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ABSTRACT

Intensity based Image Registration using Robust Similarity Measure and

Constrained Optimization: Applications for Radiation Therapy

by

Jeongtae Kim

Chair: Jeffrey A. Fessler

In radiotherapy, an x-ray beam arrangement should be planned based on a correct

patient model using a planning CT (Computed Tomography) and the x-ray beam should

be focused accurately to implement the plan on actual patient. Since the patient model may

not be accurate due to organ motion and there is patient set-up error, the actual delivery

of the x-ray may differ from the optimal one intended by a physician, thus risking damage

to normal tissues and possibly delivering a suboptimal radiation dose to the tumors.

Correct estimation of the patient set-up error and organ motion is important since

one can retrospectively calculate the actual x-ray dose accumulation from the treatment

using the estimated set-up error and organ motion. Moreover, if the set up estimate can

be completed quickly before the treatment, then one can compensate for the set-up error

by adjusting either the radiotherapy table or the x-ray beam position prior to treatment

delivery. Also, if one can build a dynamic model of patient organ motions before treatment,

the treatment plan can be established more accurately considering the motions.

Image registration is a very useful technique for estimating both patient set up and organ

motion for radiation therapy. Patient set up may be estimated by 3D/2D image registration,

which registers planning CT image onto radiograph images from the treatment room and

organ motion from one time to another may be estimated using nonrigid image registration

of two images from two time instances.

We investigated several rigid and nonrigid image registration methods that are useful

for estimating patient set up positioning and organ motion. By conducting an experiment



with anthropomorphic chest phantom, we investigated the feasibility of 3D/2D registration

methods for the set-up estimation. We achieved sub-voxel accuracy using two orthogonal

projection images by the sample correlation coefficient based and the MI(Mutual Informa-

tion) based methods.

We have proposed a novel robust image registration method based on a robust correlation

coefficient, which is useful for registering images containing unexpected objects. Images

from treatment rooms usually contain objects that are not present in the planning CT

image, such as radiotherapy table. The statistical properties such as bias, variance and

robustness of the proposed method in comparisons with the sample correlation and the MI

based method have been analyzed.

We also investigated a novel nonrigid image registration method in which the estimated

deformation obeys the physical constraint of positive Jacobian determinant. We derived a

closed form expression of possible minimum and maximum Jacobian in terms of gradient

bounds analytically. To enforce the gradient bounds of the deformation in optimization, we

have introduced constraint sets in the parameter space. The optimization was accomplished

using the gradient projection method with Dykstra’s cyclic projection method.

Key Words: Radiotherapy, Set up error, Organ motion, Image registration, 3D/2D

image registration, Robust correlation coefficient, Nonrigid image registration, Jacobian,

Gradient projection method, Dykstra’s cyclic projection.
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4.15 Estimated deformation ĥ(x, y, z). . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



LIST OF APPENDICES

APPENDIX

A Fisher Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B Mean and Covariance Approximation . . . . . . . . . . . . . . . . . . . . . . 86

C Bias and Robustness of Correlation based Methods . . . . . . . . . . . . . . 88

D Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

E Gradient of Estimated joint pdf . . . . . . . . . . . . . . . . . . . . . . . . . 92

F Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

G Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



CHAPTER 1

INTRODUCTION

1.1 Radiation Therapy and Image Registration

The goal of external beam radiotherapy is to irradiate a tumor to a high x-ray dose

while sparing normal tissues as much as possible. To achieve this goal, the x-ray beam

arrangement and the dose distribution are carefully planned based on the target tumor

position within an individualized patient model. Each 3D patient model is constructed

using a 3D planning x-ray CT (Computed Tomography) scan or 2D x-ray scan that is

acquired several days before treatment.

Accurate radiotherapy requires the patient to be set up for treatment in a coordinate

system that is consistent with the treatment plan. In practice, however, patient set-up errors

occur despite the use of laser alignment. Furthermore, patient anatomy may change relative

to the treatment plan due to breathing, organ movements, etc. Also, since the patient model

is updated sporadically, the treatment plan may not be optimal [1]. Practically, it is difficult

to update patient model frequently since it requires extra CT scan. Such errors continue to

be a concern in radiotherapy not only due to the unnecessary irradiation of normal tissues

but also due to the sub-optimal irradiation of the target tumor [2–4].

If the patient set-up error and anatomy changes can be correctly estimated after each

treatment session, one can retrospectively calculate the actual x-ray dose accumulation from

the treatment and review the patient set-up procedure. Moreover, if the set up estimate can

be completed quickly before the treatment, then one can compensate for the set-up error by

adjusting either the radiotherapy table or the x-ray beam position prior to the treatment

delivery.
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Many studies have been conducted to quantify the statistics of the patient set-up error

[5], to consider the effect of the set-up error in planning [1], to estimate the set-up error

accurately, to reduce the set-up error and/or to compensate for the set-up error by adjusting

the x-ray beam position or the patient position [2–4,6–11].

Image registration is a very useful technique for estimating both patient set up and

anatomy change for radio therapy [8, 11, 12]. Patient set up may be estimated by 3D/2D

image registration, which registers planning CT image onto radiograph images from the

treatment room. In general, the patient set up estimation is accomplished by a rigid image

registration method.

Compared with the patient set up estimation problem, the patient anatomy change

estimation problem requires a nonrigid image registration method since the anatomy change

occurs in nonrigid fashion. The patient anatomy change from one time to the other can

be estimated using nonrigid registration of two images from two different time instances.

As mentioned before, if the patient anatomy change can be estimated accurately after the

treatment, it can be used effectively to compute accumulated dose distribution from the

treatment. Furthermore, if one can build a dynamic model of patient organ motion before

treatment, treatment plan can be established more accurately with the consideration of the

motion [13].

For example, a simple dynamic patient model of lung motion can be built by the nonrigid

registration of inhale and exhale CT images. Using the estimated deformation by the

registration, one may build a deformed organ model at any moment during the breathing

cycle by interpolating the estimated deformation field.

In this dissertation, we investigate several rigid and nonrigid image registration methods

that are useful for estimating patient set up and organ motion. We investigate 3D/2D image

registration methods for the set up estimation and propose a novel robust image registration

method, which is useful to register the images containing unexpected objects. We also

investigate nonrigid registration methods and propose a novel nonrigid image registration

method in which estimated deformation conforms the physical constraint of invertibility [14].

We apply the proposed nonrigid image registration method for building a lung motion

model.

2



1.2 Set up Estimation

Technically, the patient setup error estimation problem is the estimation of patient pose

difference in the treatment room from the planning CT. Similar applications arise in the

area of image-guided surgery that requires the mapping of positions in pre-operative data

to a coordinate system defined in the operating room [11,15].

The patient setup is usually estimated by an image registration method that registers

2D radiographs acquired during patient set-up to 2D simulated images or 3D planning CT

image at the desired position. In most cases, the 2D simulator images or the 3D planning

CT image is geometrically transformed to achieve the registration, and the patient set-up

is estimated as the geometrical transformation that accomplishes the registration.

Although approaches that use 2D simulator images have the advantage of fast com-

putation time, those are not very accurate since the 3D transformation is estimated by

registering 2D images in a 2D plane [8]. It has been reported that these methods have

problems in estimating rotations in planes non-parallel to the 2D radiographs planes [16].

Approaches that register 3D planning CT image onto the 2D radiographs overcome this

limitation at the expense of greater computation.

Several groups have investigated 3D/2D registration methods [8] [15–20]. Those meth-

ods can be classified into feature-based methods [16, 17, 19] and intensity-based methods

using DRRs (Digitally Reconstructed Radiographs) [15,18,20]. Feature-based methods use

anatomical or artificial landmarks segmented from the images to perform the registration.

Because of the segmentation, the feature based methods have several drawbacks. For ex-

ample, segmentation procedures often require skilled human interaction, thereby making

the procedure difficult to automate. Automatic procedures for segmentation have been

studied [17]. Even if one designs an automatic segmentation algorithm, segmentation errors

may occur and cause setup estimation errors. However, since feature-based methods have

the advantage of fast computation, those are widely investigated for setup error estima-

tion [16,17,19].

Unlike feature-based methods, intensity-based methods using DRRs(Digitally Recon-

structed Radiographs) do not require segmentation. The DRRs, which are computed 2D

projection images of the planning CT volume, are computed at several angles and com-

pared to the radiographs from the same angles. The registration is achieved by maximizing

3



a similarity measure based on the intensity values of such DRRs and the radiographs. Since

intensity-based methods do not require segmentation, those can be easily automated. In ad-

dition, the segmentation error can be avoided. However, these methods require much more

computation than feature-based methods, thus posing a significant challenge for clinical

application.

The investigations in this dissertation are focused on the intensity based image regis-

tration methods since we prefer to develop an automatic and accurate method. We believe

that the computation time will be eventually reduced by faster computer hardware, storing

pre-computed DRRs with appropriate interpolation, etc.

We have investigated set up error estimators experimentally first by conducting an

experiment with an anthropomorphic chest phantom since we preferred to investigate the

feasibility of existing image registration methods to the 3D/2D registration problem and to

identify practical technical issues through the experiment. Particularly, we were interested

in the statistical properties of the registration methods and the number of views required

to achieve registrations within acceptable error bounds.

Similarity measures such as sample correlation coefficient [15,18,20], MI(Mutual Infor-

mation) [21–23] have been investigated. The detail methods and results are summarized in

Chapter 2.

1.3 Robust Image Registration

We have investigated a novel similarity measure motivated by the experimental results.

Since the images being registered for patient set up estimation often have outlier image

samples due to the presence of unexpected objects such as a radiation therapy table, the

registration accuracy can be degraded by the outliers.

To design a method that is robust to such outlier samples, we have investigated a novel

similarity measure. One fundamental design criterion is that the similarity measure should

be maximized at the true registered position in the absence of noise. Establishing this

characteristic analytically is challenging since the behavior of the objective function depends

on the nature of the images being registered. Another important criteria is the statistical

efficiency of the registration method, i.e., the variability that results from repeating the

registration with identical images except for noise. In addition, registration methods can

4



differ in their robustness to the presence of unexpected objects in images.

Many intensity-based image registration methods implicitly treat the intensity pairs

taken from corresponding spatial locations in two images as i.i.d. (independent and iden-

tically distributed) samples of two random variables. With that assumption, statistical

concepts such as correlation, joint entropy and mutual information (MI) are used as simi-

larity measures by estimating those statistical properties from the i.i.d. samples.

The correlation coefficient is a particularly popular similarity measure, and is a natural

choice when registering two images from the same modality [18, 20]. Although correlation

is poor similarity measure for multi-modality image registration, in terms of statistical effi-

ciency and computational efficiency, the correlation coefficient is one of the best similarity

measures for intra-modality image registration. Since image registration for set-up estima-

tion in radiation therapy and image-guided surgery often involves images from the same (or

similar) modality, the correlation coefficient can be useful for those applications.

The sample correlation coefficient has been used widely to estimate the correlation

coefficient due to its simplicity. However, a drawback of the sample correlation coefficient is

its sensitivity to outliers [24, p. 199]. Even a few outliers can affect the sample correlation

coefficient greatly and thus degrade image registration performance. A significant number

of “outliers” may be present in the image-guided surgery application due to the presence

of operational instruments and in the radiation therapy application due to the effect of

radiotherapy table [12]. For X-ray CT images, differences in contrast agents also occur.

Although a bias in estimating the correlation coefficient need not directly imply a bias in

image registration, we have observed such biases empirically when outliers are present [25].

Another widely used similarity measure is the estimated MI. The MI is a particularly

useful similarity measure for multi-modality image registration since it does not assume

any functional relationship between the two image values [21–23]. In this sense, the MI

method has an inherent degree of robustness. However, as illustrated by our empirical

results in Section 3.3 and analyses in the Appendices for intra-modality image registration,

the robustness of the MI method depends on images being registered. Moreover, the MI

method may not be statistically efficient, i.e., the registration variability due to noise can

be larger than the sample correlation coefficient.

To overcome the drawbacks of the sample correlation method and the MI method, we

have investigated an image registration method that uses robust correlation coefficients [24,

5



p. 204] as a similarity measure, thereby improving the robustness without compromising

the statistical efficiency much.

Detail algorithm, analytical and experimental comparisons of the proposed method with

the sample correlation and the MI based method are summarized in Chapter 3.

Also, the analyses of the statistical properties of the correlation-based and MI-based

image registration methods by approximating the mean and the variance using first-order

Taylor series expansions [26] are presented in appendices. Since image registration is highly

nonlinear and the objective function is an implicit function of the images, it is challenging to

obtain concise and insightful results from such approximations. Nevertheless, we summarize

some theoretical arguments that complement the empirical results.

1.4 Building Patient Model using Nonrigid Registration

Compared with the set up estimation problem, the organ motion estimation has not been

studied intensively. Recently, estimating patient deformation to compute more accurate ac-

cumulated dose distribution, building a dynamic model and considering the deformation in

planning have been investigated [13,27]. To achieve those goals, nonrigid image registration

is a useful technique.

In general, nonrigid registration is achieved by deforming one image using a model based

deformation and the true deformation is estimated as the model based deformation that

achieves the registration. One important physical constraint of the estimated deformation is

that the Jacobian determinant should not be zero due to the inverse function theorem [14]

since physical deformations are invertible. Moreover, since the Jacobian determinant is

positive (i.e. unity) where the transformation is identity, if we assume that there is a

region with the identity transformation in the images, the Jacobian determinants should be

positive everywhere since the determinant is continuous in the spatial domain.

To prevent the Jacobian determinant from being negative, a regularization penalty func-

tion has often been introduced in nonrigid registration. For example, penalizing roughness

penalty [28], bending energy [29], and negative Jacobian [30] have been proposed and in-

vestigated.

There are drawbacks in penalty function based methods. First, even though the penalty

function based methods can reduce the risk of negative Jacobian determinant significantly,
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there is no guarantee that the resulting deformation always has a positive Jacobian de-

terminant, at least theoretically. Second, regularization parameter may need to be tuned

differently for different images. Finally, since the penalty function is usually computed

using the deformation values only at grid points, there is no guarantee that the estimated

deformation is invertible in between the grids even if the Jacobian determinants are positive

at the grids.

To remedy those problems, we propose sufficient conditions that ensure positive Jacobian

determinants of the estimated deformation. We also propose a constrained optimization

method to maximize a similarity measure subject to the conditions.

Chapter 4 presents the theory and the experimental results of the proposed constrained

optimization method. Two propositions, which are sufficient conditions for positive Ja-

cobian determinant and conditions in the parameter space to ensure gradient bound ev-

erywhere, are also presented in Chapter 4. Proofs of the propositions can be found in

appendices.

1.5 Outline of Dissertation

The outline of this dissertation is summarized as follows. In Chapter 2, the methods,

results and discussions for 3D/2D image registration using an anthropomorphic chest phan-

tom are presented. Chapter 3 reviews the theoretical backgrounds of intensity based image

registration methods and the robust estimation of correlation coefficients. Experimental

results of the sample correlation, the robust correlation and the MI based image registra-

tion methods using 1D synthetic signals, 2D MRI images and 3D CT/2D radiographs are

presented. Chapter 4 reviews the technical issues of nonrigid registration methods and

presents a novel nonrigid image registration method. Experimental results of the proposed

method using inhale and exhale lung CT images are also presented. Sufficient conditions

to ensure positive Jacobian determinant are also claimed in Chapter 4. Discussions and

future research directions are presented in Chapter 5. Mathematical derivations of Fisher

information from Chapter 2, of mean and variance from Chapter 3 are presented in Ap-

pendix A, B, C and D. The proofs of two claims from Chapter 4 are included in Appendix F

and G.
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CHAPTER 2

3D/2D Registration

2.1 Introduction

We investigate an approach for estimating the set-up error based on the 3D/2D, intensity-

based registration method using DRRs. We have chosen a MI (Mutual Information) regis-

tration criterion since it is robust to the intensity differences between two images. In image

registration for radiotherapy, the radiographs and the DRRs have different intensities since

the radiographs and the CT are generated by x-ray sources with different spectra. More-

over, other effects such as different scalings between two imaging devices, beam hardening,

scattering and the radiotherapy table also cause intensity differences. The MI-based image

registration method has been successful in 3D/3D multi-modality image registration [21–23].

By adopting the MI-based image registration technique, we design a fully automatic and

accurate estimator.

Despite the computation time issues, we have chosen the intensity-based method using

DRRs since we want to design an automatic and accurate estimation method. Moreover, we

believe that the computation time will be eventually reduced by faster computer hardware,

storing pre-computed DRRs with appropriate interpolation, etc.

To evaluate the performance of the MI-based estimator, we conducted an experiment

with an anthropomorphic chest phantom. We placed 11 radiopaque markers on the phan-

tom, enabling determination of the “ground truth” set-up error by registering the positions

of the markers in the DRRs and the radiographs. We evaluated the performance of the

MI-based estimator by comparisons with the marker-based method since we expected the

latter to be more accurate in this experiment.
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The structure of this chapter is as follows. In Section 2.2, we formulate the technical

problem of the set-up error estimation. We also report the materials that were used for

the experiment. In Section 2.3, we present experimental results of the proposed MI-based

method in comparison with a well-known correlation-based method [20]. In Section 2.4, we

discuss the proposed method and suggest future research directions.

2.2 Materials and Methods

2.2.1 Experimental Methods

We attached eleven 1mm diameter lead markers to the exterior surface of an anthropo-

morphic phantom to help establish the “ground truth” set-up error. By placing markers on

locations that would be imaged around the boundaries of the projection views, we could ap-

ply the MI-based method using just the center portions of the projection images excluding

the markers.

A 512×512×398 voxel planning CT image with 0.9375×0.9375×1 mm spacing was ac-

quired on a GE CT/i scanner with a 140 kV x-ray source. Tattoos were drawn on the

phantom where three alignment laser planes crossed the phantom to facilitate consistent

set-up in a treatment room.

Next, the phantom was moved to the treatment room and it was set up at the isocenter

by manually aligning tattoos to three laser planes in the treatment room. Four radiographs

were obtained from different angles by rotating the x-ray source and Varian Portal Vision

amorphous silicon active matrix flat panel image detector in 30o increments around the Z-

axis as in Figure 2.1. For each of the 0o and 90o views, we acquired 10 repeated radiographs

without realignment for evaluating the effect of noise on the estimator. The x-ray source

voltage was 6 MV and the detector size was 512×384 pixels with 0.78mm×0.78mm spacing.

We used only two radiographs from 0o, 90o (i.e, AP and lateral images) for the MI-based

and the correlation-based method. However, to enhance the accuracy of the “ground truth”,

we used all four radiographs for the fiducial marker-based method.

