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ABSTRACT

Convergent Algorithms for Statistical Image Reconstruction in Emission Tomography

by

Sangtae Ahn

Chair: Jeffrey A. Fessler

Emission computed tomography (ECT), including positron emission tomography (PET)

and single photon emission computed tomography (SPECT), is a medical imaging tech-

nique that provides functional information about physiological processes. The goal of

ECT is to reconstruct the distribution of the radioisotopes in the body by measuring the

emitted photons. Statistical image reconstruction methods have shown improved image

quality over conventional nonstatistical methods by using accurate physical models and

appropriate noise models. However, statistical methods require huge computation and

complex modeling. So computationally efficient algorithms and simple yet accurate sta-

tistical models are essential. First, we develop fast and convergent algorithms for statistical

image reconstruction. Ordered subsets or incremental gradient type algorithms have been

popular due to their fast initial convergence rates. However, they do not converge to a

solution in general. We achieve global convergence by two methods: relaxation and in-

cremental optimization transfer principles. Those two families of algorithms are provably

convergent yet converge fast. We apply the algorithms to emission and transmission to-

xii



mography and to simulation and real PET data. Secondly, we develop statistical models

for randoms-precorrected PET. Accidental coincidence (AC) events, or randoms, are one

of primary sources of background noise in PET. Most PET scanners are corrected for AC

events by real-time subtraction of delayed window coincidences. Although the randoms-

precorrection compensates in mean for AC events but destroys the usual Poisson statistics,

complicating statistical reconstruction. We propose new likelihood approximations that

allow negative sinogram values without requiring zero-thresholding. Analysis and simula-

tion results show that the new statistical model is nearly free of systematic bias yet keeps

low variance. Finally, we analyze the parameterization of time activity curves (TACs) in

dynamic imaging. We provide approximate expressions for the covariance matrix of ki-

netic parameter estimators based on TAC reconstructions when TACs are modeled as a

linear combination of temporal basis functions such as B-splines. The approximations are

useful tools for assessing and optimizing the temporal basis functions for TACs.
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CHAPTER 1

Introduction

Emission computed tomography (ECT) is a medical imaging modality that provides

functional information about physiological processes, as opposed to X-ray CT provid-

ing anatomical information. In ECT, a small amount of a radioactive compound labeled

with a radioisotope, called a radiotracer, is introduced into a patient’s body by injec-

tion or inhalation, and then the spatial and sometimes also the temporal distribution of

the radioisotope, the decay of which generates photons, is reconstructed from the pho-

ton measurements. The radioactivity image reconstruction gives important information on

a specific biochemical process or blood flows which is difficult to obtain through other

imaging modalities. Although it is a challenging task to reconstruct high quality images

from intrinsically low SNR data mainly due to the dosage limitation and low sensitivities,

statistical methodology has successfully shown desirable performance.

A statistical approach, maximum likelihood (ML) estimation, for ECT was first pro-

posed by Rockmore and Macovski in 1976 [109], and the expectation maximization (EM)

algorithm [32] was applied to ML reconstruction by Shepp and Vardi in 1982 [112]. Since

then, statistical image reconstruction methods like ML as well as penalized-likelihood

(PL) or maximum a posteriori (MAP) estimation have enjoyed great popularity to date.

The advantages of statistical methods over nonstatistical analytical methods like filtered

1
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backprojection (FBP) [79, p. 125] are addressed as follows. Statistical methods can model

physical effects and nonstandard scan geometries accurately, for example, nonuniform at-

tenuation in SPECT, and PET scans with missing data [62]. Also, statistical methods take

into account appropriate statistical noise models to lower the variance of reconstructed

images. As a result, improved image quality [113] and better lesion detectibility [101] can

be acquired.

However, statistical methods require a huge computational load, and complex physics

and noise modeling. Despite increasing computing power, we still face challenges in

computation particularly when moving from 2D to fully 3D imaging, and from static to

dynamic imaging. Additionally, establishing accurate yet simple models is the key to

success in statistical image reconstruction. The objective of this dissertation is to develop

improved statistical methods for ECT in three aspects: fast and reliable algorithms for

image reconstruction, accurate statistical models for randoms-precorrected PET emission

scans, and efficient parameterization of time activity curves (TACs) for dynamic imaging.

In the first part of our work (Chapters 4 and 5), we develop fast and convergent iterative

algorithms for PL image reconstruction. There are several properties that we wish an ideal

algorithm to have: fast convergence rate, global convergence, simplicity, parallelizabil-

ity, flexibility to accommodate any type of system model, and capability to enforce object

constraints like nonnegativity. Among these, we focus on convergence rate and global

convergence. Since the ordered-subsets EM (OS-EM) algorithm was proposed by Hudson

and Larkin in 1994 [55], OS type or block iterative algorithms, also known as incremental

gradient methods in the optimization literature, have been very popular for tomographic

image reconstruction because of their remarkably fast initial convergence rates. However,

OS type algorithms generally do not converge to a PL optimal image, but become eventu-

ally stuck at a limit cycle that is different from the optimal image.
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We provide two families of convergent OS type algorithms: relaxed OS algorithms and

incremental optimization transfer algorithms. Firstly, the relaxed OS algorithms achieve

global convergence by introducing relaxation parameters or diminishing stepsizes. Par-

ticularly, we provide two types of relaxed OS algorithms for emission tomography in

Chapter 4: relaxed OS-SPS and modified BSREM. Secondly, we generalize the incre-

mental EM approach proposed by Neal and Hinton [87], so we obtain a very broad family

of incremental optimization transfer algorithms in Chapter 5. We apply the incremen-

tal optimization transfer algorithms to transmission tomography in which a challenging

nonconcave maximization problem arises. All the algorithms above are convergent yet

converge rapidly, and they can be applied to other image reconstruction problems.

In the second part of this dissertation (Chapter 6), we focus on statistical models spe-

cific to randoms-precorrected PET emission scans. Accidental coincidence (AC) events,

also known as randoms, are one of primary sources of background noise in PET. The AC

events affect a quantitative PET study unfavorably, in particular, for septaless fully 3D PET

where AC rates are high, and for newer scanners with small crystals where photon counts

per ray can be low. Many PET scans are corrected for AC events by real-time subtraction

of delayed window coincidences which represent AC events. The randoms-precorrection

reduces the amount of data by a factor of 2, which is desirable for large systems. However,

the precorrection destroys the usual Poisson statistics and complicates ML or PL recon-

struction. We provide a novel estimator allowing negative sinogram values, which is free

of systematic bias and leads to low variance despite its simple implementation. We also

develop algorithms tailored to the new estimators.

In the third part of our work (Chapter 7), we focus on time activity curve (TAC) pa-

rameterization for dynamic imaging. Usually, an object to be scanned is parameterized

spatially using rectangular voxels, that is, rect basis functions (or sometimes blobs are



4

used [80, 134]). For dynamic imaging where the goal is to reconstruct TACs for each

voxel, a conventional method is to reconstruct a series of images independently, which is

equivalent to using rect temporal basis functions. Recently, Nichols et al. [90] have recon-

structed continuous TACs using overlapping cubic B-splines and temporal regularization.

Temporal regularization is carried out by including a temporal penalty function which en-

courages temporal smoothness in reconstructed TACs. To assess and optimize temporal

basis functions (and temporal regularization), we analyze the covariance of kinetic param-

eter estimators from TACs estimated using those temporal basis functions. We derive the

approximate formula for the covariance of kinetic parameter estimators as a function of

temporal basis functions so that we can optimize the choice of basis functions without

performing exhaustive simulation studies.

The original contributions made by this dissertation are as follows.

• New convergent and fast relaxed OS algorithms for emission tomography are pre-

sented: relaxed OS-SPS and modified BSREM [3, 4].

• A new family of incremental optimization transfer algorithms are presented, and a

particular transmission incremental optimization transfer (TRIOT) algorithm is de-

veloped for transmission tomography [7, 8].

• A new shifted Poisson (SP) model allowing negative sinogram values is presented

for randoms-precorrected PET emission scans [5, 6].

• New reconstruction algorithms (SPS and ML-EM based) for the new SP model are

developed [5, 6].

• Approximate formulas for the covariance of kinetic parameter estimators from TACs

reconstructed using temporal basis functions are developed for 1D [9].



CHAPTER 2

Background

2.1 Emission Tomography

Positron emission tomography (PET) and single photon emission computed tomogra-

phy (SPECT) are two common types of emission computed tomography (ECT) [95, 98,

117]. They provide physiological information by reconstructing the spatial (and some-

times temporal) distribution of positron-emitting radioisotopes in a patient’s body for PET,

and, of γ-ray-emitting radioisotopes for SPECT. There are a variety of radionuclides

that can be bound to organic molecules without changing the biological properties of the

molecules, and the estimated concentrations of the radioisotopes enable us to investigate

and study specific biochemical processes or blood flows.

For PET, commonly used positron-emitting radioisotopes include 11C, 15O, 13N, and

18F; and the examples of a radiopharmaceutical labeled with them are [11C]deoxyglucose

(DG), [15O]water, [13N]ammonia, and [18F]fluorodeoxyglucose (FDG). The radioisotope,

introduced into the body, decays and emits a positron (β+) which travels a short range of a

few millimeters, called positron range [12, 75], before annihilating with an electron. The

annihilation generates a pair of 511 keV gamma photons which travel in nearly opposite

directions (Fig. 2.1). If both of these photons are detected within a coincidence timing

window (about 5–10 ns) by some pair of detectors, then we determine that an annihila-

5
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Figure 2.1: Diagram of a PET system with a cylindrical ring of detectors (left) and a SPECT system (right).

tion event has happened somewhere along the line of response (LOR), which is the line

connecting the two detectors, and increments the number of events for the LOR.

For SPECT, a radioisotope that decays and emits a single gamma photon is used; for

example, 99mTc emits a single 140 keV photon. The emitted photons are detected by a

rotating array of detectors. To determine the corresponding LOR, collimators are attached

to the detectors (Fig. 2.1). However, we focus mostly on PET in this dissertation.

Each LOR is characterized by a projection angle and a radial distance (for 2D imaging).

The measurement data, a collection of the number of detected events for each LOR, is

called sinogram or projection data. The process of acquiring the sinogram data is called

emission scan. The sinogram data is said to lie in a sinogram or projection domain, and

the object to be scanned is said to lie in an image domain.

The aim of emission tomography is to reconstruct the spatial distribution of the ra-

dioisotope from the sinogram data by considering geometrical factors, physical effects,

and noise properties. To estimate the radioactivity distribution accurately, the effects of

attenuation should be taken into account. One can estimate attenuation by performing a

“transmission scan” as described in the next section.
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2.2 Transmission Tomography

Photons traveling through the body experience two types of interactions: photoelectric

absorption and Compton scatter. Consequently, some photons that get scattered or ab-

sorbed by the patient’s body are undetected. This effect is called attenuation. The survival

probability of a photon is determined by the length and the type of organ (e.g., bone or tis-

sue) that the photon traverses. By Beer’s law, the survival probability of a photon traveling

through a uniform medium is given by

α = e−µL

where µ is the linear attenuation coefficient of the medium and L is the length of the

medium. The linear attenuation coefficient means the fraction of a beam of gamma rays

that is absorbed or scattered per unit thickness, and it is typically reported in units of cm−1.

In other words, if we start withNin photons, then after a thickness L, we haveNout photons

such that

Nout = αNin = e−µLNin. (2.1)

For example, suppose that a photon passes through two-layer media: the thickness and the

attenuation coefficient of one layer are L1 and µ1 respectively, and those of the other layer

are L2 and µ2 respectively. Then its survival probability is given by

α = α1α2 = e−µ1L1e−µ2L2 = e−(µ1L1+µ2L2) (2.2)

where one can see the attenuation coefficients play a role as “linear” weights.

The linear attenuation coefficient image (attenuation map), µ(x), can be reconstructed

by using an outside radioactive source. Ring or rod sources with long half life positron

emitters are used for PET, and the process of acquiring the sinogram data with those

sources is called transmission scan. A transmission scan can be performed before or after
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the emission scan. The mean number of photons recorded for the ith LOR for transmission

scan would ideally be

bie
−
∫

LORi
µ(x)dx (2.3)

where LORi is the path of the corresponding LOR, and bi is the mean number of photons

recorded for the LOR when the object were absent. [Compare (2.3) with (2.1).] One can

view (2.3) as a generalization of (2.2). An object (a patient’s body) being present in the

scanner reduces the number of detected photons by a factor of the survival probability for

the corresponding LOR. The goal of transmission tomography is to estimate the attenua-

tion map µ(x) from the sinogram data obtained in transmission scan. The reconstructed

attenuation map is supposed to be used for radioactivity reconstruction in emission tomog-

raphy.

The problem described here in transmission tomography is basically the same as that

of X-ray computed tomography (CT). A major difference is that in PET or SPECT trans-

mission scans, the source is usually a monoenergetic radiosotope whereas X-ray sources

can be polyenergetic. In the polyenergetic case, one should consider effects such as “beam

hardening” [59].

2.3 Background Noise

In PET, background noise consists mainly of accidental coincidences (ACs), also known

as randoms, and scatters. For accurate quantification, the noise should be taken into ac-

count.

2.3.1 Accidental Coincidence (or Random)

For many of annihilation events, only one of the photon pair is detected because the

other one is absorbed or scattered out of plane by the body, and the detection probability is
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less than one even when the photon arrives at the scintillation crystal. Detections of those

single photons are called singles. If two singles from separate annihilations are detected

within the coincidence timing window, then they are mistakenly registered as having arisen

from the same annihilation (Fig. 2.2). This is called an accidental coincidence (AC) event,

also known as a random event.

Let Si1 and Si2 be the singles rate (photons per time) at detector i1 and i2 respectively,

and let τ be the duration of a coincidence timing window. For a single event at detector

i1 that happens at t = t1, on average, 2τSi2 events are detected by detector i2 within the

coincidence timing window, that is, for t1 − τ < t < t1 + τ . Therefore, the rate of AC

events between detector i1 and i2 is given by

Ri1i2 = 2τSi1Si2 .

In other words, an AC event occurs when two unrelated singles are detected within a

coincidence timing window.

The “prompt” sinogram data, obtained using an ordinary coincidence timing window,

are contaminated by AC events. To remove the contribution of the AC events, most PET

centers collect “delayed” sinogram data by using a delayed coincidence timing window

that is offset in time by a predetermined time delay (larger than 2τ ). The delayed sino-

gram data cannot contain true coincidences. Since the AC events are uniformly distributed

locally in time, the delayed coincidences have the same mean as the AC events in a prompt

coincidence timing window. Usually, sinogram data are precorrected for ACs by real-time

subtraction of the delayed sinogram data. In other words, for each coincidence event in

the prompt coincidence timing window, the corresponding sinogram bin is incremented.

However, for coincidence events in the delayed coincidence timing window, the corre-

sponding sinogram bin is decremented. By the real-time precorrection, the AC events are

corrected for in the mean.
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Figure 2.2: Background events in PET: accidental coincidence (AC) event (left) and scattered event (right).

2.3.2 Scatter

Although most scattered photons in the body leave the detector plane undetected, some

scattered photons are still detected and registered as having an incorrect LOR (Fig. 2.2).

A significant portion of scattered events can be removed by “energy discrimination” since

photons lose a fraction of their energy during Compton interactions. However, scatter

is a primary source of background noise particularly for septaless 3D PET, and scatter

estimation is very important for accurate quantification. In this dissertation, we assume

that the contribution of scattered events is known for simplicity.

2.4 System Model

2.4.1 Transmission Scans

By performing a transmission scan with exterior radioactive sources, one can recon-

struct the attenuation map of the patient’s body. (The estimated attenuation map is then

used for emission image reconstruction.) The attenuation map µ(x) is a real-valued non-

negative function whose domain is R
2 or R

3. It is usually parameterized through pixels or
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voxels as follows:

µ(x) ∼=
p
∑

j=1

µjIj(x)

where Ij(·) is the indicator function representing the jth pixel or voxel, and p is the number

of pixels or voxels. The integral in (2.3) is approximated by

∫

LORi

µ(x)dx ∼=
∫

LORi

p
∑

j=1

µjIj(x)dx =

p
∑

j=1

(∫

LORi

Ij(x)dx

)

µj

4
=

p
∑

j=1

aijµj

where {aij} defines a system matrix A. For 2D, the element aij means the length of the

intersection of LORi with the jth pixel, or the area of the intersection of a strip (with a

finite width) representing the ith ray with the jthe pixel. The mean of the ith sinogram

data corresponding to the ith LOR in a transmission scan is modeled as

E[Yi] = bie
−
∑p

j=1
aijµj + ri

where bi is the ith measurement data from the blank scan, and ri denotes backgrounds

including scatter and AC events. The measurement data Yi are modeled as indepen-

dent Poisson random variables. The goal is to estimate the attenuation coefficients µ =

[µ1, · · · , µp]′ from the data y = [y1, · · · , yN ]′ where ′ denotes transpose. Note that yi are

integer-valued while E[Yi] are not.

2.4.2 Emission Scans

The radioactivity λ(x) is also parameterized using pixels or voxels by a discrete vector

λ = [λ1, · · · , λp]′. For emission scans, the mean of the ith sinogram data is modeled as

E[Yi] =

p
∑

j=1

aijλj + ri.

The aij accounts for geometry, attenuation (estimated from a transmission scan), detector

efficiencies, positron range, scan time and so on. Note the aij here is different from that
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in the previous subsection. The ri denotes backgrounds including randoms, scatters, and

background radiation. The measurement data Yi are modeled as independent Poisson ran-

dom variables. The goal is to estimate the emission activity λ = [λ1, . . . , λp]
′ from the

data y = [y1, · · · , yN ]′. Again, yi are integer-valued while E[Yi] are not.

2.5 Tracer Kinetics

In the previous sections, we assumed the distribution of the radioisotopes in the body

is temporally stationary (for emission tomography). We focus on static imaging of steady

states in Chapters 3–6. However, in many cases, dynamic behavior of radioactivity in the

body provides valuable information on specific physiological processes. In this section,

we briefly review the dynamic model of radioactivity, on which Chapter 7 is based.

2.5.1 Dynamic Model

Let τ = [τ1, · · · , τKT
]′ denote the emission event occurrence times for t ∈ [0, T ) in a

region of interest or a pixel. Then the counting process represented by (τ ;KT ) is modeled

as an inhomogeneous Poisson process whose rate (or intensity) function is λ(·) [114]. In

other words, the number of events that occurred for t ∈ [t1, t2), where t1, t2 ∈ [0, T ] and

t1 < t2, is modeled as a Poisson random variable whose mean is the definite integral of

λ(·) on [t1, t2):

|{τ1, · · · , τKT
} ∩ [t1, t2)| ∼ Poisson

{∫ t2

t1

λ(t)dt

}

where |A| is the number of the elements in the set A. The rate function λ(·) is called a

time activity curve (TAC). The goal of dynamic imaging is to reconstruct the TACs for each

ROI or pixel from the measurement data, contaminated by background noise, in sinogram

domain.
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Figure 2.3: One tissue compartment model.

2.5.2 Compartmental Model

In tracer kinetics studies, TACs are often parameterized using a compartmental model

based on knowledge of a physiological process of interest [27, 64]. A compartmental

model lumps a system into discrete groups, called compartments, which are intercon-

nected by pathways representing fluxes of material and/or biochemical conversions. A

compartment is an amount of material that acts as though it is well-mixed and kinetically

homogeneous. Compartments can represents different physical spaces, or different forms

in the same physical space.

For example, consider a one tissue compartment model shown in Fig. 2.3. Let b(t)

denote a blood input function and let x(t) denote radioactivity in the tissue. The blood

input function can be measured through direct blood sampling. Assume b(t) is known.

Let θ1 and θ2 denote rate constants that are kinetic parameters to be estimated. From the

governing differential equation

dx

dt
(t) = θ2b(t) − θ1x(t),

the TAC can be expressed as

x(t) = b(t) ? h(t)

where ? denotes the convolution, and the impulse response of the given kinetic model, that
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is, a one tissue compartment model, can be obtained as

h(t) = θ2e
−θ1tu(t).

The u(t) is the unit step function. The goal is to estimate the physiologically meaningful

kinetic parameters θ1 and θ2 from a realization, contaminated by background noise, of a

Poisson process whose rate function is h(t).



CHAPTER 3

Statistical Image Reconstruction Methods for Tomography

In this chapter we define the problems for statistical (static) image reconstruction in

both emission and transmission tomography, which subsequent chapters, particularly Chap-

ters 4 and 5, focus on. In transmission tomography, one estimate the attenuation map of

a patient’s body by using exterior radioactive sources. For emission tomography, we re-

construct the radioactivity distribution in the body by incorporating the attenuation map.

In this dissertation, we consider the emission and transmission problems separately. For

analysis of noise propagation from the attenuation map into emission reconstruction, see

[51, 132].

We also review “optimization transfer algorithms” on which the new reconstruction

algorithms we develop in this dissertation are based.

3.1 Emission Tomography

3.1.1 Statistical Model

We focus on the linear Poisson statistical model [73] that has been used extensively

for emission computed tomography including positron emission tomography (PET) and

single photon emission computed tomography (SPECT) as well as for photon-limited op-

tical applications like fluorescence confocal microscopy [119]. The goal is to estimate an

unknown parameter vector λ = [λ1, · · · , λp]′ from a realization y = [y1, · · · , yN ]′ of the

15
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projection measurement random vector Y = [Y1, · · · , YN ]′ where λj is the mean activ-

ity at the jth pixel, yi is the number of events detected at the ith detector unit (detector

pair for PET), and ′ denotes matrix transpose. Assuming usual Poisson distributions, the

measurement model1 for emission scans is as follows:

Yi ∼ Poisson
{

ȳi(λ
true)

}

, i = 1, · · · , N

where the measurement means are given by

ȳi(λ) =

p
∑

j=1

aijλj + ri = [Aλ]i + ri. (3.1)

The vector r = [r1, · · · , rN ]′ denotes the mean number of background events such as

scatters, random coincidences and background radiation, and A = {aij} is a system matrix

incorporating scan geometry, attenuation, detector efficiencies, scanning time and so on.

We assume that ri and aij are known nonnegative constants, and that the sensitivity factors,

aj
4
=
∑N

i=1 aij , are nonzero (that is, positive) for all j, which is reasonable in practice.

3.1.2 Penalized-Likelihood Reconstruction

Assuming that the measurements Yi are independent, the probability mass function

(PMF) of Y is given by

P (y|λ) =
N
∏

i=1

1

yi!
e−ȳi(λ)(ȳi(λ))yi

where yi are nonnegative and integer-valued. By taking the logarithm of the above PMF

and ignoring constants independent of λ, the log-likelihood of λ given y is obtained as

follows:

L(λ) =
N
∑

i=1

hi([Aλ]i) (3.2)

1For randoms-precorrected PET scans, see Chapter 6.
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where the marginal log-likelihood function hi are defined by

hi(l)
4
= yi log(l + ri) − (l + ri). (3.3)

The functions hi : [−ri,∞) → R∪{−∞} can be shown to have the following properties:2

• hi(l) ≤ hi(l̂i), ∀l ≥ −ri where l̂i
4
= yi − ri. (3.4)

• hi is monotone increasing on [−ri, l̂i] and monotone decreasing on [l̂i,∞).(3.5)

• hi is concave. (3.6)

The property (3.6) implies that the log-likelihood L is concave.

For maximum likelihood (ML) reconstruction, one needs to find a maximizer of the

log-likelihood L over R
p
+ where the nonnegativity constraint3 is given by

R
p
+ = {λ ∈ R

p : λj ≥ 0, ∀j}.

However, the ML approach leads to unacceptably noisy images because tomographic im-

age reconstruction is an ill-conditioned problem. So we focus on penalized-likelihood

(PL) reconstruction where one must find a maximizer of the following PL objective func-

tion over a constraint set D:

Φ(λ) = L(λ) −R(λ) (3.7)

where R is a regularization term that encourages smoothness in the reconstructed images

and that improves conditioning. If R = 0, the problem becomes ML reconstruction. We

define the constraint set D ⊂ R
p
+ by

D 4
= {λ ∈ R

p
+ : Φ(λ) ∈ R}

= {λ ∈ R
p
+ : [Aλ]i > −ri, ∀i such that yi > 0} (3.8)

2For convenience, we adopt the convention that log 0 = −∞ and 0 · log 0 = 0.

3The nonnegativity constraint is based on physical grounds.
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In a physically realistic case4 where ri > 0 for all i, we have D = R
p
+. However, if

ri = 0 for some i, then D 6= R
p
+. In this case, one can slightly modify Φ without changing

its maximizer so that Φ and ∇Φ are well-defined (that is, finite) over R
p
+ as described in

Section 3.1.6.

3.1.3 Penalty Function

Although the methods described in this work can be easily generalized, for simplicity

we assume that R in (3.7) is the following type of roughness penalty function:

R(λ) =
β

2

p
∑

j=1

∑

k∈Nj

wjkψ(λj − λk) (3.9)

where β ≥ 0 is a regularization parameter that controls the smoothness in the recon-

structed image, Nj denotes the neighborhood of the jth pixel, ψ is a potential function,

wjk are nonnegative and symmetric weights (ordinarily, wjk = 1 for horizontal and ver-

tical neighboring pixels, and wjk = 1/
√

2 for diagonal neighboring pixels). Viewing the

pixels of an image as nodes of a graph with neighboring pixels (say, Nj for the jth pixel)

connected by an edge, we assume that the graph is connected in the sense that it is always

possible to find some sequence of edges leading from any pixel to any other pixel [67]. We

4Any PET scan will have nonzero randoms and any real SPECT scan will be contaminated by a scattered component
and by a nonzero (but possibly quite small) component from background radiation.



19

also assume that the potential function ψ satisfies the following conditions (cf [1, 37, 54]):

• ψ is nonnegative. (3.10)

• ψ is symmetric. (3.11)

• ψ is continuously differentiable. (3.12)

• ψ̇(t) =
dψ

dt
(t) is nondecreasing for t ≥ 0. (3.13)

• ωψ(t)
4
=
ψ̇(t)

t
is nonincreasing for t ≥ 0. (3.14)

• ωψ(0) = lim
t→0

ψ̇(t)

t
is finite and nonzero, that is, 0 < ωψ(0) <∞. (3.15)

Some of the above conditions are used in deriving a surrogate function for the penalty

function in Section 3.3.2. Condition (3.13) implies that the penalty function R is convex,

and R is nonnegative due to (3.10).

