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ABSTRACT

TRUE SPATIO-TEMPORAL DETECTION AND ESTIMATION FOR
FUNCTIONAL MAGNETIC RESONANCE IMAGING

by

Joonki Noh

Co-Chairs: Victor Solo and Jeffrey A. Fessler

The development of fast imaging in magnetic resonance imaging (MRI) makes

it possible for researchers in various fields to investigate functional activities of the

human brain with a unique combination of high spatial and temporal resolution. A

significant task in functional MRI data analysis is to develop a detection statistic

for activation, showing subject’s localized brain responses to pre-specified stimuli.

With rare exceptions in FMRI, these detection statistics have been derived from

a measurement model under two main assumptions: spatial independence and

space-time separability of background noise.

One of the main goals of this thesis is to remove these assumptions which have

been widely used in existing approaches. This thesis makes three main contributions:

(1) a development of a detection statistic based on a spatiotemporally correlated noise

model without space-time separability, (2) signal and noise modeling to implement

the proposed detection statistic, (3) a development of a detection statistic that is



robust to signal-to-noise ratio (SNR), Rician activation detection.

For the first time in FMRI, we develop a properly formulated spatiotemporal

detection statistic for activation, based on a spatiotemporally correlated noise model

without space-time separability. The implementation of the developed detection

statistic requires joint signal and noise modeling in three or four dimensions, which

is non-trivial statistical model estimation. We complete the implementation with the

parametric cepstrum, allowing dramatic reduction of computations in model fitting.

These two are totally new contributions to FMRI data analysis. As byproducts, a

novel test procedure for space-time separability is proposed and its asymptotic power

is analyzed. The developed detection statistic and conventional statistics involving

spatial smoothing by Gaussian kernel are compared through a model comparison

technique and asymptotic relative efficiency.

Most methods in FMRI data analysis are based on magnitude voxel time courses

and their approximation by a Gaussian distribution. Since the magnitude images, in

fact, obey Rician distribution and the Gaussian approximation is valid under a high

SNR assumption, Gaussian modeling may perform poorly when SNR is low. In this

thesis, we develop a detection statistic from a Rician distributed model, allowing a

robust activation detection regardless of SNR.



CHAPTER 1

Introduction to FMRI Data Analysis

1.1 Overview

In the human body, the brain is probably the most complicated and the least un-

derstood organ in spite of the developments in science. Due to recent technological

advances made in the last decade of the 20th century, we have dramatically broad-

ened and deepened our understandings of the human brain. Especially, the advent of

brain imaging techniques allows researchers to study a healthy and living human sub-

ject while the subject’s brain is functioning and performing cognitive tasks without

the need for surgery. Among proposed brain imaging techniques, positron emission

tomography (PET) and functional magnetic resonance imaging (FMRI) have been

found useful and widely used for the investigation of the brain. To investigate func-

tions of the brain using PET, a radioactive tracer, e.g., [15O]H2O is injected into

subject’s blood vessel and the changes of regional cerebral blood flow (rCBF) in the

brain induced by given cognitive tasks are directly measured. Although PET is non-

invasive, it involves exposure to ionizing radiation and has poor spatial resolution.

A dominant contrast mechanism used in FMRI is the blood oxygenation level

dependent (BOLD) contrast, which is known as the result of complex interactions

between localized changes in cerebral blood flow, cerebral blood volume, metabolism,
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and blood oxygenation level caused by neuronal activities. The difference of mag-

netic susceptibilities of hemoglobins in different oxygenation states causes regional

distortion of an MR decaying parameter T ∗
2 , leading to the changes in the intensity

of an MR image. The localized signal changes observed through this BOLD contrast

occurs in the range of several seconds and the rapid acquisition of images allows

visualization of interesting brain dynamics. Another contrast mechanism used in

FMRI is the perfusion contrast by arterial spin labeling (ASL), using magnetically

labeled arterial blood water to measure rCBF. The BOLD-based FMRI measures

the changes of T ∗
2 indirectly reflecting the changes in rCBF, whereas the ASL-based

FMRI measures the changes of T1 reflecting the changes in rCBF. For readable in-

troductory materials to brain mapping with FMRI, the reader is referred to [10] and

[12].

A typical blocked experiment in FMRI consists of two conditions, a functional

condition inducing neuronal activities on certain regions in the human brain and

a rest condition. In a simple experiment, when a visual stimulus is presented to a

subject in an MRI scanner, the functional condition involves visual fixation on a flick-

ering checkerboard image and the rest condition involves fixation on a non-flickering

image, e.g., an image with a cross sign at the center. Typically, these two condi-

tions are repeated during the experiment. This repetition, namely a pre-specified

temporal stimulus, is usually described as a periodic pulse, a sequence of an ”on-

off” pattern, in which ”on” indicates the functional condition and ”off” represents

the rest condition. As an alternative to the simple blocked design, an event-related

FMRI experiment in which multiple simple stimuli are given to a subject during an

experiment has been developed [14, 43].

While the subject in the MRI scanner is responding to the given stimuli, a se-
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quence of images reflecting functional activities of the subject’s brain is taken in

rapid succession, usually every second. The sequence of images obtained by the ex-

periment has four dimensions (4D), which consist of three spatial dimensions (3D)

and one temporal dimension (1D). The basic element of these 3D images is called

a voxel and a two-dimensional (2D) cross section of a 3D image is called a slice. A

2D slice is typically shown on x-y plane and different slices are denoted by different

z coordinates. After the image reconstruction is done by inverse Fourier transform

or its equivalent iterative methods, several operations in the pre-processing step are

performed before FMRI data analysis. For example, since each slice in a 3D image is

acquired at a different time, slice timing correction is necessary, usually done by tem-

poral interpolation. The image registration to match the collected images containing

subject’s functional activities to a high resolution structural image of the subject,

typically a T1 weighted image, and the correction for motion artifacts are required

as well before performing data analysis. The image normalization to transform the

collected functional images into the standard Talairach space is also necessary in the

case of multi-subject experiments.

It is known that the signal changes on MR images observed through the BOLD

contrast between the functional state and the rest state is typically very small, from

2-5% at 1.5T, a moderate magnetic field strength, to approximately 15% at 4T, a

strong magnetic field strength [12]. Therefore to obtain statistically valid results from

FMRI observations such as an activation map to show localized responses of subject’s

brain to presented tasks, sophisticated and carefully designed statistical procedures

are required. In FMRI data analysis, many statistical methods have been proposed

until now, which can be categorized into two types, a model-driven approach and a

data-driven approach. In the model-driven method, a model is assumed and FMRI
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measurements are fitted to that model. Using statistical hypothesis testing based on

the fitted model, conclusions can be drawn. Since techniques in time series analysis

have been applied to voxel time courses, the model-driven method is also known as a

univoxel approach. In the data-driven method, no underlying model is assumed and

some meaningful spatial or temporal components in the measurements are searched.

These found components are expected to associate with some physiological processes

of interest in the brain. The data-driven approach is useful when an appropriate

model generating data is not available. However, computational demand is usually

high and interpretations are not easily made from obtained results by the data-driven

method. Among several data-driven methods, principal component analysis (PCA)

and independent component analysis (ICA) serve as important roles in FMRI data

analysis.

With rare exceptions, most of proposed methods, including model-driven and

data-driven approaches, have been derived from a spatial independence assumption

with implicit space and time separability. In this thesis, our attention focuses on

the model-driven approach for a single subject. We now introduce important and

challenging tasks in FMRI data analysis with the contributions of this thesis.

1.2 Challenging Tasks

1.2.1 Spatio-Temporal Detection Statistics

One of the most significant tasks in FMRI data analysis is probably creating an

activation map to show localized brain responses to pre-specified temporal stimuli.

This task is typically called ”the activation study”. Activation map is just a spatial

plot of a detection statistic built up from a statistical hypothesis testing that can

be conceptually described as follows. Suppose that we have voxels in a region of
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interest (ROI) and are interested in whether a particular voxel in the ROI is activated

while the subject is performing given tasks. Then, we need to test if the collected

data provide enough evidences to support the null hypothesis H0 or the alternative

hypothesis H1, where

H0 : the particular voxel is not activated, (1.1)

H1 : the particular voxel is activated,

by given temporal stimuli. Now, we have an important question: how do we construct

detection statistics for activation ?

To make a decision about the activation hypotheses, a thresholding rule is usually

applied to obtained detection statistics. If we have an observation yv at a voxel

location v, called voxel time course, then the decision rule is

Φ(yv) =





1 , if Tv > γ(α)

0 , otherwise

, (1.2)

where Tv is a detection statistic based on the hypotheses in (1.1) and γ(α) is a

threshold for a given significance level α, i.e., Type I error. By computing detec-

tion statistics over all voxels in a ROI and thresholding them with γ(α), we cre-

ate a thresholded activation map, also known as a binary activation map. In the

thresholded activation map, 1 is assigned to activated voxels and 0 is assigned to

non-activated ones. Fig. 1.1 shows examples of two thresholded activation maps

from different BOLD response modelings, parametric approach and FIR approach,

rendered onto different anatomical views of the human brain. On Fig 1.1, red spots

indicates that those voxels are activated, thus 1s are assigned to them. Notice that

two methods show slightly different thresholded activation maps, indicating sophis-

ticated statistical modeling is required in the activation study.
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(a) Parametric approach (b) FIR approach

Figure 1.1: Examples of thresholded activation maps using two different BOLD response
modelings : (a) parametric approach with a canonical hemodynamic response
function and (b) FIR approach. Activation maps are generated from statistical
parametric mapping (SPM) by simple regression models. For details of the
BOLD response modeling, refer to section 1.3.2.

In Chapter 2, we review a standard approach to build up a detection statistic

which only focuses on temporal aspects of voxel time courses under the implicit

assumption of space-time separability. As a matter of fact, with rare exceptions, most

previously proposed approaches have two main assumptions: spatial independence

and space-time separability. Then, we introduce a new method to construct

a detection statistic, jointly considering spatial and temporal correlations without

space-time separability in Chapter 3. The removal of two assumptions which have

been dominantly used is one of the main contributions of this thesis. Under the

space and time separability, it will be shown that the new detection statistic has a

simplified form and allows more intuitive interpretations, naturally leading to the
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conclusion that a spatial whitening operation is needed instead of spatial smoothing

by a Gaussian kernel (SSK).

1.2.2 Spatio-Temporal Signal and Noise Modeling

Since measurements available for FMRI data analysis are spatiotemporal, a se-

quence of images, to build up a proper activation statistic, spatiotemporal signal

and noise modeling is required. However, in multi dimensions, e.g., three dimensions

or four dimensions in FMRI, since the fundamental theorem of algebra does not

hold as in one-dimensional temporal case, noise modeling is a even more challenging

problem than signal modeling. Thus, now we have an important question: how do

we perform signal and noise modeling, in other words, how do we implement the

constructed detection statistic for activation ?

To model spatial and temporal correlations, one possible approach is parametric

spectral estimation, thus we need to estimate spatiotemporal power spectral density

(PSD), i.e., spatiotemporal autocorrelation function (ACF). For this purpose, one

natural approach would be using a spatiotemporal autoregressive (AR) based model

which requires very complicated computations due to the non-linearity of asymptotic

likelihood function. In multi dimensions, there does not exist an efficient algorithm

like Levinson-Durbin algorithm in time series.

A simplest way to avoid this demanding task is assuming spatial independence as

in conventional noise modeling approaches. However, the assumption of spatial in-

dependence is not supported by knowledge in neuroscience and physiology. Instead

of AR-based model or ARMA model, in this thesis, the parametric cepstrum will

be used to model spatial and temporal correlation, which allows several advantages,

e.g., linear model fitting and linear description of space-time separability, over the
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conventional AR-based modeling. Details will be given in Chapter 4.

1.2.3 Family-Wise Error Rate Control

Since there are typically a large amount of voxels in a ROI, e.g., more than 4000

in a 64 × 64 image, controlling overall error rate is a multiple comparison problem

(MCP). A widely used controlling measure is family-wise error (FWE) rate. The

definition and an equivalent expression of FWE rate are given by, under H0 (no

activation),

FWE , Pr

(
M−1⋃

v=0

{Tv > γ(α)}
∣∣∣∣ H0

)
= Pr

(
max

v
Tv > γ(α)

∣∣∣∣ H0

)
, (1.3)

where Tv is a detection statistic at a voxel v(= 0, . . . ,M −1), M denotes the number

of voxels in a ROI, and γ(α) is a threshold determined by a given significance level

α, typically set to 0.05 in FMRI. Note that spatial correlation in an observed dataset

induces spatial correlation of the detection statistic Tv. Since there is no closed form

solution for the maximum distribution of Tv in the presence of spatial correlation,

the statistical dependence between Tvs at different spatial locations introduces the

main obstacle in MCP. Now, we have an important question: how do we compute a

threshold γ(α) for a given significance level α ?

To control FWE in the presence of spatial correlation, a number of approaches

have been proposed in FMRI so far. The most traditional method is Bonferroni

correction which usually gives too conservative results. This conservativeness caused

by Bonferroni correction becomes more severe when the spatial correlation of Tv

becomes stronger. An alternative method suggested by [65] is random field theory

(RFT), approximating the maximum distribution of Tv for a high value of γ(α).

However, RFT requires assumptions on measured data, e.g., spatial smoothness of

the observed data, which is against evidences in neuroscience. Details about RFT
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and spatial smoothing by a Gaussian kernel (SSK) to satisfy the requirements of

RFT will be discussed in Chapter 2. As an alternative measure to FWE, false dis-

covery rate (FDR) has been used with permutation test (PT) [38].

One advantage of the detection statistic proposed in this thesis is the simplifica-

tion of the step for FWE rate control. Since the proposed detection statistic involves

spatiotemporal whitening operation, detection statistics at different locations are

asymptotically independent, thus not requiring complicated methods such as RFT.

For details, refer to Chapter 3.

1.2.4 Space-Time Separability

Since space-time separability assumption allows a considerable amount of sim-

plifications in analyzing and modeling of FMRI measurements, it has been assumed

and applied to most of developed techniques for data analysis without the proper

justifications. This assumption can be found in other literatures. For example in

electromagnetism, to solve Maxwell’s equations, the space-time separability has been

usually assumed and given physically satisfactory solutions.

Conceptually, space-time separability implies that pure spatial operations and

temporal operations can be separately applied to FMRI measurements to detect

activations properly. For example, in SPM that is a widely used software package

for FMRI data analysis, spatial smoothing by Gaussian kernel (SSK), a pure spa-

tial operation, is first applied to the collected dataset. Then, general linear model

(GLM), leading to purely temporal filtering, is sequentially performed to build up

an activation map through t-test or F -test. For given data, however, the validity of

the separability assumption is unknown without a proper test for it. To the best of

author’s knowledge, any testing for the space-time separability has so far not been
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treated properly in FMRI.

In the temporal frequency and spatial wave-number domain, space-time sepa-

rability is defined in the following multiplicative form:

Fk,l = FkGl, (1.4)

where Fk,l denotes a spatiotemporal PSD, Fk is a pure temporal PSD, and Gl is a

pure spatial PSD. A non-linearity of the space-time separability causes difficulty to

develop a testing procedure for it. Now, we have an important question: how do we

develop a test procedure for testing the space-time separability ?

We tackle this problem with the parametric cepstrum, since the space and time

separability can be linearly described in the cepstral domain. One of the main

contributions of this thesis is the development of space-time separability test and

the analysis of the asymptotic power of the proposed separability test procedure for

the first time in FMRI. In simulation and application to real data, it is shown that our

separability test works properly. In addition, it turns out that the derived asymptotic

power function involves cepstral coefficients only in the non-separable region, that

are parameters of interest, and is independent of nuisance parameters such as drift

and activation amplitudes. We discuss the details of the proposed separability test

in Chapter 5.

1.2.5 Comparison of Competing Approaches

Another important task in FMRI data analysis is how to construct appropriate

methods to compare different approaches to build up activation maps. Although

many statistical methods for activation detection have been suggested in FMRI, the

construction of an appropriate comparison criterion to rank different approaches have

not attracted much attention. One example of ad hoc and naive ideas is to compare
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two approaches by looking at two generated activation maps, and then to claim that

a method to have more smooth activation shapes (before thresholding) or to show

more activation spots (after thresholding) is better. However, both claims can be

significantly misleading. In this thesis, we suggest two methods for the comparison

of different approaches to make activation statistics. The first is based on a model

comparison technique, Akaike information criterion. The second is a method to

compare the efficiencies of competing detection statistics for a given significance

level and a detection power.

Model Comparison

We construct a properly formulated model comparison criterion using Akaike

information criterion (AIC), which consists of a term measuring model fit and a term

measuring model complexity. The AIC measures average discrepancy, an estimate

of expected Kullback-Leibler (KL) distance, between fitted model and underlying

unknown truth [57, 32]. Therefore, if AIC value from one model are substantially

lower than that from another model, then one is on average much closer to the

underlying truth than the other. Model selection can be dealt with as a special

case of model comparison. To show localized discrepancy between fitted models and

underlying noise-free truth, AIC maps, which are newly introduced in this thesis, are

defined and compared. Details will be given in Chapter 4.

Performance Comparison of Detection Statistics

A well known method to compare two competing detection statistics is receiver

operating characteristic (ROC) curve. In ROC curves, we can compare powers of

detection statistics for a given false alarm rate. The comparison of an existing de-

tection statistic involving spatial smoothing by Gaussian kernel and the proposed

11



detection statistic is performed with ROC curves in Chapter 3.

Another possibility is to measure asymptotic relative efficiency of competing de-

tection statistics. The philosophy behind asymptotic relative efficiency (ARE) is to

measure relative sample sizes of two detection statistics to achieve a given power for

a fixed false alarm rate. In FMRI data analysis, a more efficient test procedure in the

sense of ARE reduces experiment time to achieve the same detection power than a

less efficient test procedure, thus allowing several advantages, e.g., subject’s reduced

exposure time to strong magnetic fields. We derive ARE of an existing detection

statistic involving spatial smoothing and the proposed detection statistic involving

spatial whitening in Chapter 6. This asymptotic comparison is also new in FMRI

data analysis.

1.2.6 Rician Modeling and Activation Detection

Most statistical methods for FMRI data analysis are based on magnitude voxel

time courses and their approximation by a Gaussian distribution. As a matter of

fact, since the magnitude images are originally produced from complex valued data,

they obey a Rician distribution. A Rician probability density function (PDF) can be

approximated as a Gaussian PDF under the assumption of high signal to noise ratio

(SNR). Therefore, statistical methods based on the approximated Gaussian modeling

may perform poorly when the SNR is low. It is known that high SNR assumption

typically works well for FMRI data analysis with the BOLD response until now.

However, because of two reasons, we need Rician modeling which is SNR robust

and Rician activation detection. Firstly, it is known that there is a fundamental

tradeoff between SNR and spatial resolution. There have been many researches in

FMRI whose main goal is to improve spatial resolution for obtaining more exact
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information about the brain, decreasing SNRs of voxels in a ROI. Secondly, even in

images with a moderate spatial resolution, it is known that there may exist some

regions in the brain which have significant signal dropouts, inducing that SNRs on

those regions decrease. In addition, it is known that SNRs are not sufficiently high to

apply a Gaussian approximation to a Rician distribution in approaches using non-

BOLD contrast mechanisms, e.g., ASL-based FMRI. However, since Rician PDF

involves the zeroth order modified Bessel function, parameter estimation by directly

maximizing Rician log-likelihood function has been known to be non-trivial.

One of the main contributions of this thesis is developing a method to estimate

parameters from a Rician distributed model through expectation-maximization (EM)

algorithm, working properly regardless of underlying SNRs. Based on this SNR

robust modeling, we can make any statistical inference, e.g., hypothesis testing for

activation detection. Details of estimating parameters of interest and constructing

a detection statistic from Rician distributed model are provided in Chapter 7. In

addition, we analyze the asymptotic power of the proposed detection statistic for

activation derived from a Rician distributed model there as well in Chapter 7.
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1.3 Signal and Noise Model Formulation

We consider a real-valued measurement model which has the following additive

form at a time point t and a voxel location v:

yt,v = dt,v + st,v + wt,v, (1.5)

where dt,v denotes drift slowly varying along time, st,v means a signal component

which we are interested in, the BOLD response, and wt,v denotes a zero mean random

field, assumed to be a spatially and temporally correlated stationary Gaussian noise.

The BOLD response st,v models the brain response to the given temporal stimuli

during the experiment. For integer-valued t and v, we assume that yt,v is observed

from a rectangular region of interest, {0, . . . , T −1}×{0, . . . ,M −1}, where T is the

number of time points and M is the number of voxels in a ROI. Detailed models of

these three terms will be given in the following sections.

1.3.1 Drift Model

We first model the slowly varying drift. The simplest model using a temporal

polynomial consists of two pieces,

dt,v = mv + bvt, (1.6)

where mv is baseline and bvt is linear drift, which are needed to model uncorrected

motion artifacts and magnetic field inhomogeneity in a MR scanner. This can be

easily extended to more complicated models. For example, a temporal polynomial

with a high order or temporal sinusoids with low temporal frequencies can be con-

sidered. We have found that the linear drift is reasonably adequate [39]. In practice,

it is known that the baseline dominates the temporal linear drift.
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1.3.2 BOLD Response Model

Since the BOLD response is our main concern, an exact and simple model for

it is necessary to model the observed signal as accurately as possible and to reduce

computations. However, it’s usually difficult to achieve these two goals simultane-

ously. A simple model tends to give biased estimates, and complex models are likely

to give estimates with large variance and heavy computational load. Thus, a rea-

sonable tradeoff is necessary. Our main focus will be on linear models for the BOLD

response, i.e., the BOLD contrast is assumed linearly related to given stimuli. It

is shown that the linear modeling is accurate to the first order [5]. We now review

several linear models for the BOLD response.

The Parametric Approach

In the past, several approaches were proposed for modeling the BOLD response,

st,v. The simplest one is so called the parametric approach in which the BOLD

response is simply represented as st,v = (h ∗ c)tfv with a canonical hemodynamic

response function (HRF), ht and a scalar activation amplitude, fv [11]. ct denotes a

temporal stimulus and ht is fully specified and based loosely on experimental studies,

namely;

ht = k t8.6exp(−t/0.546), (1.7)

where k is a scaling factor to satisfy
∑
h2

t = 1. This parsimonious parametric

approach does not have enough flexibility. If ht is not well matched to a particular

dataset, the parametric approach shows poor performance, giving biased estimates

of fv and misleading activation detection. In fact, it is known that the canonical

HRF is usually biased whereas nonparametric basis methods have much lower bias.
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FIR Basis

For more flexible BOLD response modeling, subspace modeling has been used.

In subspace modeling, the BOLD response is assumed to live in a space spanned by

a set of basis functions. FIR approach is an example which has been used in FMRI

[26, 9]. In the FIR approach, st,v is modeled as the output of a FIR filter of a given

order excited by an given input stimulus. The mathematical expression of the FIR

approach is given by

st,v =

p−1∑

i=0

ct−ifi,v, (1.8)

where fi,v denotes the i-th coefficient of a FIR filter and p is the order of the FIR

filter at each voxel. In other words, the BOLD response is represented as a weighted

linear combination of shifted temporal stimuli. Although the FIR approach provides

flexibility and reduces biases, a high order FIR filter is typically necessary, decreasing

the accuracy of parameter estimation [9]. In addition, as the number of voxels in a

ROI increases, computational demands for parameter estimation and model selection

to determine p sharply increases.

Laguerre Basis

An alternative method belonging to subspace modeling was recently developed

for the BOLD response modeling. Laguerre polynomials were suggested to provide

a set of basis functions to make an accurate and compact modeling of the BOLD

response [56].

The Laguerre modeling is expressed as follows.

st,v =

q∑

i=1

ξi,tfi,v, (1.9)

where ξi,t is the i-th temporal basis function obtained from the i-th Laguerre function,

fi,v denotes the i-th weight associated with ξi,t at a particular voxel v, and q is

16



the model order. The method based on Laguerre polynomials usually needs 2-3

coefficients while the FIR approach requires 15-20 coefficients. Thus, using Laguerre

basis, we can have an accurate and compact model for the BOLD response. The

Laguerre functions are generated by the following inverse Z transformation:

ha
i,t , Z−1

[
z−1

1− az−1
·
(
z−1 − a
1− az−1

)i−1
]
, (1.10)

where a denotes a time constant to control decaying of Laguerre functions. Then, the

temporal basis function ξi,t can be obtained by the convolution of ha
i,t with temporal

stimulus, that is ξi,t , ha
i,t ∗ ct. Two crucial features of the basis functions obtained

from Laguerre polynomials are that it ensures temporal causality and allows linear

fitting [48]. For detailed discussions about the system identification with Laguerre

polynomials, the reader is referred to [61].

A Generalized Expression

A generalized representation of st,v covering the above mentioned three methods,

the parametric approach, FIR approach, and Laguerre modeling, is given by

st,v =

(
L∑

i=1

hi,tfi,v

)
∗ ct ,

L∑

i=1

ξi,tfi,v, (1.11)

where L is the number of basis functions, hi,t means the i-th temporal basis function,

and fi,v represents the associated activation amplitude. Plugging (1.6) and (1.11)

into (1.5) yields a compact and parameterized measurement model,

yt,v = mv + bvt+
L∑

i=1

ξi,tfi,v + wt,v,

= XT
t βv + ξT

t fv + wt,v, (1.12)

where Xt , [1, t]T , βv , [mv, bv]
T , ξt , [ξ1,t, . . . , ξL,t]

T , and fv , [f1,v, . . . , fL,v]
T . The

first term contains nuisance signal components such as temporally varying drift and

17



models temporal non-stationary behaviors of FMRI measurements from the human

brain. The second term represents the signal component, e.g., the BOLD response we

are mainly interested in. These two terms are assumed deterministic but unknown.

The last term denotes a spatiotemporal colored random noise that we discuss in the

following section. In this thesis, we use this generalized model formulation.

1.3.3 Noise Model

Based on empirical evidences from the rest condition of the brain, the noise has

been assumed to be generated from two independent sources. The first one is back-

ground noise from an MR scanner and the second one is physiological noise from low

frequency hemodynamic fluctuations in the brain, which are not fully understood in

neuroscience until now. This physiological noise is possibly related to background

processes in the brain, as well as cardiac and respiratory fluctuations. In most cases,

the cardiac and respiratory influences account for a small portion of the observed

variabilities, because these are usually filtered out by preprocessing, e.g., high-pass

filtering. The MR scanner noise can be modeled as a white noise and the physio-

logical noise can be modeled as a spatiotemporally colored noise. There could be

other sources of spatiotemporal correlation. For example, the image reconstruction

performed in discrete k-space and techniques used to correct motion artifacts can

induce spatial correlation.

Conventional Noise Model under Spatial Independence

By assuming spatial independence of noise in FMRI measurements, a substantial

amount of simplification is made. Now, we can separately model and analyze each

voxel time course using techniques developed in the time series literature. Under

spatial independence, noise models based on autoregressive (AR) processes are widely
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used in FMRI [39, 8, 33]. For example, [39] exploits an AR(1) process plus white

noise, equivalent to an ARMA(1,1) process, which is described as follows. For a

given voxel position v,

wt,v = ut,v + ǫt,v, (1.13)

ut,v = ϕvut−1,v + δt,v, (1.14)

where ǫt,v ∼ N (0, σ2
ǫv

), δt,v ∼ N (0, σ2
δv

), and ǫt,v and δt,v are statistically independent.

ϕv is a coefficient for an AR(1) process. Note that this noise modeling is also under

the assumption of space-time separability as other conventional noise modelings. By

Wold’s decomposition theorem, it can be shown that an ARMA(1,1) process has an

equivalent expression as an AR(p) process of high order p > 1 [31].

Noise Model with Spatial and Temporal Correlations

Conventional approaches to describe noise in FMRI involve AR-based models as

mentioned above, whereas a different class of models are used in this thesis to effi-

ciently deal with spatial and temporal correlations without space-time separability.

Our noise modeling approach is unusual and based on a truncated cepstrum expan-

sion, but it allows several advantages over the conventional AR-based methods [55].

For example, the parametric cepstrum allows dramatic reduction of computations in

modeling fitting. The parametric cepstrum is defined by truncating a Fourier series

expansion of the logarithm of PSD as follows.

For temporal frequency k(= 0, . . . , T−1) and spatial wave-number l(= 0, . . . ,M−1),

logFk,l =
n∑

t=−n

p∑

v=−p

θt,ve
−j(ωkt+λlv) , xT

k,lθ, (1.15)

where Fk,l is PSD, ωk , 2πk
T

, and λl , 2πl
M

. θt,v is called cepstrum, also known as

cepstral coefficient at a time t and a spatial location v. In the last equality, θ denotes
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a vector containing lexicographically ordered cepstral coefficients and xk,l is a vector

consisting of the associated cosine terms. Details of noise modeling by the parametric

cepstrum are given in Chapter 4, in which the model order will be determined by

model selection criterion.
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CHAPTER 2

Background : Standard Approach and Previous Works on
Spatio-Temporal Modeling

In this chapter, we review conventional data analysis methods widely used in

FMRI and some previous works on spatiotemporal modeling. The conventional data

analysis methods involve spatial smoothing by a Gaussian kernel (SSK) and dy-

namic linear model (DLM), also known as general linear model (GLM). Section 2.1

describes a underlying model, methods to estimate parameters of interest, and how

to construct a detection statistic for activation in standard approaches. In section

2.2, a standard method to control FWE rate with random field theory (RFT) is

briefly reviewed. Section 2.3 has some previous works on spatiotemporal modeling.

Chapter conclusions will be drawn in section 2.4.

2.1 Classical Statistics for Activation Detection : SSK-DLM

Widely used conventional approaches involving SSK and DLM have a common

underlying model different from our model formulation in (4.2). The underlying

model is given by, for a time point t and a voxel location v,

yt,v = XT
t βv + ξT

t f
G
v + ηt,v, (2.1)
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where fG
v is a Gaussian amplitude activation and ηt,v is a temporally correlated but

spatial independent stationary Gaussian field [67]. Other terms are the same as those

in (4.2). Two main differences from our model formulation should be emphasized

here. Firstly, our model formulation does not impose any assumption for activation

amplitude fv, whereas the conventional model assumes that activation amplitude

has a Gaussian shape, fG
v , artificially forcing smooth activations. Secondly, our

model in (4.2) consider spatial correlation without space-time separability, whereas

the conventional model ignores spatial correlation caused by physiological noise with

the implicitly assumed space-time separability. These two key assumptions on the

activation amplitude and on spatial independence play important roles to derive a

detection statistic in conventional approaches as we now discuss details.