We acquired additional radiographs in the treatment room after manually moving the

phantom to each of two other positions for testing the robustness of the proposed method

to different set-up errors. The experiments for the three different phantom positions are
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called Experiment A, B and C, respectively in subsequent sections.

We applied three methods for estimating the set-up error: the MI-based method, the

correlation-based method, and the marker-based method. For the MI-based method and

the correlation-based method, the planning CT image was down-sampled by four along each

axis to reduce computation time and memory usage. Since our planning CT had finer axial

sampling than typical CTs in clinical use, the down sampling yields more representative

CT quality in axial sampling. However, it also caused slightly coarser in-plane sampling.

The down-sampling was implemented by averaging the nearest 4×4×4 voxel values. As

a result, the planning CT that was used to compute DRRs had 3.750×3.750×4 mm spatial

spacing. However to preserve the accuracy of the “ground truth”, we did not down-sample

the CT for the marker based method.

For the MI-based method and the correlation-based method, we used only the central

400×300 sub-image of each of the DRRs and the radiographs to avoid the effect of the

markers which are not usually used in clinical practice.

We have established the geometry of the EPID imaging systems by determining radiation

field edges using simple thresholding method [31]. We assumed that the distance from source

to detector known during calibration is correct.

For numerical search, we used the Nelder-Mead simplex method for all three meth-

ods [32]. We started the search from nominal unrotated and untranslated position. Termi-

nation criteria for the simplex method were that both the sum of the six parameter changes

was less than 0.1, 0.1, 10−12 and the maximum difference of the objective function within

the simplex was less than 0.0001, 0.0001, 10−12 for the MI-based, the correlation-based, and

the marker-based method, respectively. Units for the rotation parameters were degrees and

the translational parameters were mm.

2.2.2 Technical Problem Formulation

For the phantom experiments, we assume that the set-up errors are generated by rigid

body motion and there is no change in the attenuation coefficients from the time of the

planning CT scan. With those assumptions, we can model each voxel intensity value Uk of

the planning CT with a mono-energetic source approximation as follows:
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Uk = αµ(~x, εkV), k = 1, 2, . . . ,M, (2.1)

where, µ(~x, ε) is 3D attenuation coefficients distribution, ~x is 3D spatial index, ε is the

photon energy, εkV is the effective energy of the x-ray source for the planning CT, α is the

constant scaling of the x-ray CT, and M is the number of CT voxels.

The radiographs acquired in the treatment room correspond to the projection images

of the rotated and translated attenuation coefficients based on MV spectrum source since

the MV treatment beam is also used for the imaging. Making a mono-energetic source

approximation and neglecting scattered radiation, we model the measured pixel intensity

values of the radiographs as follows:

Ỹk = Ioe
−
∫
Lk
µ(Tθ̃(~x),εMV)d

~l
+Nk, k = 1, 2, . . . ,N (2.2)

θ̃ = [φx φy φz tx ty tz] (2.3)

Tθ̃(~x) = R(φx)R(φy)R(φz)~x+ [tx ty tz]
′, (2.4)

where Ỹk is the measured intensity value of kth detector pixel, Io is the MV x-ray source

intensity, Lk is the x-ray path from source to kth detector pixel, Tθ̃ is the translate-rotation

transform with parameters θ̃, εMV is the effective source energy for the radiographs, Nk

is measurement noise, N is the number of detector pixels, R(·) is a 3×3 rotation matrix,

φx, φy, φz are the unknown rotations around X, Y, Z axes, and tx, ty, tz are the unknown

translations along X, Y, Z axes from the planning CT scan to treatment.

To estimate θ̃, we compute the DRRs of the planning CT transformed according to any

given guess for the parameter θ using the following formula:

Xk(θ) =

∫
Lk

µ(Tθ(~x), εkV)d~l, k = 1, 2, . . . ,N, (2.5)

where Xk is the value of kth pixel in DRR.

In practice, the DRRs are computed by approximate summations for the line integral using

the values Uk. We have implemented the line integral by computing the ray crossing lengths
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within each voxel and summing over the lengths multiplied by voxel values [33]. The

performance of the MI-based method and the correlation-based method are unaffected by

global constant scaling differences.

The technical problem of set-up error estimation is estimating the six elements of the

registration parameters θ̃ using the intensity values of the radiographs and the planning CT

image. If we define Yk = − log(Io/Ỹk) and ignore the measurement noise, Yk is the measured

line integral of the attenuation coefficient based on mega-voltage spectra as following:

Yk =

∫
Lk

µ(Tθ̃(~x), εMV)d
~l, k = 1, 2, . . . ,N. (2.6)

Then, the problem becomes estimating θ̃ using Yk and Xk, which is the computed line

integral of the attenuation coefficients with kilo-voltage source spectra, as defined in (2.5).

If there were a functional relationship between Yk and Xk, we could use the MLE

(Maximum Likelihood Estimator) which has many desirable properties [34]. Moreover,

if there were a linear relationship, we could use successfully the well-known correlation-

based method [20]. However, since the DRRs and the radiographs do not have a exact

functional relationship, we would like to use a similarity measure that is robust to the

intensity differences between the two images. Note that if noise is not ignored, Yk is a

Poisson type random variable. The Fisher information matrix for estimating θ̃ from the

noisy observation is presented in Appendix A.

2.2.3 MI-based Method

Like many other intensity-based image registration methods using statistical analysis,

the MI-based method conceptually considers the values of pixels in an image as samples of

some random variable. Likewise, we can define a joint pdf (probability density function) of

two random variables based on the corresponding pixel values in two images.

The idea of the MI-based method is that the two random variables are less jointly random

if two images are more registered. When registered, pixels that have the same intensity value

in one image will correspond to a more clustered distribution of the intensity values in the

other image. This observation need not to be limited to the case that the intensities of the

corresponding pixels are clustered around single value. There can be two or more clusters

around different values. If we estimate the joint pdf from corresponding pixels in two images,
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the conditional pdf becomes more clustered as the two images become better registered.

Based upon this observation, the MI-based method achieves registration by minimizing

the estimated conditional entropy given the random variable which represents the trans-

formed image or equivalently maximizing the estimated mutual information between two

images [21–23].

We treat the pixel intensity values of the DRRs Xk(θ) in (2.5) from AP image as

samples of a random variable XAP and those from lateral image as samples of random

variable XLA. We also consider the pixel values of the radiographs Yk from AP and lateral

images as samples of a random variable YAP and YLA.

To estimate the mutual information, we first estimate the joint pdf of (XAP ,YAP ) and

(XLA,YLA) by using the samples Xk and Yk. We used a 128×128 bin joint histogram

to estimate the joint pdf. The estimated mutual information is then computed from the

estimated joint pdf by the definitions of the entropy and the mutual information [22,23,35].

The set-up error is estimated by seeking θ which maximizes the sum of the two estimated

mutual information as follows,

θ̂MI = argmax
θ
Îθ(XAP , YAP ) + Îθ(XLA, YLA) = argmin

θ
Ĥθ(YAP |XAP ) + Ĥθ(YLA|XLA)

(2.7)

where Îθ(XAP , YAP ), Îθ(XLA, YLA) are the estimated mutual information between random

variable (XAP , YAP ), (XLA, YLA), and Ĥθ(YAP |XAP ), Ĥθ(YLA|XLA) are the estimated con-

ditional entropy of YAP given XAP , YLA given XLA.

To solve this nonlinear optimization problem numerically, we applied the Nelder-Mead sim-

plex method.

2.2.4 Correlation-based Method

For comparison purposes, we also applied a correlation-based method. Although the

intensity scales of the MV and the kV X-ray images are not exactly linearly related in

theory, we may expect this method to work well since if MV attenuation is large, so is kV

attenuation.

Moreover, one may try to improve the performance of the correlation-based method by

13



computing more MV-like DRR. The MV attenuation coefficients may be computed from

kV attenuation coefficient by classifying voxels into different compounds and referencing

typical MV attenuation coefficients of those compounds [20].

Since generating MV-like DRR not only requires such additional procedures but also

may require periodic calibration of the procedures due to changes of the CT scanner char-

acteristics, this approach may not be practical. Moreover, the performance improvement

may be limited by other factors such as beam hardening effects, scattering effects, presence

of the unmodeled radiotherapy table, etc.

We compute the correlation between a DRR and a radiograph of an AP image as follows:

ρ̂θ(XAP , YAP ) =

∑N
k=1(Xk(θ)− X̄k(θ))(Yk − Ȳk)

[(
∑N
k=1(Xk(θ)− X̄k(θ))

2)(
∑N
k=1(Yk − Ȳk)

2)]1/2
, (2.8)

where Xk(θ) is the kth pixel value of AP DRR, X̄k(θ) is the mean of Xk(θ), Yk(θ) is the

value of kth pixel in AP radiograph, Ȳk is the mean of Yk, and N is the number of pixels.

Similarly, we can compute the correlation between a DRR and a radiograph from lateral

images. The set-up error is estimated by maximizing the sum of the estimated correlation

coefficients from AP and lateral images as follows,

θ̂co = argmax
θ
ρ̂θ(XAP , YAP ) + ρ̂θ(XLA, YLA) (2.9)

where ρ̂θ(XAP , YAP ) is the estimated correlation between a DRR and a radiograph from

the AP direction and ρ̂θ(XLA, YLA) is that from lateral images.

We also applied the Nelder-Mead simplex method to solve this optimization problem.

2.2.5 Marker-based Method

To establish the “ground truth”, we estimated the set-up error using the positions of

the radiopaque markers. The results from the marker-based method were assumed to be

the true phantom position. As a result, the performance of the MI-based estimator and

the correlation-based method were evaluated by referencing the position estimated by the

marker based method.

The procedures for estimating the set-up error by the marker-based method were as

follows. First, we identified the slices of the CT which contain the markers. Figure 2.2
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shows example two slices among slices that contain markers. We manually identified 8×8×4

voxel region around each marker and estimated each center position using the centroid

method [36]. We also manually identified 7×7 pixels around each marker in the four different

radiographs and identified each center position as pi using the centroid method. Next, while

transforming the coordinates of the center position of each marker in 3D space, we projected

marker center positions onto 2D planes which are the same planes as the radiograph planes,

and identified the 2D indices of the projected center positions as di(θ).

We estimated the set-up error by minimizing the mean square Euclidean distance be-

tween the pi and di(θ) as follows:

θ̂ = argmin
θ

∑
i

‖pi − di(θ)‖
2. (2.10)

There were 22, 19, and 21 clearly identifiable markers in the four radiographs for Ex-

periment A, B, and C respectively. Although the projection of 11 markers on the phantom

to four different projection views resulted in 44 markers in the radiographic planes, some

markers were not visible since those markers projected beyond the bounds of the detector.

2.3 Results

2.3.1 Radiographs

Figure 2.3 (a) shows the estimated MI from radiograph/DRR 1 and Figure 2.3 (b)

shows the average of two estimated MI from radiograph/DRR 1,4 as the planning CT is

translated along the X, Y and Z axes from the registered position respectively while other

five parameters were kept at the registered position. The registered position was defined as

the mean of the marker-based estimated positions from 10 radiographs.

For the radiograph/DRR 1 case, the estimated MI changes only slightly with respect

to the translation along the Y-axis, and the point of the maximal estimated MI is far from

the registered point. This large error could be due to the fact that the movement along

the Y-axis does not cause much change in DRR 1. Thus 3D/2D registration based on a

single-view similarity measure would be sensitive to noise. The insensitivity of the single-

view estimated MI with respect to changes in ty is clear from Figure 2.1, because the Y-axis

translation causes only a small change of magnification in the projection image.
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Similar phenomena occur if only radiograph/DRR 4 is used. Thus, using only one

projection view may cause a significant error in estimating the translation that is orthogonal

to the detector plane.

This problem is alleviated by using two radiograph/DRR images. Figure 2.3 (b) shows

the estimated MI using radiograph/DRR 1 and 4. The maximal mutual information position

is close to the true position for all six parameters. Based on this observation, we used

radiograph/DRR 1,4 for evaluating the proposed MI-based estimator and the correlation-

based estimator.

2.3.2 Estimated joint pdf

Figure 2.4 shows an example of non-registered and registered radiograph/DRR 1 and

4. The non-registered DRR was generated by translating the planning CT 12.5mm along

the Z-direction from the registered position. For non-registered images, the bottom rows

of DRR 1 contain bright pixels, unlike the corresponding pixels in radiograph 1. Also the

top left parts of radiograph 4 are imaged dark, since those areas are air, while some of

the corresponding pixels in DRR 4 have bright pixels. These phenomena diffuse the joint

histogram and decrease the estimated mutual information.

Figure 2.5 shows the joint histograms that are estimated from the registered and the non-

registered DRR/Radiograph 1 and 4. The joint histogram from the registered images shows

interesting characteristics. It was expected that the joint histogram from the registered

images would show more clustered shape along increasing functional curve, since the MV

attenuation coefficients tend to be high if the kV attenuation coefficients are high. However,

a range of DRR intensity values corresponded to high radiograph intensity values in Figure

2.5 (b), the estimated joint histogram from lateral images. This can be explained as the

effect of the radiotherapy table. The radiotherapy table is slightly visible in the rightmost

parts of radiograph 4 in Figure 2.1 (e). Although most of the radiotherapy table parts were

not used for the MI-based and the correlation-based method, it still made the upper right

parts of the radiograph 4 brighter than the DRR 4 since the corresponding pixels in the

DRR 4 only represents air as we can see in Figure 2.4. For increased intensity values in the

upper right parts due to the radiotherapy table in Figure 2.4 (b), even if the DRR and the

radiographs are registered, corresponding pixels of DRR in Figure 2.4 (f) are darker than

radiograph 4.
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2.3.3 Position Estimation Results

In Experiment A, we used laser alignment to set up the phantom without error, while

in Experiment B and C, we generated set-up errors deliberately to test the robustness of

the proposed method to different set-up errors.

In Experiment A, radiographs 1 and 4 were acquired 10 times. Table 2.1 summarizes

the empirical means and the standard deviations of each method in Experiment A. The

estimated set-up errors by the proposed MI-based method were close to the set-up errors de-

termined by the marker-based method. The differences between the means of the MI-based

method and the marker-based method did not exceed 1.0 mm for translation parameters

and 0.8o for rotational parameters. Considering that the voxel spacing of the sub-sampled

planning CT that was used for computing DRR was 3.75×3.75×4 mm, estimation errors

for every parameter were sub-voxel.

The sample STD (Standard Deviation) of the proposed estimator was very small. This

was because the EPID has very low noise and we used an automatic method without human

interaction.

The results of the correlation-based method were also fairly good. This indicates that

the the relationship between DRR and radiograph is approximately linear. Compared with

the proposed method, the result of the correlation-based method shows relatively larger

variance to noise. However, since the noise level was quite low, the noise-induced variability

was insignificant compared to the mean errors.

Table 2.2 shows the results from Experiment B. In this experiment, we tried to generate

patient set-up error of tx=12mm, ty=-8 mm tz=-7mm and φx = φy = φz = 0
o. Compared

with the results from Experiment A, the correlation-based method performed worse while

the MI-based method still worked well.

Table 2.3 shows the results from Experiment C. For this experiment, we tried to generate

rotational set-up error. The planned set-up error was φx=0
o, φy=2.2

o, φz=1.2
o, tx = ty =

tz =0mm.

In summary, for three different phantom positions, we estimated the set-up error 12 times

including 10 repeated estimates using 10 different acquisitions. The means of the estimated

set-up error differences between the marker-based method and the MI-based estimator did

not exceed 1mm for translation parameters and did not exceed 0.8o for rotation parameters.
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2.4 Discussion

By using two orthogonal radiograph/DRR pairs, we achieved average accuracies of bet-

ter than 1mm for translational movement parameter and better than 0.8o for rotational

movement parameters in estimating the set-up error.

We established the “ground truth” positions using the marker-based method. The

accuracy of the marker-based method was expected to be the best among the three methods

that were tested because the higher resolution CT was used to identify the marker position

in the CT and four radiographs/DRRs were used in the marker-based method while only two

radiographs/DRRs were used for the other methods. Although this method also contains

error due to segmentation errors and noise, we used the marker-based method as “ground

truth” since it is expected to be more accurate than the other methods.

There was approximately 3mm set-up variation from the positioning of the phantom

at its proper reference location. Factors that contribute to this value include the limits of

human operators in positioning relative to laser marks, as well as differences in laser calibra-

tion between the CT scanner and the treatment room. A retrospective review indicated a

1mm offset of the CT lasers from the center of the image matrix. Such errors in transferring

a phantom or patient from one system to another have been previously reported, and are

unlikely to be dramatically reduced in routine radiotherapy quality assurance.

For rigid body set-up error estimation using the chest phantom, two radiographs/DRRs

were adequate for sub-voxel accuracy. We suspect that the performance of the estimator

would be improved only modestly if more DRRs and radiographs from different angles

were added. Practically, using fewer radiographs/DRRs is strongly preferable because of

acquisition time and computation time.

The correlation-based method also achieved sub-voxel accuracy. Even though many

factors could cause the intensity relation between DRR and radiograph to be nonlinear,

we found the relationship is approximately linear so the correlation-based method worked

fairly well.

We have found that the standard deviations of the correlation-based method and the

MI-based method were very small in Experiment A. This implies that both methods may

be statistically efficient. We are not sure if this phenomena is just for our experiments or

general. One may investigate this problem by theoretically approximating the variances of
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the estimator [26] as well as experimentally.

We also tried to compute the MV DRRs for the correlation-based method. However,

results were no better than using kV DRRs. We think that was because we did not have

CT data from test phantoms for voxel classification [20] nor information about scattering,

etc. Since we were unable to implement the algorithm thoroughly, we have excluded the

results.

One may try to compute better MV DRRs by following thorough procedures, however

we suspect that the result will not be improved dramatically since unmodeled effects such

as the presence of the radiotherapy table, difficulty of correctly compensating for scatter

and beam hardening may limit the performance.

Compared with methods that require an a priori model, we think that the MI-based

method may perform better in the presence of unexpected objects. As presented in the

experimental results section, even though there exist non-modeled effects of the radiotherapy

table, the results of the MI-based estimator show good performance. This robustness of the

MI-based estimator to non-modeled effects partly supports the advantages of the method

over a priori model-based methods such as MLE [34]. Therefore, the MI-based method may

be useful in applications in which non-modeled objects may present, such as image-guided

surgery.

