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Abstract 

 

 

Positron Emission Tomography (PET) is a medical imaging modality offering a 

powerful tool for brain research, brain ailment diagnosis and drug development. Brain-

PET enables mapping of in vivo neurobiological functions such as blood flow, 

metabolism, enzyme activity, neuroreceptor binding site density and occupancy.  

Quantification in brain-PET can broadly be classified into: 1) the accurate 

quantification of radiotracer distribution such that image values are proportional to the 

radiotracer concentration in tissue, and 2) the accurate quantification of the 

pharmacological state of the system-of-interest. This thesis addresses both of these 

aspects for functional neuroreceptor imaging studies of the living brain. 

Traditional brain PET studies have at least two primary limitations. First, they 

measure only a single neuropharmacological aspect in isolation, which is often 

insufficient for characterizing a neurological condition. Second, data acquisition is 

accompanied by arterial blood sampling for measuring the input function to the system-

of-interest, which is invasive for the subjects. The motivation for this thesis was to 

address both of these limitations and has led to the development of quantitative methods 

for multiple neuropharmacological PET studies performed without blood sampling. One 

such experimental design investigated was a dual-measurement intervention study where 

the system-of-interest is perturbed during data acquisition with the intent of changing the 

subject‘s pharmacological status and system parameters are estimated both pre- and post-

intervention. Second was a dual-tracer study where two radiotracers targeting two 

different neuropharmacological systems were injected closely in time in the same study. 

A major challenge in the data analysis of the multiple pharmacological PET 

studies is the statistical noise induced bias and variance in the parameter estimates. In this 

thesis, methods have been developed for improving accuracy of the neurpharmacological 

estimates reducing bias without a corresponding decrease in precision. 



 xi 

The thesis also addresses the issue of inter-scanner PET image variability, a major 

confound in multi-center studies used to investigate disease progression and in drug 

trials. Since various PET centers have different scanner models with different hardware 

and software; systematic differences exist in multi-center data. This thesis develops a 

framework to reduce the inter-scanner PET image variability before multi-center data is 

pooled for analysis. 
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Chapter 1                                                                       

Introduction 

 
Positron Emission Tomography (PET) is a medical imaging modality that offers a   

powerful tool for brain research as well as for clinical diagnosis of various brain ailments. 

Brain-PET enables the mapping of in vivo neurobiological functions such as blood flow, 

metabolism, enzyme activity, neuroreceptor binding site density or occupancy. A typical 

PET study involves the injection of a radiotracer (a compound labeled with a 

radionuclide) into the venous blood stream of a subject with the intention of studying a 

particular organ or biological system. In the case of brain studies, after crossing the blood 

brain barrier, the radiotracer might bind to neuroreceptors or transporter vesicles, or be 

metabolized by endogenous enzymes. An inert tracer, on the other hand, would diffuse 

across the blood brain barrier, free to move in and out of the brain but would not be 

bound or trapped. Happening in parallel to these biochemical processes, is the physical 

process of radioactive decay of the radioisotope. The decay of each radionucleus 

generates a positron which annihilates to emit diametrically opposed photons. The 

photons emitted from the subject are detected by the PET scanner. This emission data 

obtained over the duration of the scan is used to reconstruct images of the radiotracer 

distribution in the tissue of interest. By appropriate algorithms, including corrections for 

physical phenomenon such as scatter and attenuation, quantitatively accurate radiotracer 

distribution in tissue can be obtained.  

Quantification of the biochemical process of interest targeted by the radiotracer is 

possible by analyzing the PET emission data as a function of time. PET emission data is 

binned into various time frames and reconstructed to obtain dynamic PET image data 

which represents the radiotracer distribution in tissue at specific time points throughout 



 2 

the study. This temporal evolution of radiotracer concentration in individual voxels or 

regions of the image volume is called a time-activity curve (TAC). These TACs are 

useful in quantifying the physiological (e.g. blood flow) and/or pharmacological aspect 

(e.g. receptor binding site density, enzyme activity) of the system of interest.  

Thus, quantification in dynamic PET studies can be classified into two categories: 

first is accurate quantification of the radiotracer distribution such that image values are 

proportional to the radiotracer concentration in tissue. The second aspect is the accurate 

quantification of the particular pharmacological or physiological aspect of the system 

being studied. This thesis addresses both of these aspects of PET quantification with 

particular application to functional neuroreceptor imaging studies of the living human 

brain.  

 

1.1  Motivation    

            

 Traditionally, brain PET studies have involved measurement of only a single 

neuropharmacological aspect in isolation following injection of single radiotracer. For 

quantification of the pharmacological parameters, dynamic PET data acquisition typically 

needs to be accompanied by arterial blood sampling from the subject that acts as an input 

function to the system of interest. This traditional approach has certain limitations. First, 

in some cases, investigation of only a single neuropharmacological system in isolation 

may be insufficient for the characterization of a subject‘s neurological condition. Second, 

measurement of the radiotracer input by drawing arterial blood samples is invasive for 

subjects and requires substantial work for the PET personnel. In addition, errors in 

arterial sampling may cause errors in quantification of the pharmacology being studied. 

The motivation for this thesis is to address both these limitations of traditional PET 

studies and has led to the development of improved methods for multiple 

pharmacological measurements from a single PET acquisition without blood sampling. 

A major challenge in the data analysis of multiple pharmacological PET studies is 

the noise induced bias, or variance, or both in the parameter estimates. Noise in the TACs 

is primarily due to counting statistics. This noise affects parameter estimation in single-
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tracer studies as well, but the effect is accentuated in multiple pharmacological studies. 

This problem has also been addressed in this thesis and methods have been developed for 

improving accuracy of the estimates where bias in estimates is reduced without an 

appreciable increase in variance. 

Finally, the thesis addresses the specific issue of inter-scanner variability, which 

is a major impediment in multi-center trials. Recently there have been increasing efforts 

in the PET research community and the pharmaceutical industry to perform multi-center 

PET studies in large cohorts of subjects to investigate disease progression where data 

from various centers must be pooled together for analysis. Since the various PET centers 

have different scanner models from different vendors, each having different hardware and 

software, systematic differences are present in multi-center data. As a part of this doctoral 

work, a framework to reduce inter-scanner PET image variability in multi-center data has 

been developed and tested. 

 

1.2  Thesis outline and Contribution 

 

Chapter 2 of the thesis gives an overview of kinetic modeling methodology used 

to extract pharmacological parameters from dynamic PET studies. Principal component 

analysis-based approach for reducing noise-induced bias in Logan analysis for 

neuroreceptor density estimation is discussed in Chapter 3
a
. The primary thesis goal of 

noninvasive quantification of multiple neuropharmacological parameters is presented in 

Chapters 4
a
, 5

b
 and 6

b
. Chapter 7

c
 discusses methods to reduce inter-scanner PET image 

variability. Chapter 8 presents the summary of the results and lists future directions for 

the extension of the work in the thesis. 

A brief description of the specific projects in this doctoral work is described next. 

 

 

 

                                                 
a This work has been published in the Journal of Cereb Blood Flow and Metab (April 2008) 
b This work has been submitted to the Journal of Cereb Blood Flow and Metab (August 2008) 
c This work is to be submitted to Neuroimage (September 2008) 
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1.2.1 Logan plot-bias reduction using Principal Component Analysis  

 

Logan plot methodology (see Section 2.4.3) for the estimation of the distribution 

volume ratio (DVR), an index of neuroreceptor binding site density, has become a 

standard in the field of brain PET imaging (Logan et al. 1996). Logan analysis is a simple 

linear method that gives robust DVR estimates. However, Logan plot-based DVR 

estimates are negatively biased due to the inherent noise in the PET time-activity curves 

(Slifstein and Laruelle 2000). Many methods to reduce the bias in Logan-based DVR 

estimation have been proposed for arterial sampling approach and for the first time have 

been applied for reference region approach in this work. These methods reduce only part 

of the bias or reduce bias at the expense of precision, or both. In this work, we developed 

a novel principal component analysis (PCA) method for reducing the Logan plot bias 

using without increasing the variance of the DVR estimates (Joshi et al. 2008a). The 

PCA-based linear model was obtained from the PET data itself. This new data-driven 

methodology for noise reduction in PET TACs also has application in multiple 

neuropharmacological PET studies described next. 

 

1.2.2 Multiple Neuropharmacological Measures from a single PET scan 

 

The predominant portion of this thesis discusses methods developed for studying 

multiple neuropharmacological aspects of a subject in a single PET session without 

arterial sampling. Two experimental designs for obtaining multiple 

neuropharmacological measurements used in this work are as follows:  

The first involves obtaining two measurements of the same pharmacological 

parameter from a single-tracer PET study where a tracer is administered, and at a given 

point during the acquisition a pharmacological intervention is given to perturb the 

system. Two separate DVR measures were obtained before and after intervention using 

PCA-based Logan plots. 

The second multiple measurement method involves a dual-tracer experimental 

design, where two different radiotracers are injected closely in time in the same PET 

acquisition. Such a design aims to assess two different aspects of a subject‘s 
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neuropharmacological status and has the potential of better characterizing a subject‘s 

neurological condition than when using only a single radiotracer.  

 

1.2.2.1 Dual-measurement intervention studies  

 

A standard brain PET challenge study involves two PET scans: one for a baseline 

measurement and one after the pharmacological or behavioral challenge. In single-scan 

intervention studies (or dual-measurement intervention studies as we will refer to them) 

described here, a tracer is administered and at some point during the PET acquisition an 

interventional challenge or perturbation of the system is made with the intent of changing 

biochemical or pharmacological status of the subject and hence the in vivo distribution of 

the radiotracer.  Two distribution volume ratio (DVR) measurements are made using 

Logan plots once before and once after intervention. The bias and variance concerns in 

DVR estimation mentioned in subsection 1.2.1 are more pronounced in such studies 

because less data are available for parameter estimation using Logan plots compared to a 

single measurement case. The PCA-based Logan analysis method (Joshi et al. 2008a) was 

applied to reduce the bias in DVR estimates from dual-measurement intervention studies, 

and was compared to existing bias-reduction methods. 

 

1.2.2.2 Dual-tracer studies 

 

Dual-tracer PET methodology provides an opportunity to characterize two 

different neuropharmacological aspects of a subject from a single PET acquisition. In 

these studies, two tracers are injected closely in time within a single PET scan with the 

intention of measuring two systems of interest nearly simultaneously.   

Dual-tracer PET data analysis presents a formidable challenge as all positron 

emitting isotopes used to label PET radiotracers emit photons with 511 KeV energy and 

thus it is not possible to separate the signals from the two tracers using differing energy 

windows. Injecting two tracers simultaneously would make it impossible to separate the 
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two signals; hence the tracer injections in this work were staggered in time by 20 to 30 

min. 

The first results of dynamic dual-tracer brain PET studies in humans using 
11

C 

labeled tracers were reported here at the University of Michigan (Koeppe et al. 2001). 

These studies, however, used the arterial sampling approach. In this thesis, we extend this 

original work and report both simulation and human scan results of a non-invasive, dual-

tracer PET approach where arterial sampling is not required (Joshi et al. 2008b; Joshi et 

al. 2008c).  

1.2.3 Reduction of inter-scanner PET image variability 

 

This work is part of the multi-center Alzheimer‘s Disease Neuroimaging Initiative 

(ADNI) project, a longitudinal multi-site observational study of healthy controls, subjects 

with mild cognitive impairment (MCI), and mild Alzheimer's disease patients (Mueller et 

al. 2005). The project involves ~50 PET centers where [
18

F]fluorodeoxyglucose (FDG) 

PET scans have been obtained on more than 400 individuals. In spite of the 

standardization of the imaging protocol, systematic inter-scanner PET image differences 

have been observed due to differences in scanner resolution, reconstruction techniques, 

and different implementations of scatter and attenuation corrections on the different 

scanner models. Before the data from these centers is pooled together for analysis, it is 

important to account for the differences between the scanners. In this work we developed 

methods to reduce these differences using Hoffman brain phantom data acquired from the 

participating sites. Correction methodology was developed by comparing Hoffman brain 

phantom scans to a digital Hoffman phantom (i.e., the true radioactivity distribution) and 

was applied to both phantom data and human scans of normal subjects (Joshi et al 

2008d).  
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Chapter 2                                                                              

Theoretical background of tracer kinetic modeling in PET 

 

2.1  Steps in dynamic PET imaging 

 

   
Figure 2.1 Steps in a dynamic PET imaging experiment 

 

Figure 2.1 shows the various steps involved in a typical dynamic brain PET study. 

The first step is the injection of a short-lived radiotracer (a radiolabeled compound) into 

the venous blood stream of the subject. The tracer is delivered to the brain by the arterial 

flow where the tracer molecules may cross the blood-brain barrier and enter the tissue. 

Tracers may reversibly or irreversibly bind to receptor binding sites or may get 

metabolized by the enzymes in the brain. While the tracer molecule attains its 

biochemical fate, the radioisotope label may decay, emitting a positron that then 

annihilates to emit diametrically opposed 511 KeV photons. Some of the emitted photons 

are then collected by the detectors of a PET scanner. The photon events collected by 

detectors within a set timing window (6 ns – 10 ns) acquired over the duration of the scan 

(usually 1-2 hours) are binned into different time frames and corrected for physical 

effects such as attenuation and scatter. The corrected data for each time frame are 
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reconstructed using an analytical or iterative reconstruction algorithm to obtain an image 

of the radiotracer distribution in the brain over various time intervals. The radioactivity 

concentration in the image voxels or ―targeted‖ region-of-interest can be traced as a 

function of time to obtain time-activity curves (TACs) of the tracer in the brain. In 

general, arterial blood sampling is also performed during data collection and the 

radioactivity concentration in the arterial plasma is considered as input to the system. The 

blood samples are obtained through an arterial puncture and are corrected for any 

radiotracer molecules that might have undergone metabolism (e.g., by enzymes in the 

plasma or the liver) to obtain an authentic radiotracer curve. Figure 2.2 shows the 

authentic radiotracer blood curve from a one hour study of 
11

C labeled flumazenil 

(abbreviated as [
11

C]FMZ
d
). The pharmacological parameters of interest are estimated by 

appropriate kinetic modeling of the TACs (see Section 2.1). 

 

  

Figure 2.2 Authentic radiotracer blood curve from a 60 min single tracer [11C]FMZ  study 

 

Figure 2.3 shows the radiotracer distribution in one brain slice from a 60 min 

[
11

C]FMZ PET study. The data collected was binned into 15 frames of different time 

durations (from 0.5 min to 10 min) and each time frame was reconstructed to yield an 

average radioactivity distribution image for that frame. Time-activity curves (TACs) for 

                                                 
d [11C]FMZ is a 11C labeled benzodiazepine antagonist. 
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three brain regions from the study in Figure 2.3 are shown in Figure 2.4. These TACs 

bear information about the neuroreceptor system(s) under investigation.  

  

Figure 2.3: Dynamic sequence of a slice of a [11C]FMZ study 

   

Figure 2.4 [11C]FMZ time-activity curves (TACs) 

Let the measured TAC for a voxel i in the image volume be represented by the 

vector 1 1 2[ ( ), ( ),..., ( )]i i i Ny y T y T y T , where
1

( ) ( )
j

end

j
start

t

i j ij j t
end start

y T y t dt
t t


   and j

startt and 

j

endt are the start and end times of the j
th

 frame, N is the number of frames in the study (N 

= 15 in figures 2.3 and 2.4) and Tj is the time-point representing frame j, usually chosen 

to be the frame midpoint time. Mathematical modeling of these TACs is required to 

extract parametric estimates of brain function. For mathematical modeling of the TACs, a 

compartmental model for a tracer needs to be selected. This selection is based on the 

biochemical properties of the radiotracer which will be discussed next. 
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2.2  PET radiotracer 

 

A PET radiotracer is a molecule labeled with a positron-emitting radionuclide. 

The molecule could be one that is naturally occurring (endogenous), or could be a 

chemical analog
e
 of an endogenous substance, or could be a non-endogenous compound 

such as a drug. PET radiotracers are injected in very small quantities (nmol 

concentration) and are assumed not to perturb the system being studied but only ‗trace‘ 

the process of interest. Each physical or biochemical state that the tracer attains is 

assumed to be homogeneous and the rates of transfer of the tracer from one state to 

another are assumed to be constant over the duration of the study. In other words, the 

state of the system being measured is assumed to be static over the scan duration. 

The radiotracer is meant to target the system of interest being studied. For 

example, if a receptor system in the brain is of interest, the radiotracer usually would 

have the property of binding to the receptor of that system. For example [
11

C]raclopride 

binds to the dopamine D2 receptors (Farde et al. 1989) while [
11

C]FMZ binds to 

benzodiazapine receptors (Koeppe et al. 1991). The dynamic PET signals obtained using 

these tracers can be used to measure their respective receptor densities. Tracers can also 

be used to measure the rate of enzyme action. Flurodeoxyglucose ([
18

F]FDG) (Huang et 

al. 1980) is a glucose analogue that may phosphorylate after crossing the blood brain 

barrier and can be used to measure the rate of glucose consumption, thus making it a very 

versatile biomarker for oncologic, neurologic and cardiac studies. 

Figure 2.5 shows a simplified schematic of the processes taking place at the 

cellular level after injection of a commonly used radiotracer, [
11

C]FMZ. The radiotracer 

molecules (dark blue diamonds) cross the capillary membrane (red) and enter the free (or 

non-displaceable) space (grey) between the blood vessel and the neuronal terminals 

(yellow). The tracer is a benzodiazapine antagonist
f
 and binds reversibly to the 

benzodiazepine receptors (light blue) on the post-synaptic terminal
g
. Other tracers may be 

designed to bind to pre-synaptic binding site shown in green or pre-synaptic storage 

                                                 
e an analog is a compound having properties slightly different from an endogenous substance.  
f An antagonist is a molecule that has similar receptor affinity as the endogenous substance but opposite 

efficacy. 
g Various other endogenous neurotransmitter systems and binding sites are present at any neuronal terminal 

but have not been shown in Figure 2.4 for simplicity.  
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vesicles shown as brown circles (e.g. methylphenidate ([
11

C]MPH) is a tracer that binds 

to the pre-synaptic dopamine reuptake site while dihydro-tetrabenzine ([
11

C]DTBZ) binds 

to the type 2 vesicular monoamine transporter (VMAT2) sites on the dopamine vesicles). 

The dynamic PET signal is a result of the interaction of the tracer with these cellular 

processes over time. These processes can be represented by a compartmental model such 

as shown in Figure 2.6 where the colors signify the same states as those in Figure 2.5. 

 

  

Figure 2.5 Various possible states of [11C]FMZ tracer molecules (dark blue): blood plasma (red), 

interstitial space (grey), benzodiazepine receptors on the post-synaptic side (light blue). The synaptic 

terminals are shown in yellow. Some other possible targets for a radiotracer are pre-synaptic binding sites 

(green) or pre-synaptic storage vesicles (brown). 

2.3  Two tissue compartmental model 

 

  

Figure 2.6 Two tissue compartmental model 
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The possible states of [
11

C]FMZ as seen in Figure 2.5 can be represented using a 

two tissue compartmental model
h
 shown in Figure 2.6 as first described for neuroreceptor 

PET studies by Mintun and colleagues (Mintun et al. 1984). The term Cp(t) represents the 

tracer concentration in blood, CND(t) represents the concentration in the non-displaceable 

compartment (free+non-specific) and Cs(t) represents the concentration of bound tracer in 

the specific (or bound) compartment. The kinetic parameters (K1 – k4)
i
 represent the rates 

of conversion or transfer of the tracer molecules between the compartments. The ultimate 

goal of a PET study is the estimation of either all or at least a subset of these rate 

parameters which contain the important quantifiable pharmacological information of the 

system. For example, for benzodiazapine receptor imaging using [
11

C]FMZ, the 

parameter of interest is the non-displaceable binding potential (BPND), a commonly used 

index of receptor binding site density. This is the ratio of the equilibrium concentration of 

specifically bound to non-displaceable radiotracer (
S

ND

ND

( )

( )

equilibrium

equilibrium

C t
BP

C t
 ). Equilibrium 

is the state at which there is no net transfer of tracer between the two compartments. The 

parameter of interest can also be defined in terms of the rate parameters and is given by 

BPND= 3

4

k

k
 (Innis et al. 2007). Thus, estimation of the rate parameters of the model 

enables the calculation of the parameter of interest. Another important concept in kinetic 

modeling is distribution volume (DV). It is the ratio of concentration between a 

compartment and plasma at equilibrium. For instance, the distribution volume of the non-

displaceable compartment is given by
ND

ND

p

( )

( )

equilibrium 1

equilibrium 2

C t K
DV

C t k
  . Although DVND is a 

ratio (hence unitless), it is called a volume as it equals the volume of blood that contains 

the same activity as 1 ml of tissue (Carson 1996). Another commonly used parameter of 

interest is distribution volume ratio (DVR), which is an index of receptor binding site 

density. It is the ratio of the distribution volume of the tissue (non-displaceable and 

                                                 
h Since the plasma concentration is assumed to be known by arterial sampling, it is not classified as a 

compartment. 
i K1 has units in ml(blood) ml-1(tissue) min-1, k2 – k4  have units of min-1

. 
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specific compartments together) to that of non-displaceable compartment which is given 

by

1 31

ND S 2 2 4

1ND

2

1 3

4

K kK

DV DV kk k k
DVR

KDV k

k




    . Thus DVR = 1+BPND (Innis et al. 2007).  

The choice of a specific model configuration is governed by various factors. First, 

it depends on the properties of the tracer. If the tracer is inert and does not interact with 

any receptor system or does not undergo any chemical change, but simply diffuses into 

and back out of the cells, a one tissue compartment model (k3=k4=0) would be an 

appropriate model
j
. Another aspect of a radiotracer is its retention in the target tissue. 

Tracers like [
11

C]FMZ are not permanently trapped in the bound state and may convert 

back to the non-specific state (k4 0). However, a tracer like [
11

C]N-methylpeperine 

propionate ([
11

C]PMP) (Koeppe et al. 1999b) is metabolized by the enzyme 

acetocholinesterase (AChE) and the metabolized state is retained in the tissue (k4=0). 

Thus, the reversibility of a tracer must be considered prior to choosing the model 

configuration. 

Alternatively, the tracer might have additional interactions with other systems that 

are not of interest. For example, the tracer may bind to some non-specific site (say to a 

site on the pre-synaptic terminal) in addition to the specific binding site. In that case, a 

three compartment model would better describe the in vivo process.  