2.1.1 Spatial Smoothing by Gaussian Kernel (SSK)

The SSK is one of the main techniques used to create a detection statistic in

conventional data analysis methods. The SSK simply means application of a Gaus-

sian amplitude kernel to observed FMRI images, which is sometimes though of as a

pre-processing step before DLM performed to build up a detection statistic for acti-

vation. As a matter of fact, it will be shown below that SSK is needed to increase

detectibility of assumed Gaussian amplitude activations fG
v . In D-dimensional space,

an isotropic Gaussian amplitude kernel is defined as follows.

Definition 2.1 (D-dimensional isotropic Gaussian amplitude kernel).

φσ(x) , (2πσ2)
−D/2

exp

(
−‖x‖

2

2σ2

)
, (2.2)

where ‖x‖ is the 2-norm of a D-dimensional vector x and σ determines the width of

the kernel.
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The width of a Gaussian amplitude kernel is usually expressed in terms of full width

half maximum (FWHM) defined as a distance between two points whose values of a

kernel are the half of the value at the origin. We have a simple relation between σ and

FWHM, that is, FWHM = σ
√

8 log 2 in one direction. For an anisotropic Gaussian

kernel, a FWHM in each direction can be similarly defined by an associated width. A

3D Gaussian amplitude kernel is used for volumetric data and 2D kernel is for cross-

sectional slices. The Gaussian kernel has an attractive property, that the convolution

of two Gaussian kernels gives another Gaussian kernel, namely,

φσ1(x) ∗ φσ2(x) = φ√
σ2
1+σ2

2
(x).

Activation Amplitude Model

Using a Gaussian kernel, a very simple activation amplitude model was suggested

[67]. Based on this activation amplitude model, ignoring nuisance signal components,

e.g., baseline and linear drift, a measurement at a fixed time point was defined as

follows. For a spatial location x,

observation︷︸︸︷
y(x) = [hG · (2πσ2

S)
D/2

φσS
(x)︸ ︷︷ ︸

point spread function

∗
anatomical variability︷ ︸︸ ︷

φσA
(x) +

ε(x)√
n︸︷︷︸

white noise

]∗
reconstruction︷ ︸︸ ︷
φσR

(x) , (2.3)

where hG is an activation amplitude and n is the number of subjects who participate

in a FMRI experiment. φσA
(x) describes anatomical variabilities of different subjects.

Since we are only interested in data analysis with a single subject, σA = 0 and n = 1

are set. The important characteristics of the conventional observation model in (2.3)

are summarized as follows.

• The Gaussian amplitude activation, hG · (2πσ2
S)

D/2
φσS

(x) represents a spatial

point spread function for a simple spark-like stimulus to subject’s brain. Spatial

sampling of this point spread function defines fG
v in (2.1).
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• The noise ε(x) is assumed to be a stationary white Gaussian field. Effects

of image reconstruction and additional pre-processing procedures, e.g., motion

artifact correction and image registration, are described by φσR
(x).

• Spatial correlation is induced by the convolution with φσR
(x). Therefore, in

fact, the observation is not under spatially independence any more.

• The model implicitly supposes that an activation amplitude, hG·(2πσ2
S)

D/2
φσS

(x)

has spatial continuity and derivatives with any order, which impose very strong

assumptions on fG
v in (2.1).

Activation Detectibility

For a single subject experiment, it is straightforward to compute signal component

of the observed signal y(x), resulting in

hG · (2πσ2
S)

D/2
φ√

σ2
S
+σ2

R

(x).

The noise component gives us an autocorrelation function which is proportional to

φσR
(x) ∗ φσR

(x) = φ√
2σR

(x).

According to [67], the SNR at the origin, the center of an activated voxel, is then

proportional to the ratio of the values of signal component and square root of noise

variance evaluated at the origin, thus

SNR ∝ hG ·
(

σ2
Sσ

2
R

σ2
S + σ2

R

)D/2

, (2.4)

where, SNR is maximized when the reconstruction width matches to the width of the

assumed Gaussian amplitude activation, namely when σR = σS. Therefore, assuming

σS is larger than σR, for the best detectibility of the Gaussian amplitude activation,

we need to additionally smooth the observed images with a Gaussian amplitude
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kernel to match widths. SSK is based on this argument, basically the same idea as

matched filter theorem (MFT) [44]. The same conclusion can be drawn using a spatial

likelihood ratio test (LRT) under the assumption that noise is spatially independent

and Gaussian distributed as in (2.3). In [53] which is one of the main papers for this

activation amplitude model, using a spatial LRT, authors showed that a detection

statistic requires the same spatial kernel as an assumed point spread function. In

practice, another purpose of SSK is to obtain sufficient smoothness to apply RFT.

In standard approaches involving SSK, to approximate a maximum distribution of

detection statistics, RFT is often used in FWE rate control. Detailed reviews of

FWE rate control using RFT will be given in section 2.2.

Discussions on SSK

Since a Gaussian amplitude activation is assumed in (2.1), a SSK is needed to

increase activation detectibility. However, there are no experimental evidences for

Gaussian amplitude activations. In other words, the selection of the Gaussian shape

activation is ad hoc. In an extreme case, if we assume a sinc shape activation, MFT

leads us to a spatial smoothing by a sinc amplitude kernel. In facts, evidences from

the neuroscience literature are against the Gaussian amplitude activation assump-

tion, especially, spatial continuity of activation amplitudes. For example, [25] showed

that a SSK can artificially shift functional localizations and recommended to avoid

a SSK for clinical purposes. We introduce a proper spatial kernel based on spatial

correlation of observed images without any assumption on the activation amplitude

in Chapter 3. Note that SSK dealt with spatial aspects of measurements in FMRI

and DLM deals with temporal characteristics of observations. We now discuss details

of DLM.
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2.1.2 Dynamic Linear Model (DLM)

After applying a SSK to observed FMRI measurements, to build up a detection

statistic for activation at a voxel location we are interested in, a widely used method

is based on linear regression and somewhat inaccurately termed, general linear model

(GLM) in which spatial independence of voxels is assumed. In this thesis, we prefer

the more descriptive terminology, dynamic linear model (DLM). In the framework of

DLM, each voxel time course is modeled and fitted separately, thus called a univariate

approach. The DLM leads to many standard tests such as t-test and F -test.

The DLM for an observed voxel time series is built up as follows. For a voxel

location v,

yv = Gbv + wv, (2.5)

where v = 0, . . . ,M − 1, a T × p matrix G is called design matrix and wv is a T × 1

noise vector which obeys N (0,Σwv
). A p × 1 vector bv contains parameters to be

estimated, e.g., baseline and activation amplitudes. The design matrix G contains

known information such as temporal basis functions for the BOLD response model-

ing. We take a simple example with a canonical HRF of the parametric approach

in (1.7). From (4.2), for simplicity, we assume that baseline and linear drift are

pre-filtered out. Then we have

yt,v = st,v + wt,v = ξtfv + wt,v, (2.6)

leading to a DLM form in (2.5),

yv =




ξ0

ξ1

...

ξT−1




fv +




w0,v

w1,v

...

wT−1,v




= ξfv + wv, (2.7)
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where ξ , [ξ0, . . . , ξT−1]
T and the number of parameters p is 1.

Detection Statistics for Activation

From (2.5), we can construct t-test or F -test. Firstly, we review how t-test is built

up. With the covariance matrix Σwv
, the generalized least square (GLS) estimate of

bv is given by

b̂v =
(
GT Σ−1

wv
G
)−1

GT Σ−1
wv
yv, (2.8)

and it is well known that

b̂v ∼ N (bv,
(
GT Σ−1

wv
G
)−1

). (2.9)

Then, t-statistic at a voxel v is given by

Tv ,
cT b̂v√

cT (GT Σ̂−1
wv

G)
−1
c

, (2.10)

where a p×1 column vector c is called contrast used to choose interesting parameters

to be tested. Since the covariance matrix Σwv
is not known in practice, the statistic

Tv requires to estimate bv and Σwv
simultaneously. An iterative algorithm to do that

is proposed in [57] for a temporal AR(1) process, which is not the same way used in

SPM.

For a temporal AR(1) noise, SPM assumes covariance matrix has a form of Σwv
=

σ2
wv
·V, which means the variance part of Σwv

depends on the voxel position v and

the correlation part of Σwv
is common over all voxels. Since all voxel time series data

can be used to estimate the matrix V, it can be estimated more accurately than

σ2
wv

. Firstly, in SPM, the matrix V is estimated by restricted maximum likelihood

(ReML) method [42]. And then, its estimate is used to estimate other parameters.

These two steps are repeated to obtain the accurate estimates. It can be shown

that Tv obeys a t-distribution with T − p degrees of freedom, tT−p under the null
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hypothesis H0, that is, no activation.

To build up Tv, [66] used ordinary least square (OLS) estimate of bv instead of

GLS estimate. The OLS estimate of bv is given by

b̂v =
(
GTG

)−1
GTyv , G−yv, (2.11)

and it is well known that

Var(̂bv) = G−Σwv
G−T . (2.12)

Then, Tv is given by

Tv ,
cT b̂v√

cT (G−Σwv
G−T ) c

∼ tν , (2.13)

where an effective degrees of freedom ν is determined by Satterthwaite approxima-

tion [66].

To construct a F -test, we consider the following hypotheses. The two competing

models are given by, for a voxel location v,

H0 : yv = Grb
r
v + wv, (2.14)

H1 : yv = Gfb
f
v + wv,

where a T × q matrix Gr represents the design matrix of reduced model and a T × p

matrix Gf means the design matrix of full model. By setting all activation to zeros,

the design matrix of reduced model contains terms only related to nuisance signal

components such as baseline and temporal linear drift, thus q < p. From (2.14),

F -statistic, Fv is defined as

Fv =
(RSSr −RSSf )/p− q

RSSf/T − p =
Hv/dfh

Ev/dfe

, (2.15)
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where RSSr is the residual sum of squares (RSS) of the reduced model and RSSf

is the RSS of the full model. Hv means the hypothesis sum of squares with degrees

of freedom dfh, Ev represents error sum of squares with degrees of freedom dfe. It is

known that, when the null hypothesis H0 is true, Fv obeys a F -distribution with dfh

and dfe degrees of freedom.

Discussions on DLM

Although spatial correlation is induced by performing SSK, this induced spatial

correlation is not properly considered to develop detection statistics in DLM. In other

words, t-statistic or F -statistic is obtained as if all voxels in a ROI are statistically

independent. Therefore, the detection statistic, Tv or Fv, has spatial correlation,

which will be reconsidered to control FWE rate in an ad hoc way in the next section.

Here, we need to make two more important comments on SSK-DLM. Firstly, no

spatial correlation caused by physiological noise is considered in SSK-DLM. Secondly,

SSK that is a purely spatial operation, and DLM that is a purely temporal opera-

tion are performed separately and sequentially under the assumption of space-time

separability.

2.2 Family-Wise Error Rate Control by Random Field The-
ory (RFT)

Based on a detection statistic obtained in previous sections, Tv or Fv, to create

a binary activation map, we should consider all detection statistics in a ROI and

threshold them with an appropriate cutoff point. Following the simplest method to

control FWE rate, Bonferroni correction, we need to find a threshold γ(α) satisfying
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the last equality in

FWE , Pr

(
M⋃

v=1

{Tv > γ(α)}
∣∣∣∣ H0

)
≤

M∑

v=1

Pr

(
Tv > γ(α)

∣∣∣∣ H0

)
= α, (2.16)

under the null hypothesis, i.e., no activation in a ROI. The inequality is called Bon-

ferroni inequality. By selecting γ(α) satisfying Pr(Tv > γ(α)) = α/M for all voxels,

we can control the FWE less than α. The corrected significance level αB = α/M

is called the Bonferroni correction. The main problem of this Bonferroni correction

is that it provides too conservative results even for the case of independently and

identically distributed samples. This problem becomes more severe, when Tvs are

not statistically independent or there are a large amount of voxels in a ROI. Since

a detection statistic developed by SSK-DLM has spatial correlation, truly activated

voxels can be ruled out by conservative Bonferroni correction.

To control FWE rate more accurately than Bonferroni correction, many alterna-

tives have been suggested until now. Most alternatives depend on the maximum of

detection statistics in a ROI due to the following identity:

Pr

(
M⋃

v=1

{Tv > γ(α)}
∣∣∣∣ H0

)
= Pr

(
max

v
Tv > γ(α)

∣∣∣∣ H0

)
= α. (2.17)

If we know a distribution of maxv Tv under the null hypothesis H0, γ(α) can be

determined and the FWE is controlled. Based on this idea, a widely used method

in FMRI is from random field theory (RFT) to approximate the maxv Tv for a high

γ(α). RFT is implemented in SPM and gives less conservative results than Bonferroni

correction if a spatial plot of Tv is smooth. When the threshold γ(α) is high and

a spatial plot of Tv is sufficiently smooth, according to RFT, we have the following

approximation:

FWE = Pr

(
max

v
Tv > γ

∣∣∣∣ H0

)
≈ E[EC] ≈

D∑

d=0

ReselsdECd(γ), (2.18)
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where Reselsd is the number of RESolution ELements, ECd is Euler characteristic

density in d dimensions, and D is the number of dimensions in a ROI [65]. The

Euler characteristic density is a function of d and γ for a particular type of fields,

e.g., Z-field, t-field and χ2-field. When a threshold γ is high, the Euler characteristic

can be thought as the counts of the number of activated clusters in which the values

of detection statistics are larger than the threshold γ. For a ROI of large size, in the

rightmost equation of (2.18), it is known that the D-th order term is dominant and

the associated ReselsD is given by

ReselsD =
V

FWHMe
D
, (2.19)

where V is the volume of the ROI and FWHMe is the effective full width half max-

imum of a Gaussian amplitude kernel used in SSK. In three-dimensional space, an

Euler characteristic density for a t-distributed field with ν degrees of freedom is given

by

EC3(γ) ,
(4 loge 2)3/2

(2π)2

(
ν − 1

ν
γ2 − 1

)(
1 +

γ2

ν

)− 1
2
(ν−1)

. (2.20)

Thus, for a given significance level α, with an estimate for an effective FWHM, a

threshold γ can be determined by solving (2.20). For a small ROI, since other terms

become important in the rightmost equation of (2.18), a correction is required.

Discussions on RFT

Since RFT is under the assumption that observed images are lattice representa-

tions of a underlying continuous random field, it requires sufficient smoothness to

control FWE rate properly. For example, in a Gaussian distributed random field,

a FWHM should be two or three times of a voxel size in each direction to obtain

less conservative results than Bonferroni correction. In the case of t-distributed field

with low degrees of freedom, a FWHM which is more than 10 times of a voxel size in
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a direction is required [21]. If images are not sufficiently smooth, the estimate would

be biased and corrections are necessary. In addition, the approximation by RFT to

maxv Tv is valid only for a high γ. For more details of RFT, the reader is referred to

[21] focusing on applications of RFT to FWE controls in FMRI and to [2] containing

more mathematical materials about RFT, especially Gaussian RFT.

Recall that RFT is introduced to control FWE rate in FMRI data analysis when

spatial correlation of detection statistics for activation exists. Conversely speaking, if

we have spatial independence for finite samples or infinite samples (asymptotically),

then the RFT is not necessary any more. In fact, the proposed detection statistic

in Chapter 3 has asymptotic spatial independence under the null hypothesis H0,

allowing an easy method to control FWE rate unlike the standard approaches.

Permutation Test

Another method to control FWE rate used in FMRI is permutation test (PT),

which does not require strong assumptions about a underlying distribution of the

observed data unlike RFT [29]. Since PT is under the assumption that a voxel

time course at a voxel v can be shuffled over time, the voxel time course should be

temporally whitened before the application of PT. Since PT obtains an approximate

distribution of maxv Tv using simulations, it usually requires a tremendous amount

of computations to compute a threshold for FWE rate control. PT is usually used

with false discovery rate (FDR) instead of FWE. Some comparative studies between

RFT and PT are provided in [38], in which PT shows better performance than RFT

does when the assumptions of RFT are in doubt.
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2.3 Previous Works on Spatio-Temporal Modeling

In this section, we discuss some previous works considering spatiotemporal de-

pendence between voxels in FMRI data analysis. There have been made a much

smaller amount of works to take care of spatiotemporal dependence than approaches

to consider only temporal dependence as in the standard approaches. In addition to

approaches discussed in section 2.3.1 (LRST modeling) and 2.3.2 (NN-ARx model-

ing), there are some recent works with discrete wavelet transforms [60, 34]. In [18],

Markov random filed (MRF) is applied to the spatiotemporal modeling of FMRI

measurements, in which an overall MRF prior is applied in space and time. How-

ever, since it is known that FMRI data have different spatial propeties from temporal

ones, it does not seem to be attractive. Here, we need to emphasize that all these

earlier works including the LRST and NN-ARx models do not provide an appropriate

detection statistic for activation with the full consideration of spatial and temporal

correlation, which is the main difference from our proposed detection statistic in

Chapter 3.

2.3.1 Locally Regularized Spatio-Temporal (LRST) Model

In [57, 39], an approach to consider the spatial dependence of FMRI measure-

ments is provided, which is called locally regularized spatio-temporal (LRST) mod-

eling. The main idea of LRST modeling is to use an empirically known property

of physiological noise, spatial continuity of noise. Note that this spatial continuity

is completely different from the spatial continuity of activation amplitudes assumed

in the underlying model for SSK-DLM. To recognize the spatial continuity of noise,

[57] and [39] apply local spatial regularization to parameters for noise modeling. For

temporal modeling, an AR(1) process in white noise is used. Therefore, the LRST
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model is a semiparametric model in the sense that the temporal specification is para-

metric, whereas the spatial specification is nonparametric.

For the local spatial regularization of the likelihood function of a voxel time

course, a pre-determined spatial kernel whose form can be pyramid or cone, is ap-

plied. For example, a separable two-dimensional kernel which is supported on a finite

neighborhood is given by

Kh
q , K

(
q1
M1h

)
K

(
q2
M2h

)
cM

M1M2h2
, (2.21)

where cM is a correction term to make the sum of kernel weights unity and q ,

(q1, q2) means pixel coordinates in the two-dimensional space. h is a smoothness

parameter controlling the width of kernel. In [57, 39], Epanechnikov weighting kernel

of quadratic polynomial form, namely, K(u) , 0.75(1− u2)+ is used. For three-

dimensional space, this kernel formula can be easily extended.

To clearly explain the procedure used for LRST modeling, we first start the

discussion without local spatial regularization. Assuming a Gaussian distributed

noise, the following voxel-wise form of the negative log-likelihood function is made

in the temporal frequency domain [7]: at a voxel location v,

J0
v (θv) =

∑

k

Ik,v(βv)

2T · Fk(αv)
+
∑

k

logFk(αv)

2
, (2.22)

where the superscript 0 means no regularization, αv is a column vector containing

noise parameters, βv is a column vector containing signal parameters, and θT
v ,

[αT
v βT

v ]. Fk is a discrete PSD with temporal frequency index k and T is the number

of time points. Here, the Periodogram Ik,v(βv) is defined as

Ik,v(βv) ,
|ỹk,v − µ̃k,v(βv)|2

T
, (2.23)

where ỹk,v is the temporally DFT transformed yt,v and µ̃k,v(βv) is the temporally DFT

transformed signal component, µt,v(, mv + bvt+ st,v). Then, a weighted average of
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J0
v (θv) in (2.22) is obtained using the spatial kernel, yielding the following locally

and spatially regularized log-likelihood function:

Jv(θv) =

local regularization︷ ︸︸ ︷∑

q

Kh
q J

0
v−q(θv) . (2.24)

Minimizing Jv(θv) with respect to parameters allows an estimate of θv at a voxel v.

The minimization can be done by cyclic descent, yielding an algorithm that iterates

between estimating signal parameters and noise parameters. This allows the noise

and signal parameter subsets regularized separately. In [57, 39], the local spatial

regularization is imposed on the AR(1) parameters only, using the spatial continuity

to improve the estimation.

In LRST modeling, the information of local log-likelihood functions from neigh-

boring voxels is used to estimate parameters of a given voxel v. Then, this parameter

estimation repeats for the whole ROI one voxel by one voxel at a time. In [57], an

activation map is quantified in terms of the square root of the weighted 2-norm of

the estimated activation signal,

Tv ,

√√√√∑

k

|s̃k,v|2
Fk,v

, (2.25)

where s̃k,v is the DFT transformed st,v and Fk,v denotes temporal PSD at a voxel v.

For more details, the reader is referred to [57] and [39].
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2.3.2 Near Neighborhood AutoRegressive Model with Exogenous Vari-
able (NN-ARx)

Another approach to take account of the spatial dependence of FMRI measure-

ments is suggested in [41], called near neighborhood autoregressive model with exoge-

nous variable (NN-ARx). In the NN-ARx model, the neuronal process in the brain

is assumed to comprise two components, deterministic evoked transient activity by

pre-specified stimuli and spontaneous activity at the level of synapses. Originally

motivated from a model presented in [23], the NN-ARx model is defined as, for a

time point t and a voxel location t,

yt,v =

drift︷︸︸︷
dt,v +

p∑

k=1

φk,vyt−k,v

︸ ︷︷ ︸
AR(p)

+

from neighborhood︷ ︸︸ ︷
Xvξt−∆,v +

r∑

k=0

θk,vct−k−d

︸ ︷︷ ︸
evoked transient activity

+

intrinsic activity︷︸︸︷
εt,v ,

(2.26)

where dt,v denotes drift and the second term provides an AR(p) process for the

modeling of the hemodynamic response of the brain. The third term describes the

contributions from neighboring voxels, which is determined by

ξt−∆,v , {yt−∆,v′ , v′ ∈ Ωv}, (2.27)

where Ωv is a pre-determined near neighborhood set of the v-th voxel, and a vector

Xv describing the contributions of ξt−∆,v to the voxel of interest. The fourth term

represents the evoked activity by stimuli and the last term denotes the intrinsic and

spontaneous activity in the brain. ∆ is a mean delay of the contributions from

neighboring voxels and d is a delay of a stimulus process ct. In (2.26), thus, the

AR(p) process is externally perturbed by the contributions of neighboring voxels

and evoked transient activities by a given temporal stimulus.

If a temporal polynomial is used to model the drift, that is, dt,v =
∑δ

k=0 γk,vt
k,

the parameters, Ξv , {φk,v, θk,v, γk,v, σv,Xv} must be estimated voxel by voxel from
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the data. The model selection consists of determining both model orders and delays

which are global parameters, Λ , (p, r, d,∆, δ). In [41], the detection statistic1 at

the voxel v is defined as

θv ,

r∑

k=0

θk,v, (2.28)

meaning the spatial distribution of the brain synaptic sensitivity to pre-specified

stimuli.

2.4 Conclusions

To construct detection statistics from FMRI measurements, the current standard

method, SSK-DLM is built up on a underlying model which has two assumptions,

that activation amplitudes are assumed to have Gaussian shapes and that noise is

assumed to have spatial independence with space-time separability. These assump-

tions allow a substantial amount of simplifications in creating a detection statistic

and implementing it, but are against evidences in physiology and neuroscience. In

addition, although spatial correlation is induced by SSK, a detection statistic is first

constructed under the assumption of spatial independence. Then, to control FWE

rate, the induced spatial correlation is reconsidered in RFT, which imposes addi-

tional ad hoc assumptions on FMRI measurements.

The following chapter introduces a method to construct a properly formulated

detection statistic for activation considering intrinsic spatial and temporal corre-

lation from physiological sources without space-time separability and any specific

assumption on activation amplitudes. It will be shown that, since our newly pro-

posed method involves spatiotemporal whitening, FWE rate control can be easily

performed and a complicated method such as RFT is not necessary.

1Authors call a spatial plot of detection statistics theta map
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CHAPTER 3

True Spatio-Temporal Detection and Estimation I :
Detection Statistics

A significant task in FMRI data analysis is creating an activation map to show

localized brain responses to pre-specified temporal stimuli. An activation map is

just a spatial plot of a detection statistic. These detection statistics have usually

been derived from a spatial-wise independence assumption with implicit space-time

separability. We develop, for the first time in FMRI, a properly formulated spa-

tiotemporal detection statistic based on a spatially and temporally correlated noise

model without space-time separability. We develop these new methods in this chap-

ter and the following chapter. In this chapter, we develop the detection statistic and

illustrate it in a simulation. In the subsequent chapter, we develop the joint signal

and noise modeling necessary for full implementation, and the proposed methods are

applied to a real human.

3.1 Introduction

3.1.1 Overview

Until recently, although many methods for data analysis in FMRI have been pro-

posed, with rare exceptions, a voxel-wise model-driven approach of one-dimensional

(1D) time series without a proper use of spatial correlation has been dominant in
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FMRI [8, 33, 66, 22]. In other words, most attention has focused on the temporal

characteristics of voxel time series. Under the assumptions of spatial indepen-

dence and space-time separability, a widely used method is based on linear

regression and somewhat inaccurately termed the general linear model (GLM) [66].

We prefer the more descriptive terminology, dynamic linear model (DLM). In the

framework of DLM, each voxel time series is modeled and fitted separately. Af-

ter interesting model parameters are estimated and test statistics, e.g., F -statistic,

are computed over all voxels in a region of interest (ROI), it is determined which

voxels are activated by a thresholding whose level is decided in a number of ways.

The most traditional method is Bonferroni correction but an alternative method

is random field theory (RFT) [65] or permutation test (PT) [38]. Note that the

two main assumptions: spatial independence and space-time separability, have been

dominantly assumed in data-driven methods as well.

In addition to temporal correlation, there have been some works attempting to

use spatial dependence in the modeling. Locally regularized spatio-temporal (LRST)

model was proposed for a temporal AR(1) process in white noise, equivalently a tem-

poral ARMA(1,1) process, in [57, 39]. The suggested model is semi-parametric in

the sense that the temporal specification is parametric while the spatial one is non-

parametric. The information of local likelihood functions from neighboring voxels is

used to estimate signal parameters and noise parameters of an ARMA(1,1) process

at a given voxel. Near-neighborhood autoregressive with exogenous (NN-ARx) vari-

able model was proposed in [41]. The model defined at a particular voxel has a term

reflecting local dynamic contributions of neighboring voxels with an average delay.

For each voxel, a set of near-neighborhoods is determined and the contributions of

neighboring voxels in that set are estimated. Some details of these two methods were
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given in Chapter 2. Space-time simultaneous autoregressive (STSAR) model with a

Bayesian prior was used in [64]. The proposed STSAR model combines a temporal

AR(p) with p > 1 and a spatial AR(1) noise structure, which is heavily constrained.

Some works with a spatial wavelet transform can be found in [60] and [34], and a

method with a spatiotemporal Markov random field (MRF) was suggested in [18].

However, these earlier methods did not provide an appropriate detection statistic for

activation with the full consideration of spatial and temporal correlation, but only

focused on spatiotemporal modeling.

3.1.2 The Main Tasks and Organization

There are two main tasks to be carried out. Firstly, we derive a detection statistic

in a setting allowing both spatial and temporal correlations without the assumption

of space-time separability. As a byproduct, we are able to develop a test procedure

for space-time separability whose details will be discussed in Chapter 5. Secondly,

we develop a joint signal and noise modeling framework to allow complete imple-

mentation of the proposed detection statistic for activation. This is a considerable

task in itself and is accomplished in Chapter 4 via the parametric cepstrum.

Throughout the remainder of this chapter, the organization is as follows. In sec-

tion 3.2, we first review the widely used detection statistic derived from DLM and

involving spatial smoothing by Gaussian kernel (SSK). Then we develop a new detec-

tion statistic derived from a spatially and temporally correlated noise model without

space-time separability. In addition, a method of family-wise error (FWE) rate con-

trol is given. Under space-time separability, in section 3.3, a compact version of the

developed detection statistic is shown, which allows more direct interpretations. We

perform simulations to compare the new detection statistic with the widely used F -
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statistic in section 3.4. Conclusions are drawn in section 7.7. Details of mathematical

derivations are given in Appendix 3.6−3.8.

3.1.3 Acronyms and Notations

We collect here acronyms and notations which are frequently used in the rest

of this chapter. CGD means complex-valued Gaussian distribution; CLT is central

limit theorem; DFT means discrete Fourier transform; DLM is dynamic linear model;

LRT means likelihood ratio test; MLE is maximum likelihood estimate; PSD means

power spectral density; RFT is random field theory; ROI means region of interest;

SSK is spatial smoothing by Gaussian kernel; ST-LRT means spatio-temporal LRT;

STWK is spatio-temporal whitening kernel; SWK means spatial whitening kernel.

In the spatiotemporal frequency domain, integer k is used to denote the index of

temporal frequency and integer l is assigned to the index of spatial wave-number.

Thus, k = 0, . . . , T − 1 and l = 0, . . . ,M − 1. ỹk,l denotes the spatiotemporal DFT

of yt,v. The definition of the DFT is given by, for (ωk, λl) , (2πk
T
, 2πl

M
),

ỹk,l ,

T−1∑

t=0

M−1∑

v=0

yt,v e
−j(ωkt+λlv). (3.1)

Discrete spatiotemporal PSD is defined as Fk,l , F (ωk, λl) from continuous PSD.

Under the assumption of space-time separability, namely Fk,l = FkGl, Fk represents

a purely temporal PSD and Gl means a purely spatial PSD.

For activation detection, the null hypothesis H0 means no activations in a ROI

and H1 denotes the alternative hypothesis. Under Hj for j = 0, 1, F̂j,k,l denotes the

estimate of Fk,l, allowing a STWK gj,t,v. Fv represents the widely used F -statistic

derived from SSK-DLM. N ( · , · ) means a real-valued Gaussian distribution, while

Nc( · , · ) denotes a complex-valued Gaussian distribution. The operator ∗∗ denotes

a spatiotemporal linear convolution. ∗ is used for a temporal convolution and ∗s is for

42



a spatial convolution. The circled asterisk, ⊛⊛ represents a spatiotemporal circular

convolution. Superscripts ( · )F , ( · )∗, ( · )T , and ( · )H denote a temporally filtered

signal, a complex conjugate, a transpose, and a Hermitian transpose, respectively.
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3.2 Detection of Activations

3.2.1 Classical Detection Statistic : SSK-DLM

For the modeling of activation amplitude fv, a Gaussian point spread function

(PSF) was proposed in [65]. Based on this Gaussian PSF and under a spatial white

noise assumption, [53] showed that likelihood ratio test leaded to a matched filter

involving spatial smoothing by Gaussian kernel (SSK), which is used in several soft-

ware packages for FMRI data analysis, e.g., statistical parametric mapping (SPM).