The penalty function can be interpreted as representing a priori information in the

following sense. Assuming that the a priori distribution of λ is f(λ) = exp(−R(λ)), the

a posteriori distribution is given as

f(λ|Y ) =
P (Y |λ)f(λ)

P (Y )
.

by Bayes’ formula [121, p. 78]. One can see that the log posterior log f(λ; Y ) is equiv-

alent to the PL objective in (3.7) (to within constants with respect to λ), in other words,

maximum a posteriori (MAP) reconstruction is computationally equivalent to PL recon-

struction.

The penalty function in (3.9) can be expressed in a more general (and more easily

implementable) form as follows:

R(λ) = β

K
∑

k=1

ψk([Cλ]k)
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where C is a K × p penalty matrix and

[Cλ]k =

p
∑

j=1

ckjλj.

See [37] for a specific penalty matrix C to implement (3.9).

A variety of penalty functions with different noise-resolution trade-offs and edge-preserving

properties have been proposed [17,67]. See [123,124] for methods of designing quadratic

penalty functions to achieve spatially uniform resolution. In this dissertation, we assume

the penalty function R is given, and we focus on maximizing the given objective function.

3.1.4 Existence and Uniqueness

One can verify that the level set {λ ∈ D : Φ(λ) ≥ Φ(1)} is compact (that is, bounded

and closed) where 1 ∈ R
p is a column vector of ones,5 using the coerciveness6 of Φ, and

the continuity of Φ on D. Then, by the Weierstrass’ Theorem [15, p. 654], there exists a

(possibly nonunique) PL solution7 λ̂ = arg maxλ∈D Φ(λ).

If the objective function Φ is strictly concave on D, then there exists a unique PL solu-

tion [15, p. 685]. We assume strict concavity for proving convergence of some algorithms

like modified BSREM in Section 4.3.1. However, we will allow a concave objective func-

tion (possibly having multiple solutions) for most cases. The following Lemma (cf The-

orem 1 of [34] and Lemma 1 of [67]) provides a simple sufficient condition for the strict

concavity of Φ.

Lemma 3.1. If y′A1 6= 0, then Φ in (3.7) [with (3.9) for β > 0] is strictly concave on D

5The vector 1 is arbitrary; any vector in D can replace it.

6The function Φ is said to be coercive in the context of maximization if lim‖λ‖→∞ Φ(λ) = −∞. This can be easily
shown by the assumption of nonzero sensitivity factors:

∑N

i=1
aij > 0, ∀j.

7We use this “arg max” notation if and only if Φ(λ̂) ≥ Φ(λ) for all λ ∈ D.
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for any ψ that is strictly convex and twice differentiable.8

Proof. The (negative) Hessian of Φ can be computed as follows:

−∇2Φ(λ) = A′W (λ)A + ∇2R(λ)

with

W (λ) = diag
{

yi
ȳ2
i (λ)

}

(3.16)

for λ ∈ D, where we interpret yi/ȳ2
i (λ) as 0 if yi = 0. For any x ∈ R

p, using the

symmetry of ψ and wjk, we obtain:

x′∇2R(λ)x =
β

2

p
∑

j=1

∑

k∈Nj

wjkψ̈(λj − λk)(xj − xk)
2.

Since ψ̈ > 0 and the neighborhood system is connected by assumption, for β > 0,

x′∇2R(λ)x = 0 only if x = 0 or x = c1 for some c 6= 0. But c1′A′W (λ)Ac1 =

c2‖W 1/2(λ)A1‖2 6= 0 by assumption. Therefore, x′∇2Φ(λ)x < 0,∀x 6= 0.

Since yi and aij are nonnegative, the assumption y′A1 6= 0 is equivalent to A′y 6= 0. In

other words, the backprojection of the data must be a nonzero image, which is reasonable

in practice.

3.1.5 Boundedness

It is clear that a PL solution set

Λ∗ 4
= {λ∗ ∈ D : Φ(λ∗) ≥ Φ(λ), ∀λ ∈ D} (3.17)

is bounded by the coerciveness of Φ. In fact, for given data y, one can compute an upper

bound U = U(y) ∈ (0,∞) on the elements of Λ∗ such that Λ∗ ⊂ B where

B 4
= {λ ∈ R

p : 0 ≤ λj ≤ U, ∀j}. (3.18)

8Such potential functions include the quadratic function ψ(t) = t2/2 and many others suggested by Lange [67].
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Thus, one can search for a solution over the bounded set B ∩ D instead of D. This prop-

erty is important because the boundedness of iterates generated by an algorithm plays an

essential role in many convergence proofs.

We provide two types of such computable upper bounds in Appendix A. One can also

compute a physically meaningful upper bound for emission images based on the dosage

taken by the patient.

3.1.6 Modified Objective Function

For λ ∈ S 4
= R

p
+ \ D where D is defined in (3.8), we have Φ(λ) = −∞ and

‖∇Φ(λ)‖ = ∞, causing gradient-based methods to collapse. Although we have S = ∅

in a physically realistic case that ri > 0 for all i, many researchers have considered a case

that ri = 0. We provide a method of dealing with the problem related to the region S .

The EM algorithm for ML reconstruction avoids the problem due to its intrinsic posi-

tivity, that is, the iterates never lie in S as long as the starting point does not; however, in

many other cases, positivity is not guaranteed. To circumvent the problem, we replace the

log-likelihood near the problematic region S with well-behaved functions, say, quadratic

approximations. Define

I 4
= {i = 1, . . . , N : ri = 0 and yi > 0}. (3.19)

Consider the following modified objective function:

Φ̃(λ) =
N
∑

i=1

h̃i([Aλ]i) −R(λ)

where

h̃i(l)
4
=











ḧi(ε)

2
(l − ε)2 + ḣi(ε)(l − ε) + hi(ε), for l ≤ ε and i ∈ I

hi(l), otherwise
(3.20)
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for some ε > 0, and R is the same as in (3.9). The modified marginal log-likelihood h̃i

is a twice differentiable and strictly concave real-valued function defined on R for i ∈ I.

Note that Φ(λ) = Φ̃(λ) for λ ∈ E where

E 4
= {ξ ∈ D : [Aξ]i > ε, ∀i ∈ I}, (3.21)

and that Φ̃ is well-defined on R
p
+. The modified objective function Φ̃ preserves the (strict)

concavity9 of Φ. Remarkably, one can compute ε > 0 such that

Λ∗ = Λ̃∗ 4
= {λ∗ ∈ B : Φ̃(λ∗) ≥ Φ̃(λ), ∀λ ∈ B}, (3.22)

where Λ∗ is defined in (3.17), and B is defined in (3.18) with such U as computed in the

previous section. This means that the modified objective function with such ε has the same

maximizer(s) as the original. Moreover, one can search for a solution over the compact set

B instead of D or B∩D. The modified objective function Φ̃ is real-valued on B, and it has

a nice property that its gradient ∇Φ̃ is Lipschitz continuous10 on B. We provide a method

to determine such ε that ensures (3.22) in Appendix B.

One should be cautioned that ε given in (B.1) could be too small to be practical in finite

precision computers; nevertheless, at least we can proceed to develop theory. Although

the reconstruction methods described in this dissertation can apply to the case that ri =

0 for emission tomography by using the modified objective function, for simplicity we

henceforth assume that ri > 0 for all i unless stated otherwise.

9For strict concavity, Lemma 3.1 still applies to Φ̃. If λ ∈ R
p
+ \E , then its corresponding diagonal element of W (λ)

in (3.16) would change to −ḧi(ε) = yi/ε
2, and this leads to the same conclusion.

10A function f is said to be Lipschitz continuous on D if there exists some L > 0 such that ‖f(x) − f(y)‖ ≤
L ‖x − y‖ for all x,y ∈ D. A differentiable function is Lipschitz continuous if its derivatives are bounded. Con-
versely, the derivatives of a Lipschitz continuous function are bounded when they exist. Therefore, Lipschitz continuity
conditions on the gradients of a function imply that the curvatures of the function are bounded if they exist.
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3.2 Transmission Tomography

3.2.1 Statistical Model

We assume the following Poisson statistical model for (monoenergetic) transmission

measurements:

Yi ∼ Poisson
{

bie
−[Aµtrue]i + ri

}

, i = 1, · · · , N (3.23)

where Yi denotes the transmission measurement random variable, bi denotes the blank

scan counts of the ith detector unit (detector pair for PET), ri denotes the mean number

of background counts, and [Aµ]i =
∑p

j=1 aijµj represents the ith line integral of the

attenuation map. The goal is to estimate an unknown parameter vector µ = [µ1, · · · , µp]′

from a realization y = [y1, · · · , yN ]′ of the random vector Y = [Y1, · · · , YN ]′ where µj

is the mean attenuation coefficient in the jth pixel. We assume that aij and ri are known

nonnegative constants, and that bi are known positive constants.

3.2.2 Penalized-Likelihood Reconstruction

We focus on penalized-likelihood (PL) reconstruction where one must find a maximizer

of the PL objective function,11 over R
p
+,

Φ(µ) = L(µ) −R(µ) (3.24)

which includes the log-likelihood function

L(µ) =
N
∑

i=1

hi([Aµ]i) (3.25)

hi(l) = yi log(bie
−l + ri) − (bie

−l + ri) (3.26)

and the roughness penalty R is defined in (3.9).

11Throughout this dissertation, we use the same notations (Φ, L, hi, U , . . . ) in different contexts. One can distinguish
them by the argument variable of functions: λ is used for emission tomography, µ for transmission tomography, and x

for both cases or a general optimization problem unless stated otherwise.
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Suppose ri = 0 for all i. If A′y > 0, then one can show that the objective function Φ

is strictly concave for R with strictly convex potential functions ψ, and that there exists a

maximizer of Φ. However, in a physically realistic case that ri > 0, the PL objective can

be nonconcave [1], complicating maximization.

We apply a box constraint

B = {µ ∈ R
p : 0 ≤ µj ≤ U, ∀j} (3.27)

as in the emission case. The nonnegativity restriction is desirable on physical grounds, and

the upper bound U > 0 is set by the user to be a value that is larger than the maximum

attenuation coefficient conceivable for the object being scanned whereas the upper bound

for the emission case was analytically computable in Section 3.1.5. The reason for using

the box constraint B rather than the nonnegativity constraint R
p
+ is that the convergence

proofs for most reconstruction algorithms need the iterates to be bounded. However, im-

posing upper bounds is not overly restrictive in a sense that one can choose a physically

meaningful upper bound for attenuation coefficients, and the PL image estimate is unlikely

to be affected by U if one chooses an arbitrarily large U . In practice, if the upper bound

happens to be hit by some iterate, then the user could rerun the algorithm with a larger

bound.

3.3 Optimization Transfer Algorithms

Most iterative image reconstruction algorithms to find a maximizer of an objective

function like (3.7) or (3.24) are based on or have their roots in optimization transfer prin-

ciples [70]. Many algorithms can be more easily understood in the framework of the op-

timization transfer approach although their original motivation is different. In this section

we describe the optimization transfer approach and provide two representative families of

optimization transfer algorithms particularly useful for tomographic image reconstruction.
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3.3.1 Optimization Transfer Principles

The problem is to find the maximizer of an objective function:

x̂ = arg max
x∈D

Φ(x).

In the optimization transfer approach, when the objective function Φ(·) is difficult to max-

imize, one finds a surrogate function φ(·; xn), which is easier to maximize than Φ, at a

current iterate xn, and then maximizes the surrogate to obtain a new iterate xn+1. Repeat-

ing this process, a sequence {xn}∞n=0 is generated for some initial estimate x0 ∈ D. This

approach can be summarized as follows:

xn+1 = arg max
x∈D

φ(x; xn), (3.28)

for n ∈ N. If we choose φ(·; ·) appropriately, the sequence {xn} should converge to a

solution x̂.

Suppose that we choose surrogate functions satisfying the following minorization con-

ditions:

φ(xn; xn) = Φ(xn) (3.29)

φ(x; xn) ≤ Φ(x), ∀x ∈ D (3.30)

∇Φ(x)|x=xn = ∇10φ(x; xn)
∣

∣

x=xn (3.31)

for all n, where ∇10 is the column gradient operator with respect to the first argument.

The following key property of optimization transfer algorithms is derived from (3.29) and

(3.30):

Φ(x) − Φ(xn) ≥ φ(x; xn) − φ(xn; xn), ∀x ∈ D, (3.32)

which ensures that the update (3.28) monotonically increases Φ. Fig. 3.1 illustrates the

optimization transfer principles in 1D.
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xnxn+1xn+2

Φ(x)

φ(x;xn)

φ(x;xn+1)

Figure 3.1: Illustration of optimization transfer in 1D. In this figure, Φ and φ denote an objective function
and a surrogate function, respectively.

Optimization transfer algorithms can be shown globally convergent12 under mild con-

ditions as follows (cf [70]).

Theorem 3.2. Suppose Φ and φ are differentiable functions that satisfy (3.29)–(3.31). Let

M be a point-to-set mapping defined on D ∈ R
p that assigns to every point x ∈ D

a subset of D such that M(x̄) = {x∗ ∈ D : φ(x∗; x̄) ≥ φ(x; x̄), ∀x ∈ D}. Assume

M(x̄) 6= ∅ for all x̄ ∈ D. Suppose that, given x0 ∈ D, the sequence {xn}∞n=0 is generated

satisfying xn+1 ∈ M(xn); in other words, the sequence is obtained by (3.28). Define a

set of stationary points (in the context of maximization) of Φ by

Γ
4
= {x∗ ∈ D : ∇Φ(x∗)′(x − x∗) ≤ 0, ∀x ∈ D}.

If {xn} is bounded (e.g., D is bounded or a level set defined by {x ∈ D : Φ(x) ≥

12Some authors define global convergence as the property that an algorithm has stationary points that are limit
points [78, p. 228] or that are limits [13, p. 312], irrespective of starting points. We adopt the former convention in
this dissertation unless stated otherwise.
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Φ(x0)} is bounded), and the mapping M is closed [78, p. 185], then any limit point of the

sequence {xn}∞n=0 is an element of Γ.

Proof. By (3.32), if x ∈ D, then Φ(x∗) ≥ Φ(x) for all x∗ ∈ M(x). If x̄ ∈ D but x̄ /∈ Γ,

then x̄ cannot be a (local) maximizer of φ(·; x̄) [15, p. 194] and so φ(x∗; x̄) > φ(x̄; x̄)

for x∗ ∈ M(x̄). By (3.32), it follows that Φ(x∗) > Φ(x̄) for all x∗ ∈ M(x̄). Using

Zangwill’s Convergence Theorem [136, p. 91] leads to the conclusion.

The “matched gradient” condition (3.31) is implied by (3.29) and (3.30) when xn is an

interior point of D as follows.

Lemma 3.3. Suppose Φ(·) and φ(·; xn) are differentiable. If xn is an interior point of D,

then (3.29) and (3.30) imply (3.31).

Proof. Assume there exists z ∈ R
p such that ‖z‖ = 1 and 〈∇Φ(xn) −∇10φ(xn; xn), z〉 <

0 where 〈·, ·〉 is the usual inner product. If the inequality is reversed, then take −z. Define

f(α)
4
=

φ(xn + αz; xn) − φ(xn; xn) − 〈∇10φ(xn; xn), αz〉
α

− Φ(xn + αz) − Φ(xn) − 〈∇Φ(xn), αz〉
α

for α > 0. By the differentiability assumption, limα↘0 f(α) = 0 [77, p. 172]. However,

f(α) =
φ(xn + αz; xn) − Φ(xn + αz)

α
−
(〈

∇10φ(xn; xn), z
〉

− 〈∇Φ(xn), z〉
)

≤ −
(〈

∇10φ(xn; xn), z
〉

− 〈∇Φ(xn), z〉
)

< 0

for α > 0 by (3.29) and (3.30). This is a contradiction, and so (3.31) must hold.

However, for xn that lies at the boundary of D (when D is closed), (3.29) and (3.30)

do not necessarily ensure (3.31). Fig. 3.2 shows a 1D example in which (3.31) does not

hold at xn = 0 while (3.29) and (3.30) hold. In this example, x = 0 is a fixed point

of the optimization transfer algorithm whereas it is not a stationary point of the objective
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Figure 3.2: This is a 1D example, whose constraint is x ≥ 0, showing that the “matched gradient” condition
(3.31) does not hold at xn = 0 while the “matched Φ value” condition (3.29) and “lies below”
condition (3.30) hold.

function. Therefore, we need to state explicitly the condition (3.31) particularly when the

constraint set is closed and is not R
p. The condition can be slightly weaker, for example,

as in [58] by using directional derivatives.

One can show that the local convergence rate of the optimization transfer algorithm in

the neighborhood of an optimal point x̂ is determined by the following spectral radius:

ρ(Ip − [∇20φ(x̂; x̂)]−1∇2Φ(x̂)) (3.33)

where Ip is a p × p identity matrix, ρ(·) is the spectral radius, and ∇20 is the Hessian

operator with respect to the first argument [70]. This suggests that as a surrogate φ(·; xn)

approximates the objective Φ(·) more accurately, or the curvature of the surrogate becomes

lower, the convergence rate becomes faster. A trivial extreme case is that one takes the

objective Φ(·) as a surrogate φ(·; xn). However, a surrogate function should be chosen so

that it is computationally efficient to maximize.
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The optimization transfer approach is a general framework to yield a very broad family

of monotonic algorithms by choosing application-dependent surrogate functions. Next we

review two families of optimization transfer algorithms useful for tomographic reconstruc-

tion.

3.3.2 EM Surrogate Algorithms

The expectation maximization (EM) algorithms [32] provide methods for computing

the ML estimate

x̂ = arg max
x∈D

Φ(x), Φ(x) = log f(y; x)

where D ⊂ R
p is a set of feasible parameters, y ∈ R

N denotes a realization of an observ-

able random vector Y with probability distribution f(y; xtrue), and xtrue ∈ R
p is the true

value of the unknown parameter. Assume that we identify an admissible complete-data13

random vector Z for f(y; x). Define

φ(x; xn)
4
= E[log f(Z; x)|Y = y; xn] , (3.34)

which is called an EM surrogate function. One obtains xn+1 by maximizing (3.34) as

in (3.28). By computing the EM surrogate in (3.34) (“E-step”) and maximizing the EM

surrogate (“M-step”) repeatedly, one generates a sequence {xn}∞n=0 for an initial esti-

mate x0 ∈ D. The EM surrogate functions in (3.34) ensure the monotonicity condition

(3.32) [32]. The EM algorithms can be viewed as a special case of optimization transfer

algorithms using the particular EM surrogates.

The EM algorithms successfully apply to the emission reconstruction problem in Sec-

tion 3.1 to yield a simple form of update equations whereas the EM surrogate does not

have a closed-form maximizer for the transmission problem in Section 3.2 [68, 112]. For

13A random vector Z with probability distribution f(z; x) is called an admissible complete-data vector for f(y; x)
if f(y, z; x) = f(y|z)f(z; x) [39, 40]. A special case is that Y is a deterministic function of Z.
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the emission problem we review the EM algorithm on which some algorithms we develop

are based. We derive the EM surrogates in (3.34) by using an alternate algebraic trick

which is simpler rather than computing the conditional expectation of the complete-data

log-likelihood.

EM for ML emission reconstruction

First, we derive the EM surrogate function φL for the emission log-likelihood L in (3.2)

with (3.3) by using concavity of the logarithm [29]. Assume ri > 0 for all i for simplicity

although the derivation below can be generalized to a case that ri = 0. For λn > 0, we

have

L(λ) =
N
∑

i=1

yi

[

log

(

p
∑

j=1

aijλj + ri

)

−
(

p
∑

j=1

aijλj + ri

)]

=
N
∑

i=1

[

yi log

(

p
∑

j=1

aijλ
n
j

ȳi(λn)

λj
λnj
ȳi(λ

n) +
ri

ȳi(λn)
ȳi(λ

n)

)

−
(

p
∑

j=1

aijλj + ri

)]

≥
N
∑

i=1

[

yi

{

p
∑

j=1

aijλ
n
j

ȳi(λn)
log

(

λj
λnj
ȳi(λ

n)

)

+
ri

ȳi(λn)
log ȳi(λ

n)

}

−
(

p
∑

j=1

aijλj + ri

)]

(3.35)

where ȳi is defined in (3.1). By ignoring constants independent of λ in (3.35), one can

define the following minorizing surrogate function

φL(λ; λn) =

p
∑

j=1

{(

N
∑

i=1

aijλ
n
j

ȳi(λn)
yi

)

log λj − ajλj

}

, (3.36)

where aj
4
=
∑N

i=1 aij , which is equivalent to the EM surrogate (3.34) for usual complete

data in the emission problem (to within constants with respect to λ), and satisfies the

minorization conditions (3.29)–(3.31). By setting its derivative to zero, one can obtain the

maximizer of the separable EM surrogate φL(λ; λn) over λ > 0 as follows:

λn+1
j =

λnj
aj

N
∑

i=1

aijyi
ȳi(λn)

> 0 for j = 1, · · · , p, (3.37)
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which is the EM algorithm for ML reconstruction. The above EM update can be written

equivalently using the gradient of the log-likelihood as follows:

λn+1
j = λnj +

λnj
aj

∂L

∂λj
(λn) (3.38)

for all j.

De Pierro’s modified EM for PL emission reconstruction

Next, we derive a separable surrogate φR for the penalty function R in (3.9) by using

the convexity trick proposed in [30]. For a potential function ψ satisfying (3.10)–(3.15),

we have

ψ(λj − λk) = ψ

(

1

2
[2λj − λnj − λnk ] +

1

2
[−2λk + λnj + λnk ]

)

≤ 1

2
ψ(2λj − λnj − λnk) +

1

2
ψ(−2λk + λnj + λnk) (3.39)

by the convexity of ψ [30, 69]. But there exists the following majorizing quadratic surro-

gate function for ψ [54, p. 184]:

q(t; s)
4
= ψ(s) + ψ̇(s)(t− s) +

1

2
ωψ(s)(t− s)2 ≥ ψ(t). (3.40)
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Combining (3.39) and (3.40), one can obtain a separable quadratic surrogate φR for the

penalty function as follows:

−R(λ) ≥ −β
2

p
∑

j=1

∑

k∈Nj

wjk
2

{

ψ(2λj − λnj − λnk) + ψ(−2λk + λnj + λnk)
}

= −β
2

p
∑

j=1

∑

k∈Nj

wjkψ(2λk − λnj − λnk) (3.41)

≥ −β
2

p
∑

j=1

∑

k∈Nj

wjkq(2λj − λnj − λnk ;λ
n
j − λnk) (3.42)

= −
p
∑

j=1





rj(λ
n)

2
(λj − λnj )

2 + β
∑

k∈Nj

wjkψ̇(λj − λnj ) +
β

2
wjkψ(λnj − λnk)





= −
p
∑

j=1

[

rj(λ
n)

2
(λj − λnj )

2 +
∂R

∂λj
(λn)(λj − λnj )

]

−R(λn)

4
= φR(λ; λn) (3.43)

where (3.41) is due to symmetry of ψ and wjk, (3.42) is due to (3.40), and

rj(λ) = 2β
∑

k∈Nj

wjkωψ(λj − λk). (3.44)

Now we have a global surrogate function by combining (3.36) and (3.43):

φ(λ; λn) = φL(λ; λn) + φR(λ; λn). (3.45)

By setting the derivative of (3.45) to zero, one obtains the following De Pierro’s modified

EM (DPEM) algorithm for PL reconstruction in the emission problem [30]:

λn+1
j = root

(

rj(λ
n),

1

2

(

aj +
∂R

∂λj
(λn) − rj(λ

n)λnj

)

,

N
∑

i=1

aijλ
n
j

ȳi(λn)
yi

)

(3.46)

for j = 1, · · · , p, where root(α, β, γ) denotes the nonnegative root of αx2 +2βx−γ = 0.

3.3.3 Quadratic Surrogate Algorithms

It is natural to use quadratic surrogate functions which are usually easy to maximize.

For both emission and transmission problems, one can find the following 1D quadratic
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function which is a proper surrogate for a 1D marginal log-likelihood hi in (3.3) or (3.26)

for some choice of the curvature ci > 0 in the sense that qi(l; l̄) ≤ hi(l), ∀l ≥ 0, and

qi(l̄; l̄) = hi(l̄) [1, 33]:

qi(l; l̄) = hi(l̄) + ḣi(l̄)(l − l̄) − ci(l̄)

2
(l − l̄)2. (3.47)

There are at least two types of such curvatures: “maximum curvature (MC)” and “optimum

curvature (OC).” The maximum curvature is given by

cMC
i (l̄)

4
= max

l≥0

{

−ḧi(l)
}

, (3.48)

which is a constant, and can be precomputed and stored. However, this curvature is usually

large and the convergence rate is slow in light of (3.33). On the other hand, the optimum

curvature is the smallest curvature the quadratic surrogate in (3.47) can have while satis-

fying the minorization conditions. One can compute it analytically for both emission and

transmission marginal log-likelihoods hi in (3.3) and (3.26) as follows [1, 33]:

cOC
i (l̄)

4
= min

{

c ≥ 0 : hi(l̄) + ḣi(l̄)(l − l̄) − ci(l̄)

2
(l − l̄)2 ≤ hi(l), ∀l ≥ 0

}

=



















[

−2
hi(0) − hi(l̄) + ḣi(l̄) · l̄

l̄2

]

+

, l̄ > 0

[

−ḧi(0)
]

+
, l̄ = 0.