However, biologically accurate models may not be practical. A model with higher 

complexity may be more accurate biologically, but may have too many parameters, and 

hence it would be impossible to accurately estimate all of the model parameters. Some 

models might work when statistical noise is low, but yield multiple solutions for high 

noise cases. Thus, model simplification may be required and some bias in parameter 

estimates will need to be allowed in order to obtain better precision. A number of 

configurations might have to be tested before choosing an appropriate model. For 

[
11

C]FMZ, a two tissue compartment model (Figure 2.6) has been shown to be a 

satisfactory model (Koeppe et al. 1991).  

                                                 
j An example of an inert tracer is [15O]H2O used for blood flow measurement. 
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The transfer of the tracer between the different model compartments can be 

mathematically represented using first-order differential equations based on the laws of 

mass transfer. The differential equations for the two-tissue compartment model in Figure 

2.6 are shown below. 

ND
1 p 2 3 ND 4 S

( )
( ) ( ) ( ) ( ).

dC t
K C t k k C t k C t

dt
                        - 2.1 

S

3 ND 4 S

( )
( ) ( ).

dC t
k C t k C t

dt
                                    - 2.2 

The total measured concentration of the radioligand in the tissue as a function of time is 

given by:  

T ND S p( ) ( ) ( ) ( ) ( )C t C t C t C t IR t    .           - 2.3 

where, is the convolution operator and IR(t) is the impulse response of the 

compartmental model. IR(t) is a nonlinear function of the rate parameters of the two 

compartmental model
k
. 

The model based TAC can be enumerated for any voxel i from Equation 2.3 as 

T 1 T 2 T[ ( ), ( ),..., ( )]
i i ii NC C T C T C T , where T T

1
( ) ( )

j
end

ji i
start

t

j j j t
end start

C T C t dt
t t


   and 

j

startt and 
j

endt are the start and end times of the j
th

 frame, N is the number of frames in the 

study and Tj is the time-point representing frame j, usually chosen to be the frame 

midpoint. Let the parameters of the model for a given voxel i be listed in vector form as 

1 2 3 4[ , , , ]i iK k k k  . The parameter vector for voxel i can be estimated by minimizing the 

difference between the measured time activity curve and the model predicted curve as 

follows: 

2

2

ˆ
arg min ( )

i

i i iW y C


   ,                                      -2.4 

where, W  is the weighting matrix that takes into account the difference in variance 

                                                 
k
 1 2

1 2( )
t t

IR t Ae A e
  

  , with 
1 2,  , A1 and A2 being functions of the individual rate parameters, K1 to 

k4.   
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between different frames of the PET scan. The normalized variance for the j
th

 frame is 

given as follows (Logan et al. 2001): 

2
( ) j

i

T

j

j j j

end start

y T e

t t



 


,                - 2.5 

where Tj is the midpoint time for the j
th

 frame and  is the known tracer decay constant 

(  = 0.0347 min
-1

 for 
11

C tracers). The weighting matrix 
N NW R  is a diagonal matrix 

with 
2

1

j
 along the diagonal (Faraway 2004b). 

Direct estimation of BPND (=k3/k4) or DVR (= 1+BPND) from equations 2.3 and 

2.4 suffers from the practical difficulties of arterial blood sampling and the possible 

errors associated with it. The inconvenience associated with the arterial sampling 

approach has led to efforts in the PET community to move towards non-invasive 

approaches such as the reference region methods described in the following section.   

 

2.4  Reference region models 

 

 

Arterial sampling can be avoided if there is a region or tissue in brain that has 

negligible specific binding ( 3 4 ND0, 0ref ref refk k BP   ) also called the ‗reference region‘ 

or ‗reference tissue‘. Non-invasive reference-region-based approaches have been 

proposed in PET literature where the TAC of the reference region can be used as an 

‗input‘ instead of the arterial function for parameter estimation of the region of interest 

(target region) (Cunningham et al. 1991; Lammertsma et al. 1996). The two tissue 

compartment model for the reference region input function approach is shown in Figure 

2.7. 
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Figure 2.7 Compartmental model for reference region approaches 

 

The reference region approaches described here rely on two assumptions: (i) the 

TACs in the regions with specific binding (target regions) can be expressed as a function 

of the TAC of a region void of specific binding and the rate parameters and (ii) the ratio 

of rates of transfer of the radiotracer across the blood-brain barrier is the same throughout 

the brain (
1 1

2 2

ref

ref

K K

k k
 ). This is equivalent to saying that the distribution volume of the 

non-displaceable tissue compartment (DVND) is uniform throughout the brain. 

For [
11

C]FMZ, the TAC of its reference region (pons) and two target regions 

(thalamus and occipital cortex) are shown in Figure 2.4. Three reference region 

approaches that have been employed in this thesis are described next. 

2.4.1 Two compartment ‘full reference tissue model’ (RTM) 

 

In the case of a reversible single-tracer, two-tissue compartment model, the target 

region concentration time courses or time-activity curves (TACs) can be expressed in 

terms of the model rate constants and reference region TACs using the full reference 

tissue input model equation shown in equation 2.6 below (Cunningham et al. 1991; 

Lammertsma et al. 1996): 

1( ) ( ( ) ( ) ( ) )ct dt

i r r ry t R y t ay t e by t e      ,        - 2.6 
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where ( )iy t  is the target region concentration time course for region or voxel i, ( )ry t is 

the reference region concentration time course and R1, a, b, c and d are model parameters 

that are functions of the rate constants of a two tissue compartment model: K1 – k4 and 

1

refK . The parameter R1 in equation 2.6 is an index of transport across the blood brain 

barrier (R1=
1

1

ref

K

K
). The full reference tissue model has four unknown parameters and they 

can be arranged in a vector form as: 

1 2 3 ND[ , , , ]i iR k k BP                               - 2.7 

 Thus, from equations 2.6 and 2.7 a target region TAC can be expressed in terms of the 

function of the reference region TAC (
ry ) and the parameter vector ( i ) plus a residual 

error term (
i ) as shown below: 

( , )i r i iy f y     .                            - 2.8 

The rate parameters can be estimated by minimizing the difference between the model 

predicted and measured TACs, similar to the minimizing step in equation 2.4 as follows: 

2

2

ˆ
arg min { ( , )}

i

i i r iW y f y


    .            - 2.9 

2.4.2  Simplified reference tissue model (sRTM) 

 

The four parameter model in Equation 2.6 can be further simplified and converted 

into a three parameter model if the equilibration between the non-displaceable and 

specific compartments is rapid (k3, k4 >> 0) (Lammertsma and Hume 1996).  If this 

condition is true, the time activity curves can be expressed as a function of the reference 

tissue curve and the three model parameters for any voxel i as: 

2

ND11 2
1 2

ND

( ) ( ) [ ] ( )
1

k t

BP

i r r

R k
y t R y t k y t e

BP




   


                                                - 2.10 
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The parameter vector per for each voxel i (
1 2 ND[ , , ]i iR k BP  ) can be estimated by a 

minimization step similar to the one in Equation 2.9.  

The arterial input based model for TACs (Equation 2.3), the full reference tissue 

model (Equation 2.6) and simplified reference tissue model (Equation 2.10) are nonlinear 

functions of rate parameters and the ‗input functions‘. Hence, the minimization step for 

the arterial sampling approach (Equation 2.4) and RTM and sRTM (Equation 2.9) 

requires nonlinear least squares algorithms which are computationally intensive and may 

not converge in the case of noisy data. Logan plot based parameter estimation, to be 

discussed next, is computationally efficient as it requires ordinary least squares 

estimation. 

 

2.4.3 Reference region-based Logan plots 

 

Logan plot analysis has been used extensively in the PET community because of 

its simplicity and model configuration independence. Logan plot analysis was originally 

developed for use with arterial sampling (Logan et al. 1990) and later adapted for the 

non-invasive reference region approach (Logan et al. 1996).  Reference region based 

Logan plot analysis is a computationally efficient method where ordinary least squares 

(OLS) can be used to estimate the distribution volume ratio (DVR). The operational 

reference region-based Logan equation obtained after transformation of dynamic PET 

data is shown in equation 2.11. 

T

20 0

T T

( )
( ) ( )

,
( ) ( )

i iT T

ref i

ref ref

i i

C T
C t dt C t dt

k
DVR INT

C T C T



 
 

        - 2.11 

where, INT  is an intercept term, Ti is the midpoint time of the ‘i’th frame and 2

refk is the 

population average value of k2 for the reference region. The plot of the dependent 

variable (

T

0

T

( )

( )

iT

i

C t dt

C T


) and independent variable ( 20

T

( )
( )

( )

iT

ref i

ref ref

i

C T
C t dt

k

C T


) becomes linear 

after some time T
*
, and the slope of the line is DVR, the parameter of interest. The blood-
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brain-barrier transport parameter, R1, can also be calculated from the regression 

parameters ( 1

2

ref

DVR
R

INT k





) and gives the measure of the transport rate of any target 

region relative to the reference region. Figure 2.8 shows the Logan plots for the TACs in 

Figure 2.4, using pons as the reference region.  

  

Figure 2.8: Logan plots for occipital cortex (DVR = 4.3), thalamus (DVR=2.6) and pons (DVR=1.0). 

 

For the dynamic slice sequence shown in Figure 2.2, voxel-wise estimates of the 

transport and binding parameters allow creation of parametric images estimated using 

Logan plots as shown in Figure 2.9. 

 

  

Figure 2.9 R1 and DVR images from dynamic [11C]FMZ. 
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 However, the DVR estimation using Logan plots suffers from bias due to noise in 

the voxel TACs. Minimizing this bias while at the same time keeping the parameter 

variance low, is essential for the multiple neuropharmacological measurement studies. 

The next chapter discusses the cause of the bias in Logan plots and proposes a PCA-

based Logan plot approach to reduce bias without increasing parameter variance. 
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Chapter 3                                                                                  

Improving PET receptor binding estimates from Logan plots 

using principal component analysis 

 

This chapter introduces a novel principal component analysis (PCA) based 

approach for reducing bias in distribution volume ratio (DVR) estimates from Logan 

plots in PET. Logan plot analysis is an ordinary least squares (OLS)-based method for 

estimation of distribution volume ratio (DVR), an index of receptor binding site density, 

for reversible PET tracers (see section 2.4.3). This method is used extensively in the PET 

community because of its simplicity and model configuration independence. However, 

negative bias exists in Logan plot-based DVR estimates owing to noise present in the 

PET time activity curves (TACs). To reduce the bias in single measurement PET studies, 

various methods have been proposed previously for the arterial sampling approach and 

will be reviewed in Section 3.2 (Ichise et al. 2002; Logan et al. 2001; Ogden 2003; Varga 

and Szabo 2002). In this work, for the first time, these existing methods were applied to 

the reference region approach. We found that these methods either removed the bias at 

the expense of precision or removed only part of the bias or both.   

This chapter introduces a novel method for reducing the Logan plot bias using 

principal component analysis (PCA) without increasing the variance of the DVR 

estimates.  PCA is a feature extraction technique used to simplify a dataset by reducing 

its dimensionality while maintaining its relevant characteristics. PCA has been used 

extensively in nuclear imaging, including PET, in the spatial domain (Barber 1980; 

Pedersen et al. 1994; Razifar et al. 2006; Thireou et al. 2003) where the investigators 

have analyzed the images of the coefficients of individual principal components. 

Frequency analysis of dynamic structures (FADS), where the principal components are 

rotated to avoid negative values has been used in temporal domain in SPECT (Sitek et al. 

1999).   In the present work, we apply PCA to achieve temporal smoothing of PET TACs 
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to reduce the bias in DVR estimates (Section 3.3). The PCA-based Logan plot approach 

is compared with the existing bias removal methods in both simulation studies (Section 

3.4) and human brain scans (Section 3.5). 

 

3.1  The cause of bias in Logan plots 

 

In the operational equation for reference region-based Logan analysis (Equation 

2.11) the numerators in both the dependent variable (

T

0

T

( )

( )

iT

i

C t dt

C T


) and the independent 

variable ( 20

T

( )
( )

( )

iT

ref i

ref ref

i

C T
C t dt

k

C T


) have integral terms and are relatively noise free as 

compared to the denominators. The presence of the noisy term (CT(Ti)) in the 

denominators on both sides of Equation 2.11 is the cause of correlated errors in the 

dependent and independent terms of the Logan plot equation leading to negative bias in 

DVR estimates (Slifstein and Laruelle 2000). This bias is more pronounced in regions 

with high DVR values. Reduction of noise in the measured TACs will assist in reducing 

the correlated errors leading to a reduction in the bias. We have developed a principal 

component analysis (PCA) based approach to achieve this goal. 

 

3.2  Existing bias removal techniques 

To reduce the bias in single measurement PET studies, various methods have 

been proposed previously for the arterial sampling based Logan approach (Ichise et al. 

2002; Logan et al. 2001; Ogden 2003; Varga and Szabo 2002). The operational Logan 

equations for both arterial sampling and reference region approaches have the same 

problem of correlated errors in the dependent and independent variables.  Hence, the 

above mentioned methods, though developed for the arterial sampling implementation 

are also applicable to the reference region approach.  
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The OLS method accounts only for errors in the dependent variable. The TLS 

method (Varga and Szabo 2002) takes into account errors in both dependent and 

independent variables of the Logan plot to estimate DVR.  This can be classified as a 

method using an alternate cost function.  LEGA (Ogden 2003) and MA1 (Ichise et al. 

2002) can be classified as methods rearranging the original Logan plot equation.  In 

LEGA, a rearrangement of the operational Logan plot equation makes the error term 

additive.  The problem is then solved by maximum likelihood approach.  In MA1, 

equation (5) is rearranged to bring the noisy term to one side of the equation and DVR is 

estimated by taking the ratio of two regression coefficients.  GLLS (Logan et al. 2001) 

can be classified as a temporal smoothing method.  In this method each noisy TAC is 

separated into two segments which are individually fitted to one compartment model 

using Generalized Linear Least Squares (Feng et al. 1996).  The smoothed segments are 

pieced together to get a smooth TAC which is then used to obtain Logan DVR estimates. 

We have found that these existing methods were either unsuccessful in removing all of 

the bias or removed bias at the expense of precision or both. The new PCA-based bias 

removal approach can also be classified as a temporal smoothing method where a PCA-

based lower dimension linear model is used to reduce the noise in the tissue curves.  

 

3.3  Principal Component Analysis (PCA) for Logan-plot bias reduction 

 

PCA is a feature extraction technique used to simplify a dataset by reducing its 

dimensionality while maintaining its important characteristics (Faraway 2004a).  In 

feature extraction, data space is transformed into a 'feature' space having the same 

dimensions as the data set.  This transformation is such that the data set can then be 

represented by a reduced number of dominant ‗features‘ while retaining all the important 

intrinsic characteristics of the original data.  Using PCA, each original data vector of 

dimension ‗p’ can be expressed as a linear combination of ‗p‘ orthogonal basis vectors. 

By limiting the number of basis vectors to ‗q‘ dominant vectors (q < p), data can be 

represented with a reduced dimensionality thus reducing the noise while preserving the 

important features in the data. Using PCA, the noise in the PET TAC values (CT(Ti)) can 
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be reduced thus also reducing the correlated errors in equation 2.11, which are the cause 

of the DVR bias. 

The classical model for a PET TAC is a non-linear function of rate parameters 

(Equation 2.3).  Here we represented dynamic PET data using a PCA-based linear model. 

Thus, a noisy tissue curve vector for the j
th

 voxel, 
1

1 2[ ( ), ( ),..., ( )]' p

j j j j py y T y T y T R    

from a PET study involving ‘p’ temporal frames can be expressed as: 

jjj xGy  ,               - 3.1 

where qpRG   is the system matrix to be constructed using PCA (q < p), 1 q

j Rx is 

the coefficient vector and 1 p

j R  is the vector of residuals. For obtaining the system 

matrix, a training set is required. We used the time activity curves from all the voxels in 

the PET image volume as the training set. 

Let the training set contain ‗d‘ TACs from the dynamic PET data. These ‗d‘ 

curves can be arranged row-wise in the matrix form as follows. 

X = 

1 1 1

1

( ) ( )

( ) ( )

p

d d p

y T y T

y T y T

 
 
 
 
 



  


.                                            - 3.2 

Matrix X0 is obtained by subtracting the column mean vector ( ) from each row 

of X. The principal components are the eigenvectors of the sample covariance matrix of 

X0 ( 0 0

1

1

TS X X
d




) and are obtained using singular value decomposition (SVD).  The 

total number of principal components is equal to p, the number of frames in the PET 

study. These components can be ordered in the decreasing order of their eigenvalues as F 

= ]...[ 21 pfff where 1p

if R  and F
ppR  .  The mean vector   and a subset of the 

principal components (depending on their eigenvalues) is chosen to construct the system 

matrix G = ]...[ 21 qfff (q < p). The coefficient vector jx  in Equation 3.1 for each noisy 

curve 
iy can be estimated by least squares minimization as follows. 

jj yGGGx ')'(ˆ 1 .             - 3.3 
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The PCA-based fitted tissue curve can then be obtained as shown below. 

jj

PCA

j yGGGGxGy ')'(ˆˆ 1 .                        3.4 

The process of obtaining the principal components using PCA from the training set has a 

closed form expression and hence is straightforward. Selection of ‗q’ for a particular 

tracer is made from simulations. Training data and test data are simulated using the 

literature range of tracer parameter values and the expected shape of the arterial input 

function.  The principal components are obtained from the simulated training set and ‗q’ 

is selected to be the minimum number such that G (= ]...[ 21 qfff ) is a valid system 

matrix for simulated test data. 

 In human studies, the training data and the test data are the same and include all 

the TACs in the PET image volume. Principal components for each subject are obtained 

from the training set and system matrix is formed using the number ‗q’ selected from 

simulations. This system matrix is then used to fit the test data.  

 

3.4  Simulations 

3.4.1  Simulation Design 

Simulations were performed mimicking the relatively slowly equilibrating 

radiotracer [
11

C]carfentanil (CFN), a reversible μ-opioid agonist.  A partial bolus 

followed by continuous infusion was simulated for tracer administration (60% bolus and 

40% infusion). This was the same bolus to infusion ratio used in the human scans.  The 

local rates of delivery of the radiotracer and clearance rate of the radiotracer to the 

plasma was same for the target region and the reference region (K1 = K1
ref

, k2 = k2
ref 

), 

although this assumption is not required by the reference region method.  The training set 

was simulated using the kinetic parameter ranges reported previously (Endres et al. 2003) 

as shown in Table 3.1.  The training set consisted of 2496 noisy curves (all with unique 

kinetic parameter combinations) of a 70 minute - 16 frame scan (4 x 0.5 min, 3 x 1 min, 2 

x 2.5 min, 2 x 5 min, 5 x 10 min), which is the same protocol used for human scans at our 

institution. The principal components were obtained from this training set.  
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The test data consisted of six hypothetical regions (Table 3.1, Figure 3.1):  four of 

them with receptor binding, having true DVR values of 5, 4, 3, 2, and one without 

receptor binding having true DVR = 1 were sampled from the training set.  It is possible  

 

Table 3.1: Kinetic parameters ranges for [11C]carfentanil simulations 

Parameter Training Parameters
+
 Test Parameters 

K1 (ml g
-1

min
-1

) [0.1: 0.02: 0.24] 0.2 

k3 (min
-1

) [0: 0.02: 0.5] [0.1: 0.1: 0.4], 0.7
*
 

k4 (min
-1

) [0.08: 0.02: 0.14] 0.1 

Ve (ml/mL) [1.32: 0.27: 1.86] 1.59 

( [ : : ]a b c  from a to c in steps of b.  * atypical curve) 

 

  

Figure 3.1: Noiseless time activity curves (TACs) for simulated test data. The test data comprised five 

hypothetical regions with receptor binding having true DVR values of 8, 5, 4, 3, and 2 and reference region 

with no binding (DVR = 1). The curve corresponding to DVR = 8* is an atypical curve that is not present 

in the training set. Realistic voxel-level noise was added to these noiseless curves to obtain 1024 

realizations for each DVR value. 

for a small region of the brain to have very different kinetics from those observed 

elsewhere.  Since the proposed PCA method is training set based, its sensitivity to a 

region of unusual kinetics not part of the training set needed to be evaluated.  To examine 
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this, a sixth region with substantially greater DVR than any curve present in the training 

set was added to the test set (DVR = 8).  Noiseless TACs for these six regions are shown 

in Figure 3.1.  Realistic voxel-level noise was added to obtain 1024 realizations for each 

of these curves using the noise model in Equation 2.5. The principal components 

obtained from the simulated training data were used construct the system matrix and fit 

the curves in the simulated test data. DVR estimates were then obtained by replacing the 

noisy TAC values in the denominators of Equation 2.11 with the values of the PCA-

based fitted curves. T
*
, the time beyond which the Logan plot is linear, was chosen to be 

20 minutes based on the known characteristics of carfentanil. The integrals in the 

numerators of Equation 2.11 were calculated using trapezoidal approximation (Ogden 

2003). The curve simulated for the region with no specific binding (DVR = 1) was used 

as the reference region in the Logan analysis. 

It must be noted that since no blood samples are measured in reference region 

approaches, correction for a blood volume component (vascular contribution to the PET 

data) is not possible. Not correcting for blood volume will introduce a systematic bias in 

the DVR estimates in human scans unrelated to the noise induced bias (Logan et al. 

1996). To check the magnitude of this systematic bias on the proposed and existing 

methods, separate simulations were also performed with a blood volume component 

using the following model.  

B B B T( ) ( ) (1 ) ( )C t V C t V C t                                                                   - 3.5 

where C(t) is the total radioligand concentration measured in a voxel, VB is the blood 

volume component (chosen to be 3.5%) and CB(t) is the blood radioligand concentration. 

Data was simulated including a blood volume component as in equation 3.5, but analyzed 

ignoring its contribution. 

DVR values for the above simulations were estimated using the following six 

methods and the results are reported in the next subsection.  

(1) Ordinary Least Squares (OLS) (Logan et al. 1996) 

(2) Total Least Squares (TLS) (Varga and Szabo 2002) 

(3) Generalized Linear Least Squares (GLLS) (Logan et al. 2001) 
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(4) Likelihood Estimation Graphical Analysis (LEGA) (Ogden 2003) 

(5) Multi-Linear Analysis - 1 (MA1) (Ichise et al. 2002) 

(6) Principal Component Analysis (PCA) (Joshi et al. 2008a) 

 

3.4.2  Simulation Results 

The mean vector ( ) and first 3 principal components (
21, ff and 3f ) obtained 

from the simulated carfentanil training data without blood volume component are shown 

in Figure 3.2. The first 3 components had eigenvalues of 1.24 310 , 278.75 and 7.91 

while the next to last and last components had eigenvalues of 6.36 3210  and <10
-50

, 

respectively. This progression of eigenvalues (eigenvaluei-1 >> eigenvaluei) indicated 

that the first few components are the dominant vectors and capture most of the variance 

in the training set. 