For estimating patient set-up error, around 225 evaluations of the estimated mutual

information were required. Each evaluation of the estimated mutual information requires

computation of two DRRs. The joint histogram and the mutual information also must

to be computed for each mutual information evaluation. The most time consuming part

was generating DRRs; it took around 16 sec to compute one 400×300 DRR from the

128×128×85 planning CT on Pentium II 600 MHz machine. As a result, estimating one

patient set-up error using two orthogonal radiographs/DRRs required about 2 hours.

This long computation time is not due to the MI criteria but because of DRR compu-

tation. Compared with other intensity-based method using DRR, our computation time

was longer since we implemented a more accurate line integral instead of a trilinear in-

terpolation approximation [18]. One might use trilinear interpolation approximations for

computing DRR with proposed MI criteria for faster estimation.

Due to long computation time, it is difficult to estimate the patient set-up error in real

time with the proposed method. As a result, adjusting the position of the x-ray source
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or the position of the radiotherapy table to compensate for the patient set-up error is

presently impractical. Instead, as a first application, we expect our method to be applied to

review the patient set-up procedure. However, in near future, we expect that the proposed

method can be used for estimating the set-up error in real time using pre-computed DRRs

stored in large memory with appropriate interpolation and perhaps parallel processing.

Furthermore, methods such as multi-resolution optimization technique may further reduce

computing time [37].

Our investigation can be discussed in comparisons with other investigations. Lemieux

et al. applied the correlation-based similarity measure to skull phantom experiments [18].

They used kV X-ray source for both CT and radiographs so that the correlation measure

may work better.

Dong et al. also investigated the correlation-based method by testing the method using

a head phantom [20]. Although they used MV radiographs and kV CT, they generated

MV DRRs so that the DRRs and the radiographs have linear intensity relationship. MV

DRRs were generated by classifying voxels into several categories such as bone, muscles,

etc. based on CT numbers and seeking typical MV attenuation coefficients of those.

There also have been many studies of set-up estimation [8, 15–20]. Most investigations

reported set-up estimation methods of less than a few mm estimation error for translation

parameters and less than a few degree for rotation parameters. It is hard to compare the

performance of each method directly since different types of CT images and radiographs

were used. We believe that the performance of an estimator can depend greatly on the image

characteristics. For example, the presence of high contrast objects can improve performance

as implied by the Fisher information matrix in Appendix A. Moreover, different image

resolution and different optimization stopping criteria may also affect the performance of

the estimators.

Penney et al. investigated the performance of several similarity measures by applying

those similarity measures to the image registration of a 3D CT to a fluoroscopy image

[38]. However, since only one fluoroscopy image was used for estimating six parameters,

the results may not be directly applicable to our study that used two radiographs for

registration.

The MI-based method was investigated for the set-up error estimation problem by

Hadley et al. [39]. In their investigation, the MI-based method worked well for simulated
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images but did not show good performance for clinical images. Since the investigation was

for 2D/2D image registration and there was no comparison to other similarity measures for

clinical images, it does not necessarily imply that the MI-based method perform worse in

3D/2D registration problems than other similarity measures.

Our future work on set-up error estimation includes the application of the MI-based

estimator to clinical data. Although we have achieved good registration results in a phantom

experiment, we believe that much more verification with clinical data is crucial for potential

application of the MI-based method to the clinical practice.

We plan to investigate non-rigid body motion set-up error. Since the human body is not

rigid and radiotherapy may change the size and shape of the tumor, an accurate non-rigid

body motion set-up error estimation is required for practical application.

We also plan to investigate other intensity-based similarity measures. For example,

Rényi entropy may be a more flexible and computationally efficient similarity measure to

accomplish image registration [40, 41] since it is more generalized definition of entropy.

Investigating better similarity measures such as Rényi entropy may improve both speed

and performance.

2.5 Conclusion

We have investigated a set-up error estimation method using 3D/2D, intensity-based

image registration. To achieve 3D to 2D image registration, the radiographs and the DRRs

of the planning CT were registered by maximizing the MI between DRRs and radiographs.

In the experiment with an anthropomorphic chest phantom, we achieved accuracies better

than 1mm for estimating the translational parameters and 0.8 degree for estimating the ro-

tational parameters using two orthogonal pairs of the MV radiographs and DRRs. The true

set-up error was established by the fiducial marker-based method. Based upon theoretical

background and the experimental results, we believe that MI has significant potential as an

effective similarity measure for 3D/2D intensity-based registration.
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(*In each table, the units for rotational parameters are degrees and for translational

parameters are mm.)

Table 2.1: Estimated set-up error for Experiment A

φx φy φz tx ty tz

Marker (mean) 0.601 -0.114 -1.892 -1.968 -3.568 -2.995

MI error (mean) -0.064 0.035 -0.729 -0.635 0.692 -0.151

Corr. error (mean) 0.336 0.143 -1.308 -0.939 -0.597 0.102

Marker STD 0.004 0.002 0.002 0.012 0.009 0.004

MI STD 0.045 0.008 0.071 0.088 0.060 0.071

Corr. STD 0.318 0.080 0.158 0.254 0.114 0.248

Table 2.2: Estimated set-up error for Experiment B

φx φy φz tx ty tz

Marker 0.519 0.005 -1.879 9.703 -11.32 -9.58

MI error -0.153 -0.044 -0.594 -0.597 1.030 0.668

Corr. error 0.286 -0.001 -2.534 -0.924 -3.092 1.451

Table 2.3: Estimated set-up error for Experiment C

φx φy φz tx ty tz

Marker 0.755 1.864 -0.698 -1.515 -3.201 -2.947

MI error 0.067 -0.121 -0.667 -1.043 0.992 -0.453

Corr. error 0.72 0.069 -1.172 -1.050 -0.391 -0.010
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Figure 2.1: Radiographs
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(a) 86th slice (b) 251th slice

Figure 2.2: Slices with markers
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(b) Radiograph/DRR 1, 4

Figure 2.3: Estimated mutual information with respect to the translation errors
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(a) Radiograph 1 (b) Radiograph 4

(c) Non-registered DRR 1 (d) Non-registered DRR 4

(e) Registered DRR 1 (f) Registered DRR 4

Figure 2.4: Non-registered and registered radiographs and DRRs
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Figure 2.5: Joint histograms from registered and nonregistered images (Numbers in X,Y axis

represent histogram bin numer. 0 corresponds to the lowest intensity and 128 corresponds

to the highest intensity.
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CHAPTER 3

Robust Registration

3.1 Introduction

As explained in Chapter 1, two most well known similarity measures, the sample cor-

relation coefficient and the MI, have drawbacks such as lack of robustness and statistical

inefficiency. To overcome the drawbacks, we have investigated an image registration method

that uses robust correlation coefficients [24, p. 204] as a similarity measure, thereby improv-

ing the robustness without compromising the statistical efficiency much.

Robust estimation of mean and covariance has been extensively studied in statistics

[24,42–44]. The basic idea of robust estimation is to weight the measured samples in a way

that reduces the effect of outlier samples, or even trim out the outlier samples completely.

For example, one may compute the statistical distance of each sample value from the

mean, the Mahalanobis distance, evaluate a weighting function based on that distance,

and determine a new weighted mean and covariance and iterate until convergence [43].

Alternatively, one may estimate the pdf after trimming out the outliers by determining the

minimum volume ellipsoidal pdf [44] or minimum covering ellipsoidal pdf [42]. A robust

mean and covariance may then be estimated from the estimated pdf.

Another possibility is R-estimation methods that estimates parameters based on a

statistical rank [45, 46]. For example, the mean can be estimated using the concept of

depth [47, 48], which is a generalization of median to the multidimension. These principles

could also be applied to form a kind of “trimmed” estimate, based on removing samples

that have extreme ranks.

In this study, we focused onM -estimation methods for robust correlation estimation [24,
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p. 211]. This framework helps to explain why the sample correlation coefficient is sensitive

to outliers and provides insight into how to design a method with improved robustness.

Moreover, we can explain some properties of the MI method within the same framework.

Investigating the advantages and disadvantages of using alternative robust correlation

estimation methods for image registration in the presence of outliers is deferred to future

research. Such a study should consider the sample distributions of representative images in

a particular context.

This chapter is organized as follows. Section 3.2 reviews the image registration problem

and describes the proposed similarity measure. Section 3.3 compares the image registration

accuracies of the proposed robust correlation similarity measure, the conventional sample

correlation coefficient and the mutual information similarity measure. Three comparisons

are reported: 1D simulation, 2D fMRI image registration, and 3D/2D registration of an

X-ray CT volume to orthogonal radiographs of an anthropomorphic chest phantom.

The appendices present analyses of the statistical properties of the correlation-based

and MI-based image registration methods by approximating the mean and the variance

using first-order Taylor series expansions [26]. Since image registration is highly nonlinear

and the objective function is an implicit function of the images, it is challenging to obtain

concise and insightful results from such approximations. Nevertheless, we summarize some

theoretical arguments that complement the empirical results.

3.2 Theory: similarity measures

The goal of image registration is to find a geometric transformation (rigid or non-rigid),

denoted T , that aligns two given images, denoted s1
(
~t
)
and s2

(
~t
)
, where ~t denotes the

spatial coordinates1. Intensity-based image registration methods achieve this goal by max-

imizing a similarity measure based on the image intensity values. If we parameterize the

transformation T using θ (e.g., three translation and three rotation parameters for rigid

transformation), the image registration becomes a parameter estimation problem:

θ̂ = argmax
θ
Φ(s1(Tθ(·)) , s2(·)), (3.1)

1We focus on image-to-image or volume-to-volume registration, but the general approach applies equally
to volume-to-projection registration, e.g., [12]. Also, we treat s1

(
~t
)
and s2

(
~t
)
as continuous-space functions

in the presentation; in practice, sampling and interpolation are essential [22].
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where Φ(s1, s2) is some measure of the similarity between the images s1 and s2. In practice,

registration is performed using finite number of samples Xi and Yi as follows:

Xi = s1(Tθ(~ti)) (3.2)

Yi = s2(~ti), i = 1, . . . ,N,

where
{
~ti
}
denotes the sample locations, and where s1(Tθ(·)) denotes a spatially transformed

(and interpolated) version of s1
(
~t
)
. Since Xi depends on the parameter θ, all statistical

quantities computed using Xi are functions of θ. However, for simplicity of notation usually

we leave this dependence implicit.

Considering the sampling, a more precise expression for the registration problem is

θ̂ = argmax
θ
Φ(X(θ),Y ), (3.3)

where X = (X1, . . . ,XN ) and Y = (Y1, . . . , YN ).

A variety of similarity measures Φ have been proposed for image registration. Many

of these are statistical quantities such as the correlation coefficient, joint entropy and mu-

tual information. For such metrics, there is an underlying assumption that the (Xi, Yi)

pairs are i.i.d. samples of jointly distributed random variables with some (unknown) joint

probability density function (pdf) fXY (x, y). This i.i.d. assumption is somewhat artificial,

but nevertheless leads to useful similarity measures so we continue in this tradition in this

paper.

Next we review the usual correlation coefficient similarity measure and contrast it with

our proposed robust correlation coefficient approach. Note that we want robustness to the

outliers in the “artificial” pdf fXY (x, y) of the two images, as opposed to the pdf of noises

that are present in the images.

3.2.1 Correlation Coefficient Estimates

For two random variables X and Y with joint pdf fXY (x, y), the correlation coefficient

ρ(X,Y ) is defined as follows:

ρ(X,Y )
4
=
C(X,Y )√
σ2Xσ

2
Y

, (3.4)

where the covariance is

C(X,Y )
4
=

∫
(x− E[X])(y − E[Y ])fXY (x, y) dxdy (3.5)
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and where E[X] and E[Y ] denote the means, and σ2X and σ
2
Y denote the variances of the

random variables. Note that (under mild regularity conditions on fXY (x, y)), the correlation

coefficient ρ is well-defined even if the pdf fXY (x, y) is not parameterized in terms of it.

Given N i.i.d. sample pairs (Xi, Yi), there are several ways to estimate the correlation

coefficient ρ. For example, one could first use the samples to compute an estimated joint pdf

f̂XY (x, y), and then substitute f̂XY (x, y) into (3.4) to estimate ρ. The following subsections

describe two other approaches.

Sample correlation coefficient

Perhaps the most popular way to estimate ρ is the sample correlation coefficient, defined

as follows:

ρ̂s(X,Y ) =
Ĉs(X,Y )√
σ̂2X σ̂

2
Y

, (3.6)

where the sample means, sample variances, and sample covariance are defined in the usual

way as follows:

Ĉs(X,Y )
4
= 1

N−1

∑N
i=1(Xi − X̄)(Yi − Ȳ ) (3.7)

X̄
4
= 1

N

∑N
i=1Xi

Ȳ
4
= 1

N

∑N
i=1 Yi

σ̂2X
4
= 1

N−1

∑N
i=1(Xi − X̄)

2

σ̂2Y
4
= 1

N−1

∑N
i=1(Yi − Ȳ )

2.

Relative to alternative methods for estimating the correlation coefficient, the sample corre-

lation method has the advantage of simplicity since ρ̂s(X,Y ) is an explicit function of the

data samples (X,Y ). Furthermore, on the surface it appears not to require any specific

model for the joint pdf fXY (x, y). A minor drawback is that ρ̂s(X,Y ) is not unbiased,

even for normal distributions although it is asymptotically unbiased in that case [49, p. 90].

More importantly, ρ̂s(X,Y ) is not robust to outliers [24, p. 199], as explained intuitively

in the next sub-section.

Maximum likelihood estimates of ρ

An alternative approach to estimating ρ is the following: (i) hypothesize a parametric

form for the joint distribution of X and Y that depends on ρ, (ii) find the maximum
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likelihood (ML) estimate of the parameters given the data X = X(θ) and Y , and (iii)

determine ρ = ρ(θ) from the ML parameter estimates. Usually we will have to compute the

ML estimates numerically, so the estimator ρ̂ will be an implicit function of X and Y . To

our knowledge, previous similarity measures used in image registration have all been explicit

functions of the two images, so the proposed approach departs from that convention.

Let Zi = (Xi, Yi) denote the pairs of corresponding image intensity values. As usual,

we assume the Zi’s are i.i.d. samples of a two dimensional random vector Z = (X,Y ).

Following Huber [24, p. 211], we model the pdf of Z by an elliptic density that is constructed

(by the algorithm designer) as follows. First we choose a nonnegative function f0 for which

the corresponding 2D circularly symmetric density f0(‖z‖) integrates to unity over IR
2,

where ‖z‖ =
√
x2 + y2. Then we consider an (unknown) non-degenerate transformation

z 7→ V (z − µ) that leads to the following density:

fZ(z;µ,V ) = |detV | f0(‖V (z − µ)‖), (3.8)

which has elliptical contours. Under this parametric model, µ denotes the mean of Z and

the 2 × 2 covariance matrix of Z is (V TV )−1. In other words, V = Cov{Z}−1/2 . For

example, if one were to choose

f0(r) =
1

2π
e−r

2/2, (3.9)

then (3.8) would become the standard bivariate normal distribution.

Having chosen some f0, one may estimate the mean µ and the covariance term V from

the sample pairs Zi by ML estimation as follows:

(µ̂, V̂ ) = arg max
(µ,V )

N∏
i=1

|detV | f0(‖V (Zi − µ)‖). (3.10)

Usually there is no closed-form expression for the estimates µ̂ and V̂ , so (3.10) is an implicit

definition.

To help understand these ML estimates, we differentiate the log-likelihood for (3.10)

with respect to µ and V . Equating these expressions to zero yields the following two

necessary conditions for the ML estimates [24, p. 212]:

µ̂ =

∑N
i=1 w

(∥∥∥V̂ (Zi − µ̂)∥∥∥)Zi∑N
i=1 w

(∥∥∥V̂ (Zi − µ̂)∥∥∥) (3.11)

(V̂ T V̂ )−1 =

N∑
i=1

w
(∥∥∥V̂ (Zi − µ̂)∥∥∥) (Zi − µ̂)(Zi − µ̂)T , (3.12)
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where w(·) denotes the following weighting function:

w(r)
4
= −

f ′0(r)

rf0(r)
. (3.13)

Huber proposed a simple iterative procedure for solving these two nonlinear equations to

obtain the ML estimates [24, p. 215].

After estimating the covariance term V̂ , we can extract the ML estimate ρ̂ of the

correlation coefficient as follows:

(V̂ T V̂ )−1 =


 σ̂2X ĈXY

ĈXY σ̂2Y




ρ̂ =
ĈXY√
σ̂2X σ̂

2
Y

, (3.14)

where σ̂2X and σ̂
2
Y denote the ML estimated variances of X and Y under the assumed model

(3.8).

After finding µ̂ and V̂ , one can compute the weighting function w
(∥∥∥V̂ (z − µ̂)∥∥∥) to

examine the relative influence of different data values z on the estimates. (See Fig. 3.5 for

an example.)

In classical estimation theory, ideally f0 would be chosen so that the pdf fZ in (3.8)

agrees with the actual distribution of the Zi’s. However, as noted above, in the context of

image registration the notion that the Zi’s are i.i.d. is somewhat artificial. Instead, it is

more useful to think of f0 as a user-selectable function that one should design to impart

desirable properties in the context of image registration, such as robustness to outliers.

If we were to choose (3.9) for f0, then the weighting function in (3.13) simplifies to

w(r) = 1. In this special case, there is an explicit solution for the ML estimates: µ̂

is simply the sample mean of the Zi’s, and V̂ is the square root of the inverse of the

sample covariance of the Zi’s. This corresponds to the well-known result that the sample

correlation coefficient is the ML estimator for ρ under a bivariate normal density. However,

using constant weighting w(r) = 1 means that all data points are weighted equally, even

outliers. As a result, the sample mean, sample covariance, and sample correlation coefficient

are all sensitive to outliers [24].
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3.2.2 Robust Correlation Coefficient

The non-robustness of the sample correlation coefficient can be explained by considering

that it is the ML estimator for an assumed normal distribution, which has “light tails”

so outliers are extremely unlikely. Conversely, if an ML estimate is based on a model

distribution that has “heavy tails,” then even those data values that are far from the mean

still belong within the tail portion of the pdf so have less effect on the likelihood function.

Thus, to design a robust estimator, we choose a model pdf fZ that has “heavy tails.” One

choice would be the Laplacian distribution, which would correspond to using f0(r) = ce
−|r|

for some constant c. However, that f0 is not differentiable at r = 0, so the expression (3.13)

is inapplicable. Instead, we have chosen the following function:

f0(r) = ce
−δ
√
1+r2/δ2−1, (3.15)

where c is the constant that ensures that (3.8) integrates to unity. The constant δ > 0 is

a design parameter. For small δ this model approaches the Laplacian distribution, and for

large δ it approaches the normal distribution.