(3.49)

Summing the 1D surrogate functions in (3.47), a quadratic surrogateQ for the log-likelihood

function L in (3.2) or (3.25) is obtained as follows:

Q(x; xn)
4
=

N
∑

i=1

qi([Ax]i; [Axn]i)

= −1

2
(x − xn)′A′diag{ci(xn)}A(x − xn) +

∇L(xn)′(x − xn) + L(xn). (3.50)

where diag{·} denotes a diagonal matrix appropriately formed. The above surrogate func-

tion is nonseparable with respect to x, and so it is difficult to maximize. One can perform
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a sequential update by using a coordinate ascent approach [1]. However, this method

requires column access of the system matrix A, and it is difficult to implement unless

the system matrix is precomputed and stored.14 Fortunately, one can apply the concav-

ity trick in [30] again to Q and obtain the following separable quadratic surrogate for the

log-likelihood (see [2] for detailed derivation):

φL(x; xn) = −1

2
(x− xn)′diag{c̃j(xn)} (x− xn) +∇L(xn)′(x− xn) + L(xn) (3.51)

where

c̃j(x) =
N
∑

i=1

aijaici(x). (3.52)

with ai
4
=
∑p

j=1 aij . Now, by combining (3.51) and (3.43), we have a separable quadratic

global surrogate function for the PL objective function in (3.7) or (3.24). By maximizing

the surrogate function, the following separable paraboloidal surrogates (SPS) update is

obtained [2]:

xn+1
j =

[

xnj +
∇Φ(xn)

c̃j(xn) + rj(xn)

]

+

(3.53)

where [x]+ = max{x, 0}, and c̃j and rj are defined in (3.52) and (3.44) respectively.

We derived the separable surrogate in (3.51) for the log-likelihood function from the

nonseparable surrogate in (3.50) by using De Pierro’s concavity tricks in [30]. The sepa-

rable surrogate is easier to maximize than the nonseparable one, that is, less computation

per iteration is required. However, the curvatures of the separable surrogate are higher,

that is, the convergence rate is slower. There is a trade-off between a convergence rate and

a computational efficiency in choosing surrogates.

14Consider the following example where the column access of the system matrix is difficult. Suppose that the system
matrix (for 2D) is factored as follows: A = BG where G denotes geometric projection and B represents the blurring
caused by the detector responses including the effects of crystal penetration and inter-crystal scattering. Let G =
[G1, · · · ,Gna ]′ where Gi denotes the projection at the ith angle and na denotes the number of angles in the sinogram.
Assuming the blurring is applied only in the radial direction, the blurring matrix can be written as B = I ⊗ B1D

where I is the na × na identity matrix and B1D is a 1D blurring matrix. Now the system matrix can be written as:
A = [B1DG1, · · · ,B1DGna ]′. One can see that it is computationally inefficient to access a column of A whereas the
row access is convenient.



CHAPTER 4

Convergent Relaxed Ordered Subsets Algorithms

4.1 Introduction

Statistical image reconstruction methods lead to improved image quality over conven-

tional filtered backprojection (FBP) methods by using accurate physical models, taking the

stochastic nature of noise into account, and enforcing object constraints like nonnegativ-

ity. However, iterative algorithms for achieving maximum likelihood (ML) or penalized-

likelihood (PL) reconstruction require considerable computation, and there have been on-

going efforts to develop fast algorithms.

Ordered subsets (OS) algorithms, also known as block iterative or incremental gradient

methods, have been very popular in the medical imaging community for tomographic

image reconstruction due to their fast convergence rates [2, 4, 18, 19, 31, 55, 60, 65, 66, 76].

The incremental gradient type algorithms are also found in convex programming [61, 63,

88, 89].

The classical “algebraic reconstruction technique” (ART) [42, 47] can be considered

to be a type of “ordered subsets” method in which each subset consists of a single mea-

surement. However, most ART methods formulate the reconstruction problem as one of

finding the solution to a system of equations that involves the imaging physics but not the

measurement statistics. Some ART algorithms can be made to converge by introducing

36
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relaxation, but the limiting solution has a geometric interpretation in terms of distances to

hyperplanes, rather than arising from statistical considerations [23–25]. In this work we

focus on OS algorithms that are designed to maximize an objective function that captures

the statistical properties of the measurements.

The OS algorithms apply successfully to problems where an objective function of inter-

est is a sum of a large number of component functions. Because of the assumed statistical

independence of tomographic data, such sums arise in statistical tomographic reconstruc-

tion problems like PL or ML reconstruction. Typically, the OS methods decompose the

sum of component functions into several subsums or subobjective functions, each corre-

sponding to a subset of the projection views, and update the image estimate by using, in

a specified cyclic order (or sometimes randomly [88, 89]), the gradient of a subobjective

function as an approximate gradient of the original objective function. When the noise

is independent, each subobjective function is associated with a subset of the measure-

ment data. If the subset gradients are suitably “balanced,” then the gradient approximation

can be quite reasonable when the initial estimates are far from an optimal point (a PL or

ML solution). Thus OS methods initially accelerate “convergence” in the sense that less

computation is required to achieve nearly the same level of the objective increase as with

non-OS gradient based methods. The OS methods can be viewed as incremental gradient

methods in which incremental gradients, that is, gradients of subobjective functions, are

used for each update [89].

For emission image reconstruction, the OS idea was applied to the classical EM al-

gorithm [32, 68, 112] to generate several OS algorithms. ML reconstruction algorithms

include the ordered subsets expectation maximization (OS-EM) [55], the rescaled block-

iterative expectation maximization maximum likelihood (RBI-EMML) [19], and the row-

action maximum likelihood algorithm (RAMLA) [18]. PL reconstruction algorithms in-
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clude the block sequential regularized expectation maximization (BSREM) [31] (RAMLA

is a special unregularized case of BSREM). The paraboloidal surrogates (PS) methods [1,

33] also adopted the OS idea to construct the ordered subsets separable paraboloidal surro-

gates (OS-SPS) [2], originally named the ordered subsets transmission (OSTR) algorithm

in the context of transmission tomography.

Although OS algorithms, including OS-EM, RBI-EMML, and OS-SPS, successfully

accelerate “convergence,” they generally do not converge to an optimal solution but rather

become eventually stuck at a suboptimal limit cycle that consists of as many points as

there are subsets. In fact, OS-EM and RBI-EM in their original forms [19, 55] usually do

not converge to the optimal point even if relaxed due to their subset-dependent scaling (or

preconditioning) matrices [4].

Convergence to an optimal solution is important for any algorithm for optimization

problems, particularly in medical applications where reliability and stability are essential.

For PL (or MAP) reconstruction, the convergence issue is more critical than ML for which

we do not usually run algorithms to convergence. It is desirable to achieve both fast initial

convergence rates (typical of OS algorithms) and global convergence.

One method for making OS algorithms globally convergent is to use relaxation param-

eters, that is, diminishing stepsizes. This comes from the intuition that the size of a limit

cycle should be proportional to the stepsize. BSREM uses relaxation parameters, and De

Pierro and Yamagishi [31] provided convergence proofs for BSREM after imposing a few

“a posteriori” assumptions: the convergence of the objective sequence, and the positivity

and boundedness of each iterate. We relax these assumptions by making some modifica-

tions to BSREM.

Kudo, Nakazawa, and Saito [65, 66] also used a relaxation scheme in their block-

gradient method applied to penalized weighted least-squares image reconstruction for
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emission tomography; however, they ignored the nonnegativity constraint. Their method

appears to be a special case of incremental gradient methods [61, 88, 89]. Nedić and Bert-

sekas analyzed the incremental gradient methods and obtained many useful results about

convergence properties [88, 89]. We observe that OS-SPS is a special case of diagonally-

scaled version of incremental gradient methods with a constant stepsize, and then prove the

global convergence of diagonally-scaled incremental gradient methods with diminishing

stepsizes, thereby establishing global convergence of relaxed OS-SPS.

In this chapter we focus on emission image reconstruction although the methods pre-

sented here are quite general. We present two types of relaxed OS algorithms [3]: modified

BSREM and relaxed OS-SPS. We also prove the global convergence of the algorithms.

Both of them use diagonally-scaled gradient ascent for each update to maximize a PL ob-

jective function. Although the main difference between these two methods is the form

of scaling functions, the approaches of convergence proofs are quite different. These al-

gorithms are parallelizable, that is, they are able to update all pixels simultaneously and

independently, so they are computationally convenient like EM.

In Section 4.2, we review the OS algorithms. Section 4.3 provides our modified BSREM

and relaxed OS-SPS algorithms. Section 4.4 gives simulation results including discussion

of relaxation parameters as related to convergence rate.

4.2 Ordered Subsets Algorithms

In many applications, an objective function of interest can be expressed as a sum of

several subobjective functions:

Φ(x) =
M
∑

m=1

Φm(x).

Assume that we find a surrogate function φm for each subobjective function Φm such that

φm satisfy the minorization conditions (3.29) and (3.30) for Φm. Given a current iterate
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xn, maximizing one of φm(·; xn) in a cyclic order leads to an “ordered subsets” algorithm:

xn+1 = arg max
x∈D

φ1+(n mod M)(x; xn) (4.1)

where D denotes a constraint set. When the data are independent, each subobjective func-

tion involves a subset of data: hence the name “ordered subsets.” When the number M

of subobjective functions is one, the OS algorithm reduces to an ordinary optimization

transfer algorithm in (3.28). In Section 4.2.2 an alternate geometric interpretation on OS

algorithms is given using gradients.

4.2.1 PL Emission Reconstruction Problem

In this chapter, we focus on PL reconstruction in emission tomography described in

Section 3.1. We rewrite the problem for completeness. The goal is to find the following

PL estimate:

λ̂ = arg max
λ∈B

Φ(λ), Φ(λ) = L(λ) −R(λ) (4.2)

where the box constraint B is defined in (3.18), the penalty function R is given in (3.3),

and the log-likelihood L is given as follows:

L(λ) =
N
∑

i=1

hi([Aλ]i), hi(l) = yi log(l + ri) − (l + ri). (4.3)

In this chapter for simplicity we focus on a quadratic penalty function using

ψ(t) =
t2

2
.

We assume for simplicity that background contribution ri > 0 for all i although one can

apply the methods presented here to the case that ri = 0 by modifying the objective

function as discussed in Section 3.1.6.
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4.2.2 Ordered Subsets (OS) Algorithms

Most iterative algorithms1 involve the gradient of the objective function, e.g., EM in

(3.38) or SPS in (3.53), and many “parallelizable” algorithms—able to update all the pixels

simultaneously like EM or SPS—can be written in the following form2:

λn+1
j = λnj + αndj(λ

n)
∂Φ

∂λj
(λn), j = 1, 2, . . . , p, (4.4)

where αn > 0 is a relaxation parameter3 (or stepsize), and dj(λ) is a nonnegative scaling

function. We call the nonnegative function dj(λ) a scaling function to emphasize that it

scales the derivative. Likewise, in vector form,

λn+1 = λn + αnD(λn)∇Φ(λn), (4.5)

we call the p× p matrix D(λ) a scaling matrix.4 The partial derivative of Φ is given by:

∂Φ

∂λj
(λ) =

N
∑

i=1

aijḣi([Aλ]i) −
∂R

∂λj
(λ). (4.6)

The derivative involves a sum over sinogram index i, that is, backprojection. Let {Sm}Mm=1

be disjoint subsets of {1, 2, . . . , N} such that
⋃M
m=1 Sm = {1, 2, . . . , N}, and define sub-

objective functions as

Φm(λ)
4
=
∑

i∈Sm

hi([Aλ]i) − γmR(λ), (4.7)

resulting in

Φ =
M
∑

m=1

Φm, (4.8)

1DPEM in (3.46) is an exception.

2Although for some algorithms we need to enforce the constraint each iteration, we ignore this detail in this subsec-
tion to simplify explanation of OS principles. We do consider this important detail in the convergence proofs, however.

3When an update equation is written as (new iterate) = (current iterate) + αn × (correction term), one speaks of
underrelaxation if αn < 1, and overrelaxation if αn > 1 [125, p. 546].

4The matrix D is also called a preconditioner or a preconditioning matrix.
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where the regularization termR is included in one or more of the Φm’s by choosing γm ≥ 0

and
∑M

m=1 γm = 1. (Typically we choose γm = 1/M .) Suppose that the following “subset

gradient balance” conditions hold:

∇Φ1(λ) ∼= ∇Φ2(λ) ∼= · · · ∼= ∇ΦM(λ), (4.9)

or equivalently,

∇Φ(λ) ∼= M∇Φm(λ), ∀m. (4.10)

Then one can replace ∂Φ/∂λj with M∂Φm/∂λj in (4.4), and using ∂Φm/∂λj in a cyclic

order leads to an ordered subsets version of (4.4):5

λn,0j = λnj

λn,mj = λn,m−1
j + αndj(λ

n,m−1)
∂Φm

∂λj
(λn,m−1), for m = 1, · · · ,M (4.11)

λn+1
j = λn,Mj

where the factor M in M∂Φm/∂λj is absorbed into dj (or αn). We refer to each update

in (4.11) as the mth subiteration of the nth iteration. In the tomography context, the

partition {Sm}Mm=1 is naturally chosen so that projections within one subset correspond

to projections with downsampled projection angles. It is desirable to order the subsets

such that projections corresponding to one subset are as “perpendicular” as possible to

previously used angles at each subiteration [47]. This strategy has a long history; Hamaker

and Solomon [46] analyzed quantitatively the relationship between the convergence rate

of ART and ordering in terms of the angles between the null spaces of each projection.

5One could use relaxation parameters αn,m which depends on m. In this case, for global convergence, the variations
of αn,m over each cycle must be sufficiently small asymptotically (as n goes to ∞). For example, see [61]. However, to
avoid undue complexity in convergence analysis, we focus on relaxation parameters that are held constant during each
iteration, as is widely used [18, 31, 65, 89].
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Fig. 4.1 illustrates the behavior of an OS algorithm for a toy example with the following

objective function:

Φ(x) =
3
∑

i=1

(

−1

2
x′Qix + b′

ix

)

where Q1 =







1 1

1 2






, Q2 =







2 −1

−1 1






, Q3 =







3 0

0 1






, b1 = [1.25 2.5]′, b2 =

[−1.25 0.25]′, b3 = [3 − 0.75]′, and the maximizer is x̂ = [0.50.5]′. We compare an

ordinary gradient ascent method:

xn+1 = xn + α∇Φ(xn)

with α = .05, and its ordered subsets version with 3 subsets:

xn,m = xn,m−1 + 3α∇Φm(xn,m−1) for m = 1, 2, 3

where Φm = −1
2
x′Qmx + b′

mx. As can be seen in the figure, the OS algorithm is about

three times faster initially far from the optimal point, but it converges to a limit cycle.

Although it is hard to prove the existence of such a limit cycle, one can expect that a

set of limit points {λ∗,m}Mm=1 of a sequence {λn,m} generated by (4.11) would satisfy:

λ∗,mj = λ∗,m−1
j + αdj(λ

∗,m−1)
∂Φm

∂λj
(λ∗,m−1), ∀m

λ∗,Mj = λ∗,0j .

These conditions generally differ from the true optimality conditions, that is,

∂Φ

∂λj
(λ∗) =

M
∑

m=1

∂Φm

∂λj
(λ∗) = 0

in the context of unconstrained optimization.

One may need to use relaxation parameters αn such that limn→∞ αn = 0 to suppress

the limit cycle of an OS algorithm. Intuitively, as the stepsizes are diminishing, the size of
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the limit cycle would decrease to zero, that is, a point. However, even if such relaxation

make the OS algorithm converge to some λ∗, we must still ensure that the limit λ∗ is a PL

solution. The next section describes appropriate choices of dj(·) and αn that ensure global

convergence.

4.3 Relaxed OS Algorithms

The algorithms described in this section (and the accompanying convergence proofs in

the appendices) are applicable to a broad family of objective functions that have the same

general properties as the emission tomography case. Specifically, the properties that we

exploit are the following:

• Φ is concave (or strictly concave) and differentiable.

• The maximizers of Φ lie in a bounded set defined by 0 ≤ xj ≤ U where U is a

computable upper bound.

• Φ has the summation form (4.8) where each Φm is concave and differentiable.

In addition, in the convergence proofs we assume that the gradients of the Φm functions

are Lipschitz continuous; however, this is automatically ensured by the continuity of Φm

over the bounded and closed constraint set B. Collectively these are fairly unrestrictive

assumptions so the algorithms should have broad applicability.

To achieve the goal of maximizing Φ over B, we present two types of relaxed OS

algorithms that are globally convergent: modified BSREM methods and diagonally-scaled

incremental gradient methods of which relaxed OS-SPS is a special case for emission

tomography. For both of these OS algorithms, we use the subobjective functions given

in (4.7). The main difference is in the form of dj(·) in (4.4).
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4.3.1 Modified BSREM

De Pierro and Yamagishi [31] presented the BSREM algorithm and proved its global

convergence under the following assumptions: the sequence {λn} generated by the al-

gorithm is positive and bounded; and the objective sequence {Φ(λn)} converges. These

conditions are not automatically ensured by the form of the original BSREM. We elimi-

nate those assumptions in our convergence analysis by modifying the dj(·) functions.

The basic idea of the modification is to ensure that all iterates lie in the interior of

the constraint set B by choosing suitable scaling functions dj(·) and relaxation param-

eters αn. For EM-like algorithms including BSREM, we observe that using the form

dj(λ) = (some term) × λj can help each iterate keep positivity and avoid crossing the

lower boundary λj = 0. We enforce the upper bound U similarly. Consider the following

algorithm called “modified BSREM-I” in vector notation:

λn,0 = λn

λn,m = λn,m−1 + αnD(λn,m−1)∇Φm(λn,m−1), for m = 1, · · · ,M (4.12)

λn+1 = λn,M

where αn > 0 and D(λ) = diag{dj(λ)} with

dj(λ)
4
=















λj
pj

for 0 ≤ λj <
U

2
U − λj
pj

for
U

2
≤ λj ≤ U

(4.13)

for some pj > 0. (The original BSREM used dj(λ) = λj .)

The convergence analysis of this type of algorithm for a strictly concave objective func-

tion is given in Appendix C. The first part (Lemma C.1) of the analysis states that if

αn < α, ∀n for some small α > 0, (4.14)

and λ0 ∈ IntB, (4.15)
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then the iterates generated by (4.12) automatically stay in the interior of B, where IntB

denotes the interior of B. The second part (Lemmas C.2–C.5) is about convergence: the

iterates generated by (4.12) converge to the solution λ̂ = arg maxλ∈B Φ(λ) if

∞
∑

n=0

αn = ∞, (4.16)

∞
∑

n=0

α2
n <∞, (4.17)

and λn,m ∈ IntB, ∀n,m. (4.18)

But the first part says that (4.18) is guaranteed if (4.14) and (4.15) hold. So, combining

two parts, one can conclude (Theorem C.6 and Corollary C.7) that the modified BSREM-I

is globally convergent if (4.14)–(4.17) hold.

A practical and critical issue is how small the relaxation parameter should be in (4.14)

for ensuring (4.18). If some iterate hits the boundary, then all subsequent iterates remain

stuck at the boundary because the scaling function is zero on the boundary. As shown

in Lemma C.1, one may compute a bound ensuring (4.18) and use relaxation parameters

smaller than the bound. However, a conservatively small bound will adversely affect con-

vergence rate. So the convergence theorem for BSREM-I still leaves users with practical

dilemmas. To overcome these limitations of BSREM-I, we propose to add the following

step after (4.12) for each update:

λn,m =











PT (λn,m) for λn,m /∈ IntB

λn,m otherwise
(4.19)

where PT (λ) is the projection6 of λ ∈ R
p onto T 4

= {λ ∈ R
p : t ≤ λj ≤ U − t, ∀j}

for some small t > 0. Consider this modified algorithm (4.12) with (4.19), called “mod-

6For a Hilbert space H, a projection PK(x) of x ∈ H onto a nonempty closed convex subset K ⊂ H is defined
by PK(x) = arg miny∈K ‖x − y‖. Here the projection PT (λ) is easily calculated componentwise as [PT (λ)]j =
median{t, λj , U − t}.
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ified BSREM-II,” and suppose that conditions (4.16) and (4.17) hold. Then (4.18) is al-

ways satisfied by (4.19) regardless of whether (4.14) and/or (4.15) hold. Since (4.16)

implies [110, p. 70] that limn→∞ αn = 0, there exists K ∈ N such that αn satisfies (4.14)

for n ≥ K. Treating λK ∈ IntB as a “new” starting point, one can see that the iterates

after K iterations never hit the boundary by the first part of the analysis mentioned in

the previous paragraph. This implies that the step (4.19) becomes vacuous and in subse-

quent iterations the modified BSREM-II becomes equivalent to the modified BSREM-I.

So by the second part of the analysis the modified BSREM-II is globally convergent. The

addition of step (4.19) removes the conditions (4.14) and (4.15) while retaining global

convergence.

In (4.13), any pj > 0 can be used for global convergence. But we want to choose pj

such that stepsize selection becomes convenient, akin to the appropriateness of a unity

stepsize in Newton’s methods due to the scaling by the Hessian’s inverse. Motivated by

the EM algorithm for emission tomography, a reasonable choice for pj is:

pj =
1

M

N
∑

i=1

aij. (4.20)

If M = 1 (one subset), αn = 1 (unrelaxed), and R = 0 (unregularized), then (4.12) with

(4.20) reduces to ML-EM except the term (U − λj)/pj in (4.13). Although (4.20) ignores

the regularization term, it seems to work well for the regularized case unless the regulariza-

tion term is too large compared to the log-likelihood part. This is verified experimentally

in Section 4.4.

If we take larger and larger U , then B → R
p
+ and dj(λ) → λj/pj . So the modified

BSREM should behave quite similarly to the original BSREM for large U in practice

except for scaling by pj . The upper bound U seems to be more important for convergence

analysis than for practical implementation.
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4.3.2 Diagonally-Scaled Incremental Gradient Method

As an alternative to the BSREM methods, we consider next a family of OS algorithms

with constant scaling functions dj(·) = dj as follows:

λn,0 = λn

λn,m = PB

(

λn,m−1 + αnD∇Φm(λn,m−1)
)

for m = 1, · · · ,M (4.21)

λn+1 = λn,M

where αn > 0 and D = diag{dj} with dj > 0, ∀j, and PB(λ) is the projection7 of λ ∈ R
p

onto B. We call these algorithms “diagonally-scaled incremental gradient methods” since

if we choose D = I , the algorithm (4.21) becomes an incremental gradient method [89].

Appendix D presents the convergence analysis of this type of algorithm for a concave

objective function (possibly having multiple solutions). The iterates generated by (4.21)

converge to a maximizer if
∑∞

n=0 αn = ∞ and
∑∞

n=0 α
2
n < ∞ as shown in Theorem D.3

and Corollary D.4. The global convergence holds regardless of D as long as it is diagonal

with positive elements.

A practical issue is how to choose D for fast convergence rate and easy stepsize se-

lection. Fortunately, some hints are given by observing that the ordered subsets separable

paraboloidal surrogates (OS-SPS) method, which showed fairly fast convergence [2], is a

special case of (4.21). In particular, (4.21) becomes quadratically-penalized OS-SPS for a

likelihood of the form (4.3) if αn = 1 and the scaling constants are chosen as follows:

dj = M





N
∑

i=1

aijaic
PC
i + 2β

∑

k∈Nj

ωjk





−1

, ∀j (4.22)

7The projection is readily computed componentwise as [PB(λ)]j = median{0, λj , U}.
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where ai
4
=
∑p

j=1 aij , M is the number of subsets, and

cPC
i

4
=











−ḧi([yi − ri]+) for yi > 0

0 otherwise.
(4.23)

The OS-SPS is an OS version of SPS described in Section 3.3.3. Here we use “precom-

puted curvature (PC)” [1, 2] instead of MC in (3.48) or OC in (3.49) because in this OS

algorithm we forgo monotonicity. The precomputed curvatures in (4.23) are approximated

Newton’s curvatures:

−ḧi(l) ≈ −ḧ
(

arg max
l̃≥0

hi(l̃)

)

= cPC
i .

The above approximation is reasonable since the projections [Aλn]i do not change much

during iterations in tomography. The precomputed curvatures in (4.23) can be precom-

puted and stored like MC but are smaller than MC, that is, yield faster convergence rates

than MC.

For nonquadratic penalties, the second term in the parenthesis of (4.22) could be sub-

stituted with the curvatures of the penalty function at an initial point or at a uniform image.

Although OS-SPS is not globally convergent in general, by using relaxation parameters,

we obtain a relaxed OS-SPS that is readily shown to be globally convergent as a special

member of the family (4.21). Interestingly, whereas the original quadratic surrogate based

methods [33] for emission tomography required ri > 0 for monotonicity and convergence,

we eliminate this requirement here by the modification of the objective function in Sec-

tion 3.1.6.

One of required conditions for the global convergence proofs of diagonally-scaled in-

cremental gradient methods is the boundedness of ∇Φm on B. If the gradient ∇R of the

penalty function is bounded on R
p
+, then we can take B = R

p
+ while retaining global con-

vergence since the gradient of the log-likelihood is bounded on R
p
+. Such penalties include
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the Huber penalty [91]:

ψ(x) =











x2/2, for |x| ≤ δ

δ|x| − δ2/2, otherwise,

for some δ > 0.

4.3.3 Regularization into OS Algorithms

There are two typical ways of distributing the regularization term into subobjective

functions, i.e., how to choose γm in (4.7). One way is to include regularization in every

Φm as in [2]:

γm =
|Sm|
N

, ∀m (4.24)

where |Sm| is the number of elements in Sm. (γm = 1/M for equally sized subsets.) An-

other way is to take the regularization term as a separate subobjective function as in [31]:

γm = 0 for m = 1, · · · ,M, and γM+1 = 1 (4.25)

where we have (M + 1) subobjective functions and take SM+1 = ∅. Both cases satisfy the

condition Φ =
∑

m Φm. However, the convergence rates of the two choices can differ if

the regularization parameter β is not small. Recalling the motivations of OS algorithms,

(4.9) and (4.10), one can expect that (4.24) will yield faster initial convergence rates since

(4.25) may cause poor “subset gradient balance.” In other words, the amplitude of a limit

cycle that is supposed to be suppressed by relaxation is larger for (4.25) due to significant

dissimilarities between the subobjective functions. On the other hand, (4.24) requires

more computation since the gradient of the regularization part should be computed every

subiteration. This additional computational cost is proportional to the number of subsets;

however, usually it is relatively small compared to the computation of the log-likelihood

part. In experiments not shown, we have observed that the choice (4.24) usually makes
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algorithms faster and more stable, so we focus on (4.24) in Section 4.4. Nevertheless, our

convergence results apply to any choices for the γm’s.

4.3.4 Subiteration-Independent Scaling Matrices Are Essential

Both algorithms in (4.12) and (4.21) belong to the class (4.11) where the functions dj(·)

are independent of subiteration index m. Classical OS-EM [55] does not belong to this

class. As pointed out by Browne and De Pierro [18], OS-EM in general does not converge

to a solution even if relaxed. We generalize their argument. One could write a more

general form of OS algorithms by allowing different scaling matrices over subiterations:

λn,m = λn,m−1 + αnDm(λn,m−1)∇Φm(λn,m−1), ∀m (4.26)

where αn > 0, ∀n and Dm(λ) is some nonnegative definite diagonal matrix (function).