The box plots in Figure 3.3 show the comparison of DVR estimates obtained 

using OLS with those estimated by increasing numbers of components for true DVR = 5 

(PCAn ][ 21 nfffG  ). In the presented PCA approach, we fit the noisy TACs as 

a linear combination of the principal components (16 possible vectors) as well as the 

mean vector. In all, 17 PCA-based models are possible; the model with smallest degrees 

of freedom is PCA0 with the mean vector alone (G = [ ] ) and the one with largest 

degrees of freedom is PCA16 with mean vector and all the 16 principal components (G 

= 1 2 16[ ]f f f  ). 

Too few components were insufficient to model the data and yielded biased 

estimates with high precision, as seen for PCA0 which used the scaling of only the mean 

vector. As the number of components was increased, the bias was reduced at the expense 

of precision (PCA1, PCA2, PCA3).  However, as the number of components exceeded 

three, the bias returned, as the added components begin to fit noise in the data.  Using all 

16 principal components (PCA16), as expected, gave back the original noisy data and the 

box plot in this case is identical to the box plot for OLS.  PCA16 uses 17 vectors (mean 

vector and 16 components) while PCA15 uses 16 vectors (mean vector and 15 

components) to model the 16 frame data. The mean vector can be expressed as a linear 
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combination of the 16 principal components. Since only 16 independent vectors are 

needed for perfect description of the 16 frame data, PCA15 and PCA16 will give 

identical results.  

  

Figure 3.2: Mean vector and first 3 principal components for carfentanil-like tracer simulation studies.  The 

mean vector is the mean of the entire training data while the 3 principal components are the dominant 

vectors obtained from the PCA with the three largest eigenvalues. 

 

  

Figure 3.3: Box plot comparisons of DVR estimates obtained with an increasing number of principal 

components in single measurement simulation studies (True DVR=5).  The individual boxes have lines at 

the lower quartile, median, and upper quartile values. The whiskers extend from the ends of the box to the 

most extreme value within three times the interquartile range in each direction.  DVR estimates beyond the 

whiskers are marked as outliers (denoted by '+').  PCAn   PCA fit with first n principal components and 

the mean vector. When all 16 components are used (PCA16), the results are identical to the original OLS 

estimation. 
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PCA1 (
1[ ]G f ) provided the best bias-variance trade-off for true DVR = 5.  

This implied that a linear combination of only two curve shapes could sufficiently 

approximate the simulated test data with DVR = 5 (q = 2).  To check the validity of this 

finding for all the simulated TACs in the test set, we analyzed the residuals between the 

true noiseless TACs ( true

jy ) and the PCA1-fitted TACs ( 1ˆ PCA

jy , 1≤ j ≤ 1024).  For the j‘th 

realization, the residual at i‘th frame is given by residualj(Ti) = )(ˆ)( 1

i

PCA

ji

true

j TyTy   (1 ≤ i 

≤ p, where p = 16 is the number of frames in the study).  These residuals were normalized 

by the true tissue curve values to obtain the percent-normalized residuals 

(=
( )

100
( )

j i

true

j i

residual T

y T
 ).  For a model to be valid, the mean of these percent-normalized 

residuals must lie close to zero (Carson 1986). Figure 3.4 shows that for TACs with 

receptor binding that were part of the training set (DVR = 5, 4, 3 and 2), the mean of 

percent-normalized residuals was close to zero (between  3%). For reference region  

  

Figure 3.4: The mean of percent-normalized residuals between the PCA1-based curve approximations and 

the true tissue curves in single measurement simulation studies. The plot indicates that PCA1 model is valid 

for TACs with receptor binding that were part of the training set (DVR = 5, 4, 3 and 2). For reference 

region curve (DVR = 1) and atypical curve not part of the training set (DVR = 8), however, the model is 

not valid as the mean of percent-normalized residuals is significantly different than zero. Including curves 

similar to the atypical curve in the simulated training set (1% of the total curves) improves the fit (DVR = 

8+). 

TAC (DVR =1, k3=0) and for the atypical TAC not included in the training set (DVR = 8) 

the mean of the percent-normalized residuals was significantly different than zero 



 31 

indicating that PCA1 was not a valid model for these curves. This makes intuitive sense 

as the reference region curve (shown in Figure 3.1, DVR = 1) has a more complicated 

shape compared to the curves with receptor binding due to rapid clearing of the tracer.  

PCA3 (mean vector and three components) was found to be a valid model for the 

reference region. It should be pointed out that the actual reference region TAC used in the 

Logan plot calculations is not fitted using PCA, but is the raw TAC.  Since the reference 

region is not derived from a single voxel, but is obtained from a volume-of-interest large 

enough to have minimal statistical noise, the raw reference region curve can be used for 

all DVR estimations without introduction of bias or loss of precision.  Furthermore, the 

DVR estimates in regions of very low binding were found to be nearly unbiased even 

with non-zero residuals resulting for the PCA1 fit as seen in the last column of Table 3.2.  

The invalidity of the PCA1 model for the atypical curve is also expected as the 

success of PCA-based approach depends on the diversity of the training set and if a curve 

shape is significantly different from any in the training set, the PCA1 model may not be 

adequate.  However, in human studies the training set consists of all the TACs in the PET 

image volume. Thus, a region with unusual kinetics, if any, will contribute curves to the 

training set.  If we include curves similar to the atypical curve in the simulated training 

set (1% of the total curves) the fit improves as seen in Figure 3.4 (DVR = 8
+
).  

The standard deviations of the percent normalized residuals for PCA1-based 

TACs calculated above were approximately 50% of that for original noisy tissue curves. 

Thus, from this result and Figure 3.4 we could conclude that PCA1 model was valid for 

the curves with receptor binding that were part of the training set and provided TACs 

with reduced noise.  

More detailed results have been presented for the curve simulated with DVR = 5.  

The histograms in Figure 3.5 show the distribution of the DVR values estimated by each 

of the existing methods vs. PCA1.  A Gaussian kernel with unbounded support was used 

to smooth the histograms.  These plots were useful for visualizing asymmetries and tails 

in the distribution of the estimated DVR values.  The vertical line denotes the ‗true‘ DVR 

value.  The modes of the histograms of all the existing methods either lie below the true 

DVR value, show heavy tails, or both. PCA2 has its mode at the true value but has a 

heavier tail than PCA1. PCA1 was seen to be superior to all the existing methods.  
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Figure 3.5: Comparison of distribution of the DVR values estimated by each of the existing methods vs. 

PCA1 in single measurement simulation studies for true DVR = 5. (discarding top and bottom 2.5 

percentiles).  TLS, GLLS and LEGA have modes lower than the true value but higher than that for OLS.  

MA1 has a heavier tail due to overestimations. PCA1 proves to be the best estimator with a narrow 

unbiased distribution as compared to all the methods. The distribution of DVR estimates with PCA2 has its 

mode at the true value but has a heavier tail than PCA1. 

 

 

Figure 3.6 depicts the trade-off between precision and bias in the DVR estimates 

of the different approaches, again for DVR = 5.   
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Figure 3.6: Trade-off between bias and precision for the existing and proposed bias removal methods in 

single measurement simulation studies (discarding top and bottom 2.5 percentiles). The plot shows percent 

absolute bias versus percent standard deviation for true DVR = 5.  The original OLS method shows high 

bias, which is removed at the expense of some increase in estimation variability by the existing bias 

removal methods. If the proposed method was under parameterized (PCA0) or over parameterized (PCA7, 

PCA9, PCA16), bias returned.  PCA1 yielded the best compromise between bias and precision. 

 

An ideal estimator has no bias and minimal variance and would lie near the 

origin.  OLS (superimposed with PCA16) is on the far right denoting the bias present due 

to noise.  TLS removes only a portion of the bias.  GLLS, LEGA, MA1, PCA2 and PCA3 

reduce the bias but also have poorer precision. PCA1 shows the best performance and is 

closest to the origin than any other method. Figure 3.7 shows box plots for DVR 

estimates from all methods (DVR = 5). The median and range of DVR estimates using 

OLS is below the true value as expected.  The bias in the median is reduced only slightly 

using TLS with a decrease in precision.  GLLS, LEGA, MA1 and PCA2 reduce the bias 

almost entirely but have high variance.  PCA1 eliminates bias almost completely and 

yields the best precision estimates of any of the methods.   
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Figure 3.7: Box plot comparisons of the DVR estimates obtained using the existing bias removal methods 

and the proposed bias removal method for single measurement simulation studies (true DVR = 5). TLS 

reduces only part of the bias. GLLS, LEGA and PCA2 (with a wide inter-quartile distance) and MA1 (with 

large number of outliers) reduce most of the bias but at the expense of precision. PCA1 reduces bias along 

with an improvement in estimation precision. 

 

Table 3.2 summarizes the means and standard deviations of the estimated DVR 

values in units of percent of true value for all the simulated test curves. Though the trends 

for DVR 5 (last four columns) are similar to those seen in Figure 3.7 (DVR = 5), bias 

for OLS is lower for curves with lower DVR values as expected (Slifstein and Laruelle 

2000). The first two columns show statistics for the atypical TAC with bias in the PCA1 

estimate of DVR when the atypical curve is not part of the training set (DVR = 8, column 

1) and reduction in bias when atypical curve shapes are included in the training set (DVR 

= 8
+
, column 2). Inclusion of curve shapes similar to the atypical curve in the training set 

(1% of total curves) improves the fit but does not remove the bias completely for PCA1. 

The representation of atypical curve shapes in the training set was required to be at least 

5% for the bias to be completely removed for PCA1. Thus, very small regions with 

unusually shaped TACs, if identified prior to Logan analysis, could be fitted with PCA2 

where bias is removed almost completely but at the expense of precision. 

Figure 3.8 shows the box plot for DVR estimates from all methods for curves 

simulated with but not corrected for the blood volume component (DVR = 5). The box 

plots have similar bias-variance trends as in Figure 3.7 apart from the consistent bias seen 
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in Figure 3.8 for all methods due to uncorrected blood volume component. This bias is 

minimal (< 5%) compared to the noise induced bias in OLS (>10%) for DVR=5 and is 

even smaller for lower DVR values. 

 

  

Figure 3.8: Box plot comparisons of the DVR estimates obtained using the existing and proposed bias 

removal methods for single measurement studies simulated to include a blood volume component, but 

analyzed ignoring the vascular contribution (true DVR=5). The trends are similar to those seen in Figure 7 

but include a consistent but minimal bias (< 5%) as compared to the noise induced bias in OLS (>10%). 

Table 3.2: Bias, given as percent of true value, and standard deviation in units of percent of true value (n = 1024).   

 DVR = 8 DVR = 8
+
 DVR = 5  DVR = 4 

 

DVR = 3 

 

DVR = 2 

 

DVR = 1 

 

OLS 77 (13) 

 

87 (12) 

 

90 (11) 92 (10) 94 (9) 97 (7) 

TLS 93 (23) 

 

95 (17) 

 

94 (13) 95 (12) 96 (9) 97 (7) 

GLLS 95 (26) 

 

99 (20) 

 

99 (15) 100 (13) 100 (10) 98 (8) 

LEGA 100 (19) 

 

105 (22) 

 

102 (16) 102 (13) 102 (11) 101 (8) 

MA1 107 (34) 

 

106 (24) 

 

103 (17) 102 (14) 102 (11) 103 (8) 

PCA1 87 (7) 

 

91 (9) 

 

100 (8) 

 

101 (8) 101 (8) 102 (8) 97 (7) 

PCA2 98 (19) 

 

99 (16) 

 

102 (16) 

 

102 (14) 102 (12) 101 (10) 98 (7) 

A value of 100 represents ‗no bias‘. 
+ PCA training set including curve shapes similar to the atypical curve (1% of total curves). 
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Similar trends to those seen in Figures 3.3 - 3.8 were seen for simulations of 

different levels of noise (results not shown).  

 

3.5  Human Studies: 

3.5.1  Human Studies design 

 

To apply the proposed approach in single measurement human PET studies, 12 

subjects were imaged with [
11

C]CFN for 70 minutes and binned into 16 frames (4 x 0.5 

min, 3 x 1 min, 2 x 2.5 min, 2 x 5 min, 5 x 10 min).  All scan were performed on a 

Siemens ECAT Exact HR+ scanner.  Images were reconstruction following Fourier 

rebinning (FORE) using 2D-OSEM, 4 iterations 16 subsets and no post-process 

smoothing resulting in images with isotropic resolution of approximately 6 mm FWHM.   

Injected doses of [
11

C]CFN were 555-666 MBq (15-18 mCi) at a specific activity of 

>2000 Ci/mmol.  CFN was administered as partial bolus followed by continuous 

infusion.  Subject motion across frames was corrected using Neurostat (University of 

Michigan; (Minoshima et al. 1994; Minoshima et al. 1993).  VOIs, including the occipital 

cortex reference region, were obtained using a standardized VOI template following 

reorientation and non-linear warping to the stereotactic Talairach atlas (Talairach and 

Tournoux 1988) using Neurostat routines.  DVR parametric images were obtained by the 

proposed and all existing methods.  The PCA training set consisted of TACs from all the 

individual voxels in the brain volume and was used to obtain the principal components 

for each subject. The system matrix was then constructed using the first ‗q‘ principal 

components (‗q’ selected from simulations). All individual voxel TACs in the image 

volume were then fitted to the system matrix to obtain smooth TACs with reduced noise.  

DVR values were estimated by substituting these smoothed TACs values in place of the 

noisy TACs values in the denominators of Equation 2.11.  DVR estimates were also 

obtained employing the existing bias removal methods and compared with the proposed 

PCA approach. 
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3.5.2  Human Studies Results 

 

For the 12 human scans in the single-measurement case, 8 regions of interest 

(ROIs) were placed on the estimated DVR images of each subject obtained from all 

methods.  The means of DVR values and means of the standard deviations within these 

regions from 12 subjects are reported in Table 3.3. The top 50 percentile pixels in these 

ROIs were used to obtain the statistics. The performance of the methods in the human 

data was seen to match closely with the performance in simulation studies. TLS estimates 

are higher but quite close to that of OLS for all regions. The estimates of GLLS, LEGA, 

PCA1, PCA2 and PCA3 are higher than OLS as seen in single measurement simulation 

studies indicating reduction in bias.  Mean values for MA1 are higher than the other 

methods due to the presence of outliers. The means of the standard deviations (across-

subject means of the within-region standard deviations) also follow the same trend as 

seen in simulations with PCA1 having the lowest and MA1 having the highest variance 

compared to the other methods.  It is important to note that in general the PCA method 

yields the smallest standard deviations, which is a strength of the approach.  

 

Table 3.3: Mean DVR (mean standard deviation) in subjects imaged with the single measurement protocol (n = 12). 

  Thalamus Dorsal 

Caudate 

Ventral 

Caudate Amygdala 

Anterior 

Cingulate Cortex Cerebrum 

Occipital 

Cortex       

OLS 2.68 (0.23) 2.51 (0.48) 2.82 (0.42) 2.56 (0.53) 1.79 (0.54) 1.52 (0.22) 1.68 (0.18) 1.10 (0.22) 

TLS 2.74 (0.26) 2.55 (0.63) 2.92 (0.47) 2.70 (0.69) 1.81 (0.71) 1.53 (0.25) 1.69 (0.20) 1.10 (0.23) 

GLLS 2.83 (0.24) 2.62 (0.43) 3.05 (0.39) 2.85 (0.45) 1.85 (0.39) 1.56 (0.22) 1.73 (0.19) 1.12 (0.22) 

LEGA 2.90 (0.37) 2.68 (0.68) 3.18 (0.59) 2.98 (0.85) 1.89 (0.83) 1.61 (0.34) 1.78 (0.34) 1.17 (0.31) 

MA1 3.13 (1.33) 3.44 (2.95) 3.25 (2.27) 3.15 (3.54) 1.92 (3.69) 1.67 (1.43) 1.78 (1.28) 1.24 (1.10) 

PCA0 2.64 (0.17) 2.49 (0.21) 2.71 (0.17) 2.39 (0.24) 1.86 (0.14) 1.54 (0.17) 1.78 (0.11) 1.07 (0.16) 

PCA1 3.03 (0.22) 2.77 (0.35) 3.30 (0.31) 3.16 (0.38) 1.89 (0.31) 1.59 (0.20) 1.77 (0.16) 1.11 (0.23) 

PCA2 2.87 (0.24) 2.64 (0.43) 3.06 (0.38) 2.83 (0.45) 1.88 (0.44) 1.58 (0.22) 1.75 (0.19) 1.12 (0.23) 

PCA3 2.87 (0.26) 2.63 (0.51) 3.06 (0.45) 2.83 (0.59) 1.88 (0.55) 1.58 (0.24) 1.75 (0.21) 1.12 (0.23) 

Mean standard deviation is the across-subject mean of the within-region standard deviation. 
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3.6  Discussion and Conclusion 

 

The negative bias in the DVR estimates from Logan plots is due to the noise in 

the PET TACs that propagates as correlated errors in dependent and independent 

variables of the Logan plot equation.  While several methods for reducing this bias have 

been proposed, these methods either remove only a portion of the bias, or reduce bias at 

the expense of precision.  Parameter estimation by TLS removes only a portion of the 

bias. The GLLS, LEGA and MA1 methods are quite effective in removing bias, but 

demonstrate poorer precision, especially for intervention studies where two DVR 

estimates are required as will be seen in the next chapter.  In the proposed approach, 

fitting the dynamic PET data to a low-dimension PCA-based linear model maintains the 

appropriate kinetic shape of the TACs while removing noise and hence the source of the 

correlated errors in the Logan plot equation.  This provides DVR estimates with minimal 

bias and reduced variance. In single measurement simulation studies, the linear 

combination of just two curve shapes (the mean vector and first principal component) 

was successful in modeling the simulated test data curves sampled from the training set 

and reduced bias and variance associated with their DVR estimates.  If a test data curve 

was not part of the training set, PCA1 was insufficient to model it leading to bias in DVR 

estimates as seen for the atypical curve (DVR = 8). In human studies, however, TACs 

from all the voxels in the image volume are used as training data to obtain the PCA-based 

linear model. A region of unusual kinetics, if present, will contribute to the total TACs in 

the training data. Thus, a region of unusual kinetics contributing as few as 1% of the total 

TACs to the training data was simulated.  By including curve shapes similar to the one 

with DVR = 8 in the training set (1% of total curves), the bias in DVR estimates was 

reduced but not completely removed. Small regions with atypical TACs, if identified 

prior to DVR estimation, could be fitted with PCA2 where bias will be removed at the 

expense of precision. 

Adding another component to the PCA1 model (PCA2) also removed bias, but 

increased the variance of the DVR estimates to a level comparable to OLS. Though the 

increase in variance between PCA1 and PCA2 is expected due to an increase in degrees 

of freedom, the magnitude of this increase will vary from tracer to tracer and will depend 
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upon the particular curve shapes under consideration, and thus needs to be evaluated for 

each radiotracer application.  

Another source of bias, unrelated to the noise-induced bias, exists for reference 

region approaches due to lack of accounting for the blood-borne component of the PET 

signal.  This was observed to cause a small but consistent bias in all the methods, but was 

minor compared to the noise induced bias in OLS. 

It should be pointed out that in both the simulation studies and the human scans, 

we used a partial bolus followed by continuous infusion for administration of the 

radiotracer.  This may reduce the kinetic complexity of the TACs compared to bolus 

injection studies, and hence limit the number of principal components required to 

describe the shape of the TACs.  When applying the PCA approach to other PET ligands 

or radiotracer administration protocols, the optimal number of components for describing 

the TAC shapes needs to be reevaluated.  However in our experience, the mean vector 

plus at most two principal components seem sufficient for modeling standard single-

measurement PET studies for most radiotracers, while the mean vector plus at most three 

components are sufficient for interventional PET studies described in Chapter 4 that may 

have more complex kinetic behavior. 

Obtaining the components from training data has a closed form solution and 

hence is not computationally expensive.  While the simulation studies are a necessary 

step in the validation of any new proposed approach, the final evaluation must involve 

real data.  Results in Tables 3.3 clearly demonstrate the utility of the PCA approach in 

human data.   

The proposed PCA method is simple to implement and computationally fast. For 

relatively slowly equilibrating tracer like [
11

C]CFN, PCA1 produced DVR images which 

had less bias, lower variance, or both compared to existing bias removal methods.   

The motivation for this thesis is the measurement of multiple 

neuropharmacological aspects of the brain. The noise induced bias in TACs accentuates 

the bias problem in the dual-Logan intervention studies since a limited number of data 

points are available for DVR measurement. The improvement in Logan plot analysis 

shown in this chapter provides the performance necessary for application to dual-

measurement studies. In the next chapter, we see how the proposed and existing methods 
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perform in case of dual-measurement intervention studies where pre- and post-challenge 

DVR estimates are required.  
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Chapter 4                                                                                   

Dual-measurement Intervention Studies 

 

  

Figure 4.1: Dual-measurement approach to measure the in vivo distribution of the radiotracer before and 

after perturbation of the system in a single tracer PET study. In the schematic shown in panel A, 

perturbation of the system is made 40 min after the tracer administration decreasing the binding potential of 

the target region by 50% (noiseless case).  Logan plots are used to estimate DVR both before and after the 

intervention. The grey lines indicate the point at which the perturbation occurs. 

 

PET intervention studies are used to investigate the effect of a pharmacological or 

behavioral challenge on the biological system of interest. In a traditional PET 

intervention study protocol, the baseline pharmacological or behavioral measure of 

interest is first obtained from a single-tracer PET scan. The baseline scan is followed by 

the intervention and then another PET scan is acquired with the intention of measuring 

the effect of the intervention. Typically, each study would also involve invasive arterial 

sampling.  

In this chapter we propose a single-scan intervention study without the need for 

arterial sampling. In this protocol, the tracer is administered and at some point during the 

same acquisition a perturbation of the system is made with the intent of changing in vivo 
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distribution of the radiotracer (Figure 4.1, panel A).  Reference region based Logan plots 

are used to estimate DVR before and after intervention (Figure 4.1, panel B).  

We have found that the noise induced bias in DVR (discussed in Chapter 3) is 

more pronounced in dual-measurement studies resulting in higher bias and variance than 

in single-tracer PET studies due to the restricted temporal range of data available for 

DVR estimation. Application of the existing bias removal techniques to such intervention 

studies has not been reported in the literature. Except for the temporal range of data used, 

the procedure for estimating DVR in dual-measurement intervention and single 

measurement studies is the same. The Logan plots for dual-measurement studies have the 

same noise induced bias associated with them as in single measurement studies. Thus, 

though the existing methods have been proposed for single measurement studies, they are 

applicable to the dual Logan case without any modifications. 

 In this chapter we apply the PCA-based approach as well as existing bias 

reduction methods (see chapter 3) to dual-measurement PET for both simulation studies 

(Section 4.1) and human scans (Section 4.2).   