For the choice (3.15), the weighting function w(r) in (3.13) becomes the following;

w(r) =
1√
1 + r

2

δ2

. (3.16)

Unlike with the normal choice (3.9), for this model the weighting of a given data point

w
(∥∥∥V̂ (z − µ̂)∥∥∥) will decrease with increasing distance from the mean µ̂. This has the
desirable effect of reducing the influence of outliers that are, by definition, data points that

are far from the mean.

We can make no claim of optimality of the choice (3.15). Indeed the optimal choice

would depend on the actual “distribution” of the Zi’s, which is unknown in practice. The

function f0 is simply a design parameter for our robust estimator. For example, one could

try to increase robustness relative to (3.16) by using following weighting:

w(r) =
1√
1 + r

4

δ4

. (3.17)

A pdf with heavier tails than a normal distribution should improve robustness relative

to the conventional sample correlation coefficient.
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Unfortunately, Huber’s algorithm for solving (3.11) and (3.12) has been proven to con-

verge only when estimating one of the two parameters, i.e., µ or V , but not necessarily

both [24, p. 237]. However, in practice, the algorithm converged every time in our simula-

tions and experiments. We initialize µ with the sample median and V with the square root

of the inverse of the sample covariance matrix.

In summary, our robust registration method works as follows. For the similarity measure

Φ described in (3.3), we propose to use the robust correlation coefficient:

Φ(X(θ),Y ) = ρ̂(X(θ),Y ), (3.18)

here ρ̂ was defined in (4.6) for the weighting function defined in (3.16) or (3.17). To maximize

Φ with respect to θ, one must use some type of search algorithm such as the simplex

method [37]. For each trial value of the registration parameter θ, one must computeX(θ) by

interpolation, and then compute ρ̂ by applying Huber’s algorithm. So there are “iterations

within iterations” in this approach; fortunately, the inner iteration converges quite quickly.

3.2.3 Mutual Information

Another similarity measure that has robust characteristics is mutual information (MI).

MI is a measure of the statistical dependence between two random variables. The MI

I(X,Y ) is defined in terms of marginal and joint entropies as follows:

h(X) = −

∫
fX(x) log fX(x) dx

h(Y ) = −

∫
fY (y) log fY (y) dy

h(X,Y ) = −

∫
fXY (x, y) log fXY (x, y) dxdy

I(X,Y ) = h(X) + h(Y )− h(X,Y ). (3.19)

Usually MI is estimated by first estimating the joint pdf fXY (x, y), and then computing

the MI using (3.19). Two popular methods for estimating joint pdf are the kernel density

approach2 [50] and the histogram approach. Kernel density estimates are smooth and differ-

entiable but can require considerable computation. Histogram estimates are usually faster

to compute but yield pdfs that are discontinuous functions of the registration parameter θ.

As a practical compromise, we have used the interpolated joint histogram method in which

2This is often called the Parzen window method.
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the effect of a sample is distributed to four adjacent histogram bins using bilinear inter-

polation; this approach remedies the discontinuity problem of the histogram with modest

computation. Methods for estimating MI directly from the samples without first estimating

a pdf are also under development [51,52].

3.2.4 Analytical Comparisons

Most previous studies of image registration methods have focused on empirical com-

parisons. The appendices of this paper describe approximate analyses of the statistical

properties of image registration methods using mean and variance approximations pre-

sented in Appendix B. We used these approximations because exact analytical expressions

are unavailable since the estimator for image registration is defined implicitly as the maxi-

mizer of an objective function. Even if an analytical expression were available, finding exact

expressions for the mean and variance would still remain difficult since the estimator θ̂ is a

nonlinear function of the images.

Our approximation method uses a first-order Taylor series expansion of the estimator

about the mean data, an approach that has been used successfully for image reconstruction

problems [26]. By comparison, the estimators used for image registration are more nonlinear,

but we proceed with linearization nevertheless, hoping for insights.

For simplicity we focus on the asymptotic case as the number of image samples increases

to infinity, i.e., the images are continuous-space functions. And we assume that two images

are exactly the same images except for the geometric transformation and additive white

Gaussian noise. In other words, we analyze the case of registering a reference image s1(θ,~t)

to noisy image s2(~t) = s1(~t) + n(~t), where n(~t) is white Gaussian noise.

The main points of the analyses can be summarized as follows. First, the sample cor-

relation coefficient method is unbiased and the most efficient in the presence of Gaussian

noise (i.e., the smallest variance). The unbiasedness is argued since the sample correlation

coefficient without noise is maximized at the true position, i.e., gradient of the sample

correlation coefficient is zero at the true position. In our approximation, if the gradient of

the objective function without noise is zero at true position, it is unbiased estimator (See

Appendix B). Regarding the efficiency, the sample correlation method is the most efficient

estimator among unbiased estimators since it is the MLE [34] in our problem setting, in the

absence of outliers. One can easily show this fact by using the variance approximation since
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the approximation equals the Cramer-Rao bound (See Appendix D). However, the sample

correlation method may be significantly biased in the presence of unexpected objects as ar-

gued in the Appendix C. In summary, the sample correlation method has good properties

such as the unbiasedness and efficiency but poor robustness to unexpected objects.

Appendix C argues that the robust correlation coefficient method is unbiased by similar

approximations. Moreover, in the presence of outlier samples, the robust correlation method

is more robust than the sample correlation method since the effect of the outlier samples

is reduced by smaller weighting (See Appendix C). However, for data without outliers, the

variance of the robust correlation method is larger than the sample correlation method as

argued by Cauchy-Shwarz inequality [53] (See Appendix D).

For the MI method, many investigators have reported that the estimated MI from

noiseless data is maximized at the true registered position since the estimated joint pdf is

the most clustered along the Y = X line in the joint pdf domain. Moreover, one may argue

that the values of the joint pdf reach maxima around the Y = X line and minima elsewhere

by the same observation. In that case, the gradient of the estimated joint pdf is zero almost

everywhere at true registered position. As a result, the gradient of the estimated MI is

zero at true registered position. Nevertheless, due to the smoothing effect of the kernel

function, it is difficult to prove the unbiasedness analytically except for rigid registration

with constant backgrounds (See Appendix E).

One may also argue that the MI method has inherent robustness. Suppose that the

portion of the estimated pdf from inliers is the most clustered at the true registered position

but that from outliers is not the most clustered at true position3. In that case, the estimated

MI is maximized at a position where the entire pdf is the most clustered in average sense.

Since the portion of the pdf from inliers is usually much larger than that from outliers,

the entire pdf is likely to be the most clustered around the true position. Nevertheless,

since the robustness of the MI method is due to the behavior of the joint pdf rather than

by explicit reducing the influence of outliers, the robustness can depend greatly on images

being registered.

Another interesting perspective is to express the MI as a generalized weighted correlation

3Apparently, if pdf from outliers is also the most clustered at true position, there should be no bias due
to outliers.
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coefficient as follows:

Iθ(X,Y ) =

∫
(x− E[X])(y − E[Y ])wI(x, y)f̂XY (x, y), (3.20)

where wI(x, y) =
log f̂Y |X(y|x)

(x−E[X])(y−E[Y ]) .

One may think that wI(x, y) as a very generalized weighting. Depending on the images

to be registered, the robustness characteristics as well as the statistical efficiency can vary

since the weighting depends on the estimated joint pdf. For example, if the estimated pdf

is normally distributed, the weighting is almost constant and the MI method is almost the

same as the sample correlation method. In that case, the MI method can be very efficient like

the sample correlation method. In fact, the joint entropy has one-to-one relationship with

correlation coefficient for bivariate normal distribution [35]. For most intra-modality images

with non-constant wI(x, y), the MI method is less efficient than the sample correlation

coefficient for Gaussian noise.

In summary, both the robust correlation method and the MI method have improved

robustness but larger variance compared to the sample correlation method, when noise is

Gaussian. We do not have direct comparison of the statistical properties between the robust

correlation method and the MI method since the properties depend not only on design

parameters (such as underlying pdf for robust correlation method and the pdf estimation

method for MI method) but also on the images being registered.

3.3 Experimental Results

To evaluate the statistical properties of the proposed image registration method, we per-

formed three studies: simulations using a synthetic 1D signal, affine 2D-to-2D registration

of fMRI images, and rigid 3D-to-2D registration of a torso phantom.

3.3.1 1D Simulation

We first consider a 1D “registration” problem where the only unknown parameter is the

translation of the signal. (This is called delay estimation in communications.) This study

illustrates the statistical properties of the registration methods in the simplest possible

setting. Fig. 3.1 shows the reference signal s1
(
~t
)
that must be translated for registration

with the signal s2
(
~t
)
shown in Fig. 3.2 that includes both additive Gaussian noise and a
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segment of “outlier” signal values.
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Figure 3.1: Reference signal s1
(
~t
)
(signal being translated to achieve registration).

Using these signals, we computed three similarity measures as a function of the trans-

lation parameter θ: the sample correlation coefficient, the robust correlation coefficient

using weighting (3.17) with δ = 2 and the estimated MI using a 32×32 interpolated joint

histogram.

Fig. 3.3 shows the two correlation coefficients versus θ, where the true value is θ = 0.

Due to the presence of the outliers, the sample correlation coefficient is maximized at an

incorrect translation (≈ −4.8 pixel). This type of systematic offset is observed for most

noise realizations. In contrast, the robust correlation coefficient is maximized near the

true translation (≈ −0.1 pixel), illustrating the robustness of this similarity measure. This

robustness can be understood by considering the joint histogram shown in Fig. 3.4 and

the weighting function w
(∥∥∥V̂ (z − µ̂)∥∥∥) shown in Fig. 3.5 (at the registered position where

θ = 0). Although most of the histogram mass lies along a line, there is a group of outliers

that degrade the conventional correlation coefficient estimate. Fig. 3.5 shows that the

weighting function decreases the influence of those outliers, particularly those that are far

from the primary linear ridge, thereby providing robustness.

Note that Fig. 3.4 and Fig. 3.5 are only for an illustration. In practice, the robust corre-
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Figure 3.2: Observed signal s2
(
~t
)
with outliers and Gaussian noise (STD = 0.3).

lation coefficient is determined by solving (3.11) and (3.12) iteratively without computing

pdf or weighting.

Fig. 3.6 shows that the estimated MI was maximized at which is more accurate (≈ −0.8

pixel) than the sample correlation coefficient results. This robustness of MI is expected as

argued in the previous section.

The preceding results were for a single noise realization, so they do not fully characterize

the bias and variance of the translation estimates. We performed 1000 noise realizations

at each of several noise levels and computed translation estimates θ̂ using each of the three

similarity measures for each realization.

Fig. 3.7 shows the empirical translation estimation biases caused by the presence of the

outliers for all three methods. As expected, the sample correlation coefficient method based

registration technique was the most sensitive to outliers, as argued in Appendix C.

The robust correlation based method reduced the bias almost completely for low noise

levels but showed increased bias for high noise levels. Although the MI based method also

reduced bias comparing to the sample correlation based method, the bias was larger than

the robust correlation based method.

Fig. 3.8 shows the standard deviations of the three estimators. As expected, the sample
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Figure 3.3: Sample and robust correlation coefficients vs 1D translation.
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Figure 3.4: Joint pdf at registered position (computed by 64×64 interpolated joint his-

togram).
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Figure 3.5: Weighting function at registered position (evaluated at 64×64 joint histogram

domain).
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Figure 3.6: MI similarity measure (32×32 interpolated joint histogram) vs 1D translation.
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correlation coefficient method had the smallest variance as argued in Appendix D. Also,

shown for reference is the Cramer-Rao bound computed for a “no outlier” model. In general,

one would not expect the sample correlation method to match this bound for data containing

outliers. However, as explained in Appendix D, for the particular signals in Fig. 3.1, Fig. 3.2,

the standard deviation of the sample correlation method happened to match the Cramer-

Rao bound. The standard deviation of the robust correlation method was almost the same

as the MI method.
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Figure 3.7: Bias of the translation estimators vs Gaussian noise levels.

Since one may trade off robustness and efficiency by changing design parameter (i.e.,

underlying pdf for robust correlation coefficient and the number of bins for MI method), we

plotted bias-variance plot of the estimators to evaluate the performance of each method.

Fig. 3.9 shows bias-variance plots of low noise case (lower part) with noise STD=0.2

and high noise case (upper part) with noise STD=0.4. Design parameters for the robust

correlation method were δ = 2, 3, 4, 5, 6, 8, 10 and for the MI method were bin size 8×8, 10×

10, 12 × 12, 16 × 16, 20 × 20, 24 × 24, 28 × 28.

For the robust correlation method, the bias is decreased as δ increased while the variance

increased. This is consistent with analytical results since smaller δ implies “heavier tail”

underlying pdf. Note that the robust correlation coefficient was almost the same as the
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Figure 3.8: Standard deviations of the translation estimators vs Gaussian noise levels.
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Figure 3.9: Standard deviations vs bias of the translation estimators (upper part for noise

STD=0.4, lower part for noise STD=0.2).
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sample correlation coefficient when δ = 10. For the MI method, roughly speaking, the bias

is decreased as the number of bin increased (i.e., less smoothing) while variance increased.

However, for low noise signal, the bias-variance characteristic of the MI method was very

irregular. The performance of the robust correlation method was better than the MI method

since the bias of the robust correlation method was smaller at the same variance or the

variance was smaller at the same bias.

3.3.2 2D MRI Registration

We applied the sample correlation, the robust correlation and the MI based image

registration method for registering two functional MRI images acquired with a spiral k-

space trajectory. Both images were reconstructed from the same raw data but one image

was reconstructed with field inhomogeneity correction [54] while the other was without

correction, so the true registered geometric transformation is identity.

Because of field inhomogeneity, some part of the uncorrected images are occluded. We

have chosen these images to test the registration methods since the true registered position

(i.e., identity transformation) is known, yet the occlusion can be considered as outliers. The

robustness of MI method for occluded images has been investigated previously [22].

Figure 3.10: Reference MRI image (with field inhomogeneity correction).
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Figure 3.11: Target MRI image (without field inhomogeneity correction).

Fig. 3.10 and Fig. 3.11 show the reference image and the target image. The anterior of

the brain shows signal void in target image that is corrected in the reference image.

We plotted the change of each similarity measure as a function of vertical translation

and scale. Fig. 3.12 shows that the sample correlation coefficient is maximized at incorrect

position since if we translate the reference image down, brighter pixels correspond the

brighter pixels in target image better. Moreover, if we shrink the image, the correlation

coefficient increases more since the brighter pixel region in Fig. 3.10 is larger than Fig. 3.11.

As a result, the sample correlation coefficient is maximized around 5% scaling down and

-0.9 pixel translation. As expected from the analysis, the sample correlation based method

is easily biased due to the outliers.

Fig. 3.13 and Fig. 3.14 show that the bias is reduced in both MI method and robust

correlation method.

We tested the bias and variance of each estimator by adding Rician noise. The noise in

MRI raw data is complex Gaussian, whereas the noise in reconstructed magnitude images

is Rician [55]. Table 3.1 shows the empirical means and standard deviations based on 100

registration trials of the three cost functions, for the case case of a horizontal (tx) and vertical

(ty) translation and vertical scaling (ky). As expected, the sample correlation method had
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Figure 3.12: Contour plot of sample correlation coefficient vs vertical scaling and translation.
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Figure 3.13: Contour plot of robust correlation coefficient vs vertical scaling and translation.
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Figure 3.14: Contour plot of estimated MI (32×32 interpolated joint histogram) vs vertical

scaling and translation.

the smallest variance but the largest bias due to the outliers. The robust correlation method

was the most robust and had smaller variance than the MI method. When we increased

the number of histogram bins for the MI method, the robustness was improved but the

efficiency was degraded. These trade-offs are consistent with the 1D simulations.

3.3.3 3D/2D Phantom Study

We previously conducted an anthropomorphic phantom experiment to evaluate the per-

formance of the set-up estimators by 3D/2D image registration [12]. The estimation problem

was estimating six parameters that were rotations and translations along the X,Y,Z axis

using two orthogonal images. We used the same data set for this study but used only one

lateral image to estimate one rotation parameter and two translation parameters. We chose

the lateral image that has outliers generated by the effect of the radiotherapy table. For this

research, the other three parameters were kept fixed at the “ground truth” position that

were established by the most accurate marker-based method using eleven 1mm diameter

lead markers attached on the surface of the phantom [12].

A 512×512×398 voxel CT image with 0.9375×0.9375×1 mm spacing was acquired on
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Table 3.1: Mean (and STD) of estimated registration parameters for 2D-2D MRI registra-

tion.

(The unit for translation parameter is pixel and for scaling parameter is unitless.)

similarity measure tx ty ky SNR

sample 0.41 (0.07) -2.82 (0.10) 0.05 (0.01)

MI (16× 16 histogram) 0.14 (0.14) -1.10 (0.17) 0.01 (0.01) 27.7 dB

MI (24× 24 histogram) 0.07 (0.21) -0.10 (0.24) 0.01 (0.01)

robust (δ = 2) 0.03 (0.10) 0.03 (0.12) 0.01 (0.01)

sample 0.12 (0.05) -2.89 (0.28) 0.05 (0.01)

MI (16× 16 histogram) 0.41 (0.21) -1.90 (0.69) 0.02 (0.01) 13.8 dB

MI (24× 24 histogram) 0.07 (0.34) -1.41 (0.90) 0.02 (0.02)

robust (δ = 2) 0.10 (0.21) -0.10 (0.52) 0.01 (0.01)

a GE CT/i scanner with a 140 kv x-ray source. Tattoos were drawn on the phantom

where three alignment laser planes crossed the phantom to facilitate consistent set-up in a

treatment room. Next, the phantom was moved to the treatment room and it was set up at

the isocenter by manually aligning tattoos to three laser planes in the treatment room. Four

radiographs were obtained from different angles by rotating the x-ray source and Varian

Portal Vision amorphous silicon active matrix flat panel image detector in 30◦ increments.

For 90◦ view, we acquired 10 repeated radiographs without realignment for evaluating the

effect of noise on the estimator. The x-ray source voltage was 6 MV and the detector size

was 512×384 pixels with 0.78mm×0.78mm spacing. We used only radiograph from 90◦

(i.e., lateral image) for the correlation-based methods and the MI-based method. However,

to enhance the accuracy of the “ground truth”, we used all four radiographs for the fiducial

marker-based method. For all other methods except for the marker-based method, the

planning CT image was down-sampled by four along each axis to reduce computation time

and memory usage.

For image registration, while geometrically transforming the CT image, we computed

DRR(Digitally Reconstructed Radiograph) of the transformed CT from the same angle as

the radiograph. The registration is achieved by maximizing the similarity measure between

such DRR and radiograph. We used only the central 400×300 sub-image of the DRR and
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the radiograph to avoid the effect of the markers which are not usually used in clinical

practice. We have established the geometry of the EPID imaging systems by determining

radiation field edges using simple thresholding method [31].