When we choose αn = 1 and Dm(λ) = diag{λj/
∑

i∈Sm
aij}, the algorithm (4.26) be-

comes OS-EM for R = 0. Now consider a relaxed version by assuming limn→∞ αn = 0

and8 ∑∞
n=0 αn = ∞. Following [18], one can write the following expression for λn+1:

λn+1 = λn + αn

M
∑

m=1

Dm(λn,m−1)∇Φm(λn,m−1)

= λ0 +
n
∑

k=0

αk

M
∑

m=1

Dm(λk,m−1)∇Φm(λk,m−1).

Now suppose that the sequence {λn,m} generated by (4.26) converges to some λ∗. As-

suming that Dm∇Φm is continuous, we have:

lim
k→∞

Dm(λk,m−1)∇Φm(λk,m−1) = Dm(λ∗)∇Φm(λ∗).

8If we take a diminishing stepsize (limn→∞ αn = 0), we need the assumption:
∑∞

n=0
αn = ∞. Suppose that

∑∞
n=0

αn < ∞. Since
∥

∥λn+1 − λn
∥

∥ = O(αn) (by assuming that Dm∇Φm is bounded), we will never get to the
optimum point if an initial point is sufficiently far from it.
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If
∑M

m=1 Dm(λ∗)∇Φm(λ∗) 6= 0, then {λn} diverges since
∑∞

n=0 αn = ∞. So it must be

the case that:
M
∑

m=1

Dm(λ∗)∇Φm(λ∗) = 0. (4.27)

However, if the Dm’s are different, then (4.27) is generally different from the true opti-

mality conditions, e.g., ∇Φ(λ∗) =
∑M

m=1 ∇Φm(λ∗) = 0 for unconstrained optimization.

So, in general, OS algorithms with subiteration-dependent scaling matrices, including OS-

EM and RBI-EM [19], do not converge to the desired optimum point even if they become

convergent due to relaxation.

Table 4.1: Outline for the algorithms presented in this chapter

Compute a bound U on a solution by (A.1) in Appendix A.
Compute ε by (B.1) in Appendix B if I 6= ∅, that is, ri = 0 but yi > 0 for some i.
Precompute pj =

∑N

i=1
aij/M for modified BSREM,

or precompute dP
j for relaxed OS-SPS. Use (4.22) for quadratic penalty.

for each iteration n = 1, . . .,niter
for each subset m = 1, . . . ,M

l̂i =
∑p

j=1
aij λ̂j + ri for i ∈ Sm

ḣi =

{

ḣi(ε) + ḧi(ε)(l̂i − ε) for i ∈ I and l̂i ≤ ε, where hi(l) = yi log l − l

(yi/l̂i) − 1 otherwise
λold = λ̂

for j = 1, . . . , p

Φ̇j =
∑

i∈Sm
aij ḣi − β

∑

k∈Nj
ωjkψ̇(λold

j − λold
k )/M

Update λ̂j . (See Table 4.2.)
end

end
end

4.4 Results

The outline of modified BSREM and relaxed OS-SPS algorithms for a Poisson penalized-

likelihood in emission tomography are summarized in Tables 4.1 and 4.2. In addition to

those conditions in Table 4.2, for a general objective function, modified BSREM requires

that Φ is strictly concave, and ∇Φm(λ) and D(λ)∇Φm(λ) are Lipschitz continuous on
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Table 4.2: Comparison of algorithms

Algorithm Update in Table 4.1 Sufficient conditions for convergence
(i)
∑

n αn = ∞ (ii)
∑

n α
2
n <∞

Modified BSREM-I dB
j =

{

λ̂j/pj for λ̂j < U/2

(U − λ̂j)/pj for λ̂j ≥ U/2

(iii) αn is sufficiently small
(vi) λ̂Initial ∈ IntB

λ̂j := λ̂j + αnd
B
j Φ̇j or, instead of (iii) and (iv),

(v) All iterates lie in the interior of B
λ̂j := λ̂j + αnd

B
j Φ̇j same as above

Modified BSREM-II
λ̂j :=

{

t if λ̂j ≤ 0

U − t if λ̂j ≥ U

∑

n αn = ∞ and
∑

n α
2
n <∞

λ̂j := λ̂j + αnd
P
j Φ̇j

Relaxed OS-SPS
λ̂j :=

{

0 if λ̂j ≤ 0

U if λ̂j ≥ U

∑

n αn = ∞ and
∑

n α
2
n <∞

t is a small value, say, 0.001maxj λ̂
FBP
j .

B. Diagonally-scaled incremental gradient methods including relaxed OS-SPS require that

∇Φm are bounded on B and Φm are concave. We focus on modified BSREM-II rather than

modified BSREM-I in this section. A critical issue in practice will be how to determine

relaxation parameters to get close to a solution within a few iterations. The sufficient con-

ditions on a relaxation sequence for global convergence are the following:
∑∞

n=0 αn = ∞

and
∑∞

n=0 α
2
n < ∞. One may try to optimize a finite number of relaxation parameters by

training [18,31,47] if a reasonable training set is given for a particular task. The relaxation

parameters obtained thus might not seem to satisfy those conditions. However, it may not

be relevant since those conditions are only sufficient and, moreover, asymptotic.

One simple choice of relaxation parameters satisfying those conditions is:

αn =
α0

γn+ 1
, ∀n (4.28)

for γ > 0 and α0 > 0. We run simulations using these simple relaxation parameters. Our

goal here is not to try to find the best relaxation but to get some insight into the effects

of relaxation parameters on convergence rate through some experiments. By design, our

modified BSREM and relaxed OS-SPS are properly scaled, meaning that even a constant
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αn = 1 works fairly well. So we could obtain reasonably good results by setting α0 = 1

and tuning experimentally only γ.

We performed image reconstruction using two-dimensional SPECT simulation data

generated with the Shepp-Logan digital phantom. The projection space was 128 radial

bins with 3.6 mm ray spacing and 120 angles over 360 degrees, and the reconstructed

images were 128×128 with 3.6 mm pixel size. The distance from the center of rotation to

the detector plane was 288 mm. The system matrix A was generated by ASPIRE 3.0 [35]

and it assumed a Gaussian shaped point spread function with the following model for the

depth-dependent full-width at half-maximum (FWHM):

FWHM =
√

(0.0868056 · z)2 + (3mm)2

where z is the distance from a pixel’s center to the detector. We did not consider attenu-

ation in this simulation. The total counts were 5 × 105, and ri corresponded to a uniform

field of 10% of background events, a very crude approximation of the effects of scatter.

We regularized the log-likelihood using the first-order quadratic penalty ψ(x) = x2/2 with

β = 1.5, and we took a FBP reconstruction as a starting image for PL reconstruction. Be-

cause the relaxed OS algorithms are additive updates, the scaling of the initial image can

affect the initial convergence rate, so we implemented the FBP algorithm carefully with

respect to the global scale factor. In contrast, the classical ML-EM and OS-EM methods

for emission tomography are multiplicative, so the initial scaling is unimportant.

Fig. 4.2 compares two nonOS algorithms: SPS with optimum curvature (see Sec-

tion 3.3.3) and DPEM (see Section 3.3.2); and two unrelaxed OS algorithms: unrelaxed

OS-SPS and unrelaxed modified BSREM with αn = 1 and with 8 subsets and 40 subsets.

The OS algorithms initially increase the objective function much faster than the non-OS

ones, but they get stuck at suboptimal points. The figure shows the normalized Φ differ-

ence (Φ(λ̂) − Φ(λn))/(Φ(λ̂) − Φ(λ0)) versus iteration number where λ̂ is the solution
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estimated by 5, 000 iterations of DPEM, a globally convergent method [30]. One can see

that the scaling factors (4.13) with (4.20), and (4.22) for the OS algorithms are reasonable

since the stepsize of unity worked fairly well. For both unrelaxed OS-SPS and unrelaxed

modified BSREM, using more subsets accelerated “convergence” but made the algorithms

reach a limit cycle earlier. Roughly speaking, in early iterations more subsets are desirable

but in later iterations fewer subsets would be preferable in the unrelaxed case.

Now we see how relaxation improves convergence. Fig. 4.3 compares unrelaxed mod-

ified BSREM and relaxed modified BSREM. As can be seen in the figure, the unrelaxed

modified BSREM algorithms converged to a limit cycle whereas the relaxed ones showed

better performance in increasing the objective function by suppressing the amplitude of

the cycle (note the logarithmic scale). We chose αn = 1/( 1
15
n + 1) for relaxed modified

BSREM-8, and αn = 1/(n + 1) for relaxed modified BSREM-40. In this experiment the

second part of the scaling function in (4.13) was never invoked due to the very large bound

U used; the scaling matrix we used was effectively the same as that of original BSREM

except for pj . Fig. 4.4 shows results for relaxed OS-SPS that are similar to those for mod-

ified BSREM. We chose αn = 1/(1
5
n+ 1) for relaxed OS-SPS-8, and αn = 1/(n+ 1) for

relaxed OS-SPS-40. Fig. 4.5 summarizes Fig. 4.3 and Fig. 4.4. The reconstructed images

are shown in Fig. 4.6.

We observed, from experiments with relaxation parameters, that applying relaxation

(less than unity) before an algorithm reaches a limit cycle far from the optimum point does

not improve convergence rate because it slows down the algorithm’s progress toward the

optimum point. Apparently relaxation is most helpful when an algorithm is nearing a limit

cycle. Generally speaking, rapidly diminishing stepsizes are preferable for an algorithm

using many subsets since such algorithms tend to reach a limit cycle quickly. But relax-

ation should be applied gradually in cases where it takes many iterations for an algorithm
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to reach a limit cycle, e.g., unregularized ML reconstruction or when few subsets are used.

4.5 Conclusion

We presented two types of convergent relaxed OS algorithms: modified BSREM and re-

laxed OS-SPS which differ in their scaling functions dj(·). We proved global convergence

of both algorithms without “a posteriori” assumptions. A natural subsequent question is

about convergence rate. This is related to how to determine the relaxation parameters. For

relaxation parameters, we showed through experiments that relaxation improves the OS

algorithms convergence rates when the algorithms are approaching a limit cycle. Hope-

fully, future work on quantitative convergence rate analysis will provide more useful rules

for determining relaxation parameters, perhaps adaptively.

The practical question of whether it is preferable to achieve convergence by using re-

laxation or by reducing the number of subsets with iteration remains open, and may simply

be a matter of preference. The approach of progressively decreasing the number of subsets

will guarantee global convergence as long as it eventually takes a convergent nonOS (one

subset version) algorithm. However, for fast initial convergence rates, one would need

to determine a (nearly) optimal schedule of reducing the number of subsets, which is as

inconvenient as tuning the relaxation parameters for relaxed OS algorithms. As a rough

rule of thumb, one should reduce the current number of subsets when the algorithms are

nearing a limit cycle. However, the absence of automatic rules to determine relaxation

parameters and a schedule of reducing the number of subsets makes it difficult to compare

the two approaches. When iterative algorithms become implemented in special purpose

hardware, the consistent data flow provided by the relaxation approach may be beneficial.

We have not tried to evaluate the relative merits of modified BSREM and relaxed OS-

SPS. Both algorithms are globally convergent, and simulation results showed that appro-
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priate relaxation accelerates convergence similarly for both of them. Finding better scaling

functions in terms of convergence speed and computational efficiency could also be inter-

esting future work.

The algorithms presented in this chapter are easily adapted to transmission tomography

for zero backgrounds (ri = 0). However, for a nonzero background case, the penalized-

likelihood objective function can become nonconcave [1]. It will also be interesting future

work to investigate whether the relaxed OS algorithms can be proved to converge to local

maxima in nonconcave cases.
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Figure 4.1: Toy example of OS algorithms. (a) Trajectory of iterates of a nonOS gradient method with a
constant stepsize and its OS version with 3 subsets. The optimal point is x̂ = (0.5, 0.5) and the
initial point is x0 = (5, 5). (b) (Φ(x̂) − Φ(xn,m)) /

(

Φ(x̂) − Φ(x0)
)

versus iteration number.
For the OS method, each subiterate is denoted.
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Figure 4.3: Comparison of normalized Φ difference (Φ(λ̂) − Φ(λn,m))/(Φ(λ̂) − Φ(λ0)) versus itera-
tion number for unrelaxed modified BSREM and relaxed modified BSREM with 8 and 40
subsets. For relaxed modified BSREM-8 (top) and relaxed modified BSREM-40 (bottom),
αn = 1/( 1

15
n + 1) and αn = 1/(n + 1) are used, respectively. This figure shows every

subiterate.



60

0 5 10 15 20

10
−2

10
0

40 subsets

Iteration

N
or

m
al

iz
ed

 Φ
 d

iff
er

en
ce

Unrelaxed OS−SPS−40
Relaxed OS−SPS−40

0 5 10 15 20

10
−2

10
0

8 subsets

Iteration

N
or

m
al

iz
ed

 Φ
 d

iff
er

en
ce

Unrelaxed OS−SPS−8
Relaxed OS−SPS−8

PSfrag replacements

xn

xn+1

xn+2

Φ(x)
φ(x;xn)

φ(x;xn+1)
φ(x;xn = 0)

Figure 4.4: Comparison of normalized Φ difference (Φ(λ̂) − Φ(λn,m))/(Φ(λ̂) − Φ(λ0)) versus iteration
number for unrelaxed OS-SPS and relaxed OS-SPS with 8 and 40 subsets. For relaxed OS-SPS-
8 (top) and relaxed OS-SPS-40 (bottom), αn = 1/( 1

5
n + 1) and αn = 1/(n + 1) are used,

respectively. This figure shows every subiterate.
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Figure 4.6: (a) Shepp-Logan digital phantom (true image). (b) FBP reconstruction (starting image). (c) PL
reconstruction using 20 iterations of relaxed modified BSREM with 8 subsets. (d) PL recon-
struction using 20 iterations of relaxed OS-SPS with 8 subsets.



CHAPTER 5

Convergent Incremental Optimization Transfer Algorithms

5.1 Introduction

In the previous chapter, we studied convergent relaxed OS algorithms. In this chapter,

we develop and investigate another family of convergent incremental (or OS type) algo-

rithms: incremental optimization transfer algorithms.

Relaxation parameters are used widely to render OS algorithms convergent, and suit-

ably relaxed algorithms can be shown to converge to an optimal solution under mild reg-

ularity conditions [4, 18, 23, 24, 31, 61, 65, 66, 76, 88, 89, 119]. However, since relaxation

parameters should be scheduled to converge to zero for global convergence, the asymp-

totic convergence rates of relaxed OS algorithms are very slow. Also, inappropriately

chosen (e.g., too rapidly decreasing) relaxation parameters could make initial convergence

rates even worse than those of non-OS algorithms. On the other hand, overly large relax-

ation parameters can lead to unstable or divergent behavior. Given a system and an object

(or data), to determine optimal (or at least suboptimal) relaxation parameters in terms of

convergence rates, one may need some experimentation and trial-and-error; as a rule of

thumb, for properly scaled OS algorithms such as modified BSREM and relaxed OS-SPS,

one should initialize the relaxation parameter near unity and decrease it gradually as con-

vergence to a limit cycle nears [4]. One may optimize a few initial relaxation parameters

63
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by training when a training set is available for a particular task [18, 47]. Or one could

use the dynamic stepsize rule in [88, 89], but that method needs to compute the objective

value at every update, which is computationally expensive in tomographic reconstruction

problems. So the use of relaxation parameters can be inconvenient and we would like to

find alternative methods.

In contrast, incremental EM algorithms [87] do not require user-specified relaxation

parameters. They are convergent [44] yet faster than ordinary EM algorithms although

slower than nonconvergent OS-EM type algorithms [50, 52]. Such incremental EM algo-

rithms have been applied to emission tomography [45, 50, 52, 60].

Recently, Blatt et al. [16] proposed a convergent incremental gradient method that does

not require a relaxation parameter, called incremental aggregated gradient (IAG). The IAG

method computes a single subset gradient per iteration but aggregates it with the stale

subsets gradients that were computed in previous iterations. The use of the aggregated

gradient to approximate the full gradient of the objective function leads to the convergence

property. Similarly, as discussed below, the use of the sum of surrogate functions (rather

than a single surrogate function) to approximate a minorizing function yields convergent

algorithms.

In this chapter we generalize the incremental EM algorithms by introducing an ap-

proach we call “incremental optimization transfer”; this is akin to the generalization of the

EM algorithms [32] by the optimization transfer principles [70]. In fact, the broad fam-

ily of “incremental optimization transfer algorithms” includes the ordinary optimization

transfer algorithms (e.g., EM), also referred to as MM (minorize-maximize or majorize-

minimize) algorithms in [57], as a special case where the objective function consists of

only one subobjective function.

In the incremental optimization transfer approach, for each subobjective function, we
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define an augmented vector which has the same size as the parameter vector to be esti-

mated. The augmented vector plays a role as an expansion point with which a minorizing

surrogate function is defined for the subobjective function (see Section 5.2 for details).

Then the sum of the surrogate functions defines an augmented objective that is a function

of the parameter vector and the augmented vectors. With surrogate functions satisfying

usual minorization conditions [1, 70], a solution to the problem of maximizing the origi-

nal objective can be found by maximizing the augmented objective instead. Applying a

block coordinate ascent approach to the augmented problem leads to a new class of “incre-

mental optimization transfer algorithms.” By using the block coordinate ascent approach,

incremental optimization transfer algorithms are monotonic in the augmented objective

value though not in the original objective; nevertheless, global convergence is ensured un-

der mild regularity conditions. Incremental optimization transfer algorithms show faster

convergence rates than their nonincremental counterparts like EM [50, 52, 87].

The difference between incremental gradient (or ordinary OS) methods and incremental

optimization transfer methods is as follows. Incremental gradient methods use only a

partial gradient at every (sub)iteration whereas incremental optimization transfer methods

use the whole gradient which is incrementally updated.

Incremental optimization transfer is a general framework in which one can develop

many different optimization algorithms by using a broad family of application-dependent

surrogate functions. These methods are particularly useful for large-scale problems where

the objective function is expressed as a sum of several subobjective functions. However,

in this chapter, we focus on PL image reconstruction for transmission tomography, which

is a challenging nonconcave maximization problem. We propose a particular incremen-

tal optimization transfer algorithm that uses separable paraboloidal surrogates (SPS) [2].

Such quadratic surrogates simplify the maximization. In contrast, the EM surrogates for
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transmission tomography do not have a closed-form maximizer in the “M-step” [68].

The proposed “transmission incremental optimization transfer (TRIOT)” algorithm is

convergent yet converges faster than ordinary SPS [2]; it can be further accelerated by the

method in [53] or by initializing through a few iterations of OS-SPS (see Section 5.3 for

details). It is parallelizable, and the nonnegativity constraint is naturally enforced. In addi-

tion, it is easily implemented for many system models whereas pixel-grouped coordinate

ascent based methods require column access of the system matrix [39, 40, 58, 111].

Section 5.2 describes the incremental optimization transfer algorithms in a general

framework and discusses their convergence properties. Section 5.3 develops incremental

optimization transfer algorithms for transmission tomography, and addresses some accel-

eration methods. Section 5.4 provides simulation and real PET data results.

5.2 Incremental Optimization Transfer

5.2.1 Incremental Optimization Transfer Algorithms

Most objective functions of interest in image reconstruction can be expressed as a sum

of subobjective functions:1

Φ(x) =
M
∑

m=1

Φm(x), (5.1)

where Φm : D ⊂ R
p → R is a continuously differentiable function whose domain D is a

nonempty, convex and closed set. We consider the following optimization problem:

maximize Φ(x) subject to x ∈ D. (5.2)

Since usually there exists no closed-form solution to the above problem, one must apply

iterative algorithms. Assume that for each subobjective function Φm, we find a surrogate

1Such functions are said to be additive-separable in [61]; and to be partially separable when each Φm(x) is a
function of fewer components of x ∈ R

p than p in [92].
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function φm : D2 ⊂ R
p × R

p → R that is easier to maximize than Φm and that satisfies

the following usual minorization conditions as in Section 3.3.1:

φm(x; x) = Φm(x), ∀x ∈ D

φm(x; x̄) ≤ Φm(x), ∀x, x̄ ∈ D,
(5.3)

where Dn denotes the n-ary Cartesian product over the set D for n ∈ N throughout this

chapter. It follows from the above conditions that

Φm(x) − Φm(x̄) ≥ φm(x; x̄) − φm(x̄; x̄), ∀x, x̄ ∈ D.

In other words, choosing x such that φm(x; x̄) ≥ φm(x̄; x̄) ensures that Φm(x) ≥ Φm(x̄).

Define the following “divergence” functions:

Dm(x ‖ x̄)
4
= Φm(x) − φm(x; x̄).

Then by (5.3), we have the following properties:2

Dm(x ‖ x̄) ≥ 0 and Dm(x ‖x) = 0. (5.4)

Now we define the following “augmented” objective function:

F (x; x̄1, . . . , x̄M ) = Φ(x) −
M
∑

m=1

Dm(x ‖ x̄m) (5.5)

=
M
∑

m=1

φm(x; x̄m). (5.6)

Since

min
(x̄1,...,x̄M )∈DM

M
∑

m=1

Dm(x ‖ x̄m) = 0, ∀x ∈ D,

2When there exists x̆ 6= x̄ such that Dm(x̆ ‖ x̄) = 0, using a modified surrogate φnew
m (x; x̄) = φm(x; x̄) −

ε ‖x − x̄‖2 for any fixed ε > 0 would lead to the following property: D
new
m (x ‖ x̄) ≥ 0 where equality holds if and

only if x = x̄. Although this modification might provide a more natural definition of divergence, it is not needed for our
convergence proofs so we allow the less restrictive conditions in (5.3) and (5.4).
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that is,

max
(x̄1,...,x̄M )∈DM

F (x; x̄1, . . . , x̄M) = Φ(x), ∀x ∈ D,

one can rewrite the optimization problem (5.2) equivalently as follows:

maximize F (x; x̄1, . . . , x̄M )

subject to (x; x̄1, . . . , x̄M ) ∈ DM+1,

(5.7)

in a sense that x∗ ∈ D is an optimal solution of (5.2) if and only if (x∗; x̄∗
1, . . . , x̄

∗
M ) ∈

DM+1 is an optimal solution of (5.7) for some (x̄∗
1, . . . , x̄

∗
M) ∈ DM . Therefore we can

find a solution to problem (5.2) by maximizing F with respect to (x; x̄1, . . . , x̄M).

By alternating between updating x and one of the x̄m’s, we obtain an “incremental

optimization transfer algorithm” outlined in Table 5.1, where we assume that there exists

one or possibly more maximizers in (5.8), and “arg max” denotes one of those maximizers.

Table 5.1: Outline for incremental optimization transfer algorithms. The right side of (5.9) is due to (5.4)
and (5.5).

Initialize x0, x̄0
1, . . . , x̄

0
M ∈ D

for n = 0, . . . , niter

for m = 1, . . . ,M

xnew = arg max
x∈D

F
(

x; x̄n+1
1 , . . . , x̄n+1

m−1, x̄
n
m, x̄

n
m+1, . . . x̄

n
M

)

(5.8)

x̄n+1
m = xnew = arg max

x̄m∈D
F
(

xnew; x̄n+1
1 , . . . , x̄n+1

m−1, x̄m, x̄
n
m+1, . . . x̄

n
M

)

(5.9)

end
xn+1 = x̄n+1

M (5.10)

end

The incremental optimization transfer algorithm shown in Table 5.1 can be viewed as a

block coordinate ascent algorithm for maximizing F with respect to (x; x̄1, . . . , x̄M ) [15,

p. 270]. It monotonically increases the augmented objective function F , but not neces-

sarily the original objective function Φ [20]. If one has only one subobjective function
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in (5.1), that is, M = 1, then the incremental optimization transfer algorithm reduces

to an ordinary optimization transfer algorithm as in Section 3.3.1. The incremental ap-

proach (M > 1) usually leads to faster convergence rates than nonincremental methods

(M = 1) [87]. The incremental EM algorithms [45, 87] including COSEM [50, 52] are a

special case where the surrogates φm are constructed by EM principles (see Section 3.3.2).

If one were to maximize one of φm’s instead of the sum of φm’s in (5.6), or in other

words, if one were to maximize φm(·; x̄nm) instead of F (·; x̄n+1
1 , . . . , x̄n+1

m−1, x̄
n
m, x̄

n
m+1, . . . ,

x̄nM) in (5.8), then one would have ordinary OS type algorithms as described in Section 4.2.

Although this greedy approach usually yields faster initial convergence rates than incre-

mental optimization transfer algorithms, the OS type algorithms are not monotonic in F

nor in Φ. In the previous chapter, we achieved global convergence by introducing re-

laxation into the nonconvergent ordinary OS type algorithms. In contrast, incremental

optimization transfer methods presented in this chapter update the surrogate function in-

crementally and keep monotonicity (in an augmented function), consequently achieving

convergence.

For incremental optimization transfer algorithms one must store M vectors {x̄m}Mm=1,

so one needs more memory compared to ordinary OS algorithms; however, this is not a

severe limitation unless M is overly large.

5.2.2 Special Case: Incremental EM Algorithms

We briefly review the incremental EM algorithms within a framework of the incremen-

tal optimization transfer principles given in the preceding subsection.

For maximum likelihood (ML) estimation, one must maximize a log-likelihood func-

tion

Φ(x) = log f(y; x)
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with respect to parameter x ∈ R
p over a feasible set D ⊂ R

p where y ∈ R
N denotes

a realization of an observable random vector Y with probability distribution f(y; xtrue),

and xtrue ∈ R
p is the true value of the unknown parameter. But in many applications in-

cluding imaging problems with independent data, the log-likelihood objective is additive-

separable, that is,

Φ(x) =
M
∑

m=1

Φm(x), Φm(x) = log f(ym; x),

where Y = (Y1, . . . ,YM ) is some decomposition of the data. Assume we identify admis-

sible complete-data random vectors Zm for f(ym; x) as in Section 3.3.2. Then, for each

Φm(x), one can obtain an incremental EM surrogate

φm(x; x̄) = E[log f(Zm; x)|Ym = ym; x̄] (5.11)

that also satisfies the minorization conditions in (5.3). Defining the augmented objective

function as in (5.6) and then alternating between updating x and one of the x̄m’s as in

Table 5.1 leads to the incremental EM algorithms [45,87]. The COSEM algorithm [50,52],

a special case of the incremental EM for emission tomography, can be readily derived.

