parameters. This approximation is possible because in actual

images the amount of bone is small enough and the viewing window for the image is

large. A larger viewing window enables us to tolerate a larger amount of error. The JS

method can be described in our notation as follows :

1. Compute T ∗
E = f−1

S (li).

2. Back-project T ∗
E to create a water-corrected reconstruction. Call it ρw.

3. Segment the regions of ρw that exceed a given threshold ρ1 as bone regions. Joseph

and Spital found that the bone density is approximately over-estimated by a factor

λ0. Thus, forward project the estimated bone region and divide it by λ0 to obtain T
∗
B ,

the estimate of bone density integral.

4. Compute T finalE = T ∗
S + T ∗

B using T
∗
S + (A − BT ∗

B)T ∗
B = T ∗

E and the values of T
∗
E

and T ∗
B from steps 1 and 3 above.

2γ(TS , TB) = λL in their notation.
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Figure 4.1: Plot of f(TS , TB) and γ(TS , TB). Units of TS and TB are g/cm
2.

5. ľi = T finalE is the sinogram to which FBP can be applied to get a beam-hardening-

artifact free reconstruction. For statistical methods, y̌i = bi exp
(

−fS(ľi
)

) + ri is the

quantity used in reconstructions.

4.2 Statistical reconstruction methods

The negative log-likelihood that takes beam-hardening into account was derived in

(2.6). It is repeated here (after changing the definition of hi) for convenience :

−L(ρ) =

nd
∑

i=1

hi(f([GISρ]i, [GIBρ]i)),(4.1)

hi(t)
△
= (bie

−t + ri) − yi ln(bie
−t + ri).

From Section 4.1 we have,

f(TS, TB) ≈ fS(TS + (A−BTB)TB).(4.2)

Combining the above equations gives us the likelihood for the statistical method that uses

the JS method to account for beam-hardening. In the above equation f may be depend

on the ray i when a bowtie-filter is used [62] and the cost function would be modified
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accordingly. Following [59], we have the following choices for statistical reconstruction

methods :

1. 1-parameter method : We use a constant to approximate γ(TS, TB) instead of using

(4.2), i.e., setB = 0. This is equivalent to [38, Eq.(20)]. This method is used to verify

that the amount of bone in the phantom is significant from the point of view of beam-

hardening, and more than one tuning parameter is required for the approximation to

be good.

2. 2-parameter method : This leads to the simplified cost function and uses (4.2) to

approximate γ(TS, TB).

3. Exact method : The exact value of γ(TS, TB), hence the exact value of f(TS, TB), is

known in simulations. This method is almost identical to [20].

4. Ad hoc method : In this method, we perform the statistical reconstruction assuming a

water-correction model and process the obtained image by the JS method. We assume

that the noise can be removed by including the water correction model (i.e. set A = 1

and B = 0) only in the measurement model. Now, the JS method is used to get rid

of the beam-hardening artifacts. This is not a systematically derived method but is

attractive due to its simplicity. It is included here for the purpose of comparison with

the 2-parameter method.

4.2.1 1-parameter and Ad hoc methods

The negative log-likelihood for these methods are written as

−L(ρ) =

nd
∑

i=1

hi(fS([G1ρ]i)),

G1
△
=



















G, Ad hoc method,

G(IS + AIB), 1-parameter method.
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Using the optimal curvatures computed in [1], the approximate surrogate is expressed as

Q1(ρ;ρ(n)) =

nd
∑

i=1

hi(fS([G1ρ
(n)]i)) + h′i(fS([G1ρ

(n)]i)) × (fS([G1ρ]i) − fS([G1ρ
(n)]i))+

1
2
c̆i(fS([G1ρ]i) − fS([G1ρ

(n)]i))
2.

Observations of fS(TS) suggest that it is a concave function. Using Lemmas 3 and 4 of [1]

we can prove the following :

f ′
S(T

(n)
S )(TS − T

(n)
S ) ≥ fS(TS) − fS(T

(n)
S ),

∣

∣

∣

∣

∣

fS(T
(n)
S )

T
(n)
S

∣

∣

∣

∣

∣

|TS − T
(n)
S | ≥ |fS(TS) − fS(T

(n)
S )|.

Observations of fS(TS) also suggest that f
′
S(0) ≥ | fS(T

(n)
S

)

T
(n)
S

|. Thus, we have the final form

for the surrogate :

Q2(ρ;ρ(n)) =

nd
∑

i=1

hi(fS([G1ρ
(n)]i)) + h′i(fS([G1ρ

(n)]i)) × f ′
S([G1ρ

(n)]i)[G1(ρ− ρ(n))]i+

1
2
c̆i(f

′
S(0))2[G1(ρ− ρ(n))]2i .

The above surrogate for the log-likelihood is used in the QS PCG LS algorithm (Sec-

tion 6.1.3). These methods will not have nice convergence properties like monotonicity

due to the beam-hardening approximations made to the exact measurement model and

the use of masks IS and IB. The 1-parameter method is initialized with a 1-parameter

JS reconstruction and the Ad hoc method is initialized with a water-corrected FBP re-

construction. 1-parameter and Ad hoc methods require one forward projection and one

back-projection every iteration.

4.2.2 2-parameter and Exact methods

The negative log-likelihood for these methods are written as :

−L(ρ) =

nd
∑

i=1

hi(f([GISρ]i, [GIBρ]i)).
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It might be possible to derive an exact 2-D surrogate for this negative log-likelihood along

the lines of [1] but the procedure appears to be very complicated. A simpler way is to

approximate f(TS, TB) by a local Taylor series expansion for every pair of (T n
S , T

n
B) at the

current iterate and hope that this approximation holds for the step sizes generated :

f(TS, TB) ≈ f(T nS , T
n
B) +

[

ḟ1,0(T
n
S , T

n
B) ḟ0,1(T

n
S , T

n
B)

]







TS − T nS

TB − T nB






.

The quadratic approximate surrogate can be now written as :

Q3(ρ;ρ(n)) = K + (G2
T ḣ)T (ρ− ρ(n)) +

1

2
(ρ− ρ(n))TG2

Tdiag(c̆i)G2(ρ− ρ(n)),

[ḣ]i
△
= ḣi(f([GISρ

(n)]i, [GIBρ
(n)]i)),

G2
△
=

[

diag(ḟ1,0) diag(ḟ0,1)

]







G 0

0 G













IS

IB






.

The above surrogate for the log-likelihood is used in the QS PCG LS algorithm (Sec-

tion 6.1.3). Due to the Taylor series expansion and use of masks, these algorithms are not

guaranteed to be monotonic. However, they have been found to perform satisfactorily in

practice. The 2-parameter method is initialized by a 2-parameter JS reconstruction and the

Exact method is initialized by a JS method using the water and bone correction table. The

2-parameter and Exact methods require two forward and back projections every iteration.

4.3 Simulation and results

A 2-D fan-beam X-ray CT scanner was simulated in this study. The geometry of the

scanner is similar to the central slice of a GE Lightspeed Pro scanner. Sinogram data was

collected over a 360◦ rotation over a 50cm field-of-view (FOV). The sinogram dimensions

were 984 angles by 888 bins per angle. An 80kVp spectrum was used and the blank scan

count summed over the entire X-ray spectrum was 1.1×106 per bin. ri were set to zero for
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this study. The phantom size was 1024 × 1024 pixels and the reconstruction was done on

a 256 × 256 grid. A 1024 size grid permits the phantom to have an average bone mineral

width of about 1.5mm.

The reconstruction from the water-corrected FBP method (Fig. 4.2) is noisy and con-

tains a beam hardening streak artifact in the center of the image. The 1-parameter method

(Fig. 4.3 and Fig. 4.4, top left) provides a reconstruction which is free from noise but it

still contains the streak. The reconstruction from the 2-parameter method (Fig. 4.3 and

Fig. 4.4, top right) is free of the noise as well as the streak artifact. The image quality is

comparable to that of the Exact method (Fig. 4.3 and Fig. 4.4, bottom left). The Ad hoc

method (Fig. 4.3 and Fig. 4.4, bottom right) removes the beam hardening streak artifact

but fails to remove the noise completely. The 2-parameter method should be the method of

choice when compared to the Ad hoc method as it follows the measurement model more

closely and uses the same beam-hardening information (water-correction table and tuning

parameters).

4.4 Summary

Polyenergetic statistical image reconstruction methods developed in the past used more

beam-hardening calibration information than the FBPmethods. The FBPmethods achieved

significant artifact reduction by using the sinogram pre-correction technique known as the

JS method. The polyenergetic statistical method developed here eliminates the need to

obtain the extra beam-hardening calibration information, and reuses the parameters used

in the JS method.
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(a) True phantom (b) JS water-corrected FBP reconstruction

Figure 4.2: Image of the true phantom and JS water-corrected FBP reconstruction. Window = 400HU. Note
the beam-hardening streak in the center of the FBP reconstruction.
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Figure 4.3: Reconstruction using statistical methods. Window = 400HU. Clockwise from top left : 1-
parameter, 2-parameter, Ad hoc, Exact.
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Figure 4.4: Difference images between reconstructions using statistical methods and the true phantom.

Clockwise from top left : 1-parameter, 2-parameter, Ad hoc, Exact.



CHAPTER 5

Statistical method to reduce organ motion artifacts

This is a short chapter that investigates a solution to a particular, simulated, simple,

organ motion problem in X-ray CT. The goal here is to create a motion-compensated sta-

tistical reconstruction method by using only the observed projections and simple image-

processing operations like thresholding. We hope that the perspectives about motion de-

veloped in the given solution to this simple problem, will be applicable to more practical

problems1. Section 5.1 presents background on the motion problem in general, and X-

ray CT in particular. Section 5.2 defines the simulated problem being investigated here.

Section 5.3 presents the proposed solution to the problem defined in Section 5.2. Finally,

Section 5.5 summarizes the proposed solution, its advantages, and its disadvantages.

5.1 Background

The problem of motion is a very basic one. When a patient is in the scanner, there is

motion due to a lot of phenomena: breathing, beating heart, peristalsis (e.g., motion of

esophagus and intestine), muscle contractions and expansions, movement due to discom-

fort etc.. Therefore, the single image produced by the scan is some sort of an average over

the duration of the scan. Some kinds of motion, like breathing and cardiac motion are

1Special thanks to Bruno De Man, for sharing his intuition on this topic.
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quasi-periodic, while in other kinds, the moving objects do not return to their respective

initial states during the scan. We focus on the second problem, even though both kinds

of motion are closely related. An example of the type of problem that we wish to focus

on is as follows. In a lung scan whose duration is much less than the duration of a single

breath, the diaphragm wall would move a certain distance during the scan and not return

to its initial state.

To image quasi-periodic motion, a plethora of scanning techniques and image recon-

struction methods have been developed in the past few years. Even a new scanner with

two X-ray sources has been proposed. An example of image reconstruction with quasi-

periodic motion is described next. In cardiac X-ray CT, an image of the heart is required

to be produced at a particular phase in the electro-cardiogram (ECG) signal. An ECG

signal is collected along with projection data. In some cases, projection-data collection

is triggered by the ECG signal, called prospective-gating, and in others, projection data

is collected for a duration of time and the relevant pieces of projection data are selected

based on the ECG signal, called retrospective gating. Thus, for cardiac X-ray CT, it is

possible that we may not be able to collect all the required data for a given heart-phase. It-

erative algorithms produce images with lower artifact than FBP based methods when such

a data-insufficiency is encountered [49]. In [33], authors have proposed an new scanning

geometry that reduces the X-ray dose required for cardiac imaging.

One way to beat the motion problem is to take all the required observations in a time

that is much shorter than the motion. This kind of solution is attempted with a electron-

beam computed tomography (EBCT) scanner. It has no moving parts and the X-ray beam

is rotated electronically. One rotation takes only 50 milliseconds, which is much smaller

than the duration of a heart beat at 120 beats per minute, 0.5 seconds. EBCT scanners

however are very expensive and not easily available. So, newer scanning techniques and/or
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image reconstruction methods for the slower gantry based MSCT scanners would have to

be developed. A solution to the motion problem has been tested in [17] by adding another

x-ray source to the scanner similar to a flying focal spot, which the authors state is very

costly. In an accompanying paper [18], the same authors propose a signal processing

approach that is slightly sub-optimal but removes the need for an extra X-ray source. The

suggested methods are hard to adapt to more general problems.

Previous work related to the current problem has been explored with FBP based meth-

ods. In [12], the authors created a parametric motion model to reduce motion artifacts

caused by breathing. Some solutions to similar problems have been proposed in related

fields. In cardiac X-ray CT, projections have been used to synthesize an signal called the

kymogram that is an analogue of the ECG signal [39]. In single photon emission comput-

erized tomography (SPECT), the authors of [50] compute an optical flow vector field from

the observed tomographic views.

The approach on which the motion-compensated image reconstruction method pro-

posed here is derived is different from the currently known methods. The current ap-

proach does not parameterize the object being imaged with a time variable. Neither does

it attempt to difference consecutive views to obtain motion information. The proposed

method first creates a motion-uncompensated reconstruction by traditional methods. And

then it uses this reconstruction and the observed sinogram to create a motion-compensated

reconstruction.

5.2 Problem definition

A simulation with a single-slice, fan-beam scanner is setup as follows. An object is

scanned with a 360 degree rotation employing 984 views. The object is a modified Shepp-

logan phantom which remains in state 1 (Fig. 5.1(left)) for views 1 to 491, and in state 2
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(Fig. 5.1(right)) for views 492 to 984. One can notice that the state transition occurs due

to a moving ellipse located in the top-center of the object. At view 492, the ray from the

X-ray source to the center of detector array is roughly parallel to the major axis of the

moving ellipse. No noise is added to the observed sinogram.

5.3 Proposed statistical reconstruction method

The proposed method is based on our intuitive understanding of the X-ray CT scanner.

It is a pre- and post-processing type of a method, and we do not claim it has any optimality

properties. Also, the proposed method is tailored to the problem definition of Section 5.2.

However, it does provide some new insights into object motion in X-ray CT scans. The

steps in the proposed method are as follows :

1. A regular (i.e. motion-uncompensated) reconstruction is made using FBP (a regular-

ized iterative algorithm can be used when observations are noisy).

2. The difference sinogram between the forward projection of the motion uncompen-

sated reconstruction and the observed sinogram is called the residual sinogram here.

In the residual sinogram, bins outside the range [−1000, 1000] HU are set to 1 and

the rest to 0 to produce a second sinogram (Fig. 5.2(top-left)). This sinogram tells us

the observations that are going to contain a large residual. The moving object would

be mainly responsible for the large residuals because the the initial reconstruction did

not take motion into account.

3. The above sinogram is back-projected (Fig. 5.2(top-right)). This image roughly tells

how much various regions of the object contribute to the the large-residual regions of

the residual sinogram.

4. The above image is thresholded at 300 to produce the imagemask shown in Fig. 5.2(bottom-

left). This mask, called motion mask, roughly tells us where the motion could be
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happening. In other words, within the motion mask, image pixels change with view

number, and outside the motion mask they do not.

5. The method to compute the view at which object motion happens is as follows. In

the residual sinogram, we consider only those rays that pass through the motion

mask, and set the rest to 0 (Fig. 5.3(left)). Now, the first half of the views of the

observed sinogram come from an object in which the moving ellipse was large in

size, and the second half comes from an object in which the ellipse was smaller.

But, the motion-uncompensated reconstruction takes into account all views, produc-

ing a reconstruction that is intermediate between first and second states of the object

(Fig. 5.4(left)). So, the observed sinogram would be greater than the forward projec-

tion of the motion-uncompensated sinogram in the first half of the views, and smaller

in the second half. This change in sign could roughly tell us the view where the

object moves from state 1 to state 2. Thus, we sum the residual sinogram over the

detector dimension, and produce a one dimensional function (Fig. 5.3(right)). The

sign change in this function gives us an estimate of the view at which object motion

happens. The transition view, called i{1,2}, is computed here as 491.

Note here that this ad hoc procedure of estimating i{1,2} should work in the presence

of noise also, due to the averaging taking place over the sinogram detector dimension.

6. During reconstruction, pixels outside the motion mask are reconstructed using all

views. But, pixels within the motion mask are changing with view number. To

account for this fact, multiple images are reconstructed within the motion mask as

described below. A mapping between these images and view numbers is also created.

In the current problem, there are 2 images within the motion mask: the first image

corresponds to views 1 to i{1,2} and the second image to views i{1,2} to 984.

7. The negative log-likelihood for the weighted-least-squares and motion-uncompensated
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case is

−L(µ) =

nd
∑

i=1

1
2
wi([Gµ]i − li)

2,

where, µ is the image being estimated, nd is the number of observations (i.e. sino-

gram bins), li and wi are the line-integral observation and weight at sinogram bin i,

andG is the forward projection operator. It is modified for motion as follows :

−Lmotion(µI′
m
,µ

{1}
Im ,µ

{2}
Im )

=

i{1,2}
∑

i=1

1
2
wi([Gµ

{1}]i − li)
2 +

nd
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2
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2,
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=
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+
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The definitions of various symbols are as follows.
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• µ{1} and µ{2} : Full-size images for object states 1 and 2 respectively.

• i{1,2} : The sinogram bin at which state transition is estimated to occur.

• Im and I ′
m : Motion mask and its complement respectively.

• µ{1}
I′
m
andµ

{1}
Im : Regions ofµ

{1} outside and inside the motion mask respectively.

• µ{2}
I′
m
andµ

{2}
Im : Regions ofµ

{2} outside and inside the motion mask respectively.

• µI′
m
: Outside the motion mask, the same parameters are to be estimated. There-

fore, µI′
m

△
= µ

{1}
I′
m

△
= µ

{2}
I′
m
.

• GI′
m
: Forward-projector that projects image regions outside the motion mask to

all sinogram bins.

• G{1}
Im : Forward-projector that projects image regions inside the motion mask to

sinogram bins 1 to i{1,2}.

• G{2}
Im : Forward-projector that projects image regions inside the motion mask to

sinogram bins i{1,2} + 1 to nd.

8. Suitable image regularization terms are added to −Lmotion(µI′
m
,µ

{1}
Im ,µ

{2}
Im ) and al-

ternating minimization is performed to estimate µI′
m
, µ

{1}
Im and µ

{2}
Im . Finally, the

above estimates are combined to obtain the final reconstructed images for motion

states 1 and 2 : µ{1} =







µI′
m

µ
{1}
Im






and µ{2} =







µI′
m

µ
{2}
Im






.

5.4 Results

The proposed image reconstruction method assumes that the object being scanned has

two states and a transition view at which the state transition occurs. For the problem setup

here, this is indeed the case. The proposed method finds the transition view correctly as

491 as shown in Fig. 5.3(right). The proposed method is also able to localize correctly the
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image region where the motion occurs, i.e., the motion mask is accurate in Fig. 5.4(right).

The reconstruction produced by the proposed method has lower motion artifact than that

produced by the traditional method. This fact is evident when we visually compare Fig. 5.4

and Fig. 5.5. More evidence for this can be seen in Fig. 5.6.

5.5 Summary

The solution proposed here has been tested in the absence of noise and works satis-

factorily for the fan-beam case. In the presence of noise, two parameters estimated by

image-processing operations, namely the motion mask and the transition view, will have

to be adjusted as the iterations proceed. The proposed solution would only provide an

initializer to these parameters. One problem is that, the image parameterization changes

with the estimate of the motion mask. The dependence of the image parameters on the ob-

served data also changes with the estimate of the transition view. The motion mask could

expand to cover the entire image if it is not regularized properly. Because of these facts,

the properties of the negative log-likelihood can not be predicted in the presence of noise.

More investigation is required.
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Range: [0 2000]

True image for views 1 to 491 (image window = [800,1200] HU)

1 512

1

504

Range: [0 2000]

True image for views 492 to 984 (image window = [800,1200] HU)

1 512

1

504

Figure 5.1: True images. Left: Object in state 1, and Right: Object in state 2. Image window = [800, 1200]
HU.
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Range: [0 1]

Sinogram mask showing sinogram bins in which forward proj of FBP differs
with the actual observations by more than 1000HU

1 888

1

984

Range: [0 564.212]

Back−projection of the sinogram in the left top figure
1 512

1

504

Range: [0 1]

Image mask showing pixels where the the right top figure exceeds 300
i.e. these are the pixels where each pixel has roughly more than 300 "erroneous" rays passing through it

1 512

1

504

Figure 5.2: Motion mask computation procedure. Top-left: Thresholded residual sinogram, Top-right: Back

projection of thresholded residual sinogram, and Bottom-left: Motion mask.
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Range: [−6758.35 13056.4]

residual sinogram for rays passing through the motion mask
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sum of residuals in bins in a particular view in the adjoining sinogram

Figure 5.3: Computing the transition view. Left: Residual sinogram for rays passing through motion mask,

and Right: Sum of sinogram on the left over the detector dimension.
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Range: [−100.793 2024.33]

FBP reconstruction

1 512

1

504

Range: [−100.793 2024.33]

FBP reconstruction with the motion mask overlayed

1 512

1

504

Figure 5.4: FBP reconstruction and motion mask. Left: FBP reconstruction, and Right: FBP reconstruction

with motion mask superimposed. Image window = [800, 1200]HU.
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Range: [−230.225 2132.75]

Iterative recon for views 1 to 491 (image window = [800,1200] HU)

1 512

1

504

Range: [−172.878 2132.75]

Iterative recon for views 492 to 984 (image window = [800,1200] HU)

1 512

1

504

Figure 5.5: Iterative reconstruction. Left: Motion state 1, and Right: Motion state 2. Image window =

[800, 1200]HU.
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Range: [−255.796 355.225]

Error image (true − iterative) for views 1 to 491 (image window = [−30, 30] HU)

1 512

1

504

Range: [−255.796 264.094]

Error image (true − iterative) for views 492 to 984 (image window = [−30, 30] HU)

1 512

1

504

Range: [−305.38 249.663]

Error image (true − FBP) for views 1 to 491 (image window = [−30, 30] HU)

1 512

1

504

Range: [−305.38 249.663]

Error image (true − FBP) for views 492 to 984 (image window = [−30, 30] HU)

1 512

1

504

Figure 5.6: Error images. Top-left: True motion state 1 - iterative motion state 1, Top-right: True motion

state 2 - iterative motion state 2, Bottom-left: True motion state 1 - FBP, and Bottom-right: True

motion state 2 - FBP. Image window = [−30, 30] HU.