Fig. 3.15 shows the radiograph and Fig. 3.16 shows the DRR at the registered position.

We can see the effect of the radiotherapy table around the rightmost parts of the radiograph.

Pixels around the right most parts of the radiograph are brighter than those from the DRR

due to the radiotherapy table.

Figure 3.15: Measured lateral radiograph for 3D-2D registration.

Fig. 3.17 shows the estimated joint histogram from the registered DRR and radiograph.

The histogram has a dominant linear distribution and an outlier distribution due to the

presence of the radiotherapy table. Fig. 3.18 shows the weighting function that clearly

reduces the influence of the outliers.

We repeated 10 estimations using 10 acquisitions of the radiograph. Table 3.2 summa-

rizes the experimental results. The experimental results were consistent with the previous

simulation results. The robust correlation coefficient using (3.17) with δ = 2 was the most

robust one. The sample correlation based method was the worst in terms of the robustness

but the best in terms of the variance. Interestingly, the MI method showed small variance

and small bias as well. We think this was because the shape of the estimated joint pdf was
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Figure 3.16: Lateral DRR computed from 3D CT volume.
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Figure 3.17: Estimated joint pdf at the registered position (64×64 interpolated joint his-

togram).
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Figure 3.18: Weighting function at the registered position (evaluated at 64×64 joint his-

togram domain).

Table 3.2: Mean (and STD) of estimated set-up parameters for 3D-2D registration.

(The unit for rotation parameter is degree and for translation parameter is mm.)

Similarity measure φx ty tz

sample 1.39 (0.02) -2.06 (0.03) 2.11 (0.03)

robust (δ = 2) 0.95 (0.08) -0.09 (0.09) 0.58 (0.23)

robust (δ = 4) 1.19 (0.10) -1.52 (0.07) 1.74 (0.13)

MI (32× 32 histogram) 0.98 (0.08) -0.55 (0.09) 0.81 (0.14)

MI (64× 64 histogram) 0.86 (0.07) -0.44 (0.07) 0.73 (0.13)

MI (64× 64 histogram w/o interpolation) 0.90 (0.36) -0.37 (0.16) 0.63 (0.38)
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close to a normal distribution and the number of samples from outlier was small.

3.4 Discussion

Statistical properties such as bias, robustness, efficiency are very important in designing

image registration methods. In previous investigations, the bias of the sample correlation

method for intra-modality image registration and that of the MI method for multi-modality

registration have been studied extensively empirically4 [12, 18, 20–22]. Some authors also

reported that the MI method is more robust than the sample correlation coefficient method

[12,56].

It has been well known that the sample correlation is a natural similarity measure for

intra-modality image registration [18,20,56] and the MI method performs well for both the

intra-modality [55, 56] and the multi-modality image registrations [21–23]. If we consider

only the intra-modality image registration, we point out that those two most well known

similarity measures have drawbacks such as the lack of robustness for the sample correlation

method and the statistical inefficiency for the MI method. Moreover, even though the

robustness of the MI method can be explained qualitatively, the MI method may not be

robust for some images since the MI method does not reject nor reduce the effect of outliers.

We have proposed the robust correlation coefficient method to improve the robustness

of the sample correlation method without compromising efficiency very much. By mean

and variance approximations, we were able to show analytically that the robust correlation

method has improved robustness but larger variance comparing to the sample correlation

method.

There is a direct relationship between the statistical properties of the robust correlation

method and design parameters. One may improve the robustness by defining “heavier tail”

underlying pdf model f0 in (3.10) of the expense of the efficiency. In our study, we presented

the results with different parameters. However, it is desirable to determine the parameters

automatically in practice. Investigating such an automatic method is one of our future

research topics.

Compared to the robust correlation method, it is more difficult to relate the design

parameters of the MI method to the statistical properties. In our experiments, the MI

4Since many previous studies ignored the effect of noise, bias was called registration error.
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method was more robust when larger number of bins was used while the variance was

larger. Roughly speaking, the larger number of bins is equivalent to the narrower Parzen

window, i.e., less smoothing. The variance when using histogram without interpolation was

generally larger than interpolated histogram. We also observed that it may not be a good

approach to increase the number of bins too much for better robustness since many local

maxima were generated as the number of bins increased.

More investigation is required to design better kernel function for MI method. To our

knowledge, designing kernel function for MI method in terms of the statistical properties

has not been investigated much although one method has been proposed in a different point

of view [21].

It is challenging to compare image registration methods since the properties of the

methods depend on both design parameters and the images being registered. In spite of

the difficulties, if we compare the performance of the robust correlation method and the MI

method based on our simulations and experiments, the robust correlation method performed

better than the MI method in our 1D simulation and 2D MRI simulation, i.e. the variance

of the robust correlation method was smaller at the same bias or the bias was smaller at

the same variance. Interestingly, the MI method was very efficient in 3D/2D phantom

experiments. We suspect this was because the estimated pdf shape was close to the normal

distribution as argued in Section 3.2.4.

We think that there exist some advantages of the robust correlation method over the

MI method. First of all, the robust correlation method always has robustness since it

reduces or rejects the effect of outlier samples based on the statistical distances. As a

result, the registration is performed mostly by the inlier samples. In contrast, the MI

method relies on the behavior of estimated pdf without explicit excluding the effect of

outlier samples. Therefore, the robustness is very dependent on image characteristics. We

suspect that the MI method may not be very robust for some images. Similar observation

can be made in terms of variance, too. The variance of the MI method depends greatly

on the image characteristics. Another advantage of the robust correlation method is that

design parameters are directly related to the properties while the relationship of the MI

method is not very clear analytically.

The disadvantage of the robust correlation method is computation time since the robust

correlation coefficient is determined by another numerical optimization routine. The com-
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putation time is dependent on images and underlying pdf. It may be possible to reduce the

computation time by using a robust correlation coefficient estimator that does not require

an iterative procedure.

One may argue that the performance of the MI method can be improved by designing

different MI estimation method and/or using more generalized Rényi entropy [22,35]. Also,

one may improve the performance of the robust correlation method using different robust

techniques to estimate the correlation coefficient. There can be many other ways to design

the robust correlation coefficient including M-estimates and R-estimates [42–44,46–48,57].

More thorough investigations and comparisons between the robust correlation methods and

the MI methods are deferred to future study. We think that such comparisons should be

made considering images being registered. For comparing the robustness of each method,

influence function [24] of each estimator with given images might be a useful tool.

We have argued the efficiency of the sample correlation method under the i.i.d. Gaus-

sian noise assumption without outliers. Even though the noise was not Gaussian in practice

(Rician for MRI simulation, Poisson for 3D/2D experiment) and outliers were present, the

sample correlation method was the most efficient one in every simulation and experiment.

We suspect this is because the Rician and Poisson noise are approximately Gaussian al-

though the variance at each pixel is different.

Analysis using mean and variance approximation provided qualitative arguments about

the statistical properties of the intensity based image registration methods. The results

for the sample correlation and the robust correlation method were concise and insightful.

Moreover, since we have chosen the M-estimation method for robust correlation method,

not only we were able to analyze the robust correlation and the sample correlation within

the same framework but also to represent the MI method as a type of weighted correlation

method. It would be desirable to describe the statistical properties in terms of design

parameters. For example, if one can approximate the bias and the variance of the MI

method in terms of the kernel function, that approximation may be very useful for design.

Since the statistical properties of the image registration methods have not been investigated

analytically much, we think that our analyses can be a first step for further investigations.
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3.5 Conclusion

We have introduced robust correlation coefficient as a novel intensity based similarity

measure to improve the robustness of the sample correlation coefficient based image reg-

istration while not degrading the statistical efficiency much. In 1D simulation, 2D and

3D experiments, the proposed method reduced the bias of the sample correlation method

caused by outliers. The robust correlation coefficient may be an effective similarity measure

for intra-modality image registration task where the presence of the outliers is unavoidable

such as set-up estimation for radiotherapy and image-guided surgery.

55



CHAPTER 4

Nonrigid Registration

4.1 Introduction

Nonrigid image registration is a useful technique for estimating patient anatomy change,

aiding diagnosis, atlas based segmentation, etc. In general, nonrigid registration is achieved

by deforming one image using a deformation model. Several different models of geometric

transformations using TPS(Thin Plate Spline) [23, 58], B-splines [28, 30, 59] and sinusoidal

functions [60] have been proposed and investigated.

In this study, we have chosen cubic B-spline based deformation model since compactly

supported basis functions can be useful for representing local deformation. Moreover cubic

B-splines have desirable properties such as twice differentiability and ability to represent

rigid translation while computation time requirement is modest.

As explained in Chapter 1, Jacobian determinants of the estimated deformation must

be positive. To prevent the Jacobian determinant from being negative, regularizing penalty

functions have often been introduced in nonrigid registration. For example, penalizing

roughness penalty [28], bending energy [29], and small Jacobian determinant [30] have been

proposed and investigated. In nature, most penalty functions rely on the fact that small

gradient values are helpful to prevent the negative Jacobian determinant.

The penalty based methods have several drawbacks as explained in Chapter 1. To

remedy those problems, one previous study investigated a method that bounds the magni-

tude of gradient components by bounding the parameters (i.e., coefficients) [61]. Sufficient

condition to guarantee the positive Jacobian determinants was derived by Neuman series

arguments and the conditions were achieved using a constrained optimization subject to
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a box constraint in the parameter space. The problem of this method is that the search

space is too much restricted. For example, large deformations with small gradients are not

allowed.

In this dissertation, we extend the results of the previous investigation. First, we derive

closed form expressions for possible minimum and maximum Jacobian determinants in

terms of x, y, z axis gradient bounds analytically. Next, we introduce a constraint set in the

parameter space that allows large deformations but achieves the gradient bounds. Since

the constraint set is not a simple box constraint, we solve the optimization problem using

the gradient projection method with Dykstra’s cyclic projection algorithm.

We have chosen the gradient projection method to solve the constrained optimization

problem since we wanted to remove line search procedure that requires much computation

time. The gradient projection method first computes unconstrained next step based on

the gradient of the cost function and then projects the unconstrained next step onto the

constraint set to compute actual next step. To implement the projection step, we have

used Dykstra’s cyclic projection algorithm [62], which is a useful method to compute the

orthogonal projection onto the intersection of many convex sets. Since the constraint set

to bound the gradients was a convex set defined by the intersection of convex half-spaces,

on which the orthogonal projections are easily computed, we were able to use Dykstra’s

algorithm effectively.

Besides the gradient projection method, many different optimization methods can be

applied for solving the constrained optimization problem. For example, constrained versions

of the Quasi Newton or conjugate gradient method may be applied effectively [63]. Other

methods such as barrier function methods and interior point methods can be also used [64].

Investigating such optimization methods in comparison with the gradient projection method

is deferred to future study.

This chapter is organized as follows. Section 4.2 formulates the nonrigid registration

problem using cubic B-splines and describes conditions to ensure positive Jacobian determi-

nants. The constraints set in the parameter space to ensure positive Jacobian determinant

is also introduced in Section 4.2. Section 4.2 also presents the gradient projection method

and Dykstra’s algorithm to solve the constrained optimization problem. Section 4.3 presents

the results of simulation with known deformation and experiment for inhale/exhale lung

CT registration. We compare our proposed method with existing methods in Section 4.4.
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The appendices present proofs for the two propositions claimed in Section 4.2.

4.2 Theory

The goal of nonrigid image registration is to determine a nonrigid geometric trans-

formation, that aligns two given images, denoted A(x, y, z) and B(x, y, z), where x, y, z

denote the spatial coordinates. If we parameterize the geometric transformation using θ,

the registration problem becomes a parameter estimation problem. This problem is usually

solved by maximizing a similarity measure and a priori information in a MAP (Maximum

A posteriori) estimator framework as following:

θ̂ = argmax
θ
Φ(A(Tθ(·)), B(·)) + βR(θ), (4.1)

where, Tθ : R
3 → R3 is a nonrigid deformation model, Φ(A(·), B(·)) is a similarity measure,

β is a regularization parameter and R(θ) is a priori information.

Note that the similarity measure can be either feature based or anatomy based. In this

dissertation, we focus on intensity based image registration methods that use a similarity

measure based on image intensity values.

4.2.1 Image Model

In practice, registration is performed using finite number of samples A(xi, yj, zk) and

B(xi, yj, zk), i = 1, ....,Nx, j = 1, ....,Ny , k = 1, ....Nz , where Nx,Ny,Nz are the number

of voxels in x, y, z direction. Since the image intensity values of the deforming image need

to be evaluated in between grid points frequently during optimization, interpolation is

essential. To address this issue, we have adopted a cubic spline based continuous model

of the image that showed good performance in a previous investigation [30]. In addition

to the interpolation, one can compute the gradient and Hessian of the objective function

effectively by adopting the image model since closed form expressions of the gradient and

Hessian can be determined based on the image model [65].
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4.2.2 Cubic B-spline based Deformation

A variety of nonrigid deformation models have been proposed and investigated [23, 28,

30,58–60]. In general, the nonrigid deformation is modeled with finite sum of basis functions

multiplied by coefficients. During optimization, the coefficients are changed to maximize

a similarity measure. Therefore, one may consider the nonrigid registration problem as a

parameter estimation problem. Not only the coefficients but also the locations and the

number of basis functions can be also considered as parameters that are changed during the

optimization.

The basis functions can be classified into infinite support basis function and finite sup-

port basis function. The infinite support basis function such as TPS or sinusoidal basis

function is a natural choice for representing global deformations while the finite support

basis function is more appropriate for representing local deformations. In addition to the

capability of representing local deformations, it has been reported that the finite basis func-

tion based deformation may achieve registration faster than the infinite basis function based

deformation [29].

In this study, we focus on the B-spline based deformation model that is one of the most

well known finite basis function based models.

We model the deformation Tθ(·) with θ = (θ
x, θy, θz) as follows:

Tθ(x, y, z) = (x+ fθx(x, y, z), y + gθy(x, y, z), z + hθz(x, y, z)) , (4.2)

fθx(x, y, z) =
∑
ijk∈Kx

θxijkβ
3(
x

Tx
− i)β3(

y

Ty
− j)β3(

z

Tz
− k), (4.3)

gθy(x, y, z) =
∑
ijk∈Ky

θyijkβ
3(
x

Tx
− i)β3(

y

Ty
− j)β3(

z

Tz
− k), (4.4)

hθz(x, y, z) =
∑
ijk∈Kz

θzijkβ
3(
x

Tx
− i)β3(

y

Ty
− j)β3(

z

Tz
− k). (4.5)

where, Kx,Ky,Kz are the sets of locations for θ
x, θy, θz, and Tx, Ty, Tz are expansion pa-

rameters.

In this model, the B-spline basis function has wider region of support as expansion

parameters become larger, which implies more global deformation. For many cases, the

choice of the expansion parameters is related to image resolution and often combined with

multi-resolution optimization strategy. For example, one may register low resolution images
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first using small number of wide basis functions and advance to high resolution images using

large number of narrow basis functions.

4.2.3 Invertibility

One important physical constraint for estimated deformation is that the estimated defor-

mation should be invertible since physical deformations are invertible. By inverse function

theorem [14], the invertibility is guaranteed if Jacobian determinant is nonzero. Moreover,

since the determinant is continuous in spatial domain, Jacobian determinants should be

either negative or positive to make the deformation invertible everywhere. In general, the

Jacobian determinants must be positive since it is assumed that there are regions with

identity transformations (i.e. Jacobian determinant is unity).

The Jacobian matrix of nonrigid transformation can be written as follows:

J(x, y, z) =



1 + ∂f(x,y,z)∂x

∂f(x,y,z)
∂y

∂f(x,y,z)
∂z

∂g(x,y,z)
∂x 1 + ∂g(x,y,z)∂y

∂g(x,y,z)
∂z

∂h(x,y,z)
∂x

∂h(x,y,z)
∂y 1 + ∂h(x,y,z)∂z


 .

(4.6)

In one previous investigation [61], it has been shown that the possible minimum Jacobian

determinant is greater than zero if the magnitude of each gradient is bounded by 13 .

We would like to extend the previous result by deriving closed form expressions for

possible minimum and maximum Jacobian determinants in terms of gradient bounds for

f(x, y, z), g(x, y, z) and h(x, y, z), respectively. By doing this, one may bound the minimum

Jacobian determinant by other quantities than zero by bounding the gradients. We think

that it may be useful for some applications to bound the minimum Jacobian determinant

by a specified quantity. Moreover, we think that understanding the possible maximum

Jacobian determinant is also important since it implies the possible maximum local volume

expansion.

The following Proposition 1 relates gradient bounds to the possible minimum and max-

imum Jacobian determinants.

Proposition 1. Suppose that
∣∣∣∂f(x,y,z)∂x

∣∣∣ ≤ kf , ∣∣∣∂f(x,y,z)∂y

∣∣∣ ≤ kf , ∣∣∣∂f(x,y,z)∂z

∣∣∣ ≤ kf , ∣∣∣∂g(x,y,z)∂x

∣∣∣ ≤
kg,
∣∣∣∂g(x,y,z)∂y

∣∣∣ ≤ kg, ∣∣∣∂g(x,y,z)∂z

∣∣∣ ≤ kg and ∣∣∣∂h(x,y,z)∂x

∣∣∣ ≤ kh, ∣∣∣∂h(x,y,z)∂y

∣∣∣ ≤ kh, ∣∣∣∂h(x,y,z)∂z

∣∣∣ ≤ kh, for
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∀x, y, z. If 0 ≤ kf , kg, kh ≤
1
2 , then the possible minimum det J(x, y, z) is 1− (kf + kg + kh)

and the possible maximum is (1+kf )(1+kg)(1+kh)+(1+kf )kgkh+(1+kg)kfkh+(1+kh)kfkg.

Proof: See Appendix F.

By Proposition 1, one may bound the minimum and maximum Jacobian determinants

by bounding the magnitude of each gradient component. For example, if one set k = kf =

kg = kh, the minimum is 1 − 3k and the positive Jacobian determinant is guaranteed if

k ≤ 1
3 as argued in [61] by Neuman series. For that case, one can understand the possible

maximum Jacobian determinant is approximately 2.8148 by the proposition.

If a priori information such as minimum/maximum gradient of true deformation is avail-

able, one can effectively select the search space using Proposition 1. Note that Proposition

1 does not state that the minimum/maximum Jacobian determinants are defined by the

expressions but the possible minimum/maximum Jacobian determinants do. In other words,

even if some of the gradient components exceed the bounds, the resulting Jacobian deter-

minant can be still positive since the minimum occurs only when every gradient component

has boundary values.