In some applications, using surrogates other than (5.11) can lead to more convenient

implementation or faster convergence (e.g., see Section 5.3.2).

5.2.3 Convergence Properties

Global Convergence

Since the incremental optimization transfer algorithms monotonically increase the aug-

mented objective F , the sequence of augmented objective values converges to some value

in the usual case where F has an upper bound. However, the question of whether the

algorithms really converge to a maximizer of (5.2) is addressed next.

Define a solution set as the collection of stationary points of (5.2):

Γ
4
= {x∗ ∈ D : ∇Φ(x∗)′(x − x∗) ≤ 0, ∀x ∈ D}, (5.12)
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where ′ denotes matrix or vector transpose, and we assume Γ 6= ∅. Each element of the

solution set Γ satisfies the first-order necessary condition for a local maximizer of Φ over D

[15, p. 194]. We want algorithms to converge to some point in Γ. If the objective function

Φ is concave, then Γ is the set of (possibly multiple) global maximizers of Φ over D [15,

p. 194]. If Φ is strictly concave, then Γ is the singleton of a unique global maximizer [15,

p. 685]. On the other hand, for a nonconcave objective function Φ (as in Section 5.3), the

solution set Γ could contain even a local minimizer as well as a local maximizer. In fact,

it is difficult to find a global maximizer of a nonconcave objective function that may have

multiple local maxima. However, the hope is that, with an initial point reasonably close to

a global maximizer, the iterates generated by our monotonic algorithms will be attracted

to the global maximizer (see [58] for discussion about convergence to a globally optimal

point).

In Appendix E, we show that every limit point3 of the sequence generated by the in-

cremental optimization transfer algorithm is an element of the solution set Γ of stationary

points regardless of initial points when the following general sufficient conditions hold:

(i) each Φm and φm(·; ·) is continuously differentiable, (ii) the iterates are bounded (e.g.,

D is a bounded set), (iii) the surrogates φm satisfy the minorization conditions in (5.3),

(iv) the gradients of Φm and φm(·; x̄) match at x̄ (see Condition E.4 in Appendix E), and

(v) the maximizer in (5.8) is defined uniquely (e.g., φm(·; x̄m) is strictly concave). Conse-

quently, if the objective function Φ is strictly concave, then the algorithm converges to the

global maximizer. For a nonconcave objective function Φ, if the points in Γ are isolated,

the algorithm will still converge to some stationary point in Γ that we hope is a global

maximizer or at least a local maximizer (see Appendix E). It is an open question whether

3Recall the distinction between a limit and a limit point. A point x̆ is called a limit of a sequence {xn} if ∀ε > 0,
∃N such that ∀n > N , ‖x̆−xn‖ < ε. On the other hand, a point x̄ is called a limit point of a sequence {xn} if ∀ε > 0,
∀N , ∃n > N such that ‖x̄ − xn‖ < ε, in other words, if there exists a subsequence {xnk} whose limit is x̄.
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optimization transfer algorithms converge to nonisolated stationary points [58].

Also we analyze the asymptotic local convergence rate of the incremental optimization

transfer algorithms, and provide an illustrative one-parameter example for a comparison

of the convergence rates of incremental and nonincremental algorithms (see Appendix F).

5.3 Application to Transmission Tomography

In this section we develop a particular incremental optimization transfer algorithm for

transmission tomographic reconstruction. We use quadratic surrogates as in Section 3.3.3

rather than EM surrogates in (5.11) because the standard complete-data proposed in [68]

for transmission tomography does not yield a closed-form M-step [38]. Of course, using

quadratic surrogates is not limited to the transmission case [6, 33, 118]; the incremental

optimization transfer algorithms using quadratic surrogates developed in this section are

easily extended to other applications including emission tomography.

5.3.1 PL Attenuation Map Reconstruction Problem

For completeness, we briefly rewrite the problem described in Section 3.2. The goal is

to find the following PL estimate of attenuation coefficients:

µ̂PL = arg max
µ∈B

Φ(µ), Φ(µ) = L(µ) −R(µ) (5.13)

where the box constraint B is defined in (3.27), the penalty function R is given in (3.3),

and the log-likelihood L is given as follows:

L(µ) =
N
∑

i=1

hi([Aµ]i), hi(l) = yi log(bie
−l + ri) − (bie

−l + ri).

We used the following edge-preserving nonquadratic potential function in our PL recon-

struction results [67]:

ψ(t) = δ2[|t/δ| − log(1 + |t/δ|)] (5.14)

for some δ > 0.
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5.3.2 Transmission Incremental Optimization Transfer (TRIOT)

We decompose the objective function Φ into the following subobjective functions as in

the previous chapter:

Φm(λ) =
∑

i∈Sm

hi([Aµ]i) −
β

M
R(µ)

where {Sm}Mm=1 is a partition of {1, . . . , N}. We use the usual subsets corresponding to

downsampled projection angles [55]. Consider the following separable quadratic surro-

gate φm for the subobjective function Φm:

φm(µ; µ̄) = Φm(µ̄) + ∇Φm(µ̄)′(µ − µ̄) − 1

2
(µ − µ̄)′C̆m(µ̄)(µ − µ̄) (5.15)

with

C̆m(µ) = diagj{c̆mj(µ)} (5.16)

where c̆mj(·) > 0 and diag{·} denotes a diagonal matrix appropriately formed. The surro-

gates φm in (5.15) satisfy Conditions E.4 and E.5 in Appendix E.

As described in Section 3.3.3, to make φm additionally satisfy the minorization con-

ditions in (5.3), one has at least two choices for c̆mj: “optimum curvature (OC)” and

“maximum curvature (MC).” Those curvatures c̆mj have the following form:

c̆mj(µ) = max







∑

i∈Sm

aijaici([Aµ]i) +
2β

M

∑

k∈Nj

wjkωψ(µj − µk), ε







(5.17)

for some small value ε > 0 where ai =
∑p

j=1 aij and ωψ(t) = ψ̇(t)/t. The functionals

ci(·) are defined as follows. For OC, we define

cOC
i (l)

4
=



















[

2
hi(0) − hi(l) + ḣi(l) · l

l2

]

+

, l > 0

[

ḧi(0)
]

+
, l = 0,

(5.18)

and for MC,

cMC
i (l)

4
=
[

ḧi(0)
]

+
, (5.19)
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where [x]+ = max{x, 0}. Detailed derivations of (5.17)–(5.19) can be found in [1]. We

leave the second term in (5.17) as a function of µ even for MC since its computation

is cheap compared to projection and backprojection operations unless M is too large; in

contrast, we used constant curvatures for the penalty function for relaxed OS-SPS in the

preceding chapter.

The augmented objective function F defined in (5.6) with (5.15) is readily maximized

with respect to µ over the box constraint B as follows:

µ̂ = PB





[

M
∑

m=1

C̆m(µ̄m)

]−1 M
∑

m=1

[

C̆m(µ̄m)µ̄m + ∇Φm(µ̄m)
]



 (5.20)

where PB(µ) is the orthogonal projection of µ ∈ R
p onto B and is easily computed com-

ponentwise as follows: [PB(µ)]j = median{0, µj, U} for all j. Using (5.20) in the step

(5.8) leads to a new “transmission incremental optimization transfer (TRIOT)” algorithm,

which is outlined in Table 5.2. When M = 1, this TRIOT reduces to ordinary SPS in

(3.53). The TRIOT update begins after nOS
iter (≥ 1) iteration(s) of OS-SPS (see the next

subsection for OS-SPS in detail). Running at least one iteration of fast, though not conver-

gent, OS-SPS is more effective than initializing all µ̄m’s to be the same image (e.g., FBP

or uniform image) since in any case one needs to compute partial gradients ∇Φm(µ̄m)

(and curvatures) for all m to perform the TRIOT update.

In Table 5.2, a TRIOT using MC in (5.19), we call TRIOT-MC4, is shown; however, OC

in (5.18) can be easily included. The two steps (5.8) and (5.9) in Table 5.1 are combined in

Table 5.2. In (5.22), one can avoid the sum
∑M

l=1 at every subiteration by maintaining that

sum as a state vector that is updated incrementally as in [50, 52, 53]. One could slightly

modify the algorithm to perform (5.22) more than one time at every subiteration so that

one additionally updates the surrogate for the penalty part with fixing the surrogate for the

4The second part denotes a specific curvature used (e.g., SPS-OC).
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likelihood part as in [1]. One iteration, indexed by n, of TRIOT-MC requires one pro-

jection and one backprojection operation while TRIOT-OC needs an extra backprojection

[see (5.17) and (5.18)].

Table 5.2: Outline for transmission incremental optimization transfer (TRIOT) algorithm using maximum
curvature (MC).

Initialize: µ̂ = µ̂0 =

[

FBP

{

log

(

bi
yi − ri

)}N

i=1

]+

Precompute: dMC
mj =

∑

i∈Sm

aijai

[(

1 − yiri
(bi + ri)2

)

bi

]

+

and dPC
j =

1

M

N
∑

i=1

aijaic
PC
i , ∀m, j

for each iteration n = 1, . . . , niter

for each subset (subiteration) m = 1, . . . ,M

l̂i =

p
∑

j=1

aij µ̂j , ḣi =

(

1 − yi

bie−l̂i + ri

)

bie
−l̂i , ∀i ∈ Sm

L̇mj =
∑

i∈Sm

aij ḣi, rmj =
2β

M

∑

k∈Nj

wjkωψ(µ̂j − µ̂k), ∀j

µ̄mj = µ̂j , ∀j

if n ≤ nOS
iter, perform the following OS-SPS update:

µ̂j =

[

µ̄mj +
L̇mj − β

M

∑

k∈Nj
wjkψ̇(µ̄mj − µ̄mk)

max
{

dPC
j + rmj , ε

}

]+

, ∀j (5.21)

else, perform the following TRIOT-MC update:

µ̂j =





∑M

l=1

[

µ̄lj max
{

dMC
lj + rlj , ε

}

+
(

L̇lj − β
M

∑

k∈Nj
wjkψ̇(µ̄lj − µ̄lk)

)]

∑M

l=1
max

{

dMC
lj + rlj , ε

}





+

, ∀j (5.22)

end
end
µ̂n = µ̂

end

Here ε is some small positive value; cPC
i is defined in (5.24); and [µ]+

4
= median{0, µ, U}, which should not

be confused with [µ]+
4
= max{µ, 0}.

The discussion and proofs for global convergence given in Section 5.2.3 and Ap-

pendix E apply to TRIOT. When ri = 0 for all i, under mild conditions, since the PL

objective for transmission tomography is strictly concave, the algorithm converges to the
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optimal solution [69]. In the case ri 6= 0, the objective function is not necessarily con-

cave [1], and we have a weaker conclusion that every limit point of a sequence generated

by TRIOT is a stationary point. However, in our practical experience, we obtained the

same limit in all experiments with different initializations, suggesting that suboptimal lo-

cal maxima are rare, or are far from reasonable starting images.

5.3.3 OS-SPS

Since we use unrelaxed OS-SPS in initializing and accelerating TRIOT, we briefly

review OS-SPS for completeness (cf Section 4.3.2). For each subiteration, indexed by m,

maximizing the mth subobjective φm(·; µ̄m) in (5.15) instead of the augmented objective

F (·; µ̄1, . . . , µ̄M) in (5.6) leads to the following OS-SPS update:

µ̄(mmodM)+1 = PB

(

µ̄m +
[

C̆m(µ̄m)
]−1

∇Φm(µ̄m)

)

(5.23)

for m = 1, . . . ,M where C̆m(·) is based on (5.17). This greedy approach does not ensure

monotonicity, in neither the augmented objective nor the PL objective, so we need not

insist that the curvatures satisfy the minorization conditions. A natural choice for ci(·) is

the Newton’s curvatures −ḧi(·); these can be approximated as follows:

−ḧi(l) ≈ cPC
i

4
= −ḧi

(

arg max
l̃≥0

hi(l̃)

)

=











(yi − ri)
2

yi
, yi > ri

0, otherwise.
(5.24)

This choice is called “precomputed curvature (PC)” [1, 2]. Usually, for OS-SPS, the fol-

lowing subset-independent preconditioning matrix using PC is used in place of C̆m(µ̄m)

in (5.23):

C̆PC(µ) = diagj
{

c̆PC
j (µ)

}

c̆PC
j (µ) = max







1

M

N
∑

i=1

aijaic
PC
i +

2β

M

∑

k∈Nj

wjkωψ(µj − µk), ε







(5.25)
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Figure 5.1: Illustration of a geometric view of OS algorithms. In this example, there are two subobjective
functions f1 and f2 such that Φ = f1 + f2. When xn is far from the optimal point x∗, all
∇Φ(xn), ∇f1(xn), and ∇f2(xn) point roughly towards x∗. However, then xk is near x∗, they
do not.

where cPC
i is given in (5.24). The first term on the right side in (5.25) can be precomputed

and stored like the maximum curvatures (MC). The benefit of using PC is that it leads to

faster convergence rates than MC. The update for OS-SPS is shown in (5.21) in Table 5.2.

The OS-SPS shows very fast initial convergence rates but becomes eventually stuck at

a limit cycle. Using more subsets leads to a faster initial convergence rate but causes the

points in the limit cycle to be farther from the optimal solution.

Fig. 5.1 illustrates a geometric view of OS algorithms. Suppose a current iterate is

far from an optimal point. Then even partial gradients should point roughly to the opti-

mal point. This explains initial accelerated convergence rates of typical OS algorithms.

However, when a current iterate is near the optimal point, the subset gradient balance con-

ditions (4.9) or (4.10) never hold, and OS algorithms generally exhibit limit cycle behavior

particularly with a constant stepsize αn = α.

5.3.4 Acceleration

TRIOT-OC/MC is convergent yet faster than nonincremental ordinary SPS [2], but it

is still slower initially than OS-SPS which is not convergent unless relaxed. We discuss
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methods to accelerate TRIOT.

Enhanced Incremental Optimization Transfer Algorithms

Hsiao et al. proposed E-COSEM, an accelerated version of COSEM [53]. The idea

is to choose for each subiteration a convex combination of a fast yet nonconvergent OS

algorithm and a slow yet convergent incremental optimization transfer algorithm such that

the combination both ensures monotonicity in the augmented objective and is as close to

the OS algorithm as possible. This approach usually accelerates incremental optimization

transfer algorithms without destroying the monotonicity in the augmented objective.

Switch from OS-SPS to TRIOT

It is a popular idea to switch from a nonconvergent yet fast OS type algorithm to a

convergent yet slow non-OS algorithm at some point to take advantage of both fast initial

convergence rates of OS methods and fast asymptotic convergence rates (or global con-

vergence) of non-OS methods. Alternatively, one could decrease the number of subsets

as iterations proceed or could use a hybrid class of methods that combine OS and non-OS

algorithms [14]. However, the switching schedule or the parameters for the hybrid class

are as inconvenient to determine as relaxation parameters in relaxed OS algorithms.

We observed that it is very effective to switch to TRIOT from OS-SPS at the point

where the OS-SPS algorithm nearly gets to a limit cycle; even one single subiteration of

TRIOT moves the iterate from the limit cycle very close to the optimal solution. The

reason is as follows: a group of the points in the limit cycle would be roughly centered

around the optimal point and the update for TRIOT includes a weighted average of the

points [see the first term on the right side in (5.20) or (5.22)].

To obtain further insight into this property, consider a simple unconstrained quadratic
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problem where the objective function and the subobjective functions are

Φ(x) = −1

2
x′Qx + b′x, Φm(x) = −1

2
x′Qmx + b′

mx

respectively where
∑M

m=1 Qm = Q and
∑M

m=1 bm = b. Assume that each surrogate func-

tion φm(x; x̄) is equal to its corresponding subobjective Φm(x) and so it has a closed-form

maximizer x̂m = Q−1
m bm where we assume Qm are invertible. Then the OS approach will

generate a limit cycle that consists of those x̂1, . . . , x̂M . Now applying just one iteration

of the incremental optimization transfer method as in (5.20) leads to

x̂ =

(

M
∑

m=1

Qm

)−1 M
∑

m=1

Qmx̂m = Q−1

M
∑

m=1

Qm(Q−1
m bm)

= Q−1b,

which is the maximizer of the original objective [the second term on the right side in (5.20)

equals zero]. This example suggests that the built-in averaging operation in TRIOT helps

iterates escape from a limit cycle, generated by nonconvergent OS algorithms, towards the

optimal solution.

However, when OS-SPS is still far from the limit cycle and is making progress towards

the optimal point, that is, at early iterations, TRIOT is usually slower than OS-SPS due

to the averaging of the past subiterates; or one can say the reason is that the incremental

optimization transfer approach updates the surrogates incrementally, that is, conservatively

to ensure monotonicity. So it is desirable to get to a limit cycle quickly using OS-SPS with

many subsets and then switch to TRIOT. In a 2D reconstruction case in Section 5.4, the

use of 64 subsets is sufficient to reach nearly a limit cycle within a couple of iterations.

Precomputed Curvatures

Forgoing monotonicity (in the augmented objective) and (probably) global conver-

gence, one can use for TRIOT the “precomputed curvatures (PC)” in (5.24) usually used
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for nonconvergent OS-SPS. TRIOT-PC is faster than provably convergent TRIOT-OC/MC.

It is an open question whether TRIOT-PC converges to an optimal solution. However, in

our experiments, TRIOT-PC yielded the same limit as convergent algorithms like SPS-OC

within numerical precision!

5.4 Results

To assess the performance and to investigate the behavior of the proposed algorithms,

we performed 2D attenuation map reconstructions.

5.4.1 Simulation

We used a slice of the (modified) Zubal phantom [137] in Fig. 5.5(a). The true atten-

uation coefficient levels for the image were 0.002 (lungs), 0.0096 (soft tissue and water),

and 0.012 mm−1 (bone). The sinogram had 160 radial bins and 192 angles, and the recon-

structed images were 128 × 128 with 4.2 mm pixels. The system geometry was approxi-

mated with 3.375 mm wide strip integrals and 3.375 mm ray spacing; the system matrix

was generated using ASPIRE [35]. The known ri factor corresponded to a uniform field

of 10% backgrounds, and the total counts amounted to 106. We used the edge-preserving

nonquadratic penalty (5.14) with δ = 4 × 10−4 mm−1 and β = 217.5, chosen by visual

inspection. Pseudo-random independent Poisson variates were drawn according to (3.23).

We used the FBP reconstruction shown in Fig. 5.5(b) as a starting image.

Images were reconstructed using convergent yet slow SPS-MC/OC, fast yet noncon-

vergent OS-SPS-PC, TRIOT algorithms, and enhanced TRIOT algorithms. For enhanced

TRIOT algorithms, we used the same method as given in [53]. For OS-SPS and TRIOT

methods, we used 16 subsets (a moderate number) and 64 subsets (a little larger number

than usual).

Fig. 5.2 shows normalized Φ difference versus iteration for different algorithms using
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16 subsets. The normalized Φ difference is defined by (Φ(µ̂PL) − Φ(µ̂n))/(Φ(µ̂PL) −

Φ(µ̂0)) where µ̂PL is a maximizer of the penalized likelihood; and a small value means

a better image (closer to the optimal image µ̂PL). The optimal image µ̂PL [shown in

Fig. 5.5(c)] was estimated by 30 iterations of OS-SPS followed by 800 iterations of the

monotonic SPS-OC algorithm. As described in Section 5.3.2, TRIOT methods were ini-

tialized by running one iteration of OS-SPS. At iteration 2, all TRIOT methods decreased

Φ slightly, apparently because the subiterates generated by OS-SPS had not reached a limit

cycle yet. This shows nonmonotonicity in the objective despite monotonicity in the aug-

mented objective. Although OS-SPS shows a fast initial convergence rate, it become stuck

at a suboptimal point whereas other methods continue to improve in terms of objective val-

ues. TRIOT-OC lead to faster convergence rates than TRIOT-MC; however, TRIOT-OC

requires an extra backprojection per iteration. The enhancement proposed in [53] is very

effective here. Although global convergence is not provably ensured for TRIOT-PC, the

limit of TRIOT-PC (say, obtained by 1000 iterations) was the same as that of SPS-OC (ob-

tained similarly) within numerical precision (not shown here), which suggests TRIOT-PC

also has desirable convergence properties.

Fig. 5.3 shows the behavior of TRIOT algorithms when they are initialized by running

3 iterations of OS-SPS. Since OS-SPS nearly reached a limit cycle after 3 iterations, the

built-in weighted-averaging in the TRIOT algorithms leads to considerable improvement

at iteration 4. This shows that it is effective to switch from OS-SPS to TRIOT around

when OS-SPS almost reaches a limit cycle. However, it is inconvenient to predict how

many iterations are required for OS-SPS to arrive at a limit cycle; and if the required

iterations are many, then there is no room to improve the initial convergence rates during

OS-SPS being run. In Fig. 5.3, at early iterations, the enhancement method did slow

TRIOT algorithms. Further investigation is needed.
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As shown in Fig. 5.4, when we increase the number of subsets to 64, the initial conver-

gence rate of OS-SPS becomes much faster (even one iteration leads to a limit cycle) but

OS-SPS stagnates at a worse image. Meanwhile, the TRIOT algorithms and their enhanced

versions are quite effective even they used only one iteration of OS-SPS as initialization.

TRIOT-PC (with enhancement) shows very nice properties: fast initial convergence rates

and, in this study, convergence to the same limit as the convergent SPS-OC [the recon-

structed image is shown in Fig. 5.5(d)].

5.4.2 Real Data

We acquired real PET data using a Siemens/CTI ECAT EXACT 921 PET scanner with

rotating rod transmission sources [128]. We used an anthropomorphic thorax phantom

(Data Spectrum, Chapel Hill, NC). The sinogram size (160 × 190) and the image size

(128× 128) were the same as the previous simulation study, and the system geometry was

similar. The total counts amounted to 9.2×105. We used the edge-preserving nonquadratic

penalty (5.14) with δ = 4 × 10−4 mm−1 and β = 218.5. The results were very similar

to the previous simulation case (see Figs. 5.6–5.8). Fig. 5.9(c) shows an image of the

limit cycle generated by OS-SPS with 64 subsets (see Fig. 5.8), The figure looks different

from the true PL solution in Fig. 5.9(b) and its image quality is not very good. On the

other hand, Fig. 5.9(d) reconstructed by TRIOT-PC looks similar to the PL solution image

and shows good image quality. In light of these similar results, our strategy—switch to

TRIOT after few iterations of OS-SPS with many subsets—seems robust whereas relaxed

OS algorithms are sensitive to relaxation parameters.

5.5 Conclusion

We presented a broad family of incremental optimization transfer algorithms by gener-

alizing the incremental EM algorithms. The incremental optimization transfer algorithms
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show faster convergence rates than ordinary optimization transfer methods like EM, but

are globally convergent.

We also developed a particular incremental optimization transfer algorithm for trans-

mission tomography by using separable quadratic surrogates: TRIOT algorithms. We

found that it is very effective to switch from OS-SPS to TRIOT when OS-SPS nearly

reaches a limit cycle. The enhancement method in [53] worked effectively. When reason-

ably many subsets are used, as few as one iteration of OS-SPS can be enough to approach a

limit cycle (although it would depend on the degree of regularization applied and the prob-

lem size). This switching strategy is much more convenient than relaxed OS algorithms

that require determining relaxation parameters. Also, TRIOT is preferable to reducing

the number of subsets with iteration since the consistent data flow in OS-SPS and TRIOT

could be beneficial and it would be inconvenient to determine an optimal schedule for

reducing the number of subsets. The switching idea is also found in [104].

One iteration of TRIOT-MC/PC or OS-SPS requires computing one projection and one

backprojection plus the penalty related gradients and curvatures (the use of OC needs

an extra backprojection); so the computational cost is almost the same as classic ML-EM

except for the contribution of the penalty part. As the number of subsets increases, required

computation per iteration also increases due to the penalty part being updated for each

subiteration. Although the computational contribution of the penalty function is usually

small compared to projection/backprojection particularly for a large-scale problem like

3D, further investigation could help reduce this computation further, e.g., by subsetizing

the penalty part.

Our recommended method for transmission tomography is to switch from OS-SPS to

(enhanced) TRIOT-PC when the OS-SPS nearly reaches a limit cycle (in our 2D case, one

iteration was enough for 64 subsets). Although the TRIOT-PC was numerically found to
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be convergent, if one really wants provable convergence, one could switch to TRIOT-MC

or OC at some point.

We expect that incremental optimization transfer methods with quadratic surrogates

like TRIOT will work similarly for emission image reconstruction since the update equa-

tion is of the same form as (5.20). The use of EM surrogates leads to COSEM algo-

rithms [50, 52, 53], and the comparison of quadratic surrogates and EM surrogates in in-

cremental optimization transfer methods for emission tomography will need investigation.
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Figure 5.2: Comparison of non-OS algorithms (SPS-MC/OC), an OS algorithm (OS-SPS), incremen-
tal optimization transfer algorithms (TRIOT-MC/OC/PC), and enhanced TRIOT (E-TRIOT-
MC/OC/PC) for 2D attenuation map reconstruction using simulation data. The normalized Φ
difference is defined by (Φ(µ̂PL) − Φ(µ̂n))/(Φ(µ̂PL) − Φ(µ̂0)) where µ̂PL is a PL estimate
image. OS-SPS and TRIOT algorithms used 16 subsets, and TRIOT algorithms include one
iteration of OS-SPS initially. The starting image was a FBP image for all cases.
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Figure 5.3: Same as Fig. 5.2, but TRIOT algorithms include three iterations of OS-SPS initially.
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Figure 5.4: Same as Fig. 5.2, but 64 subsets are used for OS-SPS and TRIOT algorithms.
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Figure 5.5: (a) A slice of the (modified) Zubal phantom (true image). (b) FBP reconstruction (starting im-
age). (c) PL estimate image µ̂PL obtained using 30 iterations of OS-SPS-PC with 16 subsets
followed by 800 iterations of SPS-OC. (d) PL reconstruction using 1 iteration of OS-SPS-PC
and 19 iterations of TRIOT-PC with 64 subsets.
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Figure 5.6: Same as Fig. 5.2, but real PET data are used.
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Figure 5.7: Same as Fig. 5.3, but real PET data are used.
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Figure 5.8: Same as Fig. 5.4, but real PET data are used.
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Figure 5.9: Reconstructed attenuation maps from real PET data. (a) FBP reconstruction (starting image).
(b) PL estimate image µ̂PL obtained using 30 iterations of OS-SPS-PC with 16 subsets followed
by 800 iterations of SPS-OC. (c) PL reconstruction using 20 iterations of OS-SPS-PC with 64
subsets (an image that is one point of a limit cycle). (d) PL reconstruction using 1 iteration of
OS-SPS-PC and 19 iterations of TRIOT-PC with 64 subsets.