CHAPTER 6

Comparisons between OS and PCG algorithms

This chapter compares OS-based and PCG-based algorithms. Section 6.1 compares

two PCG algorithms: PCG LS QS (or, PLQ, for short ) and QS PCG LS (or, QPL, for

short). PCG LS QS has been known in literature [25] but is not guaranteed to minimize

non-quadratic functions. So, we derive a new PCG algorithm, QS PCG LS, that is guar-

anteed to do so. This guarantee however comes at the price of slightly reduced conver-

gence rate. Section 6.2 describes the Ordered Subsets (OS) idea. OS algorithms for image

reconstruction in X-ray CT and other closely related fields have been known [2, 8, 35],

and we summarize the PWLS OS SPS algorithm in this section. In Section 6.3, we com-

pare PWLS OS SPS and PWLS PLQ algorithms and show that PWLS OS SPS converges

faster when the iterates are far away from the minimum/minima. But, we also remark that

the potential of PCG algorithms is still untapped because preconditioners developed in

other fields have not yet been used in X-ray CT.

6.1 Conjugate-gradient algorithms

6.1.1 PCG LS QS (or PLQ)

The PCG LS QS algorithm computes the descent direction from the original cost func-

tion using the PCG idea of (2.12). We note here that the descent in this direction on

the original cost function is a line search on the original cost function (2.13). This line

69
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search is equivalent to the minimization of a single-variable non-quadratic function. In the

original cost function, the notation of the negative log-likelihood and penalty function are

combined for the purposes of this algorithm as follows :

Φ(µ)
△
= −L(µ) +R(µ)

△
=

n′
d
∑

i=1

h′i([Aµ]i).

At the current iterate µ(n), the search direction d(n) is computed by using PCG (2.12)

on Φ(µ). Once the descent direction is computed, the single-variable non-quadratic cost

function is defined as :

Φ′(α)
△
=

n′
d
∑

i=1

h′i(A(µ(n) + αd(n))).

To minimize Φ′(α), we design quadratic surrogates with respect to α for each ofN2 subit-

erations:

Φ′(α) ≤ φ′(α;αm)
△
=

n′
d
∑

i=1

q′i([A(µ(n) + αd(n))]i; [A(µ(n) + αmd
(n))]i), (QS using (2.11))

=

n′
d
∑

i=1

ḣi([A(µ(n) + αmd
(n))]i)[Ad

(n)]i(α− αm)

+ 1
2
c̆i([A(µ(n) + αmd

(n))]i)[Ad
(n)]2i (α− αm)2.

Since φ′(α;αm) is quadratic in α, the next iterate of α is obtained analytically as follows:

αm+1 = arg min φ′(α;αm),

⇒ αm+1 = αm −
∑n′

d

i=1 ḣi([A(µ(n) + αmd
(n))]i)[Ad

(n)]i
∑n′

d

i=1 c̆i([A(µ(n) + αmd(n))]i)[Ad(n)]2i
.(6.1)
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The pseudo code is

1. Initialize µ(0) = max(µFBP , 0)

2. for n=0,1,2,. . .,N1-1

2.1 Compute d(n) using (2.12) and initialize αm = 0

2.2 for m=0,1,2,. . .,N2-1

2.2.1 αm+1 = αm −
Pn′

d
i=1 ḣi([A(µ(n)+αmd(n))]i)[Ad

(n)]i
Pn′

d
i=1 c̆i([A(µ(n)+αmd(n))]i)[Ad(n)]2i

2.2’ end

2.3 µ(n+1) = µ(n) + αN2d
(n)

2’ end

The total number of forward and back projection operations in this algorithm is 2 ×N1.

This algorithm is guaranteed to be monotonic; the cost function is reduced every it-

eration. For non-quadratic cost functions, this algorithm could get stuck in unfavorable

directions as a surrogate that majorizes the cost function globally is not created. Even

though for a quadratic cost function, this algorithm is guaranteed to find a solution in a

finite number of steps, quadratic cost functions are rarely useful in image reconstruction.

Quadratic cost functions do not allow us to perform edge-preserving image reconstruc-

tions, usually yielding either too blurry (high β) or too noisy (low β) reconstructions. To

guarantee the minimization of non-quadratic cost functions, the algorithm QS PCG LS

(Section 6.1.3) should be used.

6.1.2 PWLS PCG LS QS (or PWLS PLQ)

The PWLS PLQ algorithm is obtained by setting the likelihood part in the previous

section for WLS using (2.5). The chosen penalty function and β are substituted in the

regularization part to obtain the final PWLS PLQ algorithm.
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6.1.3 QS PCG LS (or QPL)

The QS PCG LS algorithm first computes a quadratic surrogate, φL(µ;µ(n,0)), for the

likelihood part at the current iterate, µ(n,0). Now, the cost function is composed of a

quadratic function and the penalty function, which is typically non-quadratic. Subiterates,

µ(n,m), are computed by setting up quadratic surrogates, φR(µ;µ(n,m)), over the penalty

function part. Thus, within the inner iteration, the cost function being minimized is com-

pletely quadratic. Now, the descent direction is computed using the PCG technique defined

in (2.12). Even though the previous descent direction is from a different cost function, no

significant degradation in performance is observed. Now, a line search (2.13) is used to

obtain the new iterate, µ(n,m+1). A line search on a quadratic function along a descent

direction can be done analytically in one step and is shown below. The algorithm is sum-

marized as follows :

1. µ(0,0) = max(µFBP , 0)

2. for n=0,1,2,. . .,N1-1

2.1 Compute φL(µ;µ(n,0))

2.2 for m=0,1,2,. . .,N2-1

2.2.1 Compute φR(µ;µ(n,m))

2.2.2 φ(n,m)(µ)
△
= φL(µ;µ(n,0)) + φR(µ;µ(n,m))

2.2.3 Compute descent direction d(n,m) using PCG

2.2.4 Compute α∗ (see below).

2.2.5 µ(n,m+1) = µ(n,m) + α∗d(n,m)

2.2’ end

2.3 µ(n+1,0) = µ(n,N2)

2’ end
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We call the two-step surrogate, φ(n,m)(µ), the nested surrogate. We show in Section A.1

that a reduction in the value of the nested surrogate causes a reduction in the value of the

objective function Φ(µ). The total number of forward and back projection operations is

2 ×N1 ×N2.

Computing α∗

The quadratic surrogates φL(µ;µ(n,0)) and φR(µ;µ(n,m)) can be written as :

φL(µ;µ(n,0)) =

nd
∑

i=1

qLi([Gµ]i; [Gµ
(n,0)]i),

qLi(t; s) = hi(s) + ḣi(s)(t− s) + 1
2
c̆i(s)(t− s)2,

φR(µ;µ(n,m)) =
K
∑

k=1

qRk([Cµ]k; [Cµ
(n,m)]k),

qRk(t; s) = ψk(s) + ψ̇k(s)(t− s) + 1
2
čk(s)(t− s)2.

Thus, the line search in the nested surrogate can be written as :

α∗ = arg minα≥0φ
(n,m)(µ(n,m) + αd(n,m)),

φ(n,m)(µ(n,m) + αd(n,m)) = φL(µ
(n,m) + αd(n,m);µ(n,0)) + φR(µ(n,m) + αd(n,m);µ(n,m)).

Substituting the definitions of φL(µ;µ(n,0)) and φR(µ;µ(n,m)) yields,

φL(µ
(n,m) + αd(n,m);µ(n,0)) =

nd
∑

i=1

[

hi([Gµ
(n,0)]i)

+ ḣi([Gµ
(n,0)]i)

(

[G(µ(n,m) − µ(n,0))]i + α[Gd(n,m)]i

)

+ 1
2
c̆i

(

[G(µ(n,m) − µ(n,0))]i + α[Gd(n,m)]i

)2
]

,

and φR(µ(n,m) + αd(n,m);µ(n,m)) =
K
∑

k=1

[

ψk([Cµ
(n,m)]k) + ψ̇k([Cµ

(n,m)]k)[Cd
(n,m)]kα

+ 1
2
čk([Cd

(n,m)]k)
2α2

]

.
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Substituting φL(µ
(n,m) + αd(n,m);µ(n,0)) and φR(µ(n,m) + αd(n,m);µ(n,m)) in the expres-

sion for the φ(n,m)(µ) in line search above and differentiating with respect to α, we get,

d

dα
φ(n,m)(µ(n,m) + αd(n,m)) =

nd
∑

i=1

[

{

ḣi([Gµ
(n,0)]i) + c̆i[G(µ(n,m) − µ(n,0))]i

}

[Gd(n,m)]i

+ c̆i[Gd
(n,m)]

2

iα

]

+
K
∑

k=1

[

ψ̇k([Cµ
(n,m)]k)[Cd

(n,m)]k + čk([Cd
(n,m)]k)

2α

]

.

Using a more compact notation, we write,

d

dα
φ(n,m)(µ(n,m) + αd(n,m)) =

[

ḣ(Gµ(n,0)) + D(c̆i)
(

Gµ(n,m) −Gµ(n,0)
)

]T

(Gd(n,m))

+ (Gd(n,m))TD(c̆i)(Gd
(n,m))α

+ ψ̇T (Cµ(n,m))(Cd(n,m)) + (Cd(n,m))TD(čk)(Cd
(n,m))α.

Equating the above to 0 yields the following expression for the step size:

α∗ = −
{

ḣT (Gµ(n,0)) + (Gµ(n,m) −Gµ(n,0))TD(c̆i)
}

(Gd(n,m)) + ψ̇T (Cµ(n,m))(Cd(n,m))

(Gd(n,m))TD(c̆i)(Gd(n,m)) + (Cd(n,m))TD(čk)(Cd(n,m))
.

(6.2)

Also, note that

d2

d2α2
φ(n,m)(µ(n,m) + αd(n,m)) = (Gd(n,m))TD(c̆i)(Gd

(n,m)) + (Cd(n,m))TD(čk)(Cd
(n,m)),

≥ 0.

This is because the curvatures c̆i and čk are non-negative.

This algorithm is monotonic because quadratic surrogate functions are setup every it-

eration and a reduction in the quadratic surrogate function value results in the reduction

of the value of the original cost function. But, the main advantage of this algorithm is

that it could be used to achieve a minimum of non-quadratic cost functions. Because, at

every iteration and subiteration, the quadratic surrogates majorize the cost function over

the entire parameter space.
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6.1.4 Preconditioners

Convergence rates of PCG algorithms can be increased by using preconditioners. A

preconditioner is a matrix or an operator that approximates the inverse of the Hessian of

the original cost function or its surrogate. Preconditioners have been known in numeri-

cal methods literature and used for the solution of a system of equations. For example,

limited-memory BFGS matrices are used to approximate the Hessian [10]. However, pre-

conditioners can have non-trivial memory requirements and a trade-off has to be consid-

ered between convergence rate improvement and memory requirements. From a memory

view point, those preconditioners that require a storage of about the size the reconstruction

volume are most appealing to be studied initially. Diagonal and Fourier pre-conditioners

meet the above requirements. These have been derived in [25].

Preconditioners for cost functions with space-variant penalties described in [26] have

been implemented for fan-beam systems and show considerable promise (see Section 6.3).

These preconditioners can be improved by using properties of the fan-beam system model

studied in [57]. Preconditioners for use when space-invariant penalties are used are de-

scribed in [25].

Various preconditioners have been described in literature. A non-Fourier low-memory

preconditioner was given by Vogel [66]. Preconditioners for Toeplitz systems have been

considered by Chan [11]. Various preconditioners using the Sherman-Morrison formula

have also been suggested [51, 55]. Other possible preconditioners with possibly higher

memory requirements that could be considered are banded, sparse and slant-stack based.

Various image restoration techniques could be employed as preconditioners. This fact is

implied by the fact that Fourier and diagonal pre-conditioners do not require the explicit

use of the system model.
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6.1.5 Comparison between PCG LS QS and QS PCG LS

We compared the PCG LS QS and QS PCG LS algorithms for a fan-beam simulated

dataset with Poisson negative log-likelihood (see (2.5)) and a space-variant penalty func-

tion [26]. The preconditioner of [25, Eq.(32)] was used. The variation of the cost function

value with iteration number is shown in Fig. 6.1. Observe that the PCG LS QS has a faster

convergence rate than QS PCG LS in the initial iterations. Since we focused on the con-

vergence rate in initial iterations, we avoided the optimal curvatures as their computation

involves an extra back-projection. We used precomputed curvatures instead [1].
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Figure 6.1: Convergence rate comparison between PCG LS QS and QS PCG LS algorithms

6.2 Ordered-subset algorithms

6.2.1 OS SPS algorithm for an unregularized cost function

The minimization of a regularized negative log-likelihood cost function using OS and

separable paraboloidal surrogates (SPS) was described in [2]. We first focus on the surro-
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gate for the negative like-likelihood part. This will motivate the PWLS OS SPS algorithm

in Section 6.2.2. This section also helps motivate the derivation of the OS PCG LS algo-

rithm in Section 8.1. The separable surrogate for the likelihood part is derived as follows.

First, a quadratic surrogate is setup at the current iterate using (2.11). The curvatures for

the Poisson likelihood are computed using precomputed or optimal curvatures [1]. The

negative likelihood in the WLS case is already in the quadratic form. Next, the gradi-

ent computation is approximated using OS. Due to the OS approximation to the gradient,

the gradient computation time is reduced by a factor equal to the number of subsets, Ns.

Finally, De Pierro’s trick [15] allows us to construct a separable quadratic cost function.

Without the De Pierro’s trick it would not be possible to utilize the savings afforded by OS

approximation of the gradient. One would expect that the convergence would be slowed by

separating a quadratic function into a sum of quadratic functions, each of which depends

on a single voxel. In practice, for a medium to large number of subsets, OS algorithms

for X-ray CT have faster convergence rates than PCG. This fact is also demonstrated in

Section 6.3.

The above procedure is summarized as follows :

φL(µ;µ(n)) =

nd
∑

i=1

qL,i(ti; si)

=

nd
∑

i=1

ḣi([Gµ
(n)]i)[G(µ− µ(n))]i +

nd
∑

i=1

1
2
c̆
(n)
i [G(µ− µ(n))]2i , (from (2.11))

= (GT ḣ(n))T (µ− µ(n)) + 1
2
(µ− µ(n))TGTD(c̆

(n)
i )G(µ− µ(n)),

≈ (NsG
T
r ḣ

(n)
r )T (µ− µ(n)) + 1

2
(µ− µ(n))TGTD(c̆

(n)
i )G(µ− µ(n)),

(by OS approximation to the gradient)

≤ (NsG
T
r ḣ

(n)
r )T (µ− µ(n)) + 1

2
(µ− µ(n))TD(

nd
∑

i=1

c̆
(n)
i Gi|Gij |)(µ− µ(n)),

(by DePierro’s trick)
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where,Gi =
∑np

j=1 |Gij |, Ns is the number of subsets andGr is the system model for the

rth subset. The separable cost function derived above permits the expression for a pixel

update :

µ(n+1) = µ(n) −D(
1

∑nd
i=1 c̆

(n)
i Gi|Gij |

)NsG
T
r ḣ

(n)
r .(6.3)

Note that in the WLS case, c̆
(n)
i = wi, and the denominator, D(

∑nd
i=1 c̆

(n)
i Gi|Gij |) =

D(
∑nd

i=1wiGi|Gij |). Thus, the denominator needs to be computed only once. If N1 is the

total number of iterations then the total number of equivalent forward and back projections

is 2 ×N1.

Imposing the non-negativity constraint

The above surrogate can be used to monotonically reduce (for Ns = 1) the value of the

cost function. This statement holds true when the non-negativity constraint is imposed,

i.e., when a minimizer of the cost function in the non-negative orthant is sought. The

above surrogate is separable in the elements of the parameter vector, and can be expressed

generally as follows:
∑np

j=1
1
2
aj(µj − bj)

2, where, aj , bj are constants. The unconstrained

minimizer would be just [bj ]j=1,...,np. Imposing the non-negativity constraint on each el-

ement, we obtain the minimizer as µ∗
j = arg min

µj≥0

1
2
aj(µj − bj)

2. This problem is easy

enough to be solved graphically as: µ∗
j =



















bj , bj ≥ 0,

0, bj < 0,

, i.e., µ∗
j = [bj ]+ . Karush-Kuhn

Tucker (KKT) conditions can also be used to yield the same result. Thus, the non-negative

minimizer of the separable surrogate can be derived as:

µ(n+1) = [µ(n) −D(
1

∑nd
i=1 c̆

(n)
i Gi|Gij |

)NsG
T
r ḣ

(n)
r ]+.(6.4)
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6.2.2 PWLS OS SPS algorithm

The surrogate for the likelihood part is derived in Section 6.2.1 as :

φL(µ;µ(n)) = (NsG
T
r ḣ

(n)
r )T (µ− µ(n)) + 1

2
(µ− µ(n))TD(n)

L (µ− µ(n)),

D(n)
L

△
= D(

nd
∑

i=1

c̆
(n)
i Gi|Gij|).

Now the surrogate function is the sum of a quadratic function and the penalty function,

which is typically non-quadratic. We use the nested surrogates idea of Section 6.1.3 here.

The surrogate for the penalty part is made separable and depends on the sub-iterate µ(n,m).

It is derived as follows :

φR(µ;µ(n,m)) =

nk
∑

k=1

qR,k(tk; sk) =

nk
∑

k=1

ψ̇([Cµ(n,m)]k)[C(µ− µ(n,m))]k

(6.5)

+ 1
2
c̆
(n,m)
k ([C(µ− µ(n,m))]k)

2,

= (CT ψ̇(n,m))T (µ− µ(n,m)) + 1
2
(µ− µ(n,m))TCTD(c̆

(n,m)
k )C(µ− µ(n,m)),(6.6)

≤ (CT ψ̇(n,m))T (µ− µ(n,m))

+ 1
2
(µ− µ(n,m))TD(

nk
∑

k=1

c̆
(n,m)
k Ck|Ckj|)(µ− µ(n,m)),

(by De Pierro’s trick)

= (CT ψ̇(n,m))T (µ− µ(n,m)) + 1
2
(µ− µ(n,m))TD(n,m)

R (µ− µ(n,m)).

The overall surrogate function (ignoring the constant terms) to be optimized is thus written

as :

φ(n,m)(µ) = φL(µ;µ(n)) + βφR(µ;µ(n,m)),

= (NsG
T
r ḣ

(n)
r + βCT ψ̇(n,m))Tµ+ 1

2
(µ− µ(n))TD(n)

L (µ− µ(n))

+ 1
2
(µ− µ(n,m))T (βD(n,m)

R )(µ− µ(n,m)).
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Differentiating the above with respect to µ and equating the gradient the zero, we get the

update on the image:

(NsG
T
r ḣ

(n)
r + βCT ψ̇(n,m)) + D(n)

L (µ− µ(n)) + (βD(n,m)
R )(µ− µ(n,m)) = 0

⇒ µ(n,m+1) =
D(n)
L

D(n)
L + βD(n,m)

R

µ(n) +
βD(n,m)

R

D(n)
L + βD(n,m)

R

µ(n,m)

− 1

D(n)
L + βD(n,m)

R

(NsG
T
r ḣ

(n)
r + βCT ψ̇(n,m)),

=
1

D(n)
L + βD(n,m)

R

((βD(n,m)
R µ(n,m) − βCT ψ̇(n,m)) + (D(n)

L µ
(n) −NsG

T
r ḣ

(n)
r )),

=
1

D(n)
L + βD(n,m)

R

((βD(n,m)
R µ(n,m) − βCT ψ̇(n,m)) + z(n)),

z(n) △
= D(n)

L µ
(n) −NsG

T
r ḣ

(n)
r .(6.7)

Using similar arguments for the non-negativity constraint as in Section 6.2.1, we obtain

the non-negatively constrained update as:

µ(n,m+1) = [
1

D(n)
L + βD(n,m)

R

((βD(n,m)
R µ(n,m) − βCT ψ̇(n,m)) + z(n))]+.(6.8)

The pseudo code for the serial PWLS OS SPS is :
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1. µ(0) = max(µFBP , 0)

2. for n=0,1,2,. . .,N1 ×Ns-1

2.1 Choose subset r = bit reverse(n mod Ns)

2.2 Compute z(n) = D(n)
L µ

(n) −NsG
T
r ḣ

(n)
r .