4.2.4 Constraints in Parameter Space

One may enforce the gradient bounds using unconstrained optimization methods with

proper penalization of gradient values exceeding the bounds such as in interior point method

or barrier function methods without converting the gradient bound conditions into con-

straints in the parameter space. However, there are several drawbacks for this method.

First, regularization parameter may need to be readjusted if images are changed. Con-

sidering the fact that parameter tuning is usually done manually, regularization parameter

tuning is cumbersome. Another problem is even if the gradients are effectively bounded

at grid points where the gradients are evaluated, there is no guarantee that gradients are

bounded in between the grids. In the previous investigation using a unconstrained opti-

mization method, it was assumed that the Jacobian determinant was positive everywhere

if it was positive at each grid point [30]. There is another investigation to ensure positive

Jacobian determinants everywhere [66].

The problems of the penalty based methods may be overcome by introducing a con-

strained optimization. For example, if the coefficients of the deformation are bounded, the
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gradients are bounded everywhere [61]. Therefore, if a similarity measure is maximized

subject to the coefficient bound constraint, the gradient of the resulting deformation is

bounded. However, this method restricts the search space too much since large deforma-

tions with small gradient components are excluded from the search space.

To address this problem, we derive sufficient conditions in the parameter space to bound

the gradient components while allowing large deformations. Our approach is based on not

bounding the coefficients but bounding the differences of two consecutive coefficients in

x, y, z direction. It is natural to bound the differences to bound the gradients. Since we do

not bound the coefficients, large deformations are included in our search space as long as

their gradient components do not exceed the gradient bounds.

To derive gradient bound condition, first consider
∣∣∣∂f(x,y,z)∂x

∣∣∣ for the cubic B-spline de-
formation model and an inequality to bound

∣∣∣∂f(x,y,z)∂x

∣∣∣ by b represented as follows:
∣∣∣∣∂f(xl, yl, zl)∂x

∣∣∣∣ =
∣∣∣∣∣∣
∑
ijk∈Kx

θxijk
∂β3( xlTx−i)

∂x
β3(
yl
Ty
−j)β3(

zl
Tz
−k)

∣∣∣∣∣∣
≤
∑
ijk∈Kx

∣∣∣∣∣θxijk ∂β
3( xlTx−i)

∂x
β3(
yl
Ty
−j)β3(

zl
Tz
−k)

∣∣∣∣∣ ≤ b. (4.7)

Note that a parameter set that satisfies condition (4.7) at a given location (xl, yl, zl) is a

polyhedral convex set. Therefore, one may optimize the similarity measure subject to (4.7)

to bound the ∂f(x,y,z)∂x at (xl, yl, zl). However, this approach may require significant amount

of computation time if one would like to bound gradients at many different locations. Since

we desire to bound the gradient component everywhere, it is more practical to derive a

more sufficient condition than (4.7) to bound ∂f(x,y,z)∂x everywhere.

The following proposition ensures that if the maximum differences between two consec-

utive coefficients in the x, y, z directions are bounded, the gradients are bounded.

Proposition 2. If
∣∣∣θxi+1,j,k − θxi,j,k∣∣∣ ≤ b,∀ijk ∈ Kx, then ∣∣∣∂f(x,y,z)∂x

∣∣∣ ≤ b
Tx
. Similarly, if∣∣∣θxi,j+1,k − θxi,j,k∣∣∣ ≤ b,∀ijk ∈ Kx, then ∣∣∣∂f(x,y,z)∂y

∣∣∣ ≤ b
Tx
and |θi,j,k+1 − θi,j,k| ≤ b,∀ijk ∈ Kz

implies
∣∣∣∂f(x,y,z)∂y

∣∣∣ ≤ b
Tx
. Similar bounds for θyi,j,k, θ

z
i,j,k imply bounds on the gradients of

h(x, y, z) and g(x, y, z).

Proof: See Appendix G.
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Using Proposition 2, one can design parameter sets that achieve the gradient bounds

by specified quantities. Note that the coefficient difference of longer basis function is larger

than shorter basis function for the same bound since the distance between two knots is

larger.

4.2.5 Constrained Optimization using Dykstra’s Algorithm

To ensure the conditions in Proposition 2 are not violated, one may use unconstrained

optimization with penalty functions that have very large values for coefficient differences

that exceed the bounds. Or one can use constrained optimization techniques subject to the

conditions. The drawbacks of the unconstrained methods include that tuning of regulariza-

tion parameter may be required and that convergence may be slow due to very steep slope

of the penalty function. Considering those problems, constrained optimization methods

may be attractive. There are many constrained optimization methods that can be applied

to optimize (4.1) subject to the constraints in Proposition 2. For example, one may apply

constrained version of Conjugate Gradient, Quasi Newton method, etc [63]. The drawback

of the constrained methods is that it may require more computation time.

In this investigation, we propose the gradient projection method to solve the optimiza-

tion problem. This method is guaranteed to converge with an appropriate selection of step

size, if the objective function is convex [63]. We have chosen this method since it does not

require line search of which computation requirement is intensive. For nonrigid registration

problem with a large degree of freedom deformation model, the computation time for line

search can be significant.

The gradient projection method with step size α is defined as follows:

θn+1 = PK(θ
n − α∇θΦ(A,B; θ

n)), (4.8)

where, K is the convex constraint set and PK denotes the orthogonal projection onto the

convex set K. To implement the gradient projection method, the orthogonal projection

onto the convex constraint set must be computed. The convex set K for the constraints

developed in Proposition 2 can be written as follows:
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Hi = {θ ∈ X| < θ, fi >≤ ci}, i = 1, . . . , r (4.9)

K =
r⋂
i=1

Hi, (4.10)

where, X is the parameter space, r is the number of constraints, fi and ci are appropriate

vectors and scalars.

In general, determining an orthogonal projection onto a convex set is challenging except

for some special cases. If the convex set K is the intersection of convex sets on which the

orthogonal projection can be computed easily such as (4.10), Dykstra’s cyclic projection

method is an effective tool to compute the orthogonal projection onto K [62].

Dykstra’s algorithm iterates sequential projections of a vector onto convex sets whose

intersection is K. Note that it is not difficult to compute an orthogonal projection onto a

half space defined as (4.9). For polyhedral case, to determine the orthogonal projection of

a given vector θ onto the set K, Dykstra’s algorithm generates the sequence {θn} as follows:

θo = θ, θn = 0 when m ≤ 0,

θm = PH[m](θm−1 + em−r), em = θm−1 + em−r − θm.

Then, the Boyle-Dykstra convergence theorem shows that

‖θm − PK(θ)‖ → 0 as m→∞. (4.11)

For the special case of the polyhedral convex set such as (4.10), it has been shown that the

Dykstra’s algorithm converges geometrically [62].

In the gradient projection method using Dykstra’s algorithm, there are two iterations for

optimization. In each iteration for maximizing the similarity measure, the orthogonal pro-

jection onto K should be computed iteratively using Dykstra’s algorithm. Fortunately, we

have found that Dykstra’s algorithm converges within small number of iterations. However,

since the number of the half spaces increases as the number of the coefficients increases, the

computation time can be significant for large number of coefficients. One may reduce the

computation time using a parallel version of Dykstra’s method [67].
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4.2.6 Penalty Function

Penalty functions have been often used to prevent Jacobian determinants from being

negative. Such penalty functions include smoothness penalty [28], bending energy [29] and

direct penalty for small Jacobian determinant [30]. In this study, we have investigated

two penalty based methods for comparison purposes: penalizing the bending energy and

penalizing small Jacobian determinants.

The penalty function plays a role ofR(θ) in (4.1). Since weighting between the similarity

term and the penalty term is determined by regularization parameter β, selection of β may

greatly affect registration results.

Bending Energy

One can penalize the bending energy to regularize the estimated deformation. Mini-

mizing bending energy may offer a flavor of TPS to the estimated deformation since the

TPS interpolation function has minimum bending energy for 2D case [58]. The 3D bending

energy Eb is defined as following [29]:

Eb =

∫∫∫ (
∂2f(x, y, z)

∂x2

)2
+

(
∂2f(x, y, z)

∂y2

)2
+

(
∂2f(x, y, z)

∂z2

)2
+

(
∂2g(x, y, z)

∂x2

)2

+

(
∂2g(x, y, z)

∂y2

)2
+

(
∂2g(x, y, z)

∂z2

)2
+

(
∂2h(x, y, z)

∂x2

)2
+

(
∂2h(x, y, z)

∂y2

)2

+

(
∂2h(x, y, z)

∂z2

)2
+ 2(

(
∂2f(x, y, z)

∂x∂y

)2
+

(
∂2f(x, y, z)

∂y∂z

)2
+

(
∂2f(x, y, z)

∂z∂x

)2

+

(
∂2g(x, y, z)

∂x∂y

)2
+

(
∂2g(x, y, z)

∂y∂z

)2
+

(
∂2g(x, y, z)

∂z∂x

)2
+

(
∂2h(x, y, z)

∂x∂y

)2

+

(
∂2h(x, y, z)

∂y∂z

)2
+

(
∂2h(x, y, z)

∂z∂x

)2
dxdy dz. (4.12)

Note that Eb is computed using finite sum at grid points instead of the integral, in practice.

Small Jacobian Determinants

A previous study investigated a penalty function that penalizes Jacobian determinant

using exponential function [30]. Unlike the previous method, we designed a new penalty

function that penalizes Jacobian determinants that are smaller than given threshold. We

do not think that it is necessary to penalize local transformations that are invertible.
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The penalty function EJ based on Jacobian determinant values is defined as following:

EJ =

∫∫∫
eJ(x, y, z) dxdy dz, (4.13)

where,

eJ(x, y, z) =


 0 if det J(x, y, z) > Jt

(det J(x, y, z) − Jt)2 otherwise,

where Jt is a threshold. Fig. 4.1 shows the shape of the penalty function eJ that penalizes

Jacobian determinants smaller than 0.2 quadratically.

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

Jacobian determinant

e J

Figure 4.1: Penalty function for Jacobian determinant

4.2.7 Multi-resolution

The proposed method can be incorporated with the multi-resolution strategy to avoid

local minima and expedite the optimization. One may use the multi-resolution strategy

for both images and geometric transformations. For example, one may first register low

resolution images with wide support spline functions and proceed to high resolution images

with narrow support spline functions.
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4.3 Experimental Results

To investigate the performance of the proposed method in comparison with the penalty

function based methods, we applied those methods for registering inhale and exhale CT im-

ages. Since the inhale and exhale images are from the same patient and the same scanner,

we have used MSE (Mean Square Error) as the similarity measure. It has been shown that

the MSE based method is the MLE (Maximum-likelihood Estimator) for this problem set-

ting under i.i.d. Gaussian noise assumption [68]. Therefore, one can expect good statistical

properties such as the unbiasedness and efficiency.

4.3.1 Image Data

Inhale and exhale CT images from 8 patients were scanned using GE CT/i scanner. The

image size was 512×512×60 with pixel spacing of 0.9375×0.9375×5 mm. We have down

sampled the images by 2 and 4 for multi-resolution strategy. Fig. 4.2 and Fig. 4.3 show

slices of inhale and exhale image from one patient.

Figure 4.2: A slice of inhale CT image.

4.3.2 Synthetic Transformation

Since the ground truth deformations of nonrigid registration problems are usually not

available, it is difficult to evaluate the performance of image registration methods. To

alleviate this difficulty, we conducted registration experiments using deformed images by

known synthetic deformations. We generated the synthetic deformations by tensor products
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Figure 4.3: A slice of exhale CT image.

of sum of sinusoidal functions in x, y, z direction. We deformed an inhale CT image from

one patient using the synthetic transformation and registered original inhale image onto the

deformed image.

For this simulations, we down sampled the CT image by 4×4×4 and removed constant

backgrounds to reduce computation time. We used a cubic spline based deformation with

the expansion parameters 2, 2, 1 for f(x, y, z), g(x, y, z), h(x, y, z), respectively.

We investigated the bending energy penalty method, the small Jacobian determinant

penalty method and the constrained optimization method with gradient bound of 13 . We

have applied the methods for estimating two synthetic deformations: Synth.1 and Synth.2.

We tested two different deformations since we would like to investigate the performance

of the proposed method for the cases that the gradient bounds were consistent with true

deformation and not consistent with the truth. For Synth.1, every gradient component was

smaller than 13 but for Synth.2, some gradient components were larger than
1
3 . Fig. 4.4,

Fig. 4.5 and Fig. 4.6 show f(x, y, z), g(x, y, z) and h(x, y, z) of Synth.1 evaluated at slice

location 3.

We evaluated the performance of each method using an average error index in estimating

the true deformation, which is defined as following:

ε =
1

NxNyNz

∑
i,j,k ((f̂(xi, yj, zk)−f(xi, yj , zk))

2+(ĝ(xi, yj, zk)−g(xi, yj, zk))
2

+ (ĥ(xi, yj , zk)−h(xi, yj, zk))
2)
1
2 . (4.14)
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Figure 4.4: Synthetic deformation f(x, y, z) evaluated at slice 3.
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Figure 4.5: Synthetic deformation g(x, y, z) evaluated at slice 3.

69



0
10

20
30

0

20

40

60
−1.5

−1

−0.5

0

0.5

1

Figure 4.6: Synthetic deformation h(x, y, z) evaluated at slice 3.

Fig. 4.7, Fig. 4.8 and Fig. 4.9 show the estimated deformations using the constrained

optimization method. It was not possible to recover true deformation exactly by image

registration due to several reasons such as limited warp space, local minima and insufficient

convergence of optimization as discussed in [30]. In addition to those, deformation applied

to constant image regions is not recoverable since it does not change image values.

Fig. 4.10 and Fig. 4.11 show changes of the performance index versus optimization itera-

tion for Synth.1 and Synth.2, respectively. In Synth.1, both the penalty based methods and

the constrained method performed well. For this simulation, it was not necessary to impose

penalty terms to make the deformation invertible since the minimum Jacobian determinant

was positive even without using penalty term. The performance of the constrained method

was slightly better than the penalty methods.

In the simulation using Synth.2, we do not report the results of bending energy penalty

method since it performed very poor. To make estimated deformation invertible using the

bending energy penalty, we were required to increase regularization parameter too much.

As a result, it yielded very inaccurate estimation.

We expected that the penalty based methods might outperform the constrained method

since the true deformation had larger gradients than the gradient bound for the constrained

method. On the contrary to the expectation, the constrained method performed better than

70



0
10

20
30

0

20

40

60
−0.5

0

0.5

1

1.5

Figure 4.7: Estimated deformation f̂(x, y, z) evaluated at slice 3
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Figure 4.8: Estimated deformation ĝ(x, y, z) evaluated at slice 3.
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Figure 4.9: Estimated deformation ĥ(x, y, z) evaluated at slice 3.

the small Jacobian determinant penalty method as shown in Fig. 4.11. The small Jacobian

determinant penalty method failed to penalize large gradients. As a result, it yielded a rough

deformation. This phenomenon is due to the fact that the Jacobian determinant may not be

small even if the gradient components are large. We can identify these facts in Table 4.1 that

summarizes the minimum/maximum Jacobian determinants and the maximum gradient

components from the synthetic deformations, the estimated deformations using the small

Jacobian penalty method with threshold value of 0.1 and the estimated deformation using

the constrained method. As shown in the table, the small Jacobian penalty method tended

to generate larger gradients than true ones.

Fig. 4.12 shows the changes of the minimum Jacobian determinants during the optimiza-

tion. The minimum Jacobian determinants for the Jacobian penalty methods converged to

the values around the Jacobian determinant thresholds. Meanwhile, the minimum Jacobian

determinant of the proposed method converged to 0.433, which is larger than the true one.

This phenomena is due to the fact that some gradient components of the true deformation

are larger than the gradient bound for the constrained optimization.
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Figure 4.10: Average error vs iteration (Synth.1).
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Figure 4.11: Average error vs iteration (Synth.2).
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Figure 4.12: Minimum Jacobian determinant vs iteration (Synth.2).

Table 4.1: Characteristics of the synthetic transforms and estimated transforms

Synth.1 Const. 1 EJ 1 Synth. 2 Const.2 EJ 2

min|J | 0.807 0.648 0.231 0.201 0.433 0.029

max|J | 1.324 1.398 1.939 1.457 1.912 3.887

max
∣∣∣∂f(x,y,z)∂x

∣∣∣ 0.251 0.196 0.446 0.199 0.303 0.893

max
∣∣∣∂f(x,y,z)∂y

∣∣∣ 0.229 0.204 0.264 0.551 0.328 1.547

max
∣∣∣∂f(x,y,z)∂z

∣∣∣ 0.269 0.318 0.473 0.319 0.319 2.034

max
∣∣∣∂g(x,y,z)∂x

∣∣∣ 0.192 0.174 0.321 0.445 0.331 3.002

max
∣∣∣∂g(x,y,z)∂y

∣∣∣ 0.224 0.224 0.389 0.317 0.242 3.616

max
∣∣∣∂g(x,y,z)∂z

∣∣∣ 0.329 0.323 0.586 0.609 0.333 2.442

max
∣∣∣∂h(x,y,z)∂x

∣∣∣ 0.109 0.163 0.162 0.233 0.241 0.598

max
∣∣∣∂h(x,y,z)∂y

∣∣∣ 0.201 0.191 0.212 0.204 0.276 0.889

max
∣∣∣∂h(x,y,z)∂z

∣∣∣ 0.287 0.310 0.672 0.786 0.333 0.867
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4.3.3 Inhale and Exhale Image Registration

We have applied the constrained optimization method for registering inhale/exhale lung

CT images from 8 patients. We registered the exhale images onto the inhale images using

cubic spline based deformation with expansion factor of 4×4×2. As a result, the support

region of a B-spline function is approximately 3.75×3.75×10mm. We used 84×56×20 central

sub-images after removing constant backgrounds from the images.

Fig. 4.13, Fig. 4.14 and Fig. 4.15 show estimated deformations f̂(x, y, z), ĝ(x, y, z) and

ĥ(x, y, z) from one patient data. Table 4.2 summarizes correlation coefficients before and

after registration, minimum and maximum Jacobian determinants. As shown in Table 4.2,

we were able to achieve high correlation coefficients while bounding each gradient component

by 13 . The resulting Jacobian determinants were in the range between 0.18 to 2.48.
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Figure 4.13: Estimated deformation f̂(x, y, z).
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Figure 4.14: Estimated deformation ĝ(x, y, z).