 

4.1  Simulation studies 

 

4.1.1 Simulation studies: Design 

 Intervention studies were simulated using the same input function and rate 

parameters as in Section 3.2.1 (Table 3.1), but with a naloxone intervention simulated 40 

minutes after initiation of the scan. The simulated data consisted of 100 minutes - 19 

frames scan (4 x 0.5 min, 3 x 1 min, 2 x 2.5 min, 2 x 5 min, 8 x 10 min.), which is the 

same protocol as used for the human intervention scans. The training set consisted of 

TACs with a linear drop in k3 to 40%, 50%, and 60% of the initial k3 value over the 10 

minute period after the intervention to model the loss in available binding sites following 

naloxone intervention.  The test set was simulated with 50% drop in k3.  DVR values 

were estimated from Logan plots using ‗early‘ data from 20 – 40 min for pre-intervention 

DVR (DVRpre) and ‗late‘ data from 60 min until end of scan data for post-intervention 

DVR (DVRpost) as shown in Figure 4.1, panel B (noiseless case).  DVRpre is estimated 
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from 20 – 40 min when the Logan plot has become linear. The perturbation at 40 min 

(denoted by the vertical grey line) increases receptor occupancy causing the Logan plot to 

bend (40 – 60 min), before becoming linear again around 60 min.  The 60 – 100 min 

period can be used to estimate DVRpost. For both DVRpre and DVRpost estimations, the 

integral terms in the numerators of Equation 2.11 are calculated from the beginning of the 

scan. 

As mentioned before, the existing methods, though proposed for single 

measurement studies are also applicable to dual-measurement intervention studies. 

Though this is true for GLLS as well, some practical difficulties exist. To apply the 

GLLS method as proposed in Logan et. al, 2001 to the dual-measurement case, temporal 

segments of the TAC before and after intervention may have to be further cleaved into 2 

parts each. This, though possible, is not practical due to a limited number of points in the 

TACs (11 pre-intervention and 6 post-intervention). Thus, we implemented GLLS 

without dividing the segments before and after intervention any further. It should be 

noted that in order to fairly compare this method to the others, the segments before and 

after intervention may need to be separated further (work not done). 

 

4.1.2  Simulation studies: Results 

Similar analyses as shown in Figures 3.3 – 3.8 were performed for intervention 

studies to determine the appropriate number of principal components for fitting the noisy 

data.  Figure 4.2 shows percent absolute bias versus percent standard deviation in the 

DVR estimates for both pre-intervention (‗true‘ DVRpre = 5; filled symbols) and post-

intervention (‗true‘ DVRpost= 3; open symbols) data.  Since the bias in the estimated DVR 

values is higher for larger DVR values, in general the bias is higher in DVRpre than 

DVRpost. It can be seen that PCA1(pre) and PCA3(post) provide the best bias-variance 

trade-off (by virtue of their proximity to the origin) than all the other methods.  In fact 

DVR estimates using all PCA-based approaches tested (PCA1, PCA2 and PCA3) cluster 

close to the origin, reducing bias while maintaining good precision. All the existing bias 

removal methods reduce bias at the expense of precision.  Thus, as for single-tracer 

studies, the PCA approach appears to be the method of choice for dual-measurement 
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simulation studies as well. Next, we validate the method in human dual-measurement 

studies. 

  

Figure 4.2: Trade-off between bias and precision for the existing and proposed bias in simulated 

intervention studies (discarding top and bottom 2.5 percentiles).  The figure shows the percent standard 

deviation versus percent absolute bias in DVRpre (filled symbols) and DVRpost (open symbols) for the 

simulation studies where the binding density was decreased by 50% post-intervention.  ‗True‘ DVR pre-

intervention and post-intervention was 5 and 3 respectively.  OLS showed the maximum bias as was seen 

in the single measurement studies. All the PCA-based methods (PCA1, PCA2 and PCA3) cluster close to 

the origin and reduce bias while maintaining good precision. The existing bias removal techniques reduced 

the bias at the expense of increase in variance. 

 

4.2  Human data studies 

4.2.1 Human studies: Design  

 

To apply the proposed approach in dual-measurement intervention studies, scans 

were performed in four human subjects using [
11

C]CFN with a naloxone dose given 

starting 40 minutes after CFN administration to block tracer binding.  Naloxone was 

administered as a 0.004 mg/Kg bolus followed by 0.00004 mg/Kg/min for the remainder 

of the study, a dose designed to block approximately 50% of the specific binding sites.  

Four control subjects were also imaged where no intervention was given during the scan, 

and thus no change in binding was expected between ‗early‘ and ‗late‘ DVR estimates.  
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Data for these 8 subjects were collected as for the single-measurement studies except that 

scans were acquired for 100 minutes and binned into 19 frames (4 x 0.5 min, 3 x 1 min, 2 

x 2.5 min, 2 x 5 min, 8 x 10 min). Except for the temporal range of data used, the 

procedure for estimating DVR using the proposed and existing methods in intervention 

studies is same as that for single measurement studies as explained above.  

 

4.2.2 Human data: Results 

 

Figure 4.3 shows DVR images obtained from data before and after 40 minutes of 

scanning in one of the control subjects where no intervention was given, hence DVRpre 

and DVRpost images should be identical.  The OLS, TLS and GLLS methods showed a 

decrease in global DVR though no receptor blocking was present. The LEGA and MA1 

methods yielded noisy DVR images, especially for the ‗late‘ measure, and hence should 

not be used to create parametric images in intervention studies.  PCA1 images showed 

little to no change between ‗pre‘ and ‗post‘ images and did not exhibit any bad fits.  

PCA2 and PCA3 images exhibited higher variance, but showed little to no change 

between early and late DVR images. 

To quantify these effects, scatter plots of pre and post binding potential estimates 

for voxels with receptor binding (DVR>1) were made for all subjects and the mean 

values of correlation coefficient, slope and intercept reported in Table 4.1 (n = 4 for both 

groups). Since errors exist in both abscissa and ordinate, the regression slopes and 

intercepts were estimated using total least squares optimization. For the control cases, the 

ideal estimator will have correlation coefficient = 1 and slope = 1 with intercept at the 

origin indicating no variance and no change in occupancy. PCA1 behaves closest to the 

ideal estimator for the control case. The other methods show lower correlations and 

slopes less than 1 indicating higher variance and an apparent change in occupancy due to 

higher bias in ‗late‘ than in ‗early‘ DVR estimates.   

Figure 4.4 shows DVR images before and after intervention in one of the subjects 

who received naloxone.  Noise properties of DVR images are similar to those in the no 

intervention case.  OLS, TLS and GLLS show the expected decrease but are noisier.  

Similar to the results in the control study, LEGA and MA1 images are much noisier and 
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would have limited utility for intervention studies.  PCA1 images show the lowest 

variance and exhibit the expected decrease in DVR values.  PCA2 and PCA3 again have 

higher variance, but show the expected effects of naloxone on DVR estimates.  The 

results for scatter plots in the naloxone intervention cases are summarized in Table 4.1 

(right columns). The PCA-based methods have higher correlations than the other methods 

and the mean slope for PCA1 = 0.54 corresponds well with the expected ~50% 

occupancy of receptor sites at the chosen naloxone dose. 

 

  

Figure 4.3: DVR images from a representative control subject estimated from data before and after 40 

minutes with no intervention.  OLS, TLS and GLLS show a decrease in global DVR values despite there 

being no intervention. LEGA and MA1 give very noisy results.  PCA1 yields images with high precision 

for both ‗pre‘ and ‗post‘ estimation periods with no noticeable difference in binding magnitudes between 

the two estimations.   

 

  

Figure 4.4: DVR images from a representative subject from scan data before and after injecting naloxone 

(40 minutes after the beginning of radiotracer administration).  OLS, TLS and GLLS show the expected 

decrease in global DVR values but lack precision in voxel-wise estimates.  As in the control study, LEGA 

and MA1 yield images that are very noisy.  PCA1 produces high precision images for both early and late 

data and showed the expected decreases in binding values due to naloxone. 

 

The performance of each method varied little from subject to subject as seen by 

the small across subject standard deviation values for the mean statistics as reported in 
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Table 4.1.  The performance of all methods depends primarily on the noise level in the 

TACs (higher bias and variance with higher noise).  Since all the subjects were imaged 

with the same PET scanner; the noise level in all scans was similar and hence, so was the 

performance of each method from subject to subject. 

 

 

4.3  Discussion and Conclusion 

 

Dual-measurement intervention studies discussed in this chapter make it possible 

to measure both baseline and post-intervention binding site densities in a subject from a 

single PET acquisition, and without the need for arterial sampling. The negative bias in 

Table 4.1: Mean correlation coefficient and mean slope and mean intercept of the scatter 

plots of the early and late BPND estimates in control subjects (n=4) with no intervention and 

in subjects with naloxone intervention (n=4). 

 

 No Intervention (Control) With Naloxone Intervention 

 

 Correlation 

Coefficient 

 

Slope  Intercept Correlation 

Coefficient 

Slope  Intercept 

OLS 0.83 

(0.02) 

 

0.82 

(0.06) 

 

-0.01 

(0.02) 

 

0.75 

(0.04) 

 

0.44 

(0.03) 

 

0.05 

(0.03) 

 

TLS 0.80 

(0.02) 

 

0.81 

(0.08) 

 

-0.01 

(0.03) 

 

0.73 

(0.04) 

 

0.41 

(0.03) 

 

0.06 

(0.03) 

 

GLLS 0.84 

(0.01) 

 

0.99 

(0.08) 

 

-0.12 

(0.03) 

 

0.84 

(0.03) 

 

0.66 

(0.02) 

 

-0.08 

(0.01) 

 

LEGA 0.57 

(0.07) 

 

1.41 

(0.25) 

 

-0.33 

(0.17) 

 

0.44 

(0.05) 

 

1.01 

(0.54) 

 

-0.38 

(0.43) 

 

MA1 0.28 

(0.04) 

 

2.18 

(0.74) 

 

-0.96 

(0.59) 

 

0.13 

(0.05) 

 

0.30 

(0.24) 

 

0.22 

(0.25) 

 

PCA1 0.99 

(0.00) 

 

0.96 

(0.04) 

 

-0.02 

(0.01) 

 

0.93 

(0.03) 

 

0.54 

(0.04) 

 

-0.15 

(0.04) 

 

PCA2 0.91 

(0.06) 

 

0.96 

(0.04) 

 

-0.04 

(0.02) 

 

0.84 

(0.09) 

 

0.51 

(0.03) 

 

0.08 

(0.01) 

 

PCA3 0.89 

(0.04) 

 

0.93 

(0.06) 

 

-0.03 

(0.02) 

 

0.80 

(0.09) 

 

0.43 

(0.04) 

 

-0.00 

(0.04) 

 

The values in the brackets are standard deviations for the reported statistics. A total least 

squares optimization was used to calculate the regression slope and intercept since errors 

exist in both abscissa and ordinate measures. 
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the DVR estimates using Logan plots due to the noise in the PET TACs is seen to a 

greater extent in dual-measurement studies.  While several methods for reducing this bias 

have been proposed, these methods (as with single measurement studies) either remove 

only a portion of the bias, or reduce bias at the expense of precision. PCA-based linear 

models reduce bias without increasing variance also similar to the single-tracer case 

shown in Chapter 3. 

Results presented in Table 4.1 and in figures 4.3 and 4.4 clearly demonstrate the 

utility of the PCA for intervention studies as PCA is the only approach that produced 

voxel-by-voxel parametric images with acceptable noise levels and with little observable 

bias.   Figure 4.3 shows that for the no ‗intervention‘ case, only PCA1 yielded ‗early‘ and 

‗late‘ DVR values that were of the same magnitude and of the same statistical quality. A 

similar advantage of PCA1 over the other methods for the ‗intervention‘ case is seen in 

Fig. 4.4, with the expected naloxone-induced decrease in DVR.  Scatter plots of pre- vs. 

post-intervention binding potential estimates show that PCA-based methods yield the 

highest correlation and have closer to the expected slopes compared to the other methods 

(Table 4.1). These results show both the sensitivity and specificity of the PCA-based 

approach.  PCA1 produced unchanged ‗early‘ and ‗late‘ measures when no intervention 

was given, and also demonstrated the ability to detect intervention induced changes when 

present. PCA1, however, might not have the necessary degrees of freedom to model very 

large displacements. PCA2 or PCA3 will capture these larger displacements, but at the 

expense of higher variance.  

Thus, advantages of the PCA approach were seen not only for standard single 

measurement PET studies in Chapter 3, but were especially impressive when applied to 

dual measurement intervention studies where pre- and post-challenge DVR estimates are 

required.  
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Chapter 5                                                                                       

Dual-Tracer Studies: Theory and Simulations 

 

 

Another multiple neurpharmacological measurement protocol undertaken in this 

work is the dual-tracer study protocol where, two tracers are injected in the same scan 

separated closely in time. This and the next chapter discuss development of improved 

methods for noninvasive parameter estimation in dual-tracer studies and their application 

in simulation studies and human scans acquired without arterial sampling. 

A single neurochemical marker is often insufficient to fully characterize a 

neurological disease and information on multiple neuropharmacological systems is of 

interest.  By studying two different aspects of a subject‘s neuropharmacology with a dual-

tracer PET scan, we may be able to have a better understanding of a disease. However, 

since PET is based on measuring the 511 KeV photons emitted by positron annihilations, 

there is no direct way to separate the signals from the two tracers using differing energy 

windows.  The radiotracer signals must be separated based on characteristics such as half-

life, tracer kinetics, or the measurements of the first tracer (Tracer I) prior to the injection 

of the second tracer (Tracer II).  Very early work on dual-tracer PET studies in phantoms 

by Huang et al. (1982) described a technique for separating tracers with different half 

lives. Koeppe et al. (2001) reported the first results of dynamic dual-tracer studies in 

humans using 
11

C-labeled tracers. In that work, a parallel-model, simultaneous-fitting 

approach was applied to estimate the parameters of both tracers using metabolite-

corrected arterial plasma input functions.  It was shown that under many conditions the 

statistical quality of the parameter estimates were nearly as good for dual-tracer as for 

single-tracer scans. Kadrmas and Rust (2005) examined the degree of overlap of 

information in dual-tracer TACs in a simulation study using principal component analysis 

(PCA). They applied a parallel fitting approach similar to that in (Koeppe et al. 2001) 
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using both arterial input function models and PCA-based models. These rapid dual-tracer 

methods were explored in simulation studies for measuring hypoxia and blood flow (Rust 

and Kadrmas 2006) and for tumor characterization using 
62

Cu-PTSM and 
62

Cu-ATSM in 

dogs with spontaneously-occurring tumors (Black et al. 2008).  This existing body of 

work on dynamic dual-tracer PET described above requires arterial blood sampling and 

thus has various practical difficulties as mentioned earlier, such as requiring metabolite 

corrections of the arterial blood samples and being more invasive for the subject. 

The possibility of analysis of dual-tracer studies without arterial sampling was 

first explored by Koeppe et al. 2004.  In this work, we have extended these original 

efforts, reporting two methods to separate the individual tracer signals and estimate 

parameters of interest using reference region approaches. The pharmacological indices of 

interest estimated by applying the two methods to simulated dual-tracer TACs were DVR 

for reversible tracers, and k3 (the trapping constant), for irreversible tracers. 

 

5.1  Theory of analysis techniques for non-invasive dual-tracer studies  

 

The proposed reference tissue-based dual-tracer approach is applicable to cases 

where the first tracer injected has a tissue or a region with negligible receptor binding or 

trapping. We first describe the methods for the case where both injected radiotracers bind 

reversibly and then extend it to the case where the first tracer has reversible binding and 

the second tracer has irreversible trapping.  

Figure 5.1 shows the compartmental model for a dual-tracer study of two 

reversible radiotracers consisting of two tissue compartments for each tracer (Tracer I and 

II).  Each tracer has a unique reference tissue that has a negligible density of specific 

binding sites and is assumed to have the same equilibrium distribution volume as the non-

displaceable compartment of all other regions. In the case of a reversible single-tracer 

two-tissue compartment model, the target region concentration time courses or time-

activity curves (TACs) can be expressed in terms of the model rate constants and 

reference region concentration time course using the full reference tissue input model 

(RTM) (Equation 2.6). 
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The equations (2.6 – 2.9) are for the single tracer case. In a dual-tracer study, two 

tracers are injected; Tracer II injected at time t = 'T  after Tracer I. The dual-tracer TAC 

(
iy ) can be represented as: 

I II

i i i iy y y    ,                 - 5.1   

where I

iy  and II

iy  are the constituent individual tracer signals and 
i  is the noise vector.  

The present work investigated two methods to estimate the individual tracer 

curves ( I

iy and II

iy ) and their parameter vectors ( I

i and I

i ) from the dual-tracer signal
iy : 

an extrapolation method (EM) and a simultaneous fitting method (SM).  

  

Figure 5.1: Two tissue compartmental model for a non-invasive dual-tracer study of two reversible 

radiotracers (tracers I and II).  Each tracer has a unique reference tissue that has a negligible density of 

specific binding sites and is assumed to have the same equilibrium distribution volume as the non-

displaceable compartment of all other tissues. 

 

The primary assumption in both approaches is that the injection protocol for 

Tracer I brings its reference region ( I

ry ) to steady-state prior to the injection of Tracer II. 

Simply put, the fate of the reference region for Tracer I is assumed to be known (and 

constant) from the injection time of Tracer II through the end of the scan despite 
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―contamination‖ by the second tracer (Koeppe et al. 2004).  The more rapidly reversible 

Tracer I is, the more likely for this key assumption to hold true. 

 

5.1.1 Extrapolation Method (EM) 

 

The extrapolation method is based on the original approach reported in Koeppe et 

al. (2004), where the simplified reference tissue model (sRTM, section 2.4.2) was used to 

extrapolate the first tracer. It was seen that the simplifying assumption for sRTM (rapid 

equilibration of free and bound components; k3>>0 and k4>>0) resulted in biases in the 

extrapolated tissue curves. Hence, in this work we have used the full reference tissue 

model (RTM, section 2.4.1) which is a more appropriate model for the tracers used here. 

Data exclusive to Tracer I is known for t < 'T ; the injection time of Tracer II. Using this 

early data, Tracer I parameter vector for each voxel i ( I

i ) could be estimated by 

minimizing the cost function shown below using a nonlinear estimation algorithm 

(similar to equation 2.9). 

2

2

ˆ
arg min { ( , )}i

I
i

I I I I

i r iW y f y


               - 5.2 

However, this minimization requires nonlinear estimation of four parameters from just 20 

min of data which gave noisy estimates. To counter this problem, the parameter-of-

interest (DVR) for Tracer I, was first estimated by the PCA-based Logan analysis (Joshi 

et al. 2008a) from the early data (0< t < 'T ). Additionally, the k4 parameter for Tracer I 

was fixed to the population average to improve the precision of the estimates. Using the 

fixed k4 and Logan-based BPND estimate (BPND=DVR-1), k3 can be calculated (k3 

=k4BPND). The remaining two unknown elements of the parameter vector I

i  (
1 2,R k ) 

were estimated using nonlinear least squares from Equation 5.2. Using this parameter 

vector and the reference region TAC for Tracer I, Tracer I TACs were extrapolated to the 

end of scan using the full reference tissue model (
ˆˆ ( , )I I I

i r iy f y  ).  The Tracer II 

component was isolated by subtracting the extrapolated Tracer I signal from the dual-

tracer TAC for all regions or voxels i ( ˆ ˆII I

i i iy y y  ).  The isolated Tracer II curves ( ˆ II

iy ) 
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also include the reference region curve for Tracer II ( ˆ II

ry ) and hence, all the information 

to estimate the parameter vector (
ˆ II

i ) for Tracer II using reference region approaches has 

been obtained. The parameter-of-interest for Tracer II (DVR), was estimated by PCA-

based Logan analysis. 

5.1.2 Simultaneous Fitting Method (SM)  

A potential drawback of the two-step extrapolation method approach described 

above is that errors in parameter estimation of Tracer I from limited early data propagate 

into parameter estimates of Tracer II. There may be cases where error in Tracer I 

estimates could propagate in such a way as to give physiologically improbable parameter 

values for Tracer II. Thus, as an alternative to the two-step extrapolation method, we also 

explored a one step approach where the parameters of both tracers were estimated at the 

same time by fitting the dual tracer TACs simultaneously to the reference tissue models 

of both tracers. 

This simultaneous fitting method (SM) attempts to estimate the model parameters 

for both tracers using one minimization operation. We first applied the extrapolation 

method to the dual-tracer curve of Tracer II reference region alone, to isolate Tracer II 

reference region curve ( ˆ II

ry ). The tracer I reference region TAC ( I

ry ) is known by virtue 

of the primary assumption. Using the reference region curves for both tracers, the voxel-

wise parameter vectors for both the tracers can be estimated simultaneously by 

minimizing the following cost function: 

 
2

2
( , )

ˆ ˆ ˆ( , ) arg min { ( , ) ( , )}
I II
i i

I II I I II II

i i i r i r iW y f y f y
 

      .        - 5.3 

The primary parameter-of-interest (DVR) for both tracers can now be calculated directly 

from the estimated parameter vectors 
ˆ I

i and
ˆ II

i . 

However, direct simultaneous estimation of eight model parameters from 

Equation 5.3 (four for each tracer) was plagued by noise in the dual-tracer TACs, as well 

as by non-convergence associated with nonlinear algorithms, leading to low precision in 

the binding estimates. To improve the precision, the number of parameters was reduced 
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to six by fixing the k4 parameter for both tracers to the population average. Furthermore, 

instead of calculating DVR directly from the estimated model parameters, the individual 

TACs for both tracers were separated by substituting the estimated parameters vectors 

ˆ ˆ
( , )I II

i i   and reference region curves ( I

ry , ˆ II

ry ) into the model equation 

(
ˆˆ ( , )I I I

i r iy f y  ,
ˆˆ ˆ( , )II II II

i r iy f y  ) and DVR was estimated by applying the robust 

reference-region based Logan analysis to these separated signals.  

 

5.1.3 Using an irreversible tracer as Tracer II 

The methods described above were for the case where both the tracers injected 

bind reversibly, though they can easily be extended to the case where Tracer II has 

irreversible kinetics.  However in the case of an irreversible tracer, the reference region-

based model equations for the TACs will be different from that for a reversible tracer 

(Equation 2.6).  

The differential equations for an irreversible two-tissue compartment model are 

given below ( 04 IIk  in Figure 5.1): 

ND
1 2 3 ND

( )
( ) ( ) ( ),p

dC t
K C t k k C t

dt
               - 5.4 

S

3 ND

( )
( ),

dC t
k C t

dt
               - 5.5 

where Cp(t) is the arterial plasma input, CND(t) is the radioligand concentration in the non-

displaceable compartment, CS(t) is the radioligand concentration in the specific 

compartment, and K1, k2, and k3 are the kinetic parameters of the model with k3, the 

trapping constant, being the parameter of interest to be estimated from the dynamic data. 