2.3 for m=0,1,2,. . .,N2-1

2.3.1 Compute

µ(n,m+1) = [
1

D(n)
L + βD(n,m)

R

((βD(n,m)
R µ(n,m) − βCT ψ̇(n,m)) + z(n))]+

2.3’ end

2.4 µ(n+1) = µ(n,N2)

2’ end

The total number of equivalent forward and back projection operations is 2 ×N1.

6.3 Comparison between PWLS OS SPS and PWLS PLQ

In the following simulations, the convergence rate of OS and PCG based algorithms

are compared. Fan-beam geometry similar to the center row of detectors of GE Light-

speed VCT scanner was used. The sinogram has 888 bins in each of the 984 angles

and the reconstruction grid size is 512 × 512. The blank-scan counts are 2 × 105 per

ray, ri = 0 and the WLS cost function was used. The regularization was space-variant,

non-quadratic (hyperbola with δ = 50HU - see Table 2.1) and the value of β is chosen

so as to target a resolution at the center of 1.7 pixels. The preconditioners considered

here are diagonal [25, Eq.(8)], circ1 [25, M0] and circ1 cdc [25, Eq.(32)]. The average

of reconstructions (1000 iterations) from 4 PCG algorithms (three use the above precon-

ditioners and a PCG reconstruction without using a preconditioner) is used as the final
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Lavg1 < 1HU L∞ < 1HU
CG-none 70 328

CG-circ1 50 243

CG-diag 34 165

CG-circ1-cdc 16 75

SPS-OS-41 33 -

SPS-OS-246 - -

Table 6.1: Number of iterations required to satisfy convergence criteria

image to compare convergence rates. Two OS algorithms, one using 41 subsets and the

other using 246 subsets, are compared along side the PCG algorithms. Two metrics are

used to compute the distance between the iterates and the final image obtained above:

Lavg1 (µ,µ∗) =
∑np

j=1 |µj − µ∗
j |/np and L∞(µ,µ∗) = max{|µj − µ∗

j | : j = 1, . . . , np}.

Fig. 6.2 shows that both PCG and OS based methods produce acceptable reconstruc-

tions at the window level of 400HU. From Fig. 6.3 and Fig. 6.4, we observe that the OS

algorithms reduce the cost function value faster than PCG algorithms in the initial itera-

tions. However, from Table 6.1 we find that the PCG algorithm with circ1 cdc precondi-

tioner meets both Lavg1 < 1HU and L∞ < 1HU convergence criteria in the fewest number

of iterations. The OS algorithms become non-monotonic and are unable to get close to

the final image. This fact is also evident from Fig. 6.3. Also note from Fig. 6.4 that there

is a tradeoff between the number of subsets used and convergence rate in OS algorithms.

Fig. 6.4 and Fig. 6.3 also suggest a tradeoff between number of subsets and the iteration at

which an OS algorithm becomes non-monotonic. These plots motivate a hybrid strategy

in these simulations. First, we would run the OS algorithm with 246 subsets for 30 iter-

ations and create an intermediate image. And then we would use to the PCG algorithm,

initialized with this intermediate image, that uses the circ1 cdc preconditioner till image

quality is satisfactory or convergence criteria are met.



83

FBP recon,  Window=400 HU.

1 512

1

512

PWLS−PCG recon.

1 512

1

512

PWLS−SPS−OS−41 recon.

1 512

1

512

PWLS−SPS−OS−246 recon.

1 512

1

512

Figure 6.2: Reconstructions from statistical algorithms. Window = 400HU.

6.4 Summary

Monotonic algorithms are important because they are the first step towards finding

convergent algorithms. Non-monotonic algorithms stop reducing the value of the cost

function after a few iterations, and thus may not be useful for some applications. Between

OS and PCG, only PCG based algorithms can achieve monotonicity. PCG algorithms

known till now did not guarantee monotonicity for non-quadratic cost functions, and this

void was filled in this chapter with the derivation of QS PCG LS. It was also showed that

monotonicity can be achieved without sacrificing convergence rate. While monotonic al-

gorithms are required for achieving the best possible reconstruction a cost function can

offer, high convergence rate algorithms are required to make statistical methods practical.

Various OS based methods and PCG methods with different preconditioners were com-

pared, and it was found that a higher convergence rate can be achieved using OS based

methods when the initial image is FBP.
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Figure 6.3: Difference plots between statistical reconstructions and final reconstruction, 1000 iterations.
Left: Lavg1 , Right: L∞.
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Figure 6.4: Difference plots between statistical reconstructions and final reconstruction, first 100 iterations.
Left: Lavg1 , Right: L∞.



CHAPTER 7

Algorithm acceleration using hybrid-algorithm and

parallel-computation approaches

Statistical image reconstructionmethods need to be accelerated to produce reconstructed

images from a X-ray CT scanner in a reasonable amount of time. Two approaches towards

algorithm acceleration are discussed in this chapter: hybrid-algorithm (Section 7.1) and

parallel-computation (Section 7.2). The hybrid-algorithm approach aims to create an it-

erative algorithm with a higher convergence-rate by combining existing algorithms. The

goal of the parallel-computation approach is to reduce execution times of existing algo-

rithms by distributing their mathematical computations among the individual processors

of a parallel-computer. The ICD algorithm is being used by our colleagues at General

Electric Healthcare Inc. to reconstruct images from the data of the MSCT scanner, GE

Lightspeed VCT. We investigate whether the ICD’s compute time can be reduced by the

OS-ICD hybrid algorithm (proposed in Section 7.1) running on a parallel-computer. In

Section 7.2.1, we first discuss the derivation of the Parallel PWLS OS SPS algorithm from

the PWLS OS SPS algorithm of Section 6.2.2. In Section 7.2.2, we then describe the out-

line of the implementation of the Parallel PWLS OS SPS algorithm. In Section 7.3, we

present the results from reconstructing a data set obtained from the GE Lightspeed VCT

scanner using the OS-ICD hybrid algorithm.

86
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7.1 Hybrid-algorithm approach

7.1.1 Basic principle

Empirical observation has shown that different algorithms have different convergence

rates depending on how far the current iterate is from the minimum/minima of the cost

function. This difference in convergence rates can be exploited to combine two algorithms

into a hybrid algorithm as follows. Initialize the first algorithm with the initial image (as-

sume that the initial image is far away from the minimum/minima of the cost function) and

run it for a few iterations to produce an intermediate reconstructed image. Then, initialize

the second algorithm with the intermediate image and run it until convergence criteria are

met. This combination method would reduce the overall compute time if two conditions

are satisfied. Firstly, the first algorithm should be faster than the second when initialized by

an image far away from the minimum/minima. And secondly, the second algorithm should

be faster than the first when initialized by an image closer to the minimum/minima of the

cost function. A different combination method would be to take the “numerical tricks”

of each algorithm and somehow combine those tricks to produce a hybrid-algorithm. The

second method is used to design a hybrid OS-PCG algorithm in Section 8.1, and will not

be explored in this chapter.

7.1.2 OS-ICD hybrid algorithm

Three algorithms have been used in this study for the image reconstruction in X-ray

CT: OS, PCG, and ICD. The ICD algorithm has been used by our collaborators extensively

to produce image reconstructions, and with a high convergence rate in many cases [61].

However, in some cases, intermediate ICD iterates overshoot the the minimum/minima of

the cost function, resulting in a large number of iterations to meet the convergence criteria.

These overshoots typically happen when the current iterate is far away from the mini-
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mum/minima; for example, when regions of the image are at, say, 0HU, while the recon-

structed values in those regions would typically be 1000HU. The two candidate algorithms

to counter the overshoot problem are OS and PCG. Chapter 6 showed that, starting from

FBP, OS reduces the cost function value faster than PCG. Even though those comparisons

are for fan-beam scans, empirical convergence rates of PCG are not expected to be higher

than OS in axial and helical cone-beam scans. The reason is the close geometric similarity

between fan-beam and axial and helical cone-beam scans. Thus, the OS-ICD hybrid algo-

rithm is a better candidate than PCG-ICD hybrid algorithm for beating the compute time

of a pure ICD algorithm.

7.2 Parallel-computation approach

The overall computation time of an iterative statistical image reconstruction algorithm

is the product of number of iterations and the per-iteration compute time. The number

of iterations can be reduced by using algorithms with faster convergence rates; this is ac-

complished by the hybrid-algorithm approach in Section 7.1. Reduction of per-iteration

compute time can be accomplished by using faster computer hardware and software. Only

algorithm acceleration using faster computer hardware is explored here. Use of faster

computer software, e.g., assembly language programming, to accelerate algorithms is be-

yond the scope of this thesis. One way to build a faster computer is to aggregate multiple

microprocessors into a parallel-computer. The mathematical computations of the algo-

rithm can then be distributed among the processors to run concurrently. An other way to

create a faster computer is to use specialized hardware like graphics processor, cell pro-

cessor, and field programmable gate-array (FPGA). In this thesis, we focus on the use

of parallel-computers to speed up iterative algorithms. This thesis deals with the distri-

bution of the computations of the PWLS OS SPS algorithm (Section 6.2.2) among the



89

individual processors of a parallel-computer. The resulting algorithm is called the Parallel

PWLS OS SPS algorithm (Section 7.2.1).

Recent work on algorithm acceleration using parallel computers can be found in [42]

and [41]. In [42], the authors reported a speedup of 30 in reconstructing an image of size

512×512×400 for a C-arm CT scanner. The authors used two strategies for parallelism :

1. Share the reconstruction volume among processors and distribute the sinogram rays

( [42, OSC-ang]), and

2. Distribute the reconstruction volume among processors and share the sinogram rays

( [42, OSC-vol]).

In [41], the authors describe the implementation of the AM-OS algorithm for MSCT scan-

ner data on a parallel-computer with 64 processors.

7.2.1 Parallel PWLS OS SPS

The PWLS OS SPS algorithm of Section 6.2.2 is repeated here for convenience.

1. µ(0) = max(µFBP , 0)

2. for n=0,1,2,. . .,N1 ×Ns-1

2.1 Choose subset r = bit reverse(n mod N1)

2.2 Compute z(n) = DLµ
(n) −NsG

T
r ḣr(Grµ

(n)).

2.3 for m=0,1,2,. . .,N2-1

2.3.1 Compute

µ(n,m+1) = [
(βDR(Cµ(n,m))µ(n,m) − βCT ψ̇(Cµ(n,m))) + z(n)

DL + βDR(Cµ(n,m))
]+.

2.3’ end

2.4 µ(n+1) = µ(n,N2)

2’ end
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(b) Sinogram

Figure 7.1: Division of image and sinogram spaces among P = 4 processors. Longitudinal i.e., z-axis, view
is presented here.

Two changes are made from Section 6.2.2. First, D(n)
L is independent of µ(n) for the

WLS negative log-likelihood and can be replaced by DL. And second, D(n,m)
R is replaced

by DR(Cµ(n,m)) to show explicitly the variables it depends on.

The method used here to distribute the computations of PWLS OS SPS among P pro-

cessors is as follows:

1. Divide the image voxel variables of µ into P disjoint subsets. Further assume that

each subset is a stack of contiguous slices. This division is denoted here as µ =




















µ1

µ2

...

µP





















. Also enforce the following constraints. First, only the pth processor may

update variables of µp. And second, any processor may read from any component of
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Figure 7.2: Illustration of µp,p′ for P = 4 processors.

µ. This, in effect, means that, pth processor is “responsible” for µp. See Fig. 7.1(a).

In Fig. 7.1(a), the region of interest i.e., the set of slices to be scanned, is specified

by the radiologist at the beginning of the scan. All rays passing through the region

of interest are collected (see Fig. 7.1(b)). Therefore, the region of interest is as well-

sampled as possible. The slices needed to compute forward and back projections

for rays that do not completely lie in the region of interest are called extra slices.

Thus, extra slices have to be estimated also for the statistical method to work, even

though enough data for them is not available. This is a consequence of the long-object

problem for statistical methods.

2. Divide the observed data i.e., sinogram, into P subsets, Ip, p = 1, . . . , P , as follows.

Each ray of Ip must pass through atleast one voxel of µp. Ip can not be disjoint here

because of the oblique nature of many rays in the cone-beam geometry. Also, if the

subsets Ip, p = 1, . . . , P were disjoint, we would have P independent problems. See
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Fig. 7.1(b).

The division of observations described here helps us to understand the problem better.

However, the direct implementation of the parallel PWLS OS SPS algorithm based

on this division causes two or more processors to repeat some numerical computa-

tions. The implementation of the parallel PWLS OS SPS algorithm must avoid such

repetition. Our implementation avoids this repetition (Section 7.2.2).

3. Now, during the computation process, each processor would forward project µp into

rays (or, sinogram bins) of Ip. Since one or more rays of Ip would pass through

neighboring image segments, image slices from neighboring image segments would

be required. Denote by µp,p′, those slices of image segment p
′ needed to compute the

forward projection of µp into Ip. Also note that, µp,p is simply µp. See examples of

µp,p′ for P = 4 in Fig. 7.2.

4. The additively-separable forms of both negative likelihood and the penalty function

bring to light the following analogy: “What rays are to sinograms, voxel differences

are to the superset of regularization neighborhoods”. Thus, in same vein as µp,p′,

define µp,p′,pen.

5. The computation of z(n) in step 2.2 of the above pseudo-code can be split into P

components as















z
(n)
1

...

z
(n)
P















= DL















µ
(n)
1

...

µ
(n)
P















−















v
(n)
1

...

v
(n)
P















,v(n) △
= NsG

T
r ḣr(Grµ

(n)).

For the pth component of z(n), we can write the above computation as z
(n)
p =

DL,pµ
(n)
p − v

(n)
p , where, the diagonal matrix DL is split into p diagonal matrices

DL,p in exactly the same way as µ is split into p image components. The tricky
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part is the compuatation of v
(n)
p . Note that the operator G

T
r in the equation v

(n) △
=

NsG
T
r ḣr(Grµ

(n)) maps rth subset view errors into v(n). But, to compute v
(n)
p

we only need those views from the the rth subset view that belong to Ip. So,

we only need those image slices through which the rays of Ip pass. These im-

age slices are given by
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p
, where the notation [µ]p means the pth component

of µ i.e., [µ]p
△
= µp.

6. Using similar arguments from the previous step, the image update in step 2.3.1 can

be written in the “parallel” form as
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The pseudo-code for the parallel PWLS OS SPS is as follows:
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1. µ(0) = max(µFBP , 0)

2. for n=0,1,2,. . .,N1 ×Ns-1

2.1 Choose subset r = bit reverse(n mod N1)

2.2 for p=1,. . .,P compute in parallel

z(n)
p = DL,pµ
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p −Ns

[
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2.3 for m=0,1,2,. . .,N2-1

2.3.1 for p=1,. . .,P compute in parallel
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2.3’ end

2.4 µ(n+1) = µ(n,N2)

2’ end

7.2.2 Implementation aspects of the Parallel PWLS OS SPS algorithm

The parallel PWLS OS SPS algorithm was derived in Section 7.2. The implementation

of the algorithm in software is outlined in this section.
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The implementation described here has three very useful properties:

1. Computer architecture adaptive

The organization of processors in a computer is hierarchical, e.g., a multi-processor,

multi-core computer consists of many processors, and a processor consists of many

cores. We call the first level of the processor hierarchy, the MPU (memory processor

unit) and the second level, the BPU (base processor unit). The software implemen-

tation consists of many threads running concurrently. If the data sharing between

threads (called, inter-processor communication) executing on the assignedMPUs and

BPUs follows the processor hierarchy, then the utilization of memory buses can be

controlled precisely. This would allow maximum utilization of resources of a given

computer.

2. Memory efficient

Dividing the problem into a large number of processors causes memory requirements

to increase linearly. This is because of the creation of a large number of µp,p′ image

segments. For the program to work, the memory requirements must not exceed the

maximum amount of random access memory (RAM) available. The implementation

described here divides the problem into only as many MPUs as permitted by the

available RAM. EachMPU is then assigned BPUs to maximize processor utlilization.

Thus, in presence of memory constraints, the MPU-BPU division might not follow

the processor hierarchy of a given computer and, the utilization of memory buses

would be sub-optimal.

3. Repetetive numerical computation avoidance

In Section 7.2, the Parallel PWLS OS SPS algorithm was designed using an over-

lapping division of the observations, Ip, p = 1, . . . , P . This division is intuitive and

helps in understanding the problem. But, this division causes some calculations to be
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Figure 7.3: Image and observation space division for P = 4MPUs

repeated by two or more processors. This implementation is designed to avoid such

a repetition while still performing the computations of the Parallel PWLS OS SPS

algorithm.

The major aspects of the software implementation are described next.

Image and observation space division

The division of the observation space among MPUs is no longer overlapping. It is

disjoint (Fig. 7.3). A consequence of this disjoint division is that some of the rays passing

through, say µ1, are in I2. The forward and back projection operations will have to be

adapted to this scheme. More on this later.

The image space is divided among MPUs just as before but the definition of µp,p′ is

different. µp,p′ is that segment of µp′ which is non-zero, when a uniform sinogram of ones

corresponding to Ip is back-projected onto µp′. The image µp is represented in the code
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as ownvol[p] (short for “own volume”). The image
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is represented in the code as

fullvol[p] (short for “full volume”).

Full and subset forward projection

Since subset forward projection is a subset of the full forward projection, the image

space division defined above can be retained. For simplicity, let us consider the full foward

projection only; the extension to the subset forward projection is trivial.

The forward projection is divided into MPUs as follows. MPU p computes the pth

component of the sinogram, Ip. For this to happen, all image slices relevant to the compu-

tation of Ip will have to copied to MPU p. Thus, the processor copies the corresponding

slices of µp′ into slices of µp,p′. This operation is denoted in the code as sync (Fig. 7.4).

The views in Ip are further divided into BPUs. The division of sinograms among BPUs

is also disjoint. The forward projection involves reading image slices and each BPU can

do the reading without coordinating with other BPUs. This is in contrast to the back-

projection (described next).

Full and subset back projection

Since subset back projection is a subset of the full back projection, the image space di-

vision defined above can be retained. For simplicity, let us consider the full back projection

only; the extension to the subset back projection is trivial.

The back projection is divided into MPUs as follows. MPU p computes the pth compo-

nent of the image, µp. Now, µp would require rays not only from Ip but also other MPUs.
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Figure 7.4: The sync operation.

This is accomplished as follows. Each MPU p back-projects Ip onto
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. Now, the

back projection of rays from Ip′ onto µp would be stored in µp′,p (this is due to the defi-

nition of µp,p′). Thus, the back projection of µp is computed by adding slices of µp′,p to

corresponding slices of µp. This operation is denoted in the code as sum (Fig. 7.5).

The views in Ip are further divided into BPUs. The division of sinograms among BPUs

is also disjoint. The back projection operation involves writing to image slices and each

BPU has to coordinate with other BPUs. The access control is performed using mutual

exclusion locks of the pthread library. This is in contrast to forward-projection (described

previously).
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Figure 7.5: The sum operation.

7.3 Results

Results from image reconstructions of a helical cone-beam dataset from a MSCT scan-

ner, GE Lightspeed, using the hybrid OS-ICD and ICD algorithms running on a parallel

computer are presented here.

7.3.1 Scanner and dataset description

The GE Lightspeed scanner is a 3rd generation CT scanner with a single X-ray source

and an arc-detector array placed opposite each other, on a gantry.The detector-array has 64

detector-rows and 888 detector channels per row. Each detector is roughly 1mm × 1mm

in size. The radius of rotation of the source and detector-array are roughly 54cm and 41cm

respectively. In the current dataset, 3062 views of the object are taken with the pitch of

the helix being nearly 1:1 and a source translation of nearly 4cm per rotation. The pitch

of the helix is defined here as the ratio between the source translation in the longitudinal
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direction in one rotation of the gantry, and the width of the detector array measured at the

isocenter of the gantry. 984 views are obtained in a 360◦ rotation of the gantry, giving

us slightly more than 3 rotations around the patient. The raw projection-data and scanner

parameters were provided by GE Healthcare.

7.3.2 Hardware and software

The parallel computer hardware used in this research is made of 4 AMD dual-core

processors connected to 16GB of shared random access memory. Thus, this computer has

8 processors in the sense of the word processor used before (we count a core as a processor

here). The OS algorithm was implemented in the C language and the pthreads library was

used to implement parallel processing. The operating system used was 64-bit linux.

7.3.3 Reconstructed images

Two reconstructed images are produced using ICD and hybrid OS-ICD algorithms and

compared with each other here. The initial image for both algorithms is an FBP image,

and was provided by GE Healthcare. The image grid covers a large field-of-view in the

axial plane, a circle of diameter of about 70cm. The extent of the region of interest in

the longitudinal direction (i.e., z-direction) is about 6cm. Due to the oblique nature of the

cone-beam rays and the large cone angle of 64 slice (i.e., 64 detector-row) scanners, we

need to reconstruct an image grid whose extent in z-direction is about 12cm. The voxel

dimensions are about 1.4mm × 1.4mm × 0.6mm, and the image grid size is 512 × 512 ×

185.