CHAPTER 6

Statistical Image Reconstruction for Randoms-Precorrected PET
Scans

6.1 Introduction

Accidental coincidence (AC) events, also known as randoms, are a primary source of

background noise in positron emission tomography (PET) [48]. AC events occur when

two photons that arise from separate positron emissions are detected within a coincidence

timing window and recorded as having originated from the same emission [95,99]. Quan-

titative PET studies require correction for AC events.

Usually, PET systems detect coincidence events during “prompt” windows and “de-

layed” windows as described in Section 2.3.1 [120, 131]. The delayed coincidences rep-

resent AC events (or randoms), and the prompt coincidences represent true coincidences

contaminated by AC events (plus Compton scatter events). In most PET scans, the prompt

data are precorrected for the effects of AC events by real-time subtraction of the de-

layed coincidences [48]. The subtraction compensates for the AC events in terms of

the mean but increases the variance of the data [86]. Ideally, scanners would maintain

both prompt and randoms sinograms. One could then estimate the mean of AC events

from the randoms sinogram and incorporate these estimates into an appropriate model

for the prompt measurement to estimate unknown parameters (radioactivity for emission

91
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scans and attenuation coefficients for transmission scans) [22, 49, 85, 86, 99]. However,

because of data storage limitations and historical momentum, most PET centers store

the randoms-precorrected data only [131]. This chapter focuses on the problem of re-

constructing emission images by considering the measurement statistics based on only

randoms-precorrected data without access to separate prompt and randoms sinograms. We

do assume that a rough estimate of the randoms contribution is available, such as can be

computed from the block singles rates that are often available [86].

Whereas both (prompt and randoms) sinograms are well approximated as being Pois-

son distributed [135], the randoms-precorrected data do not follow Poisson statistics. The

exact log-likelihood of precorrected data is inconvenient to maximize. Several practical

approximations to the exact log-likelihood have been investigated [129–133]. A shifted

Poisson (SP) model and a saddle-point (SD) model are such approximations [130, 131].

For transmission scans, both SP and SD models have been shown to outperform con-

ventional ordinary Poisson (OP) and weighted least squares (WLS) models in terms of

systematic bias and variance [130–132]. In transmission image reconstruction, the SP

model seems more attractive than the SD model since its implementation is simpler but

their performance is comparable.

For emission scans, the SP and SD models again lead to lower variance than the OP

model [133]. However, SP suffers from a positive systematic bias for low counts per ray,

albeit generally less than OP, while SD seems to be free of such a bias [133]. The system-

atic bias is caused by zeroing negative sinogram values (note that randoms-precorrected

data can be negative) [133]; it can affect contrast and quantitative studies adversely. The

zero-thresholding of negative values for SP and OP was a natural choice since those mod-

els are based on Poisson approximations. Moreover, negative sinogram values can cause

reconstruction algorithms like classic ML-EM to diverge. Negative sinogram values also
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cause the Poisson log-likelihood to become nonconcave, and it is difficult to develop al-

gorithms that globally maximize a nonconcave objective function. By contrast, in a trans-

mission case, negative values do not cause reconstruction algorithms to diverge; in fact,

they help ensure concavity of the log-likelihood that otherwise could be nonconcave [129,

Sec. 4.6].

To eliminate the positive systematic bias in emission scans, we propose new SP and OP

models that allow negative sinogram values, departing from the conventional tendency to

zero-threshold them [83, 84, 102, 133]. We will henceforth call our new methods “SP−”

and “OP−” to differentiate from the conventional ones with zero-thresholding that will be

called “SP+” and “OP+” in this dissertation. In contrast to some previous methods that al-

low the pixel values to be negative [93], here we enforce the usual nonnegativity constraint

in the image domain but allow the sinogram values to be negative for SP− and OP−. We

show that negative sinogram values in emission scans need not cause divergence of appro-

priate algorithms for SP− and OP−. Although negative values can cause the likelihood for

SP− or OP− to be nonconcave, one can achieve at least a locally optimal reconstruction by

employing algorithms that increase the objective function monotonically. We use the “op-

timization transfer principles” [70] to derive two monotonic algorithms that allow negative

values: separable paraboloidal surrogates (SPS) and a variant of maximum likelihood ex-

pectation maximization (ML-EM). Our practical experience shows that the locally optimal

reconstruction obtained by monotonic algorithms is very good regardless of initializations.

We show analytically that our new SP− model is nearly free of systematic bias (as is the

new OP− model) and leads to less variance than other methods including OP− and filtered

backprojection (FBP); this is corroborated by simulation results in Section 6.7. In other

words, the new SP− model, our recommended method for randoms-precorrected emission

image reconstruction, is comparable, in spite of its simpler implementation, to SD which
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has shown the best performance in terms of systematic bias and variance.

Section 6.2 reviews the statistical model for precorrected measurements and its exact

log-likelihood. Section 6.3 describes conventional approximation models and our new

ones for emission scans. We analyze the systematic bias due to zero-thresholding and the

asymptotic variances in Sections 6.4 and 6.5. Section 6.6 provides monotonic algorithms

for the new models and Section 6.7 gives simulation results.

6.2 Measurement Model and Exact Log-likelihood

Let Y = [Y1, . . . , YN ]′ denote the precorrected measurements for PET emission scans,

where ′ denotes vector and matrix transpose. The precorrected measurement for the ith

bin is

Yi = Y prompt
i − Y delay

i (6.1)

where Y prompt
i and Y delay

i are the number of coincidences detected within the prompt and

delayed windows, respectively. The prompts and delays can be modeled reasonably as

independent Poisson random variables [135] as follows:

Y prompt
i ∼ Poisson

{

[Aλtrue]i + ri + si
}

(6.2)

Y delay
i ∼ Poisson{ri} (6.3)

where aij ≥ 0 is the entry in the system matrix A incorporating scan geometry, atten-

uation, detector efficiencies, etc.; λtrue
j ≥ 0 is the activity at the jth voxel; and ri ≥ 0

and si ≥ 0 are the means of AC events and scatters, respectively. To focus on the

problem of estimating the unknown activity λtrue = [λtrue
1 , . . . , λtrue

p ]′, we assume that

r = [r1, . . . , rN ]′ and s = [s1, . . . , sN ]′ are known.1 In other words, we investigate the

1Even in a case where one does not have access to the delayed events separately, the total number of AC events or
the block singles rates are often available at the end of the scan and can be used to estimate AC rates [86, 103]. Indeed,
approximate models like SP and SD are known to be robust to errors in estimating AC rates [130]. Regarding scatter
estimation and correction, see [86, 94, 127] for example.
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“upper bound” of performance of each reconstruction method that needs estimates of r

and s. In [49], the effects of randoms estimates on bias for various reconstruction meth-

ods were investigated. We also assume ri > 0 for all i for simplicity; the analysis and

algorithms are easily adopted to include rays where ri = 0.

Let y = [y1, . . . , yN ]′ be an observed realization of Y . Recall that Y prompt and Y delay

are not separately accessible. Since the measurements are independent, one can obtain the

exact log-likelihood, ignoring constants independent of λ, as in [130, 131]:

L(λ; Y ) =
N
∑

i=1

hEX
i ([Aλ]i) (6.4)

with

hEX
i (l) = log





∞
∑

m=[−yi]+

(l + ri + si)
yi+m

(yi +m)!

rmi
m!



− (l + 2ri + si) (6.5)

where [x]+ = max{x, 0}. For notational simplicity, we omit an argument indicating the

dependence of hEX
i on yi in (6.4) and (6.5).

For penalized-likelihood (PL) reconstruction, one must find a maximizer of the objec-

tive function

Φ(λ; Y ) = L(λ; Y ) −R(λ) (6.6)

over a nonnegativity constraint on the image λ, where R is a regularization term that

controls a trade-off of resolution and noise in the reconstructed image as in (3.9). The exact

log-likelihood function (6.4) is inconvenient to maximize although it can be expressed

without the infinite summations in (6.5) using Bessel functions [129, Sec. 3.2]. The next

section describes practical approximations to the exact log-likelihood.
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6.3 Approximations to Exact Log-likelihood

6.3.1 Ordinary Poisson (OP) Approximation

A simple approach that does not need an estimate of AC events r is to approximate the

measurements as Poisson random variables as follows:

Yi
OP

approx.∼ Poisson
{

[Aλtrue]i + si
}

. (6.7)

This model matches the first moment of Yi only. The log-likelihood LOP−
corresponding

to this “OP−” approximation2 is of the form (6.4) with

hOP−

i (l) = yi log(l + si) − (l + si). (6.8)

We assume si > 0 in (6.8); otherwise, negative values yi would cause reconstruction

algorithms to diverge since hOP−

i (0) = +∞ for yi < 0 and si = 0. To avoid such

divergence, past studies of the OP approach for emission scans have used zero-thresholded

values as follows [83, 133]:

hOP+

i (l) = [yi]+ log(l + si) − (l + si), (6.9)

called the “OP+” approximation in this dissertation. (Note the slightly different use of

terms from [133].) The zero-thresholding is natural in view of the nonnegative nature of

Poisson random variables in (6.7). Moreover, it guarantees the concavity of hOP+

i , and

hence the existence and uniqueness of the penalized-likelihood reconstruction under mild

conditions [4]. However, zero-thresholding destroys the first moment matching in (6.7),

and the increase of the precorrected data by zero-thresholding causes the estimators to

have a positive systematic bias since emission data is linearly related to activity in the

mean. Section 6.4 shows that the seemingly unnatural use of negative sinogram values in

the Poisson framework can alleviate the systematic bias problem of OP+.

2The minus sign signifies that this approximation allows negative precorrected data yi < 0.
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6.3.2 Shifted Poisson (SP) Approximation

An improved approximation is to match both the first and second moments as follows:

Yi + 2ri
SP

approx.∼ Poisson
{

[Aλtrue]i + si + 2ri
}

, (6.10)

where in practice one must use an estimate r̂i. This “SP−” approximation3 leads to a

log-likelihood function LSP−
of the form (6.4) with

hSP−

i (l) = (yi + 2ri) log(l + si + 2ri) − (l + si + 2ri). (6.11)

Similarly, its conventional zero-thresholded version LSP+

uses [133]

hSP+

i (l) = [yi + 2ri]+ log(l + si + 2ri) − (l + si + 2ri). (6.12)

The zero-thresholding again ensures the concavity of LSP+

but also causes positive sys-

tematic bias, albeit generally less than that of OP+ since it is more likely that yi < 0 than

yi + 2ri < 0. Section 6.4 describes the details.

6.3.3 Saddle-Point (SD) Approximation

Another approach is to make a second order Taylor series approximation in the z-

transform domain to the probability generating function and then carry out the inverse

transform [108,116]. The log-likelihoodLSD corresponding to this SD approximation [133]

is of the form (6.4) with

hSD
i (l) = yi log

(

l + si + ri
zi + ui(l)

)

− l + ui(l) −
1

2
log ui(l) (6.13)

where

zi =











yi + 1, for yi ≥ 0

yi − 1, for yi < 0

3The minus sign signifies that this approximation allows yi + 2ri < 0.
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and

ui(l) =
√

z2
i + 4(l + ri + si)ri.

The SD model for emission image reconstruction is free of systematic bias and leads to

lower variance than OP+ [133]. Indeed, in all cases studied to date, the SD model has

shown the best performance for randoms-precorrected PET emission reconstruction. We

observe those properties empirically in Section 6.7. However, the new SP−, despite its

simpler implementation, performs comparably to SD.

6.3.4 Log-likelihood for Prompt Data

If one has access to the prompt data Y prompt, then one can use the log-likelihood for

the prompt data in the form (6.4) with

hPR
i (l) = yprompt

i log(l + si + ri) − (l + si + ri).

We include this PR model for comparing the bias and variance of the methods for randoms-

precorrected data in Section 6.7. Since Y prompt has lower variance than Y , it serves as a

baseline for comparing algorithms.

6.4 Effects of Zero-thresholding on Bias

The sinogram zero-thresholding in (6.9) and (6.12) increases the mean values of the

data. This section analyzes the effects of this shift.

First, we focus on a single ray to investigate the properties of OP+ and SP+. Let Y be a

precorrected measurement modeled as the difference of two independent Poisson random

variables as follows:

Y
4
= Poisson{θ + r} − Poisson{r} (6.14)

where θ and r denote the mean number of trues (possibly including scatters) and AC
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events, respectively. The normalized effective means of trues are given by

mOP+

=
E{[Y ]+}

θ
for OP+,

and

mSP+

=
E{[Y + 2r]+} − 2r

θ
for SP+,

as a function of θ. Note that mOP+

and mSP+

would be unity without zero-thresholding.

We calculated these expectations using the Bessel function expression for the probability

mass function for Y [129, Sec. 3.2] as follows:

P (Y = y; θ) =
∞
∑

m=[−y]+

(θ + r)y+me−(θ+r)

(y +m)!

rme−r

m!

=
e−(θ+2r)

i|y|

(
√

θ + r

r

)y

J|y|

(

2i
√

(θ + r)r
)

where i =
√
−1 and Jn(·) is the Bessel function of the first kind of order n [10, p. 575].

Fig. 6.1 shows the results, from which we infer that 1) for counts per ray higher than 10 (or

1), there is little effect of zero-thresholding for OP+ (or SP+) as long as randoms amount

to less than 100% of trues, and 2) OP+ generally leads to a higher bias than SP+. For

extremely low counts or low AC rates, OP+ and SP+ yield similar results.

Next, we consider a one-parameter example for the OP approach to illustrate how al-

lowing negative values can be helpful for reducing systematic positive bias. Let the mea-

surements be the difference of two independent Poisson random variables as follows:

Zi
4
= Poisson

{

aiθ
true + si + ri

}

− Poisson{ri} (6.15)

for i = 1, . . . , N . Setting si = 0, ML estimates based on OP− and OP+ models [see (6.4)

with (6.8) and (6.9)] with an image nonnegativity constraint have the following analytical

solutions:

θ̂OP−

=

[

∑N
i=1 zi

]

+
∑N

i=1 ai
(6.16)
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Figure 6.1: Effective means of trues increased by zero-thresholding for OP+ and SP+. In this figure, ran-
doms fractions in % denote (mean of randoms)/(mean of trues).

and

θ̂OP+

=

∑N
i=1[zi]+
∑N

i=1 ai
. (6.17)

Note the zero-thresholding in (6.16) is due to the image-domain nonnegativity constraint

and not a primary source of the positive bias, whereas the zero-thresholding [zi]+ in (6.17)

is in the sinogram domain from (6.9). In view of Fig. 6.1, θ̂OP+

is more biased than θ̂OP−
.

For instance, if θtrue = 1, ai = 1, ri = 0.5 for all i, and N = 10, then the estimator biases

can be computed using Fig. 6.1 with (6.16) and (6.17) as follows:

bOP−

= E{θ̂OP−} − θtrue = 1.014 − 1 = 0.014

bOP+

= E{θ̂OP+} − θtrue = 1.152 − 1 = 0.152.

So the OP− model reduces significantly the positive bias in OP+. This example suggests

that when the rays passing through a particular voxel have low counts but high AC rates,

OP+ will yield a higher positive systematic bias than OP−. The comparison of SP− and

SP+ would be similar although there are no closed-form estimators for SP− and SP+ like
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(6.16) and (6.17).

For high counts per ray cases, sinogram zero-thresholding is not problematic since

the probability of negative values is greatly reduced. The next section investigates the

asymptotic behavior of the estimators for high counts.

6.5 Asymptotic Analysis

This section analyzes the asymptotic bias and covariance of OP−, SP−, and SD es-

timators for high counts (per ray) cases. The purpose of the analysis is to compare the

estimator properties rather than to accurately predict estimator behavior. (The prediction

of the mean and covariance of PL or ML estimators could be conducted following [36];

see [132] for such analysis for randoms-precorrected PET transmission scans.) We focus

on ML estimators for simplicity. We do not consider OP+ and SP+ since they should

behave quite similarly to OP− and SP−, respectively, for high counts per ray.

6.5.1 Asymptotic Bias and Asymptotic Covariance

Let the precorrected measurement Y n = [Y n
1 , . . . , Y

n
N ]′ be such that

Y n
i

4
= Poisson

{

n([Aλtrue]i + ri + si)
}

− Poisson{nri} (6.18)

for i = 1, . . . , N where n ∈ N represents a factor proportional to the number of total

counts or the scan time. Define Y
n 4

= Y n/n, then4

Y
n p−→ Y (6.19)

as n→ ∞ by the weak law of large numbers [105, p. 112] where

Y = E{Y 1} = Aλtrue + s (6.20)

4Note that Y n is identical to the sum of n iid random vectors each of which is identical to Y 1.
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and “
p−→” denotes convergence in probability. Also,

√
n(Y

n − Y )
L−→ N (0,Cov{Y 1}) (6.21)

as n→ ∞ by the central limit theorem [74, p. 61] where

Cov{Y 1} = diag
{

[Aλtrue]i + si + 2ri
}

(6.22)

and “ L−→” denotes convergence in law (or distribution). Because hOP−

i in (6.8) is affine in

Y , we can write the OP− estimate based on Y n as follows:

arg max
λ≥0

LOP−

(λ; Y n) = arg max
λ≥0

{

LOP−
(λ; Y n)

n

}

= arg max
λ≥0

LOP−

(λ; Y
n
) (6.23)

4
= λ̂OP−

(Y
n
) (6.24)

where LOP−
is of the form (6.4) with (6.8). One can show LOP−

(λtrue; Y ) ≥ LOP−
(λ; Y )

for all λ ≥ 0 where Y is defined in (6.20) since hOP−

i (l) attains a maximum over l ≥ 0 at

l = [yi− si]+. We assume that the N × p system matrix A has full column rank, ensuring

uniqueness of the noiseless reconstruction λ̂OP−
(Y ) = λtrue.

One can easily show that

∇10LOP−

(λtrue; Y ) = 0

and that

∇20LOP−

(λtrue; Y ) = A′diag
{

1

[Aλtrue]i + si

}

A

is positive definite since A has full column rank where ∇10 = [ ∂
∂λ1

, . . . , ∂
∂λp

]′ and ∇20

denote the column gradient operator and the Hessian operator, respectively. Then λ̂OP−
(·)

is continuously differentiable at Y by the implicit function theorem [15, p. 668].

Since λ̂OP−
(·) is continuous at Y , one can show [105, p. 124]

λ̂OP−

(Y
n
)

p−→ λ̂OP−

(Y ) = λtrue (6.25)
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as n → ∞, in view of (6.19). In other words, the OP− estimator (and OP+ as well) is

asymptotically unbiased.

Next, we investigate the asymptotic variance for OP−. Since λ̂OP−
(·) is continuously

differentiable in a neighborhood of Y , it can be shown by the Delta method [74, p. 61], in

view of (6.21), that

√
n
(

λ̂OP−

(Y
n
) − λtrue

)

L−→ N
(

0,ΣOP−
)

with

Σ
OP−

= ∇λ̂OP−

(Y )Cov{Y 1}[∇λ̂OP−

(Y )]′ (6.26)

where ∇ = [ ∂
∂Y1
, . . . , ∂

∂YN
] denotes the row gradient operator. The gradient ∇λ̂OP−

(Y )

of the implicitly defined function (6.24) can be computed as in [36]. Assuming that5

λtrue > 0, one obtains

∇λ̂OP−

(Y ) =
[

−∇20LOP−
(

λ̂OP−

(Y ); Y
)]−1

∇11LOP−
(

λ̂OP−

(Y ); Y
)

(6.27)

=
[

−∇20LOP− (

λtrue; Y
)

]−1

∇11LOP− (

λtrue; Y
)

= −
[

A′diag
{

Yi
([Aλtrue]i + si)2

}

A

]−1

A′diag
{

1

[Aλtrue]i + si

}

= −
[

A′diag
{

1

[Aλtrue]i + si

}

A

]−1

A′diag
{

1

[Aλtrue]i + si

}

due to (6.20) and (6.25) where the (j, i)th element of the p × N operator ∇11 is ∂2

∂λj∂Yi
.

Now, (6.26) can be written as

Σ
OP−

= F−1
OP−A′diag

{

[Aλtrue]i + si + 2ri
([Aλtrue]i + si)2

}

AF−1
OP− (6.28)

where

FOP− = A′diag
{

1

[Aλtrue]i + si

}

A.

5Although the analysis method here does not apply to a case where some λtrue
j = 0, it provides reasonably accurate

prediction of the covariance of an implicitly defined estimator [36].
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Similarly, one can show that the SP− method (and SP+ as well) is also asymptotically

unbiased and that its asymptotic covariance is

Σ
SP−

=

[

A′diag
{

1

[Aλtrue]i + si + 2ri

}

A

]−1

. (6.29)

To analyze the SD case, one needs the following approximation that, from (6.13), is

valid for large n:
LSD(λ; Y n)

n
≈ LSD′

(λ; Y
n
) (6.30)

with

LSD′

(λ; Y ) =
N
∑

i=1

hSD′

i (li(λ))

where

hSD′

i (l) = yi log

(

l + si + ri
yi + ũi(l)

)

− l + ũi(l)

and

ũi(l) =
√

y2
i + 4(l + ri + si)ri.

The SD estimate can be written as follows:

arg max
λ≥0

LSD(λ; Y n) = arg max
λ≥0

{

LSD(λ; Y n)

n

}

≈ arg max
λ≥0

LSD′

(λ; Y
n
)

4
= λ̂SD′

(Y
n
).

Since 1) LSD′
(λ; Y ) has the unique maximizer (over λ ≥ 0), 2) λ̂SD′

(Y ) = λtrue (note

LSD′ can be shown to be strictly concave) and 3) the approximation (6.30) becomes more

accurate as n increases, it can be shown that the SD method is also asymptotically un-

biased. By similar manipulations, one can obtain the asymptotic covariance for SD as

follows:

Σ
SD ≈ Σ

SD′

=

[

A′diag
{

1

[Aλtrue]i + si + 2ri

}

A

]−1

, (6.31)
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which is equal to (6.29).

Both SP− and SD are asymptotically efficient in the following sense. Noting that Y
n

is asymptotically normal with mean Y and covariance Cov{Y 1}/n from (6.21), one can

obtain the Cramér-Rao bound (CRB) from the asymptotic normal likelihood as follows:

B(λtrue) ≈ 1

n

[

A′Cov{Y 1}−1A
]−1

=
1

n

[

A′diag
{

1

[Aλtrue]i + si + 2ri

}

A

]−1

.

Now one can see SP− and SD asymptotically achieve this bound from (6.29) and (6.31).

Note that the exact CRB appears intractable due to form of (6.5).

The reasons that SP− and SD are asymptotically efficient are as follows. First, for SP−,

the precorrected data are modeled as the Poisson approximation in (6.10) that matches the

first and second moments, so the SP model approaches the asymptotic normal distribution

in (6.21) of the precorrected data in (6.18) for large n. Intuitively, this suggests that SP

estimators approach ML estimators for large n, and consequently, they are asymptotically

efficient. Next, noting that the saddle-point approximation of a normal variate is exact,

one could also expect SD estimators to approach ML estimators asymptotically; so they

should also be asymptotically efficient.

To summarize, we have shown that all OP−, SP− and SD are asymptotically unbiased,

and we have derived their asymptotic covariances (6.28), (6.29) and (6.31). We have also

shown that SP− and SD are asymptotically efficient.

6.5.2 Comparison with Weighted Least Squares Methods

We compare SP− and SD with some weighted least squares (WLS) methods6 in a way

similar to the approach in Section 6.5.1. As an alternative to Poisson models, in view of

6We are not concerned about implementation issues, nonnegativity constraints, or rigorous convergence proofs for
WLS methods. Our aim here is to obtain some insights into the asymptotic behavior of SP− and SD compared to those
of WLS methods.
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Y
n

being (asymptotically normal) with mean Y in (6.20) and covariance Cov{Y 1}/n in

(6.22), a natural “model-weighted” least squares (MWLS) objective function is

ΦMWLS(λ; Y
n
) = −n

(

Y
n − (Aλ + s)

)′
W (λ)

(

Y
n − (Aλ + s)

)

(6.32)

where

W (λ) = diag
{

1

[Aλ]i + 2ri + si

}

.

Define

λ̂MWLS(Y )
4
= arg max

λ
ΦMWLS(λ; Y ).

Assuming that A is of full column rank, one can compute the unique noiseless estimate

λ̂MWLS(Y ) = λtrue where Y is defined in (6.20). Then it follows that

λ̂MWLS(Y
n
)

p−→ λtrue

when n → ∞, as in (6.25). That is, MWLS is also asymptotically unbiased. Similar to

(6.26), the asymptotic covariance for MWLS is given by

Σ
MWLS = ∇λ̂MWLS(Y )Cov{Y 1}[∇λ̂MWLS(Y )]′. (6.33)

But one can compute

∇λ̂MWLS(Y ) =
[

−∇20ΦMWLS
(

λ̂MWLS(Y ); Y
)]−1

∇11ΦMWLS
(

λ̂MWLS(Y ); Y
)

= −
[

A′diag
{

1

[Aλtrue]i + 2ri + si

}

A

]−1

·

A′diag
{

1

[Aλtrue]i + 2ri + si

}

(6.34)

as in (6.27). Combining (6.22), (6.33), and (6.34) yields

Σ
MWLS =

[

A′diag
{

1

[Aλtrue]i + 2ri + si

}

A

]−1

, (6.35)

which is equal to (6.29) and (6.31).
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Now we consider an iterative reweighted least squares (IRLS) method [43]. Since the

objective function in (6.32) is difficult to maximize due to its nonlinearity, one could take

the IRLS approach by using the previous iterate for determining the current weight:

λk+1 = arg min
λ

(

Y
n − (Aλ + s)

)′
W (λk)

(

Y
n − (Aλ + s)

)

.