In case of the arterial sampling approach, the solution for total tracer concentration in 

tissue (yi(t) = CND(t) + CS(t)) is given below (Herholz et al. 2001):  

2 3( )( ) 1 31 2

2 3 2 30 0

( ) ( ) ( ) ,

t t

k k t

i p p

K kK k
y t C e d C d

k k k k

     
 

           - 5.6 
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where ( )pC   denotes the arterial input function. For the case of an irreversible tracer 

like [
11

C]PMP, a different type of reference region approach is needed compared to that 

used for reversible tracers. The irreversible tracer TAC from a region with an extremely 

high k3 value (e.g. striatum for [
11

C]PMP) is assumed to equal the time integral of the 

arterial input function multiplied by the transport rate constant of the reference region, 

1

refK (Herholz et al. 2001; Nagatsuka et al. 2001; Nagatsuka Si et al. 2001):  

1

0

( ) ( ) .

t

ref

r py t K C d                - 5.7 

Equation 5.7 was rearranged to get an expression for the arterial input function in terms 

of the reference region curve as shown below: 

1

( )1
( ) .r

p ref

dy t
C t

dtK


                                        - 5.8 

The differentiation operation in equation 5.8 was performed by interpolating the 

reference region curve on a fine grid followed by numerical differentiation. Substituting 

the expression for ( )pC t obtained from equation 5.8 in equation 5.6 yielded: 

2 3( )( ) 31 2 1

2 3 2 31 10

( )
( ) ( ) ( ) ( ),

t

k k tr

i rref ref

kK k dy K
y t e d y t

k k d k kK K






  
 

                       - 5.9 

which expresses the target tissue curve in terms of the reference tissue curve and the rate 

parameters for irreversible tracers and is equivalent to equation 2.6 for reversible tracers.  

Using the notation derived for reversible tracers, the TAC for an irreversible 

tracer can be expressed as ( , )i r i iy f y    , where 
iy  is the tissue TAC, 

ry is the 

reference region curve, 1 2 3[ , , ]i iR k k   is the parameter vector for irreversible tracers and 

the function f is reference tissue model of equation 5.9.  

After signal separation, the parameter of interest for the irreversible tracer (k3) 

was estimated by the reference-region based linear least squares method (RLS) 

(Nagatsuka et al. 2001). The operational equation of RLS is shown below. 
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1 2 3

0 0

( ) ( ) ( ) ( )

T T

i r r iy T y T y d y d          ,                        - 5.10    

where 1 2,  and 3 are the coefficients of the linear model above and k3 = 12 /  .  

 Next, we will apply the noninvasive dual-tracer analysis methods described above 

to dual-tracer simulation studies. 

5.2  Simulation Design 

 

Model parameters for the simulation studies were selected to mimic PET 

radiotracers already well characterized at our institution: [
11

C]flumazenil ([
11

C]FMZ), a 

benzodiazepine receptor antagonist (Holthoff et al. 1991; Koeppe et al. 1991), 

[
11

C]dihydrotetrabenazine ([
11

C]DTBZ), a ligand for the VMAT2 binding site (Koeppe et 

al. 1999a; Koeppe et al. 1996) and [
11

C]N-methylpiperidinyl propionate ([
11

C]PMP), a 

substrate for acetylcholene esterase (Koeppe et al. 1999b). Two types of simulation 

experiments were undertaken; i) dual-tracer scans mimicking [
11

C]FMZ and [
11

C]DTBZ-

like tracers where both the tracers injected were reversible and ii) dual-tracer scans 

mimicking [
11

C]FMZ and [
11

C]PMP-like tracers where the second tracer injected was 

irreversible.  

5.2.1 [
11

C]FMZ - [
11

C]DTBZ dual-tracer simulations 

 

In this study an 80 min scan was simulated where a [
11

C]FMZ-like radiotracer 

(Tracer I) was injected 20 minutes prior to a [
11

C]DTBZ-like radiotracer (Tracer II). Six 

hypothetical regions were simulated with kinetic parameters shown in Table 5.1. Region 

6 with pons-like kinetics and Region 3 with occipital cortex-like kinetics act as reference 

regions for Tracer I and Tracer II respectively (DVR = 1; regions underlined in Table 

5.1). 

Using the full reference tissue model (equation 2.6) and [
11

C]FMZ and 

[
11

C]DTBZ reference tissue curves from single-tracer human scans; 80 min noise-free 

single-tracer curves were simulated on a 0.1 min interval for the six regions in Table 5.1. 

These curves were then binned into 26 frames (4 x 0.5 min, 3 x 1 min, 2 x 2.5 min, 2 x 5 
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min, 4 x 0.5 min, 3 x 1 min, 2 x 2.5 min, 2 x 5 min, 4 x 10 min) as shown in Figure 5.2 to 

match dual-tracer acquisitions performed in human studies. All the curves in Figure 5.2 

are displayed with decay correction to the start of the experiment.  Thus Tracer II, which 

is injected with a 20 min delay (one 
11

C half life) after the start of the experiment, has 

TACs with twice the apparent magnitude relative to the case where Tracer II was injected 

without delay. As required by the main assumption of the methods, it can be seen that the 

reference tissue for Tracer I (DVR1 = 1, Region 6) reaches steady-state prior to injection 

of the second tracer. 

 

The time-activity curves for Tracers I and II shown in Figure 5.2 were summed 

for each of the six regions to obtain noiseless dual-tracer curves. Voxel-level noise was 

then added to the dual-tracer curves to obtain 1024 noisy realizations. Noisy realizations 

of single-tracer curves for Tracer I and II were also simulated to provide a ―gold 

standard‖ for comparison with results obtained from the proposed dual-tracer estimation 

methods.  

For both extrapolation and simultaneous fitting methods, nonlinear parameter 

estimation was achieved using MATLAB‘s ‗fmincon‘ function (Maximum iterations = 

Table 5.1: Kinetic parameters used for simulation of 6 hypothetical regions in a dual-tracer study with [11C]FMZ-

like and [11C]DTBZ-like reversible tracers.  

 Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

Tracer 

DVR 

I 

6.0 

II 

 2.0 

I 

 6.0 

II 

 4.0 

I 

 6.0 

II 

  1.0 

I 

 2.5 

II 

 2.0  

I 

 1.5 

II 

 4.0 

I 

1.0 

II 

 1.5 

1

1

ref

K

K
 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

k2 0.30 0.133 0.30 0.133 0.30 0.133 0.30 0.133 0.30 0.133 0.30 0.133 

k3 0.75 0.10 0.75 0.30 0.75 0.0 0.30 0.10 0.225 0.30 0.0 0.05 

k4 0.15 0.10 0.15 0.10 0.15 0.0 0.15 0.10 0.15 0.10 0.0 0.10 

Regions 6 and 3 are the reference regions for Tracer I and Tracer II respectively. Parameters-of-interest are shown 

in bold and reference regions are underlined. 
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100, Function Tolerance = 10
-7

, Maximum Function evaluations = 1000). The 

physiologically relevant box constraints used for the nonlinear estimation are: 1

1

ref

K

K
  [0 

3], k2  [0 1] and k3  [0 2]. The k4 parameter was fixed for each tracer to the population 

average (true value in this case) to make the fit robust by reducing the number of model 

parameters to be estimated (k4=0.15 for [
11

C]FMZ-like tracer and k4=0.10 for 

[
11

C]DTBZ-like tracer). 

 

  

Figure 5.2: Noiseless TACs for the six simulated regions for the case where two reversible tracers 

mimicking [11C]FMZ (Tracer I) and [11C]DTBZ (Tracer II) are injected 20 minutes apart. The curves 

shown here have been corrected for radioactive decay from the start of the experiment. Regions 6 and 3 are 

the reference regions for tracers I and II respectively. 

 

5.2.2 Simulations of assumption failures 

 

The primary requirement for the success of the non-invasive dual-tracer approach 

is that the Tracer I reference region TAC must reach equilibrium before Tracer II is 
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injected. Single-tracer human scans showed that it is possible to attain such equilibrium 

by appropriate administration protocol (Joshi et al. 2008c).  Still, it is important to see 

how the results will be altered if this assumption is not satisfied. Additional simulations 

were performed where the reference region TAC of Tracer I did not reach steady state by 

20 min, but linearly increased or decreased by 20% between 20 min and the end of the 

scan. The signal separation and parameter estimation was performed assuming that the 

reference region had in fact reached steady-state and the magnitude of the induced error 

was calculated.  

Another simplification in the methods was fixing the value of k4 to its population 

average value during the nonlinear estimation procedure. To check the effect of an 

incorrect k4 value on signal separation and parameter estimates, fitting was also 

performed by fixing k4 to values 20% different than the true k4 value. 

 

5.2.3  [
11

C]FMZ - [
11

C]PMP dual-tracer simulations: 

 

 

For [
11

C]FMZ – [
11

C]PMP dual-tracer simulations, six hypothetical regions were 

simulated having kinetic parameters shown in Table 5.2. 

Table 5.2: Kinetic parameters used for simulation of 6 hypothetical regions in a dual-tracer study with [11C]FMZ-

like (reversible) and [11C]PMP-like (irreversible) tracers.  

 Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

Tracer 

DVR 

I 

6.0 

II 

 - 

I 

 3.0 

II 

- 

I 

 6.0 

II 

- 

I 

 1.0 

II 

-  

I 

 2.5 

II 

- 

I 

 3.0 

II 

- 

1R  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

k2 0.30 0.15 0.30 0.15 0.30 0.15 0.30 0.15 0.30 0.15 0.30 0.15 

k3 0.75 0.03 0.30 0.06 0.75 0.10 0.00 0.15 0.225 0.25 0.30 2.0 

k4 0.15 0.0 0.15 0.0 0.15 0.0 0.15 0.0 0.15 0.0 0.15 0.0 

Regions 4 and 6 are the reference regions for Tracer I and Tracer II respectively. Parameters-of-interest are shown in 

bold and reference regions are underlined. 



 60 

Noiseless curves for [
11

C]FMZ-like tracer were obtained as described for the 

[
11

C]FMZ - [
11

C]DTBZ simulations.  For the [
11

C]PMP-like tracer, noiseless curves were 

simulated using a true arterial input function from a [
11

C]PMP human single-tracer scan, 

the parameters listed in Table 5.2, and equation 5.6. The noiseless TACs for the six 

simulated regions for each tracer are shown in Figure 5.3.  

The procedure to obtain the noisy dual-tracer curves and to separate the dual-

tracer signals was identical to that for the [
11

C]FMZ - [
11

C]DTBZ simulations described 

earlier. The physiologically relevant box constraints for Tracer I ([
11

C]FMZ-like tracer) 

are same as those described earlier. The constraints for Tracer II ([
11

C]PMP-like tracer) 

are: 1R  [0 3], k2  [0 1] and k3  [0 3] (k4 = 0  for irreversible [
11

C]PMP-like tracer). 

Along with dual-tracer simulations, single-tracer simulations were also performed to 

provide a ―gold-standard‖ for comparison of dual-tracer results. 

 

Figure 5.3: Noiseless TACs for the six simulated regions for the case where tracers mimicking reversible 

tracer [11C]FMZ (Tracer I) and irreversible tracer [11C]PMP (Tracer II) are injected 20 minutes apart. The 

curves shown here have been corrected for radioactive decay from the start of the experiment. Regions 4 

and 6 are the reference regions for tracers I and II respectively. 
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5.3  Results 

5.3.1 [
11

C]FMZ - [
11

C]DTBZ dual-tracer simulations 

 

The top portion of Table 5.3 summarizes the results for [
11

C]FMZ - [
11

C]DTBZ 

simulations where the mean and standard deviation of estimated DVR values for tracers I 

and II are reported as percent of true value.  The value of 100 (0) denotes no bias and no 

variance. Row 1 shows the average bias (difference from 100) and standard deviation of 

Logan-based DVR estimates obtained using ordinary least squares (OLS) for single-

tracer simulations (Logan et al 1996) which is biased as seen in Chapter 3. To reduce this 

bias, PCA-based smoothing approach was used (Joshi et al. 2008a).  

 

The bias present in the OLS Logan analysis (Row 1) was almost completely 

removed by PCA-based Logan analysis along with an improvement in precision (Row 2). 

This PCA-based Logan analysis of single-tracer simulations can be used as ‗gold 

Table 5.3: Bias and standard deviation in DVR estimates and mean % error in separated TACs for [11C]FMZ-[11C]DTBZ dual-tracer 

simulations. 

  Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

 Tracer 

DVR 

I 

6.0 

II 

 2.0 

I 

 6.0 

II 

 4.0 

I 

 6.0 

II 

 1.0 

I 

 2.5 

II 

 2.0  

I 

 1.5 

II 

 4.0 

I 

 1.0 

II 

 1.5 

 

 

Bias and 

SD in DVR 

estimates 

OLS  

(single-tracer) 

88 

(10) 

97 

(5) 

88 

(10) 

95 

 (7) 

88 

(10) 

99 

(5) 

94 

(9) 

97 

(5) 

96 

(10) 

96 

(7) 

99 

(9) 

98 

(5) 

PCA  

(single-tracer) 

100 

(5) 

102 

(5) 

98 

(6) 

100 

(5) 

99 

(5) 

100 

(5) 

100 

(8) 

97 

(5) 

101 

(9) 

101 

(5) 

103 

(9) 

101 

(5) 

EM 

 

68 

(23) 

113 

(13) 

68 

(21) 

107 

(9) 

67 

(22) 

126 

(20) 

81 

(17) 

102 

(6) 

85 

(15) 

98 

(6) 

99 

(10) 

98 

(6) 

SM 

 

 

98 

(27) 

91 

(11) 

102 

(28) 

88 

(10) 

85 

(25) 

100 

(21) 

107 

(28) 

88 

(7) 

106 

(26) 

86 

(6) 

100 

(15) 

91 

(5) 

Mean % 

error in 

TACs 

 

EM -29 16 -29 9 -30 40 -17 5 -13 2 1 0 

SM -1 1 4 -1 -8 11 12 -3 14 -2 9 0 

Bias and standard deviation in DVR estimates: a value of 100 denotes no bias.  Regions 6 and 3 are the reference regions for Tracer I 

and Tracer II respectively (DVR=1; underlined).  

 

Mean % error in TACs: A positive (negative) value indicates a positive (negative) systematic bias in the last 8 frames of the TACs. 
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standard‘ for comparing the results from dual-tracer studies. Rows 3 and 4 show the 

statistics for DVR estimation using Logan analysis for the dual-tracer simulations using 

the extrapolation (EM) and simultaneous fitting (SM) methods. Though PCA-based 

smoothing was required for EM, it was not required for SM, since the smoothing was 

achieved by fitting the dual-tracer curves to the reference tissue models. There was high 

negative bias in DVR values estimated for Tracer I using EM, since 20 minutes of data 

was insufficient to accurately estimate DVR. This negative bias in Tracer I then 

propagated as a positive bias in Tracer II DVR estimates. In case of SM, direct parameter 

estimation and DVR calculation (without using Logan analysis) gave estimates that had 

lower bias than EM but prohibitively high variance (results not shown). However, 

estimation of six parameters from 80 min of noisy data would be expected to give noisy 

estimates. The variance in DVR estimates from SM was reduced by first separating the 

signals using the estimated parameters and then estimating DVR using standard Logan 

plot analysis. The results from this approach are shown in Table 5.3 (row 4). The SM 

approach gave DVR estimates with reduced bias but without an appreciable decrease in 

precision compared to EM. 

The accuracy of the estimated DVR values depends strongly on the accuracy of 

the estimated target and reference region TACs (
I

iŷ and I

ry for Tracer I; 
II

iŷ and ˆ II

ry for 

Tracer II). From the operational Logan plot equation, we know that systematic positive 

(negative) bias in a target region TACs would cause a positive (negative) bias in DVR. 

Similarly, systematic positive (negative) bias in the reference region TAC would cause a 

negative (positive) bias in DVR. Thus, in order to assess the cause of bias in DVR 

estimates seen in Table 5.3, the systematic error in the separated individual tracer curves 

must be analyzed.  

The TACs separated from the noisy dual-tracer simulations were compared to the 

‗true‘ noise-free signals shown in Figure 5.2 as follows. The error at the j
th

 frame for the 

i‘th realization of Tracer I, for example, was calculated as: 

, ˆ( ) ( ) ( )I I true I

j i i j i jerror T y T y T   (1 ≤ j ≤ p, where p = 26 is the number of frames in the 

simulated PET study).  These error values for each frame were normalized by the true 
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TAC value for that frame and averaged over the number of realizations (N = 1024) to 

obtain mean percent error for each frame j:  

,
1

( )1
% ( 100).

( )

N
i j

j I true
i i j

error T
mean error

N y T

                       - 5.11 

The average of the mean percent errors for the last 8 eight frames (19 ≤ j ≤ 26) 

was used as an index of systematic bias in the individual TACs for Tracers I and II.  

The values of this statistic have been shown in the last two rows of Table 5.3. For 

noisy single-tracer TACs, this statistic was ~0% in all regions, since the noise in single-

tracer TACs canceled out when averaged over the 1024 realizations (not shown in Table 

5.3). The single-tracer TACs extracted from noisy dual-tracer TACs showed some 

systematic bias for most regions. A positive (negative) systematic bias in Tracer I TACs 

was seen to correspond to a negative (positive) bias in Tracer II TACs. This was expected 

since errors in Tracer I and Tracer II TACs need to be in opposite directions for the sum 

of the individual TACs to fit the dual-tracer curve. Overall, SM separated the signals 

more accurately than EM.  

For all regions except Region 3, most of the contribution to the dual-tracer signal 

was from Tracer II (see Figure 5.2). Hence for these regions, a large mean percent error 

in Tracer I estimation translated into a comparatively small error in Tracer II.  In Region 

3, however, since both tracers have substantial contribution to the dual-tracer signal, 

mean percent error is of similar magnitude for Tracer I and Tracer II (-30% and 40% for 

EM; -8% and 11% for SM).  

For EM, the negatively biased DVR values for Tracer I estimated from limited 20 

min of data  (Table 5.3, row 3, Tracer I) caused a large negative systematic bias in Tracer 

I TACs (Table 5.3, row 5, Tracer I). This negative bias in the Tracer I TACs ( ˆ I

iy ) 

propagated as a positive systematic bias in Tracer II TACs ( ˆ ˆII I

i i iy y y  ) as seen in 

Table 5.3, row 5, Tracer II. This in turn caused positive bias in DVR estimation for 

Tracer II for most of the target regions (Table 5.3, row 3, Tracer II).  In the simultaneous 

fitting approach, on the other hand, although the errors in TACs and biases in DVR 

estimates are still negatively correlated as seen by the opposite signs for the two tracers, 
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there is no causal relationship between them since parameters for both the tracers were 

estimated simultaneously.  

For SM, since reference regions are recalculated after the simultaneous fitting 

step, there was no bias in their DVR estimates in spite of the systematic bias in their 

TACs (Table 5.3, row 4, reference regions underlined). The negative bias in DVR 

estimation for Tracer II using SM can be attributed primarily to the positive systematic 

bias is Tracer II reference region (Table 5.3, SM, Region 3; Mean % error = 11%). 

 

5.3.2 Effects of failure of assumptions  

 

For simulations where the Tracer I reference region did not reach equilibrium by 

20 minutes, but rose or fell by 20% between the injection of Tracer II and the end of the 

study, we found that the results changed by less than 5% compared to those in Table 5.3. 

This indicates that noise-induced bias is more significant than bias caused by inability to 

bring the reference region to equilibrium early in the study.  The precision of the DVR 

estimates remained unchanged and was found to be independent of the validity of the 

steady-state assumption.   

Fixing k4 to incorrect values of up to 20%, however, caused a maximum 

difference of 10% in the estimated DVR values compared to those estimated by fixing the 

k4 parameters to their true values. Not fixing k4, on the other hand caused prohibitively 

high variability in the curve fits for tracer separation as well as in the DVR estimates 

(results not shown).  Thus, fixing the k4 values to the population average was a 

compromise between bias and precision in the DVR estimates. Again, the precision of the 

DVR estimates was found to be independent of the actual value that k4 was fixed to. 

 

5.3.3 [
11

C]FMZ - [
11

C]PMP dual-tracer simulations: 

 

The parameters of interest for the simulated [
11

C]FMZ-[
11

C]PMP dual-tracer 

TACs were DVR for Tracer I estimated using Logan analysis and k3 for Tracer II 

estimated using the reference-region based linear least squares (RLS). The top portion of 

Table 5.4 reports the statistics of the estimated parameters in terms of percent of true 
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value.  DVR estimation for single-tracer simulations of Tracer I was performed using 

PCA-based Logan analysis, which yields unbiased binding estimates (row 1).  For the 

single tracer simulations of Tracer II, RLS method caused a bias of greater than 20% for 

true k3 > 0.1 min
-1

 even for the single–tracer case (row 1). This is because for high k3 

values, the two integral terms on the right hand side of equation 5.10 approach linear 

dependence ( ( ) ( )i ry y  ). This makes the linear problem in equation 5.10 ill-

conditioned leading to negative bias in k3 estimates.  However, it must be noted that 

[
11

C]PMP target regions (e.g. cortex, thalamus) seldom have k3 values greater than 0.1 

min
-1

 and hence the bias seen here is not a major impediment to the applicability of RLS 

method.  

 

Table 5.4: Bias and standard deviation in parameter estimates and mean % error in separated TACs for [11C]FMZ-[11C]PMP dual-

tracer simulations 

  Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

 Tracer 

DVR 

k3 

I 

6.0 

- 

II 

 - 

0.03 

I 

 3.0 

- 

II 

- 

0.06 

I 

 6.0 

- 

II 

- 

0.1 

I 

 1.0 

- 

II 

-  

0.15 

I 

 2.5 

- 

II 

- 

0.25 

I 

 3.0 

- 

II 

- 

2.00 

 

Bias and SD 

in parameter 

estimates 

Single-

tracer 

100 

(6) 

93 

(16) 

100 

(6) 

91 

 (17) 

99 

(6) 

87 

(18) 

100 

(9) 

79 

(21) 

101 

(9) 

49 

(21) 

103 

(13) 

- 

(-) 

EM 71 

(19) 

126 

(31) 

82 

(14) 

94 

(18) 

69 

(18) 

104 

(25) 

98 

(8) 

76 

(20) 

84 

(13) 

47 

(22) 

89 

(13) 

- 

(-) 

SM 

 

91 

(19) 

89 

(35) 

94 

(14) 

80 

(23) 

91 

(20) 

90 

(35) 

101 

(8) 

80 

(32) 

94 

(14) 

52 

(31) 

93 

(15) 

- 

(-) 

Mean  % 

error 

 in TACs 

 

EM 

 

-25 17 -17 7 -30 17 -1 0 -15 3 -18 3 

SM -6 7 8 -3 -3 2 6 1 10 0 12 -1 

Bias and standard deviation in DVR estimates: a value of 100 denotes no bias.  Region 4 (DVR=1.0) and region 6 (k3=2.0) are the 

reference regions for Tracer I and Tracer II respectively (underlined). 