However, the modeling with Gaussian PSF which implicitly supposes spatial conti-

nuity of activations is not supported empirically. For instance, empirical evidence

that SSK could artificially shift real activations was reported by [25]. Also the as-

sumption of spatially white noise is not practically satisfactory.

After applying SSK to a collected dataset, at a given voxel v, the approach to

time series decomposition is built up on the work of several researchers. DLM allow-

ing the t or F -statistic was suggested by [66]. For example, the F -statistic is defined

as

Fv ,
Hv/dfh

Ev/dfe

, (3.2)

where Hv is the hypothesis sum of squares or signal sum of squares and Ev is error

sum of squares; dfh and dfe denote associated degrees of freedoms. Remark that this

SSK-DLM was developed under an implicit assumption of space-time separability.

The assumption of Gaussian PSF and DLM allow the use of RFT to control

FWE rate [65]. Although the theory behind RFT is very complicated, it provides

an approximate threshold, allowing a thresholded activation map. However, RFT

provides more conservative results than does Bonferroni correction or permutation

test for t-distributed fields with low smoothness and low degrees of freedom [38].
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More details of SSK-DLM is provided in Chapter 2.

Given these drawbacks of SSK-DLM, in this chapter, we introduce an empirically

more satisfactory activation detection considering temporal and spatial correlations

of physiological noise without any specific assumption on spatial continuity of acti-

vation fv and without space-time separability. It turns out that the new approach

allows a simple analytical method to determine a threshold for a given significance

level α, not requiring a complicated method as RFT.

3.2.2 New Detection Statistic : ST-LRT

The consideration of the spatiotemporal structure of the noise in the temporal

frequency and spatial wave-number domains allows a substantial amount of simpli-

fication in building up an activation statistic. We proceed in 3 steps; first a general

development; then an observation that the statistic can be decomposed into signal

and noise parts; then a spatial decomposition.

General Development

Taking spatial and temporal DFTs of the FMRI measurement model in (4.2)

gives an equivalent expression in the temporal frequency domain and the spatial

wave-number domain,

ỹk,l = X̃T
k β̃l + ξ̃T

k f̃l + w̃k,l, (3.3)

where, e.g., ξ̃k is the temporally DFT transformed ξt and f̃l represents the spatially

DFT transformed fv. For large T and M , under a spatiotemporal stationarity as-

sumption and some other regularity conditions involving joint cumulants, w̃k,l obeys
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a CLT [7, Chap. 4], asymptotically leading to

1√
TM

· w̃k,l ∼ Nc (0, Fk,l) (3.4)

and (w̃k,l)k=0,...,A
l=0,...,B

are jointly CGD and independent for any (A,B) which belongs to

the following region:

{1 ≤ A ≤ (T − 1)/2, 0 ≤ B ≤M − 1;

A = 0, 1 ≤ B ≤ (M − 1)/2} , (3.5)

where T and M are assumed odd for simplicity. In practice, to make T and M odd,

we drop observations at the beginning of scans and on the edges of images. Note

that the asymptotic distribution given by the CLT at the origin obeys a real-valued

Gaussian distribution, that is, w̃0,0 ∼ N (0, TM · F0,0).

To develop an activation map, we consider the following hypotheses which are

about a whole ROI:

H0 : fv = 0 for all v, (3.6)

H1 : fv 6= 0 for some v.

In the temporal frequency and spatial wave-number domains, we have equivalent

hypotheses,

H0 : f̃l = 0 for all l, (3.7)

H1 : f̃l 6= 0 for some l,

where H0 means no activations in the ROI and H1 denotes the alternative. From

the equivalent hypotheses in (3.7), with asymptotically independent CGD in (3.4),
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we can immediately construct a LRT statistic Λ; its logarithm is given by

−2 log Λ ,

T−1∑

k=0

M−1∑

l=0

log F̂1,k,l − log F̂0,k,l (3.8)

+
T−1∑

k=0

M−1∑

l=0

|ẽ1,k,l|2

TM · F̂1,k,l

− |ẽ0,k,l|2

TM · F̂0,k,l

,

where ẽk,ls denote residuals; ẽ1,k,l , ỹk,l − X̃T
k
̂̃β1,l − ξ̃T

k
̂̃fl and ẽ0,k,l , ỹk,l − X̃T

k
̂̃β0,l

under H0 and H1, respectively. Under Hj for j = 0, 1, F̂j,k,l is the MLE of Fk,l and

̂̃βj,l is the MLE of β̃l;
̂̃fl is the MLE of f̃l defined only under H1. Note that the LRT

in (3.8) involves the real-valued Gaussian distribution at the origin. The MLEs of

parameters are given by

̂̃β1,l = ̂̃β10,l − SXξ,l · ̂̃fl, (3.9)

̂̃β0,l =

(
T−1∑

k=0

X̃∗
k · X̃T

k

F̂0,k,l

)−1(T−1∑

k=0

ỹk,lX̃
∗
k

F̂0,k,l

)
, (3.10)

̂̃fl =

(
T−1∑

k=0

ξ̃∗1,k,l · ξ̃T
1,k,l

F̂1,k,l

)−1(T−1∑

k=0

ỹ1,k,lξ̃
∗
1,k,l

F̂1,k,l

)
. (3.11)

where

̂̃β10,l ,

(
T−1∑

k=0

X̃∗
k · X̃T

k

F̂1,k,l

)−1(T−1∑

k=0

ỹk,lX̃
∗
k

F̂1,k,l

)
, (3.12)

SXξ,l ,

(
T−1∑

k=0

X̃∗
k · X̃T

k

F̂1,k,l

)−1(T−1∑

k=0

X̃∗
k · ξ̃T

k

F̂1,k,l

)
, (3.13)

ỹ1,k,l , ỹk,l − X̃T
k
̂̃β10,l, ξ̃1,k,l , ξ̃k − ST

Xξ,lX̃k. (3.14)

Clearly, ỹ1,k,l is just ỹk,l adjusted for drift under the alternative hypothesis, H1. SXξ,l

reflects the interaction between X̃k and ξ̃k under H1. For detailed derivations of the

MLEs, the reader is referred to Appendix 3.6.
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Decomposition of LRT into Signal and Noise Pieces

Plugging (3.9) and (3.11) into (3.8) and canceling some common terms, allows a

decomposition of LRT (, 2 log Λ) into two pieces; a noise piece (LRTN) and a signal

piece (LRT S),

LRT , LRTN + LRT S, (3.15)

where

LRTN ,

T−1∑

k=0

M−1∑

l=0

log

(
F̂0,k,l

F̂1,k,l

)
+
|ỹ0,k,l|2

TMF̂0,k,l

− |ỹ1,k,l|2

TMF̂1,k,l

,

(3.16)

LRT S ,
1

TM
·

M−1∑

l=0

(
T−1∑

k=0

ỹ1,k,lξ̃
H
1,k,l

F̂1,k,l

)(
T−1∑

k=0

ξ̃1,k,l · ξ̃H
1,k,l

F̂1,k,l

)−1(T−1∑

k=0

ỹ∗1,k,lξ̃1,k,l

F̂1,k,l

)
,

(3.17)

and

ỹ0,k,l , ỹk,l − X̃T
k
̂̃β0,l. (3.18)

Note that, if Fk,l is known, the noise piece LRTN which reflects the difference between

estimates of Fk,ls under H0 and H1 becomes zero, resulting in LRT = LRT S. This

follows because then F0,k,l = F1,k,l, β̃10,l = β̃0,l, and ỹ0,k,l = ỹ1,k,l. The signal piece

LRT S is computed only under H1 and can be reformulated as follows.

LRT S =
1

M
·

M−1∑

l=0

s̃H
yξ,lS

−1
ξξ,ls̃yξ,l , (3.19)

where

s̃yξ,l ,
1

T
·

T−1∑

k=0

ỹ∗1,k,lξ̃1,k,l

F̂1,k,l

, Sξξ,l ,
1

T
·

T−1∑

k=0

ξ̃1,k,l · ξ̃H
1,k,l

F̂1,k,l

. (3.20)

By the spectral decomposition of Sξξ,l, we obtain

LRT S =
1

M
·

M−1∑

l=0

(
S
− 1

2
ξξ,ls̃yξ,l

)H(
S
− 1

2
ξξ,ls̃yξ,l

)
, (3.21)

where, for a unitary matrix Ul and a diagonal matrix Dl,

Sξξ,l = UH
l DlUl, S

1
2
ξξ,l , UH

l D
1
2
l Ul.
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To provide a compact representation and to presage subsequent modeling, we

introduce the zero-lag cepstral coefficient under H1,

θ̂1,0,0 =
1

TM
·

T−1∑

k=0

M−1∑

l=0

log F̂1,k,l, (3.22)

where θ̂0,0,0 is similarly defined from F̂0,k,l under H0. In the sequel, we make much

use of the STWK, g̃1,k,l which requires temporal causality and is defined as follows.

g1,t,v
DFT←→ g̃1,k,l, |g̃1,k,l|2 =

1

F̂1,k,l

. (3.23)

With F̂0,k,l, we similarly define g0,t,v under H0.

Spatial Decomposition of LRT

Using (3.21)-(3.23), we obtain an equivalent expression of LRT in the time and

space domains through Parseval’s relation. To be more specific, by defining s̃y,l ,

S
− 1

2
ξξ,ls̃yξ,l, one arrives at the following representations:

LRTN = TM
(
θ̂0,0,0 − θ̂1,0,0

)
+

T−1∑

t=0

M−1∑

v=0

(
ε2
0,t,v − ε2

1,t,v

)
,

LRT S =
M−1∑

v=0

sH
y,vsy,v,

where εj,t,v is spatiotemporally whitened yj,t,v under Hj for j = 0, 1, namely

εj,t,v , (gj,t,v ⊛ ⊛yj,t,v), (3.24)

and sy,v denotes the inverse DFT of s̃y,l. Recall that ⊛⊛ denotes a spatiotemporal

circular convolution.

This enables us to decompose the statistic spatially as LRT ,
∑

v LRTv. We call

LRTv spatio-temporal LRT (ST-LRT) whose form is defined as

LRTv , LRTN
v + LRT S

v , (3.25)
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where two pieces are defined as

LRTN
v , T

(
θ̂0,0,0 − θ̂1,0,0

)
+

T−1∑

t=0

(
ε2
0,t,v − ε2

1,t,v

)
, (3.26)

LRT S
v , sH

y,vsy,v, (3.27)

and

sy,v
DFT←→ s̃y,l, s̃y,l = S

− 1
2

ξξ,ls̃yξ,l.

If the PSD, Fk,l is known, then Fj,k,l’s are identical for all j and LRTN
v vanishes,

resulting in LRTv = LRT S
v , where j = 0, 1. For a voxel v, the spatially decomposed

LRTv represents a local contribution of that voxel to LRT testing hypotheses for a

whole ROI in (3.6). Thus, by spatial decomposition, LRTv is reasonably defined and

has a nice intuitive interpretation.

In (3.25), the newly developed ST-LRT shows what kind of spatiotemporal op-

erations are needed to build up a proper statistic for activation detection based on

spatial and temporal correlations. Firstly, spatiotemporal whitening of yj,t,v under

Hj is necessary, producing εj,t,v , (gj,t,v ⊛ ⊛yj,t,v) for j = 0, 1. Notice that the

STWK, gj,t,v is temporally causal and spatially non-causal. Secondly, according to

the definition of s̃yξ,l and Sξξ,l, one needs the application of the STWK, g1,t,v to the

purely temporal signal ξt. Thus, the filtered ξt is dependent on the index of spatial

wave-number l. Since gj,t,v can be decomposed into a purely temporal filter and

a purely spatial kernel under space-time separability, these interpretations becomes

more direct and are discussed in section 3.3. Especially, a required purely spatial

kernel Kv shows the characteristics of spatial operation needed for a proper detection

statistic more clearly. It will turn out that spatial whitening is necessary instead of

SSK which has been widely used in FMRI.
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3.2.3 Family-Wise Error Rate Control

By computing ST-LRTs over all voxels within a ROI and thresholding them with

a pre-determined cutoff point, we create a thresholded (binary) activation map. In a

thresholded map, 1 is assigned to activated voxels and 0 is set to non-activated ones.

To determine a threshold, we need to know the null distribution of ST-LRT. Under

H0, if β̃l and Fk,l are known, we find the following asymptotic properties:

(P1) ε0,t,v , (g0,t,v ⊛ ⊛y0,t,v) is a spatial and temporal white noise with N (0, 1)

distribution.

(P2) ST-LRTs at different locations are independent, i.e., LRTu
i.d.∼ LRTv for all

u 6= v.

(P3) ST-LRT, LRTv ∼ χ2
L, i.e., a chi-square distribution with L degrees of freedom.

Detailed proofs of (P1)-(P3) are provided in Appendix 3.7. Since there are usually

lots of voxels in a ROI, controlling overall error rate is a multiple comparison problem

(MCP). A widely used measure to deal with the MCP is FWE (Type I error) rate

whose definition and an equivalent expression are given by, under H0,

FWE , Pr

(
M−1⋃

v=0

{LRTv > γ}
∣∣∣∣ H0

)
= Pr

(
max

v
LRTv > γ

∣∣∣∣ H0

)
, (3.28)

where γ is a threshold to be determined by a pre-specified significance level α, typ-

ically set to 0.05 in FMRI. False discovery rate (FDR) can be an alternative choice

to FWE [38]. Since, under H0 by (P2) and (P3), LRTv is spatially independent and

follows χ2
L, a threshold γ is determined analytically. For a given level α, a threshold

γ(α) is given by

γ(α) = Ψ−1
L

(
M
√

1− α
)
, (3.29)

where ΨL(t) denotes the cumulative density function of χ2
L.
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3.3 Space-Time Separability

In this section, we show how the activation statistic, ST-LRT simplifies when

space-time separability holds. In Chapter 5, a test procedure for testing the space-

time separability will be developed and its asymptotic power will be analyzed.

3.3.1 ST-LRT under Space-Time Separability

General Development

Under the assumption of space-time separability which is defined as, in the tem-

poral frequency and spatial wave-number domains,

Fk,l = FkGl, (3.30)

the ST-LRT in (3.25) has a simplified form. Specifically, plugging (3.30) into (3.16)

and (3.17) and following a similar procedure to that which produced (3.25) yields a

new ST-LRT,

LRTv , LRTN
v + LRT S

v , (3.31)

where

LRTN
v , T

(
θ̂0,0,0 − θ̂1,0,0

)
+

T−1∑

t=0

(
ε2
0,t,v − ε2

1,t,v

)
, (3.32)

LRT S
v ,

(
T−1∑

t=0

ε1,t,v(ξ
F
1,t)

T

)(
T−1∑

t=0

ξF
1,t · (ξF

1,t)
T

)−1(T−1∑

t=0

ε1,t,vξ
F
1,t

)
,

and now under Hj for j = 0, 1,

εj,t,v , Kj,v ⊛s (qj,t ⊛ yj,t,v). (3.33)

Here, θ̂j,0,0 is similarly defined under separability as in (3.22) and, since ξ̃1,k,l does

not depend on the index of wave-number l any more, we drop the index l, thus

ξ̃1,k , ξ̃1,k,l. The temporally whitened ξ1,t is defined as ξF
1,t(, q1,t ⊛ ξ1,t), where qj,t is
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a causal temporal whitening filter, while Kj,v is a non-causal SWK, which are given

by

qj,t
DFT←→ q̃j,k, |q̃j,k|2 =

1

F̂j,k

, Kj,v
DFT←→ 1√

Ĝj,l

, (3.34)

under Hj. For details of the derivation, the reader is referred to Appendix 3.8.

In this simplified setting, more direct interpretations of LRT S
v is available. Firstly,

the temporal whitening of ξ1,t and the observed data y1,t,v are performed. Secondly,

the application of a SWK to the temporally filtered data is necessary. Thirdly, cross

correlation of the spatiotemporally whitened y1,t,v and the temporally whitened ξ1,t

is required. Finally, a weighted norm of the computed cross correlation is formed.

New Spatial Kernel

Notice that the idea of a temporal whitening filter has been suggested by several

researchers [8, 33]. However, the idea of SWK is introduced here for the first time in

FMRI. This is totally different from the ad hoc approach of SSK. As a matter of fact,

it can be easily checked that the SWK, Kv is not a smoothing kernel and is rather

more like a spatial differentiator. Therefore, it is shown that ST-LRT requires an

opposite operation, spatial differentiation, to SSK in the standard approach which

is essentially spatial integration.
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3.4 Simulation Studies

Simulations are carried out to compare the two competing detection statistics,

the newly proposed ST-LRT, LRTv and Fv. Fv is the widely used F -statistic for

activation detection from SSK-DLM. To simplify the discussion, without baseline

and linear drift terms, simulated FMRI signals are constructed from (4.2), namely

yt,v = ξT
t fv + wt,v. We have four different cases determined by two types of fv

(activation amplitude) and two types of spatial correlation of wt,v (background noise).

The common setups applicable to all four cases are described as follows.

(S1) At a given time t, a two-dimensional (2D) slice is considered, thus giving v ,

(v1, v2).

(S2) The number of time points is assigned to T = 99 and the number of voxels in a

ROI is set to M = 63× 63. The size of voxels is assumed 3.125× 3.125 (mm2)

for a slice. These setup are basically matched to those of the real dataset used

in Chapter 4.

(S3) The parametric approach of the BOLD response is used.

(S4) The noise obeys space-time separability, allowing Fk,l = FkGl.

(S5) Spatially correlated and temporally white stationary Gaussian noise with known

spectra is assumed.

To specify fv, two types of activation amplitude are assumed, one of which is called

random-position-fixed-shape (RPFS) activation whose position is random and shape

is voxel-wise. The other is called random-position-random-shape (RPRS) activation

whose position and shape are both random. Activated voxels have a fixed amplitude

specified by BOLD-to-noise ratio (BNR) which is defined as BNR , fv/σ, where σ2
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denotes the variance of wt,v. Locations of RPFS activation are randomly selected

from a 2D uniform distribution. RPRS activation is generated from a 2D standard

Gaussian colored noise thresholded by an arbitrarily selected cut-off point. Examples

of RPFS activation and RPRS activation are given on Fig.3.1.

To specify the spatial structure of wt,v, both spatially white noise with σ2 = 1

and spatially colored noise with a known autocorrelation function, namely γv =

exp(−v2/2.254), are used. Since temporal whitening is also used in some previous

approaches, for simplicity, temporally white noise is assumed in all four cases.

To perform SSK for Fv, the full-width-half-maximum (FWHM) of Gaussian kernel

is set as 2.5 times of voxel size along each axis as recommended in SPM. Based on

the simulation setups, for a given significant level α, a threshold for LRTv and a

threshold for Fv are determined by (3.29) and RFT [65], respectively.
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(a) RPFS activation
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(b) RPRS activation

Figure 3.1: Examples of two types of activation amplitude: random-position-fixed-shape
(RPFS) activation and random-position-random-shape (RPRS) activation.
White dots and black dots indicate activated voxels and non-activated vox-
els, respectively.

The well-known receiver operating characteristic (ROC) curves are used as per-

formance measure. In each ROC curve, for a pre-specified FWE (Type I error), we
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count the number of correct detections in an activation map generated by each de-

tection statistic by comparing it with a true activation map. For one value on a ROC

curve, 1.5×104 randomly chosen true activation spots are used. Then, we repeat this

procedure for several values of FWE to obtain a ROC curve. In Fig.3.2 and Fig.3.3,

LRTv shows better performances than Fv with SSK for all cases and LRTv is much

better for spatially colored noise. In each graph, results from Fv without SSK are

also shown for reference. As shown in Fig.3.2, Fv without SSK shows competing

performances with LRTv in the case of spatially white noise. As a matter of fact,

it can be shown that they are equivalent when the noise is temporally and spatially

independent. Remark that, since sufficient smoothness is not guaranteed without

SSK, we lose justifications for RFT to control FWE rate in unsmoothed Fv.

A method for joint signal and noise modeling using the parametric cepstrum is

discussed in Chapter 4. An application of ST-LRT to a real human dataset involv-

ing the estimation of Fk,l and a comparison of ST-LRT and F-statistic with Akaike

information criterion (AIC) are performed there.

3.5 Conclusions

In this chapter, we built up a new detection statistic for activation with full

consideration of spatial and temporal correlations of background noise without space-

time separability. The developed ST-LRT required spatiotemporal whitening for non-

separable elliptic field to create a properly formulated activation map. Under space-

time separability, it was shown that spatial whitening kernel was necessary instead

of Gaussian amplitude kernel for spatial smoothing. In simulations, according to

comparisons through ROC curves, better performances of ST-LRT than the standard

F -statistic were shown for several scenarios.
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Figure 3.2: ROC curves of LRTv and Fv with and without SSK under the assumptions
of random-position-fixed-shape (RPFS) and random-position-random-shape
(RPRS) activations in spatially white noise (WN). BNR= −10.45 dB (i.e.
BNR= 0.3) is set.
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Figure 3.3: ROC curves of LRTv and Fv with and without SSK under the assump-
tions of random-position-fixed-shape (RPFS) and random-position-random-
shape (RPRS) activations in spatially colored noise (CN). BNR= −20 dB (i.e.
BNR= 0.1) is set.
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3.6 Appendix I : Derivations of MLEs

Taking the derivatives of −2 log Λ(β̃0,l, β̃1,l, f̃l; ỹk,l) in (3.8) with respect to β̃0,l,

β̃1,l, and f̃l and setting them zeros allow the desired estimates. Firstly, for β̃0,l, one

obtains an Euler equation,

T−1∑

k=0

1

F0,k,l

(
ỹk,l − X̃T

k β̃0,l

)∗
X̃k = 0 (3.35)

and then (3.10) after rearranging terms.

Secondly, for β̃1,l, one similarly obtains an Euler equation,

T−1∑

k=0

1

F1,k,l

(
ỹk,l − X̃T

k β̃1,l − ξ̃T
k f̃l

)∗
X̃k = 0. (3.36)

By defining β̃10,l and SXξ,l whose definitions are given in (3.12) and (3.13), it is

straightforward to show that (3.36) leads to

̂̃β1,l = β̃10,l − SXξ,l · f̃l, (3.37)

where SXξ,l reflects the interaction between X̃k and ξ̃k under the alternative hypoth-

esis H1.

Finally, for f̃l, plugging (3.37) into −2 log Λ and following the same procedure as

above allow an Euler equation,

T−1∑

k=0

1

F1,k,l

(
ỹk,l − X̃T

k β̃10,l − ξ̃T
1,k,lf̃l

)∗
ξ̃1,k,l = 0 (3.38)

by defining ỹ1,k,l and ξ̃1,k,l in (3.14). Then rearranging terms gives the estimate of f̃l

in (3.11).

3.7 Appendix II : Properties of Null Distribution of LRTv

We provide mathematical proofs of three properties of LRTv underH0, (P1)−(P3)

in this section. Remark thatH0 means there is no activations in a ROI and we assume
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that β̃l and Fk,l are known, resulting in LRTv = LRT S
v and yj,t,vs are all identical

regardless of j.

Proof of (P1)

Under H0, y0,t,v has only the noise part which is stationary Gaussian field with

zero mean. Thus, it is obvious that ε0,t,v , (g0,t,v ⊛ ⊛y0,t,v) is Gaussian and zero

mean. Since g0,t,v is a spatiotemporal whitening filter, the output is spatiotemporal

white noise. For computing the variance, one notices that

var(g0,t,v ⊛ ⊛y0,t,v) =
var(g̃0,k,lỹ0,k,l)

TM
=
|g̃0,k,l|2var(ỹ0,k,l)

TM
=
var(ỹ0,k,l)

TM · Fk,l

= 1, (3.39)

where the last equality holds due to CLT. Therefore, it is shown that (g0,t,v⊛⊛y0,t,v) ∼

N (0, 1) asymptotically.

Proof of (P2)

It is an equivalent to show sy,u and sy,v are independent for all u 6= v. We consider

cov(sy,u, sy,v) which is

cov(sy,u, sy,v) =
1

M2

∑

l1,l2

cov(s̃y,l1 , s̃y,l2)e
j 2π

M
(ul1−vl2). (3.40)

Using s̃y,l , S
− 1

2
ξξ,ls̃yξ,l and (3.20), it can be shown that

cov(s̃y,l1 , s̃y,l2) = S
− 1

2
ξξ,l1

cov(s̃yξ,l1 , s̃yξ,l2)S
−H

2
ξξ,l2

(3.41)

cov(s̃yξ,l1 , s̃yξ,l2) =
1

T 2

∑

k1,k2

(
g̃1,k1,l1 ξ̃1,k1,l1

)
cov(ε̃∗1,k1,l1

, ε̃∗1,k2,l2
)
(
g̃1,k2,l2 ξ̃1,k2,l2

)H

. (3.42)

By CLT, one arrives at

cov(ε̃∗1,k1,l1
, ε̃∗1,k2,l2

) = TM · δk1−k2,l1−l2 . (3.43)

Plugging (7.53), (7.63) and (3.43) into (7.52) gives

cov(sy,u, sy,v) = δu−v · IL×L, (3.44)

where IL×L is an identity matrix whose size is L× L.
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Proof of (P3)

According to the definition in (3.20), s̃yξ,l is CGD with zero mean under H0. By

the intermediate result in Proof of (P2), it can be easily checked that

cov(s̃y,l1 , s̃y,l2) = δl1−l2 ·M · IL×L. (3.45)

Therefore, s̃y,l ∼ Nc(0,M · IL×L) and s̃y,0 ∼ N (0,M · IL×L), which are equivalent to

sy,v ∼ N (0, IL×L). Then, one arrives at LRTv = sH
y,vsy,v ∼ χ2

L.

3.8 Appendix III : Derivation of ST-LRT under Separability

Since the noise piece, LRTN
v has the same form as that from the non-separable

case, we mainly concentrate on the signal piece, LRT S
v . Under separability, since two

Ĝ1,ls in (3.13) are canceled out, SXξ,l is independent of the index of spatial wave-

number l. By dropping the index l, this gives ξ̃1,k , ξ̃k−ST
XξX̃k. Then, by canceling

out Ĝ1,l in the center term, (3.17) has the following form :

LRT S =
1

TM
·
M−1∑

l=0




T−1∑

k=0

ỹ1,k,lξ̃
H
1,k

F̂1,k

√
Ĝ1,l



(

T−1∑

k=0

ξ̃1,k · ξ̃H
1,k

F̂1,k

)−1



T−1∑

k=0

ỹ∗1,k,lξ̃1,k

F̂1,k

√
Ĝ1,l


 , (3.46)

where notice that the center term which is defined as S−1
ξξ is also independent of l.

With an abuse of notations, we redefine s̃yξ,l and Sξξ as

s̃yξ,l ,
1

T

T−1∑

k=0

ỹ∗1,k,lξ̃1,k

F̂1,k

√
Ĝ1,l

, Sξξ ,
1

T

T−1∑

k=0

ξ̃1,k · ξ̃H
1,k

F̂1,k

. (3.47)

Then, by Parseval’s relation, it can easily be found that

LRT S =
M−1∑

v=0

sT
yξ,vS

−1
ξξ syξ,v, (3.48)

leading to LRT S
v , sT

yξ,vS
−1
ξξ syξ,v by a spatial decomposition. Again, by Parseval’s

relation, one can obtain expressions for syξ,v and Sξξ in the time domain, allowing

the desired expression for LRT S
v under the separability.
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CHAPTER 4

True Spatio-Temporal Detection and Estimation II : Signal
and Noise Modeling

In Chapter 3, for the first time in FMRI, we developed a detection statistic, fully

considering spatial and temporal correlations without space-time separability. In

this chapter, we develop joint signal and noise model fitting necessary to implement

the proposed detection statistic, spatio-temporal likelihood ratio test (ST-LRT). Our

noise modeling approach is unusual, being based on a truncated cepstrum expansion,

but it allows dramatic reduction of computations in model fitting and a very simple

method to obtain a desired spatiotemporal whitening operator. In addition, a method

of model comparison is developed to compare ST-LRT and an existing approach, F -

statistic derived from SSK-DLM. The developed techniques are applied to a human

dataset.

4.1 Introduction

The implementation of ST-LRT requires joint signal and noise modeling. Noise

modeling in multi dimensions, for example, three dimensions (3D) or four dimensions

(4D) in FMRI, requires a non-trivial statistical model estimation and involves addi-

tional issues such as edge effects [13], compared to that of time series in one dimension

(1D). Therefore, the noise modeling itself is a considerable task in FMRI. We start
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our discussion from the literature review of noise modeling in multi dimensions.

4.1.1 Literature Review

For a Gaussian distributed field under the assumption of stationarity, a widely

used method for noise modeling is AR-based parametric spectral estimation. In 1D,

for example, the AR model and its extensions have a lot of applications in the time

series literature [52]. In two-dimensional (2D) space, a spatial AR model of semi-

causality [62] and one of non-causality with some boundary conditions [51] were sug-

gested. [30] is a readable reference for three types of 2D spatial AR-based approaches,

which are causal, semi-causal, and non-causal. In 2D spatial and 3D/4D spatiotem-

poral spectral estimation, however, the fundamental theorem of algebra (FTA) does

not hold as in 1D temporal case. Therefore, since polynomials do not generally fac-

tor, the asymptotic likelihood equations for fitting a spatial AR or ARMA model can

not be solved linearly as in the 1D. As a matter of fact, the existence of a 2D spatial

solution is not guaranteed as shown in [19]. Assuming a known 2D spatial spectrum,

an approach to solve the factorization problem through homomorphic transform was

suggested in [20]. However, the 2D spatial spectrum should be estimated before ap-

plying the suggested method.

The parametric cepstrum was proposed to solve the 2D spatial spectral estima-

tion problem by [55]. It was shown that modeling by 2D spatial parametric cepstrum

had several advantages over spatial AR-based modeling of random fields, particularly

providing very fast and mostly linear computations for model fitting by fast Fourier

transforms.
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4.1.2 The Main Tasks and Organization

Two main issues to implement ST-LRT are addressed in this chapter. The first

issue is a statistically non-trivial joint signal and noise modeling in space and time.