Table 4.2: Lung CT registration results

(ρ is correlation coefficient between images)

PT01 PT02 PT03 PT04 PT05 PT06 PT07 PT08

ρ before registration 0.701 0.678 0.852 0.722 0.888 0.755 0.956 0.930

ρ after registration 0.981 0.964 0.978 0.970 0.979 0.935 0.970 0.963

min|J | 0.332 0.277 0.444 0.295 0.337 0.180 0.428 0.413

max|J | 2.323 2.477 2.089 2.176 2.269 2.395 2.103 2.023

76



Slice 1

−2

−1

0

Slice 2

−3

−2

−1

0
Slice 3

−3

−2

−1

0

Slice 4

−3

−2

−1

0

Slice 5

−2

−1

0

Slice 6

−2

−1

0

Slice 7

−2

−1

0

1
Slice 8

−1

0

1

Slice 9

−1

0

1

Slice 10

−1

0

1

Slice 11

−1

0

1

Slice 12

−1

0

1

Slice 13

−1

0

1

Slice 14

−1

0

1

Slice 15

−1

0

1
Slice 16

−1

0

1

Slice 17

−1

0

1
Slice 18

−1

0

1
Slice 19

−1
−0.5
0
0.5

Slice 20

−1

−0.5

0

0.5

Figure 4.15: Estimated deformation ĥ(x, y, z).
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4.4 Discussion

We have bounded gradient components of estimated deformation to enforce positive

Jacobian determinants. We also related the gradient bounds to possible minimum and

maximum Jacobian determinants (i.e., maximum local volume shrinks and expansions)

using Kuhn-Tucker conditions. Compared with conventional methods based on penalty

functions, the proposed method has an advantage that the estimated transformation is

invertible everywhere as argued in Proposition 2.

In the simulations, the bending energy penalty function method did not yield good re-

sults since we were required to smooth deformation excessively to acquire positive Jacobian

determinants. We suspect that this phenomenon is due to the fact that small gradients are

also penalized as well as large gradients. Since there was a region where Jacobian determi-

nant was negative due to large gradients, the regularization parameter had to be increased

to make the deformation invertible. The increased regularization parameter affected the

entire deformation and resulted in over-smoothed deformation.

For the penalty based method that penalizes small Jacobian determinants, we penalized

only smaller Jacobian determinants than a given threshold since we did not want to pe-

nalize deformations that are invertible. This method often yielded deformations that have

large gradients and large local volume expansions. The large local volume expansions were

due to the fact that those were not penalized. Although a transformation that has large

Jacobian determinant is invertible, it may not be a good estimation of true deformation, if

we assume that the true deformation does not have too large volume expansion. Therefore,

one may want to penalize both small and large Jacobian determinants to acquire more re-

alistic transformation. Even if both small and large Jacobian determinants are avoided by

proper penalty, we think that it may not be sufficient enough to exclude the possibilities

of unrealistic estimations for some cases, at least theoretically. For example, the gradient

component k in the following 2×2 Jacobian matrix can be very large while its determinant

is unity,

J =


1 + k k

−k 1− k


 .

(4.15)
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We conjecture that this phenomenon partly explains why the estimated deformations using

this method had large gradients in the experiments.

In addition to those problems, there is a difficulty in optimization if one uses Jacobian

determinant in penalty function since it is not a convex function of parameters. Moreover,

the constraint set to bound Jacobian determinants in the parameter space is not a convex

set either. Therefore, it may be challenging to design an effective optimization method.

We believe that bounding each gradient component can be a useful method to acquire a

realistic deformation since it yields both bounded gradients and bounded Jacobian determi-

nants. Moreover, since a parameter set that bounds gradients is a convex set, it is possible

to design an effective optimization method.

One may implement the gradient bounds using either a constrained optimization that

maximizes similarity measure subject to the constraints or a unconstrained optimization

method that has large penalty values outside the bounds. Compared with the uncon-

strained optimization methods, the constrained optimization has an advantage since tuning

of regularization parameter is not required. In our experiences, tuning of regularization

parameters was cumbersome since it often needed to be readjusted if images were changed.

Thanks to the convexity of the constraint set, we were able to use the gradient projection

method with Dykstra’s algorithm. This method has an advantage that line search is not

required. However, it requires additional computation time since orthogonal projection onto

the constraint set must be computed at each iteration.

It is our future work to investigate both unconstrained and constrained optimization

methods to bound gradients in detail. We are interested in not only improving optimization

speeds and accuracies but also removing manual tuning procedures. Note that the step size

α for the gradient projection method was adjusted manually. We plan to investigate several

methods for that purpose including optimization transfer method [69].

One can use Proposition 1 and Proposition 2 to relate possible maximum volume changes

to the constraints sets in the parameter space. Note that the Propositions does not define

minimum and maximum Jacobian determinants but possible minimum and maximum. In

Proposition 1, the possible minimum or maximum Jacobian determinant occurs only when

every gradient component has the boundary value. In our simulations and experiments,

such phenomenon was not observed. Even though the possible minimum Jacobian was

zero in the experiments, the estimated minimum Jacobian determinants were around 0.3.
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Therefore, it may be possible to relax the gradient bounds while achieving positive Jacobian

determinants.

In inhale and exhale image registration experiments, we were able to achieve high cor-

relation coefficients between inhale images and deformed exhale images after registration

using the gradient bounds of 1/3. Although it is difficult to argue the accuracies of the esti-

mated deformations based on only the similarity measure values since the ground truths are

unknown, we conjecture that true physical deformations do not have very large gradients.

More investigations are required to support this conjecture.

It would be very useful if a priori informations about physical deformations are available.

For example, if population based distributions of minimum and maximum volume changes

or minimum and maximum gradient components of deformations are available, those can

be effectively applied to improve nonrigid registration methods. Analytical results and

optimization methods investigated in this study can be used to incorporate such statistical

data for more accurate estimation of the deformations.

4.5 Conclusion

We have proposed a novel constrained optimization method that bounds each gradient

component of estimated deformation to achieve positive Jacobian determinants. We related

the gradient bounds to possible maximum volume shrinks and expansions and derived suffi-

cient conditions in the parameter space to achieve the gradient bounds in the entire spatial

domain. The gradient bounds were implemented using the gradient projection method

with Dykstra’s cyclic projection algorithm. In the experiments of registering inhale and

exhale CT images, we were able to achieve high similarity measures after registration while

bounding gradient components of the estimated deformation.
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CHAPTER 5

Conclusion and Future Research

5.1 Conclusion

We have investigated a set-up error estimation method using a 3D/2D, intensity-based

method. To achieve 3D to 2D image registration, the radiographs and the DRRs of the

planning CT were registered by maximizing the MI between DRRs and radiographs. In the

experiment with an anthropomorphic chest phantom, we achieved accuracies better than

1mm for estimating the translational parameters and 0.8 degree for estimating the rotational

parameters using two orthogonal pairs of the MV radiographs and DRRs. The true set-

up error was established by the fiducial marker-based method. Based upon theoretical

background and the experimental results, we believe that MI has significant potential as an

effective similarity measure for 3D/2D intensity-based registration.

We also introduced robust correlation coefficient as a novel intensity based similarity

measure to improve the robustness of the sample correlation coefficient based image reg-

istration while not degrading the statistical efficiency much. In 1D simulation, 2D and

3D experiments, the proposed method reduced the bias of the sample correlation method

caused by outliers. The robust correlation coefficient may be an effective similarity measure

for intra-modality image registration task where the presence of the outliers is unavoidable

such as set-up estimation for radiotherapy and image-guided surgery.

For nonrigid image registration, we have proposed a novel constrained optimization

method that bounds each gradient component to enforce positive Jacobian determinants.

We related the gradient bounds to possible minimum and maximum Jacobian determinants

and derived sufficient conditions in parameter space to bound gradients everywhere. We
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also implemented the gradient bounds using the gradient projection method with Dykstra’s

cyclic projection algorithm. In experiments of registering inhale and exhale CT images,

we were able to achieve high similarity measure while bounding each gradient component.

Using the registration results, one can build a preliminary dynamic model for lung motion.

5.2 Future Research

Although we have addressed some technical issues in image registration methods for

radiation therapy and image-guided surgery, there are still many technical issues to be

investigated. For example, 3D/2D nonrigid registration of planning CT onto projection im-

ages is important to estimate organ motion of a patient in each treatment session. Accurate

estimation of the organ motion in each treatment session may have a significant potential

for improving radiation therapy since X-ray dose calculation can be accomplished more

accurately by accounting for the organ motion.

Other technical issues such as effective modeling of geometric deformation and fast

optimization methods also need to be investigated to accomplish more accurate and fast

registration. Those research results can be applied for not only radiation therapy but also

other fields such as atlas based segmentation using nonrigid registration of a template onto

images.

In addition to image registration, research on 3D CT reconstruction methods using lim-

ited number of projections can be useful for radiation therapy. In consecutive radiotherapy

treatments, the anatomy of a patient may change from that of planning. It is natural be-

cause not only the anatomy of the patient changes in time but also the treatments affect

the patient body. To monitor this change, frequent CT scan is required. However, since

conventional 3D CT scan requires extra x-ray irradiation, frequent CT scan is not desirable.

Instead, it would be beneficial if 3D CT scan could be reconstructed using a few numbers

of radiographs that are acquired in the treatment room.

Although this problem is challenging since the image reconstruction problem is ill-posed,

it might be possible to reconstruct useful CT images by designing an effective regulariza-

tion method. Compared with conventional regularization methods that are not based on

individual patient model but based on generic a priori information such as smoothness, a

method based on a priori information of the same patient such as the CT image taken before
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can be effectively applied for addressing the problem. For example, one may reconstruct

3D image by maximizing a likelihood term and a similarity measure between reconstructing

image and a priori image if two images are already registered. Moreover, one may com-

bine reconstruction and registration procedures together to implement joint reconstruction

and registration. Since the previous patient CT may have better information about the

patient anatomy than generic smoothness assumption, we conjecture that good reconstruc-

tion may be achieved using significantly small number of projections. Moreover, one may

challenge to the problem of image reconstruction using population based CT image as a

priori information if the previous CT of the same patient is not available.

Dynamic 3D imaging is also a valuable research topic since radiation therapy often

deals with moving organs such as lungs. Since most CT reconstruction methods assume

that anatomy does not change during acquisitions, the dynamic image reconstruction re-

quires different reconstruction methods than normal CT reconstruction algorithms. Several

interesting methods for reconstructing dynamic images have been proposed. For example,

a Kalman filter type approach can be used to estimate the moving 3D images if the mo-

tion can be modeled by dynamic equations. Also image registration techniques may be

applied for dynamic reconstruction since motion estimation and compensation can be ac-

complished by image registration. Moreover, registering reconstructing dynamic CT image

to dynamic ultrasound image may be useful since ultrasound image has already dynamic

motion information. Such a 4D image registration method can be a valuable future research

topic.
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APPENDIX A

Fisher Information

Consider a set of the independent Poisson Random Variables which are defined by (A.1)

Yk ∼ Poisson{λk(θ̃)}, λk(θ̃) = Ioe
−
∫
Lk
µ2(Tθ̃(

~t))d~l
, k = 1, . . . ,N. (A.1)

Because the random variables are independent, the logarithm of the joint PMF of the

random variables Yk is computed by (A.2):

log P [Y1 = y1, Y2 = y2, ·, ·Yk = yk|θ̃] =
N∑
k=1

yk log λk(θ̃)− λk(θ̃)− log yk!. (A.2)

The partial derivative of the log joint PMF with respect to parameter θi is calculated

by (A.3):

∂ log P [Y = y|θ̃]

∂θ̃i
=

N∑
k=1

yk
1

λk(θ̃)

∂λk(θ̃)

∂θ̃i
−
∂λk(θ̃)

∂θ̃i
. (A.3)

If we take the derivative of (A.3) with respect to parameter θj, (A.4) is acquired,

∂2 log P [Y = y|θ̃]

∂θ̃i∂θ̃j
=
N∑
k=1

yk{−
1

λk(θ̃)2
∂λk(θ̃)

∂θ̃i

∂λk(θ̃)

∂θ̃j
+

1

λk(θ̃)

∂2λk(θ̃i)

∂θ̃iθ̃j
} −
∂2λk(θ̃)

∂θ̃i∂θ̃j
. (A.4)

Finally, the ijth component of the Fisher information matrix J for is computed by (A.5):

Jij = −E{
∂2 logP [Y = y|θ̃]

∂θ̃i∂θ̃j
} =

N∑
k=1

1

λk(θ̃)

∂λk(θ̃)

∂θ̃i

∂λk(θ̃)

∂θ̃j
. (A.5)
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APPENDIX B

Mean and Covariance Approximation

This appendix presents approximations for the mean and variance of implicitly defined

estimators such as (3.1). Let Φ(θ, Z) be an objective function depending on unknown

parameter θ and noisy measurement Z. We assume that the objective function has a

unique maximum for any Z and that one can find the maximum by zeroing the partial

derivatives of Φ(·, Z) to determine the estimates θ̂:

0 =
∂

∂θj
Φ(θ, Z)

∣∣∣
θ=θ̂
, j = 1, ..., p. (B.1)

Since θ̂ is an implicit function of Z, it is difficult to determine its exact mean and

variance. To approximate its mean and variance, we linearize the estimator by first order

Taylor series expansion. First, we define the column gradient of the objective function as

follows:

Ψ(θ, Z)
4
= ∇10Φ(θ, Z), (B.2)

where, the jth element of p× 1 operator ∇10 is ∂
∂θj
.

Next, we rewrite (B.1) asΨ(θ̂, Z) = 0. If we linearizeΨ(θ̂, Z) around the true parameter

θ̃ by the first-order Taylor series expansion, the estimator can be approximated as following:

Ψ(θ̂, Z) ≈ Ψ(θ̃, Z) +∇20Φ(θ̃, Z)(θ̂ − θ̃), (B.3)

where, the (j, k)th element of p× p operator ∇20 is ∂2

∂θj∂θk
.

We assume that [−∇20Φ(θ̃, Z)] is a positive definite symmetric matrix so that its inverse

is well defined. As a result, one may linearize the estimator as follows:

θ̂ ≈ θ̃ + [−∇20Φ(θ̃, Z)]−1Ψ(θ̃, Z). (B.4)
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Therefore, the bias of the estimator may be approximated as following:

E{θ̂} − θ̃ ≈ E
{
[−∇20Φ(θ̃, Z)]−1Ψ(θ̃, Z)

}
. (B.5)

Moreover, the covariance of the estimator may be approximated as follows:

Cov
{
θ̂
}
≈ Cov

{
[−∇20Φ(θ̃, Z)]−1Ψ(θ̃, Z)

}
≈ H−1Cov

{
Ψ(θ̃, Z)

}
H−1, (B.6)

where possible approximations for H matrix include:

H = −∇20Φ(θ̃, E [Z]). (B.7)

One may approximate further by linearizing the Ψ(θ, Z) with respect to the measurements

Z as developed previously [26].
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APPENDIX C

Bias and Robustness of Correlation based Methods

This appendix uses the general results from the preceding appendix to analyze the

approximated bias and robustness of correlation-based registration methods. Let us define

our noisy measurement Z = [s1(·) , s2(·)]. We represent s1(Tθ(~t)) = s1(θ,~t) for notational

convenience and zθ(~t) = [s1(θ,~t), s2
(
~t
)
]T . Without loss of generality, we assume that the

means of s1
(
~t
)
, s2
(
~t
)
are zero and the volume of the images integrates to unity. We consider

the robust correlation method with fixed mean for mathematical simplicity.

First, the objective function is represented as follows:

Φ(θ, Z) =
CXY (θ)

σX(θ)σY (θ)
, (C.1)

where CXY (θ) =
∫
w(
∥∥Vθzθ(~t)∥∥)s1(θ,~t)s2(~t) d~t, σ2X(θ) = ∫w(∥∥Vθzθ(~t)∥∥)s21(θ,~t) d~t and

σ2Y (θ)=
∫
w(
∥∥Vθzθ(~t)∥∥)s22(~t)d~t.

The gradient of the objective function is evaluated as followings:

Ψ(θ, Z) =
1

σ2X(θ)σ
2
Y (θ)

[C
′

XY (θ)σX(θ)σY (θ)− CXY (θ)(σX(θ)σ
′

Y (θ) + σ
′

X(θ)σY (θ))], (C.2)

where C
′

XY (θ) = ∇θCXY (θ), σ
′

X(θ) = ∇θσX(θ) and σ
′

Y (θ) = ∇θσY (θ).

If s1(θ̃,~t) = ks2
(
~t
)
with a constant k, (i.e. two images are linearly related at true

registered position), then σX(θ̃)σY (θ̃) = CXY (θ̃) and C
′

XY (θ̃) = σ
′

X(θ̃)σY (θ̃) + σX(θ̃)σ
′

Y (θ̃).

Therefore, Ψ(θ̃, Z) = 0, which implies the unbiasedness. Note that this is true not only for

the constant weighting function but also for the arbitrary w(·).
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Suppose that there are additive outlier images o(~t) such that s̃2
(
~t
)
= s1(θ̃,~t) + o(~t).

For the sample correlation method, the Hessian at the true registered position may be

approximated as following:

∇20Φ(θ̃, Z)=
1

σ2X(θ̃)σ
2
Y (θ̃)

[C
′′

XY (θ̃)σX(θ̃)σY (θ̃)−CXY (θ̃)

·(σ
′′

X(θ̃)σX(θ̃)+2σ
′

X(θ̃)σ
′

Y (θ̃)+σX(θ̃)σ
′′

Y (θ̃))], (C.3)

where, C
′′

XY (θ) = ∇
2
θCXY (θ), σ

′′

X(θ) = ∇
2
θσX(θ) and σ

′′

Y (θ) = ∇
2
θσY (θ).

If we assume that the images have constant backgrounds, σ
′

X(θ), σ
′

Y (θ), σ
′′

X(θ) and σ
′′

Y (θ)

are all zero for a constant weighting. In that case, the bias is approximated as follows:

E
{
θ̂
}
≈θ̃ + [C

′

XY (θ̃)][C
′′

XY (θ̃)]
−1

=θ̃ +

[∫
[∇10s1(θ̃,~t)]o(~t) d~t

][∫
[∇10s1(θ̃,~t)][∇

10s1(θ̃,~t)]
T−∇20s1(θ̃,~t)o(~t)d~t

]−1
.