 

Mean % error in TACs:  A positive (negative) value indicates a positive (negative) systematic bias in the last 8 frames of the TACs.  
 

Row 2 reports the results for EM dual-tracer analysis. As seen in the [
11

C]FMZ-

[
11

C]DTBZ case, EM gave negatively biased DVR estimates due to limited data available 
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for DVR estimation for Tracer I; especially for regions 1 and 3.  This bias is reduced but 

not completely removed by SM (row 3) with a slight precision penalty. For Tracer II; 

estimation using EM shows lower bias and variability for k3 estimation than SM for 

regions 2 and 3; but this advantage is nullified by the bias in Tracer I DVR estimates.  

The bottom two rows of Table 5.4 show the mean % error values, an index of the 

systematic bias in the estimated TACs I

iŷ and II

iŷ  towards the end of the scan (last 8 

frames) in all of the six simulated regions. These mean percent error values explain the 

trends in DVR and k3 estimates seen in the top portion of the same table.  

5.4  Discussion and Conclusion 

 

This chapter investigated two methods for non-invasive signal separation and 

parameter estimation in simulated dual-tracer dynamic PET scans where two tracers are 

injected with a delay of 20 min. Dual-tracer studies in human brain using arterial 

sampling approach have been performed in the past (Koeppe et al 2001). Recently there 

has been much interest in utilizing rapid dual-tracer PET for various applications such 

hypoxia and blood flow (Rust and Kadrmas 2006) and for tumor characterization (Black 

et al. 2008); all of which utilize arterial blood sampling. However, the discomfort of 

arterial sampling to the subject and the work load on PET technicians for metabolite 

correction of two tracers make the non-invasive reference-region based dual-tracer 

approach very desirable. The proposed methodology is based on the key assumption that 

Tracer I can be appropriately administered using a bolus followed by a constant infusion 

protocol to bring a region with no specific binding or trapping to steady state before the 

second tracer is injected.  The ability to design such an administration protocol for human 

studies is discussed in the next chapter (dual-tracer human studies).  For the tracers 

discussed in this work, only the reversible tracers ([
11

C]FMZ, [
11

C]DTBZ) satisfy this 

condition and have been evaluated as first tracers. The irreversible tracer ([
11

C]PMP), 

which does not satisfy this criterion, has been tested only as the second tracer.  The 

second tracer, however, can be either reversible or irreversible and there is no constraint 

on its administration protocol.  In this simulation work, we found that small errors due to 

inability to bring the reference region of Tracer I to steady state do not cause appreciable 
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bias in the estimated binding parameters, and furthermore do not adversely effect 

precision of these estimates. 

The first approach explored for dual-tracer analysis was the extrapolation method 

(EM) where the knowledge of Tracer I prior to the injection of Tracer II was used to 

extrapolate the Tracer I signal until the end of the scan. This approach, though intuitive, 

introduced negative bias in Tracer I DVR estimates as 20 min of data before Tracer II 

injection was insufficient for accurate estimation of Tracer I DVR.  A potential drawback 

of the two-step EM is that errors in parameter estimation of Tracer I from limited early 

data propagate into parameter estimates for Tracer II.  As an alternative to EM, we also 

explored a one step parameter estimation approach to avoid the error propagation seen in 

EM.  In this simultaneous fitting method (SM), where the parameters of both the tracers 

were estimated simultaneously by fitting the dual tracer TACs to the reference tissue 

models of both tracers, an improvement over EM in terms of bias in estimated parameters 

was achieved, but with a slight decrease in precision.  

From the operational Logan plot equation it can be inferred that a systematic bias 

in the target region or reference region TACs would cause bias in the DVR estimates. 

Thus, mean percent error in the extracted TACs was calculated to assess the origin and 

effect of the parameter bias. It was seen that the SM extracted TACs from dual-tracer 

curves that were closer to the true TACs compared to the EM.  

To improve the robustness of the fits using EM and SM, one of the parameters 

(k4) for both tracers was fixed to its population average. The simulations showed that 

incorrect assumption of this parameter caused some bias, but reduced variance in the 

estimated parameters.  The precision of the parameters-of-interest was further improved 

by first extracting single-tracer TACs from dual-tracer TACs, and then estimating the 

parameters-of-interest by robust linear estimation techniques like Logan plots for 

reversible tracers (Logan et al. 1996) and reference-region based linear least squares 

method (RLS) for the irreversible tracer (Nagatsuka et al. 2001).   

For noisy reversible single-tracer TACs, the bias seen in higher DVR estimates in 

reversible tracers using Logan plots was reduced using PCA-based Logan analysis (Joshi 

et al. 2008a). Though PCA-based smoothing was required for EM, it was not necessary 

for SM, since the required smoothing was achieved by fitting the dual-tracer curves to the 



 68 

parallel reference tissue models.  For irreversible tracers, we found that bias seen in the k3 

estimation using RLS was due to the ill-conditioned nature of the operational RLS 

equation at high k3 values and not the dual-tracer method itself. Since high k3 regions are 

seldom regions-of-interest for irreversible tracers, this bias in not an impediment to the 

applicability of RLS. 

It is important to note that non-invasive dual-tracer methodology is especially 

useful in ‗challenge‘ studies where the simultaneous effect of a physiological challenge 

on two different neuropharmacological systems is of interest. Using a standard single-

tracer approach, four scans would be required to perform such an experiment (two 

‗baseline‘ scans and ‗two‘ challenge‘ scans), which would practically be very difficult. 

The dual-tracer approach could achieve this goal by requiring just two scans (one 

‗baseline‘ and one ‗challenge‘). 

In conclusion, this chapter it was demonstrated that single tracer information can 

be extracted from non-invasive dual-tracer PET studies, and that such studies bear 

promise in situations where a single neurochemical marker is insufficient to characterize 

a neurological condition.  In the next chapter the methods developed here will be applied 

to human dual-tracer data and validity of the methods will be tested. 
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Chapter 6                                                                                   

Dual-tracer studies: Human Studies 

 

This chapter reports the first results from non-invasive dual-tracer PET in humans 

where two radiotracers were injected closely in time within the same scan and data is 

acquired without arterial sampling.  These studies yield near simultaneous information on 

two different neuropharmacological systems, providing better characterization of a 

subject‘s neurological condition. Two approaches for separating the contributions of the 

two tracers, an extrapolation method and a simultaneous fitting method, have been 

validated in simulation studies (Chapter 5) and were applied to the human dual-tracer 

studies reported in this chapter. Combinations of two reversible tracers ([
11

C]flumazenil 

and [
11

C]dihydrotetrabenazine) or one reversible and one irreversible tracer ([
11

C]N-

methylpiperidinyl propionate) were used. Physiological indices estimated from the 

studies were the blood brain barrier transport parameter (R1), the distribution volume 

ratio (DVR) for the reversible tracers and the trapping constant (k3) for the irreversible 

tracer.  Following each dual-tracer scan, a ‗gold standard‘ single-tracer scan was obtained 

using one of the two tracers for comparison of the dual-tracer results.  Both approaches 

provided parameter estimates with inter-subject regions-of-interest means typically 

within 10% of those obtained from single-tracer scans and without any appreciable 

increase in variance.  

In this work we investigated a non-invasive (reference tissue-based) approach for 

analysis of dual-tracer human studies, which, in addition to being convenient for the 

subjects since it avoids arterial sampling and multiple scans, is also advantageous as it 

eliminates the need for plasma metabolite analysis for the two tracers.  Dual-tracer 

methodology brings promise to ‗challenge‘ studies, where the effect of a pharmacological 

or behavioral challenge on two different systems is of interest.  Such studies normally 
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would require four single-tracer scans (two ‗baseline‘ and two ‗challenge‘ scans), but 

would require only two dual-tracer scans (one ‗baseline‘ and one ‗challenge‘).  

The key assumption in non-invasive dual-tracer PET as mentioned in Chapter 5 is 

that the first radiotracer injected must have a region with negligible density of binding or 

trapping sites that by appropriate tracer administration, can be made to achieve (and then 

maintain) steady-state concentration levels prior to injection of the second radiotracer.  

With this assumption, the radioactivity in the reference tissue is known from the time of 

injection of the second tracer through to the end of scan.  Two methods for non-invasive 

dual-tracer analysis based on this assumption are detailed in the Chapter 5. They are: i) an 

extrapolation method (EM) where first tracer‘s time-activity curves (TACs) were 

extrapolated over scan duration followed by subtraction from dual-tracer TACs and ii) a 

simultaneous fitting method (SM) where reference tissue models for both tracers are 

fitted simultaneously to the dual-tracer TACs.   

Direct voxel-wise parameter estimation in a dual-tracer study suffers from poor 

precision due to noise in the PET TACs (Joshi et al. 2008b).  In this work, we have 

attempted to minimize the variance in the parametric images by implementing the 

following three steps: a) noise reduction in TACs by an adaptive smoothing approach, b) 

reduction in the number of parameters to be fitted by fixing the k4 parameter for both 

tracers to their population average in the full reference tissue model for reversible tracers 

(RTM), and c) application of robust linear estimation techniques to single-tracer curves 

extracted from dual-tracer data.  Each of these steps is described in detail in Section 6.4. 

 

6.1  Radiotracers 

 

The radiotracers used in this study have been well characterized for traditional 

single-tracer PET scans at our institution:  flumazenil ([
11

C]FMZ), a benzodiazepine 

receptor antagonist (Holthoff et al. 1991; Koeppe et al. 1991); dihydrotetrabenazine 

([
11

C]DTBZ), a ligand for the VMAT2 binding site (Koeppe et al. 1999a; Koeppe et al. 

1997; Koeppe et al. 1996); and N-methylpiperidinyl propionate ([
11

C]PMP), a substrate 

for hydrolysis by the enzyme acetylcholinesterase (AChE) (Koeppe et al. 1999b).  Both 

[
11

C]FMZ and [
11

C]DTBZ can be classified as reversible tracers and have been analyzed 
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successfully using both bolus and bolus+continuous infusion protocols. [
11

C]PMP can be 

classified as an irreversible tracer because the hydrolyzed product cannot be converted 

back to authentic PMP and cannot cross the blood–brain barrier (BBB).  

  

  

Figure 6.1: Dynamic dual-tracer PET image sequence for [11C]FMZ - [11C]DTBZ study with a 20 minute 

offset.  The frame sequence for the 80 min scan was four × 0.5 min, three × 1.0 min, two × 2.5 min, two × 

5.0 min, (second tracer injected at 20 min), four × 0.5 min, three × 1.0 min, two × 2.5 min, two × 5 min, 

and four × 10 min frames.  The second tracer is injected just before the 12th frame.  Note that the much 

large apparent signal of [11C]DTBZ is in part due to displaying decay corrected data.  Hence, the injection 

of the same dose of [11C]DTBZ at 20 min appeared twice as high relative to the [11C]FMZ in the early 

frames. 

 

Figure 6.1 shows the dynamic image sequence from a [
11

C]FMZ-[
11

C]DTBZ 

study where [
11

C]DTBZ was injected as a bolus 20 minutes after [
11

C]FMZ. The second 

tracer is injected at the start of the 12
th

 frame.  The [
11

C]DTBZ signal is the dominant of 

the two tracers seen by higher magnitude of the frames after [
11

C]DTBZ injection, but 

one should note that part of this higher magnitude is due to the decay-correction which 

makes the counts for DTBZ appear approximately twice as high due to the half-life of 

11
C. Figure 6.2 shows dual tracer curves for four regions from the study shown in Figure 

6.1. 
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Figure 6.2: Average dual-tracer curves for four regions from the study in Figure 6.1. 

                

Figure 6.3: Average time-activity curve (TAC) for pons, the reference tissue for [11C]FMZ, from seven 

subjects that underwent a 60 min single-tracer [11C]FMZ scan.  TACs have been scaled such that the area 

under the curve is the same for all subjects to account for differences in absolute radioactivity levels.  Error 

bars give the standard deviation of the TACs for the seven subjects and indicate the degree of variability in 

maintaining steady-state conditions.  
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6.2  Validation of the key assumption: 

 

The key assumption of achieving steady-state in the first tracer‘s reference tissue 

prior to injection of the second tracer needs to hold for the implementation of both EM 

and SM approaches.  Of the tracers used in this study, only [
11

C]FMZ and [
11

C]DTBZ 

have regions with negligible specific binding; pons and occipital cortex, respectively. The 

irreversible tracer [
11

C]PMP, however, has no region of negligible trapping; thus, only 

[
11

C]FMZ and [
11

C]DTBZ were used as the first tracers in this work, while [
11

C]PMP 

was used exclusively as a second tracer. 

 Figure 6.3 shows the average TAC for pons, (the reference region for [
11

C]FMZ) 

from seven subjects that underwent a 60 min single-tracer [
11

C]FMZ scan.  The pons 

TAC for each individual subject has been normalized such that the area under the curve is 

the same for all subjects.  These scans showed that it was possible to achieve steady-state 

in the pons by 20 min into the study and maintain the radiotracer concentration at this 

level after the second tracer has been administered throughout the remainder of the study. 

The infusion protocol (35% bolus-65% infusion) was designed such that steady state was 

achieved by 20 min while at the same time reasonable counts were obtained from early 

frames. Giving even less as a bolus would allow steady-state conditions to be reached 

even sooner; however, this decreases the statistical quality of the early data. The error 

bars indicate standard deviations of the tissue curve values across subjects.  A slightly 

larger standard deviation was seen towards the end of the 60 min scan, indicating that 

some subject‘s reference tissue TAC may have deviated from steady-state, either 

increasing or decreasing slightly over time.  However, computer simulations (Joshi et al. 

2008b) have showed that the small deviations from steady-state as seen in Figure 6.3 are 

not expected to cause appreciable errors in the estimated parameters. 

 

6.3  Data acquisition, reconstruction, and processing: 

 

Dual-tracer studies were performed on 37 healthy subjects using the following 

two tracer pairs: (1) [
11

C]FMZ and [
11

C]DTBZ, or (2) [
11

C]FMZ and [
11

C]PMP.  Table 

6.1 summarizes the details of the studies such as order in which the tracers were injected, 
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the time difference between tracer injections, the tracer administration protocol, and the 

single-tracer scan that followed the dual-tracer scan.   

For [
11

C]FMZ and [
11

C]DTBZ tracer combinations, since both tracers have 

regions with negligible specific binding sites, studies were performed using either as the 

first tracer.  For studies in which [
11

C]FMZ was injected first, studies were performed 

with two delay windows between tracer injections (20 and 30 min) to assess the 

improvement in results with an increase in separation between the tracers. It was not 

possible to reliably achieve steady-state in the occipital cortex, the reference tissue for 

[
11

C]DTBZ, by 20 minutes.  Hence studies where [
11

C]DTBZ was injected first were 

performed with a 30 min injection offset.   

 

Table 6.1: Imaging protocol details for dual-tracer studies. 

Dual-tracer 

Scans 
a
 

 

Time 

Difference 

between 

tracer 

injections 

Injection 

protocol
 b
 

Single-

tracer scan 

following 

the dual-

tracer scan 

Number of 

subjects 

 

 

 

[
11

C]FMZ/[
11

C]DTBZ 

 

 

20 

Infusion/Bolus FMZ 2 

DTBZ 2 

Infusion/Infusion FMZ 1 

DTBZ 1 

 

 

30 

Infusion/Bolus FMZ 1 

DTBZ 2 

Infusion/Infusion FMZ 2 

DTBZ 1 

 

[
11

C]DTBZ/[
11

C]FMZ 

 

 

 

30 

Infusion/Bolus FMZ 2 

DTBZ 2 

Infusion/Infusion FMZ 1 

DTBZ 1 

 

 

 

[
11

C]FMZ/[
11

C]PMP 

 

 

 

20 

 

Infusion/Bolus 

FMZ 5 

PMP 5 

 

30 

 

Infusion/Bolus 

 

FMZ 4 

PMP 5 

a
 injection order 

b administration protocol for first tracer and second tracer respectively 
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The injected radioactivities were approximately the same for both tracers, with 

twelve mCi (444 MBq) 10% of each tracer administered.  Scan data was acquired for 80 

min as a dynamic sequence of 26 or 27 frames for 20 or 30 min offsets, respectively.  The 

framing protocol consisted of shorter duration frames when there was a rapid change in 

the tissue radioactivity concentration (after each tracer injection) and longer duration 

frames when there was gradual or little change in the activity. The protocol with 20 min 

delay between tracer injections was four × 0.5 min, three × 1.0 min, two × 2.5 min, two × 

5.0 min, (second tracer injected at 20 min), four × 0.5 min, three × 1.0 min, two × 2.5 

min, two × 5 min, and four × 10 min frames (26 frames in all).  The protocol with 30 

minute delay was four × 0.5 min, three × 1.0 min, two × 2.5 min, four × 5.0 min, (second 

tracer injected at 30 min), four × 0.5 min, three × 1.0 min, two × 2.5 min, two × 5 min, 

and three × 10 min frames (27 frames in all).  The dual-tracer studies were followed by a 

60 min single-tracer scan using one of the tracers used in the dual-tracer study, with 

framing the same as the final 60 min of the 20 min delay protocol. Each single-tracer 

scan provided a ‗gold standard‘ for comparison with one of the tracers from the dual-

tracer scan.  Single tracer studies were not performed for both the dual-scan tracers due to 

time and radiation dosimetry constraints.  The single-tracer scans were also used to assess 

the validity of the key assumption that the first tracer‘s reference tissue reaches steady-

state before the second tracer is administered (see Figure 6.3).  

All PET scans were performed in 3-D acquisition mode on an ECAT EXACT 

HR+ tomograph (Siemens Medical Systems, Inc., Knoxville, TN, USA).  Measured 

attenuation correction with segmentation and re-projection were performed from 5-

minute duration 2-D transmission scans.  Images were reconstructed using Fourier 

rebinning (FORE) (Defrise M et al. 1997) of the 3-D data into 2-D sinograms and ordered 

subsets expectation maximization (OSEM) (Hudson and Larkin 1994; Comtat et al. 1998) 

using 4 iterations and 16 subsets.  No post-reconstruction smoothing was applied 

resulting in reconstructed images of approximately 5.0-5.5 mm full-width and half-

maximum (FWHM) both in-plane and axially.  Subject motion across frames was 

corrected using Neurostat, initially developed at the University of Michigan (Minoshima 

et al. 1994; Minoshima et al. 1993).  All scans were oriented, including non-linear 

warping, to the stereotactic Talairach atlas (Talairach and Tournoux 1988) using 
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Neurostat routines. All modeling estimations were performed voxel-by-voxel, creating 

parametric images of the BBB transport parameter (R1), the distribution volume ratio 

(DVR = 1+BPND; (Innis et al. 2007)) for the reversible tracers, and a ‗trapping rate‘ 

parameter (k3) for the irreversible tracer. Volumes-of-interest (VOIs) were obtained using 

a standardized VOI template defined in Talairach atlas space. 

 

6.4  Robust parameter estimation 

 

To improve the robustness of the parameter estimates of interest, following three 

steps were implemented. 

6.4.1 Adaptive smoothing 

 

In this step, a spatially dependent smoothing protocol was implemented to reduce 

noise in TACs prior to the signal separation and parameter estimation steps. The 

neighborhood of the voxel‘s TAC under consideration (yi) was searched to identify those 

TACs that had shapes similar to that of yi. An average of the TAC under consideration 

and the qualifying neighboring TACs yielded a TAC with reduced noise. This approach 

resulted in little smoothing in regions with kinetically distinct voxels, thus preserving 

spatial resolution.  The procedure is mathematically represented below:  

A set of voxel indices Ni was selected for the voxel i under consideration such that: 

2
{ : }i i jN j y y T   ,                           - 6.1 

where jy  is the TAC of a neighboring voxel j, 
2i jy y is the L2-norm of the difference 

vector between yi and yj, and T is the threshold for the L2-norm and was chosen to be 10% 

of 
2iy . This search was performed in a 3 x 3 x 3 neighborhood (~0.3 ml) of voxel i.  

Once the set of TACs was determined, an average TAC was calculated (
AVG

iy ) which has 

less noise than the original dual-tracer TAC (yi) and was used for curve separation and 

parameter estimation.  
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6.4.2  Population average k4 in the full reference tissue model 

 

Another step used to improve precision in the separation of the individual tracer 

components and hence the estimated neuropharmacological parameters was reducing the 

complexity of the full reference tissue model by fixing the k4 parameter for each tracer to 

its respective population average value.  The rationale for this step is as follows.  Our 

overall goal was the estimation of DVR (=1+BPND) for each tracer.  Since BPND is equal 

to the ratio of k3/k4, it may seem that using the simplified reference tissue model (sRTM; 

Section 2.4.2)(Lammertsma and Hume 1996) where only BPND is estimated instead of k3 

and k4 separately, would accomplish the same goal. However, the simplifying assumption 

in sRTM is instantaneous equilibration between free and specific compartments, which 

implies very high values for both k3 and k4.  This assumption may bias the shapes of the 

individual tissue curves for the tracers used in this work.  By fixing the k4 values to their 

respective population averages, we reduce the complexity of the full reference tissue 

model, as in sRTM, but constrain the individual tracer TACs to more closely approximate 

their true shapes. This simplification reduces parameter variance though with the possible 

introduction of some bias. However, the magnitude of this bias would be less compared 

to that if sRTM was used. 

 

6.4.3 Signal separation followed by estimation of binding measures 

 

In case of SM, the pharmacological parameters of interest, such as DVR, could be 

calculated directly from the individual model parameters of the k4-constrained full 

reference tissue model.  However, direct calculations of DVR from the individual 

estimated rate constants still lacked precision despite the adaptive smoothing and k4 

constraint.  Instead, the reference tissue model fits to the dual-tracer curves were used 

only to extract the voxel-wise TAC components for each of the two radiotracers (as 

elaborated in section 5.1.2).  Each tracers‘ voxel-wise TACs and their corresponding 

reference tissue curves were then used with robust linear estimation methods to obtain 

final parametric images (Logan graphical analysis for DVR estimation in reversible 



 78 

tracers (Logan et al. 1996) and reference-region based linear least squares (RLS) for k3 

estimation in irreversible tracers (Nagatsuka et al. 2001)).  