For noise model fitting in 3D, namely, 2D space and 1D time, the spatiotemporal

parametric cepstrum which allows quick and easy model fitting is proposed. The

originally proposed 2D spatial parametric cepstrum by [55] is extended to 3D spa-

tiotemporal one in FMRI. Secondly, a new method of model comparison based on the

proposed cepstral noise modeling is discussed. We construct an Akaike information

criterion (AIC) and show how it can be decomposed spatially to provide an AIC

map. The AIC map can be used to compare models, specifically we compare the

ST-LRT approach with a standard approach based on SSK-DLM.

The rest of this chapter is organized as follows. Section 4.2 briefly describes two

detection statistics, F -statistic from SSK-DLM and the newly developed ST-LRT.

In section 4.3, a method to implement ST-LRT with the parametric cepstrum is

introduced. To be more specific, a method of noise model fitting and an iterative

algorithm combining the estimation of signal parameters and noise parameters are

given. Section 4.4 discusses an approach to compare ST-LRT model with SSK-DLM

using a spatially decomposed AIC. The application of the developed techniques to a

real FMRI dataset is discussed in section 4.5. Finally, some conclusions are drawn

in section 7.7.

4.1.3 Acronyms and Notations

For convenience, we partly repeat acronyms and notations from Chapter 3 and

add some new ones which are frequently used in this chapter. AIC means Akaike’s

information criterion; BOLD is blood oxygenation level dependent; DFT means dis-

64



crete Fourier transform; DLM is dynamic linear model; FFT means fast Fourier

transform; LRT is likelihood ratio test; LSE means least square estimate; MLE is

maximum likelihood estimate; OLS means ordinary least square; PSD is power spec-

tral density; ROI means region of interest; SSK is spatial smoothing by Gaussian ker-

nel; ST-LRT means spatio-temporal likelihood ratio test; STWK is saptio-temporal

whitening kernel; SWK means spatial whitening kernel.

For integer-valued t and v = (v1, . . . , vd), we consider a signal yt,v observed on

a rectangle {0, . . . , T − 1} × {0, . . . ,M1 − 1} × . . .× {0, . . . ,Md − 1} of sample size

TM , TM1 . . .Md, where d represents spatial dimensions. βv contains nuisance

signal components containing baseline and temporally varying drift, and fv represents

an activation amplitude at voxel v. In the spatiotemporal frequency domain, an

integer k is used to denote the index of temporal frequency and an integer-valued

vector l = (l1, . . . , ld) is assigned to the index of spatial wave-number. ỹk,l denotes

the DFT of yt,v whose definition is given by, for ωk , 2πk
T

and λl = (λl1 , . . . , λld) ,

(2πl1
M1

, . . . , 2πld
Md

),

ỹk,l ,

T−1∑

t=0

M−1∑

v=0

yt,v e
−j(ωkt+λl·v), (4.1)

where
∑M−1

v=0 ,
∑M1−1

v1=0 · · ·
∑Md−1

vd=0 for a short notation. Notice that the periodicity

of ỹk,l, e.g., ỹk,l1 = ỹk+T,l1+M1 for any integer k and l1. Discrete spatiotemporal PSD

is defined as Fk,l , F (ωk, λl) from a continuous PSD, F (ω, λ). Under space-time

separability, namely Fk,l = FkGl, Fk is a purely temporal PSD and Gl is a purely

spatial PSD.

For activation detection, the null hypothesisH0 means there is no activations, and

the alternative hypothesis H1 represents activations may exist in a ROI. Under Hj

for j = 0, 1, F̂j,k,l denotes the estimate of Fk,l, allowing a STWK gj,t,v. θt,v represents
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a cepstral coefficient at (t, v), θ denotes a vector containing lexicographically ordered

θt,vs, and θ̂j,t,v is the estimate of θt,v under Hj for j = 0, 1. Fv represents the widely

used F -statistic derived from SSK-DLM. The operator ∗∗ denotes a spatiotemporal

linear convolution; ∗ is used for a temporal convolution; ∗s is for a spatial convo-

lution. The spatiotemporal circular convolution is denoted by circled asterisk, ⊛⊛.

Superscripts ( · )∗, ( · )T and ( · )H denote a complex conjugate, a transpose, and

Hermitian transpose, respectively.
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4.2 Detection Statistics for Activation - Revisited

We consider a real-valued model of FMRI measurements which has the following

linear and additive form:

yt,v = XT
t βv + ξT

t fv + wt,v, (4.2)

where Xt , [1, t]T , βv , [mv, bv]
T , ξt , [ξ1,t, . . . , ξL,t]

T , and fv , [f1,v, . . . , fL,v]
T

are defined. mv denotes baseline, bv is the coefficient of temporal linear drift, and

st,v means the BOLD response. wt,v is spatiotemporally stationary Gaussian noise

with zero mean whose PSD is denoted as Fk,l in the temporal frequency and spatial

wave-number domains. L denotes the number of basis functions used to model the

BOLD response. The detailed discussions of the signal model formulation and two

detection statistics are presented in Chapter 2 and 3, respectively.

4.2.1 Classical Detection Statistic : SSK-DLM

The SSK-DLM used in statistical parametric mapping (SPM) has a different

model from (4.2),

yt,v = XT
t βv + ξT

t f
G
v + ηt,v, (4.3)

where fG
v denotes a Gaussian amplitude activation and ηt,v is a zero mean stationary

Gaussian field which obeys space-time separability. ηt,v is assumed spatially inde-

pendent but temporally correlated. In SPM, after SSK and temporal filtering, e.g.,

temporal whitening or coloring, are applied to FMRI measurements, a voxel-wise the

t or F -statistic is built up from OLS [66]. For example, the F -statistic at v is defined

as

Fv ,
Hv/dfh

Ev/dfe

, (4.4)
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where Hv is the hypothesis sum of squares or signal sum of squares and Ev is error

sum of squares; dfh and dfe denote associated degrees of freedoms. Then, random

field theory (RFT) is used to control an overall error rate in a ROI, e.g., family-wise

error (FWE). Therefore, the standard approach, SSK-DLM is based on two main

assumptions: spatial independence and space-time separability.

4.2.2 New Detection Statistic : ST-LRT

We developed a detection statistic for activation based on (4.2), not requiring two

main assumptions made in SSK-DLM. We called it spatio-temporal likelihood ratio

test (ST-LRT) which, when spatially decomposed, consists of two pieces; a signal

piece and a noise piece,

LRTv , LRTN
v + LRT S

v , (4.5)

where two pieces are defined as

LRTN
v , T

(
θ̂0,0,0 − θ̂1,0,0

)
+

T−1∑

t=0

(
ε2
0,t,v − ε2

1,t,v

)
, (4.6)

LRT S
v , sH

y,vsy,v. (4.7)

For example, under H1, θ̂1,0,0 denotes the estimate of cepstral coefficient evaluated

at the origin, (t, v) = (0, 0) and

ε1,t,v , (g1,t,v ⊛ ⊛y1,t,v), (4.8)

where y1,t,v denotes yt,v adjusted for baseline and drift, and g1,t,v is a temporally

causal and spatially non-causal STWK defined by DFT as follows.

g1,t,v
DFT←→ g̃1,k,l, |g̃1,k,l|2 =

1

F̂1,k,l

, (4.9)
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where F̂1,k,l is the estimator of Fk,l.

The LRT S
v is specified via sy,v

DFT←→ s̃y,l , S
− 1

2
ξξ,ls̃yξ,l,

s̃yξ,l ,
1

T
·

T−1∑

k=0

ỹ∗1,k,lξ̃1,k,l

F̂1,k,l

, Sξξ,l ,
1

T
·

T−1∑

k=0

ξ̃1,k,l · ξ̃H
1,k,l

F̂1,k,l

, (4.10)

where

ỹ1,k,l , ỹk,l − X̃T
k
̂̃β10,l, ξ̃1,k,l , ξ̃k − ST

Xξ,lX̃k, (4.11)

̂̃β10,l ,

(
T−1∑

k=0

X̃∗
k · X̃T

k

F̂1,k,l

)−1(T−1∑

k=0

ỹk,lX̃
∗
k

F̂1,k,l

)
, (4.12)

SXξ,l ,

(
T−1∑

k=0

X̃∗
k · X̃T

k

F̂1,k,l

)−1(T−1∑

k=0

X̃∗
k · ξ̃T

k

F̂1,k,l

)
. (4.13)

θ̂0,0,0, ε0,t,v, and ỹ0,k,l can be similarly defined under H0. For details of the derivation

of ST-LRT, see Chapter 3. In this chapter, since H1 is more complicated than H0,

we discuss signal and noise modeling mainly with H1.
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4.3 Joint Signal and Noise Modeling

The parametric cepstrum is proposed to solve the spatio-temporal spectral es-

timation problem in FMRI. The parametric cepstrum approach allows a dramatic

reduction of computation in the fitting process with FFTs and a very simple relation

between the required STWK and estimated spatiotemporal cepstral coefficients. In

addition, we can describe the space and time separability condition easily (linearly)

through the cepstrum, allowing the development of a test procedure for it in Chapter

5. We extend the purely 2D spatial setup in [55] to a 3D spatiotemporal situation

requiring temporal causality which is typical in FMRI and suggest a way to obtain

3D STWK, gt,v from the estimated cepstral coefficients. Since only noise modeling in

2D space is described in [55], we have also extended the approach to include estima-

tion of signal parameters such as βv (nuisance signal components) and fv (activation

amplitudes) in an iterative way. The suggested framework can be easily extended to

higher dimensions, e.g., 4D, that is 1D for time and 3D for space.

4.3.1 Parametric Cepstrum

Non-Separable Field

In 3D (1D is for time and 2D are for space), the parametric cepstrum is obtained

by truncating the cepstral coefficient array, θtv1v2 which is just the array of Fourier

coefficients in a Fourier series expansion for the logarithm of spectrum; for −π ≤

ω, λ1, λ2 ≤ π,

F̃ (ω, λ1, λ2) , logF (ω, λ1, λ2) =
n∑

t=−n

p∑

v1=−p

q∑

v2=−q

θtv1v2e
−j(ωt+λ1v1+λ2v2), (4.14)

where F (ω, λ1, λ2) is a continuous spatiotemporal PSD, n represents the tempo-

ral order, and (p, q) means the spatial orders of the cepstrum model. Note that
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the cepstrum has a symmetry, that is θtv1v2 = θ(−t)(−v1)(−v2) for ∀(t, v1, v2) be-

cause PSD is real-valued. For the non-separable elliptic field, there are Rall ,

(2p+ 1)(2q + 1)n+ 2pq + p+ q + 1 cepstral coefficients to be estimated.

Space-Time Separable Field

An advantage of the cepstrum is that hypotheses such as space-time separabil-

ity are easily described. The space-time separable field is defined by the following

condition in 3D:

F (ω, λ1, λ2) = F (ω)G(λ1, λ2), (4.15)

where F (ω) is a continuous temporal PSD and G(λ1, λ2) is a continuous PSD asso-

ciated with space. Equivalently, taking logarithms gives

F̃ (ω, λ1, λ2) = F̃ (ω) + G̃(λ1, λ2). (4.16)

In the cepstral domain, therefore, the space-time separability condition in (4.15)

entails the following linear condition: for ∀(t, v1, v2) 6= (0, 0, 0),

θtv1v2 = θt00δ0v1v2 + θ0v1v2δt00, (4.17)

that is, in the 3D cepstral domain, cepstral coefficients only on the central v1v2-plane

located at t = 0 and along the t-axis located at (v1, v2) = (0, 0) have non-zero values.

Under the space and time separability, the cepstral model in (4.14) is reduced to

F̃ (ω, λ1, λ2) =
n∑

t=−n

p∑

v1=−p

q∑

v2=−q

θtv1v2e
−j(ωt+λ1v1+λ2v2) = θ000 (4.18)

+ 2
n∑

t=1

θt00 cos(ωt) + 2

p∑

v1=1

θ0v10 cos(λ1v1) + 2

q∑

v2=1

θ00v2 cos(λ2v2)

+ 2

p∑

v1=1

q∑

v2=1

θ
(+)
0v1v2

cos(λ1v1 + λ2v2) + 2

p∑

v1=1

q∑

v2=1

θ
(−)
0v1v2

cos(λ1v1 − λ2v2),
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where sine terms in the complex exponentials of (4.14) are canceled out due to the

symmetry of the cepstrum. There are Rs , 2pq + p+ q + n+ 1 cepstral coefficients

to be estimated for the separable field. In noise model fitting, therefore, space-time

separability allows a substantial amount of reductions in the number of parameters.

4.3.2 Space-Time Filters in the Cepstral Domain

Non-Separable Field

According to the definition in (4.14), the parametric cepstrum allows two com-

putationally nice properties. One is that the convolution of two functions in the

space and time domains is equivalent to the addition of their cepstral coefficients in

the cepstral domain. The other is that causality in the temporal cepstral domain

entails causality in the time domain. Thus, after estimating spatiotemporal cepstral

coefficients and determining model orders (n, p, q), it can be easily shown that the

following relation is equivalent to (4.9) based on these two properties,

gj,t,v
CT←→

(
−θ̂j,t,v

)+

, (4.19)

where CT denotes cepstral transform and (θ̂j,t,v)
+

represents the temporally causal

part of θ̂j,t,v in the cepstral domain under Hj for j = 0, 1. The causality of θ̂j,t,v is

required due to the temporally causal characteristic of STWK, gj,t,v.

Space-Time Separable Field

Under space-time separability, one easily finds that the following two relations

are equivalent to (4.9):

Kj,v
CT←→ −1

2
θ̂j,0,v, qj,t

CT←→
(
−θ̂j,t,0

)+

, (4.20)

where Kj,v denotes a SWK and qj,t denotes a temporally causal whitening filter under

Hj. The causality of θ̂j,t,0 is required due to that of qj,t. Therefore, regardless of the
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space and time separability, we easily obtain a STWK by FFTs from the estimated

cepstral coefficients.

4.3.3 Noise Model Fitting

For a 3D stationary random field wtv1v2 with zero mean, the periodogram is

defined as

Ikl1l2 , I(ωk, λl1 , λl2) =
|w̃(ωk, λl1 , λl2)|2
T ·M1 ·M2

, (4.21)

where w̃(ωk, λl1 , λl2) is the DFT of wtv1v2 . M1 and M2 represent the number of

voxels along v1-axis and v2-axis, respectively. According to [6], under certain reg-

ularity conditions involving joint cumulants, we have an asymptotic distribution as

min(T,M1,M2)→∞, which is given by

Ikl1l2

Fkl1l2

∼ χ2
2

2
, (4.22)

for

∀(k, l1, l2) ∈ Ωh, Ωh , ∪3
i=1Ωi, (4.23)

where Ωh denotes the half of the whole index region, Ωf which is a 3D rectangle.

Periodograms at different ordinates are asymptotically independent and χ2
2 denotes

a chi-square distribution with two degrees of freedom. The sets of indices Ωf and Ωi,

where i = 1, 2, 3 have the following ranges;

Ωf = {|k| ≤ km, |l1| ≤ lm1 , |l2| ≤ lm2 }, (4.24)

Ω1 = {1 ≤ k ≤ km,−lm1 ≤ l1 ≤ lm1 ,−lm2 ≤ l2 ≤ lm2 }, (4.25)

Ω2 = {k = 0, 1 ≤ l1 ≤ lm1 ,−lm2 ≤ l2 ≤ lm2 }, (4.26)

Ω3 = {k = 0, l1 = 0, 1 ≤ l2 ≤ lm2 }, (4.27)

where the union of Ω2 and Ω3 represents the half of the central l1l2-plane located

at k = 0, excluding the origin. Here, km , [(T − 1)/2], lm1 , [(M1 − 1)/2], and
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lm2 , [(M2 − 1)/2]. To simplify the discussion, T , M1 and M2 are assumed odd and

taken odd in the sequel. When the proposed techniques in this thesis are applied to a

real human dataset in section 4.5, to make them odd, observations at the beginning

of scans and on the boundaries of images are dropped. Notice that periodicity of

Ikl1l2 and Fkl1l2 , that is Ikl1l2 = I(k+T )(l1+M1)(l2+M2) and Fkl1l2 = F(k+T )(l1+M1)(l2+M2)

for any integer k, l1, and l2.

Linear Estimator for Cepstral Coefficients

The framework of classical linear regression with the logarithm of Ikl1l2 as response

variable is used for the linear estimation of cepstral coefficients, θtv1v2 . In details,

taking the logarithm of (4.22) yields, defining pseudo-residual Ykl1l2 ,

Ykl1l2 , log Ikl1l2 − ψ(1) = logFkl1l2 + ǫkl1l2 , (4.28)

where ψ(1) = −0.5772 is called Euler-Mascheroni constant.1 ǫkl1l2s are asymptoti-

cally independent and obey an extreme value distribution (EVD) with zero mean and

ψ′(1) = 1.6449 variance. By replacing the logarithm of PSD in (4.28) with the para-

metric cepstrum model in (4.14), a classical linear regression equation is obtained,

whose form is as follows.

For ∀(k, l1, l2) ∈ Ωh,

Ykl1l2 = xT
kl1l2

θ + ǫkl1l2 , (4.29)

where xkl1l2 is a vector representing lexicographically ordered cosine terms and θ

means a vector containing associated θtv1v2 terms in (4.14). Note that sine terms

are canceled due to the symmetry of cepstrum. For separable fields, we obtain the

1Let U ∼ χ2

2
/2, then E(logU) = ψ(1) and V ar(logU) = ψ′(1).
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same regression equation with xkl1l2 and θ of much smaller sizes than those for non-

separable fields.

Due to the non-Gaussianity of ǫkl1l2 , least square estimate (LSE) is not statis-

tically efficient in this case. However, it is very attractive since it is unbiased and

linear. We have a LSE whose form2 is given by

θ̂LSE =
(
XTX

)−1
XTY, (4.30)

where

XTX ,
∑

Ωh

xkl1l2x
T
kl1l2

, XTY ,
∑

Ωh

xkl1l2Ykl1l2 . (4.31)

Moreover, since XTX is almost diagonal3, a modification of (4.30) to reduce compu-

tations is possible. Following [55], a biased estimator, θ̂b can be obtained by taking

just one FFT of the pseudo-residual, Ykl1l2 and it turns out that a simple adjustment

scheme exists to get the exact LSE from θ̂b. To be specific, θ̂LSE is obtained by

θ̂LSE = θ̂b + adjustment, θ̂b ,




2 0

0 I


XTY

/
TM, (4.32)

where I is an identity matrix. The adjustment term is computed by simple regional

summations of θ̂b in the cepstral domain. To overcome the inefficiency of θ̂LSE, in the

following section, we consider an iterative method for MLEs of cepstral coefficients,

which is based on the asymptotic log-likelihood equation and scoring algorithm.

There, θ̂LSE initialize the algorithm.

Asymptotic ML Estimator for Cepstral Coefficients

The performance of the LSE can be improved by one-step estimation (OSE).

According to [59, pp. 71-75], if a preliminary estimator θ̃ is a
√
TM -consistent,

2For separable fields, XTX is a Rs × Rs matrix, which typically gives a huge matrix size. For
non-separable fields, the size is much larger and Rall ×Rall.

3It is because that the design matrix X consists of only cosine terms.
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then the scoring algorithm yields an estimator θ̂ as efficient as MLE in the sense of

asymptotics by the following one-step computation:

θ̂ = θ̃ + I−1(θ̃) · ∇L (θ̃), (4.33)

where I means the Fisher information matrix (FIM) and ∇L is the gradient of L ,

Whittle’s asymptotic log-likelihood equation [62]. For λ = (λ1, . . . , λd), L is given

by

L ,

∫∫
logF (ω, λ) +

I(ω, λ)

F (ω, λ)
.

In 2D space, [55] shows that I is an identity matrix with a negative sign and L

is convex with respect to θ, which are still true and can be easily shown in our 3D

spatiotemporal case. Thus, (4.33) boils down to a very simple form involving no

matrix inversion,

θ̂ = θ̃ − h(θ̃), (4.34)

where

h(θ̃) =
[
htv1v2(θ̃)

]
, ψtv1v2 , cos(ωt+ λ1v1 + λ2v2), (4.35)

htv1v2(θ̃) ,

∫∫∫
I(ω, λ1, λ2)

F (ω, λ1, λ2|θ̃)
· ψtv1v2

dω

2π

dλ1

2π

dλ2

2π

≃
∑

Ωf

Ikl1l2

Fkl1l2(θ̃)
· ψtv1v2(k, l1, l2)

TM1M2

, (4.36)

ψtv1v2(k, l1, l2) , cos (ωkt+ λl1v1 + λl2v2) . (4.37)

Note that htv1v2 can be obtained by taking the real part of the inverse FFT of

Ikl1l2/Fkl1l2 for a given θ̃ in (4.36). Therefore, the asymptotic MLE is computed very

quickly from θ̂LSE by a small number of FFTs, resulting in a procedure for estimating

Fkl1l2 that is performed linearly.
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4.3.4 Noise plus Signal Modeling : Implementing ST-LRT

Our discussions were focused on the modeling of the noise wt,v in the previous

sections. To implement ST-LRT in practice, we need to estimate signal parameters

and noise parameters simultaneously under each hypothesis. Since the estimation

of β̃l and f̃l (signal parameters) and the estimation of Fk,l, equivalently θt,v (noise

parameters) are related to each other as shown in Chapter 3, an iterative algorithm

to combine these two estimation procedures is necessary. This iterative algorithm

allows us a practically efficient detection statistic.

From the DFT of the FMRI measurement model in (4.2),

ỹk,l = X̃T
k β̃l + ξ̃T

k f̃l + w̃k,l, (4.38)

defining ỹl = [ỹ0,l, . . . , ỹT−1,l]
T and w̃l = [w̃0,l, . . . , w̃T−1,l]

T allows a regression equa-

tion, ỹl = Z̃α̃l + w̃l, where α̃T
l , [β̃T

1,l f̃
T
l ] and matrix Z̃ is defined as

Z̃T ,



X̃0 X̃1 · · · X̃T−1

ξ̃0 ξ̃1 · · · ξ̃T−1


 . (4.39)

Thus, the LSE of α̃l is given by ̂̃αLSE,l = (Z̃HZ̃)
−1

Z̃H ỹl. We now describe a cyclic

ascent algorithm for maximizing the likelihood and so calculating the ST-LRT. Max-

imization must be done under H0 and H1. We just describe the more complicated

H1 case. The cyclic ascent algorithm consists of two steps : a noise (parameter)

step and a signal (parameter) step. We initialize with ̂̃αLSE,l. Then, the algorithm

is described as follows.

• Noise-Step: given α̃l, get θ.

Given ̂̃αl, compute the residuals, ẽ1,k,l = ỹk,l−Z̃̂̃αl and use the method of section

4.3.3 to estimate θ from ẽ1,k,l.
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• Signal-Step: given θ, get α̃l.

Given θ̂, calculate F̂1,k,l and so compute the quantities ̂̃β1,l and ̂̃fl from (3.9)

and (3.11)−(3.14).

• Iterate the Noise-Step and Signal-Step until the algorithm converges. Then, we

can compute the ST-LRT from section 4.2.2.
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4.4 Joint Model Selection and Model Comparison

It is very important to emphasize here something which seems to be poorly under-

stood in the FMRI literature. Namely, that competing models can not be compared

by looking at activation maps; rather a properly constructed model comparison cri-

terion is required that is typically a sum of a term measuring model fit and a term

measuring model complexity. Note that the model fit term measures discrepancy

between fitted model and data, whereas the overall model comparison criterion mea-

sures discrepancy between fitted model and underlying noise free unknown truth

[57, 32]

The comparison of statistical models with a finite number of parameters includes

model order selection as a special case. Using Akaike information criterion (AIC),

we can not only compare models with different structures such as ST-LRT model

and SSK-DLM but also models with the same structure to determine a proper order

for a model. First, we consider a model selection for ST-LRT. Then, the model

comparison of ST-LRT model and SSK-DLM will be discussed.

4.4.1 AIC Map for ST-LRT Model

General Development of AIC

To select a proper model for ST-LRT, we need to choose L, the number of basis

functions for the modeling of the BOLD response in (4.2) and (n, p, q), the orders

of parametric cepstrum for the modeling of PSD in (4.14). Thus, we perform a 4D

search for (L, n, p, q). The AIC is defined as

AIC , −2 ·max
(
l(β̃, f̃ , θ; ỹ)

)
+ 2 · (R + L), (4.40)

where l(β̃, f̃ , θ; ỹ) denotes a log-likelihood function for a given dataset ỹ and R is the

number of cepstral coefficients [32]. To be specific, R = Rall for non-separable fields
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and R = Rs for separable fields. Thus, under H1, we need to minimize

AIC =
T−1∑

k=0

M−1∑

l=0

log F̂1,k,l +
|ẽ1,k,l|2

TM · F̂1,k,l

+ 2 · (R + L), (4.41)

where residuals are defined as ẽ1,k,l , ỹk,l − X̃T
k
̂̃β1,l − ξ̃T

k
̂̃f l and all estimates are

MLEs. Instead of AIC, an alternative method can be used, e.g., Bayesian information

criterion (BIC) or minimum description length (MDL), which typically gives a smaller

model than does AIC. Under H0, a different set of noise model orders, (n, p, q) can

be similarly determined by AIC.

Spatial Decomposition of AIC

As in the procedure to obtain ST-LRT in Chapter 3, we provide a spatial decom-

position of AIC. To be specific, with Parseval’s relation, the spatial decomposition

of (4.41) gives an AIC map for the ST-LRT model which is defined as

AICLRT,v , T · θ̂1,0,0 +
T−1∑

t=0

(g1,t,v ⊛ ⊛e1,t,v)
2 +

2(R + L)

M
, (4.42)

where e1,t,v is the inverse DFT of ẽ1,k,l and AIC =
∑

v AICLRT,v. For a voxel v,

therefore, the AIC map shows a contribution of that voxel to AIC for a whole ROI,

indicating how close a fitted model is to the underlying but unknown truth. If values

in an AIC map from one model are substantially lower than those from another

model, then one is on average much closer to the truth than the other. Thus, by

measuring relative distances to underlying noise free truth in the sense of average,

ST-LRT model and SSK-DLM can be compared.

4.4.2 AIC Map for SSK-DLM

After SSK and temporal filtering, e.g., temporal whitening or coloring, are per-

formed in (4.3), one arrives at

ȳt,v = X̄T
t β̄v + ξ̄T

t f̄v + η̄t,v, (4.43)
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where, e.g., ȳt,v , φt∗(KG
v ∗syt,v), K

G
v denotes a Gaussian kernel, and φt is a temporal

filter. Then, for each voxel time course, the F -statistic is built up from (4.43) using

OLS. Thus, one finds parameters which give the minimum value of the following

objective function:

J =
M−1∑

v=0

T−1∑

t=0

(
ȳt,v − X̄T

t β̄v − ξ̄T
t f̄v

)2
,

=
1

TM
·

M−1∑

l=0

T−1∑

k=0

∣∣∣ỹk,l − X̃T
k β̃l − ξ̃T

k f̃l

∣∣∣
2

|φ̃k|
2|K̃G

l |
2
, (4.44)

where the last equality is from Parseval’s relation with zero padding. φ̃k is the

temporal DFT of φt and K̃G
l is the spatial DFT of KG

v . If we compare (4.44) with

(4.41), the simplest interpretation of φ̃k and K̃G
l is that they are whitening operators

(for a similar interpretation on temporal filtering, refer to [57]). Therefore, |φ̃k|
2

and

|K̃G
l |

2
take the place of 1/F̂1,k,l in (4.41). If φt is a temporal whitening filter, this

allows an AIC map for SSK-DLM,

AICDLM,v ,

T−1∑

k=0

log ̂̌F k − 2TθG
0 +

T−1∑

t=0

ē2t,v +
2(np + L)

M
, (4.45)

where θG
0 is the value of cepstral coefficient of KG

v at the origin and ēt,v , ȳt,v −

X̄T
t
̂̄βv − ξ̄T

t
̂̄fv. np is the number of parameters for noise modeling. For AR(1) fitting

of η̌t,v(, KG
v ∗s ηt,v), we have np = 2 and F̌k = σ̌2

|1−ϕ̌e−jωk |2
, where σ̌2 = var(η̌t,v) and

ϕ̌ is an AR(1) coefficient. Now, we can compare the AIC map from ST-LRT model

in (4.42) and one from SSK-DLM in (4.45) for a real FMRI dataset.

4.5 Application to a Human Dataset

We apply the newly developed techniques in the previous chapter and this chapter

to a real dataset from the AFNI homepage (http://afni.nimh.nih.gov/afni/). The

dataset is collected while a human subject is performing right-hand sequential finger-

thumb opposition in the presence of a given motor stimulus signal. The on-off pattern
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Figure 4.1: Real FMRI measurements from the AFNI homepage : (a) A 2D spatial plot of
the collected dataset related to motor stimulus picked at an arbitrarily selected
time point, (b) A brain-shaped mask with the tapered boundary by 2D spatial
Tukey-Hanning window.

of the stimulus is shown on the bottom of Fig. 4.3 (black solid line). The experiment

is performed under a 3T MRI scanner and TR is set to 2 seconds. At a given time

t, for simplicity, a 2D axial slice is analyzed instead of a 3D volume. T is assigned

to 100 and each axial slice consists of 64× 64 voxels. Each voxel has dimensions of

3.125 × 3.125 × 5 (mm3). From the original 21 slices, a slice expected to contain

motor reactions to the given motor stimulus is selected for analysis. Data taken at

the beginning of the experiment are dropped, thus T is 99 and a spatial mask is

applied to remove signals outside the subject’s brain, thus M is reduced but odd.

An example image of the motor slice picked at an arbitrarily selected time point is

shown on Fig.4.1(a).

To reduce a bias from edge effects which are not negligible in 3D spatiotemporal

spectral estimation [13, 27], we perform a spatiotemporal tapering using a 3D Tukey-

Hanning window. Using a 2D Tukey-Hanning window, a tapered spatial mask is
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Figure 4.2: Laguerre functions up to order 3 for time constant a = 0.42.