The cost function used here was the sum of the WLS negative log-likelihood and

space-invariant non-quadratic penalty function. The parameters of the WLS negative log-

likelihood were provided by GE Healthcare, which they had computed from the raw ob-

servations generated by the GE Lightspeed scanner. The potential function used initially
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in the penalty function was q-GGMRF (see Table 2.1). This was later replaced by the

Generalized-Fair (see Table 2.1) potential function to achieve significant compute time

savings without compromising image quality. Due to the 3-D nature of the image volume

and the use of first-order differences in the regularization, the number of voxel neighbors

employed in regularization was 26.

Fig. 7.6 shows a coronal (x − z) slice of the FBP image (top), and the intermediate

image (bottom) produced at the end of the OS part of the hybrid OS-ICD algorithm. 12

iterations of the OS algorithm with 41 subsets and initialized by FBP were run to pro-

duce the intermediate image. Fig. 7.7 shows a coronal slice of the hybrid OS-ICD recon-

struction (top) and the ICD reconstruction (bottom). The hybrid OS-ICD reconstruction

was obtained when the ICD algorithm was initialized by the intermediate image obtained

above. The ICD reconstruction was obtained when the ICD algorithm was initialized by

FBP. The implementation of the ICD algorithm was provided by GE Healthcare, while

the implementation of the OS algorithm, except the system model, was carried out here,

at the University of Michigan. The system model implementation was provided by GE

Healthcare.

Top slices in the FBP image are replications of the end slice. This is because top slices

are not sampled fully by the helical cone-beam geometry. And, FBP algorithms do not

respond well to data insufficiency. So, the last well-reconstructed slice is used for all the

top slices in FBP. Further note that both statistical algorithms, ICD and hybrid OS-ICD,

reconstruct more number of end-slices than FBP. Also note that the ICD algorithm does not

update the image in the top and bottom slices while the OS algorithm does update them. In

a given end-slice, atleast one voxel has a ray passing through it. But, the entire slice has to

be included in the reconstruction with the OS algorithm to keep the implementation simple

and fast. For the voxels that have no or very few rays passing through them, we inherently
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depend on regularization to update them. That is why end-slices are very blurred in the OS

reconstruction. This blurring is observed to some extent in the ICD reconstruction also.

Range: [−25.2371 2671.95]

1 512

1

370

Figure 7.6: FBP image and intermediate image from hybrid OS-ICD algorithm. Top: Initial FBP image, and

Bottom: Intermediate reconstruction. Image window = [800, 1200] HU.

7.3.4 Compute time of the algorithms

The compute time of the algorithms depends on the hardware and the software opti-

mization of the algorithm implementation. Software optimization is the process of chang-

ing the software implementation to make a program run faster and/or its memory foot-

print smaller by various methods like changing the organization of the memory allocated

by the software, using assembly programming, load-balancing – adjusting the amount of

number-crunching given to a particular thread etc.. Software optimization was done on
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Figure 7.7: Hybrid OS-ICD and ICD reconstructions. Top: OS-ICD reconstruction, and Bottom: ICD

reconstruction. Image window = [800, 1200]HU.

the OS implementation only to make its memory requirements low enough so that it could

run on the parallel computer used in this research. There is scope for more software opti-

mization. On the same hardware, software implementations of the same program can have

very different compute times depending on the amount of software optimization. Compute

time can be reduced by 10 to 100 times by proper software optimization. This should be

kept in mind while considering the following results.

The ICD algorithm took 140 minutes and executed 3.9 equits1. While the ICD algo-

rithm in the hybrid OS-ICD algorithm took 100 minutes and executed 2.5 equits when

1An equit is the short form for equivalent iteration in the ICD algorithm. An equit can be roughly said to be completed

if all voxels of the image have been updated.
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initialized by the intermediate image. The OS algorithm that created the intermediate im-

age from the FBP image used 12 iterations for a total time of about 215minutes. Thus, the

hybrid OS-ICD algorithm took much longer than the ICD algorithm. This is an unfavor-

able result for the hybrid OS-ICD algorithm, but it is not discouraging, as many possible

methods to accelerate the OS algorithm still exist (Section 7.3.5). As the OS algorithm

is accelerated, more iterations can be run in lesser time, and the noise in the intermediate

image shall be reduced further. A better intermediate image shall further reduce the time

taken for the ICD part of the hybrid OS-ICD algorithm.

The reconstruction time of the parallel OS algorithm is reduced by a factor of about 7

when 8 processor cores are used instead of 1.

7.3.5 Candidate methods to accelerate the OS-algorithm

Various candidate methods to accelerate the OS algorithm are available.

The first is the use of a larger number of subsets. Consider, the Total time in the first

columns (labeled, None) of Table 7.1, 7.2 and Table 7.3. In going from OS 1-subset to OS

41-subset, we get a theoretical convergence rate increase of 41 i.e., need 1 iteration of OS

41-subset instead of 41 iterations of OS 1-subset, with a compute time increase of just 6%.

Similarly, in going from OS 41-subset to OS 256-subset, we get a theoretical convergence

rate increase of about 6 with a compute time increase of just 36%. These numbers are

similar but slightly worse, when regularization is included. But the behavior of the OS

256-subset algorithm is unpredictable in the top and bottom slices. The probable reason

for this behavior and possible solutions are suggested in Section 7.3.6.

Another method, as described previously, would be to optimize the software implemen-

tation of the OS algorithm.

One of the solutions that reduced the compute time the OS algorithm was the use of the
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Generalized-Fair (GF) potential function instead of the q-GGMRF potential function. The

GF potential approximates the q-GGMRF potential function closely but does not involve

time-consuming function calls to the power function. A large percentage of the compute

time of the OS algorithm is attributable to regularization because calls to the gradient and

denominator evaluation of the penalty function are nested deeply in nested-loops of the

PWLS OS SPS algorithm (see Section 6.2.1). Even a small reduction in the time spent

in regularization can have a large effect on the overall compute time. From Table 7.2 and

Table 7.3, we can see that the total compute time is reduced by a great deal when the

q-GGMRF potential function is replaced by the GF potential function.

Another proposed solution is the use of quadratic regularization in the latter OS itera-

tions, and no regularization in the initial OS iterations. If a single global parameter, β, of

the quadratic regularization can be found to match the GF potential function over the entire

image well, then this method can lead to a large compute time reduction. In Table 7.3, the

compute time reduces by nearly 25% for OS 256-subset algorithms, when we replace GF

potential function with quadratic. But, such a global β might not exist. To overcome this

difficulty, a new algorithm that uses quadratic surrogates in the regularization iterations

and is still monotonic in the original cost function is derived in Section 8.2.

None Quadratic GF q-GGMRF

Total time 13.1 (100%) 13.1 (100%) 13.0 (100%) 13.9 (100%)

Forward projection 6.1 (46.7%) 6.1 (46.8%) 6.2 (47.7%) 6.1 (44.1%)

Back projection 6.9 (53.0%) 6.9 (52.8%) 6.7 (51.6%) 6.9 (49.6%)

Regularization 0.0 (0.0%) 0.1 (0.4%) 0.1 (0.6%) 0.8 (6.1%)

Arithmetic 0.0 (0.3%) 0.0 (0.0%) 0.0 (0.1%) 0.0 (0.1%)

Table 7.1: Per-iteration compute times (in minutes) and their break-up for OS-based algorithmswith 1 subset
and 4 different regularization functions.
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7.3.6 Reconstructions from OS-based algorithms in the end slices

OS-based algorithms accelerate convergence by using a subset of the observed data.

The image gradient computed by the OS-algorithm is an approximation to the image gra-

dient that would be produced by the entire observed data. In the end-slices of the image

volume in the z-direction, the voxels are sampled sparsely due the nature of the helical

cone-beam geometry. When the OS-algorithms are used to reconstruct these end-slices, a

subset of the already insufficient data is used to compute the image gradient. Thus, the gra-

dient approximation in the end slices gets worse as more and more subsets are employed.

This leads to streaking artifacts in the end slices (see Fig. 7.8). We have demonstrated that

the OS 41-subset algorithm produces acceptable reconstructions in the end slices, and we

can also see from Fig. 7.8 that the OS 256-subset algorithm produces acceptable images

in the middle slices. Thus, a possible solution would be to somehow reduce the number of

subsets for the end-slices while using a large number of subsets in the middle slices.

None Quadratic GF q-GGMRF

Total time 13.8 (100%) 15.5 (100%) 17.5 (100%) 58.4 (100%)

Forward projection 6.5 (46.8%) 6.6 (42.5%) 6.5 (37.2%) 6.5 (11.2%)

Back projection 7.1 (51.3%) 7.0 (44.9%) 7.5 (42.8%) 7.1 (12.1%)

Regularization 0.0 (0.0%) 1.6 (10.4%) 3.1 (17.7%) 44.6 (76.3%)

Arithmetic 0.3 (1.9%) 0.3 (2.2%) 0.4 (2.3%) 0.2 (0.4%)

Table 7.2: Per-iteration compute times (in minutes) and their break-up for OS-based algorithms with 41
subsets and 4 different regularization functions.

None Quadratic GF q-GGMRF

Total time 18.8 (100%) 29.0 (100%) 39.6 (100%) 307.5 (100%)

Forward projection 8.3 (44.4%) 8.3 (28.7%) 8.2 (20.6%) 8.3 (2.7%)

Back projection 8.8 (46.7%) 8.6 (29.7%) 9.1 (22.8%) 8.7 (2.8%)

Regularization 0.0 (0.0%) 10.2 (35.4%) 19.9 (50.3%) 288.6 (93.8%)

Arithmetic 1.7 (8.9%) 1.8 (6.2%) 2.5 (6.3%) 2.0 (0.6%)

Table 7.3: Per-iteration compute times (in minutes) and their break-up for OS-based algorithms with 256
subsets and 4 different regularization functions.
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Figure 7.8: A coronal slice of the image reconstruction using the OS 256-subset algorithm.

7.4 Summary

The goal set in this chapter was to lower the compute time of ICD algorithm for prac-

tical sized problems. Two approaches, the hybrid OS-ICD and parallel-computation, were

tried. The hybrid OS-ICD approach was used to initialize the ICD algorithm with a re-

construction produced by the parallel PWLS OS SPS algorithm instead of FBP. Since OS

algorithms have a higher convergence rate at low image frequencies than ICD algorithms,

the new initialization scheme would benefit the ICD for datasets where the FBP image is

very inaccurate, e.g., insufficiently sampled image regions. For the particular dataset in-

vestigated here, OS algorithms did not reduce the compute time due to data-insufficiency

in the end-slices of helical cone-beam geometry. Possible solutions to this problem were

suggested. The compute time of OS algorithms was lowered without degrading the im-

age quality when the q-GGMRF potential function was replaced by the computationally

cheaper Generalized-Fair potential function. The parallel version of the PWLS OS SPS

algorithm was derived. The parallel-computation approach was shown to achieve a reduc-

tion in compute time by a large factor in PWLS OS SPS algorithms.
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7.5 Future work

This section contains three ideas that can possibly lead to image quality improvements.

Two of them pertain to OS algorithms, and the third could be used with other algorithms

also.

7.5.1 Modification of OS algorithms for helical cone-beam geometry

We found in this chapter, for the helical cone beam geometry, that end slices (ES,

Fig. 7.1(a)) are reconstructed well only with OS algorithms that use a low number of

subsets, e.g., 41. While the region of interest (ROI, Fig. 7.1(a)) can be reconstructed well

with a higher number of subsets, e.g., 256. Thus, the current OS algorithm has to be

modified to reconstruct both ROI and ES with a high quality and low reconstruction time.

Two ideas are proposed for this purpose: Non-uniform ordered subsets, and alternating

minimization between region-of-interest (ROI) and end slices (ES).

Non-uniform ordered subsets

We first divide the full negative log-likelihood into a large number of subsets, say,

256. Now, OS with a large number of subsets can reconstruct ROI well, but it can not

reconstruct ES. So, to each subset, we include more rays (or, rays belonging to entire

views) that pass through ES. This effectively reduces the number of subsets from the point

of view of ES.

The inclusion of more rays is done in such a way that the sum of individual negative

log-likelihoods of all subsets yields the full negative log-likelihood. Thus, if a ray i is

in Mi subsets then the negative log-likelihood corresponding to that ray is multiplied by

1/Mi. For example, if a ray is present in two subsets then a factor of 0.5 is multiplied to

the two pieces of negative log-likelihood corresponding to that ray.
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The disadvantage of this approach is that the total number of views visited for forward

and back projection during a given iteration increases by a large number. Thus, each

iteration takes longer to execute.

Alternating minimization between region-of-interest (ROI) and end slices (ES)

In this approach, first, ES is held constant and ROI is reconstructed for a few iterations

using OS with a large number of subsets. Then, ROI is held constant and ES is recon-

structed using OS with a smaller number of subsets. This approach gives the algorithm

designer flexibility in choosing the number of iterations of each OS algorithm to execute.

This makes the image quality-reconstruction time trade-off easier. In the non-uniform

ordered subsets approach, such a trade-off is not possible. This is due to the fixed ratio

between the number of iterations at higher subsets and the number of iterations at lower

subsets. This is ratio is equal to the ratio of higher number of subsets and the lower number

of subsets.

7.5.2 Modification of distance-driven projector for oblique rays

The error in forward and back projections in the distance-driven projector is highest for

oblique rays, i.e., those rays that roughly make an angle of 45◦ with the x-axis. For the

oblique rays, imagine the square cartesian grid sitting on top of the original grid that is at

45 degrees to the original grid in the x − y plane. The new cartesian grid has dimensions

that are 1/
√

2 of the original grid. This grid has sample points from original grid and some

new points. These new points are surrounded equidistantly by 4 points of the original grid.

Interpolating for the new grid points should be computationally inexpensive - additions

and divide-by-2’s. For the oblique rays, the DD projector on the new grid would be costlier

by factor of 2. This would be due to the increase in the number of sample points.

In summary, the proposed modification must be able to reduce the error in forward and
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back projection operations without a high compute time penalty.



CHAPTER 8

Algorithm designs for even more acceleration

This chapter contains three derivations to further accelerate image reconstruction algo-

rithms. In Section 8.1, an algorithm that combines the features of OS and PCG is derived.

This algorithm is expected to better the convergence rate of OS algorithms by using a better

search direction. In Section 8.2, a relative of the PWLS OS SPS algorithm is derived. It

aims to reduce the overall compute time by decreasing the number of times computation-

ally expensive functions are computed. Computationally expensive functions are found

in the negative log-likelihood part when complex statistical models are employed, and in

the regularization part when complex image priors are used. In Section 8.3, we derive a

surrogate function that divides the image reconstruction problem into P separate problems

among P processors of a computer. The algorithm designer controls the number of times

the information is exchanged between the P problems, thus controlling the inter-processor

communication.

8.1 OS-PCG hybrid algorithm: OS PCG LS

We derive a new algorithm that combines ideas from OS and PCG. OS PCG LS al-

gorithm first computes an approximate quadratic surrogate, φL,1(µ;µ(n)), at the current

iterate, µ(n). The gradient in this approximate surrogate is the gradient approximation

111
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computed using the OS method. This approximate surrogate is thus derived as follows.

φL(µ;µ(n)) =

nd
∑

i=1

qL,i(ti; si)

=

nd
∑

i=1

ḣi([Gµ
(n)]i)[G(µ− µ(n))]i +

nd
∑

i=1

1
2
c̆
(n)
i [G(µ − µ(n))]2i , (from (2.11))

= (GT ḣ(n))T (µ− µ(n)) + 1
2
(µ− µ(n))TGTD(c̆

(n)
i )G(µ− µ(n)),

≈ (NsG
T
r ḣ

(n)
r )T (µ− µ(n)) + 1

2
(µ− µ(n))TGTD(c̆

(n)
i )G(µ− µ(n)),

(by OS approximation to the gradient)

△
= φL,1(µ;µ(n)),

Now, the search direction, d(n), is computed using the PCG procedure outlined in (2.12).

The current gradient, NsG
T
r ḣ

(n)
r , and the previous search direction, d

(n−1) are used in

(2.12). A line search is performed in this direction on φL,1(µ;µ(n)). The line search sets

up the cost function Φ′(α) as follows.

Φ′(α)
△
= φL,1(µ

(n) + αd(n);µ(n)),

= (NsG
T
r ḣ

(n)
r )Td(n)α + 1

2
d(n)TGTD(c̆

(n)
i )Gd(n)α2.

This line search on Φ′(α) would be very expensive as a forward projection would have to

be performed to compute the curvature d(n)TGTD(c̆
(n)
i )Gd(n) at every subiteration (this

subiteration refers to iteration over subsets). Using the De Pierro’s trick, a curvature that

is greater than the previous one is computed. A greater curvature is required in order to

create a surrogate that majorizes Φ′(α):

Φ′(α) ≤ (NsG
T
r ḣ

(n)
r )Td(n)α + 1

2
d(n)TD(

nd
∑

i=1

c̆
(n)
i Gi|Gij |)d(n)α2.

D(
∑nd

i=1 c̆
(n)
i Gi|Gij|) does not require excessive computation cost as it needs to be

computed only once in the WLS case. In the Poisson case, the use of the precomputed
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curvatures for c̆
(n)
i can be explored; precomputed curvatures are also computed once. As

we have already used the OS method, high convergence rate is the only advantageous

property that our algorithm can possibly possess. That is why the precomputed curvatures

would be used in the Poisson case.

Thus, the step size is derived analytically as :

α∗ = − (NsG
T
r ḣ

(n)
r )Td(n)

d(n)TD(
∑nd

i=1 c̆
(n)
i Gi|Gij |)d(n)

,

and, the image update is computed as,

µ(n+1) = µ(n) − (NsG
T
r ḣ

(n)
r )Td(n)

d(n)TD(
∑nd

i=1 c̆
(n)
i Gi|Gij|)d(n)

d(n).(8.1)

Comparing the update (8.1) with (6.3), we find that we are descending in the direction

provided by PCG method instead of pixel-wise scaled gradient approximated by the OS

method. Note that the direction computed by the PCG method improves the gradient com-

puted by the OS method. Whether the new algorithm improves convergence rate remains

to be checked by experiments with real and simulated data.

The pseudo-code is :

1. µ(0) = max(µFBP , 0)

2. for n=0,1,2,. . .,N1 ×Ns-1

2.1 Choose subset r = bit reverse(n mod N1)

2.2 Compute d(n) by first computing NsG
T
r ḣ

(n)
r

2.3 Compute µ(n+1) using (8.1)

2’ end

Regularization can be added easily to this algorithm. The total number of equivalent for-

ward and back projections is 2 ×N1.
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8.2 PWLS OS SPS with reduced number of non-linear function eval-

uations

Regularization involves differencing neighboring voxels and applying a non-linear func-

tion to the differences. This non-linear function is called the potential function, ψ, here.

Evaluation of the potential function is a computationally expensive operation especially

when mathematical operations like power are involved [61]. The PWLS OS SPS algo-

rithm described above evaluates the potential function every regularization sub-iteration.

Therefore, if N1, Ns and N2 are the number of iterations, subsets and regularization sub-

iterations respectively, the PWLS OS SPS algorithm evaluates the non-linear potential

function at every voxelN1×Ns×N2×Nn times;Nn is the number of neighbors of a voxel

considered for regularization (Nn = 26 for first-order regularization in 3-dimensions).

The algorithm proposed in this section evaluates the non-linear potential function at every

voxelN1 ×Nn times and evaluates the much computationally cheaper quadratic potential

function N1 × Ns × N2 × Nn times. This saving in compute time comes at the cost of

slightly reduced convergence rate. The convergence rate is expected to reduce slightly due

to a small increase in curvatures.

As a by-product of the derivation of this method, we shall find a method to adjust the

weights sinogram of the negative log-likelihood part as the iterations proceed.

Before the algorithm is derived, a closer look at the representation and notation of the

penalty function, R(µ), is required. The penalty function used here is based on [26].

This penalty function has the advantage of providing a way of achieving near-uniform

resolution over the image. It is written as :

R(µ) =

np
∑

j=1

np
∑

l=1

Nj,lκjκlβj,lψ(µj − µl).(8.2)

The penalty function is a sum over neighboring voxels of the result of the evaluation of the
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potential function, ψ, on the voxel difference. βj,l is a factor that decides howmuch weight

is given to regularization with respect to the negative log-likelihood. It is also used to

change the regularization depending on the relative position and direction of neighboring

voxels in the co-ordinate system. Here, βj,l depends on |j− l| for neighboring voxels, and

so, only 13 unique values of βj,l need to be computed and stored. κ is an image sized

vector that is used to achieve near-uniform resolution over the image (see [26]). Nj,l is an

np × np size matrix that is used to represent the neighborhood of all voxels. Its elements

take one of the two values : 1 or 0. To count each pair of neighboring voxels only once,

Nj,l must satisfy : if Nj,l = 1, then Nl,j = 0. One out of the many values of Nj,l that

meets all of the above requirements is :

Nj,l =



















1, l is in the neighborhood of j, and, l > j in lexicographic order,

0, l is not in the neighborhood of j, or, l ≤ j in lexicographic order.