 For single-tracer studies of reversible tracers, the parameters of interest were 

estimated using PCA-based Logan plot analysis (Joshi et al. 2008a). For the irreversible 

tracer, the parameter-of-interest (k3) was estimated using the RLS method. The adaptive 

smoothing approach described earlier was applied to single tracer data as well, prior to 

voxel-wise parametric estimation. 

6.5  Results 

 

   Figure 6.4 shows the parametric images estimated using EM from a 

[
11

C]FMZ-[
11

C]DTBZ dual-tracer study obtained with the same protocol as shown in 

Figure 6.1.  The parametric images for both FMZ (top two rows) and DTBZ (bottom two 

rows) are shown for the relative blood brain barrier (BBB) transport rate, R1 (=
1

1

ref

K

K
; rows 

1 and 3) and the distribution volume ratio, DVR (=1+BPND; rows 2 and 4).  Image quality 

for all measured parameters is good. 

  

Figure 6.4: Parametric images obtained from a [11C]FMZ - [11C]DTBZ study at six brain levels. The 

parametric images shown are R1, equal to the ratio 
1 1/ refK K  (rows 1 and 3), and the distribution volume 

ratio (DVR=1+BPND) (rows 2 and 4) for both tracers.  



 79 

6.5.1 [
11

C]FMZ - [
11

C]DTBZ studies 

 

Figure 6.5 (panel A) shows distribution volume ratio (DVR) images of three brain 

slices for studies with the same 20 min FMZ:DTBZ protocol as in Figure 6.1.  The left-

most column for each tracer shows the DVR images obtained from a single-tracer scan 

(ST).  The middle and the right-most columns for each tracer show DVR images obtained 

from the dual-tracer studies using the extrapolation method (EM) and simultaneous 

fitting method (SM), respectively.  Since single-tracer scans were performed using only 

one of the two tracers used in the dual tracer study, the images seen in the left and right 

halves of Figure 6.5 (all panels) are from different subjects.  The dual-tracer scans 

analyzed using EM and SM yielded images very close in quality to those obtained from 

single-tracer scans.  Overall image quality of SM was slightly noisier than EM image as 

SM required the simultaneous estimation of six parameters from an 80 min dual-tracer 

study.  The image quality tended to improve when the two tracers were separated by 30 

min instead of 20 min; since increasing tracer separation improves signal separation as 

was reported for dual-tracer studies using arterial plasma inputs (Koeppe et al. 2001). 

The bar graphs in Figure 6.6 (panel A) show the comparison of the means and 

standard deviations of eight regions-of-interest extracted from both single-tracer and 

dual-tracer parametric images.  On average, the EM method showed a positive bias in 

DVR for [
11

C]FMZ as compared to ST which can be primarily attributed to the fact that 

20 min of data was insufficient to accurately estimate first tracer‘s transport and binding 

parameters.  The positive bias was seen in the SM method as well, but to a lesser extent.  

As would be expected, the slight positive bias in the DVR estimates of FMZ propagate as 

a slight negative bias in DTBZ estimates.  The magnitude of the DTBZ bias is less 

pronounced because for this tracer combination, the [
11

C]DTBZ signal is the dominant 

contributor to the dual-tracer data (see Figures 6.1 and 6.2).  The inter-subject variance of 

the dual-tracers methods for different brain regions was only slightly higher on average 

than those seen in the single-tracer images, indicating that the image quality did not 

suffer due to excessive noise propagation in the dual-tracer approach. 
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Figure 6.5: Comparison 

of parametric images of 

three brain levels from 

dual-tracer with those 

from single-tracer 

studies. The left-most 

column for each tracer is 

from a single-tracer 

study (ST) which acts as 

‗gold standard‘ for 

comparison of dual tracer 

results.  

 

Panel A: [11C]FMZ 

injected 20 min prior to 

[11C]DTBZ.  

 

Panel B: [11C]DTBZ 

injected 30 min prior to 

[11C]FMZ.  

 

Panel C: [11C]FMZ 

injected 30 min prior to 

[11C]PMP.  

 

The extrapolation 

method (EM) and 

simultaneous fitting 

method (SM) show 

image patterns and 

magnitudes very close to 

those from the single 

tracer (ST) studies. 
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Figure 6.6: Comparison of inter-subject means and standard deviations in parametric estimates obtained 

from single-tracer (ST) and dual-tracer studies analyzed using extrapolation method (EM) and 

simultaneous fitting method (SM). Results from eight regions-of-interest extracted from parametric images 

are shown.  Panel A: Comparison of dual-tracer [11C]FMZ-[11C]DTBZ studies (n=12) with single tracer 

studies (n=6). Panel B: Comparison of dual-tracer [11C]DTBZ-[11C]FMZ studies (n=6) with single tracer 

studies (n=3). Panel C: Comparison of dual-tracer [11C]FMZ-[11C]PMP studies (n=19) with single tracer 

studies (n=10 for [11C]FMZ and n=9 for [11C]PMP). The regions-of-interest for FMZ are: OCC: occipital 

cortex, LAT: lateral frontal cortex, SUP: superior parietal cortex, TEM: lateral temporal cortex, CAU: 

caudate nucleus, THA: thalamus, CER: cerebellar hemisphere, PONS: pons.  The regions-of-interest for 

DTBZ are: PUT: putamen, CAU: caudate nucleus, MID: midbrain, CER: cerebral hemisphere, THA: 

thalamus, PONS: pons, SUP: superior parietal cortex, OCC: occipital cortex. The regions-of-interest for 

PMP are: OCC: occipital cortex, LAT: lateral frontal cortex, SUP: superior parietal cortex, TEM: lateral 

temporal cortex, INS: insular cortex, HIPP: hippocampus, THA: thalamus, AMY: amygdala. 
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6.5.2  [
11

C]DTBZ - [
11

C]FMZ studies 

 

Figure 6.5 (panel B) shows the dual-tracer parametric images from [
11

C]DTBZ-

[
11

C]FMZ studies where [
11

C]DTBZ was injected first followed by [
11

C]FMZ with a 30 

minute time difference. As in panel A, the left-most column for each tracer shows the 

DVR images obtained from a single-tracer scan.  The middle and the right-most columns 

show DVR images obtained from the dual-tracer studies using the extrapolation method 

(EM) and simultaneous fitting method (SM), respectively. Again, the dual-tracer methods 

were successful in accurately separating the individual-tracer signals as indicated by the 

similarity of ST and either the EM and SM parametric images.  Similar to the [
11

C]FMZ-

[
11

C]DTBZ case, the images for EM method have higher values than those in the single-

tracer scan, while the same scan analyzed with the SM method yielded results closer to 

those of the single-tracer scan. 

Figure 6.6 (panel B) shows regions-of–interest comparison of the inter-subject 

means and standard deviations extracted from single-tracer and dual-tracer parametric 

images.  Trends similar to those seen in panel A are seen for this dual-tracer protocol, 

including the positive bias in EM DVR values for the first tracer, which in this protocol 

was [
11

C]DTBZ.  As before, the inter-subject region-of-interest variance for dual-tracers 

methods in most regions was similar or only slightly higher on average than those seen in 

the single-tracer images, again indicating that image quality in dual-tracer PET is not 

degraded substantially by propagation of noise. 

 

6.5.3  [
11

C]FMZ - [
11

C]PMP studies 

 

Figure 6.5 (panel C) shows the parametric images (DVR for [
11

C]FMZ and k3, the 

trapping constant, for [
11

C]PMP) for a study protocol where [
11

C]FMZ was injected 30 

minutes prior to [
11

C]PMP.  As in panels A and B of Figure 6.5, the left-most column for 

each tracer shows the parametric DVR or k3 images obtained from a single-tracer scan.  

The middle and the right-most columns show parametric images obtained from the dual-

tracer studies using the extrapolation method (EM) and simultaneous fitting method 

(SM), respectively.  The estimation of the trapping constant for [
11

C]PMP using the 
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reference-region based linear least squares method (RLS) (Nagatsuka et al. 2001) breaks 

down for very high values of the trapping parameter due to the assumption of the method 

that the basal ganglia represents complete trapping, and analysis cannot be done in this 

region due to the ill-conditioned nature of the operational equation (see Chapter 5).  This 

can be seen in both the single-tracer and dual-tracer k3 images.  AChE activity has a very 

large dynamic range in the human brain, and since the primary regions of interest for 

PMP are in the cortex, the images are scaled to better show these values rather than 

cerebellum (vermis) and brainstem structures which appear as white in the parametric 

images. 

Figure 6.6 (panel C) summarizes the means and standard deviations from the 

parametric images for eight chosen regions. The bar graphs for [
11

C]FMZ show familiar 

features as seen in panels A and B (Figure 6.6); positively biased DVR estimates for EM 

and a much less pronounced bias for SM-based DVR estimates.  The EM-based bias is 

less for the trapping constant estimation.  Estimation of k3 from signals extracted using 

SM, on the other hand, is negatively biased for most regions compared to the single-

tracer ‗gold standard‘ values.  The inter-subject region-of-interest variance for EM and 

SM was similar to that seen in ST images for [
11

C]FMZ, but higher for [
11

C]PMP.  For 

[
11

C]PMP, the variance in the dual-tracer methods was larger than that in single tracer 

studies for regions such as thalamus and amygdala that have higher AChE activity.  

 

6.6  Discussion and Conclusion  

 

This chapter presented the first results of human dual-tracer brain PET studies 

performed non-invasively using reference tissue approaches, hence not requiring arterial 

blood sampling and plasma metabolite analyses. The reference tissue based non-invasive 

dual-tracer methodology used in this work can provide information on two distinct 

biological systems from a single PET scan without the inconvenience of arterial sampling 

for both the subject and the investigators. For example, since the various neurotransmitter 

systems of the brain do not act in isolation but have complex interactions, dual-tracer 

methods can be particularly useful in ‗challenge‘ studies where a pharmacological or 

behavioral intervention may affect more than a single neuropharmacological system.  
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The key assumption for this attractive methodology is that for the first radiotracer 

injected there exists a brain region with negligible specific binding or trapping, and which 

by an appropriate bolus + continuous infusion protocol can be brought to equilibrium 

prior to the injection of the second radiotracer.  This assumption allows one to know the 

full time course of the reference tissue curve that acts as an ―input function‖ for the 

reference tissue model.  In general, both reversible as well as irreversible tracers that 

satisfy the above criterion could be injected first.  In this study however, the irreversible 

tracer [
11

C]PMP could not be used first since it has no region that is void of AChE. 

Rapidly equilibrating tracers, such as flumazenil used here or raclopride, would be 

expected to work well, while more slowly equilibrating tracers such a methylphenidate, 

carfentanil and many others, would be poor choices for the ―first‖ tracer. 

Of the two analysis approaches evaluated, the extrapolation method, though 

intuitive, was seen to introduce bias in many studies, as parameter estimates derived from 

only 20-30 min of data can be insufficient for robust parameter estimation. Furthermore, 

biases in the parameter estimates of the first tracer will propagate as biases in the 

parameter estimates of the second tracer.  The biases in the two tracers, in general, will be 

negatively correlated, as an error in first tracer‘s TAC estimation would be compensated 

by an opposite error in the second tracer‘s TAC, in order for the sum of the individual 

tracer curves to fit the dual-tracer curve.  Thus, to avoid the limitations of the EM 

approach, a simultaneous fitting method was developed and evaluated.  In the majority of 

cases, an improvement of the simultaneous method over EM was seen in terms of better 

correspondence of the DVR measures with those of the single-tracer scans.  This was 

achieved by fitting the dual-tracer TACs with a combined reference tissue model, to 

optimally separate the total PET signal into its two ‗single-tracer‘ components.  A 

possible remaining source of bias in the SM approach is that prior to the simultaneous fit, 

the reference tissue TAC for the second tracer must be determined for which the 

extrapolation approach was still needed. Once the second reference tissue curve is 

obtained, the TACs for all voxels can be separated.  One aspect of our implementation of 

the simultaneous method is that after separation of the dual-tracer scan into its two 

individual tracer image sequences, one can redefine the reference-tissue curves on the 

separated data sets.  This may help in removing some bias as, for example, the slight 
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variations from true steady-state in the first tracer‘s reference tissue may be accounted for 

after curve separation. 

 One of the primary concerns in any dual-tracer approach is the need to estimate 

roughly twice as many parameters as compared to a single-tracer PET study.  While at 

first glance, this may seem to be a prohibitive problem, the fact that administration of the 

two tracers is offset in time provides considerably more ‗kinetic‘ information in a dual-

tracer curve than a single tracer curve.  However, trying to estimate 6-8 parameters from 

an 80 min PET session is more challenging that estimating 2-3 parameters from a single-

tracer scan, and precision of the parameter estimates is a concern.  Thus, we made efforts 

along three fronts to enhance precision in order to provide more robust results. 

 First, we reduced the voxel-level noise in the TACs by a simple adaptive 

smoothing procedure.  The choice of the threshold for this step must be made carefully, 

as too high a threshold would result in little smoothing, hence little improvement in 

precision, while too low a threshold would result in overly degrading the effective spatial 

resolution of the parametric images.  The success of this approach can be seen in the 

parametric images shown in Figures 6.4 and 6.5.  In all cases, the apparent noise level is 

nearly as low for dual-tracer studies as for single-tracer scans. In some studies, 

particularly those involving PMP there was some noticeable increase in noise in the k3 

images. 

Second, we fixed the k4 parameter of the full reference tissue model for both 

tracers to their respective population average values during the fitting procedure for 

separating the dual-tracer signal into its individual components.  Using the full reference 

tissue model (4 parameters, for each tracer), yet fitting only 3 parameters per tracer, 

helped to stabilize the fit while maintaining a model formulation with more realistic 

shapes for the tracers‘ time-activity curves.  As mentioned earlier, this is because we do 

not assume that the exchange between free and specific compartments is instantaneous, 

which could bias the shapes of the tissue TACs. 

Third, while reducing the number of fitted parameters improved the ability to 

extract the single-tracer curves; using the direct parameter estimates to calculate DVR 

(=1 + k3/k4) with good precision is still limited.  This is similar to single-tracer studies, 

where more stable estimates of DVR can usually be obtained by methods such as Logan 
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plots, rather than directly using nonlinear least squares estimates of individual rate 

parameters for calculation of DVR.  Hence in this study, application of the robust linear 

Logan graphical analysis was used after separation of individual tracer signals to obtain 

estimates of the parameters of interest, DVR (RLS for k3) and R1.  Since the separated 

tissue time-activity curves were obtained as smooth curves, the potential biases in Logan-

based DVR estimates due to noisy data are avoided. 

There was a mismatch between the bias seen in the EM method in human scans 

(where positive bias was seen in the DVR estimates) compared to that predicted by the 

simulation studies in the previous chapter (where negative bias was seen in the DVR 

estimates). One possible explanation for this is that a reference region tissue model may 

not be able to accurately simulate all the complexities of an actual human PET scan. 

Additionally, the noise in the simulations was higher than the levels observed in the 

human studies after the adaptive smoothing. 

As expected, increasing the offset in tracer injection time from 20 to 30 minutes 

provided an improvement in precision for both EM and SM approaches.  However, this is 

a trade-off that would have to be considered for any dual-tracer application.  Minimizing 

the time difference between the administrations of the two tracers would provide more 

simultaneous estimation of the tracer parameters, but would decrease the precision of 

parameter estimates.  On the other hand, increasing the time difference between tracer 

injections, while improving precision in parameter estimates, would increase the chance 

that the biological or pharmacological state of the subject would change.  This may be 

problematic especially in ‗challenge‘ studies where one assumes a variety of biological 

parameters (blood flow, endogenous neurotransmitter levels, receptor occupancy) are 

constant over time. 

 In conclusion, non-invasive dual-tracer methodology has been shown to produce 

results comparable to single-tracer scans, and promises to be a very useful technique for 

nearly simultaneous evaluation of multiple brain systems from a single PET acquisition.  
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Chapter 7                                                                                   

Reducing inter-scanner PET image variability 

 

This thesis so far has concentrated on the estimation of pharmacological 

properties of neuroreceptor systems. We have seen that the accuracy of the estimated 

parameters depends upon kinetic modeling steps such as selection of a physiologically 

relevant yet practical model, handling of the noise in the TACs and appropriate weighting 

of data. These kinetic modeling steps assume that the reconstructed dynamic PET data 

provides quantitatively accurate radiotracer concentrations in the image voxels. In other 

words, inaccuracy of the radiotracer concentration values in the PET image would lead to 

inaccurate TACs, thus causing inaccuracies in the parameter estimates.  

A primary source of signal loss in PET is attenuation of the signal through 

absorption of the emitted photons by the tissue. Accurate quantification of radioactivity 

concentration has challenges in addition to the photon absorption. These include count-

rate losses due to dead-time of system components, variations in efficiency of detectors 

and acceptance of unwanted scattered and random coincidences. The ability to accurately 

correct for these sources of errors, while minimizing the impact on signal-to-noise ratio, 

largely determines the accuracy of PET images. The handling of these corrections is an 

ongoing research problem and PET and PET/CT scanner manufacturers implement these 

corrections differently. These software differences along with hardware differences 

(crystal types, axial field-of-view, energy windows etc) lead to differences in the images 

of the same object obtained from scanners manufactured by different vendors. This 

variability, even if small, can be problematic in multi-center trails. The motivation for the 

work in this chapter is to minimize the PET scanner model related systematic variability 

before the multi-center data is pooled together for analysis. 

The work in this chapter is part of the ongoing multi-center Alzheimer‘s Disease 

Neuroimaging Initiative (ADNI) project, a longitudinal multi-site observational study of 
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healthy controls, patients with mild cognitive impairment (MCI), and mild Alzheimer's 

disease (AD) patients. This five year research project aims to study the rate of change of 

cognition, brain structure and function in 200 elderly controls, 400 subjects with mild 

cognitive impairment, and 200 with Alzheimer‘s disease. Data is being acquired from 

these subjects at multiple time points using magnetic resonance imaging (MRI), 

[
18

F]FDG PET, urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as 

clinical/psychometric assessments. PET scans were performed on half of the subjects in 

each group. The Division of Nuclear Medicine PET Center at the University of Michigan 

is the coordinating center for all PET data. 

The objective of this work is reduction of inter-scanner differences in static FDG 

scans (single frame scans with no temporal information) obtained from ~50 participating 

PET centers having fifteen different scanner models. In spite of a standardized imaging 

protocol, systematic inter-scanner variability in PET images from various sites has been 

observed due to differences in scanner resolution, reconstruction techniques, and different 

implementations of scatter and attenuation corrections on the different scanner types.  

Before the data across centers can be analyzed, it is important to minimize these 

differences. 

The differences in the human scans obtained from the different scanner types 

were classified into two broad categories: actual anatomic and functional inter-subject 

variability and systematic scanner related variability. An attempt to reduce the systematic 

differences between different scanner-types is the focus of this work. 

The correction factors to reduce inter-scanner systematic variability were obtained 

from Hoffman brain phantom (Hoffman et al. 1990) scans acquired at the participating 

sites. Hoffman brain phantom is a cylindrically shaped phantom that simulates the 

radiotracer distribution in a normal human brain. The correction factors were obtained by 

comparison of the phantom scans with a ‗gold standard‘ digital Hoffman brain phantom 

(i.e. true radioactivity distribution).  

The systematic differences in the images from different sites can be classified into 

two broad categories: high frequency resolution differences and low frequency 

uniformity differences. Resolution differences are primarily due to differences in crystal 

sizes, and also to a lesser extent due to detector material (LSO, BGO, GSO and LYSO), 
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detector crystal axial depths, energy windows, as well as the number of rings, crystals per 

ring and axial FOV. The low frequency uniformity differences may manifest as 

differences in contrast (grey-to-white matter ratios), superior-to-inferior and midline-to-

lateral gradients. These non-uniformities between scanners are likely to be caused 

primarily by disparity in the handling of attenuation and scatter. The high frequency 

correction proposed in this work involves smoothing the data from different scanner 

types to a common resolution. The low frequency correction involves application of 

smooth affine correction factors following the high frequency correction. Smoothing 

kernels for high frequency correction and affine correction factors for low frequency 

correction were obtained from comparison of phantom scan data with the digital 

phantom. The correction factors were applied to phantom scans to see the maximum 

recovery possible using these methods. Subsequently, the corrections were applied to 95 

normal subject scans to test their utility in humans. 

 

7.1  Multi-center Hoffman brain phantom scan protocol 

 

Phantom Scans 

Hoffman brain phantom scans were obtained from all participating sites using the 

following protocol: 

1. The Hoffman phantom is filled with 0.5-0.6 mCi of 
18

F solution and placed in 

the scanner. 

2. The chest phantom is filled with 2.0-2.4 mCi of 
18

F solution and placed close to 

the Hoffman phantom to simulate the effects of out-of-field activity. 

3. The 3-D Hoffman phantom is imaged for 30 minutes to obtain high quality 

images with low statistical noise contribution. 

4. The image volume is registered to the digital Hoffman brain phantom to 

achieve a common orientation and image grid for all scans. 
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Pre-processing of phantom scans 

 

Two phantom scans per site were obtained for test/retest purposes. There were 

fifteen different scanner models used in the ~50 participating sites. All scans passing 

quality control tests were registered to the digital Hoffman phantom. The voxel-grid for 

all scanner-types was 160 x 160 x 90 with voxel-size of 1.548 mm. The size of 1.548 was 

chosen such that the dimensions of the digital phantom matched the physical dimensions 

of the Hoffman brain phantom. The registered images from each site were normalized 

using a mask (based on the digital Hoffman phantom) such that the mean of all voxels 

lying within the mask was unity. The normalized phantom images from different sites 

having the same scanner-type were averaged to obtain an average image per scanner 

model. Let this normalized average image for scanner model n be represented as n
A  

(
p q rR  

n
A where p = 160 (x-dimension), q = 160 (y-dimension) and r = 90 (z-

dimension)). High and low frequency correction factors were obtained by comparison of 

the average image An with the digital Hoffman brain phantom as described below. 

 

7.2  Theory of high and low frequency corrections 

 

7.2.1 High frequency correction 

 

The high frequency correction is a smoothing operation to bring the images from 

the different scanner types to as uniform a resolution as possible. The common minimum 

resolution was determined by estimating the resolution of each scanner type from 

phantom scans. The digital Hoffman brain phantom was smoothed in all three dimensions 

with incremental full width half maximum (FWHM) Gaussian kernels to obtain a library 

of the digital phantom at various resolutions as shown below. 

i
D Dik  , i = 1 mm, 2 mm,…10 mm,                        -  7.1 

where D is the unsmoothed digital Hoffman brain phantom, ki is the smoothing kernel 

with FWHM of i mm in all three dimensions,  is the convolution operator and Di is the 
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smoothed phantom with i mm resolution. During implementation of this step, different 

in-plane (xy plane) and axial (z-axis) smoothing was done; but for brevity it has been 

represented here to be the same in all dimensions (Equation 7.1). The effective resolution 

of n
th

 scanner model was estimated by determining the smoothed digital phantom (Di) 

that was closest to An in the least squares sense as shown below.  