Ignoring the nonnegativity constraint, one has the following analytical solution to the

above optimization problem:

λk+1 =
(

A′W (λk)A
)−1

A′W (λk)(Y
n − s). (6.36)

Assuming a sequence {λk} generated by (6.36) converges to λ̂IRLS(Y
n
), one obtains the

following relationship:

λ̂IRLS(Y
n
) =

(

A′W (λ̂IRLS(Y
n
))A

)−1

A′W (λ̂IRLS(Y
n
))(Y

n − s). (6.37)

Since λ̂IRLS(Y ) = λtrue, IRLS is asymptotically unbiased, too. Define

Ψ(λ̂IRLS(Y ); Y )
4
= A′W (λ̂IRLS(Y ))

(

Y − (Aλ̂IRLS(Y ) + s)
)

= 0 (6.38)

where the equality is due to (6.37). Differentiating (6.38) with respect to Y yields

∇λ̂IRLS(Y ) =
[

−∇10Ψ
(

λ̂IRLS(Y ); Y
)]−1

∇01Ψ
(

λ̂IRLS(Y ); Y
)

= −
[

A′diag

{

1

[Aλ̂IRLS(Y )]i + 2ri + si

}

A

]−1

·

A′diag

{

1

[Aλ̂IRLS(Y )]i + 2ri + si

}

(6.39)

where ∇10 and ∇01 denote the row gradient operator with respect to the first and the

second argument of Ψ(·; ·), respectively. Now one can compute the asymptotic covariance

for IRLS by using (6.22) and (6.39) as follows:

Σ
IRLS = ∇λ̂IRLS(Y )Cov{Y 1}[∇λ̂IRLS(Y )]′

=

[

A′diag
{

1

[Aλtrue]i + 2ri + si

}

A

]−1

,
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which is equal to (6.29) and (6.31) as well as (6.35).

To summarize, SP− and SD show the same asymptotic behavior as WLS methods such

as MWLS and IRLS.

6.5.3 Comparison of Covariances

We compare the asymptotic variances of OP− and SP− (equivalently, SD) estimators

for a simple one-parameter example introduced in (6.15) (see [130,131] for a similar com-

parison in a transmission case). Using (6.28) and (6.29), one obtains asymptotic variances

(or approximate variances for high counts) for OP− and SP−:

Var
{

θ̂OP−
}

=

N
∑

i=1

a2
i

aiθ
true + si + 2ri

(aiθtrue + si)2

(

N
∑

i=1

a2
i

aiθtrue + si

)2

and

Var
{

θ̂SP−
}

=

(

N
∑

i=1

a2
i

aiθtrue + si + 2ri

)−1

.

Using the Schwartz inequality [126, p. 107], one can show

Var
{

θ̂OP−
}

≥ Var
{

θ̂SP−
}

(6.40)

where equality holds if and only if the (aiθ
true + si)/(aiθ

true + si + 2ri) ratios are equal,

which is impossible as long as ri > 0 and si > 0. Therefore, the inequality (6.40) is strict;

the variance of OP− is higher than that of SP− (or SD). This is corroborated by empirical

results for a multi-parameter case in Section 6.7.

6.6 Reconstruction Algorithms

After choosing a suitable likelihood approximation, one needs an algorithm to max-

imize the corresponding objective function for ML or PL estimation. It is straightfor-
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ward to use globally convergent (and monotonic) algorithms7 such as SPS in Section 3.3.3

and ML-EM in Section 3.3.2 for PR, OP+, SP+ and SD, all of which have concave log-

likelihoods. However, the new OP− and SP− models can have nonconcave log-likelihood

functions when negative sinogram values are present. The algorithms need some modifi-

cations to ensure monotonicity for the nonconcave case as well. Monotonicity is one of

the most desirable properties to enable at least locally optimal reconstruction.

A large class of monotonic iterative algorithms (including SPS and ML-EM) are based

on the “optimization transfer principles” in Section 3.3: at each iteration we choose a

surrogate function that is easier to maximize than the original objective function, and then

maximize the surrogate. To ensure monotonicity, the surrogate function is chosen so that

increasing the surrogate guarantees the increase of the original objective function.

The idea for extending the algorithms to allow negative yi’s is to choose a linear surro-

gate when a marginal log-likelihood hi is convex. That is, for OP−, if yi < 0, a tangent

line to hOP−

i at a current iterate lni (in projection domain)

qOP−

i (l; lni ) = ḣOP−

i (lni )(l − lni ) + hOP−

i (lni ) (6.41)

is a proper surrogate for hOP−

i in light of [1, Eq. 7] since qOP−

i lies below for all l ≥ 0 due

to convexity of hOP−

i , as illustrated in Fig. 6.2.

The same principle applies to SP− when yi + 2ri < 0. We derive modified SPS and

ML-EM applicable to OP− and SP−, using a linear surrogate (6.41) when needed.

7Ordered subsets algorithms [2, 55] can also be used with the aim of accelerating convergence speeds at the expense
of monotonicity or global convergence.
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Figure 6.2: Illustration of a linear surrogate qOP
−

[see (6.41)] at ln = 1 for an OP− log-likelihood hOP
−

for a negative value yi < 0. The concave surrogate qOP
−

lies below the objective hOP
−

that
is convex. One can see that qOP

−

(l; ln) ≥ qOP
−

(ln; ln) implies that hOP
−

(l) ≥ hOP
−

(ln) for
l ≥ 0.

6.6.1 SPS for OP−, SP−, and SD

We consider the PL objective function Φ in (6.6) with a quadratic penalty for simplicity:

R(λ) =
β

2

p
∑

j=1

∑

k∈Nj

ωjk
(λj − λk)

2

2
. (6.42)

A monotonic SPS method for OP− and SP− is readily derived following Section 3.3.3 with

(6.41). The resulting algorithm differs only slightly from the ordinary SPS algorithm in

(3.53), and uses the following iteration:

λn+1
j =

[

λnj +
1

dSPS
j (λn)

∂Φ(λn)

∂λj

]

+

(6.43)

with

dSPS
j (λ) =

N
∑

i=1

aijaici([Aλ]i) + 2β
∑

k∈Nj

ωjk (6.44)
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where ai =
∑p

j=1 aij and the optimum curvatures are

ci(l) =



























2[hi(l) − hi(0) − lḣi(l)]

l2
, l > 0, xi > 0

−ḧi(0), l = 0, xi > 0

0, xi ≤ 0,

(6.45)

in which hi represents hOP−

i for OP− and hSP−

i for SP−, and we define

xi
4
=











yi, for OP−

yi + 2ri, for SP−.
(6.46)

The only difference from the ordinary SPS method with optimum curvatures in Sec-

tion 3.3.3 is that here we set ci to zero for xi < 0 in (6.45) (note that xi < 0 never

occurs for previous zero-thresholding or prompt models). So one can easily modify exist-

ing codes to apply OP− or SP−. Nonquadratic penalties are included as in [2].

Being constructed by the optimization transfer principle, the iteration (6.43) increases

monotonically the objective function Φ every iteration. Since the step (6.44) requires an

“extra” backprojection, we often forego strict monotonicity by replacing the curvatures ci

with the following “precomputed curvatures,”

ci(l) =











−ḧi(l̂i), xi > 0

0, xi ≤ 0

where l̂i = arg maxl≥0 hi(l) = [yi − si]+. This allows dSPS
j to be computed prior to

iterating.

Paraboloidal surrogates algorithms for SD were developed in [129, Sec. 5.6]. A mono-

tonic SPS version has the form of (6.43) and (6.44) with the following curvatures,

ci(l) =



























−ḧSD
i (l∗i ), yi = 0, l∗i > 0

−ḧSD
i (l∗∗i ), yi = −1, l∗∗i > 0

ti(l), otherwise
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and

ti(l) =











2[hSD
i (l) − hSD

i (0) − lḣSD
i (l)]

l2
, l > 0

−ḧSD
i (0), l = 0

with l∗i = 7/9 − 4ri(ri + si) and l∗∗i = x2
0 − 1 − ri(ri + si) where x0 ≈ −1.1193219 is a

root of a polynomial [129, Appendix E]. In this case for SD, the following precomputed

curvatures can be used for saving computation at the expense of monotonicity,

ci(l) = −ḧSD
i (l̂i),

where l̂i = arg maxl≥0 h
SD
i (l), or one could use a simple estimate l̂i ≈ [yi − si]+.

6.6.2 Variation of ML-EM for OP− and SP−

Following the derivation of ML-EM in Section 3.3.2 leads to a variation of ML-EM

for OP− and SP−. Although we used SPS rather than ML-EM variants for the results in

Section 6.7, we provide the ML-EM variants for completeness as follows:

λn+1
j =

λnj
dEM
j (λn)

N
∑

i=1

aij[xi]+
xi(λn)

(6.47)

or

λn+1
j = λnj +

λnj
dEM
j (λn)

∂L(λn)

∂λj

with

dEM
j (λ) =

N
∑

i=1

aij

(

1 +
[−xi]+
xi(λ)

)

, (6.48)

where xi is defined in (6.46), and

xi(λ)
4
= [Aλ]i + bi (6.49)

in which

bi
4
=











si, for OP

si + 2ri, for SP.
(6.50)
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This variation of ML-EM reverts to classic ML-EM in (3.37) as a special case for non-

negative sinogram values. Regularization can also be incorporated as for DPEM in Sec-

tion 3.3.2. The steps (6.48) require an extra backprojection each iteration compared to

classic ML-EM in (3.37).

We present the derivation of the variation of ML-EM in (6.47). Define L+(λ; Y )
4
=

∑

i:xi≥0 hi([Aλ]i) and L−(λ; Y )
4
=
∑

i:xi<0 hi([Aλ]i) with hi(l) = xi log(l+bi)−(l+bi)

where xi and bi are defined in (6.46), and (6.50), respectively. Then, by concavity of

log [30],

L+(λ; Y ) =
∑

i:xi≥0

xi log

(

p
∑

j=1

aijλ
n
j

xi(λn)

λj
λnj
xi(λ

n) +
bi

xi(λn)
xi(λ

n)

)

− xi(λ)

≥
∑

i:xi≥0

p
∑

j=1

xiaijλ
n
j

xi(λn)
log λj − aijλj + C+

4
= Q+(λ; λn)

where xi is defined in (6.49) and C+ is a constant with respect to λ. On the other hand,

since hi(·) is convex for xi < 0,

L−(λ; Y ) ≥
∑

i:xi<0

ḣi([Aλn]i)([Aλ]i − [Aλn]i) + hi([Aλn]i)

=
∑

i:xi<0

p
∑

j=1

(

xi
xi(λn)

− 1

)

aijλj + C−

4
= Q−(λ; λn)

where C− is a constant with respect to λ. Since

Q(λ; λn)
4
= Q+(λ; λn) +Q−(λ; λn)

≤ L+(λ; Y ) + L−(λ; Y ) = L(λ; Y )

and Q(λn; λn) = L(λn; Y ), one can show that Q(·; λn) is a minorizing surrogate for

L(·; Y ). The surrogate Q(·; λn) can be maximized by setting its derivative to zero, and as
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a result, its maximizer λn+1 is calculated as (6.47). Because of the optimization transfer

principle, this derivation ensures monotonicity.

The following is an alternative “intuitive” but not rigorous derivation. The partial

derivatives of the log-likelihood function LSP−
or LOP−

at a nonnegative maximizer λ̂ are,

by the Karush-Kuhn-Tucker conditions [15, p. 310],

∂

∂λj
L(λ̂) =

N
∑

i=1

aij

(

xi

xi(λ̂)
− 1

)











= 0, λ̂j > 0

≤ 0, λ̂j = 0

where xi and xi are defined in (6.46) and (6.49), respectively. So, for λ̂j > 0,

N
∑

i=1

aij =
N
∑

i=1

aij

xi(λ̂)
xi =

N
∑

i=1

aij

xi(λ̂)
([xi]+ − [−xi]+).

Moving the subtracted term to the other side (cf. [71, 72]) leads to the following:

N
∑

i=1

aij

(

1 +
[−xi]+
xi(λ̂)

)

=
N
∑

i=1

aij[xi]+

xi(λ̂)
.

The ratio of these terms yields the multiplicative update (6.47). In other words, λ̂ is a fixed

point of the iteration (6.47).

6.7 Simulations

6.7.1 Methods

To compare the bias and variance properties of the estimators (OP−, OP+, SP−, SP+

and SD), we simulated 2D PET emission scans. The PR model was also included for com-

parison purposes since in this simulation we had access to Y prompt
i and Y delay

i separately.

The synthetic emission phantom shown in Fig. 6.3 was used; its warm background, left

cold disc, and right hot disc had relative emission activities of 2, 0.5, and 4, respectively.

The sinograms had 192 radial bins and 120 angles uniformly sampled over 180 degrees.

The system matrix was generated using ASPIRE [35]; the system geometry was approx-

imated with 3 mm wide strip integrals and 3 mm ray spacing. We simulated nonuniform
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Figure 6.3: Digital phantom used in simulations. The background, left cold disc, and right hot disc have
relative emission activities of 2, 0.5, and 4, respectively.

detector efficiencies using pseudo-random log-normal variates with standard deviation of

0.3. Attenuation was not considered in this simulation. The reconstructed images were 64

by 32 with 9 mm pixels. The known ri and si factors corresponded to a uniform field of

60% randoms and 10% scatters, respectively.8

The specific aim of the simulation was to compare biases for low counts and to compare

variances for high counts. We performed two studies with 2K and 2M total counts. We

generated 500 realizations of pseudo-random emission measurements according to (6.1)

with (6.2) and (6.3). For each realization, images were reconstructed using 100 iterations

of the SPS method (with optimum curvature) for 2K counts, and using 40 iterations of SPS

(with optimum curvature) after 10 iterations of ordered subsets SPS (with 8 subsets and

precomputed curvature) [2] for 2M counts. The FBP reconstruction for each realization

served as an initial image for the iterations. The number of iterations was determined

by looking at objective function values over iteration for a few realizations to ensure that

convergence was reasonably achieved. For initial FBP reconstructions, a Hanning filter

was used with such a cut-off frequency that their impulse responses were of 3 pixels full-

8The fractions in % denote (mean of randoms)/(mean of trues) and (mean of scatters)/(mean of trues), respectively.
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width half-maximum (FWHM).

For regularization, we used a second-order quadratic penalty in (6.42). It is important

to match the spatial resolution in reconstructed images for a fair comparison of differ-

ent estimators. Penalty functions can be designed to achieve spatially uniform resolu-

tion [41,122,123]. However, in this simulation, we used a simpler hybrid technique [122]

consisting of two steps: 1) for each method, we adjusted a global regularization parameter

β so that the local impulse response9 at the center pixel was of 1.5 pixels FWHM, and then

performed PL reconstructions; 2) we applied a 2D Gaussian post-smoothing filter to the

PL reconstructions so that the overall local impulse response (at the center pixel), which

is the convolution of the post-smoothing filter and the original local impulse response (of

1.5 pixels FWHM), achieved a target resolution of 3 pixels FWHM.

This technique enables us to obtain reconstructions with various target resolutions by

simply changing the post-smoothing filter. As the post-smoothing filter becomes wider

(higher FWHM), the overall resolution becomes more uniform spatially since post-smooth-

ing dominates the overall response. To check the spatial uniformity, the overall resolutions

at every third pixel were investigated and it was found that, except the 2 pixel wide strip

along the phantom boundary, each pixel achieved the target resolution (3 pixels FWHM)

within 5% errors for all estimators—reasonably uniform resolution.

9The approximate expression for the local impulse response, which could be interpreted as the point spread function,
of an implicitly defined estimator was given in [41, Eq. 14]. It can be computed efficiently using 2D fast Fourier
Transforms by assuming local shift-invariance as in [123, Eq. 9]. All resolutions in this chapter (except those of simple
linear FBP reconstruction) were computed as FWHM of the local impulse response (at a specific pixel) obtained using
the methods in [41, 123]. One might doubt the feasibility of the approximate expressions in a low-counts-per-ray case
where nonnegativity constraints are often active; however, in Fig. 6.4(a), the sample means of reconstructed images seem
to have reasonably matched resolutions for different methods even for extremely low counts per ray (cf. Fig. 6.5(a) for
high counts).



117

6.7.2 Results

Fig. 6.4(a) shows the profiles through the sample mean images of different estimators

for 2K counts—very low counts. Both OP+ and SP+ showed large positive systematic

biases particularly in the cold spot (pixels 12–25) and near the ends (phantom bound-

ary). Zero-thresholding in sinogram domain contributes to the positive bias since the rays

passing through those regions (cold spot and boundary) have low counts, as discussed in

Section 6.4. Overall the systematic bias of OP+ was slightly larger than that of SP+, as

predicted in Section 6.4.

On the other hand, other methods (OP−, SP−, SD, and PR) seem reasonably free of

such a bias. However, some positive biases are present in the cold spot (pixels 12–25) for

OP−, SP−, SD and PR. The positive bias in the cold spot is mainly due to the interaction

of the image-domain nonnegativity constraints and the large variances, which causes the

nonnegativity constraints to be active frequently and, consequently, increases image mean

values. Note that the bias is not due to zero-thresholding in sinogram domain since PR

does not require any such thresholding. The coefficients of variation for those methods

are larger than 100% in the cold spot in Fig. 6.4(b). In fact, the positive biases in the cold

spot for OP+ and SP+ are caused by both sinogram-domain zero-thresholding and image-

domain nonnegativity combined with large variances. Also, note that small negative biases

in background and hot regions for OP−, SP−, SD, and PR in Fig. 6.4(a). Our hypothesis

is that the positive bias in the cold spot tends to decrease image values in other regions

since the reconstruction methods try to make projections of image values close to given

sinogram data. However, it is hard to analyze the effects of image-domain nonnegativity

constraints or to study them even experimentally since we would need, for comparison pur-

poses, new models and algorithms (like NEG-ML in [93]) allowing negative image values.

Further investigation is needed, and it would be interesting future work. To summarize, the
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results showed that both SP− and SD were comparable to PR, the baseline reconstruction,

and that they were free of systematic bias caused by sinogram-domain zero-thresholding

which appeared in SP+ and OP+.

As shown in Fig. 6.4(a), FBP was nearly unbiased since image-domain nonnegativ-

ity constraints are not imposed on the FBP reconstruction. However, it showed signifi-

cantly large variances in Fig. 6.4(b). Although not shown here, we found that even if FBP

is constrained by image nonnegativity, it still shows larger bias and variance than other

methods [5].

Fig. 6.5(a) shows the profiles through the sample mean images of different estimators

for 2M counts—high counts. All of the methods are seen to be unbiased, as predicted

from the analysis in Section 6.5. Fig. 6.5(b) shows profiles through the sample standard

deviation images. FBP again showed the highest standard deviation and PR showed the

lowest as expected. SP− and SD showed similar performance, and OP− led to higher

standard deviation than both of them. These empirical results corroborate the analysis of

asymptotic variance in Section 6.5. For each pixel, we computed the ratios of the sample

standard deviation of different methods to the sample standard deviation of PR (baseline

method) as shown in Fig. 6.6; and the means (over the entire image) of the ratios were

1.20 for FBP, 1.16 for OP−, 1.11 for SP−, and 1.12 for SD. This also supports the claim

that both SP− and SD lead to less variance than OP− (and FBP).

The reason we did not see as clear differences in sample standard deviations of the

estimators in Fig. 6.4(b) as in Fig. 6.5(b) is as follows. For low counts, the nonnegativity

constraint frequently becomes active, and consequently, our asymptotic analysis based on

the high count assumption will become inaccurate. In other words, there is no guarantee

that PR (SD or SP) should yield less variance than OP. Additionally, the standard devi-

ations are coupled with the biases that are distinctive in the low count case. (Generally,
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there is a trade-off between bias and standard deviation.) The effects of the bias and the

nonnegativity constraint seem dominant in Fig. 6.4.

Whereas SP− performed comparably to SD, the computation time for SP− reconstruc-

tion was shorter than SD by 3–20% (depending on curvature type and counts) for the

image and sinogram size here in our C and MATLAB implementation. However, as the

image and sinogram size increases, the difference in computation would become smaller

since projection and backprojection operations will contribute more significantly to the

computational cost.

6.8 Conclusion

We proposed new log-likelihood approximations (SP− and OP−) for randoms-pre-

corrected PET emission image reconstruction by allowing negative sinogram values, and

we also developed algorithms (SPS and ML-EM variants) for the new models. The new

methods are free of the positive systematic bias that degrades SP+ and OP+ images. The

positive biases appearing in SP+ and OP+ are more distinguishable in low counts per ray

regions such as cold spots, the boundary of an object, or high attenuation regions rather

than depending solely on total counts. Our new models seem particularly promising for

fully 3D PET emission scans where AC rates are high and photon counts per ray can be

low, essentially for newer scanners with small crystals.

The new SP− model yields less variance (than OP− and FBP). Its performance is com-

parable to SD in terms of systematic bias and variance; yet its implementation is simpler.

Indeed, when implemented with the usual ordered-subsets approach [4], the modified OS-

SPS algorithm presented for the new SP− model has essentially the same compute com-

plexity as the popular OS-EM method for PET.

We recommend the PR method if the prompt and the randoms data are accessible sep-
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arately; however, if only randoms-precorrected data are available, the new SP− is our

recommended method.
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Figure 6.4: (a) Horizontal profile through sample mean of estimators for 2K counts. (b) Horizontal profile
through sample standard deviation of estimators for 2K counts.
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Figure 6.5: (a) Horizontal profile through sample mean of estimators for 2M counts. (b) Horizontal profile
through sample standard deviation of estimators for 2M counts.
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CHAPTER 7

Covariance of Kinetic Parameter Estimators Based on Time Activity
Curve Reconstructions: 1D Study

7.1 Introduction

A primary application of dynamic PET or SPECT imaging is to quantify parameters

of tracer kinetic models or compartmental models representing specific physiological pro-

cesses (see Sec. 2.5). The goal is to estimate the kinetic parameters of the model for each

region of interest (ROI) or voxel. Kinetic parameters are conventionally estimated as fol-

lows [56]: a series of images are reconstructed frame-by-frame, ROIs are identified and

then kinetic parameters are obtained by fitting a compartmental model (with a measured or

estimated blood input function) to spatially-averaged reconstructed image values for each

ROI. Although there have been attempts to estimate parameters directly from sinogram

data, they are computationally challenging [21, 26].

Recently, spatio-temporal reconstruction methods have been proposed to reconstruct

time activity curves (TACs) by modeling each TAC as a linear combination of cubic B-

splines [90]. Also, TAC reconstructions for each ROI obtained using B-spline temporal

basis functions have been used to estimate kinetic parameters [106]. The performance,

such as bias and variance, of the kinetic parameter estimators is affected by the choice of

temporal basis functions for TACs (e.g., the order of B-splines [106] and their knot loca-

124
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tions). Although the effects of basis functions on TAC reconstructions have been studied

in [11,107], the effects on kinetic parameter estimators have little been analyzed [81,106].

In this chapter we provide approximate analytical expressions for the covariance of ki-

netic parameter estimators in a simple 1D temporal “imaging” case. We do not analyze

bias since we estimate the kinetic parameters from TAC reconstructions by (asymptot-

ically) unbiased maximum likelihood (ML) estimators as opposed to widely-used (data-

weighted) least squares estimators. The approximation formulas are very useful tools since

they enable one to assess and optimize temporal basis functions in terms of complexity and

variance without exhaustive simulations. They also show the effects of temporal regular-

ization in TAC reconstruction.

Our approximations apply to list-mode data as well as (temporal) bin-mode data. List-

mode acquisitions are more attractive than conventional frame-by-frame scans since all

temporal information is contained in the event list. Our expressions can also be used to

compute how much information is lost through temporal binning compared to list-mode

data.

7.2 Problem

To focus on temporal aspects rather than interactions with spatial distributions, we con-

sider a single-voxel or single-ROI object (containing a radiotracer) and a single detector

unit, recording list-mode data (the arrival times of detected photons), or temporal bin-

mode data. The model is not an unrealistically simple one; for example, in planar dynamic

imaging, one could take a ROI and investigate the (average or dominant) dynamic tracer

behavior using corresponding data. The goal is to estimate tracer kinetic parameters gov-

erning dynamic activity changes.

The photon emissions in the object can be modeled as an inhomogeneous Poisson pro-
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cess whose rate function η(t; θ) corresponds to a TAC parameterized by kinetic parameters

θ = [θ1, . . . , θp]
′ [90]. Suppose {τk}Kk=1 denotes list-mode data, that is, event arrival times.

Then the log-likelihood of θ given the list-mode data is [115, p. 57]

L(θ, {τk}Kk=1) =
K
∑

k=1

log{α(η(τk; θ) + r(τk))} −
∫ T

0

α(η(t; θ) + r(t))dt

where r(t) is the rate function of the background process such as scatters and randoms,

T denotes the total scan time, and α denotes a constant factor proportional to a radioiso-

tope dosage. Although the background process r(t) can be a function of α, we neglect

the dependence for simplicity. One can obtain the Fisher information matrix Iτ (θ) for

estimating θ from {τk}Kk=1 as [115, p. 81]

[Iτ (θ)]ij = α

∫ T

0

∂η(t; θ)

∂θi

∂η(t; θ)

∂θj

1

η(t; θ) + r(t)
dt.

The inverse of Iτ (θ) can serve as an approximation to the baseline covariance of the direct

estimator of θ (without TAC reconstruction) based on list-mode data. However, in cases

where the kinetic model is under development, it can be preferable to first estimate a TAC,

and then fit various kinetic models to the TAC reconstruction.

Next, we describe the procedure of TAC reconstruction using temporal basis functions

followed by kinetic parameter estimation.

7.2.1 TAC Reconstruction

We model the rate function as a linear combination of temporal basis functions {Bl(t)}Ll=1,

which for example can be B-splines, as

η(t) ∼=
L
∑

l=1

wlBl(t),

and we reconstruct the coefficients by PL estimation.

For simplicity we consider temporal bin-mode data y = [y1, . . . , yN ]′ where yn is the

number of events detected in the nth temporal bin (note N ≥ L or possibly N � L); the
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list-mode data is a limiting case where N → ∞ and the bin widths approach zero [11].