0 10 20 30 40 50 60 70 80 90 100
700

750

800

850

900

950

Time points

y t,v
 (

A
U

)

Fitted time course at the max point

Laguerre

Parametric

Raw data

Figure 4.3: Fitted time courses at the voxel where LRTv is maximized with different BOLD
response modelings. Red solid line represents the observed FMRI time course.
Blue solid line means the fitted time course with Laguerre modeling and cyan
dashed line is from the parametric approach. Black solid line is the associated
temporal stimulus where TR= 2 seconds.
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shown in Fig.4.1(b). In addition to bias reduction in multi-dimensional spectral

estimation, tapering generally provides two more advantages, one of which is to allow

a better estimation of peaky spectrum. The other is to alleviate any non-stationary

effect which can exist on the boundary of subject’s brain [27].

For modeling of the BOLD response, a set of Laguerre functions is used [56].

Following our discussions about model selection, model orders are determined by

AIC. Under H1, the selected orders are (L, n, p, q) = (3, 10, 7, 8), which means that

three Laguerre functions whose orders are up to 3 are used to construct a subspace

representing the BOLD responses. These three Laguerre functions with time constant

a = 0.42 are shown on Fig.4.2. It turns out that BIC gives a smaller model than

does AIC, but the model selected by BIC shows the similar results to those by AIC.

The time constant a = 0.42 for the set of Laguerre functions is selected by the

investigation of goodness of fit at the voxel where LRTv has the maximum value. On

Fig.4.3, at that voxel, fitted time courses using Laguerre modeling and the parametric

modeling of the BOLD response are given. According to Fig.4.3, Laguerre modeling

provides the better descriptions of undershoot and overshoot at the beginning and

end of one period of the given stimulus. It is empirically known that typical BOLD

responses have such undershoots and overshoots.

4.5.1 Activation Detection

Before thresholding, an activation map associated with the motor responses gen-

erated from ST-LRT is given on Fig.4.4(a). It shows that the subject’s right-hand

movements make strong activation spots and weak spots around those strong spots

in the primary motor cortex of the left hemisphere. The supplementary motor cor-

tex in the center region of the brain has weak activations as well. There are some
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Figure 4.4: Unthresholded activation maps : (a) ST-LRT and (b) F -statistic, Fv derived
from SSK-DLM.
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Figure 4.5: Thresholded activation map : (a) ST-LRT and (b) F -statistic, Fv derived from
SSK-DLM. Red spots indicate activated voxels.
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unexpected bright spots in the right hemisphere of the subject’s brain. By threshold-

ing ST-LRTs on Fig.4.4(a) with a threshold determined from (3.29) for significance

level α = 0.05, we obtain a thresholded activation map from ST-LRT shown on

Fig.4.5(a). Before thresholding, an activation map from SSK-DLM, a spatial plot of

F -statistics is shown on Fig.4.4(b). To create this unthresholded activation map, a

Gaussian kernel whose full-width-half-maximum (FWHM) is set as 2.5 times of voxel

size along each axis, as recommended in SPM, is used for SSK. A temporal AR(1)

model with ϕ and σ2 is fitted to spatially smoothed voxel time courses inside the

subject’s brain. To describe the BOLD response, since the Laguerre modeling was

recently proposed by [56] and is not being used in softwares for FMRI data analysis

like SPM, the parametric approach is applied to the data. Then, for each time series,

temporal whitening is performed and the F -statistic, Fv is computed by (4.4). By

thresholding these F -statistics on Fig.4.4(b), we obtain a thresholded activation map

from SSK-DLM shown on Fig.4.5(b).

By comparing Fig.4.4(a) and Fig.4.4(b), we recognize that the activation map

of ST-LRT shows shaper and more well-defined activated regions than the spatial

plot of Fv derived from SSK-DLM in the whole brain. Besides that, in the primary

motor cortex of the left hemisphere, the activation map by SSK-DLM on Fig.4.4(b)

shows blurred activation regions and suggests wider activation spots than that by

ST-LRT on Fig.4.4(a), indicating that SSK could artificially shift true activations as

empirically reported in [25].

4.5.2 Model Comparison

AIC maps from ST-LRT model and SSK-DLM are compared on Fig.4.6(a) and

Fig.4.6(b). For a proper comparison, the same scaling for values of the AIC maps
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Figure 4.6: AIC maps : (a) ST-LRT model and (b) SSK-DLM.
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are used for Fig.4.6(a) and Fig.4.6(b). According to two AIC maps, AIC values from

ST-LRT model are substantially lower than those from SSK-DLM, thus indicating

that ST-LRT model is on average much closer to the underlying unknown truth than

SSK-DLM. By comparing two AIC maps, we made a comparison of two competing

models, ST-LRT model and SSK-DLM based on a properly formulated criterion.

4.6 Conclusions

We have implemented the ST-LRT fully considering the spatiotemporal corre-

lation of background noise developed in Chapter 3. With joint signal and noise

modeling based on the parametric cepstrum, the implementation of ST-LRT was

performed linearly and quickly. A new technique of model comparison based on

a spatially decomposed AIC was introduced for the comparison of ST-LRT model

and the existing SSK-DLM. The application of ST-LRT to a human dataset pro-

vided sharper and more well-defined activated regions than did F -statistic derived

from SSK-DLM. The comparison of AIC maps indicated that ST-LRT model was on

average much closer to the underlying noise free truth than SSK-DLM.
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CHAPTER 5

A Procedure for Testing Space-Time Separability

One of the main tasks of FMRI data analysis is to determine which regions of

the human brain are activated by presented temporal stimuli, equivalently, to build

up an activation map from measurements in the experiment. In most studies in

FMRI, space-time separability has been implicitly assumed and accepted without

a proper justification. This is probably because the assumption of space and time

separability allows a substantial amount of simplifications in modeling and analysis

for the activation study. For the first time in FMRI, in this chapter, we propose a

test procedure for testing the separability of space and time in FMRI time series by

fully considering spatial and temporal correlations. In addition to that, we analyze

the asymptotic power of the proposed testing procedure for space-time separability.

The developed test statistic is tested by means of simulation and applied to a human

dataset.

5.1 Introduction

Demands for FMRI are dramatically increasing due to its applicability to several

fields and abilities in the investigation of the human brain. Creating an activation

map to show localized activations in the human brain induced by pre-specified stim-
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uli is one of the main purposes of data analysis in FMRI. Since the assumption of

space-time separability allows researchers lots of simplifications for the activation

study, from the very beginning of FMRI, it has been assumed and applied to most

of developed techniques for data analysis without an appropriate justification. In

fact, it has been assumed in other scientific studies, for example, to simplify proce-

dures for solving Maxwell’s equations in electromagnetism or Schrödinger’s equation

in quantum mechanics, the space-time separability has been assumed and yielded

solutions satisfactorily explaining physical phenomena.

Conceptually, space-time separability in FMRI data analysis implies pure spa-

tial operations and pure temporal operations can be separately and sequentially

performed to achieve proper activation detection, where determining the order of

spatial and temporal operations is a totally different problem. For example, in soft-

wares such as statistical parametric mapping (SPM), widely used dynamic linear

model (DLM) is only based on temporal aspects of voxel time courses and spatial

smoothing by a Gaussian kernel (SSK) is purely built up on spatial assumptions

of activation amplitudes and noise. For detailed reviews on SSK-DLM, refer to

Chapter 2. For a given dataset, however, the validity of the space-time separability

assumption is not known without an appropriate test procedure for it. Therefore,

determining if a given dataset is space-time separable is an important issue not only

for computational reduction but also for accurate modeling. To the best of author’s

knowledge, any testing procedure for space and time separability in FMRI has so far

not been treated. As a matter of fact, a method proposed in this chapter is not only

the first such testing procedure in FMRI but also a novel approach applicable to

spatiotemporal modelings in other literatures. For some studies in other literatures,

the reader is referred to [24, 36] which have non-parametric approaches, whereas our
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proposed test is made in the framework of the parametric cepstrum.

In Chapter 3, we developed a new statistic for activation detection by fully consid-

ering spatial and temporal correlations without space-time separability and showed

the proposed detection statistic, spatio-temporal likelihood ratio test (ST-LRT) sim-

plified under space-time separability as we expected. In Chapter 4, to implement

ST-LRT, noise modeling for a general non-separable elliptic random field was re-

quired and the parametric cepstrum was proposed as an attractive solution to it.

Thus, as a byproduct of discussions in two previous chapters, we are able to develop

a method for testing space-time separability in this chapter.

5.2 Development of Test Procedure

Before we start our discussion to develop a test procedure for space-time sep-

arability, we need to emphasize here an important point to make the discussion

straightforward. According to signal and noise modeling used in Chapter 3 and 4,

we had two types of parameters, one for signal components and the other for noise

components. The signal components contained nuisance parameters for drift and

parameters of interest for activation amplitudes. The noise components had cep-

stral coefficients for the modeling of power spectral density (PSD). Since a test for

space-time separability is purely made on noise parameters, cepstral coefficients, pa-

rameters associated with signal components are treated as nuisance parameters in

this chapter. Therefore, assuming that activations may exist in a region of interest

(ROI), the space and time separability test is built up and performed. Partitioning

the whole parameter space into two parts, one for nuisance parameters and the other

for parameters of interest, is particularly important when we analyze the asymptotic

power of the proposed test for space-time separability in section 5.4.
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5.2.1 Signal Model Formulation

We consider the following FMRI measurement model obtained at a time point t

and a voxel location v:

yt,v = XT
t βv + ξT

t fv + wt,v, (5.1)

where t = 0, . . . , T −1 and v = 0, . . . ,M−1. Equivalently, in the temporal frequency

and spatial wave-number domains, discrete Fourier transform (DFT) yields

ỹk,l = X̃T
k β̃l + ξ̃T

l f̃l + w̃k,l, (5.2)

where k = 0, . . . , T − 1 and l = 0, . . . ,M − 1. βv contains parameters for nuisance

signal components such as drift and fv denotes parameters for activation amplitudes.

The noise wt,v is assumed spatiotemporally correlated and a stationary random field

with zero mean. The PSD of wt,v is denoted as Fk,l. For details of this model

formulation, refer to Chapter 1.

The space-time separability is now defined in the temporal frequency and

spatial wave-number domains as follows. For ∀(k, l),

Fk,l = FkGl, (5.3)

where Fk is purely temporal PSD and Gl is purely spatial PSD. In other words, space

and time separability, which can be equivalently defined in space and time domains

using spatiotemporal auto-covariance function, means the spatiotemporal PSD can

be decomposed into its purely temporal piece and purely spatial piece.

5.2.2 Test Statistic

Therefore, to test the condition in (5.3), we consider the following hypotheses:

HS0 : Fk,l = FkGl for all (k, l), (5.4)

HS1 : Fk,l 6= FkGl for some (k, l),
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where HS0 says that wt,v is a separable random field and HS1 says that wt,v is a

non-separable one. For the activation study in Chapter 3 and 4, the null hypothesis

denoted as H0 means there is no activation in a ROI and the alternative hypothesis

denoted as H1 means there are activations in the ROI as shown in (3.6). We dif-

ferentiate two important testing problems in this thesis with a subscript S, meaning

”separability”. Note that the space-time separability test is built up under H0 ∪H1,

thus activations in a ROI may exist, indicating fv contains nuisance parameters.

By the same method used to obtain the likelihood ratio test (LRT) for the ac-

tivation study in (3.8), we develop another LRT statistic, LS(, 2 log ΛS) defined

by

−2 log ΛS ,

T−1∑

k=0

M−1∑

l=0

log F̂k,l − log F̂kĜl (5.5)

+
T−1∑

k=0

M−1∑

l=0

|ẽS1,k,l|2

TM · F̂k,l

− |ẽS0,k,l|2

TM · F̂kĜl

,

where residuals are defined as ẽSj,k,l , ỹk,l − X̃T
k
̂̃βSj,l − ξ̃T

k
̂̃fSj,l and all estimates are

MLEs. The mathematical expressions of ̂̃βSj,l and ̂̃fSj,l are given by (3.9) and (3.11)

under HSj for j = 0, 1. Under space-time separability, F̂kĜl is the estimate of Fk,l.

The examples of null and alternative distributions of LS in (5.5) are shown on

Fig.5.1, in which the red curve in the left indicates a distribution of LS under HS0, a

central chi-square distribution and the blue curve in the right indicates a distribution

of LS under HS1, a non-central chi-square distribution. In fact, the curves on Fig.5.1

are based on the discussions in section 5.3 (null distribution) and 5.4 (alternative

distribution). Since the cepstrum allows a linear description for the condition of

separability in (5.3), an idea of thresholding LS in (5.5), i.e., the null distribution is

discussed in the following section in the framework of the parametric cepstrum.
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Figure 5.1: The examples of null (red curve in the left) and alternative (blue curve in the
right) distributions of the test statistic LS for space-time separability. From
the discussion in section 5.3 and 5.4, the red curve indicates a central chi-square
distribution and the blue curve indicates a non-central chi-square distribution.
The separation of two curves is made by non-centrality parameter.

5.3 Reformulation in the Cepstrum Domain

To make a valid test procedure for space-time separability, we should be able to

control false positive rate (FPR), the probability of type I error, within a pre-specified

level. It is also known as false alarm rate in radar processing. To control FPR, the

distribution of LS under HS0, called null distribution, is required, which enables us to

compute a threshold for a given significance label α. Due to the nonlinearity of (5.4),

at the first glance, it seems difficult to obtain an asymptotic null distribution of LS.

The parametric cepstrum provides a useful framework to determine the asymptotic

distribution of LS underHS0. In this section, the hypotheses in (5.4) are reformulated
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and a method to control FPR is discussed. To make the discussion complete, we

briefly review noise modeling by the parametric cepstrum now.

5.3.1 Parametric Cepstrum

We consider a Fourier series expansion of the logarithm of PSD. Truncating the

array of Fourier coefficients yields modeling by the parametric cepstrum [55]. For

the index of temporal frequency k and the index of spatial wave-number l, a cepstral

coefficient θt,v is defined by

F̃k,l , logFk,l =
n∑

t=−n

p∑

v=−p

θt,ve
−j(ωkt+λlv), (5.6)

where ωk , 2πk
T

and λl , 2πl
M

. n and p denote a temporal order and a spatial

order of the model, respectively. Notice that the cepstrum has a symmetry, namely

θt,v = θ(−t,−v) for ∀(t, v) due to real-valued PSD. For non-separable fields, thus there

are Rall(, 2np+ n+ p+ 1) cepstral coefficients to be estimated.

For the current spatiotemporal setup of FMRI, noise modeling by the parametric

cepstrum has several advantages over conventional AR-based methods. A linear

description of the space and time separability in (5.3) is an example to show that

modeling by the parametric cepstrum is very useful. For (t, v) 6= (0, 0), space-time

separability can be expressed in the cepstrum domain as

θt,v = θt,0δ0,v + θ0,vδt,0, (5.7)

where θt,0 denotes a cepstral coefficient along the temporal axis located at v = 0 and

θ0,v is a cepstral coefficient on the spatial plane located at t = 0. δt,v is a Kronecker

delta function, which has 1 only when (t, v) = (0, 0) and 0 otherwise. Therefore, for

separable fields, there are Rs(, n+p+1) cepstral coefficients to be estimated. As an

example of (5.7), Fig.5.2 shows cepstral coefficients of a two-dimensional (2D) random
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Figure 5.2: Cepstral coefficients of a 2D random field under space-time separability. The
horizontal axis is associated with space and the vertical axis is associated with
time. Notice that cepstral coefficients in the off-axis region have zero values.

field under space-time separability, in which we can clearly see that cepstrums only

on two axes have non-zero values.

5.3.2 Controlling False Positive (False Alarm) Rate

Therefore, we have an equivalent hypothesis testing to (5.4) in the cepstral do-

main, for (t, v) ∈ Θns,

HS0 : θt,v = 0 for all (t, v), (5.8)

HS1 : θt,v 6= 0 for some (t, v),
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where we call Θns the non-separable region defined by

Θa , {|t| ≤ n, |v| ≤ p} = Θs ∪Θns, Θns = Θc
s, (5.9)

Θs , {t = 0, |v| ≤ p} ∪ {|t| ≤ n, v = 0},

where the whole set of indices Θa is partitioned into two parts, the non-separable

region Θns and separable region Θs. From an asymptotic null distribution of LRT,

which can be thought of as a special case of [58] when the non-centrality parameter is

zero, the reformulation of the hypotheses in (5.8) allows a framework for thresholding

LS. It can be easily checked that a threshold for a significance level α is given by

γ(α) = Ψ−1
Rns

(1− α), (5.10)

where ΨRns
(t) denotes the cumulative density function (CDF) of a chi-square distri-

bution whose degrees of freedom is Rns(, Rall −Rs = 2np).

Details of signal and noise model fitting by the parametric cepstrum, and model

order selection were discussed for three-dimensional (3D) FMRI measurements in

Chapter 4. They can be easily extended to four-dimensional (4D) cases. Therefore,

we do not provide the discussions on those topics here. To review those topics, the

reader is referred to section 4.3 (signal and noise modeling) and section 4.4 (model

selection and comparison).

5.4 Asymptotic Power Analysis

In this section, the asymptotic power of the proposed test for space-time sepa-

rability is analyzed, requiring an asymptotic distribution of LRT under alternative

hypothesis. Since the proposed test statistic involves non-identically distributed sam-

ples in the presence of nuisance parameters, e.g., cepstral coefficients in the separable

region Θs or activation amplitudes, an asymptotic expansion of LS under HS1 is a
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non-trivial task. While this kind of problem has long been discussed in the statistics

literature, the conventional work deals only with independently and identically dis-

tributed samples and is not applicable to our situation, e.g., [28]. In a very recent

work in time series, an asymptotic expansion of a class of test statistics including

LRT is derived for a local alternative when serial correlation and nuisance parameters

exist [58]. Here, the results in [58] are applied to derive the asymptotic distribution

of LS for non-separable random fields, i.e., under HS1. As a matter of fact, [58] has

some regularity conditions involving the differentiability of log-likelihood function

and validity of asymptotic expansions of cumulants, which can be straightforwardly

checked in our current setups for LS but it is tedious.

5.4.1 Asymptotic Expansion of LRT under Local Alternatives

Suppose that η denotes a vector containing lexicographically ordered parameters

of interest and µ is a vector containing ordered nuisance parameters. η0 denotes η

which is specified by a given null hypothesis. The standard approach to asymptotic

power analysis is to consider asymptotic behavior for a sequence of local alternatives,

defined as η = η0 + ε/
√
n′, where n′ is the number of samples and ε describes the

deviation of η from η0 as a function of n′.

According to [58, Theorem 1], a test statistic T belonging to a class which includes

LRT has the following asymptotic expansion for a sequence of local alternatives: for

−∞ < t <∞,

Pr (T < t) = Φd,∆(t) +
1√
n′

3∑

q=0

mqΦd+2q,∆(t) + o

(
1√
n′

)
, (5.11)

where Φd,∆(t) denotes the CDF of a non-central chi-square distribution with d degrees

of freedom and ∆ non-centrality parameter. mqs can be computed from asymptotic

expansions of the moments of the first and second order derivatives of a given log-
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likelihood function. Remarkably, the degrees of freedom d is the same as the length

of the vector containing parameters of interest η and the non-centrality parameter

∆ is given by

∆ = εT
(
I11 − I12I−1

22 I21
) ∣∣∣∣

η=η0

ε, (5.12)

where, following the partition of the parameter space into two pieces, η (parameter

of interest) and µ (nuisance parameter), the Fisher information matrix (FIM) is

partitioned into

I(η, µ) ,



I11(η) I12(η, µ)

I21(µ, η) I22(µ)


 . (5.13)

Here, I11(η) is associated with the parameter of interest and I22(µ) involves only

nuisance parameter. If I12(η0, µ) in (5.12) is a zero matrix, then the non-centrality

parameter simplifies into

∆ = εTI11(η0)ε, (5.14)

where note that the non-centrality parameter ∆ is independent of nuisance parameter

µ, so that asymptotic power does not depend on nuisance parameter, which is the

case in the proposed test procedure for space-time separability we now discuss.

5.4.2 Asymptotic Power Function of the Space-Time Separability Test

From (5.6), the model by the parametric cepstrum allows the following expression

for the logarithm of PSD:

logFk,l = xT
k,lθ

ns + zT
k,lθ

s, (5.15)

where θns denotes a column vector containing lexicographically ordered cepstral co-

efficients in the non-separable region Θns and xk,l is a vector containing associated

cosine terms. Note that sine terms in (5.6) are canceled due to the symmetry of

cepstrums. θs and zk,l are similarly defined for cepstral coefficients in the separable
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region Θs. Therefore, θns defines a vector η for parameters of interest and θs is con-

tained in µ with other nuisance parameters.

Then, from the asymptotic complex-Gaussian distribution in (3.4), (5.15) yields

a fully parameterized negative log-likelihood function whose form is given by

2ℓ(β̃, f̃ , θs, θns) =
T−1∑

k=0

M−1∑

l=0

xT
k,lθ

ns + zT
k,lθ

s (5.16)

+
exp(−xT

k,lθ
ns − zT

k,lθ
s)

TM

∣∣∣ỹk,l − X̃T
k β̃l − ξ̃T

k f̃l

∣∣∣
2

,

where β̃T , [β̃0, . . . , β̃M−1] and f̃T , [f̃0, . . . , f̃M−1]. Now we have η , θns and

µT , [θsT , β̃T , f̃T ]. To simplify the discussion, we first derive the non-centrality

parameter ∆ for a simplified case without signal components, β̃ (baseline and linear

drift) and f̃ (activation amplitude). Then, we reconsider the signal components

in the general development. In fact, it turns out that results from the simplified

case are useful in the general development. Using a threshold γ(α) determined to

control FPR, the asymptotic power function can be computed from the non-central

chi-square distribution, Φd,∆(t) given in (5.11).

Case I : development without signal components

To compute the non-centrality parameter ∆ in (5.12), the FIM is required. As-

suming that there are no drift and activation amplitudes, i.e., β̃ = 0 and f̃ = 0, it

is easily checked that second order derivatives of 2ℓ(θs, θns) with respect to θns
i (the

i-th element of θns) and θs
j(the j-th element of θs) are given by

∂22ℓ

∂θns
i ∂θ

ns
m

=
T−1∑

k=0

M−1∑

l=0

|ỹk,l|2
TM

exp(−xT
k,lθ

ns − zT
k,lθ

s) · xk,l,ixk,l,m, (5.17)

∂22ℓ

∂θs
j∂θ

s
n

=
T−1∑

k=0

M−1∑

l=0

|ỹk,l|2
TM

exp(−xT
k,lθ

ns − zT
k,lθ

s) · zk,l,jzk,l,n, (5.18)

∂22ℓ

∂θns
i ∂θ

s
n

=
T−1∑

k=0

M−1∑

l=0

|ỹk,l|2
TM

exp(−xT
k,lθ

ns − zT
k,lθ

s) · xk,l,izk,l,n, (5.19)
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where xk,l,i denotes the i-th entry of xk,l and zk,l,j is the j-th entry of zk,l. By CLT,

we have E[|ỹk,l|2] = TM · Fk,l for ∀(k, l). By the cepstrum modeling, one arrives at

E

[
∂22ℓ

∂θns
i ∂θ

ns
m

]
=

T−1∑

k=0

M−1∑

m=0

xk,l,ixk,l,m = 2TM · δi−m, (5.20)

E

[
∂22ℓ

∂θns
i ∂θ

s
n

]
=

T−1∑

k=0

M−1∑

m=0

xk,l,izk,l,n = 0, (5.21)

E

[
∂22ℓ

∂θs
j∂θ

s
n

]
=

T−1∑

k=0

M−1∑

m=0

zk,l,jzk,l,n

=





TM if j = n = 1

2TM · δj−n otherwise

, (5.22)

where δi denotes a Kronecker delta function. Since xk,l and zk,l involve only har-

monic cosine functions, the last identities in (5.20)-(5.22) can be verified under the

assumption that 0 < n≪ T and 0 < p≪ M , which is usually the case in cepstrum

modeling. For the completeness of this chapter, we provide the proofs of (5.20),

(5.21), and (5.22) in Appendix 5.8. From (5.20)-(5.22), we have the following FIM:

I(θns, θs) ,




IRns×Rns
0 0

0 1
2

0

0 0 I(Rs−1)×(Rs−1)



, (5.23)

where the identity matrix whose size Rns × Rns in the upper block is associated

with cepstral coefficients in Θns, defining I11(θns). The entry in the center and the

identity matrix in the lower block are associated with cepstral coefficients in Θs,

giving I22(θs). From (5.12), due to θns = 0 under HS0, we have the non-centrality

parameter of

∆ = TM · (θns)T IRns×Rns
(θns), (5.24)

indicating that the non-centrality parameter involves parameters in Θns in a quadratic

way.
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Case II : general development with signal components

We reconsider signal components. For convenience, β̃ and f̃ are decomposed

into their real part and imaginary part, namely β̃ , β̃R + jβ̃I and f̃ , f̃R + jf̃ I .

Re-parameterization of the asymptotic negative log-likelihood function is made, so

that we have 2ℓ(β̃R, β̃I , f̃R, f̃ I , θs, θns). Differentiating this function 2ℓ( · ) twice with

respect to each part of f̃l and θns
i , and then taking the expectation of it yield the

following equations:

E

[
∂22ℓ

∂f̃R
l ∂θ

ns
i

]
= 0, E

[
∂22ℓ

∂f̃ I
l ∂θ

ns
i

]
= 0, (5.25)

where f̃R
l is the l-th element of f̃R and f̃ I

l is the l-th entry of f̃ I . Similarly, we obtain

the following results for β̃R
l and β̃I

l :

E

[
∂22ℓ

∂β̃R
l ∂θ

ns
i

]
= 0, E

[
∂22ℓ

∂β̃I
l ∂θ

ns
i

]
= 0. (5.26)

Proofs of (5.25) and (5.26) are given in Appendix 5.9. For the general development

with signal components, combining (5.23), (5.25), and (5.26) yields the following

FIM:

I(θns, θs, β̃, f̃) ,




IRns×Rns
0 0

0 I(θs) I(θs, β̃, f̃)

0 I(β̃, f̃ , θs) I(β̃, f̃)



, (5.27)

where IRns×Rns
defines I11(θns) and the remaining partition in the lower block spec-

ifies I22(θs, β̃, f̃). Note that the other partitions are all zero matrices, yielding

I12(θns, θs, β̃, f̃) = 0. From (5.12), then, the non-centrality parameter is given by

∆ = TM ·
Rns∑

i=1

(θns
i )2, (5.28)

which is, in fact, the same as (5.24), indicating that the non-centrality parameter ∆

is independent of signal components of βv (baseline and temporal linear drift) and
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fv (activation amplitude). It can be shown that ∆ leads to

2∆ =

(
1

2π

)2 ∫∫
(logF (ω, λ)− logFS(ω, λ))2dωdλ. (5.29)

Thus, 2∆ is an Euclidean metric between the logarithms of a non-separable PSD,

F (ω, λ) and a separable PSD, FS(ω, λ) [35]. Since θ0,0 corresponds to the amplitude

of PSD and other θt,v’s are associated with the shape of PSD, the independence of

∆ and θ0,0 can be recognized from (5.29) as well.

Therefore, for large T and M , we have the asymptotic distribution of LS under

HS1 as follows:

LS ∼ χ2
Rns,∆, (5.30)

where χ2
Rns,∆ denotes a non-central chi-square distribution with Rns degrees of free-

dom and ∆ non-centrality parameter. Rns is the number of cepstral coefficients in

the non-separable region Θns and ∆ is provided in (5.28). We can compute the

power, probability that the proposed separability test detects non-separability when

HS1 is true. By combining (5.10) and (5.30), for a significance level α, the power

function is given by,

Psep (θns) , Pr
(
LS > γ(α)

∣∣ HS1

)
= 1− ΦRns,∆

(
Ψ−1

Rns
(1− α)

)
. (5.31)

Assuming only one non-zero cepstral coefficient in Θns, an example plot of Psep (θns)

is shown in Fig.5.3 for α = 0.05, Rns = 2540, T = 99, and M = 1435, the same setup

for the AFNI dataset used in Chapter 4 and section 5.6.

5.4.3 Discussions

From the derived asymptotic power function of the proposed test procedure for

space and time separability, some important remarks can be made for given cep-

strum model orders, (n, p). Firstly, the asymptotic power of the test procedure is
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Figure 5.3: An example of the theoretical asymptotic power function Psep (θns) for α =
0.05, Rns = 2540, T = 99, and M = 1435, the same setup for the AFNI
dataset except non-centrality parameter used in Chapter 4 and section 5.6.
Only one non-zero cepstral coefficient in Θns is assumed for this example plot.

not dependent on nuisance parameters, baseline, temporal linear drift, activation am-

plitudes, and cepstral coefficients in the separable region. Recall that the proposed

test is derived from hypotheses involving cepstral coefficients in the non-separable

region. Secondly, the asymptotic power function is independent of the locations of

cepstral coefficients in the cepstral domains. It is affected by values of cepstrums in

the non-separable region. Finally, cepstral coefficients in the non-separable region

contribute to the non-centrality parameter ∆ in a quadratic way.
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5.5 A Simulation Study

We perform a simulation to test the proposed test statistic for space-time sepa-

rability, LS. A truly space-time separable 3D random field with arbitrarily chosen

spatial and temporal PSDs is generated by convolving a 3D Gaussian white noise

with a temporal filter and a spatial kernel, sequentially. Using (5.1), a dataset con-

sists of signal and noise is synthesized. To simplify the simulation, the simplest

parametric modeling of the BOLD response in (1.7) is used, thus the number of ba-

sis functions for the BOLD response is one, i.e., L = 1. The number of time points,

T is set to 99 and the number of voxels in a ROI, M is assigned to 63 × 63, which

are the same setup as those of a human dataset used in the following section. Then,

PSDs are estimated under HS0 and HS1 through the parametric cepstrum method

with a spatiotemporal tapering to reduce edge effects and estimates of other nuisance

parameters (β̃l and f̃l) are also computed. Then, the test statistic LS is calculated.

The obtained LS is 155 and a determined threshold, γ(0.05) for a significance level

αS = 0.05 is 173. These two quantities yield that p-value is 0.25(≫ 0.05). Therefore,

there is no evidence against space-time separability and we fail to reject the null

hypothesis HS0. This indicates that, for the synthesize dataset in this simulation,

LS works properly as desired.