This notation of the penalty function is hard to manipulate when computing the gradient

and the hessian. A simpler notation is defined as follows. The double-sum of (8.2) is

expanded and each term in the expansion is represented by a unique value of the index

k. Let K be the total number of terms in the expansion. Thus, each pair of voxels being

differenced, i.e. (j, l) such that Nj,l = 1, has a unique index k. Thus, for each k, define

wk
△
= κjκlβj,l. Define a differencing matrix,C, of sizeK × np, as follows. C transforms

an image into the set of voxel-differences. Each row of C is indexed by k, Within the kth

row, all but two terms are non-zero; Ck,j = 1,Ck,l = −1, where (j, l) is the voxel-pair
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corresponding to k. The penalty function of (8.2) can now be written as

R(µ) =
K
∑

k=1

wkψ([Cµ]k),(8.3)

where, k indexes the set {(j, l) : Nj,l = 1},

K is the total number of differenced voxel-pairs,

wk
△
= κjκlβj,l.

The proposed algorithm repeatedly creates a quadratic cost function that majorizes the

original cost function, Φ(µ) = −L(µ) +R(µ) 1. The value of the quadratic cost func-

tion so created is then reduced using any of the known traditional algorithms. Thus, all

evaluations of non-quadratic functions like power, exponentiation, logarithm, etc., are per-

formed in the outermost iteration. In the following section, we first show the creation of

the quadratic cost function, and then we show how the OS SPS algorithm for the PWLS

cost function is applied to the computed quadratic cost function. We also show that by

making very simple substitutions, the derived algorithm can be used for complex statisti-

cal models.

The overall cost function is defined as follows :

Φ(µ) = −L(µ) +R(µ),

−L(µ) =

nd
∑

i=1

hi([Gµ]i),

R(µ) =

np
∑

j=1

np
∑

l=1

Nj,lκjκlβj,lψ(µj − µl), (from (8.2))

=

K
∑

k=1

wkψ([Cµ]k). (from (8.3))

Now, we create a quadratic function that majorizesΦ around the iterateµ(ñ). The potential

1Φ(µ) is usually defined as −L(µ)+βR(µ). But,R(µ) used here is defined in (8.2), which has β absorbed into it.
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function ψ(t) is majorized around a point s using the following inequality :

ψ(t) ≤ ψ(s) + ψ̇(s)(t− s) + 1
2
ωψ(s)(t− s)2,

where, ωψ(s) = ψ̇(s)/s. To majorize R(µ) around µ(ñ), for each k, set t = [Cµ]k and

s = [Cµ(ñ)]k. Thus,

ψ([Cµ]k) ≤ ψ([Cµ(ñ)]k) + ψ̇([Cµ(ñ)]k)([Cµ]k − [Cµ(ñ)]k)

+ 1
2
ωψ([Cµ(ñ)]k)([Cµ]k − [Cµ(ñ)]k)

2

opt
= ψ̇([Cµ(ñ)]k)[Cµ]k + 1

2
ωψ([Cµ

(ñ)]k)([Cµ]k − [Cµ(ñ)]k)
2.

(dropping terms independent of µ)

The quadratic majorizer for the penalty part can be now written as :

φR(µ;µ(ñ)) =
K
∑

k=1

wk · (ψ̇([Cµ(ñ)]k)[Cµ]k + 1
2
ωψ([Cµ

(ñ)]k)([Cµ]k − [Cµ(ñ)]k)
2),

= (D(wk)ψ̇(µ(ñ)))TCµ+
1

2

K
∑

k=1

wkωψ([Cµ
(ñ)]k)([Cµ]k − [Cµ(ñ)]k)

2,

= (CTD(wk)ψ̇(µ(ñ)))Tµ

+
1

2

np
∑

j=1

np
∑

l=1

Nj,lκjκlβj,lωψ(µ
(ñ)
j − µ

(ñ)
l )((µj − µl) − (µ

(ñ)
j − µ

(ñ)
l ))2,

The storage requirement for ωψ(µ
(ñ)
j − µ

(ñ)
l ) in the above surrogate is huge: 13 image

volumes. We overcome this problem by creating a new surrogate that requires storage of
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just 1 image volume as follows.

φR(µ;µ(ñ)) ≤ (∇R(µ(ñ)))Tµ+
1

2

np
∑

j=1

ωmaxψ,j

np
∑

l=1

Nj,lκjκlβj,l((µj − µl) − (µ
(ñ)
j − µ

(ñ)
l ))2,

where, ωmaxψ,j

△
= max

{l:Nj,l=1}
ωψ(µ

(ñ)
j − µ

(ñ)
l )(note: ωψ(t) > 0, ∀t ∈ R),

= (∇R(µ(ñ)))Tµ+
1

2

np
∑

j=1

np
∑

l=1

Nj,lω
max
ψ,j κjκlβj,l((µj − µl) − (µ

(ñ)
j − µ

(ñ)
l ))2,

= (∇R(µ(ñ)))Tµ+

K
∑

k=1

1
2
w̃k(µ

(ñ))([Cµ]k − [Cµ(ñ)]k)
2,

where, w̃k(µ
(ñ))

△
= ωmaxψ,j κjκlβj,l, and k indexes the set {(j, l) : Nj,l = 1}.

The weighted least squares (WLS) negative log-likelihood is a cost function that does

not involve evaluations of expensive functions like logarithm. But, for complex obser-

vation statistics like Poisson, Poisson+Gaussian, Compound-Poisson etc., the negative

log-likelihood could involve expensive exponentiation and logarithm operations. In the

initial iterations, far from the converged solution, it is conjectured that large benefits in

terms of image quality are not obtained by the exact evaluation of these expensive func-

tions. It should be possible to use a quadratic cost function instead of the exact negative

log-likelihood in initial iterations. In this section, we derive such a quadratic majorizer to

the exact negative log-likelihood. The quadratic majorizer derived here will help test this

conjecture.

We majorize hi(t) using the following inequality :

hi(t) ≤ hi(s) + ḣi(s)(t− s) + 1
2
c̆i(s)(t− s)2,

opt
= ḣi(s)t+ 1

2
c̆i(s)(t− s)2.

(when s is a constant. e.g. when s is a function of an iterate like µ(ñ).)

We majorize −L(µ) around µ(ñ) by setting for each i, t = [Gµ]i and s = [Gµ(ñ)]i, as
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follows :

φL(µ;µ(ñ)) =

nd
∑

i=1

ḣi([Gµ
(ñ)]i)[Gµ]i + 1

2
c̆i([Gµ

(ñ)]i)([Gµ]i − [Gµ(ñ)]i)
2,

= ḣ(µ(ñ))T (Gµ) +

nd
∑

i=1

1
2
w̃L,i(µ

(ñ))([Gµ]i − [Gµ(ñ)]i)
2,

(where, w̃L,i(µ
(ñ))

△
= c̆i([Gµ

(ñ)]i))

= (GT ḣ(µ(ñ)))Tµ+

nd
∑

i=1

1
2
w̃L,i(µ

(ñ))([Gµ]i − [Gµ(ñ)]i)
2,

= (∇(−L)(µ(ñ)))Tµ+

nd
∑

i=1

1
2
w̃L,i(µ

(ñ))([Gµ]i − [Gµ(ñ)]i)
2.

Computing ∇(−L) is an computationally expensive operation, but in the initial iterations

the computationally cheaper OS approximation to∇(−L) should suffice.

Thus, the quadratic majorizer for the objective function for the general negative log-

likelihood is :

Φ̃(µ;µ(ñ)) = φL(µ;µ(ñ)) + φR(µ;µ(ñ)),

= (∇− L(µ(ñ)))Tµ+

nd
∑

i=1

1
2
w̃L,i(µ

(ñ))([Gµ]i − [Gµ(ñ)]i)
2

+ (∇R(µ(ñ)))Tµ+

K
∑

k=1

1
2
w̃k(µ

(ñ))([Cµ]k − [Cµ(ñ)]k)
2,

= (∇Φ(µ(ñ)))Tµ+

nd
∑

i=1

1
2
w̃L,i(µ

(ñ))([Gµ]i − [Gµ(ñ)]i)
2

+

K
∑

k=1

1
2
w̃k(µ

(ñ))([Cµ]k − [Cµ(ñ)]k)
2. (∵ Φ(µ) = −L(µ) +R(µ))

Note here that the weights sinogram w̃L is being adjusted as the iterations proceed. The
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quadratic majorizer for the objective function for the WLS negative log-likelihood is :

Φ̃(µ;µ(ñ)) = −L(µ) + φR(µ;µ(ñ)),

=

nd
∑

i=1

1
2
wi([Gµ]i − li)

2 + (∇R(µ(ñ)))Tµ(8.4)

+

K
∑

k=1

1
2
w̃k(µ

(ñ))([Cµ]k − [Cµ(ñ)]k)
2.

There are many similarities in both the constructions of Φ̃. By exploiting these similarities,

the algorithms used to minimize Φ̃ for the WLS case can be reused for the more general

case. If we replaced ∇R(µ(ñ)) by ∇Φ(µ(ñ)), li by [Gµ(ñ)]i, and wi by w̃L,i(µ
(ñ)), we

convert Φ̃ from the WLS case to the general case. These replacements are valid because

the quantities changed are constants in the loop over ñ. These similarities also imply that

we have changed the general image reconstruction problem into a sequence of QPWLS

problems.

The skeleton of the proposed algorithm is shown in Table 8.1. This concludes the first

part of the derivation.

Initialize µ(ñ) = µinitial
loop over ñ

µ∗ = argmin
µ

Φ̃(µ; µ(ñ)) (see (8.4))

µ(ñ) = µ∗

end loop

Table 8.1: Skeleton of algorithm for reducing non-linear function evaluations

We now apply the framework derived above to the PWLS cost function. We use the

OS SPS algorithm to perform the minimization shown in Table 8.1. The following algo-

rithm uses the same structure as the algorithm from Section 6.2.2. There are two levels of

surrogates implemented using an outer loop (indexed by n) and an inner loop (indexed by

m). In the outer loop, the first surrogate is created as a quadratic function by majorizing



121

the negative log-likelihood part. In the inner loop, the second surrogate is also a quadratic

cost function that majorizes the penalty part.

First, let us apply the ordered-subsets idea and DePierro’s trick to the quadratic cost

function majorizing the likelihood part, as is done in Section 6.2.1 :

nd
∑

i=1

1
2
wi([Gµ]i − li)

2

=

nd
∑

i=1

hi([Gµ]i), (define here, hi(t) = 1
2
wi(t− li)

2),

≈ (NsG
T
r ḣ

(n)
r )T (µ− µ(n)) + 1

2
(µ− µ(n))TGTD(wi)G(µ− µ(n)),

(OS approximation to the gradient)

≤ (NsG
T
r ḣ

(n)
r )T (µ− µ(n)) + 1

2
(µ− µ(n))TD(

nd
∑

i=1

wiGi|Gij |)(µ− µ(n)),

(by DePierro’s trick andGi
△
=

np
∑

j=1

|Gij|),

= (NsG
T
r D(wr)(Grµ

(n) − lr))T (µ− µ(n)) + 1
2
(µ− µ(n))TDL(µ− µ(n)),

(where, DL
△
= D(

nd
∑

i=1

wiGi|Gij|))

Before going to the surrogate for the regularization part, let us prove the following

property :

([Cµ]k − [Cµ(ñ)]k)
2

= ([Cµ]k − [Cµ(n,m)]k + [Cµ(n,m)]k − [Cµ(ñ)]k)
2,

= ([Cµ]k − [Cµ(n,m)]k)
2 + ([Cµ(n,m)]k − [Cµ(ñ)]k)

2

+ 2([Cµ]k − [Cµ(n,m)]k)([Cµ
(n,m)]k − [Cµ(ñ)]k),

opt
= 2 ·

(

([Cµ(n,m)]k − [Cµ(ñ)]k)([Cµ]k − [Cµ(n,m)]k) + 1
2
([Cµ]k − [Cµ(n,m)]k)

2
)

.
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The surrogate for the penalty part can now be written as :

K
∑

k=1

1
2
w̃k(µ

(ñ))([Cµ]k − [Cµ(ñ)]k)
2

opt
=

K
∑

k=1

w̃k(µ
(ñ))
(

([Cµ(n,m)]k − [Cµ(ñ)]k)([Cµ]k − [Cµ(n,m)]k) + 1
2
([Cµ]k − [Cµ(n,m)]k)

2
)

,

= (D(w̃k(µ
(ñ)))C(µ(n,m) − µ(ñ)))TC(µ− µ(n,m))

+ 1
2
(C(µ− µ(n,m)))TD(w̃k(µ

(ñ))(C(µ− µ(n,m))),

= (CTD(w̃k(µ
(ñ)))C(µ(n,m) − µ(ñ)))T (µ− µ(n,m))

+ 1
2
(µ− µ(n,m))T{CTD(w̃k(µ

(ñ))C}(µ− µ(n,m)),

≤ (CTD(w̃k(µ
(ñ)))C(µ(n,m) − µ(ñ)))T (µ− µ(n,m)) + 1

2
(µ− µ(n,m))TD(ñ)

R (µ− µ(n,m))

(by DePierro’s trick,CTD(w̃k(µ
(ñ)))C ≺ D(ñ)

R

△
= D(

nd
∑

k=1

w̃k(µ
(ñ))Ck|Ckj|),

Ck
△
=

np
∑

j=1

|Ckj|).

Thus, the innermost quadratic cost function is :

(∇R(µ(ñ)))Tµ

+ (g
(n)
L )T (µ− µ(n)) + 1

2
(µ− µ(n))TDL(µ− µ(n))

+ (g
(n,m)
R )T (µ− µ(n,m)) + 1

2
(µ− µ(n,m))TD(ñ)

R (µ− µ(n,m)),

where, g
(n)
L

△
= NsG

T
r D(wr)(Grµ

(n) − lr), g(n,m)
R

△
= CTD(w̃k(µ

(ñ)))C(µ(n,m) − µ(ñ)).

The first derivative of the cost function is :

∇R(µ(ñ)) + g
(n)
L + DL(µ− µ(n)) + g

(n,m)
R + D(ñ)

R (µ− µ(n,m)),

= (DL + D(ñ)
R )µ− (DLµ

(n) − g
(n)
L ) − (D(ñ)

R µ
(n,m) −∇R(µ(ñ)) − g

(n,m)
R ).

Setting the first derivative to 0, we get the image update as :

µ(n,m+1) = [
(D(ñ)

R µ
(n,m) − g

(n,m)
R ) + (DLµ

(n) − g
(n)
L ) −∇R(µ(ñ))

DL + D(ñ)
R

]+.



123

The final overall algorithm is shown in Table 8.2. The implementation of the new algo-

rithm needs three more image volumes than the traditional PWLS OS SPS algorithm of

Section 6.2.2 : µ(ñ), ωmaxψ , and ∇R(µ(ñ)). When OS is employed and this algorithm

is used where complex statistics are involved, one extra forward and back projection is

involved in the loop over ñ. The extra projection operations will probably not be required

when CG methods are employed. Because, simplification due to the full forward projec-

tion result being used twice would be possible. Another interesting feature of this method

is that all division operations can also be performed in the outermost loop. In traditional

PWLS OS SPS with non-quadratic regularization, division operations are required in the

innermost loop.

Initialize µ(ñ) = µinitial
loop over ñ

Compute ∀j, ωmaxψ,j = max{l:Nj,l=1} ωψ(µ
(ñ)
j − µ

(ñ)
l )

Note ∀k, w̃k(µ(ñ))
△
= ωmaxψ,j κjκlβj,l, k indexes {(j, l) : Nj,l = 1}

Compute D(ñ)
R = D(

∑nd

k=1 w̃k(µ
(ñ))Ck|Ckj |)

Compute DL = D(
∑nd

i=1 wiGi|Gij |)
Compute ∇R(µ(ñ))
Save µ(ñ)

Initialize µ(n) = µ(ñ)

loop over n
Compute subset r = bit reverse(n mod Ns)
Compute z

(n)
L = DLµ(n) −NsG

T
r D(wr)(Grµ

(n) − lr)
Initialize µ(n,m) = µ(n)

loop over m
g
(n,m)
R = CTD(w̃k(µ

(ñ)))C(µ(n,m) − µ(ñ))

µ(n,m+1) = [
(D(ñ)

R µ(n,m) − g
(n,m)
R ) + z

(n)
L −∇R(µ(ñ))

DL + D(ñ)
R

]+.

end loop over m
Update µ(n) with last value of µ(n,m)

end loop over n
Update µ(ñ) with last value of µ(n)

end loop over ñ
µ(ñ) is the output image

Table 8.2: Algorithm for reducing non-linear function evaluations
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8.3 Surrogate cost function for reduced inter-processor communica-

tion

Inter-processor communication is a potential bottleneck when image reconstruction

will be implemented on computers with a large number of processor cores. Advance-

ments in computing speed in the near future are likely to happen by addition of more and

more cores rather than by an increase in clock speed. The solution to this problem pro-

posed in this section, is to first divide the reconstructed image volume among the Memory

and Processor Units (MPUs) of the computer2. A new surrogate cost function that is a

sum of cost functions, each of which individually depends on the image volume segment

alloted to a MPU is then derived. If a sinogram-bin in the negative log-likelihood or a

voxel-difference in the penalty depends solely on the image volume for that MPU then the

corresponding term from the original cost function is retained. If that is not the case, then

the corresponding term from the original cost function is replaced by a sum of quadratic

surrogates. Now, each MPU produces a new iterate of its image volume segment by opti-

mizing its cost function in parallel with other MPUs. Next, the MPUs exchange the latest

iterates of the image volume segments from neighboring MPUs. This process is repeated

over and over until convergence criteria are met.

The cost function derived here is a true surrogate of the original cost function, and

so, the value of the original cost function is guaranteed to reduce every iteration. Also,

the cost function derived here is independent of the algorithm being employed. In other

words, OS, CG and ICD algorithms can be used within the framework introduced here.

The cost function derived here can also be easily used for targeted reconstruction (see

Section 8.3.1). While the cost function has the potential of providing big advantages, it

2An MPU is defined here as a core or a group of cores along with fast accessible local random-access memory.
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also produces some overhead (see Section 8.3.2). Experiments are needed to check that

the overhead does not outweigh the benefits.

First, let us tackle the negative log-likelihood part. The techniques used for likelihood

would be employed again for the penalty part. Consider, the negative log-likelihood part

of the original cost function :

−L(µ) =

nd
∑

i=1

hi([Gµ]i).

Let us divide the image volume µ into P disjoint segments, µ =















µ1

...

µP















(see Fig. 7.1 and

Fig. 7.2). If a ray i lies solely in an image volume segment p, then the corresponding term

in the negative log-likelihood, hi, is retained without modification. Now, let Pi be the set

of image volume segments through which the ray i passes. Therefore, for ray i that passes

through a single image volume segment p, Pi = {p}, a quadratic surrogate over hi is not

created. Corresponding to the image volume segment division defined above, the system

model G can be written as a concatenation of operators as follows : G = [G1 . . .GP ].

Thus, [Gµ]i = [
∑P

p=1Gpµp]i = [
∑

p∈PiGpµp]i =
∑

p∈Pi [Gpµp]i. For a ray i that passes

through more than one image volume segment, we can write the quadratic surrogate for it
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at surrogate point µ(ñ) as :

hi([Gµ]i) ≤ ḣi([Gµ
(ñ)]i)([Gµ]i − [Gµ(ñ)]i) + 1

2
c̆i([Gµ

(ñ)]i)([Gµ]i − [Gµ(ñ)]i)
2,

opt
= ḣi([Gµ

(ñ)]i)
∑

p∈Pi
[Gpµp]i + 1

2
c̆i([Gµ

(ñ)]i)(
∑

p∈Pi
[Gp(µp − µ(ñ)

p )]i)
2,

= ḣi([Gµ
(ñ)]i)

∑

p∈Pi
[Gpµp]i + 1

2
c̆i([Gµ

(ñ)]i)(
∑

p∈Pi
αi,p

1

αi,p
[Gp(µp − µ(ñ)

p )]i)
2,

(0 < αi,p < 1,
∑

p∈Pi
αi,p = 1),

≤ ḣi([Gµ
(ñ)]i)

∑

p∈Pi
[Gpµp]i + 1

2
c̆i([Gµ

(ñ)]i)
∑

p∈Pi
αi,p(

1

αi,p
[Gp(µp − µ(ñ)

p )]i)
2,

=
∑

p∈Pi
ḣi([Gµ

(ñ)]i)[Gpµp]i + 1
2

c̆i([Gµ
(ñ)]i)

αi,p
[Gp(µp − µ(ñ)

p )]2i ,

opt
=
∑

p∈Pi
ḣi([Gµ

(ñ)]i)[Gpµp]i + 1
2

c̆i([Gµ
(ñ)]i)

αi,p
([Gpµp]

2
i − 2[Gpµ

(ñ)
p ]i[Gpµp]i),

=
∑

p∈Pi
(ḣi([Gµ

(ñ)]i) −
c̆i([Gµ

(ñ)]i)

αi,p
[Gpµ

(ñ)
p ]i)[Gpµp]i + 1

2

c̆i([Gµ
(ñ)]i)

αi,p
[Gpµp]

2
i ,

=
∑

p∈Pi

1
2

c̆i([Gµ
(ñ)]i)

αi,p

(

[Gpµp]
2
i − 2([Gpµ

(ñ)
p ]i − αi,p

ḣi([Gµ
(ñ)]i

c̆i([Gµ(ñ)]i)
)[Gpµp]i

)

,

opt
=
∑

p∈Pi

1
2

c̆i([Gµ
(ñ)]i)

αi,p

(

[Gpµp]i − ([Gpµ
(ñ)
p ]i − αi,p

ḣi([Gµ
(ñ)]i

c̆i([Gµ(ñ)]i)
)
)2

.