(C.4)

As expected, if weighting is a constant such as in the sample correlation method, in

general, the estimator is biased by outliers since
∫
[∇10s1(θ̃,~t)]o(~t) d~t does not equal to

zero for many cases. For the robust correlation method, the bias can be significantly by

proper weighting. If weighting for outlier samples is very small, σX(θ̃)σY (θ̃) ≈ CXY (θ̃) and

C
′

XY (θ̃) ≈ σ
′

X(θ̃)σY (θ̃) + σX(θ̃)σ
′

Y (θ̃) and the robust correlation coefficient at θ̃ becomes

unity, which implies the robust correlation coefficient is maximized at true position.
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APPENDIX D

Efficiency

It is well known that the sample correlation coefficient based method is MLE for this

problem setting [70] with constant background and i.i.d. Gaussian noise assumption. There-

fore the covariance of the sample correlation based estimator equals to the inverse of the

Fisher information matrix [34]. The Fisher information matrix Iθ̃ is computed as follows:

Iθ̃ =
1

2σ2n
E

{
−∇2

θ̃

∫
(s2
(
~t
)
− s1(θ̃,~t))

2 d~t

}

=
1

σ2n

∫
[∇10s1(θ̃,~t))][∇

10s1(θ̃,~t))]
T d~t, (D.1)

where σ2n is noise power.

We approximate the covariance matrix of the correlation based methods by the covari-

ance approximation developed in Appendix A. First, we approximate the covariance matrix

of Ψ(θ̃, Z) as follows:

Cov
{
Ψ(θ̃, Z)

}
≈

1

σX(θ̃)σY (θ̃)
Cov

{
C
′

XY (θ̃)−(
σ
′

X(θ̃)

σX(θ̃)
+
σ
′

Y (θ̃)

σY (θ̃)
)

}

≈
1

σX(θ̃)σY (θ̃)
E
{∫
w(
∥∥Vθ̃zθ̃(~t)∥∥)n(~t)[∇10s1(θ̃,~t)] d~t

·

∫
w(
∥∥Vθ̃zθ̃(~t)∥∥)n(~τ)[∇10s1(θ̃, ~τ)]T d~τ}

=
σ2n

σX(θ̃)σY (θ̃)

∫
w(
∥∥Vθ̃zθ̃(~t)∥∥)2[∇10s1(θ̃,~t)][∇10s1(θ̃,~t)]Td~t. (D.2)
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We also approximate the Hessian as follows:

H=−∇20Φ(θ̃, E[Z])

=
σ2n

σX(θ̃)σY (θ̃)

∫
w(
∥∥Vθ̃zθ̃(~t)∥∥)[∇10s1(θ̃,~t)][∇10s1(θ̃,~t))]Td~t. (D.3)

Finally, the covariance may be approximated by plugging (D.2), (D.3) into (B.6) as

follows:

Cov
{
θ̂
}
≈ σ2nC

−1
1 C2C

−1
1 , (D.4)

where, the matrix C1 =
∫
w(
∥∥Vθ̃zθ̃(~t)∥∥)[∇10s1(θ̃,~t)][∇10s1(θ̃,~t)]T d~t and the matrix C2 =∫

w(
∥∥Vθ̃zθ̃(~t)∥∥)2[∇10s1(θ̃,~t)][∇10s1(θ̃,~t)]T d~t.
By vector Cauchy-Schwarz inequality [53], one can prove following inequality:

Cov
{
θ̂
}
≥ I−1

θ̃
, (D.5)

where, A ≥ B means the positive semi-definiteness of matrix A−B and the equality holds

iff w(·)[∇10s1(θ̃,~t))] = k[∇10s1(θ̃,~t))] with a constant k.

Therefore any weighting function other than a constant will make the covariance larger

while the constant weighting such as in the ordinary sample correlation coefficient method

achieves the Cramer-Rao lower bound. However, note that we have assumed s2(~t) =

s1(θ̃,~t) + n(~t) that is not a reasonable assumption in the presence of outliers. If there

exist outliers in a certain location, the noise variance is not uniform. In that case, the C1

matrix in (D.4) becomes as following:

C1 =

∫
w(
∥∥Vθ̃zθ̃(~t)∥∥){[∇10s1(θ̃,~t)][∇10s1(θ̃,~t)]T − o(~t)[∇20s1(θ̃,~t)]} d~t. (D.6)

Note that if
∫
w(
∥∥Vθ̃zθ̃(~t)∥∥)o(~t)[∇20s1(θ̃,~t)] d~t ≈ 0, the covariance approximation formula

in the presence of outlier is the same as without outlier. In that case, one may argue that the

variance of the sample correlation method is smaller than the robust correlation method,

based on (D.5).
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APPENDIX E

Gradient of Estimated joint pdf

We consider 2-D rigid image registration for simplicity. Extension to 3D is straightfor-

ward. Consider asymptotic estimated joint pdf represented as following:

f̂θ(x, y) =
1

T1T2

∫ t1f
t1o

∫ t2f
t2o

K(x− s1(T1(t1, t2, φ, d1), T2(t1, t2, φ, d2))K(y − s2(t1, t2))dt1dt2,

(E.1)

where, s1(·), s2(·) are two images, K(·) is a kernel function, t1o, t1f is the starting and the

final point of the continuous images in horizontal direction, t2o, t2f are those in vertical

direction, T1 = t1f − t1o and T2 = t2f − t2o.

Taking partial derivative of the estimated joint pdf w.r.t. φ and evaluating at true

registered position yields following:

∂fθ(x, y)

∂φ
|θ=θ̃ =

1

T1T2

∫ t1f
t1o

∫ t2f
t2o

K̇(x− s1(t1, t2))[D1s1(t1, t2)
∂T1(t1, t2, φ, d1)

∂φ
|θ=θ̃

+D2s1(t1, t2)
∂T2(t1, t2, φ, d2)

∂φ
|θ=θ̃] ·K(y − s2(t1, t2))dt1dt2

=
1

T1T2

∫ t1f
t1o

∫ t2f
t2o

K̇(x− s1(t1, t2))[−t2D1s1(t1, t2) + t1D2s1(t1, t2)]

· K(y − s2(t1, t2))dt1dt2. (E.2)

Suppose that the target image intensity values are some function g of the geometrically

transformed reference image. If we define new variable ut2 = s(t1, t2) with fixed t2 and

vt1 = s(t1, t2) with fixed t1, then D1s(t1, t2)dt1 = dut2 and D2s(t1, t2)dt2 = dvt1 . Therefore,

92



∂fθ(x, y)

∂φ
|θ=θ̃ =

∫ t1f
t1o

−t2

∫ s(t1f ,t2)
s(t1o,t2)

K̇(x− ut2)K(y − g(ut2))dut2dt2

+

∫ tf
to

t1

∫ s(t1,tf )
s(t1,to)

K̇(x− vt1)K(y − g(vt1))dvt1dt1. (E.3)

Therefore, if s(t1f , t2) = s(t1o, t2) for every t2 and s(t1, t2o) = s(t1, t2f ) for every t2, which

is true by the constant background assumption, the partial derivative of the estimated pdf

is equal to zero at true registered position. By the similar arguments, one can show that

the partial derivative of the estimated pdf with respect to translation parameters are also

equal to zero.
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APPENDIX F

Proof of Proposition 1

First, consider a 2D Jacobian matrix defined as following:

J(k1, k2, k3, k4) =


1 + k1 k2

k3 1 + k4


 ,

where, |k1| ≤ b1, |k2| ≤ b2, |k3| ≤ b3, |k4| ≤ b4 and |bi| > 0. It is clear that the possible max-

imum det J(k1, k2, k3, k4) is (1+b1)(1+b4)+b2b3. The possible minimum detJ(k1, k2, k3, k4)

is (1− b1)(1− b4)− b2b3, if |bi| ≤ 1. Note that the possible maximum and minimum occur

when each gradient component has a boundary value.

For 3D Jacobian matrix, we develop the similar argument as for 2D matrix using Kuhn-

Tucker multiplier. Consider 3D Jacobian matrix J(x) and Jacobian determinant det (J(x))

whose elements are x = (x1, . . . , x9) defined as follows [71]:

J(x) =



1 + x1 x2 x3

x4 1 + x5 x6

x7 x8 1 + x9


 ,

det (J(x)) = (1 + x1)(1 + x5)(1 + x9) + x2x6x7 + x3x4x8

− (1 + x1)x6x8 − (1 + x5)x3x7 − (1 + x9)x2x4.

(F.1)

By Kuhn-Tucker Theorem [64], the necessary conditions for the minimizer x∗ of det (J(x))

subject to the constraints stated in the Proposition 1 are as follows:
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∂ det (J(x∗))

∂x1
+ λ1 − λ2 = (1 + x

∗
5)(1 + x

∗
9)− x

∗
6x
∗
8 + λ1 − λ2 = 0, (F.2)

∂ det (J(x∗))

∂x2
+ λ3 − λ4 = −x

∗
4(1 + x

∗
9) + x

∗
6x
∗
7 + λ3 − λ4 = 0, (F.3)

∂ det (J(x∗))

∂x3
+ λ5 − λ6 = −x

∗
7(1 + x

∗
5) + x

∗
4x
∗
8 + λ5 − λ6 = 0, (F.4)

∂ det (J(x∗))

∂x4
+ λ7 − λ8 = −x

∗
2(1 + x

∗
9) + x

∗
3x
∗
8 + λ7 − λ8 = 0, (F.5)

∂ det (J(x∗))

∂x5
+ λ9 − λ10 = (1 + x

∗
1)(1 + x

∗
9)− x

∗
3x
∗
7 + λ9 − λ10 = 0, (F.6)

∂ det (J(x∗))

∂x6
+ λ11− λ12 = −x

∗
8(1 + x

∗
1) + x

∗
2x
∗
7 + λ11 − λ12 = 0, (F.7)

∂ det (J(x∗))

∂x7
+ λ13− λ14 = −x

∗
3(1 + x

∗
5) + x

∗
2x
∗
6 + λ13 − λ14 = 0, (F.8)

∂ det (J(x∗))

∂x8
+ λ15− λ16 = −x

∗
6(1 + x

∗
1) + x

∗
3x
∗
4 + λ15 − λ16 = 0, (F.9)

∂ det (J(x∗))

∂x9
+ λ17− λ18 = (1 + x

∗
1)(1 + x

∗
5)− x

∗
3x
∗
7 + λ17 − λ18 = 0, (F.10)

λ1(x
∗
1 − kf ) = 0, λ2(−x

∗
1 − kf ) = 0, (F.11)

λ3(x
∗
2 − kf ) = 0, λ4(−x

∗
2 − kf ) = 0, (F.12)

λ5(x
∗
3 − kf ) = 0, λ6(−x

∗
3 − kf ) = 0, (F.13)

λ7(x
∗
4 − kg) = 0, λ8(−x

∗
4 − kg) = 0, (F.14)

λ9(x
∗
5 − kg) = 0, λ10(−x

∗
5 − kg) = 0, (F.15)

λ11(x
∗
6 − kg) = 0, λ12(−x

∗
6 − kg) = 0, (F.16)

λ13(x
∗
7 − kh) = 0, λ14(−x

∗
7 − kh) = 0, (F.17)

λ15(x
∗
8 − kh) = 0, λ16(−x

∗
8 − kh) = 0, (F.18)

λ17(x
∗
9 − kh) = 0, λ18(−x

∗
9 − kh) = 0, (F.19)

where λi ≥ 0 for i = 1, ...18.

In (F.2), if we assume (1 + x∗5)(1 + x
∗
9) − x

∗
6x
∗
8 > 0, then λ2 > λ1 ≥ 0. Therefore, x

∗
1 is

−kf by (F.12). With similar assumptions and arguments, x
∗
5 = −kg and x

∗
9 = −kh. The

assumption can be satisfied if |x∗i | <
1
2 , i = 1 . . . 9 as stated in the Proposition 1. We suspect

that it may be possible to remove this assumption since it is only required to argue that

the diagonal components of the Jacobian matrix have boundary values.
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With those conditions, it is clear from (F.1) that det (J(x)) achieves the minimum where

x∗6x
∗
8 = kgkh, x

∗
2x
∗
4 = kfkg and x

∗
3x
∗
7 = kfkh. Therefore, the minimum Jacobian determinant

can be represented as following:

min det (J(x)) = 1− (kf + kg + kh). (F.20)

If kf = kg = kh = k, then the possible minimum is 1 − 3k. Therefore, the Jacobian

determinant does not have a negative value if k ≤ 13 , which is the same conclusion from the

previous investigation [61].

The conditions for maximum determinant are obtained by multiplying the conditions

(F.2)-(F.10) by −1. By similar arguments as for the minimum case, one can show x∗1 =

kf , x
∗
5 = kg, x

∗
9 = kh.

For the rest of x∗i , we first assume that each x
∗
i has the boundary value. In that case,

if x∗4 = kg, then λ3 > λ4 by (F.3), which implies x
∗
2 = −kf . Similarly, x

∗
3, x
∗
4 have opposite

sign and so x∗6, x
∗
6 have. As a result, the maximum Jacobian determinant for this case is

represented as following:

max det (J(x)) = (1 + kf )(1 + kg)(1 + kh) + (1 + kh)kfkg

+(1 + kf )xgxh + (1 + kg)kfxh. (F.21)

Next we show that Jacobian determinant when x∗2 does not have the boundary value

is smaller than maxdet (J(x)). For this case, λ3 = λ4 = 0 to satisfy λ3(x
∗
2 − kf ) = 0 and

λ4(−x∗2 − kf ) = 0. Therefore, x
∗
4 is computed from (F.3) as following:

x∗4 =
x∗6x

∗
7

1 + kh
. (F.22)

It is clear from (F.22) that x∗4 is neither kg nor −kg since the maximum possible absolute

value of x∗4 is
kgkh
1+kh
, which is less than kg. Therefore, λ7 = λ8 = 0 and x

∗
2 is computed from

(F.5) as following:

x∗2 =
x∗3x

∗
8

1 + kh
. (F.23)

By (F.22) and (F.23), x∗2x
∗
6x
∗
7 = x

∗
3x
∗
4x
∗
8 = (1 + kh)x

∗
2x
∗
4. Denote a vector that satisfies

this condition as x̂. Substituting the condition into (F.1) yields,
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det(J(x̂)) = (1 + kf )(1 + kg)(1 + kh) + (1 + kh)x
∗
2x
∗
4

−(1 + kf )x
∗
6x
∗
8 − (1 + k5)x

∗
3x
∗
7

≤ (1 + kf )(1 + kg)(1 + kh) + (1 + kh)kfkg

+(1 + kf )kgkh + (1 + kg)kfxh

=maxdet (J(x)) . (F.24)

One can verify (F.24) for the case that x∗3, x
∗
6 or x

∗
7, x
∗
8 are not on the boundaries by

using the same arguments. Therefore, we conclude that the maximum determinant value

of the Jacobian matrix is represented by (F.21).
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APPENDIX G

Proof of Proposition 2

First, consider the derivative of the 1D cubic spline defined by

∂f(x)

∂x
=
∑
i

θi
∂β3( xT − i)

∂x
. (G.1)

Note that every x can be represented by x = x̃ + w where 0 ≤ w ≤ T and x̃ is the

nearest knot location that is smaller than x. Suppose that θ0, θ1, θ2, θ3 are the coefficients

of the B-spline functions that contribute to determine the gradient value at x where θ0 is

the coefficient of the B-spline function at leftmost knot in the coordinates. By using the

explicit formula of 3rd order B-spline, the gradient at x is computed as follows:

∂f(x)

∂x
|x=x̃+w =

1

T
[−θ0

1

2
(1−

w

T
)2 + θ1(−2

w

T
+
3

2

w2

T 2
)

+ θ2(2(1−
w

T
)−
3

2
(1−
w

T
)2) + θ3

w2

2T 2
]. (G.2)

It is clear that
∣∣∣∂f(x)∂x

∣∣∣ is bounded by bT where w = 0 or w = T . When 0 < w < T ,
we determine the minimum and maximum value using Kuhn-Tucker theorem [64]. The

necessary conditions for the minimizer θ∗0, θ
∗
1, θ
∗
2, θ
∗
3 of (G.1) is determined as follows:

−
1

2
(1−

w

T
)2 + (λ1 − λ2) = 0 (G.3)

−2
w

T
+
3w2

2T 2
+ (λ2 − λ1) + (λ3 − λ4) = 0 (G.4)

2(1 −
w

T
)−
3

2
(1−

w

T
)2 + (λ4 − λ3) + (λ5 − λ6) = 0 (G.5)

w2

2T 2
+ (λ6 − λ5) = 0 (G.6)
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λ1(θ
∗
0−θ

∗
1−b)=0, λ2(θ

∗
1 − θ

∗
0−b)=0 (G.7)

λ3(θ
∗
1 − θ

∗
2 − b)=0, λ4(θ

∗
2 − θ

∗
1 − b)=0 (G.8)

λ5(θ
∗
2 − θ

∗
3 − b) = 0, λ6(θ

∗
3 − θ

∗
2 − b) = 0, (G.9)

where λi ≥ 0, i = 1, ...., 6.

Since λ1−λ2 > 0 by (G.3), θ1 = θ0−b. Also, λ6−λ5 < 0 by (G.6) and hence θ3 = θ2−b.

Combining (G.3) and (G.4) yields following condition:

−
2w

T
+
3w2

2T 2
−
1

2
+
w

T
−
w2

2T 2
+ λ3 − λ4=

w2

T 2
−
w

T
−
1

2
+ λ3 − λ4=0 (G.10)

Therefore, λ3 > λ4 ≥ 0 and θ2 = θ1 − b. Similarly, by (G.5) and (G.6), one can check

that this does not violate the condition.

By plugging θ0, θ1, θ2, θ3 into (G.2), the minimum gradient is computed as following:

min
∂f(x)

∂x
=−θ0

1

2
(1−

w

T
)2 + (−2

w

T
+
3w2

2T
)(θ0 − b)

+ (θ0 − 2b)(2(1 −
w

T
)−
3

2
(1−

w

T
)2) +

w2(θ0 − 3b)

2T 2

=−
b

T
.

Similarly, one can show that the maximum gradient is bounded by bT .

Now consider 3D case. By following inequalities, the magnitude of the gradient at

everywhere is bounded by b.

∣∣∣∣∂f(x, y, z)∂x

∣∣∣∣=
∣∣∣∣∣∣
∑
ijk∈Kx

θxijkβ
n(x− i)βn(y − j)βn(z − k)

∣∣∣∣∣∣
≤
∑
ijk∈Kx

∣∣θxijkβn(x− i)βn(y − j)βn(z − k)∣∣
=
∑
j,k

∑
i

∣∣θxijkβn(x− i)βn(y − j)βn(z − k)∣∣
≤
b

T

∑
j,k

βn(y − j)βn(z − k)

=
b

T
.

Using the similar arguments, one can show that the other gradient components are

bounded by the differences of consecutive coefficients. This proves the Proposition 2.
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