5.6 Application to a Human Dataset

We apply the developed test procedure for space-time separability to the AFNI

dataset used for the activation study in Chapter 4. For the completeness of this

chapter, some information of the conducted experiment are provided here. The

dataset is collected while a human subject is performing right-hand sequential finger-

thumb opposition in the presence of a given stimulus signal. At a given time t, a
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2D axial slice is analyzed instead of a 3D volume. The time point T is assigned to

99 and each axial slice consists of M(= 63× 63) voxels. Each voxel has dimensions

of 3.125× 3.125× 5 (mm3). From the original 21 slices, a slice expected to contain

motor reactions to the motor stimulus is selected for analysis. To reduce a bias

from edge effects, we perform a spatiotemporal tapering using a 3D Tukey-Hanning

window. For the modeling of the BOLD response, a set of Laguerre functions with

a time constant a = 0.42 is used. Since we have a 3D dataset, one dimension

(1D) for time and 2D for space, we need to redefine the coordinate for space as

v = (v1, v2) and the model order for spatial cepstrum as p = (p, q). These yield

Rall = (2p+1)(2q+1)n+2pq+ p+ q+1 and Rs = 2pq+ p+ q+n+1. Model orders

are determined by AIC, producing (L, n, p, q) = (3, 10, 7, 8). For more details about

the observed data, the reader is referred to section 4.5.

5.6.1 Testing Space-Time Separability

Since the determined model order is (L, n, p, q) = (3, 10, 7, 8), LS asymptotically

follows a chi-square distribution with Rns(, Rall − Rs = 2540) degrees of freedom,

χ2
2540 under the hypothesis for space-time separability, that is HS0. The obtained

value of LS is 2591.8 and a determined threshold for a significance level αS = 0.05

is γ(0.05) = 2658.4, producing p-value is 0.23(≫ 0.05). Therefore, according to the

developed test for space-time separability, there is no evidence that the tested AFNI

dataset associated with motor responses is not under space-time separability. We

fail to reject the null hypothesis, HS0.

5.6.2 Model Comparison

The result obtained from the proposed test for space-time separability, i.e., the

claim that the tested AFNI dataset is under space-time separable, can be verified by
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the developed model comparison technique in Chapter 4, AIC map. To do that, two

AIC maps are computed, one of which is from a ST-LRT model involving the non-

separable random field. The other is from a ST-LRT model involving the separable

random field. The AIC maps from ST-LRT models with and without space-time sep-

arability are shown on Fig.5.4(a) and Fig.5.4(b), respectively. Comparing Fig.5.4(a)

and Fig.5.4(b) shows that there are no significant difference in AIC values of two

ST-LRT models, indicating both ST-LRT models provide similar distances to the

underlying unknown truth in the sense of average. Therefore, we have another evi-

dence to support the claim made in the above section, saying that picked axial slice

related to the motor responses from the AFNI dataset is under space-time separa-

bility.

5.7 Conclusions

We developed, for the first time in FMRI, a test procedure for space-time sep-

arability, which has been implicitly assumed without proper justifications, in the

framework of the parametric cepstrum. The asymptotic power function of the pro-

posed space-time separability test was also analyzed, being independent of nuisance

parameters such as activation amplitudes. The developed procedure was tested by a

simulation and a human dataset with model comparison.
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(a) AIC map of a non-separable ST-LRT model
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(b) AIC map of a separable ST-LRT model

Figure 5.4: AIC maps from two different ST-LRT models : (a) ST-LRT model involving
non-separable noise and (b) ST-LRT model involving separable noise.
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5.8 Appendix I

In this section, we provide the detailed proofs for (5.20), (5.21), and (5.22). To

do that, we consider the following sample covariance matrix from the regressors used

for the modeling by the parametric cepstrum in (5.15):

Σ(xk,l, zk,l) ,
1

TM
·

T−1∑

k=0

M−1∑

l=0



xk,l

zk,l


 [xT

k,l zT
k,l]

=
1

TM
·



∑T−1

k=0

∑M−1
l=0 xk,lx

T
k,l

∑T−1
k=0

∑M−1
l=0 xk,lz

T
k,l

∑T−1
k=0

∑M−1
l=0 zk,lx

T
k,l

∑T−1
k=0

∑M−1
l=0 zk,lz

T
k,l


 , (5.32)

where xk,l is associated with cepstral coefficients in the non-separable region and zk,l

is with cepstral coefficients in the separable region. According to the appendix of

[55], the sample covariance matrix is expressed in a simple matrix form, implicitly

assuming 0 < n≪ T and 0 < p≪M ,

Σ(xk,l, zk,l) =




2IRns×Rns
0 0

0 1 0

0 0 2I(Rs−1)×(Rs−1)



, (5.33)

where the identity matrix in the top and left corner defines
∑T−1

k=0

∑M−1
l=0 xk,lx

T
k,l

/
TM .

Now, comparing (5.32) and (5.33) proves (5.20), (5.21), and (5.22).

5.9 Appendix II

In this section, proofs of (5.25) and (5.26) are provided. From (5.16), we have

the following re-parameterization of the asymptotic negative log-likelihood function:

2ℓ(β̃R, β̃I , f̃R, f̃ I , θs, θns) =
T−1∑

k=0

M−1∑

l=0

xT
k,lθ

ns + zT
k,lθ

s +
exp(−xT

k,lθ
ns − zT

k,lθ
s)

TM
(5.34)

×
[{
ỹR

k,l −
(
(X̃R

k )
T
β̃R

l − (X̃I
k)

T
β̃I

l

)
−
(
(ξ̃R

k )
T
f̃R

l − (ξ̃I
k)

T
f̃ I

l

)}2

+
{
ỹI

k,l −
(
(X̃I

k)
T
β̃R

l + (X̃R
k )

T
β̃I

l

)
−
(
(ξ̃I

k)
T
f̃R

l + (ξ̃R
k )

T
f̃ I

l

)}2
]
,

109



where, e.g., ỹk,l , ỹR
k,l+jỹ

I
k,l. It can be easily checked that the second order derivative

of 2ℓ( · ) with respect to f̃R
l (the l-th element of f̃R) and θns

i (the i-th element of

θns) is given by

∂22ℓ

∂f̃R
l ∂θ

ns
i

=
T−1∑

k=0

exp(−xT
k,lθ

ns − zT
k,lθ

s)

TM
(5.35)

×
[
2
{
ỹR

k,l −
(
(X̃R

k )
T
β̃R

l − (X̃I
k)

T
β̃I

l

)
−
(
(ξ̃R

k )
T
f̃R

l − (ξ̃I
k)

T
f̃ I

l

)}
ξ̃R
k

+ 2
{
ỹI

k,l −
(
(X̃I

k)
T
β̃R

l + (X̃R
k )

T
β̃I

l

)
−
(
(ξ̃I

k)
T
f̃R

l + (ξ̃R
k )

T
f̃ I

l

)}
ξ̃I
k

]
xk,l,i.

Since ỹk,l obeys a complex-valued Gaussian distribution given by

ỹk,l ∼ Nc

(
X̃T

k β̃l + ξ̃T
k f̃l, TM · Fk,l

)
, (5.36)

ỹR
k,l and ỹI

k,l are independent real-valued Gaussian distributions whose densities are

given by

ỹR
k,l ∼ N

((
(X̃R

k )
T
β̃R

l − (X̃I
k)

T
β̃I

l

)
+
(
(ξ̃R

k )
T
f̃R

l − (ξ̃I
k)

T
f̃ I

l

)
,
TM · Fk,l

2

)
, (5.37)

ỹI
k,l ∼ N

((
(X̃I

k)
T
β̃R

l + (X̃R
k )

T
β̃I

l

)
+
(
(ξ̃I

k)
T
f̃R

l + (ξ̃R
k )

T
f̃ I

l

)
,
TM · Fk,l

2

)
. (5.38)

Taking the expectation of (5.35) yields the first equality in (5.25). Then, we have

the second order derivative of 2ℓ( · ) with respect to f̃ I
l (the l-th element of f̃ I) and

θns
i (the i-th element of θns) given by

∂22ℓ

∂f̃ I
l ∂θ

ns
i

=
T−1∑

k=0

exp(−xT
k,lθ

ns − zT
k,lθ

s)

TM
(5.39)

×
[
2
{
ỹR

k,l −
(
(X̃R

k )
T
β̃R

l − (X̃I
k)

T
β̃I

l

)
−
(
(ξ̃R

k )
T
f̃R

l − (ξ̃I
k)

T
f̃ I

l

)}
ξ̃I
k

− 2
{
ỹI

k,l −
(
(X̃I

k)
T
β̃R

l + (X̃R
k )

T
β̃I

l

)
−
(
(ξ̃I

k)
T
f̃R

l + (ξ̃R
k )

T
f̃ I

l

)}
ξ̃R
k

]
(−xk,l,i).

Again, taking the expectation of (5.39) gives the second equality in (5.25). By the

same way, for the second order derivatives of 2ℓ( · ) with respect to β̃R
l and θns

i , and

with respect to β̃I
l and θns

i , using the distributions of ỹR
k,l and ỹI

k,l, (5.26) can be easily

shown.
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CHAPTER 6

Asymptotic Efficiency of Competing Detection Statistics

In functional Magnetic Resonance Imaging (FMRI), an important task in data

analysis is to build up a detection statistic for activation to show regional responses

to given temporal stimuli. In Chapter 2, we reviewed a method to construct an acti-

vation map from an existing SSK-DLM, which focused on only temporal correlation

of observed data. In Chapter 3, we developed a new detection statistic, ST-LRT

jointly considering spatial and temporal correlations. In this chapter, we discuss an-

other important issue, performance comparison of ST-LRT and a detection statistic

from SSK-DLM. The comparison is based on well established theoretical works on

Asymptotic Relative Efficiency (ARE) and has different interpretations from com-

parisons by ROC curves in section 3.4 and AIC maps in section 4.4. The ARE

measures an asymptotic ratio of sample sizes of two tests to achieve a pre-specified

detection power for a given significance level.

6.1 Introduction

6.1.1 Background

Suppose that we have two consistent tests of a null hypothesis H0 versus an

alternative hypothesis H1, where both hypotheses are simple. For a given power

η, if nA and nB are the minimum sample sizes for test A and test B of size α to
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achieve the power, then relative efficiency of test A compared with test B is defined

as nB/nA. If test B is the best test, e.g., from the Neyman-Pearson Lemma, then the

ratio is called efficiency of test A. This concept of relative efficiency can be useful

to assess a performance of a given test procedure or to compare two competing

tests. Then Asymptotic Relative Efficiency (ARE) is defined as the limit of nB/nA

as nA, nB →∞. For simple H0 and H1, an ARE is based on two quantities, a power

η and a significance level α.

The idea of ARE can be extended to composite alternative hypothesis, thus a

simple H0 and a composite H1. We considered this testing problem to build up an

activation statistic in Chapter 2 and 3. In ARE, adopting the composite alternative

hypothesis causes some complications as we now discuss details.

6.1.2 Preliminaries

The null hypothesisH0 is typically represented as a specified family of distribution

F0 for the data. For samples of size n, the power function is defined as

ηn(Tn,F) , PF(Tn rejects H0), (6.1)

where Tn is a test procedure and F is a distribution function. For samples of size n

and F ∈ F0, a size of the test is given by

αn(Tn,F0) , sup
F∈F0

ηn(Tn,F). (6.2)

For samples of size n and F /∈ F0, the probability of missing, as known as Type II

error, is defined as

βn(Tn,F) , 1− ηn(Tn,F). (6.3)

Usually, we are interested in the comparison of two tests which are consistent and

unbiased. The consistency means that, for a fixed F /∈ F0, βn(Tn,F)→ 0 as n→∞.
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The unbiasedness means that, for a F /∈ F0, ηn(Tn,F) ≥ αn(Tn,F0).

We consider the following quantities.

α = lim
n→∞

αn(Tn,F0), β = lim
n→∞

βn(Tn,F
n) (6.4)

where Fn is a distribution function under the alternative hypothesis H1 for samples

of size n. According to values of α and β, and a behavior of Fn, an ARE is specified.

In details, with respect to α, the cases of α = 0 and α > 0 are distinguished. With

respect to β, the cases of β = 0 and β > 0 are distinguished. With respect to Fn,

the cases of a fixed Fn regardless of the number of samples n, and Fn → F0 are

distinguished. In this chapter, we consider Pitman’s ARE which is commonly used

and under the following specifications. As the number of samples n approaches to

infinity,

αn → α > 0, βn → β > 0, Fn → F0. (6.5)

In the Pitman approach, the key tool is Central Limit Theory (CLT). Other AREs

can be defined under other specifications of α, β, and Fn. For example, Bahadur’s

ARE, another commonly used asymptotic measure, is under the following conditions.

αn → 0, βn → β > 0, Fn = F fixed, (6.6)

as n approaches to infinity. For the Bahadur approach, Large Deviation Theory

(LDT) is employed. For more technical stuffs, the reader is referred to [50].

6.1.3 Pitman’s Asymptotic Relative Efficiency (ARE)

Suppose that the distributions F under consideration is indexed by a parameter

set Θ and consider the following simple null hypothesis H0 and composite alternative

hypothesis H1,

H0 : θ = θ0, H1 : θ > θ0. (6.7)

113



We consider two test sequences TA = {TAn} and TB = {TBn} satisfying the following

Pitman’s conditions. The parameter θ we are interested in is assumed close to θ0,

thus any θ such that θ0 ≤ θ ≤ θ0 + δ is considered.

Pitman’s conditions

(P1) For some continuous and strictly increasing distribution function G, and func-

tions µn(θ) and σn(θ), the distribution of (Tn − µn(θ))/σn(θ) converges to G

uniformly in [θ0, θ0 + δ], i.e.,

sup
θ0≤θ≤θ0+δ

sup
−∞<t<∞

∣∣∣∣P
(
Tn − µn(θ)

σn(θ)
≤ t

)
−G(t)

∣∣∣∣→ 0, (6.8)

as n→∞.

(P2) For θ ∈ [θ0, θ0 + δ], µn(θ) is k times differentiable, with µ
(1)
n (θ0) = · · · =

µ
(k−1)
n (θ0) = 0 < µ

(k)
n (θ0).

(P3) For some function d(n)→∞ and some constant c > 0,

c = lim
n→∞

d(n)σn(θ0)

µ
(k)
n (θ0)

, (6.9)

where c is called the efficacy of Tn.

(P4) For θn = θ0 + O([d(n)]−
1
k ), as n→∞,

µ(k)
n (θn) ∼ µ(k)

n (θ0), σn(θn) ∼ σn(θ0). (6.10)

We have two main theorems by Pitman and Noether.

Pitman-Noether Theorem I

Let a test sequence T satisfy above four conditions, (P1)-(P4) and consider testing

H0 by critical region {Tn > λαn
} with

αn = Pθ0(Tn > λαn
)→ α,
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where α ∈ (0, 1). For 0 < β < 1− α and θn = θ0 + O([d(n)]−
1
k ), we have

βn(θn) = Pθn
(Tn ≤ λαn

)→ β

if and only if

(θn − θ)k

k!
· d(n)

c
→ G−1(1− α)−G−1(β). (6.11)

Pitman-Noether Theorem II

Let two test sequences TA and TB satisfy above conditions, (P1)-(P4) with com-

mon G, k, and d(n) in (P1)-(P3). Let d(n) = nq, q > 0. Then, Pitman’s ARE of

TA compared with TB is given by

eP (TA, TB) =

(
cB
cA

) 1
q

. (6.12)

Detailed proofs of Pitman-Noether theorems are provided in [50].

6.2 Pitman’s ARE of ST-LRT and t-statistic

We have two competing detection statistics, ST-LRT and t-statistic from SSK-

DLM. To make our discussion simple, we have the following assumptions in the

observed signal model in (4.2).

(A1) The baseline and temporal linear drift are assumed known and dropped.

(A2) The simplest approach, the parametric approach in (1.7) is used for the BOLD

response modeling, thus L = 1.

(A3) The PSD Fk,l is assumed known and under space-time separability.
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Thus, (4.2) reduces to

yt,v = ξtfv + wt,v, (6.13)

where ξt and fv are both scalar, and wt,v a stationary Gaussian noise which is spa-

tiotemporally correlated and space-time separable.

ST-LRT

Based on the assumptions (A1)-(A3), by plugging (6.13) into (3.32), one arrives

at a ST-LRT whose form is given by

LRTv ,



∑T−1

t=0 ξ
F
t · εt,v√∑T−1

t=0 (ξF
t )

2




2

, (6.14)

where ξF
t denotes a temporally whitened ξt and εt,v is a spatiotemporally whitened

yt,v, namely,

ξF
t , qt ⊛ ξt, εt,v , Kv ⊛s (qt ⊛ yt,v). (6.15)

Here, ⊛ and ⊛s are temporal and spatial circular convolution, respectively. Under

space-time separability, a temporal whitening filter qt and a spatial whitening kernel

Kv are defined as

qt
DFT←→ q̃k, |q̃k|2 =

1

Fk

, Kv
DFT←→ 1√

Gl

, (6.16)

where Fk denotes pure temporal PSD and Gl is pure spatial PSD. For convenience,

we define the following detection statistic from (6.14),

Lv ,
√
LRTv =



∑T−1

t=0 ξ
F
t · εt,v√∑T−1

t=0 (ξF
t )

2


. (6.17)

Then, instead of calculating Pitman’s ARE of LRTv and F -statistic, Fv, we compare

Lv and t-statistic, Tv. By plugging (6.13) into (6.17), we obtain

Lv = (K ⊛s f)v ·
√
Tσ2

ξ + N (0, 1), (6.18)

116



where σ2
ξ , 1

T

∑T−1
t=0 (ξF

t )
2

and the first term means a non-centrality parameter.

Therefore, under the null hypothesis H0, i.e., fv = 0, Lv obeys N (0, 1). Under the

alternative hypothesis H1, Lv obeys a normal distribution with mean (K ⊛s f)v ·
√
Tσ2

ξ .

t-statistic from SSK-DLM

After a SSK is performed, if a temporal whitening filter is adopted in the DLM

step, from (2.10), t-statistic has a form of

Tv ,

∑T−1
t=0 (ξF

t )(KG
v ∗s yt,v)

F

√∑T−1
t=0 (ξF

t )
2

, (6.19)

where KG
v denotes a Gaussian amplitude kernel and ∗s is a spatial linear convolution.

Notice that the temporal whitening is performed for a spatially smoothed dataset.

Plugging (6.13) into (6.19) allows

Tv = (KG ∗s f)v ·
√
Tσ2

ξ + N (0, 1). (6.20)

Thus, under H0, i.e., fv = 0, Tv obeys N (0, 1). Under H1, Tv obeys a normal

distribution with mean (KG ∗s f)v ·
√
Tσ2

ξ . Note that the only difference between

(6.18) and (6.20) is spatial operator in non-centrality parameter.

6.2.1 Efficacy of Lv

We check if Lv in (6.18) satisfies Pitman’s conditions. To do that, we focus on a

Lv at a particular voxel position v and recall

E(Lv) = (K ⊛s f)v ·
√
Tσ2

ξ , var(Lv) = 1. (6.21)

In Pitman’s conditions, we have θ0 = 0, θ = fv, and n = T , the number of time

points. We define µT , E(Lv) and σT ,
√
var(Lv).
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Firstly, we have

Lv − µT

σT

∼ N (0, 1), G(t) = Φ(t), (6.22)

where Φ(t) denotes a CDF of N (0, 1). Thus, (P1) is satisfied.

Secondly, we have

∂µT

∂fv

= K0 ·
√
Tσ2

ξ > 0, (6.23)

thus, (P2) is satisfied and k = 1.

Thirdly, for a function d(T ) ,
√
T , we have

cL = lim
T→∞

√
T · 1

K0 ·
√
Tσ2

ξ

=
1

K0σξ

> 0, (6.24)

thus, (P3) is satisfied and the efficacy of Lv is cL.

Finally, for fv = O( 1√
T
), since µ

(1)
T and σT (fv) are independent of fv, (P4) is satisfied

for all T . Therefore, all Pitman’s conditions are satisfied.

We check the Pitman-Noether I theorem now. Let fv has the following form, with a

fixed constant cf ,

fv =
cf√
T
. (6.25)

For a given α and β, we can choose a specific value of cf satisfying

fv ·
√
T

cL
= Φ−1(1− α)−Φ−1(β). (6.26)

Therefore, Pitman-Noether’s first theorem holds and Lv has a size α and a power

1− β asymptotically.

6.2.2 Efficacy of Tv

We check if Tv in (6.20) satisfies Pitman’s conditions. Since (6.18) and (6.20) have

the same form except the spatial kernel, we repeat the same procedure to obtain cL

118



in (6.24). We define µT , E(Tv) and σT ,
√
var(Tv) = 1.

Firstly, we have

Tv − µT

σT

∼ N (0, 1), G(t) = Φ(t), (6.27)

satisfying (P1).

Secondly, we have

∂µT

∂fv

= KG
0 ·
√
Tσ2

ξ > 0, (6.28)

satisfying (P2) with k = 1.

Thirdly, for a function d(T ) =
√
T , we have

cT = lim
T→∞

√
T · 1

KG
0 ·
√
Tσ2

ξ

=
1

KG
0 σξ

> 0, (6.29)

satisfying (P3) and defining the efficacy of Tv, cT .

Finally, for fv = O( 1√
T
), since µ

(1)
T and σT (fv) are independent of fv, (P4) is satisfied

for all T . Thus, all Pitman’s conditions are satisfied.

We check the Pitman-Noether I theorem now. For a given α and β, by defining

fv = cf/
√
T , we can choose a specific value of cf satisfying

fv ·
√
T

cT
= Φ−1(1− α)−Φ−1(β). (6.30)

Therefore, Pitman-Noether’s first theorem holds and Tv has a size α and a power

1− β asymptotically.

Pitman’s ARE of Lv and Tv

As we showed above, Lv and Tv satisfied all Pitman’s conditions with common

G(= Φ), k(= 1), and d(T )(=
√
T ). Therefore, according to Pitman-Noether Theo-

rem II, Pitman’s ARE of Tv compared with Lv is given by

eP (Tv, Lv) =

(
cL
cT

)2

=

(
KG

0

K0

)2

. (6.31)
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Note that the value of K0 depends on a given dataset. We apply the developed

Pitman’s ARE, eP (Tv, Lv) to the simulated dataset discussed in section 3.4. Based

on the setup of the simulations, the following evaluation can be shown. In the case

of spatial white noise with σ = 1, we obtain eP (Tv, Lv) = 0.2824. In the case of

spatial colored noise with a known Gaussian ACF, namely γv , exp(−v2/2.254),

we can obtain eP (Tv, Lv) = 0.0181. Therefore, we argue that Tv requires about

3.5(= 1/0.2824) times as many samples as does the Lv in the case of spatial white

noise. In the case of spatial colored noise, Tv requires about 55(= 1/0.0181) times

as many samples as does Lv. These values of eP (Tv, Lv) support the results of

simulations performed on Fig.3.2(a) and Fig.3.3(a).

6.3 Conclusions

We developed a method to compare the asymptotic efficiency of two competing

detection statistics, ST-LRT and a statistic from SSK-DLM. For a simple signal

model with spatially and temporally correlated noise, a formula for Pitman’s ARE

was derived. The developed ARE was computed for the synthesized dataset used in

simulations of Chapter 3. The Pitman’s ARE showed that ST-LRT was a much more

efficient test procedure than a detection statistic from SSK-DLM for both spatial

white noise and spatial colored noise. Therefore, ST-LRT can reduce experiment

durations in FMRI, allowing subjects’ less exposure to strong magnetic fields.
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CHAPTER 7

Rician Modeling and Activation Detection

In FMRI data analysis, most statistical methods are based on magnitude voxel

time courses, which are modeled by a Gaussian distribution. Since the magnitude

images are produced from complex valued data, in fact, they obey a Rician distribu-

tion, which can only be approximated as a Gaussian distribution under the assump-

tion that signal to noise ratio (SNR) is high. Therefore, statistical methods based

on Gaussian modeling may perform poorly when the SNR is low. In this chapter,

we develop an exact Rician maximum likelihood with an expectation maximization

(EM) algorithm. The resulting procedure is remarkably simple and can be easily

extended from solutions based on Gaussian modeling. Using estimated parameters,

we build up a detection statistic for activation and analyze its asymptotic power. We

perform simulations to compare the proposed Rician-EM and conventional Gaussian

modeling.

7.1 Introduction

After an image reconstruction of observed FMRI data in k-space is performed,

available images for statistical data analysis are complex valued. By taking the mag-

nitude of complex value at each time point and at each voxel location, magnitude
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images are obtained. From the beginning of FMRI data analysis, most attention

has focused on the analysis of the magnitude voxel time courses with a Gaussian

distribution, which in fact obey a Rician distribution. It is known that a Rician

probability density function (PDF) is well approximated by a Gaussian PDF when

SNR is high [40]. Based on the Gaussian modeling, dynamic linear model (DLM)

has been a dominant framework to model the BOLD response and to build up a

detection statistic for activation such as t-statistic or F -statistic.

The conventional Gaussian modeling has been justified as follows. In practice, it is

known that a typical FMRI dataset has sufficiently high SNRs to make the Gaussian

approximation appropriate. However, since we have a fundamental tradeoff between

spatial resolution and SNR, as demands for high resolution FMRI rise, the necessity

of statistical modeling valid for the low range of SNRs increases. And it is reported

that there may exist some regions of the human brain which have significant signal

dropouts, decreasing SNRs in those regions, even in images with a moderate spatial

resolution. In addition, methods based on non-BOLD mechanisms such as arterial

spin labeling (ASL) is known not to have sufficiently high SNRs to apply Gaussian

approximation to a Rician distribution.

In this chapter, therefore, we develop a robust method to construct activation de-

tection for varying SNRs, which is based on Rician signal and noise modeling. Since

the Rician PDF involves the zeroth order modified Bessel function of the first kind,

the direct maximization of Rician log-likelihood function is a non-trivial statistical

estimation. We tackle this problem with EM framework. From the proposed pa-

rameter estimation, then we construct a detection statistic for activation. We start

discussions by reviewing some previous works on the Rician modeling.
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7.1.1 Literature Review

For more exact modeling of the magnitude voxel time course which holds for

all ranges of SNRs, a couple of methods based on Rician distributed models have

been suggested in the FMRI literature. [54] developed an activation statistic from

a Rician distribution model through likelihood ratio test (LRT). For a simple signal

model involving one baseline and one activation amplitude, [54] used non-standard

numerical optimizations to estimate parameters under null hypothesis (no activation

exists) and alternative hypothesis (activation exists). However, the model used in

[54] is highly constrained and the non-standard maximization is computationally ex-

pensive. The computational cost becomes severely demanding when the signal model

is extended to a complicated one, e.g., a signal model involving temporal drift and

multiple activation amplitudes or when the number of voxels in a region of inter-

est (ROI) increases. Similar approaches based LRTs are found in [16, 17]. In [46],

to estimate parameters for signal and noise model, an iterative method based on a

Taylor series expansion of a Rician PDF was proposed instead of maximizing Rician

log-likelihood function. Some approaches using complex valued data were suggested

to build up activation maps in FMRI data analysis. [37, 47, 45] created detection

statistics through LRTs with complex Gaussian distributions, which have different

philosophies from approaches based on Rician modeling including our method.

In this chapter, we make exact parameter estimation from a Rician distributed

model through an EM algorithm [15], which enables us to avoid computationally

expensive numerical optimization, leading to an activation statistic through a LRT.

The proposed Rician-EM approach allows a very simple iteration and a nice inter-

pretation of the iteration in a very natural way from existing Gaussian modeling.

In addition, we analyze the asymptotic power function of the proposed detection
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statistic, showing the effects of a nuisance signal component (baseline) and signal

components of interest (activation amplitudes) on the detection power. For simplic-

ity, as in previous works without exception [46, 37, 47, 45], noise in voxel time courses

is assumed spatially and temporally independent. Although assuming white noise

along time is an oversimplification of temporal characteristics of voxel time courses

in FMRI data analysis, the work in this chapter can be a good starting point for

future discussions to develop activation detection from a generalized model with a

temporally colored Rician noise.

The remainder of this chapter is organized as follows. In section 7.2, we intro-

duce signal and noise model formulations. In section 7.3, parameter estimations via

the EM algorithm from a Rician distributed model is proposed. Then, section 7.4

describes a method to construct a detection statistic for activation based on the

proposed Rician-EM approach. In section 7.5, the asymptotic power of the pro-

posed detection statistic is analyzed. Then, in section 7.6, we perform simulations

to compare performances of the Rician-EM method and existing Gaussian modeling.

Finally, conclusions will be drawn in section 7.7. Mathematical details are provided

in Appendix 7.8-7.10.

7.1.2 Acronyms and Notations

We collect acronyms and notations frequently used for the rest of this chapter

in this section. ANR means activation to noise ratio; BNR is baseline to noise ra-

tio; EM means expectation maximization; LRT is likelihood ratio test; GOA means

goodness of approximation; LS is least square; MLE means maximum likelihood es-

timate; MSE is mean squared error; PDF means probability density function; SNR

is signal to noise ratio.
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In this chapter, spatial and temporal independence is assumed for Rician model-

ing and activation detection. Therefore, on the contrary to Chapter 3 and 4, we can

model each voxel time course separately and then combine resultant detection statis-

tics to make a spatial plot of them, namely an activation map. Since we concentrate

on each voxel time series, we drop the index v for a voxel location and use different

notations from those of Chapter 3, 4, and 5 dealing with a Gaussian distributed noise

model with spatial and temporal correlations.

For a particular voxel position which we are interested in, yc,t denotes a com-

plex valued FMRI measurement at a time t. We assume yc,t is observed from an

one-dimensional (1D) temporal line indexed by {1, . . . , n}. The magnitude measure-

ment of yc,t is denoted as yt and the phase measurement of yc,t is denoted as φt.