This cost function suggests that the line integral for the estimation of µp using ray i is

[Gpµ
(ñ)
p ]i − αi,p

ḣi([Gµ(ñ)]i
c̆i([Gµ(ñ)]i)

. We choose αi,p =
[Gpµ

(ñ)
p ]i

[Gµ(ñ)]i
=

[Gpµ
(ñ)
p ]i

P

p∈Pi
[Gpµ

(ñ)
p ]i
(if [Gµ(ñ)]i = 0,

then we can use αi,p = 1/card(Pi)). This value of αi,p satisfies the convexity property,

and it gives us an intuitively satisfying result in the WLS case. In the WLS case, hi(t) =

1
2
wi(t− li)

2, and ḣi(t) = wi(t− li) and c̆i(t) = wi. Thus,

[Gpµ
(ñ)
p ]i − αi,p

ḣi([Gµ
(ñ)]i

c̆i([Gµ(ñ)]i)
) = [Gpµ

(ñ)
p ]i −

[Gpµ
(ñ)
p ]i

[Gµ(ñ)]i

wi([Gµ
(ñ)]i − li)

wi
) =

[Gpµ
(ñ)
p ]i

[Gµ(ñ)]i
li.

The line integral observed for ray i is li, and the fraction of li due to µp is
[Gpµtruep ]i
[Gµtrue]i

li. Note

that the line-integral derived above for estimation of µp is
[Gpµ

(ñ)
p ]i

[Gµ(ñ)]i
li, which is analogous

to
[Gpµtruep ]i
[Gµtrue]i

li. The curvature is correspondingly increased by a fraction
[Gµ(ñ)]i

[Gpµ
(ñ)
p ]i
.
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Thus, the surrogate for the negative log-likelihood can now be written as :

− L̃(µ;µ(ñ)) =

nd
∑

i=1

h̃i([Gµ]i; [Gµ
(ñ)]i),

where, h̃i([Gµ]i; [Gµ
(ñ)]i)

△
=



















hi([Gµ]i), card(Pi) = 1,

∑

p∈Pi
1
2

[Gµ(ñ)]ic̆i([Gµ
(ñ)]i)

[Gpµ
(ñ)
p ]i

(

[Gpµp]i − [Gpµ
(ñ)
p ]i(1 − ḣi([Gµ

(ñ)]i
[Gµ(ñ)]ic̆i([Gµ(ñ)]i)

)
)2

, card(Pi) > 1.

We move the sum over p into the cost function to find :

− L̃(µ;µ(ñ)) =

nd
∑

i=1

∑

p∈Pi
h̃i,p([Gpµp]i; [Gµ

(ñ)]i),

where, h̃i,p([Gpµp]i; [Gµ
(ñ)]i)

△
=



















hi([Gpµp]i), card(Pi) = 1,

1
2

[Gµ(ñ)]ic̆i([Gµ(ñ)]i)

[Gpµ
(ñ)
p ]i

(

[Gpµp]i − [Gpµ
(ñ)
p ]i(1 − ḣi([Gµ(ñ)]i

[Gµ(ñ)]ic̆i([Gµ(ñ)]i)
)
)2

, card(Pi) > 1.

We can rearrange the terms of the double sum to the following form :

−L̃(µ;µ(ñ)) =

P
∑

p=1

−L̃p(µp;µ(ñ)),

−L̃p(µp;µ(ñ))
△
=
∑

i∈Ip
h̃i,p([Gpµp]i; [Gµ

(ñ)]i)

where, Ip = {i : p ∈ Pi} is the set of rays passing through image volume segment p, and

−L̃p(µp;µ(ñ)) is the surrogate of the negative log-likelihood for the pth image volume.

Now, for the regularization part. Recall from (8.2), the definition of the penalty function

implemented here as :

R(µ) =

np
∑

j=1

np
∑

l=1

Nj,lκjκlβj,lψ(µj − µl).

Once the image volume is split into P components as µ =















µ1

...

µP















, the penalty function
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can be written as :

R(µ) =
P
∑

p=1

Rp(µ),

Rp(µ)
△
=

∑

j:µj∈µp

np
∑

l=1

Nj,lκjκlβj,lψ(µj − µl).

Our goal here is to create a surrogate function R̃p over Rp(µ) such that R̃p has µp as its

independent variable. Let us consider the specific case, where the division of µ into image

volume segments µp is done by defining µp as a bunch of contiguous slices. In this case,

we find that for voxel-differences that solely depend on the voxels ofµp (µj and µl are both

elements of µp), the corresponding term in Rp can be retained without changes. We also

note that at the top and bottom slices of µp, voxel differences are taken between µp and

its neighboring image volume segments. For voxel-differences that straddle neighboring

image volume segments µp and µq, we aim to replace the corresponding terms in Rp and

Rq with quadratic surrogates.
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Consider, the quadratic surrogate of ψ(µj − µl) at µ
(ñ) :

ψ̃(µj − µl;µ
(ñ)
j − µ

(ñ)
l )

= ψ̇(µ
(ñ)
j − µ

(ñ)
l )(µj − µl − µ

(ñ)
j − µ

(ñ)
l ) + 1

2
ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µl − µ

(ñ)
j − µ

(ñ)
l )2,

≤ ψ̇(µ
(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j ) + 1

2
2ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j )2

+ ψ̇(µ
(ñ)
j − µ

(ñ)
l )(−µl + µ

(ñ)
l ) + 1

2
2ωψ(µ

(ñ)
j − µ

(ñ)
l )(−µl + µ

(ñ)
l )2

(using, (a+ b)2 ≤ 2(a2 + b2), a, b ∈ R),

= ψ̇(µ
(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j ) + 1

2
2ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j )2

+ ψ̇(µ
(ñ)
l − µ

(ñ)
j )(µl − µ

(ñ)
l ) + 1

2
2ωψ(µ

(ñ)
l − µ

(ñ)
j )(µl − µ

(ñ)
l )2

(since, ψ̇(−t) = −ψ̇(t), ωψ(−t) = ωψ(t)),

opt
= 1

2
2ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j +

ψ̇(µ
(ñ)
j − µ

(ñ)
l )

2ωψ(µ
(ñ)
j − µ

(ñ)
l )

)2

+ 1
2
2ωψ(µ

(ñ)
l − µ

(ñ)
j )(µl − µ

(ñ)
l +

ψ̇(µ
(ñ)
l − µ

(ñ)
j )

2ωψ(µ
(ñ)
l − µ

(ñ)
j )

)2

(using, ax+ 1
2
bx2 opt= 1

2
b(x+

a

b
)2).

An interesting observation can be made when the potential function is quadratic, ψ(t) =

1
2
t2. Here, ψ̇(t) = t, ωψ(t) = 1, and so, ψ̃(µj − µl;µ

(ñ)
j − µ

(ñ)
l ) = 1

2
2(µj − µ

(ñ)
j +µ

(ñ)
l

2
)2 +

1
2
2(µl −

µ
(ñ)
l

+µ
(ñ)
j

2
)2. This is an intuitively satisfying result which shows that when the

penalty function 1
2
(µj − µl)

2 is decoupled into a sum of two quadratic surrogate functions

that depend on µj and µl individually, the resulting penalty function tries to bring µj and

µl closer to the average of old iterate values :
µ

(ñ)
l

+µ
(ñ)
j

2
. The resulting cost function also

prevents the algorithm from taking large steps in the direction of average of old iterates by

doubling the curvatures.
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The surrogate of R(µ) can now be written as :

R̃(µ;µ(ñ))

=
P
∑

p=1

∑

j:µj∈µp

(

np
∑

l=1,µl∈µp
Nj,lκjκlβj,lψ(µj − µl)

+

np
∑

l=1,µl /∈µp

Nj,lκjκlβj,lψ̃(µj − µl;µ
(ñ)
j − µ

(ñ)
l )
)

,

=

P
∑

p=1

∑

j:µj∈µp

(

np
∑

l=1,µl∈µp
Nj,lκjκlβj,lψ(µj − µl)

+

np
∑

l=1,µl /∈µp

Nj,lκjκlβj,l

(

1
2
2ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j +

ψ̇(µ
(ñ)
j − µ

(ñ)
l )

2ωψ(µ
(ñ)
j − µ

(ñ)
l )

)2

+ 1
2
2ωψ(µ

(ñ)
l − µ

(ñ)
j )(µl − µ

(ñ)
l +

ψ̇(µ
(ñ)
l − µ

(ñ)
j )

2ωψ(µ
(ñ)
l − µ

(ñ)
j )

)2
))

,

=
P
∑

p=1

∑

j:µj∈µp

(

np
∑

l=1,µl∈µp
Nj,lκjκlβj,lψ(µj − µl)

+

np
∑

l=1,µl /∈µp
Nj,lκjκlβj,l 122ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j +

ψ̇(µ
(ñ)
j − µ

(ñ)
l )

2ωψ(µ
(ñ)
j − µ

(ñ)
l )

)2

+

np
∑

l=1,µl /∈µp
Nj,lκjκlβj,l 122ωψ(µ

(ñ)
l − µ

(ñ)
j )(µl − µ

(ñ)
l +

ψ̇(µ
(ñ)
l − µ

(ñ)
j )

2ωψ(µ
(ñ)
l − µ

(ñ)
j )

)2
)

,

=
P
∑

p=1

∑

j:µj∈µp

(

np
∑

l=1

Nj,lκjκlβj,lψ̃j,l

+

np
∑

l=1,µl /∈µp
Nj,lκjκlβj,l 122ωψ(µ

(ñ)
l − µ

(ñ)
j )(µl − µ

(ñ)
l +

ψ̇(µ
(ñ)
l − µ

(ñ)
j )

2ωψ(µ
(ñ)
l − µ

(ñ)
j )

)2
)

,

where, ψ̃j,l
△
=



















ψ(µj − µl), µl ∈ µp,

1
2
2ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j +

ψ̇(µ
(ñ)
j −µ(ñ)

l
)

2ωψ(µ
(ñ)
j −µ(ñ)

l
)
)2, µl /∈ µp.

The quadratic surrogate derived over the original cost function, ψ, has two quadratic terms.

This has caused generation of extra terms along the boundaries of two neighboring image

volume segments. All of these extra terms can be neatly included into the original form if
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we expand the definition of Nj,l as follows :

Ñj,l
△
=



































Nj,l, µj, µl in the same image volume segment,

1, µj, µl in different image volume segments, and, Nj,l = 1 orNl,j = 1,

0, µj, µl in different image volume segments, and, Nj,l = 0 and Nl,j = 0.

A necessary condition that has to be satisfied here is βj,l = βl,j . All penalty functions

considered in this thesis satisfy this condition.

Thus,

R̃(µ;µ(ñ)) =

P
∑

p=1

∑

j:µj∈µp

np
∑

l=1

Ñj,lκjκlβj,lψ̃j,l =

P
∑

p=1

Rp(µp;µ
(ñ)),

Rp(µp;µ
(ñ))

△
=

∑

j:µj∈µp

np
∑

l=1

Ñj,lκjκlβj,lψ̃j,l,

where, ψ̃j,l =



















ψ(µj − µl), µl ∈ µp,

1
2
2ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j +

ψ̇(µ
(ñ)
j −µ(ñ)

l
)

2ωψ(µ
(ñ)
j −µ(ñ)

l
)
)2, µl /∈ µp.

Thus, the surrogate over the overall cost function is

Φ̃(µ;µ(ñ)) =

P
∑

p=1

Φ̃p(µp;µ
(ñ)),

Φ̃p(µp;µ
(ñ))

△
= −L̃p(µp;µ(ñ)) + R̃p(µp;µ

(ñ)),

−L̃p(µp;µ(ñ)) =
∑

i∈Ip
h̃i,p([Gpµp]i; [Gµ

(ñ)]i),

Rp(µp;µ
(ñ)) =

∑

j:µj∈µp

np
∑

l=1

Ñj,lκjκlβj,lψ̃j,l,
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h̃i,p([Gpµp]i; [Gµ
(ñ)]i) =



















hi([Gpµp]i), card(Pi) = 1,

1
2

[Gµ(ñ)]ic̆i([Gµ(ñ)]i)

[Gpµ
(ñ)
p ]i

(

[Gpµp]i − [Gpµ
(ñ)
p ]i(1 − ḣi([Gµ(ñ)]i

[Gµ(ñ)]ic̆i([Gµ(ñ)]i)
)
)2

, card(Pi) > 1,

ψ̃j,l =



















ψ(µj − µl), µl ∈ µp,

1
2
2ωψ(µ

(ñ)
j − µ

(ñ)
l )(µj − µ

(ñ)
j +

ψ̇(µ
(ñ)
j −µ(ñ)

l
)

2ωψ(µ
(ñ)
j −µ(ñ)

l
)
)2, µl /∈ µp.

The skeleton of a parallel algorithm that uses this quadratic surrogate is shown in Table 8.3.

Initialize µ(ñ) = µinitial
loop over ñ

loop over p (execute in parallel)

Compute parameters of Φ̃p
µ∗
p = arg min

µp
Φ̃p(µp; µ

(ñ))
end loop

µ(ñ+1) =







µ∗
1
...

µ∗
P







end loop

Table 8.3: Skeleton of parallel algorithm for reducing inter-processor communication

8.3.1 Application to targeted reconstruction

An important application of the new cost function derived here is targeted reconstruc-

tion. In targeted reconstruction, the image volume µ is divided into two disjoint regions,

µT and µT ′ (µ =







µT

µT ′






). µT is the targeted image region, where the best-possible reso-

lution afforded by the scanner is desired. The image volume outside the targeted volume

is µT ′ , where the best possible reconstruction is not necessary to be achieved. When the

above idea is applied to targeted reconstruction, we find that we can divide the objective

function into two parts, Φ̃T (µT ;µ(ñ)) and Φ̃T ′(µT ′;µ(ñ)). We start two groups of threads.
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In each thread group, the number of threads is equal to the number of processor cores.

These thread groups are fairly scheduled by the operating system to run concurrently on

the processor cores. We give Φ̃T (µT ;µ(ñ)) to the first thread group, and Φ̃T ′(µT ′;µ(ñ))

to the second thread group. The second thread group quits early on most iterations, say

every 4 out of 5, returning its initial image as its next iterate. So, in every 4 out of 5

iterations we devote all the processing power to the reconstruction of the targeted image

region. The non-targeted image region is updated only once in every 5 iterations. Of

course, experiments for a given application are required to test if this scheme is going to

be advantageous. In any case, this setup is guaranteed to decrease the value of the overall

cost function.

8.3.2 Overheads

While the proposed cost function reduces execution-time by reducing inter-processor

communication, some overheads are also introduced. First overhead is the possibility of

an increase in the number of iterations due to a possible reduction in convergence rate. The

convergence rate could reduce because of two reasons. Firstly, some curvatures have to be

increased to produce a valid quadratic surrogate. And secondly, due to a reduction in inter-

processor communication, the algorithm updating a given image volume segment would

be using older iterates of neighboring image volume segments. Another execution-time

overhead is due to a forward-projection needed for those rays that cross image volume

segment boundaries. This forward-projection is carried out once in the loop over p. It

might be possible to avoid this overhead by using the fraction
[Gpµinitial,p]i
[Gµinitial]i

, as an approxi-

mation to
[Gpµ

(ñ)
p ]i

[Gµ(ñ)]i
. Memory overhead due to likelihood has two parts. The first part is due

to the fact that every MPU must store all the rays passing through it. And the second part

is due to the fact that every MPU must also store those pieces of the neighboring image
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volume segments that it needs for computing the parameters of Φ̃p. Memory overhead due

to the penalty is insignificant when compared to the likelihood part : 2 image slices per

neighbor per MPU.



CHAPTER 9

Conclusions and future work

9.1 Conclusions

There is a definite need for statistical image reconstruction methods in X-ray CT. How-

ever, these methods have to be made practical first. Various problems challenging the use

of statistical methods in practical settings were studied in this thesis, and solutions to them

proposed. Here are the conclusions that can be drawn from the proposed solutions.

• Imposition of the non-negativity constraint incurred a significant compute time penalty

in PCG based methods. To avoid this compute time penalty, a modification of the

Poisson negative log-likelihood was developed. The PCG algorithm minimizing the

modified cost function could control negative pixels without a huge compute time

overhead. Thus, we can conclude here that the non-negativity constraint does not

impose an excessive compute-time overhead on PCG algorithms.

• A statistical image reconstruction method that produced reconstructions free of beam

hardening artifacts and used the same beam hardening calibration information as

traditional methods was developed. The practical use of previously known polyen-

ergetic statistical methods was hindered due to their need for extra calibration in-

formation. The proposed method removed this hindrance. The conclusion here is

that statistical methods can be made as practical as the traditional FBP methods with

135
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respect to beam hardening correction.

• A brand new approach towards motion-compensated image reconstruction was pro-

posed. It was shown to work for a limited, though challenging, class of simulated

problems. No conclusions can be drawn regarding the utility of this method in prac-

tical situations, but the necessary first steps towards that goal were taken.

• Monotonicity is a desirable property that can be achieved in PCG based algorithms.

But, monotonic PCG algorithms for non-quadratic cost functions were not known.

And, non-quadratic cost functions are essential to prevent the edges from getting

blurred in statistical reconstructions. A monotonic PCG algorithm for non-quadratic

cost functions was tested in thesis. It provided monotonicity without sacrificing con-

vergence rate. Thus, we can conclude here that PCG algorithms can actually provide

a path to achieving the best possible reconstruction a cost function can offer.

• A comparison of convergence rates of OS and PCG based methods provided def-

inite answers regarding the suitability of OS and PCG in different situations. The

conclusion drawn from that comparison was that, starting from an FBP image, OS

algorithms provide a faster convergence rate, but they become non-monotone after a

few iterations. After the OS algorithm becomes non-monotone, monotone algorithms

like PCG and ICD must be used to refine images further.

• A single algorithm that has all the desired properties does not exist till date. An

attempt to create an algorithm with many desirable properties was made in the form

of the hybrid OS-ICD algorithm. The hybrid algorithm approach shows promise,

even though it has not met expectations yet.

• Parallel computation is a very direct approach to achieving a practical reconstruction

time. Its usefulness to OS algorithms was proved beyond doubt.
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• The parallel OS algorithm developed here had the shortcoming of frequent inter-

processor communication. A new surrogate function that reduces the frequency of

inter-processor communication while producing a monotonic reduction in the value

of the original cost function was proposed. Thus, we can conclude that a monotone

algorithm that can reduce inter-processor communication exists. Whether it will have

a comparable convergence rate, remains to be shown.

• Two more algorithms were proposed to reduce the overall compute time. The first

algorithm uses PCG techniques in an attempt to compute a search direction that is an

improvement over the search direction computed by the OS algorithm. The second

algorithm attempts to reduce the number of times a computationally expensive func-

tion is evaluated while still producing a monotonic decrease in the value of the cost

function (up to the OS approximation) was proposed. These proposed algorithms

indicate to us that solutions to current problems that are based on known techniques

exist.

9.2 Future work

• The main theme of this thesis is practical application. Therefore, the evaluation of

cost functions and image reconstruction algorithms developed here must be carried

out for clinical datasets.

• Sophisticated regularization designs have been developed for bias-variance tradeoff

in the past few years. Those designs should replace the space-invariant regularization

and space-variant regularization of [26] used in this thesis.

• An important component of a statistical reconstruction method left unexplored in

this thesis is the system model. While the distance-driven (DD) projector is fast,

it makes certain approximations, which causes a small amount of artifact. A more
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accurate system model with computational requirements comparable to DD needs to

be developed.

• The use of the LBFGS-B algorithm to implement non-negativity constraint should be

explored.

• Most algorithms explored here use the monoenergetic observation model, and they

can be expanded easily to work with a polyenergetic model. The parameters used to

approximate the nonlinearity due to beam hardening could also be jointly estimated

from the observed data, instead of being measured beforehand.

• The motion-compensated statistical reconstruction method tested here is for simu-

lated fan-beam scans. It must be adapted and tested for multislice CT scanners. Fur-

ther, the use of this method for quasi-periodic motion like cardiac X-ray CT should

be explored.

• Varous preconditioners are known in literature and their use in PCG based algorithms

for X-ray CT should be explored. There might exist a high convergence-rate, mono-

tonic algorithm based on PCG.

• An OS algorithm that behaves as a OS 256-subset algorithm in the middle slices of

the reconstructed volume, and as a OS 41-subset algorithm in the end slices of helical

cone-beam geometry could be found easily. This could make the hybrid OS-ICD

algorithm a success.

• Further acceleration of the algorithms developed here can be done easily using more

sophisticated features of the underlying hardware and software.

• Two surrogate functions that are proved to produce a monotonic decrease in the cost

function value while reducing compute times in practical situations have been derived

in Chapter 8. They must be implemented and their usefulness in practical situations
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should be tested. A hybrid OS-PCG algorithm has also been derived in that chapter.