2

ˆ arg minn n i
i

i A D  ,            -  7.2 

where nA  and iD  are lexicographically arranged vectors of all the voxels in the three-

dimensional image volumes An and Di respectively. The coarsest resolution among all the 

scanner models was found to be between 7 and 8 mm both in plane and axially. The 

‗target‘ resolution for the average phantom image (An) for each scanner model was 

chosen to be 8 mm.  

Kernels to smooth each scanner model‘s average phantom image to the target 

resolution were determined as follows. A library for each average phantom scan An was 

formed by smoothing it with incremental FWHM Gaussian kernels with as shown below. 

n, j n
A A jk  ,  j = 1mm,…..,10mm          -  7.3 

Smoothing kernel for each scanner type was selected such that the smoothed image 

( n, j
A ) matched the ‗gold standard‘ digital phantom smoothed to 8mm resolution (D8) in 

the least squares sense as shown below.  

8 , 2

ˆ arg minn n j
j

j D A 
,              -  7.4 

where ,n jA  and 8D  are lexicographically arranged vectors of the three dimensional image 

volumes An,j and D8 respectively. As before, j was allowed to vary between in-plane and 

axial smoothing. Let the phantom image for scanner type ‗n‘ after smoothing to 8mm 

resolution be represented by ˆn, j
A . The smoothing kernel for each scanner type ( ˆ

nj
k ) is 

applied to every the human subject scan In) obtained from scanner model n 

( ˆ ˆ
n

nn, j
I = I

nj
k ). 
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7.2.2 Low frequency correction 

 

High frequency correction is followed by low frequency adjustment to correct for 

differences across scanner models that are presumed to be primarily due to small but 

consistent errors in the attenuation and scatter corrections. The following linear model 

was used for low frequency correction. 

ˆ
n

8 n n nn, j
D = a A + b + ε ,            -  7.5 

where
na and 

nb are the low frequency correction terms (multiplicative and additive 

respectively) to be determined from the high frequency corrected phantom 

images ˆ
nn, j

A ( is the residual term). Note that all terms in Equation 7.5 have the same 

dimensions and all operations are voxel-wise. The terms 
na and 

nb are smooth functions 

for n
th

 scanner type and are designed as linear combinations of fifth order polynomials as 

shown below: 

, ,

1

M

n p m p m

m

a  


 , , ,

1

M

n p m p m

m

b  


 ,          -  7.6 

where an,p and bn,p are values of the correction factors 
na and 

nb at voxel p , M is the total 

number of polynomial terms (M = 52 for three dimensional fifth order polynomials),  m  

and m are the coefficients of the polynomial term m, and ,p m  is the value of the m
th

 

polynomial term at voxel p.  Since the low frequency errors were expected to be 

symmetric across the midbrain, the non-symmetric polynomial terms (28 in number) 

were eliminated (M = 34). The correction terms 
na and 

nb can be expressed in the vector 

form as follows: 

,n n n na b     ,           -  7.7 

where 1N

na R  and 1N

nb R   vectors are the lexicographical arrangements of the three-

dimensional terms 
na and 

nb (N is the number of voxels in the image volume), 



 93 

N MR  is the polynomial matrix and 1, M

n n R    are the coefficients of the 

polynomial terms. We estimated the coefficient set ( , )n n  for the n
th

 scanner model by 

the following minimization: 

2

2

ˆ8 ,
( , )

ˆˆ( , ) arg min ( )
n

n n

n n n nn j
D diag A

 

                -  7.8 

The low frequency correction factors can then be applied to the individual PET images 

that have undergone high frequency correction ( ˆ
nn, j

I ). The application of low frequency 

correction for scanner type n would be: 

ˆ ˆ
n n

n nn, j n, j
C = a I + b .            -  7.9 

7.3  High frequency correction factors from phantom scans 

 

Table 7.1 : Scanner models and the FWHM (in mm) of the smoothing kernels to attain a resolution of 8 

mm FWHM (in-plane and axial). 

Scanner Model PET or 

PET/CT 

FWHM in-plane  

(mm) 

FWHM axially 

(mm) 

Siemens HRRT PET 6 6 

Siemens Biograph HiRez PET/CT 6 

 

5 

 Phillips Gemini TF PET/CT 

Siemens HR+ PET 5 5 

GE Discovery RX PET/CT 5 

 

4 

 Phillips G-PET PET 

GE Advance PET 5 

 

3 

 GE Discovery LS PET/CT 

GE Discovery ST PET/CT 4 3 

Phillips Gemini 

Phillips Gemini GXL 

PET/CT 

PET/CT 

3 

 

3 

 

Phillips Allegro PET 

Siemens Accel 

Siemens Exact 

PET 

PET 

2 

 

 

3 

 

 Siemens Biograph PET/CT 



 94 

The high frequency correction factors (FWHM or the smoothing kernels) to 

smooth the images from various scanners to 8 mm resolution are listed in the Table 7.1. 

7.4  Assessment of the validity of low frequency correction factors using 

simulations: 

 

Simulations were performed to validate the low frequency correction methodology 

proposed above as well as to get an intuitive feeling for their physical interpretation. The 

following three scenarios of residual low frequency errors were simulated using a digital 

Hoffman phantom smoothed to 8mm resolution (D8): 

 

1. Simulation of residual attenuation: The smoothed digital Hoffman brain phantom, 

D8, was forward-projected to obtain its emission sinogram (E) and transmission 

sinogram based on ellipse attenuation (T) using ASPIRE software (Fessler 1995). 

To simulate errors in attenuation correction, the residual attenuation sinogram was 

chosen to be the transmission scan T scaled by 0.1. The emission sinogram with 

residual attenuation was calculated as EA = Ee
-0.1T

 (element-wise operations). No 

noise was added to the sinogram. EA was reconstructed using filtered back 

projection (FBP) to obtain the phantom image with residual attenuation. The 

proposed low frequency correction methods were applied to test whether they 

could correct for the attenuation correction error. 

   

2. Simulating residual scatter:  The smoothed digital Hoffman brain phantom, D8, 

was forward-projected to obtain its emission sinogram (E). The scatter sinogram 

was approximated by smoothing E with a Gaussian filter (45 mm width and 15 

mm standard deviation). The smoothed sinogram was scaled by 0.15 to 

approximate a residual scatter sinogram (S). The sinogram with residual scatter 

was obtained (ES=E+S) and reconstructed using FBP to obtain the phantom image 

with residual scatter. The proposed low frequency correction methods were 

applied to test whether they could correct for the scatter correction error. 
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3. Simulation of residual attenuation and scatter: Both scatter and attenuation were 

simulated in the forward projected digital Hoffman brain phantom as mentioned 

above and a sinogram with both residual attenuation and scatter was obtained 

(EA+S = EA + S). The resultant sinogram (EA+S) was reconstructed using FBP and 

the proposed low frequency correction method was used to test its ability to 

remove the combined residual error. 

Figure 7.1 shows image slices of the additive and multiplicative factors 

obtained from the simulation study where the reconstructed image contains residual 

attenuation alone. The correction-factors are symmetric due to the symmetry 

constraint applied to the polynomial basis functions as attenuation errors are primarily 

multiplicative. The additive factor was very close to zero and the multiplicative factor 

is the major contributor to the correction. Panel C shows the profiles of the correction 

factors in the x-axis (medical lateral) for fixed y (anterior posterior) and z (inferior 

superior) locations. The application of the correction factors removed the attenuation 

error as seen by the phantom image profiles in Panel D. 

  

Figure 7.1: Low frequency correction factors for simulations with residual attenuation error alone. Panels 

A and B show the multiplicative and additive correction factors. Panel C shows a sample profile through 

the 3-D correction factors. Panel D shows the profiles of true (digital phantom), pre-corrected and post 

corrected phantom image data. 
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Figure 7.2 shows image slices of additive and multiplicative factors obtained from the 

simulation study where the reconstructed image contained residual scatter alone. Scatter 

being primarily though not entirely an additive error, the multiplicative factor was small 

while the additive factor was the major contributor to the correction. Panel C shows the 

profiles through the correction factor images. The application of the correction factors 

removes the scatter error as seen by the image profiles in Panel D. 

 

  

Figure 7.2: Low frequency correction factors for simulations with residual scatter error alone. Panels A 

and B show the multiplicative and additive correction factors. Panel C shows a sample profile of the 

correction factors. Panel D shows the profiles of true (digital phantom), pre-corrected and post corrected 

data. 

 

For the simulation case with both residual scatter and attenuation, both additive and 

multiplicative factors made significant contributions to the correction (Figure 7.3). Thus, 

the simulations show that the additive factor primarily encodes the scatter correction 

while the multiplicative factor primarily encodes the attenuation correction. 
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Figure 7.3: Low frequency correction factors for simulations with both residual scatter and attenuation 

errors. Panels A and B show the multiplicative and additive correction factors. Panel C shows a sample 

profile of the correction factors. Panel D shows the profiles of true (digital phantom), pre-corrected and 

post corrected data. 

 

7.5  Application of correction factors to phantom and human image 

data 

 

7.5.1 Phantom scans 

 

As mentioned earlier, human studies have both inter-subject as well as inter-

scanner differences. Since the same phantom was imaged at all participating sites, the 

phantom studies did not have any ―inter-subject‖ type variation. Thus, the differences in 

phantom scans are primarily due to scanner differences.  Since the correction factors were 

obtained from phantom scans themselves, application of correction factors to these same 

phantom scans will give a measure of the maximum reduction in variability possible from 

the methods described in this chapter. Differences in phantom scans were calculated for 

three groups: phantom scans with no correction, phantom scans after only high frequency 

correction and phantom scans after both high and subsequent low frequency correction. 
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The measure of the difference between a phantom image from scanner i and those from 

the other scanner types was obtained using the following metric: 

%RMSEi = 

2

1
2

1 N
i j

j i
j i

Y Y

N Y



           -  7.10 

iY is the vector of lexicographically arranged voxel values of an image from scanner i 

and N = 15 is the total number of scanner types. This metric for each scanner type is 

expected to decrease after the high frequency correction and then further after low 

frequency correction. The improvement in phantom images by the application of the 

correction factors can be seen in Figure 3. The 100% line is the variability in the first 

group (images with no correction). The high frequency correction reduces the variability 

by 20% – 50% (higher reduction for high resolution scanners). The low frequency 

correction further reduced the variability by 10% -15%. In spite of these two steps, 40% - 

60% residual variability is seen in the phantom scans. This can be attributed to three 

primary reasons: first, the affine low frequency correction term is a first order correction 

step and is not a complete model for low frequency variability. Second, a single 

smoothing kernel for high frequency correction was used for the entire image, which may 

not be optimal throughout the entire imaging volume. The remaining variability can be 

attributed to the differences in phantom orientation in scanner, misregistration error, non-

uniform mixing of 
18

F solution in the phantom and other technical errors. 
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Figure 7.4: Application of the correction factors derived from phantom data to phantom data itself. 

 

7.5.2 Human scans (Control subjects) 

   

Figure 7.5 Application of the correction factors derived from the phantom data to human normal scans. 
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For validation of the methods in human studies, the correction factors obtained 

from phantom scans were applied to a set of 95 normal subject scans obtained from 

various participating sites. The inter-scanner variability was calculated in the same way 

as in Figure 7.4 for three groups: normal subject scans without any correction, after high 

frequency correction alone and after both high and low frequency corrections using the 

metric in equation 7.10, with results shown in Figure 7.5.  

 

7.6  Discussion and Conclusion 

 

Similar to the results for phantom data, the high frequency correction reduces the 

variability between the normal control scans. The reduction in variability (15% – 25%) is 

less than that in phantom studies (Figure 7.4). This was expected as normal subjects, 

unlike phantom studies, have inter-subject differences. Application of the low frequency 

correction, however, did not bring about a further decrease in variability thus indicating 

that the low frequency correction factors obtained from the phantom scans were not 

appropriate for the human scans.  

There are two likely reasons for this result. First, human brains are ellipsoidal in 

shape while the Hoffman brain phantom on which the correction factors are based is 

cylindrical. Thus the correction factors based on a cylindrical phantom may well be 

inappropriate for a human brain scan. Second, human brain sizes are variable and hence a 

fixed pair of correction factors per scanner model applied to all the human scans was 

found to be insufficient. Thus, though the high frequency correction factors were found to 

reduce variability in the human data and are being used for all ADNI scans, more work is 

required for refining the approach for low frequency correction. The possible steps to 

attain improved low frequency correction factors are discussed in the final chapter 

detailing future work in this area (Section 8.2.5).  
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Chapter 8                                                                                

Summary and Future directions 

 

PET is used for clinical diagnosis and brain research and has been increasingly 

employed for drug development. The strength of PET is the high sensitivity to changes in 

in vivo pharmacology of biological systems. Success of a PET experiment depends on 

two primary aspects as we have seen in this thesis; accurate representation of the 

radiotracer distribution in tissue by the PET images and accurate extraction of 

pharmacological parameters from a dynamic series of PET images. This thesis 

contributes improved methods for both of these aspects of quantification. 

Traditional PET pharmacological studies involve drawing arterial samples from 

the subject which can be a major impediment. It is not only invasive for the subjects but 

also involves substantial additional work, requiring measurement and correction of for 

the fraction of radiolabeled metabolites in the plasma samples as well as being an 

additional source of error. The other limitation of traditional PET is the ability to measure 

only a single aspect of the subjects‘ pharmacological status in isolation, which may be 

insufficient to fully characterize their neurological condition. This thesis attempts to 

extend the existing noninvasive reference region approaches developed for single tracer 

scans to multiple neuropharmacological PET studies; thus providing a richer spectrum of 

biological information and making better use of scanner time, while at the same time 

avoiding arterial sampling.  

With an increase in the use of PET in multi-center research trails for studying the 

progression of neurological diseases and also in the pharmaceutical industry for 

performing clinical drug trails, the problem of inter-scanner variability has become more 

important. The quality of the conclusions drawn from these trials will depend on 
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minimizing this variability. In this thesis we have developed a framework for assessing 

and reducing the inter-scanner variability.  

8.1  Summary of results achieved 

 

 Statistical noise in PET time-activity curves is a cause of bias in the popular 

Logan plot method for estimation of DVR. The PCA-based smoothing technique 

developed in this work (Chapter 3) improved the receptor estimates by reducing bias 

without increasing variance. In simulation studies, nearly all of the 10% bias observed for 

TACs with a DVR equal to 5 was removed by the PCA-based Logan plot approach. In 

addition, there was an accompanying improvement in precision (Figure 3.6).  

The PCA-based Logan plot approach was found to be especially valuable in dual-

measurement intervention studies (Chapter 4) where bias was reduced in both control and 

challenge experiments without an increase in variance, demonstrating the method‘s 

higher sensitivity and specificity (Figures 4.3 and 4.4) than the original Logan plot as 

well as the other methods attempting to remove this bias.  

In chapters 5 and 6 we developed and validated two reference region based 

techniques (the extrapolation method and the simultaneous fitting method) for dual-tracer 

studies where tracers targeting two different pharmacological systems are injected during 

the same scan. The simulations in chapter 5 showed a bias for extrapolation method 

estimates, especially for the first tracer due to noise and limited duration of data prior to 

the injection of the second tracer. The simultaneous fitting method provided an 

improvement over the extrapolation method in terms of bias in the parameter estimates 

with a slight decrease in precision (Tables 5.3 and 5.4). For application of the dual-tracer 

methods in human data, adaptive smoothing of the dynamic PET data (section 6.4) 

reduced the bias and allowed generation of DVR images for both extrapolation and 

simultaneous fitting methods that were very close in quality to the ‗gold standard‘ single-

tracer images. Both dual-tracer approaches provided parameter estimates with inter-

subject regions-of-interest means within 10% of those obtained from single-tracer scans 

without any appreciable increase in variance.  

In chapter 7, we proposed correction methods having both high and low 

frequency components to reduce inter-scanner PET image variability in multi-center 
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trials. The high frequency and low frequency correction factors were obtained by 

comparing the Hoffman brain phantom scans to a digital representation of the phantom. 

The high frequency correction reduced the variability in the phantom scans by 20% – 

50% and low frequency correction further reduced the variability by 10% -15%. When 

the correction factors based on phantom scans were applied to human data from 95 

normal controls, the high frequency correction reduced variability by 15-25%. The 

application of low frequency correction factors, however, did not further reduce the 

variability but actually increased the variability by ~5%. It is likely that this lack of 

success in human scans is due to the cylindrical shape of the phantom used to determine 

the correction factors and insufficient simulation of factors such as out-of-field scatter as 

well as variable brain sizes and shapes. 

Various aspects of the work in this thesis that need improvement or further 

investigation are discussed next.  

 

8.2  Future directions 

 

8.2.1 Noninvasive studies in the absence of a reference region 

 

The move towards non-invasive reference region based approaches has been a 

motivation for this work. However, it must be noted that not all radiotracers developed 

have a brain region with negligible specific binding. In other words, there might be 

tracers with specific binding in all regions of the brain and hence no appropriate 

‗reference region‘ exists. There are ongoing efforts in the PET community to move 

towards noninvasive approaches in absence of an ideal reference region. One of the 

approaches proposed recently is the image-based measurement of the arterial plasma 

input function. In this approach, the radioactivity in the internal carotid artery within the 

image volume is used as a measure of input function (Sanabria-Bohórquez 2003).  

Exploration of methods along these lines is necessary to find noninvasive ways to 

analyze tracers that do not have usable reference regions. 
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8.2.2 Weighted PCA for bias reduction in Logan plots 

 

The PCA approach proposed in this work for reduction of bias in graphical Logan 

analysis uses an integral number of the components for fitting the PET TACs. Figure 3.6 

shows the bias variance trade-off based on the number of chosen principal components. 

This work can be extended to use fractional contributions from various components for 

fitting the TACs. Altering the contribution from the principal components can be used to 

trace a continuous bias-variance curve from PCA0 to PCA16 in Figure 3.6 thus allowing 

the possibility of constructing an improved estimator.  

8.2.3 Improved weighting for reference region approaches 

 

The weighting used for dual-tracer studies in this work was based on the 

traditional counting statistics model shown in equation 2.5. This model is based on the 

noise in the measured target region TACs but ignores the errors in the measurement of 

the reference region curve. Work on incorporating the errors in the input function for 

arterial sampling studies has been done in the past (Huesman 1984). It is important to 

incorporate the errors in the reference region measurements as well. Though the reference 

regions used in this work were relatively large (in excess of 500 voxels, > 5 ml), there 

might be cases where reference regions are small and errors in their measurements might 

introduce errors in the parameter estimates. A recent conference abstract (Normandin and 

Morris 2008) proposes the following modification to equation 2.5 for the normalized 

variance of at frame j: 
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where, R1 is the transport parameter from the full reference tissue model, yr(Tj) is the 

reference tissue curve and nr is the number of pixels that are averaged to get the reference 

tissue curve yr(Tj). The incorporation of this approach might significantly improve for 

parameter estimation in tracers with small reference regions. 
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8.2.4 Further improvement of dual-tracer studies 

 

Dual-tracer PET studies can provide information on two different 

pharmacological systems and have been shown in this thesis to give results very close in 

overall quality to single tracer PET studies. However, the protocol may be further 

improved by performing the following studies:  

 

1. Optimal dose split:  

Due to count rate limitations of the scanner and the total radiation dose limit in 

human subjects, we are restricted in the total number of mCi that can be administered. 

The studies reported in this work used a protocol where the injected dose was split 

equally between the two tracers. The present work can be extended by performing 

optimization studies to determine the optimal split of the total dose between the two 

tracers to achieve the lowest bias and variance for any given tracer combination. This 

has been done for arterial sampling approach and was found to be ~50:50 (Koeppe et 

al. 2001), but the optimal dose may be different for the reference region approach. 

 

2. Tracers with different half lives:  

Both tracers used in this work were labeled with 
11

C. Dual-tracer simulation 

studies of radioisotopes with longer half lives (e.g., 
18

F) as well as studies with a 

combination of short and long half life tracers might be useful in further exploring the 

applicability of the methods proposed here.  

The dual-tracer signal from tracers with the same half life can be corrected for 

decay (See Figure 6.1 and 6.2). However, decay correction is not possible for the 

dual-tracer signal from tracers with different half lives, since a global correction 

factor can no longer be applied. Instead, incorporation of the decay constant of each 

radiotracer into the compartmental model itself will be required (similar to that in 

(Huang et al. 1982)).  

It must be noted that though 
18

F tracers might be expected to contribute a smaller 

noise component to the total dual-tracer signal, the longer half life would limit the 

injected activity of the 
18

F tracer, thus potentially nullifying the advantage of longer 

half life.  
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Another aspect needing investigation is the order of injection for tracers with 

different half lives. The extrapolation method might be a good analysis method for 

studies where the 
11

C tracer is injected first, as higher initial activity is possible due to 

the shorter half life, thus allowing for better statistics early in the scan. Furthermore, 

the contribution of the faster decaying 
11

C tracer to the total dual-tracer signal 

decreases over-time thus allowing more accurate extraction of the 
18

F curve.  

If, however, the 
18

F tracer is injected first, the dual-tracer signal will have 

significant contributions from both tracers following the second injection due to the 

slow decay of 
18

F and the higher injected activity of 
11

C. This approach would most 

likely necessitate the employment of the simultaneous fitting method. Furthermore, 

this injection order may have the added advantage of allowing the model parameters 

for both tracers to be estimated from a range of data that has a greater temporal 

overlap. 

 

8.2.5  Improvements in low frequency correction for inter-scanner 

variability reduction 

 

1. Human-like phantom based correction factors:  

A likely cause for the lack of success in applying Hoffman brain phantom-derived 

low frequency correction factors in chapter 7 is the cylindrical shape of the phantom 

(with no skull or neck) which is very different from the ellipsoidal shape of the 

human brain, which is connected to the rest of the body. Since the low frequency 

correction factors minimize the residual scatter and attenuation, both of which are 

geometry dependent phenomena, a more realistic humanoid phantom would allow a 

better choice for obtaining improved correction factors. At the same time, a more 

realistic torso phantom should also be used to simulate the out-of-field scatter. 

 

2. Adaptation of correction factors to individual brain sizes:  

The inter-subject variability in humans includes differences in brain sizes as well 

as anatomical aspects of the brain. Since brain sizes are different for different 

subjects, the extent of attenuation and scatter is also different. Thus, application of the 
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same phantom-derived correction factors to all the human scans from a particular 

scanner model is not optimal. Simulation studies need to be performed to study the 

effect of brain size on the correction factors, with the goal of developing 

individualized correction factors.  
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