We define vectors y = [y1, . . . , yn]T , denoting a collected magnitude time series, and

φ = [φ1, . . . , φn]T , denoting a phase time series. A column vector β contains signal

components such as baseline and activation amplitudes. xt is an associated regressor

at a time t, defining X = [x1, . . . , xn]T , and σ2 is the variance of noise. The null

hypothesis HN means that a particular voxel we are interested in is not activated

by a given temporal stimulus. The alternative hypothesis HA means that that voxel

is activated. Under HA, from Gaussian modeling, β̃A and σ̃2
A denote the MLEs of

β and σ2, respectively. From Rician-EM, βA,1 and σ2
A,1 are estimates of β and σ2

for given estimates, βA,0 and σA,0 at each iteration. Under HN , parameter estimates

are similarly defined. QA denotes a surrogate function obtained from an E-step and

WA,0 is a weight matrix under HA. QN and WN,0 are under HN . N (µ,Σ) denotes

a real-valued Gaussian distribution with mean µ and covariance matrix Σ.
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7.2 Signal and Noise Model Formulations

7.2.1 Complex Signal and Noise Model

Dropping the voxel index v for simplicity, we first consider a complex valued signal

and noise model and then discuss its magnitude model. After image reconstruction

is performed, at a time point t, a complex valued measurement model is defined as

in [47],

yc,t = (xT
t β cos θ + ηr,t) + j(xT

t β sin θ + ηi,t), (7.1)

xT
t β , m+ bt+ st, [ηr,t, ηi,t]

T ∼ N (0, σ2I), (7.2)

where xT
t β contains two types of signals, one of which involves nuisance components

such as baseline m and temporal linear drift bt. The other involves activation related

component st, e.g., the BOLD response, describing reactions of a subject’s brain to

a given temporal stimulus. θ denotes a phase imperfection due to magnetic field

inhomogeneity in a MRI scanner and is assumed constant over time. Two noise

terms, ηr,t and ηi,t are assumed stationary and independent Gaussian, where σ2

denotes their common noise variance.

7.2.2 Hemodynamic Response Model

Several approaches have been suggested for the modeling of the BOLD response,

st in (7.2) until now. The simplest parametric approach with a canonical HRF [11],

a method using a FIR filter [14, 26], and Laguerre modeling [56] were reviewed in

Chapter 1. To cover these three approaches and to provide a unified framework for

the modeling of the BOLD response, we consider the following generalized represen-

tation:

st =

(
L∑

i=1

hi,tfi

)
∗ ct ,

L∑

i=1

ξi,tfi = ξT
t f, (7.3)
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where L is the number of basis functions to model the BOLD response, hi,t is the i-th

temporal basis function, and fi is the associated activation amplitude. ct denotes

given temporal stimuli in the experiment. By plugging (7.3) into (7.1) and (7.2), one

arrive at a compact and parameterized representation which we use in this chapter,

yc,t = (xT
t β cos θ + ηr,t) + j(xT

t β sin θ + ηi,t), (7.4)

where

xT
t = [1, t, | ξT

t ], βT = [m, b, | fT ], (7.5)

ξt = [ξ1,t, . . . , ξL,t]
T , f = [f1, . . . , fL]T . (7.6)

7.2.3 Magnitude Signal and Noise Model

Now we consider a typical measurement model in FMRI data analysis. For a

given time t, the magnitude of (7.4) is defined by

yt ,

√
(xT

t β cos θ + ηr,t)
2
+ (xT

t β sin θ + ηi,t)
2
, (7.7)

resulting in a collected time course at a particular voxel location of interest. It is

well known that yt obeys a Rician distribution whose PDF is defined as, for yt > 0,

p(yt) =
yt

σ2
e−

y2
t +(xT

t β)
2

2σ2 I0

(
ytx

T
t β

σ2

)
, (7.8)

where I0(z) is the zeroth order modified Bessel function of the first kind. Some

mathematical materials related to I0(z) are given in Appendix 7.8. For a time course

y , [y1, . . . , yn]T , this leads to a Rician log-likelihood function under the assumption

of temporal independence, that is,

log L , −n log σ2 +
n∑

t=1

log yt −
n∑

t=1

{
y2

t + (xT
t β)

2

2σ2
− log I0

(
ytx

T
t β

σ2

)}
. (7.9)
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7.3 Parameter Estimation

In this section, we discuss methods to estimate parameters of Rician PDF in

(7.8), β (signal parameter) and σ2 (noise parameter). First, we review a conventional

statistical inference based on the Gaussian approximation of Rician PDF and then

provide a new method to estimate the necessary parameters through EM algorithm.

To build up a detection statistic for activation to test if a particular voxel is activated

by given temporal stimuli, we consider the following two hypotheses and perform

parameter estimation under each hypothesis.

HN : Cβ = 0, vs HA : Cβ 6= 0, (7.10)

where the matrix C is of full rank and has the size of r × (L + 2). By selecting C,

we can specify the hypothesis testing. For example, if we have a signal model with

L = 2, that is β = [m, b, f1, f2]
T , one possibility of choosing the constraint matrix is

C =




0 0 1 0

0 0 0 1


 , (7.11)

where the first row in C is associated with f1 (the first activation amplitude) and

the second row is associated with f2 (the second activation amplitude). The first two

columns correspond to nuisance signal components, baseline m and temporal drift

bt. Then, HN states the voxel we are interested in is not activated by given temporal

stimuli and the alternative hypothesis, HA says the voxel is activated.

7.3.1 Gaussian Modeling

It is known that a Rician PDF in (7.8) can be approximated by a Gaussian PDF

for a large value of SNR(, xT
t β/σ). According to [47], a simple rationale behind this

approximation can be described as follows. The magnitude signal and noise model
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in (7.7) is rearranged as

yt =
√

(xT
t β)

2
+ 2xT

t β(ηr,t cos θ + ηi,t sin θ) + η2
r,t + η2

i,t,

= xT
t β ·

√
1 +

2(ηr,t cos θ + ηi,t sin θ)

xT
t β

+
η2

r,t + η2
i,t

(xT
t β)

2 . (7.12)

If the signal component xT
t β dominates two noise terms ηr,t and ηi,t, i.e., SNR is

high, by a first order Taylor series expansion of the term inside the root square,

(7.12) reduces to a classical linear regression equation,

yt = xT
t β + ηt, (7.13)

where ηt(, ηr,t cos θ + ηi,t sin θ) obeys a Gaussian distribution with zero mean and

σ2 variance or in matrix form,

y = Xβ + η, (7.14)

where y = [y1, . . . , yn]T , X , [x1, . . . , xn]T , and η ∼ N (0, σ2I).

It is well known that least square (LS) allows maximum likelihood estimates

(MLEs) of β and σ2 under HA given as follows [49].

β̃A = (XTX)
−1

XTy, (7.15)

σ̃2
A =

1

n
· (y −Xβ̃A)

T
(y −Xβ̃A). (7.16)

Under HN , with the linear constraint specified by C, MLEs are given by

β̃N = Φ · (XTX)
−1

XTy, (7.17)

σ̃2
N =

1

n
· (y −Xβ̃N)

T
(y −Xβ̃N), (7.18)

where a matrix Φ is defined as

Φ = I− (XTX)
−1

P, P = CT
[
C(XTX)

−1
CT
]−1

C.

These MLEs are used to build up a detection statistic for activation based on the

Gaussian modeling in section 7.4.
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7.3.2 Rician Modeling with EM Algorithm

Since a direct maximization of the Rician log-likelihood function in (7.9) to obtain

MLEs of β and σ2 requires a non-standard numerical optimization, we consider an

indirect method for parameter estimation from the Rician PDF, an EM algorithm.

The EM algorithm has guaranteed convergence properties and in the present case

yields remarkably simple iterations. The main idea of the EM algorithm is to replace

a difficult direct maximization of the Rician likelihood function with a sequence of

easier maximizations of surrogate functions. Starting from deriving an iterative

equation without a constraint under HA (activation exists), we move the discussion

into a constrained case under HN (no activation exists) with a Lagrange multiplier

later.

EM Algorithm under HA

For a given magnitude time course y and a phase time course φ, from the complex

valued time series yc,t in (7.4), it can be shown that so called complete likelihood Lc,

namely joint PDF of y and φ is given by

log Lc = −n log(2πσ2) +
n∑

t=1

log yt −
1

2σ2

n∑

t=1

{
y2

t + (xT
t β)

2 − 2ytx
T
t β cos(φt − θ)

}
.

(7.19)

In the EM framework, since only the magnitude voxel time series y is available for

data analysis, the phase time course φ is treated as unobserved data or missing data.

The EM algorithm is composed of two steps, one of which is expectation step (E-

step), defining a surrogate criterion based on a conditional expectation of log Lc.

The other is maximization step (M-step), finding a point to give a maximum of the

surrogate function defined in the E-step [15]. We first consider E-step and then

discuss M-step.
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Following E-step, taking a conditional expectation of log Lc in (7.19) yields the

following surrogate function:

QA = −n log(2πσ2)+
n∑

t=1

log yt−
1

2σ2

{
n∑

t=1

y2
t +

n∑

t=1

(xT
t β)

2 − 2ytx
T
t β cos(θA,0 − θ) · wA,0,t

}
,

(7.20)

where a weight is defined as

wA,0,t ,
I1(ytx

T
t βA,0/σ

2
A,0)

I0(ytxT
t βA,0/σ2

A,0)
(7.21)

and βA,0, θA,0, and σ2
A,0 are given parameter estimates in each E-step. I1(z) denotes

the first order modified Bessel function of the first kind. Here, it can be shown that

the ratio, I1(z)/I0(z) is a strictly increasing function and approaches to 1 as z goes

to infinity. The numerical evaluation of I1(z)/I0(z) is given on Fig.7.1. The details of

derivation of the surrogate function QA and some properties of the ratio I1(z)/I0(z)

are given in Appendix 7.8.

M-step involves the maximization of QA with respect to parameters, yielding

the following equations for updates:

βA,1 =
(
XTX

)−1
XTWA,0y, (7.22)

σ2
A,1 =

1

2n
· yT

(
I−WA,0X

(
XTX

)−1
XTWA,0

)
y, (7.23)

where a weight matrix WA,0 under HA is defined as

WA,0 , diagn
t=1{wA,0,t}. (7.24)

Note that, except the weight matrix WA,0, (7.22) and (7.23) have very similar

forms to the conventional LS solutions from Gaussian modeling in (7.15) and (7.16),

which are easily implemented. Therefore, by simply weighting an observed magnitude

time course, we can easily update parameter estimates in each step. From the M-

step, we also produce an equation for update of θ, which is not informative, because
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Figure 7.1: Numerical evaluation of I1(z)
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θA,1 = θA,0. Thus, we can not extract any information about the phase imperfection

from a magnitude voxel time course at the voxel we are interested in. The detailed

derivations of (7.22) and (7.23) from QA are provided in Appendix 7.9.

Since the ratio of I1(z) to I0(z) is an increasing function for z and is upper-

bounded by 1, if SNR(, xT
t β/σ) is sufficiently high for all t, then the weight matrix

WA,0 is close to an identity matrix I after the algorithm converges, resulting in that

the iterative equation in (7.22) reduces to β̃A in (7.15). In addition, when SNR is

high for all t, it can be shown that the MLE of σ2 based on the Rician PDF in

(7.9) also boils down to σ̃2
A in (7.16) by using a well known approximation of I0(z).

The rigorous proof of this will be shown in Appendix 7.10. Conversely speaking,

after the iterations converge, WA,0 can be used to measure how well conventional

Gaussian modeling approximates Rician modeling. Details of this idea are discussed
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after deriving updates for parameters through an EM algorithm under HN .

EM Algorithm under HN

In order to obtain estimates of β and σ2 under HN , we follow the same E-step and

M-step as above with a Lagrange multiplier based on the linear constraint imposed

by HN . We arrive at the following equations for updates:

βN,1 = Φ ·
(
XTX

)−1
XTWN,0y, (7.25)

σ2
N,1 =

1

2n
· yT

(
I−WN,0X ·Φ ·

(
XTX

)−1
XTWN,0

)
y, (7.26)

where a weight matrix WN,0 under HN is defined similarly to (7.24) with βN,0 and

σ2
N,0,

WN,0 , diagn
t=1{wN,0,t}. (7.27)

Again, except the weight matrix WN,0, it can be easily shown that (7.25) and (7.26)

have the same forms as β̃N and σ̃2
N in (7.17) and (7.18), respectively. From M-step

under HN , an iteration for θ is obtained as well, that is θN,1 = θN,0, which is not

useful. Details of derivation of a surrogate function in E-step under HN , QN will

be given in Appendix 7.8. Derivations of (7.25) and (7.26) from QN are provided in

Appendix 7.9.

Measures of GOA : Weight Maps

From the discussion about weight matrix WA,0 and SNR under HA, we define two

useful sample quantities, which are sample mean and sample variance of converged

weights,

w̄ ,
1

n
tr(WA), S2

w ,
1

n− 1
tr
(
(WA − w̄I)2) , (7.28)

where WA denotes a weight matrix after convergence of the algorithm and tr(WA)

means its trace. For a given magnitude time series from a voxel position we are
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interested in, if SNR is sufficiently high to make the Gaussian approximation of a

Rician PDF work well at all time points, then w̄ is close to 1 with a small Sw.

Conversely, if w̄ is close to 1 and Sw is sufficiently small, it can be argued that

the SNR at the voxel we are interested in is high enough to apply the Gaussian

approximation to a Rician PDF. However, if w̄ is less than 1 or Sw does not have a

sufficiently small value, then the Gaussian modeling is not recommended. Therefore,

spatial plots of w̄ and Sw can be used as measures of goodness of approximation

(GOA) to Rician modeling by Gaussian modeling at each voxel in a ROI. We call

these spatial plots of w̄ and Sw weight maps. Thus, using weight maps, voxels whose

SNRs are not high enough can be identified and Rician modeling is recommended

for those voxels.
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7.4 Detection of Activations

One significant task in FMRI data analysis is to detect functional activations

related to a pre-specified stimulus in a ROI. Based on the proposed Rician-EM

approach, in this section, we build up an activation map using a LRT. An activation

map is a just spatial plot of a detection statistic for activation. First, we review an

existing detection statistic based on Gaussian modeling. Then, a detection statistic

derived from Rician modeling is provided.

7.4.1 Detection Statistic from Gaussian Modeling

For independently and identically distributed Gaussian samples, it is well known

that a LRT based on the hypotheses in (7.10) reduces to,

λG , 2 log ΛG = n log

(
σ̃2

N

σ̃2
A

)
, (7.29)

where ΛG is the ratio of likelihood functions, one of which is maximized under HA

and the other is maximized under HN [49]. Two MLEs, σ̃2
A and σ̃2

N are given in

(7.16) and (7.18).

7.4.2 Detection Statistic from Rician-EM

With parameter estimates from the proposed Rician-EM approach, we construct

a LRT based on the hypotheses in (7.10), leading to

λR , 2 log ΛR = 2n log

(
σ̂2

N

σ̂2
A

)
+

n∑

t=1

y2
t + (xT

t β̂N)
2

σ̂2
N

(7.30)

−
n∑

t=1

{
y2

t + (xT
t β̂A)

2

σ̂2
A

− 2 log

(
I0(ytX

T
t β̂A/σ̂

2
A)

I0(ytXT
t β̂N/σ̂2

N)

)}
,

where, e.g., β̂A and β̂N are MLEs obtained from iterative equations in (7.22) and

(7.25) after EM algorithm converges, respectively. ΛR denotes the ratio of likelihood

functions based on Rician distributions under HA and HN .
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7.4.3 Family-Wise Error Rate Control

For a given significance level αR, a threshold can be determined by asymptotics

of λR. To be specific, when HN is true (i.e., the tested voxel is not activated by the

given stimuli), λR asymptotically obeys χ2
r, a chi-square distribution with r degrees

of freedom, where r is the full row rank of the constraint matrix C [63]. For the

example in (7.11), we have r = 2. Since there are lots of voxels in a ROI, controlling

overall rate is a multiple comparison problem (MCP). A measure to deal with the

MCP is family-wise error (FWE) rate whose definition and an equivalent expression

are given by, under HN ,

FWE , Pr

(
M−1⋃

v=0

{λR(v) > γR(αR)}
∣∣∣∣ HN

)
= Pr

(
max

v
λR(v) > γR(αR)

∣∣∣∣ HN

)
,

(7.31)

where λR(v) denotes the proposed detection statistic from the Rician-EM approach

at the voxel location v, γR(αR) is a threshold for a given αR, and M denotes the

number of voxels in a ROI. Due to the assumption of spatial independence, for a

significance level αR, we analytically determine a threshold,

γR(αR) = Ψ−1
r ( M
√

1− αR), (7.32)

where Ψr(t) is the cumulative density function (CDF) of χ2
r. In FMRI, the signifi-

cance level αR is typically set to 0.05. Since the detection statistic from Gaussian

modeling in (7.29) has the same asymptotic behavior for large n, γR(αR) can be also

applied to λG to control FWE rate.
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7.5 Asymptotic Power Analysis of Rician Detection

The asymptotic power of the Rician detection statistic proposed in the previous

section is derived, which requires an asymptotic distribution of LRT under alterna-

tive hypothesis HA. The derived power function indicates which parameters have

what impacts on the asymptotic power, thus providing a nice criterion to compare

two competing detection statistics built up from a Rician distributed model. For

Rician detection, we are especially interested in some interesting features of the ef-

fects caused by nuisance parameters, e.g., baseline m and noise variance σ2, as we

did analysis for the proposed space-time separability test in Chapter 5. We have

discussed an asymptotic expansion of LRT under alternative hypothesis when serial

correlation and nuisance parameters exist in section 5.4.1. Therefore, in this section,

we apply that result to Rician likelihood function to obtain the asymptotic power

function.

7.5.1 Asymptotic Expansion under Local Alternatives

For simplicity, we assume that there is no temporal linear drift in a given voxel

time course, thus b = 0 in (7.2) and the constraint matrix C in (7.10) has a form

like (7.11). Since motion artifacts can be corrected to some extents, the assumption

on drift might be reasonable. Thus, a parameter of interest is f corresponding

to activation amplitudes and nuisance parameters are m and σ2 corresponding to

baseline and noise variance. From (5.11), for a sequence of local alternatives defined

as f = f0 + ε/
√
n, we have the following asymptotic distribution of λR under HA:

λR ∼ χ2
L,∆, (7.33)

where χ2
L,∆ denotes a non-central chi-square distribution with L degrees of freedom

and ∆ non-centrality parameter. The degree of freedom is the same as the dimension

137



of f . From (5.12), the expression for the non-centrality parameter is given by

∆ = εT
(
I11 − I12I−1

22 I21
) ∣∣∣∣

f=f0

ε, (7.34)

where, since we are interested in testing whether the given voxel is activated by

stimuli, we have f0 = 0 and ε =
√
nf . The Fisher information matrix (FIM) is

partitioned according to the partition of parameter space, namely,

I(f,m, σ2) ,




I11(f) I12(f,m, σ2)

I21(m,σ2, f) I22(m,σ2)


 , (7.35)

where I11(f) is associated with the parameter of interest and I22(m,σ2) involves

nuisance parameters. On the contrary to the FIM corresponding to space-time sep-

arability test in Chapter 5, it turns out that I12(f,m, σ2) is a non-zero matrix,

indicating that the asymptotic power function for Rician detection depends on the

interesting and nuisance parameters. For details of an asymptotic expansion of LRT

in the presence of nuisance parameters, the reader is referred to [28, 58].

7.5.2 Asymptotic Power Function of Rician Detection

We consider the FIM to compute the non-centrality parameter ∆ in (7.34). As-

suming that there is no temporal linear drift, we have the following negative Rician

log-likelihood function:

− log L , n log σ2 −
n∑

t=1

log yt +
n∑

t=1

{
y2

t + (m+ ξT
t f)

2

2σ2
− log I0

(
yt(m+ ξT

t f)

σ2

)}
.

(7.36)

From this negative Rician log-likelihood function, by computing the expectation of

the second order derivatives, one arrives at the FIM evaluated at f = 0 that is given
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by

I(0,m, σ2) =




(σ2−A0)
nσ4 ·∑n

t=1 ξt ξ
T
t

σ2−A0

nσ4 ·
∑n

t=1 ξt
(mA0+σ2B0−mσ2)

nσ6 ·∑n
t=1 ξt

σ2−A0

nσ4 ·
∑n

t=1 ξt
σ2−A0

σ4

(mA0+σ2B0−mσ2)
σ6

(mA0+σ2B0−mσ2)
nσ6 ·∑n

t=1 ξt
(mA0+σ2B0−mσ2)

σ6

σ4−m2A0−2mσ2(B0−m)
σ8




,

(7.37)

where the matrix in the top and left corner is associated with I11(0) and has the size

of L × L. The entry at the center corresponds to baseline m and the entry at the

bottom and right corner corresponds to noise variance σ2. A0(m,σ2) and B0(m,σ2)

are defined as

A0(m,σ2) , E



I

′

1

(
yt(m+ξT

t f)

σ2

)
I0

(
yt(m+ξT

t f)

σ2

)
− I2

1

(
yt(m+ξT

t f)

σ2

)

I2
0

(
yt(m+ξT

t f)

σ2

) y2
t



∣∣∣∣∣
f=0

, (7.38)

B0(m,σ2) , E



I1

(
yt(m+ξT

t f)

σ2

)

I0

(
yt(m+ξT

t f)

σ2

) yt



∣∣∣∣∣
f=0

, (7.39)

where I
′

1(z) denotes the first order derivative of I1(z) with respect to z. We define a

useful function Ā0(m̄) whose definition is given by

Ā0(m̄) ,
A0(m,σ2)

σ2
, m̄ ,

m

σ
, (7.40)

where we call m̄ baseline to noise ratio (BNR). Note that Ā0(m̄) involves only BNR,

which is easily shown by noting that

Ā0(m̄) =

∫ ∞

0

(
I

′

1(xm̄)− I2
1 (xm̄)

I0(xm̄)

)
· x3exp

(
−x

2 + m̄2

2

)
dx, (7.41)

= exp

(
−m̄

2

2

)
·
∫ ∞

0

(
I2(xm̄) + I0(xm̄)

2
− I2

1 (xm̄)

I0(xm̄)

)
x3exp

(
−x

2

2

)
dx,

where x , yt/σ. Therefore, we conclude that Ā0(0) = 1 and Ā0(m̄) goes to 0 as

m̄ approaches to infinity. The numerical evaluation of (7.41) on Fig.7.2 shows that
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Figure 7.2: Numerical evaluation of Ā0(m̄)

Ā0(m̄) is a monotonically decreasing function with respect to m̄. Similarly, we define

and can show that

B̄0(m̄) ,
B0(m,σ2)

σ
=

∫ ∞

0

I1(xm̄) · x2exp

(
−x

2 + m̄2

2

)
dx. (7.42)

It turns out that Ā0(m̄) plays an important role in the expression for the non-

centrality parameter but B̄0(m̄) is canceled out as shown in (7.43). The derivation

of (7.37) from (7.36) is provided in Appendix 7.11.

By plugging (7.37) into (7.34), we now have the non-centrality parameter given

by

∆R = n
(
1− Ā0(m̄)

)
· f̄TΣξf̄ , (7.43)

where the covariance matrix and the activation to noise ratio (ANR) are defined as

Σξ ,
1

n

n∑

t=1

ξtξ
T
t −

(
1

n

n∑

t=1

ξt

)(
1

n

n∑

t=1

ξT
t

)
, f̄ ,

f

σ
, (7.44)
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respectively. Therefore, (7.43) shows that the non-centrality parameter in the asymp-

totic expansion of λR under a sequence of local alternatives depends on not only

parameter of interest f (activation amplitude) but also on nuisance parameters m

(baseline) and σ2 (noise variance). Remarkably, it depends on ANR(, f/σ) and

BNR(, m/σ) in a multiplicative and separable way. In addition, (7.43) indicates

that, for a fixed BNR, ANR contributes to the non-centrality parameter ∆R in a

quadratic way. For a high BNR, since Ā0(m̄) is close to 0, the non-centrality param-

eter is given by

∆R = nf̄TΣξf̄ , (7.45)

being independent of baseline m. This is well matched to conventional results on

power analysis in classical linear regression [4].

We can compute the power, probability that the proposed statistic detects the

activation when HA is true. By combining (7.32) and (7.33), for a significance level

αR, the power function has a form of

PRician

(
m̄, f̄

)
, Pr

(
λR > γ(αR)

∣∣ HA

)
= 1− ΦL,∆R

(
Ψ−1

L ( M
√

1− αR)
)
, (7.46)

where ΦL,∆R
(t) denotes the CDF of a non-central chi-square distribution with L

degrees of freedom and ∆R non-centrality parameter, and M is the number of vox-

els in a ROI. By the numerical evaluation of (7.46), an example of the theoretical

asymptotic power function, PRician

(
m̄, f̄

)
is given on Fig.7.3 for L = 1, αR = 0.05,

M = 100, n = 100, and Σξ = 1.
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Figure 7.3: An example of the theoretical asymptotic power function PRician

(
m̄, f̄

)
for

L = 1, αR = 0.05, M = 100, n = 100, and Σξ = 1

7.6 Simulation Study

7.6.1 Discussions on SNR

Before we start simulations, we need to mention an important point to make

discussions clear. Recall that, according to the conventional definition of SNR(,

xT
t β/σ), SNR varies along time [47]. Since SNR is time-variant, it is not appropriate

to summarize differences between multivariate Rician PDF and an approximation by

multivariate Gaussian PDF for a given voxel time course. For example, we may have

a voxel time course in which a SNR at one time point is not sufficiently high whereas

a SNR at another time point is high enough to apply the Gaussian approximation.

Therefore, in simulations, we use two newly defined terminologies in this chapter,

activation to noise ratio (ANR) and baseline to noise ratio (BNR), which are con-
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stants along time, instead of time-variant SNR. In addition, as shown in (7.46), these

two quantities, i.e., f̄ and m̄, are natural choices from the discussions on asymptotic

power analysis for Rician detection.

Using the newly defined ANR and BNR, we perform simulations to compare the

developed Rician-EM approach and the existing Gaussian modeling. We investigate

unbiasedness and mean squared error (MSE) of parameter estimates from each mod-

eling for various BNRs. In addition, we check the usefulness of newly developed two

weight maps, spatial plots of w̄ and Sw, for various BNRs as well. Data based on the

complex signal and noise model in (7.4) are synthesized for simulations. The number

of time points, n is set to 100 and a parameter for phase imperfection is assigned

to θ = π/4. The noise variance is set to σ2 = 1 for simplicity and the simplest

parametric modeling of the BOLD response in (1.7) is used.

7.6.2 Parameter Estimation

We fix an activation amplitude at f = 0.5, thus ANR is fixed and examine the

bias and MSEs of m̂, f̂ , and σ̂2 for various BNRs. As shown in the two figures on

Fig.7.4 and the left figure on Fig.7.5, the Rician-EM approach provides less biased

parameter estimates than Gaussian modeling does for all regions of BNRs. According

to the right figure on Fig.7.5, when BNR is very low, e.g., when it is less than 2,

the bias caused by the Gaussian modeling becomes severe and Gaussian modeling

as an approximation to Rician modeling is not recommended. The tolerance of bias

or MSE can be determined by researchers conducting FMRI experiments. Thus,

by looking at spatial plots of w̄ and Sw, voxels whose ANRs and BNRs are not

sufficiently high for the Gaussian modeling can be identified. On Fig.7.6, MSEs

of parameter estimates are shown for varying BNRs. For all values of BNRs, the
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Rician-EM method provides smaller MSEs than the conventional Gaussian modeling.

Especially, for very low BNR which is less than 2, Rician-EM is much better than

Gaussian modeling in terms of MSE. For different values of activation amplitude

(f = 0.1 and f = 0.3), although results are not shown here, simulations show the

same behaviors of biases and MSEs for varying BNRs as shown in Fig.7.4-7.6.

7.7 Conclusions

We developed a method for parameter estimation from a Rician distributed model

via EM algorithm, which allowed very simple forms of iterations, more reliability, and

better interpretation compared to existing Rician modeling. The developed Rician-

EM approach can be easily modified from conventional Gaussian modeling due to

their similar forms. Using estimated parameters, we built up a detection statistic for

activation by LRT. In addition, we analyzed the asymptotic power of the proposed

activation statistic. According to simulations, the Rician-EM provided parameter es-

timates which were less biased and had smaller MSEs than the conventional Gaussian

modeling did for all ranges of BNRs.
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Figure 7.4: Means of estimates of baseline m and activation amplitude f for several BNRs.
True values of activation amplitude and noise variance are set to f = 0.5 and
σ2 = 1, respectively.

145



0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1
True σ2 = 1

BNR

m
ea

n(
 e

st
im

at
e 

of
 σ

2 )

Rician−EM Approach

Gaussian Modeling

(a) Mean of estimates of noise variance, σ̂2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Means of Two Sample Quantities

BNR

m
ea

ns

Mean of Sample Mean

Mean of Sample Standard Deviation

(b) Means of sample mean, w̄ and sample standard deviation, Sw

Figure 7.5: Means of estimates of noise variance σ2 and two sample quantities (w̄ and Sw)
for several BNRs. True values of activation amplitude and noise variance are
set to f = 0.5 and σ2 = 1, respectively.

146



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8
MSE of estimates of m

BNR

M
SE

( e
st

im
at

e 
of

 m
 )

Rician−EM Approach

Gaussian Modeling

(a) MSE of estimates of baseline, m̂

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1
MSE of estimates of f

BNR

MS
E(

 es
tim

ate
 of

 f )

Rician−EM Approach
Gaussian Modeling

(b) MSE of estimates of activation amplitude, f̂

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25
MSE of estimates of σ2

BNR

MS
E(

 es
tim

ate
 of

 σ2  ) Rician−EM Approach
Gaussian Modeling

(c) MSE of estimates of noise variance, σ̂2
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7.8 Appendix I : Derivations of Surrogate Functions

In this section, we perform a E-step under each hypothesis, i.e., derive surrogate

functions, QA in (7.20) under HA and QN under HN . Since QN is obtained by a

simple modification of QA with a Lagrange multiplier, we mainly focus on developing

QA. Before the discussion of these derivations, we make brief mathematical reviews of

two Bessel functions, I0 and I1, and their ratio which are necessary for our surrogate

derivations.

Modified Bessel Functions of the First Kind

The zeroth order and first order modified Bessel function of the first kind have

the following definitions :

I0(z) =

∫ π

−π

ez cos θ dθ

2π
, I1(z) =

∫ π

−π

ez cos θ cos θ
dθ

2π
, (7.47)

where note that I1(z) is the first order derivative of I0(z) with respect to z. Here, we

define a function, the ratio of I1(z) to I0(z), which is useful to understand behaviors

of the weight matrix WA,0 in (7.24),

r(z) =
I1(z)

I0(z)
. (7.48)

According to a proof in [3], the first derivative of r(z) with respect to z is positive,

thus r(z) is strictly increasing. It can be easily checked that 0 ≤ r(z) < 1 for all

z ≥ 0 and r(z) is an odd function, that is r(−z) = −r(z). Therefore, r(z) has a nice

asymptotic property, r(z) approaches 1 as z goes positive infinity.