A regularized algorithm based on it should be derived, implemented, and tested.
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APPENDIX A

Mathematical proofs

A.1 Proof for reduction of cost function value in the QS PCG LS al-

gorithm

Lemma A.1.1. For φ(n,m)(µ) and Φ(µ) defined in Section 6.1.3 we have,

φ(n,m)(µ(n,m+1)) ≤ φ(n,m)(µ(n,m)) ⇒ Φ(µ(n+1,0)) ≤ Φ(µ(n,0))

Proof.

Define,

φ1(µ)
△
= φL(µ;µ(n,0)) +R(µ),

φ2(µ)
△
= φ(n,m)(µ) = φL(µ;µ(n,0)) + φR(µ;µ(n,m)).

From the hypothesis, we have,

φ2(µ
(n,m+1)) ≤ φ2(µ

(n,m)),

⇒ φL(µ
(n,m+1);µ(n,0)) + φR(µ(n,m+1);µ(n,m)) ≤ φL(µ

(n,m);µ(n,0))(A.1)

+ φR(µ(n,m);µ(n,m)).

From the second part of the majorization conditions on φR (2.9),

R(µ(n,m+1)) ≤ φR(µ(n,m+1);µ(n,m)).
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Using this in the L.H.S. of (A.1),

φL(µ
(n,m+1);µ(n,0)) +R(µ(n,m+1)) ≤ φL(µ

(n,m);µ(n,0)) + φR(µ(n,m);µ(n,m)).

From the first part of the majorization conditions on φR (2.8),

φR(µ(n,m);µ(n,m)) = R(µ(n,m)).

Using this in the R.H.S. of the above inequality,

φL(µ
(n,m+1);µ(n,0)) +R(µ(n,m+1)) ≤ φL(µ

(n,m);µ(n,0)) +R(µ(n,m)).

By applying the definition of φ1, we have,

φ1(µ
(n,m+1)) ≤ φ1(µ

(n,m)).

From the above inequality, we have, φ1(µ
(n,N2)) ≤ φ1(µ

(n,N2−1)) ≤ . . . ≤ φ1(µ
(n,0)).

From the definition of the algorithm , we have µ(n,N2) = µ(n+1,0).

We thus have,

φ1(µ
(n+1,0)) ≤ φ1(µ

(n,0)).

Substituting the definition of φ1 in the above inequality, we get,

φL(µ
(n+1,0);µ(n,0)) +R(µ(n+1,0)) ≤ φL(µ

(n,0);µ(n,0)) +R(µ(n,0)).(A.2)

From the second part of the majorization conditions (2.9) on φL,

−L(µ(n+1,0)) ≤ φL(µ
(n+1,0);µ(n,0)).

Using this in the L.H.S. of (A.2),

−L(µ(n+1,0)) +R(µ(n+1,0)) ≤ φL(µ
(n,0);µ(n,0)) +R(µ(n,0)).
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From the first part of the majorization conditions on φL (2.8),

φL(µ
(n,0);µ(n,0)) = −L(µ(n,0)).

Using this in the R.H.S. of the above inequality,

−L(µ(n+1,0)) +R(µ(n+1,0)) ≤ −L(µ(n,0)) +R(µ(n,0)).

Using the definition of Φ(µ), we get,

Φ(µ(n+1,0)) ≤ Φ(µ(n,0)).

A.2 Majorization proof for the quadratic surrogate of the modified

cost function

The key result,i.e. the majorization proof, is in Lemma A.2.5. The proof is based on

general facts about differentiable functions that are proved in Lemmas A.2.1,A.2.2, A.2.3

and A.2.4. The information about each of the terms of the negative log-likelihood that is

used in Lemma A.2.5 is collected before hand in the preliminaries section below.

A.2.1 Preliminaries

The derivative of hi can be found by differentiating (3.1) :

(A.3) ḣi(t) = bie
−t
(

yi
bie−t + ri

− 1

)

The derivative of h̃i can be found by differentiating (3.5) :

˙̃hi(t) =



























ḣi(t) if t ≥ 0, i ∈ I1 ∪ I2 ∪ I3

ḣi(0) if t < 0, i ∈ I1 ∪ I2

ḣi(0) + (yi−ri)2
yi

t if t < 0, i ∈ I3

(A.4)
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For simplicity, we drop the subscript i from hi, h̃i, ḣi and
˙̃
hi in the latter part of this sec-

tions. In the following sections we derive a few properties of hi and obtain representative

illustrations for hi, h̃i, ḣi and
˙̃hi for i ∈ I1, I2 and I3.

i ∈ I1 From (A.4), we have

˙̃
h(t) = ḣ(t) for t ≥ 0

= ḣ(0) for t < 0

Thus, for t < 0,
˙̃
h(t) is a constant with value ḣ(0). From (A.3), we have ḣ(0) =

bi(yi/(bi + ri) − 1) ≤ 0. Since, i ∈ I1 ⇒ yi ≤ ri ⇒ yi ≤ (bi + ri) ∵ bi ≥ 0. For

t ≥ 0,
˙̃
h(t) = ḣ(t). From Lemma 1 of [1] we know that ḣ(t) is strictly concave and

monotonically increasing and

lim
t→∞

ḣ(t) = lim
t→∞

bie
−t
(

yi
bie−t + ri

− 1

)

= 0.

Thus, we get a representative plot of
˙̃
hi in Fig. A.1. Similarly, representative plots of

ḣi, hi and h̃i can be obtained.

t

t

h
i

~
h
i

.
h
i

~
h
i

.

Figure A.1: Illustration of hi, h̃i, ḣi and
˙̃
hi for i ∈ I1.

i ∈ I2 From (A.4), we have

˙̃h(t) = ḣ(t) for t ≥ 0

= ḣ(0) for t < 0
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Property 1. Thus, for t < 0,
˙̃
h(t) is a constant with value ḣ(0). From (A.3), we have

ḣ(0) = bi(yi/(bi + ri) − 1) ≤ 0, ∵ i ∈ I2 ⇒ yi ≤ (bi + ri).

Property 2. For t ≥ 0,
˙̃
h(t) = ḣ(t). From Lemma 2 in [1], ḣ(t) has exactly one

maximizer, call it t∗ (= ℓ∗ in [1]).

t∗ = log

(

bi
√

(yiri) − ri

)

= log

(

bi
yi − ri

)

+ log

(

1 +

√
y
i√
ri

)

> 0 ∵ i ∈ I2 ⇒ ri < yi ≤ bi + ri

Property 3. ḣ(t∗) = (
√

(yiri) − ri)(
√
y
i√
ri
− 1) > 0,∵ i ∈ I2 ⇒ ri < yi ≤ bi + ri.

Property 4. From (P3) in Lemma 2 of [1], we have ḣ(t) is strictly concave and mono-

tonically increasing for t < t∗.

Property 5. From (P4) in Lemma 2 of [1], we have ḣ(t) is monotonically decreasing

for t > t∗.

Property 6.

lim
t→∞

ḣ(t) = lim
t→∞

bie
−t
(

yi
bie−t + ri

− 1

)

= 0

Combining properties 1. . . 6, we get a representative plot of
˙̃
hi in Fig. A.2. Similarly,

representative plots of ḣi, hi and h̃i can be obtained.

h
i

~
h
i

.
h
i

~
h
i

.

t

t

Figure A.2: Illustration of hi, h̃i, ḣi and
˙̃
hi for I2.
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i ∈ I3 From (A.4), we have

˙̃
h(t) = ḣ(t) for t ≥ 0

= ḣi(0) +
(yi − ri)

2

yi
t for t < 0

Property 7. Thus, for t < 0,
˙̃
h(t) is a straight line with a positive slope equal to

(yi − ri)
2/yi. From (A.3), we have ḣ(0) = bi(yi/(bi + ri) − 1) > 0, ∵ i ∈ I3 ⇒

yi > (bi+ri). We can also safely assume bi 6= 0; otherwise, h(t)would be a constant.

Property 8. For t ≥ 0, ˙̃h(t) = ḣ(t). From Lemma 2 in [1], ḣ(t) has exactly one

maximizer, call it t∗ (= ℓ∗ in [1]).

t∗ = log

(

bi
√

(yiri) − ri

)

= log

(

bi
yi − ri

)

+ log

(

1 +

√
y
i√
ri

)

= t1 + log

(

1 +

√
y
i√
ri

)

Let t1 = log

(

bi
yi − ri

)

T 0 depending on yi, bi and ri

Property 9. ḣ(t) = 0 has a single real solution; call it t1. Using (A.3), we get

t1 = log(bi/(yi − ri)) < 0, ∵ i ∈ I3 ⇒ yi > bi + ri.

Property 10. From property 8, we have t∗ > t1,∵ i ∈ I3 ⇒ yi > ri. Combining this

with properties 8,4, 5 and 6 , we have h(t) > 0, ∀t > 0 > t1.

Thus, when t∗ > 0 we get Fig. A.3; when t∗ ≤ 0 we get Fig. A.4. Similarly,

representative plots of ḣi, hi and h̃i can be obtained.

A.2.2 Results

Lemma A.2.1. Given 1-D differentiable real functions h(t) and q(t; s) (where s is a fixed

parameter), in order to satisfy q(t; s) ≥ h(t), ∀t ≥ s it is sufficient that h(s) = q(s; s)

and q̇(v; s) ≥ ḣ(v), ∀v ≥ s.
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t

Figure A.3: Illustration of hi, h̃i, ḣi and
˙̃
hi for I3 and maximum of ḣi occurs in the positive quadrant.
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Figure A.4: Illustration of hi, h̃i, ḣi and
˙̃
hi for I3 and maximum of ḣi occurs in the negative quadrant.

Proof.

h(t) = h(s) +

∫ t

s

h(v)dv, ∀t ∈ R

q(t; s) = q(s; s) +

∫ t

s

q(v; s)dv, ∀t ∈ R

⇒ q(t; s) − h(t) =

∫ t

s

q̇(v; s) − ḣ(v)dv, (∵ q(s; s) = h(s))

≥ 0, ∀t ≥ s, (∵ q̇(v; s) ≥ ḣ(v), ∀v ≥ s).

Lemma A.2.2. Given 1-D differentiable real functions h(t) and q(t; s) (where s is a fixed

parameter), in order to satisfy q(t; s) ≥ h(t), ∀t ≤ s it is sufficient that h(s) = q(s; s)

and q̇(v; s) ≤ ḣ(v), ∀v ≤ s.

Proof. The proof is identical to Lemma A.2.1.
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Lemma A.2.3. Given 1-D real functions h(t) and g(t) , h(t) is monotonically increasing

over a set S ⊆ R, g(t) is monotonically decreasing over S and ∃s ∈ S, such that h(s) ≥

g(s), then h(t) ≥ g(t), ∀t ≥ s, t ∈ S

Proof.

It is given that, h(s) ≥ g(s). Since h is monotonically increasing,

h(t) ≥ h(s), ∀t ≥ s, t ∈ S

Since g is monotonically decreasing,

g(s) ≥ g(t), ∀t ≥ s, t ∈ S

∴ h(t) ≥ g(t), ∀t ≥ s, t ∈ S

Lemma A.2.4. Given 1-D real functions h(t) and g(t) , h(t) is monotonically increasing

over a set S ⊆ R, g(t) is monotonically decreasing over S and ∃s ∈ S, h(s) ≤ g(s), then

h(t) ≤ g(t), ∀t ≤ s, t ∈ S

Proof. The proof is identical to Lemma A.2.3.

Lemma A.2.5. The function φ̃L(µ;µ(n,0)) (defined in (3.6)) majorizes −L̃(µ) (defined in

(3.4)) i.e. (2.8) and (2.9) hold.

(For sake of simplicity, we drop 0 from µ(n,0).)

Proof.

Part 1 : (2.8) holds
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µ = µ(n)

⇒ t = s, ∀i = 1, · · · , nd in (3.7)

⇒ qLi(t; s) = h̃i(s) from (3.7)

∴ φ̃L(µ
(n);µ(n)) =

nd
∑

i=1

qLi([Aµ
(n)]i; [Aµ

(n)]i)

=

nd
∑

i=1

h̃i([Aµ
(n)]i)

=
∑

I1∪I2∪I3
h̃i([Aµ

(n)]i)

= −L̃(µ(n)) in (3.4)

∴ (2.8) holds.

Part 2 : (2.9) holds

We need to prove φ̃L(µ;µ(n)) ≥ −L(µ), ∀µ ∈ R
n
p . We rewrite φ̃L in a form similar to

(3.4) as follows :

φ̃L(µ;µ(n)) =
∑

i∈I1
qLi([Aµ]i; [Aµ

(n)]i) +
∑

i∈I2
qLi([Aµ]i; [Aµ

(n)]i)

+
∑

i∈I3
qLi([Aµ]i; [Aµ

(n)]i)(A.5)

and show that each of the terms in each of the above sums exceeds the corresponding term

in (3.4).

We split the sums
∑

i∈I3 qLi([Aµ]i; [Aµ
(n)]i) and

∑

i∈I3 h̃([Aµ]i; [Aµ
(n)]i) as fol-
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lows :

∑

i∈I3
qLi([Aµ]i; [Aµ

(n)]i) =
∑

i∈I′3
qLi([Aµ]i; [Aµ

(n)]i)

+
∑

i∈I′′3
qLi([Aµ]i; [Aµ

(n)]i)

∑

i∈I3
h̃([Aµ]i; [Aµ

(n)]i) =
∑

i∈I′3
h̃([Aµ]i; [Aµ

(n)]i)

+
∑

i∈I′′3
h̃([Aµ]i; [Aµ

(n)]i)

whereI ′3 = {i ∈ I3| t∗i ≥ 0}

I ′′3 = {i ∈ I3| t∗i < 0}

Though the form of the surrogate is the same for both I ′3 and I ′′3 the proofs are slightly

different. We handle I ′3 case in case 3 and I ′′3 in case 4. For simplicity, we drop the

subscript i from hi, h̃i, ḣi,
˙̃
hi, ḧi and c̆i; similarly, we drop Li from qLi.

Case 1 (i ∈ I1).

From (A.4)

˙̃h(t) = ḣ(t) if t ≥ 0

= ḣ(0) if t < 0

Case 1.1 (s ≤ 0).

From (3.7),

q(t; s) = h̃(t) + ˙̃h(s)(t− s) + 1
2
ḧ(0)(t− s)2

⇒ q̇(t; s) =
˙̃
h(s) + ḧ(0)(t− s)

Note : q̇(s; s) =
˙̃
h(s)
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Figure A.5: Representative illustration for Case 1.1(i ∈ I1, s ≤ 0).

Case 1.1.1 (s ≤ 0, t < s).

Now,
˙̃
h(t) = ḣ(0) =

˙̃
h(s)

q̇(t; s) = ˙̃h(s) + ḧ(0)(t− s)

⇒ q̇(t; s) <
˙̃
h(t) ∀t < s

By Lemma A.2.2, q(t; s) ≥ h(t), ∀t < s.

Case 1.1.2 (s ≤ 0, s ≤ t ≤ 0).

Now,
˙̃h(t) = ḣ(0) = ˙̃h(s)

q̇(t; s) =
˙̃
h(s) + ḧ(0)(t− s)

⇒ q̇(t; s) ≥ ˙̃h(t) ∀s ≤ t ≤ 0
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Figure A.6: Representative illustration for Case 1.2(i ∈ I1, s > 0).

Case 1.1.3 (s ≤ 0, 0 < t).

q̇(t; s) = ˙̃h(s) + ḧ(0)(t− s)

= q̇(0; s) + ḧ(0)t

= q̇(0; s) +

∫ t

0

ḧ(0)dv

> q̇(0; s) +

∫ t

0

ḧ(v)dv ∵ t > 0

∵ ḧ(v) < ḧ(0), for v ≥ 0 by (E3) of Lemma 2 of [1]

>
˙̃
h(0) +

∫ t

0

ḧ(v)dv from Case 1.1.2

=
˙̃
h(0) +

∫ t

0

¨̃
h(v)dv by definition of h̃ (t)

= ˙̃h(t) ∀t > 0

By combining cases 1.1.2 and 1.1.3 we satisfy conditions for Lemma A.2.1. ∴ q(t; s) ≥

h(t), ∀t ≥ s.

By combining the above cases, we observe that q(t; s) ≥ h(t), ∀s ≤ 0.

Case 1.2 (s > 0).
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From (3.7),

q(t; s) = ḣ(s) + ˙̃h(s)(t− s) + 1
2

ḣ(s) − ḣ(0)

s
(t− s)2

⇒ q̇(t; s) =
˙̃
h(s) +

ḣ(s) − ḣ(0)

s
(t− s)

Also,
ḣ(s)−ḣ(0)

s
> 0(using (E4) of Lemma 2 of [1]).

Case 1.2.1 (s > 0, t ≥ s).

q̇(0; s) = ḣ(0)

q̇(s; s) =
˙̃
h(s) = ḣ(s)

From the formulation of q̇(t; s), we know that it is a straight line. From above, we know

that it intersects ḣ(t) at 0 and s. ḣ(t) is strictly concave by (E3) of Lemma 2 of [1]. Using

Lemma 4 of [1], we have,

q̇(t; s) ≥ ḣ(t) =
˙̃
h(t), ∀t ≥ s

Using lemma A.2.1, we have

q(t; s) ≥ h̃(t), ∀t ≥ s

Case 1.2.2 (s > 0, 0 ≤ t < s).

Using arguments from Case 1.2.1, we have

q̇(t; s) ≤ ḣ(t) = ˙̃h(t), ∀0 ≤ t < s
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Case 1.2.3 (s > 0, t < 0).

q̇(t; s) = ˙̃h(s) +
ḣ(s) − ḣ(0)

s
(t− s)

= q̇(0; s) +
ḣ(s) − ḣ(0)

s
t

= ˙̃h(0) +
ḣ(s) − ḣ(0)

s
t using Case 1.2.1 and

˙̃h(0) = ḣ(0)

< ˙̃h(0)

=
˙̃
h(t) by definition of

˙̃
h(t)

∴ q̇(t; s) ≤ ˙̃h(t), ∀t < 0

From cases 1.2.2 and 1.2.3, we have q̇(t; s) ≤ ˙̃
h(t), ∀t < s. Using Lemma A.2.2, we

have q(t; s) ≥ ˙̃h(t), ∀t < s. Using the above result and combining with case 1.2.1, we

have,

q(t; s) ≥ ˙̃
h(t), ∀s > 0

Using cases 1.1 and 1.2, we have,

q(t, s) ≥ ˙̃
h(t), ∀t, s ∈ R

From (A.4),

Case 2 (i ∈ I2).

˙̃h(t) =











ḣ(t) if t ≥ 0

ḣ(0) if t < 0

Case 2.1 (s ≤ 0).

Fig. A.7 shows a representative illustration for case 2.1. From (3.7),

q(t; s) = h̃(s) +
˙̃
h(s)(t− s) + 1

2
ḧ(0)(t− s)2

⇒ q̇(t; s) =
˙̃
h(s) + ḧ(0)(t− s)
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Figure A.7: Representative illustration for Case 2.1(i ∈ I2, s ≤ 0).

Case 2.1.1 (s ≤ 0, t < s).

q̇(t; s) =
˙̃
h(s) + ḧ(0)(t− s)

= ḣ(0) + ḧ(0)(t− s) by definition of
˙̃h (s)

Using equation (30) of [1],

ḧ(0) = bi(1 − yiri
(bi + ri)2

) ≥ 0

⇒ q̇(t; s) ≤ ḣ(0)

=
˙̃
h(t) by definition of

˙̃
h (t)

From Lemma A.2.2, we have

q(t; s) ≥ h̃(t), ∀t < s

Case 2.1.2 (s ≤ 0, s ≤ t ≤ 0).
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Using arguments of case 2.1.1,

q̇(t; s) =
˙̃
h(s) + ḧ(0)(t− s)

≥ ˙̃h(t)

Case 2.1.3 (s ≤ 0, 0 < t ≤ t∗).

See Section A.2.1 for the definition of t∗. Using facts from Lemma 2 of [1], we have ḧ(t)

is monotonically decreasing for t < tz (= ℓz in [1]). Also, t∗ < tz. ∴ 0 ≤ t ≤ t∗ ⇒

ḧ(0) ≥ ḧ(t) ≥ ḧ(t∗).

q̇(t; s) = q̇(0; s) +

∫ t

0

q̈(v; s)dv

= q̇(0; s) +

∫ t

0

ḧ(0)dv

≥ q̇(0; s) +

∫ t

0

ḧ(v)dv see above

=
˙̃
h(s) + ḧ(0)(−s) +

∫ t

0

ḧ(v)dv substituting for q̇(0; s)

≥ ˙̃
h(s) +

∫ t

0

ḧ(v)dv ∵ ḧ(0) ≥ 0, s ≤ 0

=
˙̃
h(0) +

∫ t

0

ḧ(v)dv by definition of h̃(s)

= ˙̃h(0) +

∫ t

0

¨̃h(v)dv by definition of h̃(s)

= ˙̃h(t)

Case 2.1.4 (s ≤ 0, t∗ < t).

From case 2.1.3, we have q̇(t; s) ≥ ˙̃h(t∗). q̇(t; s) is monotonically increasing because

ḧ(0) > 0. ˙̃h(t) = ḣ(t) is monotonically decreasing for t > t∗. By Lemma A.2.3, we have

q̇(t; s) ≥ ˙̃
h(t), ∀t > t∗

Combining cases 2.1.2 . . . 2.1.4, we have q̇(t; s) ≥ ḣ(t), ∀t ≥ s. By Lemma A.2.1,

q(t; s) ≥ h(t), ∀t ≥ s
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Figure A.8: Representative illustration for Case 2.2(i ∈ I2, 0 < s ≤ t∗).

Combining this with case 2.1.1,

q(t; s) ≥ h(t), ∀t ∈ R, s ≤ 0

Case 2.2 (0 < s ≤ t∗).

q(t; s) = ḣ(s) +
˙̃
h(s)(t− s) + 1

2

ḣ(s) − ḣ(0)

s
(t− s)2

q̇(t; s) = ˙̃h(s) +
ḣ(s) − ḣ(0)

s
(t− s)

Case 2.2.1 (0 < s ≤ t∗, 0 ≤ t ≤ s).

Here,
˙̃h(t) = ḣ(t). From (P3) of lemma 2 of [1],ḣ (t) is concave over 0 ≤ t ≤ t∗. Now,

q̇(0; s) =
˙̃
h(s) − ḣ(s)−ḣ(0)

s
s = ḣ(0) =

˙̃
h(0). Also, q̇(s; s) =

˙̃
h(s). Thus, by formulation

q̇(t; s) is a straight line that intersects a concave curve
˙̃
h(t) at 0 and s. Thus, by Lemma 4

of [1] we have,

q̇(t; s) ≤ ˙̃
h(t), ∀0 ≤ t ≤ s

Case 2.2.2 (0 < s ≤ t∗, s < t ≤ t∗).
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Arguments in case 2.2.1 are applicable here. Thus, by Lemma 4 of [1] we have,

q̇(t; s) ≥ ˙̃h(t), ∀s ≤ t < t∗

Now, q̇(t; s) and
˙̃
h(t) are continuous at t∗ and q̇(t; s) ≥ ˙̃

h(t), ∀s ≤ t < t∗. Therefore,

lim
t→t∗

q̇(t; s) ≥ lim
t→t∗

˙̃
h(t).

Therefore, q̇(t∗; s) ≥ ˙̃h(t∗).

Case 2.2.3 (0 < s ≤ t∗, t∗ < t).

From (P3) of Lemma 2 of [1], we have ḣ(s) > ḣ(0). Therefore, (ḣ(s) − ḣ(0))/s > 0.

Thus, q̇(t; s) is a monotonically increasing function .From (P4) of Lemma 2 of [1], we

have
˙̃
h(t) is a monotonically decreasing function. Using lemma A.2.3,

q̇(t; s) ≥ ˙̃h(t), ∀t > t∗

Case 2.2.4 (0 < s ≤ t∗, t < 0).

q̇(t; s) = q̇(0; s) +

∫ t

0

q̈(v; s)dv

= ḣ(0) +

∫ t

0

q̈(v; s)dv from case 2.2.1

=
˙̃
h(t) +

∫ t

0

q̈(v; s)dv definition of
˙̃
h (t)

=
˙̃
h(t) +

ḣ(s) − ḣ(0)

s
t

<
˙̃
h(t) ∵ ḣ(s) − ḣ(0)

s
> 0, t < 0

Combining cases 2.2.1 and 2.2.4, q̇(t; s) ≤ ˙̃h(t), ∀t ≤ s. Using lemma A.2.2 we have,

q(t; s) ≥ ˙̃
h(t), ∀t ≤ s. Combining cases 2.2.2 and 2.2.3, q̇(t; s) ≥ ˙̃

h(t), ∀t > s. Using

lemma A.2.1 we have, q(t; s) ≥ ˙̃
h(t), ∀t > s. Thus,

q(t; s) ≥ ˙̃
h(t), ∀t ∈ R, 0 < s < t∗
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Figure A.9: Representative illustration for Case 2.3(i ∈ I2, t
∗ < s).

Case 2.3 (t∗ < s).

q(t; s) = ḣ(s) +
˙̃
h(s)(t− s) + 1

2

ḣ(s) − ḣ(0)

s
(t− s)2

q̇(t; s) =
˙̃
h(s) +

ḣ(s) − ḣ(0)

s
(t− s)

From (A.3), ḣ(0) = bi(yi/(bi + ri) − 1) ≤ 0, since i ∈ I2 ⇒ yi ≤ (bi + ri). From

property 3 we have, ḣ(t∗) > 0. From (P4) of Lemma 2 of [1], we have ḣ(t) is mono-

tonically decreasing for t > t∗. From property 6 we have, limt→∞ ḣ(t) = 0. Therefore,

ḣ(t) > 0, ∀t > t∗, since t1 < t∗ from property 8. Therefore, ḣ(s) − ḣ(0) > 0 and so

(ḣ(s) − ḣ(0))/s > 0.

Case 2.3.1 (t∗ < s, s ≤ t).

By definition of q̇(t; s), q̇(s; s) =
˙̃
h(s). q̇(t; s) is monotonically increasing because (ḣ(s)−

ḣ(0))/s > 0. From (P4) of Lemma 2 of [1], we have ˙̃h(t) is monotonically decreasing.

By lemma A.2.3, q̇(t; s) ≥ ˙̃h(s), ∀t ≥ s. Using lemma A.2.1 we have,

q(t; s) ≥ h(t), ∀t ≥ s
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Case 2.3.2 (t∗ < s, t∗ ≤ t < s).

By definition of q̇(t; s), q̇(s; s) =
˙̃
h(s). q̇(t; s) is monotonically increasing because (ḣ(s)−

ḣ(0))/s > 0. From (P4) of Lemma 2 of [1], we have ˙̃h(t) is monotonically decreasing.

By lemma A.2.4, q̇(t; s) ≥ ˙̃h(s), ∀t ≥ s. Using lemma A.2.2 we have,

q(t; s) ≥ h(t), ∀t∗ ≤ t < s

Case 2.3.3 (t∗ < s, 0 ≤ t < t∗).

We define, r(t) = ḣ(0)+ ḣ(t∗)−ḣ(0)
t∗

t. Note that, q̇(0; s) = r(0). ḣ(t∗)−ḣ(0) > ḣ(s)−ḣ(0),

since ḣ(s) is monotonically decreasing for s > t∗ (by (P4) of Lemma 2 of [1]). Therefore,

(ḣ(t∗) − ḣ(0))/t∗ > (ḣ(s) − ḣ(0))/s. Thus,

r(t) ≥ q̇(t), ∀t ≥ 0.

Now,
˙̃h(0) = r(0) and ˙̃h(t∗) = r(t∗). Also, ˙̃h(t) is strictly concave for 0 < t < t∗ and

intersects the line r(t) at 0 and t∗. By Lemma 4 of [1] we have,

˙̃
h(t) ≥ r(t), 0 ≤ t ≤ t∗.

Therefore,

˙̃
h(t) ≥ q̇(t; s), 0 ≤ t < t∗

Case 2.3.4 (t∗ < s, t < 0).

By definition of q̇(t; s),

q̇(t; s) = ḣ(0) +
ḣ(s) − ḣ(0)

s
t

< ḣ(0) ∵ ḣ(s) − ḣ(0)

s
> 0, t < 0

<
˙̃
h(t) by definition of

˙̃
h(t)

By combining cases 2.3.2 . . . 2.3.4 we have q̇(t; s) ≤ ˙̃h(t), ∀t < s. By lemma A.2.2 we

have,

q(t; s) ≥ h(t), ∀t < s.
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Combining this with case 2.3.1 we have

q(t; s) ≥ h̃(t), ∀t ∈ R, t∗ < s

Combining cases 2.1, 2.2 and 2.3 we have

q(t; s) ≥ ˙̃
h(t), ∀t, s ∈ R and i ∈ I2

t
*s

s s

~
h

.

t

q
.

q
.

q
.

(Case 3.1)

(Case 3.3)(Case 3.2)

Figure A.10: Representative illustrations for Case 3.1(i ∈ I ′3, s ≤ 0), Case 3.2(i ∈ I ′3, 0 < s ≤ t∗) and
Case 3.3(i ∈ I ′3, t

∗ < s).

Case 3 (i ∈ I ′3).

h̃(t) =











h(t) if t ≥ 0

h(0) + ḣ(0)t+ 1
2

(yi−ri)2
yi

t2 if t < 0

˙̃
h(t) =











ḣ(t) if t ≥ 0

ḣ(0) + (yi−ri)2
yi

t if t < 0

q(t; s) = h(s) +
˙̃
h(s)(t− s) + 1

2

(yi − ri)
2

yi
(t− s)2

q̇(t; s) = ˙̃h(s) +
(yi − ri)

2

yi
(t− s)
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Case 3.1 (s ≤ 0).

Case 3.1.1 (s ≤ 0, t ≤ 0). By definition of q(t; s),

q̇(t; s) =
˙̃
h(s) +

(yi − ri)
2

yi
(t− s)

= ḣ(0) +
(yi − ri)

2

yi
(s) +

(yi − ri)
2

yi
(t− s) substituting for

˙̃
h(s)

= ḣ(0) +
(yi − ri)

2

yi
t

=
˙̃
h(t) from definition of

˙̃
h(t)

Applying lemma A.2.2 for t ≤ s, we have

q(t; s) ≥ h(t), t ≤ s, s ≤ 0

Case 3.1.2 (s ≤ 0, 0 < t ≤ t∗).

q̇(t; s) = q̇(0; s) +

∫ t

0

q̈(v; s)dv

=
˙̃
h(s) − (yi − ri)

2

yi
s+

∫ t

0

q̈(v; s)dv substituting for q̇(0; s)

= ḣ(0) +
(yi − ri)

2

yi
s− (yi − ri)

2

yi
s+

∫ t

0

q̈(v; s)dv substituting for
˙̃
h(s)

= ˙̃h(0) +

∫ t

0

q̈(v; s)dv from definition of
˙̃h

From property 9 we have,

t1 = log(bi/(yi − ri))

⇒ e−t1 =
yi − ri
bi

ḧ(t) = (1 − yiri
(bie−t + ri)2

)bie
−t From equation (30) of [1]

⇒ ḧ(t1) =
(yi − ri)

2

yi

From property 9 we know that t1 < 0. From lemma 2 of [1] we know that ḧ(t) is mono-
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tonically decreasing for t ≤ t∗. Thus, t1 < 0 ≤ v ≤ t∗ ⇒ ḧ(t1) > ḧ(0) ≥ ḧ(v) ≥ ḧ(t∗).

∴ q̇(t; s) ≥ ˙̃
h(0) +

∫ t

0

ḧ(v)dv

≥ ˙̃
h(0) +

∫ t

0

¨̃
h(v)dv from definition of h̃(t)

≥ ˙̃h(t)

Case 3.1.3 (s ≤ 0, t∗ < t).

From case 3.1.2 we have, q̇(t∗; s) ≥ ˙̃h(t∗). q̇(t; s) is monotonically increasing since it is a

straight line and its slope
(yi−ri)2

yi
> 0. From (P4) of lemma 2 of [1]we know that, ˙̃h(t) is

monotonically decreasing for t > t∗. Using lemma A.2.3 we have,

q̇(t; s) ≥ ˙̃h(t), t > t∗

Combining cases 3.1.1 . . . 3.1.3 we have, q̇(t; s) ≥ ˙̃h(t; s), t ≥ s. Using lemma A.2.1,

q(t; s) ≥ h̃(t; s), t ≥ s. Combining this with the result in case 3.1.1 we have,

q(t; s) ≥ h̃(t; s), ∀t ∈ R, s ≤ 0

Case 3.2 (0 < s ≤ t∗).

Case 3.2.1 (0 < s ≤ t∗, s ≤ t ≤ t∗).

q̇(t; s) = q̇(s; s) +

∫ t

s

q̈(v; s)dv

= ˙̃h(s) +

∫ t

s

ḧ(v; s)dv from case 3.1.2, t1 < 0 ≤ v ≤ t∗ ⇒

ḧ(t1) > ḧ(0) ≥ ḧ(v) ≥ ḧ(t∗)

≥ ˙̃
h(s) +

∫ t

s

¨̃
h(v; s)dv from definition of h̃(t)

≥ ˙̃
h(t)

Thus, q̇(t; s) ≥ ˙̃h(t), s ≤ t ≤ t∗, 0 < s ≤ t∗.
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Case 3.2.2 (0 < s ≤ t∗, t∗ < t).

From case 3.2.1, q̇(t∗; s) ≥ ˙̃
h(t∗). From (P4) of lemma 2 of [1], ˙̃

h(t) is monotonically

decreasing for t > t∗. By lemma A.2.3, q̇(t; s) ≥ ˙̃h(t), t∗m < t.

Combining cases 3.2.1 and 3.2.2 we have, q̇(t; s) ≥ ˙̃h(t), t ≥ s. By lemma A.2.1,

q(t; s) ≥ ˙̃
h(t), t ≥ s, 0 < s ≤ t∗

Case 3.2.3 (0 < s ≤ t∗, 0 ≤ t < s).

q̇(t; s) = ˙̃h(s) + ḧ(t1)(t− s) using expression for ḧ(t1) from case 3.1.2

=
˙̃
h(s) −

∫ s

t

ḧ(t1)dv

≤ ˙̃
h(s) −

∫ s

t

ḧ(v; s)dv ḧ(s) is monotonically decreasing

for t < t∗, ,from case 3.1.2

= ˙̃h(s) +

∫ t

s

ḧ(v; s)dv ḧ(s)

= ˙̃h(t)

Case 3.2.4 (0 < s ≤ t∗, t < 0). From case 3.2.3 we know that, q̇(0; s) ≤ ˙̃
h(0).

q̇(t; s) =
˙̃
h(s) + ḧ(t1)(t− s)

= q̇(0; s) + ḧ(t1)t substituting for q̇(0; s)

≤ ˙̃h(0) + ḧ(t1)t see above

=
˙̃
h(t) from definition of

˙̃
h(t)

Combining cases 3.2.3 and 3.2.4 we have, q̇(t; s) ≤ ˙̃h(t), ∀t ≤ s. By lemma 2 of [1],

q(t; s) ≥ ˙̃
h(t), t ≤ s

Combining the results from case 3.2.2 and 3.2.4,

q(t; s) ≥ h̃(t), ∀t ∈ R, 0 < s < t∗
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Case 3.3 (t∗ < s).

Case 3.3.1 (t∗ < s, s ≤ t).

q̇(t; s) is monotonically increasing since (yi−ri)2
yi

> 0. By (P4) of lemma 2 of [1], ˙̃h(t) is

monotonically decreasing for t ≥ s > t∗. By their respective definitions, q̇(s; s) =
˙̃
h(s).

By lemma A.2.3 we have, q̇(t; s) ≥ ˙̃
h(t), ∀t ≥ s. By lemma A.2.1 we have, q(t; s) ≥

h̃(t), ∀t ≥ s.

Case 3.3.2 (t∗ < s, t∗ ≤ t < s).

q̇(t; s) is monotonically increasing since (yi−ri)2
yi

> 0. By (P4) of lemma 2 of [1],
˙̃
h(t) is

monotonically decreasing for t∗ ≤ t < s. By their respective definitions, q̇(s; s) = ˙̃h(s).

By lemma A.2.4 we have, q̇(t; s) ≤ ˙̃h(t), ∀t∗ ≤ t < s.

Case 3.3.3 (t∗ < s, 0 ≤ t < t∗).

q̇(t; s) = q̇(t∗; s) +

∫ t

t∗
q̈(v; s)dv

≤ ˙̃h(t∗) −
∫ t∗

t

q̈(v; s)dv from case 3.2.3

= ˙̃h(t∗) −
∫ t∗

t

ḧ(t1)dv using expression for ḧ(t1) from case 3.1.2

≤ ˙̃h(t∗) −
∫ t∗

t

ḧ(v; s)dv ḧ(s) is monotonically decreasing

for t < t∗, ,from case 3.1.2

= ˙̃h(s) +

∫ t∗

t

ḧ(v; s)dv

=
˙̃
h(t)
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Case 3.3.4 (t∗ < s, t < 0). From case 3.3.3 we have, q̇(0; s) ≤ ˙̃
h(0).

q̇(t; s) =
˙̃
h(s) + ḧ(t1)(t− s)

= q̇(0; s) + ḧ(t1)t substituting for q̇(0; s)

≤ ˙̃h(0) + ḧ(t1)t see above

=
˙̃
h(t) from definition of

˙̃
h(t)

Combining cases 3.3.2, 3.3.3 and 3.3.4 we have, q̇(t; s) ≤ ˙̃h(t), ∀t ≤ s. By lemma A.2.2,

q(t; s) ≥ ˙̃
h(t), ∀t ≤ s.

Combining results from case 3.3.1 and 3.3.4 we have,

q(t; s) ≥ h̃(t), ∀t ∈ R, t∗ < s

Combining results from cases 3.1 . . . 3.3 we have,

q(t; s) ≥ h̃(t), i ∈ I ′3

Case 4 (i ∈ I ′′3).

h̃(t) =











h(t) if t ≥ 0

h(0) + ḣ(0)t+ 1
2

(yi−ri)2
yi

t2 if t < 0

˙̃
h(t) =











ḣ(t) if t ≥ 0

ḣ(0) + (yi−ri)2
yi

t if t < 0

q(t; s) = h(s) + ˙̃h(s)(t− s) + 1
2

(yi − ri)
2

yi
(t− s)2

q̇(t; s) = ˙̃h(s) +
(yi − ri)

2

yi
(t− s)

Case 4.1 (s ≤ 0).
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Figure A.11: Representative illustrations for Case 4.1(i ∈ I ′′3, s ≤ 0) and Case 4.2(i ∈ I ′′3, 0 < s).

Case 4.1.1 (s ≤ 0, t ≤ 0). By definition of q(t; s),

q̇(t; s) = ˙̃h(s) +
(yi − ri)

2

yi
(t− s)

= ḣ(0) +
(yi − ri)

2

yi
s+

(yi − ri)
2

yi
(t− s) substituting for

˙̃
h(s)

= ḣ(0) +
(yi − ri)

2

yi
t

=
˙̃
h(t) from definition of

˙̃
h(t)

Applying lemma A.2.2 for t ≤ s, we have

q(t; s) ≥ h(t), t ≤ s, s ≤ 0

Case 4.1.2 (s ≤ 0, 0 < t).

From case 4.1.1 we have, q̇(0; s) ≥ ˙̃
h(0). q̇(t; s) is monotonically increasing since it is a

straight line and its slope
(yi−ri)2

yi
> 0. From (P4) of lemma 2 of [1]we know that, ˙̃h(t) is
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monotonically decreasing for t > 0 > t∗. Using lemma A.2.3 we have,

q̇(t; s) ≥ ˙̃h(t), t > 0

Combining cases 4.1.1 . . . 4.1.2 we have, q̇(t; s) ≥ ˙̃h(t; s), t ≥ s. Using lemma A.2.1,

q(t; s) ≥ h̃(t; s), t ≥ s. Combining this with the result in case 4.1.1 we have,

q(t; s) ≥ h̃(t; s), ∀t ∈ R, s ≤ 0

Case 4.2 (0 < s).

Case 4.2.1 (0 < s, s ≤ t).

q̇(t; s) is monotonically increasing since (yi−ri)2
yi

> 0. By (P4) of lemma 2 of [1],
˙̃
h(t)

is monotonically decreasing for t ≥ s > 0 > t∗. By lemma A.2.3 we have, q̇(t; s) ≥
˙̃h(t), ∀t ≥ s. By their respective definitions, q̇(s; s) = ˙̃h(s). By lemma A.2.1 we have,

q(t; s) ≥ h̃(t), ∀t ≥ s.

Case 4.2.2 (0 < s, 0 ≤ t < s).

q̇(t; s) is monotonically increasing since (yi−ri)2
yi

> 0. By (P4) of lemma 2 of [1], ˙̃h(t) is

monotonically decreasing for 0 ≤ t < s. By lemma A.2.4 we have, q̇(t; s) ≤ ˙̃
h(t), ∀0 ≤

t < s.

Case 4.2.3 (0 < s, t < 0). From case 4.2.2 we have, q̇(0; s) ≤ ˙̃
h(0).

q̇(t; s) = ˙̃h(s) + ḧ(t1)(t− s)

= q̇(0; s) + ḧ(t1)t substituting for q̇(0; s)

≤ ˙̃h(0) + ḧ(t1)t see above

=
˙̃
h(t) from definition of

˙̃
h(t)

Combining cases 4.2.2 and 4.2.3 we have, q̇(t; s) ≤ ˙̃h(t), ∀t ≤ s. By lemma A.2.2,

q(t; s) ≥ ˙̃
h(t), ∀t ≤ s.
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Combining results from case 4.2.1 and 4.2.3 we have,

q(t; s) ≥ h̃(t), ∀t ∈ R, 0 < s

Combining results from cases 4.1 and 4.2 we have,

q(t; s) ≥ h̃(t), i ∈ I ′′3

From cases 1, 2, 3 and 4 we see that each term of φ̃L([Aµ]i; [Aµ
(n)]i) exceeds each

term of −L̃(µ) for all values of µ ∈ S = R
n
p . Thus,

φ̃L(µ;µ(n)) ≥ −L̃(µ), ∀µ ∈ S = R
n
p
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