Derivation of QA

In E-step, a surrogate function is defined by a conditional expectation of log Lc

in (7.19) for a given magnitude observation y as follows.

QA = E
[
log Lc | y; βA,0, θA,0, σ

2
A,0

]
, (7.49)
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where βA,0, θA,0, and σ2
A,0 are given parameter estimates in each E-step. By plugging

(7.19) into (7.49), QA has a form of

QA = −n log(2πσ2) +
n∑

t=1

log yt −
1

2σ2

{
n∑

t=1

y2
t + (xT

t β)
2

−2
n∑

t=1

ytx
T
t β · E

[
cos(φt − θ)

∣∣ yt; βA,0, θA,0, σ
2
A,0

]
}
.

Thus, to obtain (7.20), we need to show the following identity for a time point t,

E
[
cos(φt − θ)

∣∣ yt; βA,0, θA,0, σ
2
A,0

]
= cos(θA,0 − θ) · wA,0,t. (7.50)

Here, recall that the joint PDF of yt and φt has the following form, for yt > 0,

pc(yt, φt) =
yt

2πσ2
e−

1
2σ2 (y2

t +(xT
t β)

2−2ytxT
t β cos(φt−θ)). (7.51)

By dividing (7.51) with a marginal PDF of yt in (7.8), one obtains a conditional PDF

of φt for a given yt,

p(φt | yt) =
1

2π
·
exp

(
ytxT

t β

σ2 · cos(φt − θ)
)

I0

(
ytxT

t β

σ2

) . (7.52)

Then, we consider the following conditional expectation,

E
[
cos(φt − θ)

∣∣ yt; βA,0, θA,0, σ
2
A,0

]
=

∫ π

−π

cos(φt − θ) · p(φt | yt; βA,0, θA,0, σ
2
A,0) dφt.

(7.53)

Here, recall the following trigonometric identity,

cos(φt − θ) = cos(θA,0 − θ) cos(φt − θA,0)− sin(θA,0 − θ) sin(φt − θA,0). (7.54)

After plugging (7.52) and (7.54) into (7.53), since the integration term associated

with sin(θA,0 − θ) vanishes, we obtain (7.50) by recognizing I1(z) evaluated at z =

ytx
T
t βA,0

/
σ2

A,0 and complete the derivation of QA.
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Derivation of QN

In E-step, a surrogate function with a Lagrange multiplier based on the linear

constraint under HN is simply defined as follows.

QN = E
[
log Lc | y; βN,0, θN,0, σ

2
N,0

]
+ λTCβ,

= Q∗
A + λTCβ, (7.55)

where Q∗
A is similarly defined as QA in (7.49) with parameter estimates under HN ,

βN,0, θN,0, and σ2
N,0.

7.9 Appendix II : Derivations of Iterative Equations

In this section, we perform a M-step under each hypothesis. First, we derive

iterative equations underHA by finding a maximizer of QA and then develop iterative

equations under HN by maximizing QN . To do that, for compact expressions, we

redefine QA in a matrix form as follows. Neglecting terms which are independent of

parameters, we have

QA = −n log σ2− 1

2σ2

[
yTy + βT

(
XTX

)
β − 2 cos(θA,0 − θ) · βTXTWA,0y

]
, (7.56)

where a weight matrix WA,0 has a definition of

WA,0 = diagn
t=1{wA,0,t}.

Developing Iterations under HA

Firstly, taking a derivative of the newly defined QA in (7.56) with respect to θ

and zeroing it give

∂QA

∂θ
= βTXTWA,0y ·

sin(θA,0 − θ)
σ2

= 0, (7.57)
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leading to sin(θA,0 − θ) = 0, thus θA,1 = θA,0.

Secondly, taking a derivative of QA with respect to β and zeroing it allow

∂QA

∂β
=

1

σ2

[
cos(θA,0 − θ) ·XTWA,0y −

(
XTX

)
β
]

= 0. (7.58)

Rearranging terms and plugging θA,1 into θ leads to (7.22). Note that we also obtain

an identity which is useful for the derivation of σ2
A,1 below, that is,

βT
(
XTX

)
β = βTXTWA,0y. (7.59)

Finally, by taking a derivative of QA with respect to σ2 and setting it zero, one

arrives at

∂QA

∂σ2
= − n

σ2
+

1

2σ4

[
yTy + βT

(
XTX

)
β − 2 cos(θA,0 − θ) · βTXTWA,0y

]
= 0.

(7.60)

Rearranging terms for σ2 and plugging θA,1 into θ, then (7.59) allows

σ2
A,1 =

1

2n

(
yTy − βTXTWA,0y

)
, (7.61)

replacing β with βA,1 in (7.22) gives the desired result in (7.23). Then, we obtain

the necessary iterations under HA.

Developing Iterations under HN

We start the derivations from QN in (7.55). Firstly, since the Lagrange multiplier

term in QN does not depend on θ, taking a derivative of QN with respect to θ and

zeroing it give the same iterative equation as that under HA, θN,1 = θN,0.

Secondly, taking a derivative of QN with respect to β and plugging θN,1 into θ lead

to

∂QN

∂β
=

1

σ2

[
XTWN,0y −

(
XTX

)
β
]
+ CTλ = 0. (7.62)
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Arranging terms for β gives

βN,1 =
(
XTX

)−1 (
σ2CTλ+ XTWN,0y

)
, (7.63)

which should satisfy the constraint, Cβ = 0. Applying the constraint gives an

expression for λ, which is

λ = − 1

σ2

[
C
(
XTX

)−1
CT
]−1

C
(
XTX

)−1
XTWN,0y. (7.64)

Plugging the expression for λ into (7.63) allows the desired form of βN,1 in (7.25).

Again, as under HA, we obtain an identity which is useful for the derivation of σ2
N,1,

that is,

βT
(
XTX

)
β =

(
XTWN,0y

)T
β, (7.65)

where because Cβ = 0 implies Φβ = β.

Finally, since the Lagrange multiplier term in QN does not depend on σ2, taking a

derivative of QN with respect to σ2 and zeroing it give the same expression as that

under HA, thus we have

∂QN

∂σ2
= − n

σ2
+

1

2σ4

[
yTy + βT

(
XTX

)
β − 2 cos(θN,0 − θ) · βTXTWN,0y

]
= 0.

(7.66)

Rearranging terms for σ2 and plugging θN,1 into θ, then (7.65) allows

σ2
N,1 =

1

2n

(
yTy − βTXTWN,0y

)
, (7.67)

replacing β with βN,1 allows the desired iteration in (7.26). Then, we complete the

derivations of necessary iterations under HA and HN .

7.10 Appendix III

In EM algorithm, it is guaranteed that σ2
A,1 converges to the MLE of σ2

A, say σ̂2
A.

Thus, we need to show that the MLE from Rician PDF, σ̂2
A has the same form as the
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MLE from Gaussian PDF, σ̃2
A when xT

t β/σ is high. From (7.9), we start the proof.

Taking a derivative of (7.9) with respect to σ2 gives

∂ log L

∂σ2
= − n

σ2
+

1

2σ4

{
n∑

t=1

y2
t + (xT

t β)
2 − wA,t · 2ytx

T
t β

}
, (7.68)

where a weight is defined as

wA,t =
I1(ytx

T
t β/σ

2)

I0(ytxT
t β/σ

2)
.

Then, by zeroing (7.68) and rearranging terms, we obtain

2nσ2 =
n∑

t=1

y2
t +

(
xT

t β
)2 − wA,t · 2ytx

T
t β. (7.69)

Here, when z is high, recall that the following approximation of I0(z) by [1, Sec.9.6],

I0(z) =
ez

√
2πz

, (7.70)

which gives an approximation of I1(z) by taking the first derivative with respect to

z. Then, one arrives at

r(z) =
I1(z)

I0(z)
=

2z − 1

2z
,

leading to an approximation of wA,t,

wA,t =
2ytx

T
t β − σ2

2ytxT
t β

. (7.71)

Plugging (7.71) into (7.69) allows

2nσ2 =

(
n∑

t=1

y2
t +

(
xT

t β
)2 − 2ytx

T
t β

)
+ nσ2, (7.72)

reducing to, in a matrix form,

σ̂2 =
1

n
(y −Xβ)T (y −Xβ). (7.73)

By replacing β with the MLE of β, β̂, we have an expression for σ̂2 which has the

same form as σ̃2
A, completing the proof.
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7.11 Appendix IV : Derivation of the FIM

In this section, we derive the FIM given in (7.37) from the negative Rician log-

likelihood function in (7.36). We consider second order derivatives of − log L with

respect to fi (the i-th entry of f), m, and σ2, which are given as follows:

∂2(− log L )

∂m2
=

n∑

t=1

1

σ2
− I

′

1(zt)I0(zt)− I2
1 (zt)

I2
0 (zt)

( yt

σ2

)2

,

(7.74)

∂2(− log L )

∂fi∂fj

=
n∑

t=1

ξi,tξj,t
σ2

− I
′

1(zt)I0(zt)− I2
1 (zt)

I2
0 (zt)

( yt

σ2

)2

ξi,tξj,t

(7.75)

∂2(− log L )

∂m∂fi

=
n∑

t=1

ξi,t
σ2
− I

′

1(zt)I0(zt)− I2
1 (zt)

I2
0 (zt)

( yt

σ2

)2

ξi,t,

(7.76)

∂2(− log L )

∂m∂σ2
=

n∑

t=1

−m+ ξT
t f

σ4
+
I

′

1(zt)I0(zt)− I2
1 (zt)

I2
0 (zt)

(
y2

t (m+ ξT
t f)

σ6

)
+
I1(zt)

I0(zt)

( yt

σ4

)
,

(7.77)

∂2(− log L )

∂fi∂σ2
=

n∑

t=1

−m+ ξT
t f

σ4
ξi,t +

I
′

1(zt)I0(zt)− I2
1 (zt)

I2
0 (zt)

(
y2

t (m+ ξT
t f)

σ6
ξi,t

)

+
I1(zt)

I0(zt)

( yt

σ4

)
ξi,t, (7.78)

∂2(− log L )

∂(σ2)2 =
n∑

t=1

− 1

σ4
+
y2

t + (m+ ξT
t f)

2

σ6
− I

′

1(zt)I0(zt)− I2
1 (zt)

I2
0 (zt)

(
y2

t (m+ ξT
t f)

2

σ8

)

− 2I1(zt)

I0(zt)

(
yt(m+ ξT

t f)

σ6

)
, (7.79)

where I
′

1(z) is the first order derivative of I1(z) with respect to z, ξi,t is the i-th

element of ξt, and zt is defined as

zt ,
yt(m+ ξT

t f)

σ2
. (7.80)

Recall that the indices of activation amplitude fi and fj are i = 1, . . . , L and j =

1, . . . , L, respectively. Taking the expectations of above obtained second derivatives
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and evaluating them at f = 0 yield partitions of the FIM. Firstly, we have

(
I11(f)

∣∣∣
f=0

)

ij

,
1

n
·E
[
∂2(− log L )

∂fi∂fj

] ∣∣∣∣∣
f=0

=
(σ2 − A0(m,σ2))

nσ4
·

n∑

t=1

ξi,tξj,t, (7.81)

leading to

I11(0) =
(σ2 − A0(m,σ2))

nσ4
·

n∑

t=1

ξt ξ
T
t . (7.82)

Secondly, we have

(
I12(f,m, σ2)

∣∣∣
f=0

)

i1

,
1

n
· E
[
∂2(− log L )

∂fi∂m

] ∣∣∣∣∣
f=0

=
(σ2 − A0(m,σ2))

nσ4
·

n∑

t=1

ξi,t,

(7.83)

and

(
I12(f,m, σ2)

∣∣∣
f=0

)

i2

,
1

n
·E
[
∂2(− log L )

∂fi∂σ2

] ∣∣∣∣∣
f=0

=
(mA0 + σ2B0(m,σ2)−mσ2)

nσ6
·

n∑

t=1

ξi,t,

(7.84)

leading to

I12(0,m, σ2) =

(
1

n

n∑

t=1

ξt

)
·
[
σ2 − A0(m,σ2)

σ4
,

(mA0(m,σ2) + σ2B0(m,σ2)−mσ2)

σ6

]
,

(7.85)

where I12(0,m, σ2) has a size of L× 2 and ξt has a size of L× 1. Therefore, we have

I21(m,σ2, f)
∣∣∣
f=0

= IT
12(0,m, σ

2), (7.86)

whose size is 2× L.

Finally, we have the partition of the FIM for m and σ2 whose size is 2 × 2. The

entries of I22(m,σ2) are given by

(
I22(m,σ2)

∣∣∣
f=0

)

11

,
1

n
· E
[
∂2(− log L )

∂m2

] ∣∣∣∣∣
f=0

=
σ2 − A0(m,σ2)

σ4
,

(7.87)
(
I22(m,σ2)

∣∣∣
f=0

)

12

,
1

n
·E
[
∂2(− log L )

∂m∂σ2

] ∣∣∣∣∣
f=0

=
(mA0(m,σ2) + σ2B0(m,σ2)−mσ2)

σ6
,

(7.88)
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(
I22(m,σ2)

∣∣∣
f=0

)

22

,
1

n
· E
[
∂2(− log L )

∂(σ2)2

] ∣∣∣∣∣
f=0

=
σ4 −m2A0(m,σ2)− 2mσ2 (B0(m,σ2)−m)

σ8
, (7.89)

leading to

I22(m,σ2) =




σ2−A0

σ4
mA0+σ2B0−mσ2

σ6

mA0+σ2B0−mσ2

σ6

σ4−m2A0(m,σ2)−2mσ2(B0(m,σ2)−m)
σ8


 . (7.90)

From (7.82), (7.85), and (7.90), we obtain the FIM in (7.37).
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CHAPTER 8

Conclusions and Future Works

8.1 Summaries and Conclusions

In this thesis, we mainly pursued one important goal in FMRI data analysis and

solved related problems toward that goal. The main question was how to create

an activation map from collected measurements, showing regional reactions of the

human brain to given stimuli in the experiment. The activation map is a spatial

plot of detection statistics derived from hypothesis testings and building it has been

one of the most significant tasks from the very beginning of FMRI. We developed a

detection statistic for activation considering spatial and temporal correlations with-

out space-time separability in Chapter 3. Related issues involved signal and noise

modeling in multi dimensions to implement a detection statistic (Chapter 4), e.g.,

four dimensions (4D) for a volumetric dataset, building up a test procedure for space

and time separability (Chapter 5), and constructing a proper criterion to rank or a

performance measure to compare competing detection approaches (Chapter 6). An-

other important issue we dealt with in the thesis was recently introduced and is for

detecting an activation from observed signals with low SNR (Chapter 7). Although

high SNR is a typically valid assumption in FMRI until now, since we have a fun-

damental tradeoff between spatial resolution and SNR and we have a clear trend
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toward high spatial resolution, the demands for a SNR robust detection, i.e., Rician

detection, are rapidly increasing.

Summaries

Because of the importance of ”the activation study” in FMRI data analysis, there

have been many approaches to build up a detection statistic for activation. However,

with rare exceptions, most attention has focused on temporal characteristic of noise

under the assumption of spatial independence. In addition, most data analysis meth-

ods have implicitly been under the assumption of space-time separability. For the

first time in FMRI, we developed an activation statistic, spatio-temporal likelihood

ratio test (ST-LRT), from a model jointly considering spatial and temporal correla-

tion of background noise without space-time separability. This is one of the main

contributions of Chapter 3, in which it was shown that a spatiotemporal whitening

filter was necessary to implement ST-LRT. ST-LRT under space-time separability

indicated that, to obtain a properly formulated activation statistic, we needed a

spatial whitening kernel, not a conventional Gaussian amplitude kernel for spatial

smoothing. Simulations showed ST-LRT performed better than the conventional F -

statistic did in terms of detection power.

To implement the proposed ST-LRT, signal and noise modeling in three dimen-

sions (3D) or 4D was necessary. Since a widely used AR-based method in spectral

estimation required huge computations due to non-linearity of asymptotic likelihood

function, we introduced a new method to the FMRI community. Our modeling ap-

proach was unusual, based on a truncated cepstrum expansion, but allowed linear

model fitting, thus leading to a substantial amount of computational reductions. To

compare ST-LRT and a detection statistic derived from spatial smoothing by Gaus-

158



sian kernel (SSK) and dynamic linear model (DLM), a model comparison method

based on Akaike information criterion (AIC) was developed as well. These are the

main contributions of Chapter 4. The developed model comparison method based

on AIC showed that the ST-LRT model was on average much closer to the under-

lying unknown truth than SSK-DLM for a tested human dataset involving motor

responses.

The proposed modeling method, the parametric cepstrum, had an additional

advantage which was useful for space-time separability. In the framework of the cep-

strum, a testing procedure for space-time separability was developed and its asymp-

totic power was analyzed in Chapter 5. Remarkably, the asymptotic power function

only involved cepstral coefficients in the non-separable region, parameters of interest,

and depended on them in a quadratic way. In other words, the asymptotic power was

independent of nuisance parameters, e.g., activation amplitudes and cepstral coeffi-

cients in the separable region. The simulations and application to a human dataset

indicated that the developed test procedure worked well.

For the purpose of performance comparison, an asymptotic relative efficiency

(ARE) of ST-LRT and a detection statistic from SSK-DLM was evaluated in Chap-

ter 6. Pitman’s ARE was derived for ST-LRT and t-statistic from SSK-DLM. It

turned out that Pitman’s ARE had a simple form and depended on spatial operators

used to build up detection statistics, namely, spatial whitening filter and Gaussian

amplitude kernel. For the dataset used in simulations of Chapter 3, it was shown that

ST-LRT was much more efficient than t-statistic derived from SSK-DLM. In other

words, ST-LRT required much less number of samples than a detection statistic from

SSK-DLM to achieve the same detection power, reducing the FMRI experiment time.

For SNR robust activation detection, a method to build up an activation map
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from a Rician distributed model was suggested in Chapter 7. An iterative method for

parameter estimation was developed via an EM algorithm, providing a simpler and

more reliable updates compared to conventional Rician modelings. From estimated

parameters, a detection statistic for activation was constructed and its asymptotic

power was analyzed. On the contrary to Chapter 5, the asymptotic power of Rician

detection depended on both of interesting and nuisance parameters such as baseline.

In simulations, it was shown that Rician-EM approach provided parameter estimates

which were less biased and had smaller MSEs than conventional Gaussian modeling

for all ranges of baseline to noise ratios (BNRs).

Conclusions

By comparing ROC curves in Chapter 3, AIC maps in Chapter 4, and measuring

Pitman’s ARE in Chapter 6, we arrived at the conclusion that the proposed ST-

LRT provided better detection statistics than did the conventional SSK-DLM in

terms of detection power, average distance to a underlying unknown truth, and

asymptotic relative efficiency. From the discussions comparing ST-LRT and SSK-

DLM, we have an important conclusion that spatial whitening operation is necessary

for proper activation detection rather than the spatial smoothing by Gaussian kernel,

which has been widely used but under many ad hoc assumptions. Additionally, from

simulations in Chapter 7, it was shown that the proposed Rician-EM approach was

much more robust to activation to noise ratio (ANR) and BNR than conventional

Gaussian modeling.
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8.2 Future Works

From the discussions presented in the thesis, we provide interesting future research

topics in this section.

Detection Statistic for Activation with Spatial Non-stationarity

In Chapter 3, we developed ST-LRT from a FMRI measurement model jointly

considering spatial and temporal correlation of background noise without space-time

separability. However, the spatial stationarity was assumed to develop ST-LRT.

Therefore, a natural extension will be the development of a detection statistic for

activation based on a measurement model considering spatial non-stationarity. The

idea of the local spatial regularization of likelihood function in [39, 57] can be a

good starting point. Based on this extension, we expect that a test procedure for

space-time separability for spatially non-stationary random fields can be developed.

Asymptotic Relative Efficiency for the Whole ROI

In Chapter 6, we developed voxel-wise Pitman’s ARE to compare the proposed

ST-LRT and F -statistic derived from existing SSK-DLM. Since we usually have

sparse activations in the brain, most voxels are not activated. Therefore, a next step

will be the development of Pitman’s ARE for the whole ROI. In addition, to compare

two competing detection statistics in terms of other types of AREs is an interesting

topic as well, for example, Bahadur’s ARE [50].

Rician-EM Modeling with Serial Correlation

In Chapter 7, we derived EM algorithm from a Rician distributed model under

the assumption of temporal independence. A natural extension from this thesis will

be the development of an EM algorithm from a Rician distributed model with serial
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correlation to model FMRI measurements more exactly.

Asymptotic Power Analysis for Mismatched Modeling

In Chapter 7, we analyzed the asymptotic power of a detection statistic derived

from a Rician distributed model. This analysis was under the assumption that

the model and observed FMRI samples obey Rician distributions. Since Gaussian

modeling has been widely used in FMRI data analysis, analyzing the asymptotic

power of Gaussian modeling is very interesting when measured samples are Rician

distributed.
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[13] R. Dahlhaus and H. Künsch. Edge effects and efficient parameter estimation for
stationary random fields. Biometrika, 74, No.4:877–882, Dec. 1987.

[14] A.M. Dale and R.L. Buckner. Selective averaging of rapidly presented individual trials
using FMRI. Human Brain Mapping, 5:329–340, 1997.

[15] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of Royal Stat. Soc. Series B, 23(1):1–38, 1977.

[16] A.J. den Dekker and J. Sijbers. Detection of brain activation from magnitude fmri
data using a generalized likelihood ratio test. Proc. EUROSIPCO, Vienna, Austria,
Sep. 2004.

164



[17] A.J. den Dekker and J. Sijbers. Implication of the Rician distribution for FMRI
generalized likelihood ratio tests. Magnetic Resonance Imaging, 23:953–959, 2005.

[18] X. Descombes, F. Kruggel, and D.Y. von Cramon. Spatio-temporal FMRI analysis
using Markov random fields. IEEE Trans. on Medical Imaging, 17, No.6:1028–1039,
Dec. 1998.

[19] B. Dickinson. Two dimensional Markov spectrum estimates need not exist. IEEE

Trans. Information Theory, IT-26, No.1:120–121, Jan. 1976.

[20] M.P. Ekstrom and J.W. Woods. Two-dimensional spectral factorization with ap-
plication in recursive digital filtering. IEEE Trans. on Acoust. Speech and Signal

Processing, ASSP-24, No.2:115–128, April 1976.

[21] R.S.J. Frackowiak, K.J. Friston, C.D. Frith, R.J. Dolan, C.J. Price, S. Zeki, J. Ash-
burner, and W. Penny. Human Brain Function. 2nd edition, Academic Press USA,
2004.

[22] K.J. Friston, A.P. Holmes, K.J. Worsley, J.B. Poline, C. Frith, and R.S.J. Frackowiak.
Statistical parametric maps in functional imaging : a general linear approach. Human

Brain Mapping, 2:189–210, 1995.

[23] K.J. Friston, P. Jezzard, and R. Turner. Analysis of functional MRI time series.
Human Brain Mapping, 1:153–171, 1994.

[24] M. Fuentes. Testing for separability of spatial-temporal covariance functions. Journal

of Statistical Planning and Inference, 136:447–466, 2005.

[25] A. Geissler, R. Lanzenberger, M. Barth, A.R. Tahamtan, D. Milakara, A. Gartus, and
R. Beisteiner. Influence of FMRI smoothing procedures on replicability of fine scale
motor localization. NeuroImage, 24:323–331, 2005.

[26] C. Goutte, F. Nielson, and L.K. Hansen. Modeling the hemodynamic response in
FMRI using smooth FIR filters. IEEE Trans. on Medical Imaging, 19(12), Dec. 2000.

[27] X. Guyon. Random Fields on a Network : modeling, statistics, and applications.
Springer-Verlag, 1995.

[28] T. Hayakawa. The likelihood criterion for a composite hypothesis under a local alter-
native. Biometrika, 62, No.2:451–460, Aug. 1975.

[29] A.P. Holmes, R.C Blair, J.D.G. Watson, and I. Ford. Non-parametric analysis of
statistic images from functional mapping experiments. Journal of Cerebral Blood Flow

and Metabolism, 16, No.1:7–22, 1996.

[30] A.K. Jain. Fundamentals of digital image processing. Prentice Hall, pages 204–213,
1989.

[31] S.M. Kay. Fundamentals of statistical signal processing, Vol.2 : detection theory.
Prentice Hall : Upper Saddle River, NJ, 1998.

[32] H. Linhart and W. Zucchini. Model Selection. New York : Wiley, 1986.

165



[33] J. Locascio, P. Jennings, C. Moore, and S. Corkin. Time series analysis in the time
domain and resampling methods for studies of functional magnetic resonance imaging.
Hum. Brain Mapp., 5:168–193, 1997.

[34] C. Long, E.N. Brown, D. Manoach, and V. Solo. Spatiotemporal wavelet analysis for
functional MRI. NeuroImage, 23:500–516, 2004.

[35] R.J. Martin. A metric for ARMA processes. IEEE Trans. on Signal Processing, 48,
No.4:1164–1170, 2000.

[36] M.W. Mitchell, M.G. Genton, and M.L. Gumpertz. Testing for separability of space-
time covariances. Environmetrics, 16:819–831, 2005.

[37] F.Y. Nan and R.D. Nowak. Generalized likelihood ratio detection for FMRI using
complex data. IEEE Trans. on Medical Imaging, 18, No.4:320–329, Apr. 1999.

[38] T. Nichols and S. Hayasaka. Controlling the familywise error rate in functional neu-
roimaging : a comparative review. Stat. Meth. in Med. Research, 12:419–446, 2003.

[39] P. Purdon, V. Solo, R. Weisskoff, and E. Brown. Locally regularized spatiotemporal
modeling and model comparison for functional MRI. NeuroImage, 14:912–923, 2001.

[40] S.O. Rice. Mathematical analysis of random noise. Bell Syst. Tech. J., 23:282, 1944.

[41] J. Riera, J. Bosch, O. Yamashita, R. Kawashima, N. Sadato, T. Okada, and T. Ozaki.
FMRI activation maps based on the NN-ARx model. NeuroImage, 23:680–697, 2004.

[42] D.L. Robinson. Estimation and use of variances components. The Statistician, 36 3
14.

[43] B.R. Rosen, R.L. Buckner, and A.M. Dale. Event-related functional MRI : past,
present, and future. Proc. Natl. Acad. Sci., 95, Feb. 1998.

[44] A. Rosenfeld and A.C. Kak. Digital Picture Processing. Vol. 2, Orlando FA : Aca-

demic Press, 1982.

[45] D.B. Rowe. Modeling both the magnitude and phase of complex valued FMRI data.
NeuroImage, 25, No.4:1310–1324, May 2005.

[46] D.B. Rowe. Parameter estimation in the magnitude only and complex valued FMRI
data models. NeuroImage, 25, No.4:1124–1132, May 2005.

[47] D.B. Rowe and B.R. Logan. A complex way to compute FMRI activation. NeuroIm-

age, 23, No.3:1078–1092, Nov. 2004.

[48] S. Saha, C.J. Long, E. Brown, E. Aminoff, M. Bar, and V. Solo. Hemodynamic
transfer function estimation with Laguerre polynomials and confidence interval con-
struction, from functional magnetic resonance imaging data. In Proc. IEEE Intl. Conf.

on Acoustics, Speech, and Signal Processing, Montreal Canada, May 2004.

[49] G.A. Seber and A.J. Lee. Linear Regression Analysis. 2nd edition, Wiley, 2003.

[50] R.J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, 1980.

166



[51] G. Sharma and R. Chellappa. Two-dimensional spectrum estimation using noncausal
autoregressive models. Trans. on Information Theory, IT-32, No.2:268–275, Mar.
1986.

[52] R.H. Shumway and D.S. Stoffer. Time series analysis and its applications. Springer,
2000.

[53] D.O. Siegmund and K.J. Worsley. Testing for a signal with unknown location and
scale in a stationary Gaussian random field. Annals of statistics, 23:608–639, 1995.

[54] J. Sijbers and A.J. den Dekker. Generalized likelihood ratio tests for complex FMRI
data : a simulation study. IEEE Trans. on Medical Imaging, 24, No.5:604–611, May
2005.

[55] V. Solo. Modeling of two-dimensional random fields by parametric cepstrum. IEEE

Trans. on Information Theory, IT-32, No.6:743–750, Nov. 1986.

[56] V. Solo, C.J. Long, E.N. Brown, E. Aminoff, M. Bar, and S. Saha. FMRI signal
modeling using Laguerre polynomials. In Proc. IEEE Intl. Conf. on Image Processing,

Singapore, Oct. 2004.

[57] V. Solo, P. Purdon, R. Weisskoff, and E. Brown. A signal estimation approach to
functional MRI. IEEE Trans. on Medical Imaging, 20(1):26–35, 2001.

[58] K. Tamaki. Second order asymptotic properties of a class of test statistics under the
existence of nuisance parameters. Sci. Math. Jpn., 61, No.1:119–143, 2005.

[59] A.W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

[60] D. Van De Ville, T. Blu, and M. Unser. Integrated wavelet processing and spatial
statistical testing of FMRI data. NeuroImage, 23:1472–1485, 2004.

[61] B. Walberg. System Identification using Laguerre Models. IEEE Trans. Automatic

Control, vol.36, No.5, May 1991.

[62] P. Whittle. On stationary processes in the plane. Biometrika, 41, No.3/4:434–449,
Dec. 1954.

[63] S.S. Wilks. The large-sample distribution of the likelihood ratios for testing composite
hypotheses. The Annals of Mathematical Statistics, 9, No.1:60–62, Mar. 1938.

[64] M.W. Woolrich, M. Jenkinson, J.M. Brady, and S.M. Smith. Fully Bayesian spatio-
temporal modeling of FMRI data. IEEE Trans. on Medical Imaging, 23, No.2:213–231,
Feb. 2004.

[65] K. Worsley, A. Evans, S. Marett, and P. Neelin. A three dimensional statistical
analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow

and Metabolism, 12:900–918, 1992.

[66] K.J. Worsley and K.J. Friston. Analysis of FMRI time series revisited - again. Neu-

roImage, 2:173–181, 1995.

[67] K.J. Worsley, S. Marrett, P. Neelin, and A.C. Evans. Searching scale space for acti-
vation in PET images. Human Brain Mapping, 4:74–90, 1996.

167