The bin-mode data y are independent Poisson random variables, and the mean of each

element is given by

ȳn(θ)
4
= E[yn] = αpn(θ) (7.1)

pn(θ) =

∫ tn

tn−1

η(t; θ)dt+ rn (7.2)

where tn−1 and tn are the end points of the nth temporal bin, and rn represents background

contributions. The log-likelihood of w given y can be obtained, ignoring constants inde-

pendent of w, as

L(w,y)=
N
∑

n=1

{yn log(αp̃n(w)) − αp̃n(w)}

where

p̃n(w) = [Bw]n + rn.

The N × L matrix B has the (n, l)th entry as

bnl =

∫ tn

tn−1

Bl(t)dt.

We assume that the {rn} are known (see [90] for methods of estimating randoms and

scatters).

A PL estimate of w is obtained finding the following maximizer:

ŵ(y) = arg max
w∈W

Φ(w,y) (7.3)

where

Φ(w,y) = L(w,y) − β

2
w′Rw (7.4)

and

W =

{

w :
L
∑

l=1

wlBl(t) ≥ 0, ∀t ∈ [0, T ]

}

. (7.5)
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The last term in (7.4) represents a roughness penalty encouraging temporal smoothness [11,

90], R is a symmetric nonnegative definite matrix, and β is a regularization parameter.

The set in (7.5) represents the nonnegativity constraint on reconstructed TACs, η̂(t) =

∑L
l=1 ŵlBl(t).

7.2.2 Kinetic Parameter Estimation

To estimate kinetic parameters θ from ŵ in (7.3), we assume ŵ is Gaussian-distributed:

ŵ ∼ N (µŵ(θ),Kŵ(θ)) (7.6)

where µŵ and Kŵ are the mean and the covariance matrix of the estimator ŵ, respectively.

The higher counts per time (or temporal bin), the more the Gaussian assumption becomes

accurate. Then one can compute a ML estimate of θ as follows:

θ̂(ŵ) = arg max
θ∈Θ

Ψ(θ, ŵ) (7.7)

where Θ is a set of feasible θ, and the log-likelihood of θ given ŵ can be obtained,

neglecting constants independent of θ, as

Ψ(θ, ŵ) = −1

2
(ŵ − µŵ(θ))′[Kŵ(θ)]−1(ŵ − µŵ(θ)) − 1

2
log |Kŵ(θ)| (7.8)

where | · | denotes determinant. Generally, the TAC estimator η̂(t) =
∑L

l=1 ŵlBl(t) from

(7.3) is not consistent since it can be a case that η(t; θtrue) 6= ∑L
l=1wlBl(t) for all wl’s;

even in such a case, however, the ML kinetic parameter estimator θ̂ in (7.7) can be (nearly)

unbiased as shown in Sec. 7.4. Therefore, the Cramér-Rao bound, that is, the inverse

of the Fisher information matrix, which is shown in the next section, can serve as an

approximation to the covariance of θ̂.
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7.3 Covariance of kinetic parameter estimators

7.3.1 Derivation

First, we need approximate expressions for µŵ and Kŵ in (7.6). Using a first-order

Taylor approximation of ŵ(y) at ȳ = [ȳ1, . . . , ȳN ]′ in (7.1), the chain rule and the implicit

function theorem with some reasonable assumptions [36], one can obtain the following

approximations:

µŵ(θ) ∼= ŵ(ȳ(θ))
4
= w̌(θ) (7.9)

and

Kŵ(θ) ∼= 1

α

[

Fbin(θ) +
β

α
R

]−1

Fbin(θ)

[

Fbin(θ) +
β

α
R

]−1

(7.10)

4
= [F̃ (θ)]−1

where

Fbin(θ) = B′diag
{

pn(θ)

p̃2
n(w̌(θ))

}

B.

Now one can compute the Fisher information matrix from (7.8) by replacing µŵ and

Kŵ with their approximations in (7.9) and (7.10). Some manipulation leads to our final

expression for the Fisher information matrix for estimating θ from ŵ,

Iŵ,bin(θ) = Eθ[−∇2
θΨ(θ, ŵ)]

∼= [∇θw̌(θ)]′F̃ (θ)∇θw̌(θ)

= α[∇θp(θ)]′diag
{

1

p̃n(w̌(θ))

}

B[Fbin(θ)]−1B′ ·

diag
{

1

p̃n(w̌(θ))

}

∇θp(θ) (7.11)

where ∇θ = [ ∂
∂θ1
, . . . , ∂

∂θp
] denotes the row gradient operators, ∇2

θ denotes the Hessian

operator, and p = [p1, . . . , pN ]′ is defined in (7.2). The information matrix Iŵ,bin(θ)

depends implicitly on temporal regularization only through p̃n(w̌(θ)) [see (7.3), (7.4) and

(7.9)].
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7.3.2 Information Matrix for List-Mode Data

By increasing the number of bins N to ∞ and decreasing the bin widths to 0 in (7.11),

one can obtain the following information matrix for list-mode data:

[Iŵ,list(θ)]ij ∼= α

L
∑

p=1

L
∑

q=1

[Flist(θ)−1]pq·
∫ T

0

∂η(t; θ)

∂θi

Bp(t)
∑L

l=1 w̌l(θ)Bl(t) + r(t)
dt ·

∫ T

0

∂η(t; θ)

∂θj

Bq(t)
∑L

l=1 w̌l(θ)Bl(t) + r(t)
dt (7.12)

where

[Flist(θ)]ij=

∫ T

0

Bi(t)Bj(t)
η(t; θ) + r(t)

(

∑L
l=1 w̌l(θ)Bl(t) + r(t)

)2dt.

If temporal basis functions are constant B-splines as

Bl(t) = I[tl−1, tl](t)

where I[tl−1, tl] is an indicator function, then the information matrix in (7.12) becomes

Iŵ,list(θ) ∼= α[∇θp(θ)]′diag
{

1

pn(θ)

}

∇θp(θ). (7.13)

This information matrix is independent of temporal regularization! One can also obtain

the same result as (7.13) from (7.11) by making temporal bins agree with the constant B-

spline basis functions {Bl(t)}. In this case B and F are diagonal, and the regularization-

related terms p̃n(w̌(θ)) are canceled out in (7.11). In fact, the equality happens to hold in

(7.13) [115, p. 81].

7.4 Results

To assess the accuracy of the approximation for the covariance of kinetic parameter es-

timators given by the inverse of (7.11), we simulated dynamic imaging data. The simulated
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TAC was given by

η(t; θ) = b(t) ? h(t; θ)

where ? denotes the convolution, the known blood input function is

b(t) = te−1.4tu(t)

and the impulse response of a one tissue compartment model is

h(t; θ) = θ2 exp(−θ1t)u(t) + fvδ(t). (7.14)

The unit step function is denoted by u(t), and the delta function is denoted by δ(t). In

(7.14), fv denotes an unknown fractional volume of blood to be also estimated. The total

scan time T was set to 15 min, and the true kinetic parameters were set as θtrue
1 = 0.15 and

θtrue
2 = 0.7. The total counts were 100K, and rn corresponded to a temporally uniform

field of 10% of background events. The data were acquired using 30 uniform temporal

bins (N = 30). We used the uniform quadratic penalty with β = 0.1, and 10 B-spline

basis functions of different orders (constant, linear, quadratic, and cubic) with uniformly

spaced knots for TAC reconstruction (L = 10). Given temporal basis functions and given

(simulated) noisy data, ŵ was estimated by (7.3) with linear constraints Bw ≥ 0 as a

reasonable approximation to (7.5), and then θ and fv was estimated by (7.7) with (7.8)

using (7.9) and (7.10) with nonnegativity constraints θ ≥ 0 and fv ≥ 0. We computed the

sample mean and the sample covariance of θ̂ from 100 realizations for each set of basis

functions. For maximization in (7.3) and (7.7), we used separable surrogates [2], and the

fmincon and quadprog functions of Matlab.

Table 7.1 shows that the sample means of the parameter estimators θ̂ agreed with true

values θtrue for all basis function sets used in this paper; this shows that the estimators

are unbiased. Table 7.2 shows that predicted standard deviations of θ̂ obtained from the

inverse of (7.11) were reasonably close to empirical sample standard deviations.
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Table 7.1: Comparison of predicted and empirical sample means of kinetic parameter estimators

basis parameter true sample mean

cubic θ1 0.15 0.15 ± 0.0001

B-splines θ2 0.70 0.70 ± 0.0005

quadratic θ1 0.15 0.15 ± 0.0001

B-splines θ2 0.70 0.70 ± 0.0005

linear θ1 0.15 0.15 ± 0.0001

B-splines θ2 0.70 0.70 ± 0.0005

constant θ1 0.15 0.15 ± 0.0001

B-splines θ2 0.70 0.70 ± 0.0006

Table 7.2: Comparison of predicted and empirical standard deviations of kinetic parameter estimators

basis parameter predicted std dev sample std dev

(×10−3) (×10−3)

cubic θ1 1.15 1.22 ± 0.09

B-splines θ2 4.89 5.20 ± 0.37

quadratic θ1 1.15 1.22 ± 0.09

B-splines θ2 4.89 5.22 ± 0.37

linear θ1 1.16 1.23 ± 0.09

B-splines θ2 4.91 5.27 ± 0.37

constant θ1 1.20 1.24 ± 0.09

B-splines θ2 5.16 5.48 ± 0.39

7.5 Conclusion

We derived the covariance matrix (the inverse of the Fisher information matrix) of

kinetic parameter estimators based on TAC reconstructions using temporal basis functions

for list-mode data as well as bin-mode data in a 1D temporal problem. We demonstrated

the covariance approximation predicts the empirical covariance reasonably well for high

counts.



CHAPTER 8

Summary and Future Work

8.1 Summary

Global convergence is an important property for any optimization algorithm. One may

argue that it is not critical because in practice we do not run algorithms to convergence.

However, in medical imaging, reliability is essential, that is, there must be a guarantee that

medical imaging systems provide a solution to the problem we formulated.1 In addition, it

is not impractical to run algorithms to convergence for PL reconstruction because of better

conditioning by regularization, growing computing powers, and fast algorithms, whereas

we usually stop algorithms long before convergence for ill-posed ML reconstruction. Fi-

nally, when one develops new statistical models or objective functions, and investigates

their properties, one needs to obtain maximizers of given objective functions by running

algorithms to convergence.

We have developed two families of fast and convergent algorithms: relaxed OS algo-

rithms and incremental optimization transfer algorithms. Relaxed OS algorithms include

1As in Sections 3.1 and 3.2, a non-obvious part in problem formulation is how to choose a penalty function (and
a regularization parameter). Noise-resolution trade-offs and edge-preserving properties in reconstructed images are
related to penalty functions used. For example, there are methods of designing quadratic penalty functions to achieve
target resolution in reconstructed images [123,124]. Suppose we have designed such a penalty function. Then, to achieve
the target resolution, one should obtain a maximizer to the corresponding PL objective function, and accordingly one
needs a convergent algorithm.
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modified BSREM and diagonally-scaled incremental gradient algorithm (or relaxed OS-

SPS as a special case). Incremental optimization transfer algorithms include TRIOT as a

special case for transmission tomography. They are provably convergent, and the results

show they also have fast convergence rates. They are quite general, so they have broad ap-

plicability. As discussed in Chapter 5, it seems that incremental optimization transfer algo-

rithms, particularly TRIOT algorithms for transmission tomography, are more convenient

than relaxed OS algorithms because determining relaxation parameters is inconvenient.

We also developed new statistical models for randoms-precorrected PET by allowing

negative sinogram values. Analysis and simulation results show that the new shifted Pois-

son (SP−) model is nearly free of systematic bias yet keeps low variance. Despite its sim-

pler implementation, the new SP− performs comparably to the saddle-point (SD) model

which has shown the best performance (as to systematic bias and variance) in randoms-

precorrected PET emission reconstruction. We recommend the prompt (PR) method if

the prompt and the randoms data are accessible separately; however, if only randoms-

precorrected data are available, the new SP− is our recommended method.

Finally, we developed approximate expressions for the covariance matrix of kinetic

parameter estimators based on time activity curve (TAC) reconstructions when TACs are

modeled as a linear combination of temporal basis functions such as B-splines. Simulation

results show that the expression is reasonably accurate, and the approximate formulas are

useful tools for assessing and optimizing the reconstruction methods for dynamic imaging.

8.2 Future Work

• We have proven global convergence of relaxed OS algorithms, including modified

BSREM and diagonally-scaled incremental gradient methods, and incremental opti-

mization transfer algorithms; and we have investigated their convergence rates qual-
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itatively through experiments. However, a quantitative analysis of convergence rates

would give insights into how to accelerate algorithms more systematically. For ex-

ample, although we analyzed convergence rates for incremental optimization transfer

algorithms and showed that incremental optimization transfer algorithms are faster

than nonincremental ones for a 1D case, whether it is generally true is an open prob-

lem.

• For relaxed OS algorithms, it will be an interesting question whether the sufficient

conditions for convergence can be relaxed, for example, whether they would still

converge when they apply to nonconcave objective functions, or whether modified

BSREM would converge when an objective function is (non strictly) concave and

has multiple solutions.

• For relaxed OS algorithms, it would be desirable to develop some automatic step-

size rules that do not require expensive computation, removing the inconvenience to

determine the relaxation parameters.

• Modified BSREM and diagonally-scaled incremental gradient methods (or relaxed

OS-SPS as a special case) have similar forms, and the major difference is in the form

of dj(·). It is an open problem to prove convergence of relaxed OS algorithms when

general scaling functions dj(·) are used.

• For OS or incremental algorithms, we distributed the penalty function into all sub-

objective function, that is, we computed gradients and/or curvatures of the penalty

function at every subiteration. As the number of subsets increases, the computation

involving the penalty function also increases. The effectiveness of the use of partial

penalty functions at every subiteration needs to be examined.

• For the (incremental) optimization transfer framework, we used separable surrogate

functions derived using De Pierro’s concavity tricks in [30]. The separable surro-
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gates satisfy the minorization conditions, consequently ensuring monotonicity in the

(augmented) objective function. Whether better surrogate functions can be found is

an open problem. Separable surrogates are usually easier to maximize than nonsep-

arable ones, but their curvatures are higher and accordingly their convergence rates

are slower. In other words, there is a trade-off between computational efficiency and

convergence rates. There might exist some nonseparable surrogates yielding better

performance in terms of objective increase per CPU time. Even if we are interested

in only separable surrogates, it will be an interesting problem what the best separable

surrogate is in terms of convergence rates. Another challenging question is whether

we can relax the monotonicity or the minorization conditions to obtain better surro-

gate functions and under what conditions such surrogates will ensure convergence.

• In Chapter 5, we found that switching from OS-SPS to TRIOT can be effective.

As Bertsekas unified incremental gradient methods and ordinary gradient methods

in [14], OS-SPS and TRIOT could be unified in a more general framework.

• Throughout this dissertation, we assumed the system matrix is known without any

error. It is an open problem how a model mismatch will affect the reconstruction

methods presented here, for example, the convergence properties of reconstruction

algorithms, the ε in Appendix B, and so on.

• We developed new reconstruction algorithms in this dissertation; however, we are

still seeking for better algorithms that are convergent, simpler, and faster.

• We analyzed the covariance of kinetic parameter estimators for 1D in Chapter 7. It is

natural to extend the analysis to 3D or 4D by incorporating spatial aspects.
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APPENDIX A

Computable Upper Bounds for PL Solutions in Emission Tomography

In this appendix, we provide two types of computable upper bounds for PL solutions in

emission tomography (see Section 3.1.5).

A.1 Computable Upper Bound: Example 1

Define

U
4
= max

i







yi
min
j:aij 6=0

aij







. (A.1)

Suppose λ is a vector in D for which the index set of “too large” elements J = {j =

1, . . . , p : λj > U} is nonempty where D is defined in (3.8). Define λ̃ by clipping as

λ̃j =











U, j ∈ J

λj, j /∈ J .

To prove the U in (A.1) is an upper bound for PL solutions, it suffices to show that Φ(λ) <

Φ(λ̃) ≤ maxξ∈D Φ(ξ). First, note that, for any i, if there exists ji ∈ J such that aiji > 0,

then:

ȳi(λ) = aijiλji +
∑

j 6=ji

aijλj + ri

> aijiU +
∑

j 6=ji

aijλ̃j + ri = ȳi(λ̃) (A.2)

≥ aijiU ≥ yi (A.3)
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where in (A.2) we used the fact that λj ≥ λ̃j , ∀j and that λji > U = λ̃ji ; and (A.3) is due to

our construction ofU in (A.1). Therefore, hi([Aλ]i) < hi([Aλ̃]i) by (3.5). Second, if such

ji does not exist, then hi([Aλ]i) = hi([Aλ̃]i) since [Aλ]i = [Aλ̃]i. Third, one can verify

that there exists some i for which such ji exists by the assumption of nonzero sensitivity

factors. Combining these, we have L(λ) =
∑N

i hi([Aλ]i) <
∑N

i hi([Aλ̃]i) = L(λ̃).

One can also show that “clipping” all elements of λ greater than U will always decrease

the roughness penalty R in (3.9) due to our assumption that the potential function ψ(t)

is nondecreasing in |t|, implied by (3.11) and (3.13). We have established that φ(λ) =

L(λ) −R(λ) < L(λ̃) −R(λ̃) = Φ(λ̃).

A.2 Computable Upper Bound: Example 2

Alternatively, we construct an upper bound for a broader family of penalty functions

more general than those based on differences of neighboring pixels. Pick any ν ∈ D, e.g.,

ν = 1. Define ij = arg maxi aij, ∀j. By the assumption of nonzero sensitivity factors,

we have aijj > 0, ∀j. Choose any c > 0 for all j, and define

Uj
4
=

1

aijj
max

{

yij − rij ,

∑

i6=ij
hi(yi − ri) + yij log(yij + c) − Φ(ν)

c/(yij + c)
, 1

}

, ∀j. (A.4)

The last term, 1, in the brace ensures that Uj > 0. Let U 4
= maxj Uj . We prove (3.18) for

the U . Suppose that λ ∈ D \ B, that is, λq > U for some q, where B is defined in (3.18).

To prove the U is an upper bound for PL solution, it suffices to show Φ(λ) < Φ(ν) ≤
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maxξ∈D Φ(ξ). One can show this as follows:

Φ(λ) =
N
∑

i=1

hi([Aλ]i) −R(λ)

≤ hiq([Aλ]iq) +
∑

i6=iq

hi([Aλ]i) (A.5)

< hiq(aiqqU − riq) +
∑

i6=iq

hi(yi − ri) (A.6)

≤ hiq(yiq − riq + c) + ḣiq(yiq − riq + c)(aiqqU − riq − (yiq − riq + c))

+
∑

i6=iq

hi(yi − ri) (A.7)

= yiq log(yiq + c) − (yiq + c) +

(

yiq
yiq + c

− 1

)

(aiqqU − (yiq + c))

+
∑

i6=iq

hi(yi − ri) (A.8)

≤ yiq log(yiq + c) − c

yiq + c
aiqqU +

∑

i6=iq

hi(yi − ri)

< Φ(ν) ≤ Φ(λ̂). (A.9)

where (A.5) is due to (3.11); (A.6) is due to (3.4), (3.5) and (A.4); (A.7) is due to the

concavity of hiq from (3.6); (A.8) is computed from the definition of hiq in (3.3); and

(A.9) is due to (A.4).
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APPENDIX B

Determination of ε for Modified Objective Function in Emission
Tomography

In this appendix, we determine ε such that (3.22) holds (see Section 3.1.6). If I = ∅,

then we do not need to modify the PL objective function Φ, where I is defined in (3.19).

Suppose I 6= ∅. Pick any ν ∈ D, e.g., ν = 1. Define

ε
4
= min

q∈I

{

yq, exp

(

Φ(ν) −∑i6=q hi(yi − ri)

yq

)}

> 0. (B.1)

We show that Λ∗ ⊂ E where Λ∗ and E are defined in (3.17) and (3.21), respectively (recall

E is the region on which Φ is not modified). Let λ ∈ D \ E , that is, 0 ≤ [Aλ]q ≤ ε for

some q ∈ I. It suffices to show that Φ(λ) < Φ(ν) ≤ arg maxξ∈D Φ(ξ). One can show

this as follows:

Φ(λ) =
N
∑

i=1

hi([Aλ]i) −R(λ)

≤ hq([Aλ]q) +
∑

i6=q

hi(yi − ri) (B.2)

≤ hq(ε) +
∑

i6=q

hi(yi − ri) (B.3)

< yq log ε+
∑

i6=q

hi(yi − ri) (B.4)

≤ Φ(ν) (B.5)

where (B.2) is a consequence of (3.4) and (3.10); (B.3) is due to (3.5) and (B.1); (B.4)

is due to the definition (3.3) (recall rq = 0 since q ∈ I); and (B.5) is a consequence of
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(B.1). Therefore, Λ∗ ⊂ E . Similarly, one can verify that Λ̃∗∗ 4
= {λ∗ ∈ R

p
+ : Φ̃(λ∗) ≥

Φ̃(λ), ∀λ ∈ R
p
+} ⊂ E . But since Φ(λ) = Φ̃(λ) for λ ∈ E , we have Λ̃∗∗ = Λ∗. Now since

Λ∗ ⊂ B from the preceding section, we have Λ̃∗∗ = Λ̃∗∗ ∩ B = Λ̃∗. We have shown that

the maximizers of the modified objective function Φ̃ are the same as those of the original

objective function Φ over D or B.
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APPENDIX C

Convergence Proofs for modified BSREM

We prove that the modified BSREM-I in (4.12) with (4.13) is globally convergent. The

required assumptions on the objective function Φ as follows: Φ(λ) is strictly concave on

B; and ∇Φm(λ) and D(λ)∇Φm(λ) are Lipschitz continuous (and thus bounded) on B.

They are satisfied by the emission PL objective function.

Lemma C.1. Suppose that {λn,m} is a sequence generated by (4.12) with λ0 ∈ IntB,

where IntB denotes the interior of B. Then there exists α > 0 such that if 0 < αn ≤

α, ∀n, then λn,m ∈ IntB, ∀n,m.

Proof. Since (∂Φm/∂λj)(λ) is bounded over B for all j and m, one can choose α > 0

such that

α

∣

∣

∣

∣

1

pj

∂Φm

∂λj
(λ)

∣

∣

∣

∣

< 1, ∀λ ∈ B and ∀j,m.

Suppose that 0 < αn ≤ α, ∀n and that λn,m−1 ∈ IntB. If 0 < λn,m−1
j < U/2, one can

show that 0 < λn,mj < U , using the following expression for λn,mj :

λn,mj = λn,m−1
j + αn

λn,m−1
j

pj

∂Φm

∂λj
(λn,m−1)

= λn,m−1
j

(

1 + αn
1

pj

∂Φm

∂λj
(λn,m−1)

)

.

If U/2 ≤ λn,m−1
j < U, one can also show that 0 < λn,mj < U , using the following
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expression for λn,mj , in view of (4.13):

U − λn,mj = (U − λn,m−1
j )

(

1 − αn
1

pj

∂Φm

∂λj
(λn,m−1)

)

.

This implies that λn,m ∈ IntB.

Lemma C.2. Suppose that {λn} is a sequence generated by (4.12) with αn > 0 such that
∑∞

n=0 αn = ∞ and
∑∞

n=0 α
2
n < ∞. If λn,m ∈ B, ∀n,m, then {Φ(λn)} converges in R

and there exists a limit point λ∗ ∈ B of {λn} such that D(λ∗)∇Φ(λ∗) = 0.

Proof. Using the definition of the sequence {λn}, we have:

λn+1 = λn + αn

M
∑

m=1

D(λn,m−1)∇Φm(λn,m−1)

= λn + αnD(λn)∇Φ(λn) +

αn

M
∑

m=1

(

D(λn,m−1)∇Φm(λn,m−1) − D(λn)∇Φm(λn)
)

= λn + αnD(λn)∇Φ(λn) +O(α2
n) (C.1)

where the last equality is obtained using the Lipschitz continuity of D(λ)∇Φm(λ) on B.

In particular, for some positive L ∈ R, we have:
∥

∥

∥

∥

∥

M
∑

m=1

(

D(λn,m−1)∇Φm(λn,m−1) − D(λn)∇Φm(λn)
)

∥

∥

∥

∥

∥

≤
M
∑

m=1

∥

∥D(λn,m−1)∇Φm(λn,m−1) − D(λn)∇Φm(λn)
∥

∥

≤ L
M
∑

m=1

∥

∥λn,m−1 − λn
∥

∥

≤ αnL
M
∑

m=1

m−1
∑

k=1

∥

∥D(λn,k−1)∇Φk(λ
n,k−1)

∥

∥

≤ αnLM
2 max
m,λ∈B

‖D(λ)∇Φm(λ)‖ .

Consider the objective sequence {Φ(λn)}. Since ∇Φ(λ) is Lipschitz continuous on B, we

have [100, p. 6]:

Φ(λn+1) = Φ(λn) + ∇Φ(λn)′(λn+1 − λn) +O(
∥

∥λn+1 − λn
∥

∥

2
). (C.2)
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Using (C.1) and (C.2), for large n, we establish:

Φ(λn+1) = Φ(λn) + αn∇Φ(λn)′D(λn)∇Φ(λn) +O(α2
n). (C.3)

In view of (i)
∑∞

n=0 α
2
n < ∞, (ii) the boundedness of Φ(λ) on B, (iii) the nonnegative

definiteness of D(λn), and (C.3), one can show that:

k
∑

n=l

αn∇Φ(λn)′D(λn)∇Φ(λn) < q <∞, ∀k > l

for some q ∈ R and some large l. This implies that
∑∞

n=0 αn∇Φ(λn)′D(λn)∇Φ(λn) <

∞. Given any ε > 0, suppose that there exists k such that ∇Φ(λn)′D(λn)∇Φ(λn) >

ε, ∀n > k. Then since
∑∞

n=0 αn = ∞, we have
∑∞

n=0 αn∇Φ(λn)′D(λn)∇Φ(λn) = ∞,

which is a contradiction. So it must be the case that there exists a subsequence {λnk}

of {λn} such that limk→∞ λnk = λ∗ ∈ B and ∇Φ(λ∗)′D(λ∗)∇Φ(λ∗) = 0. Therefore,

D(λ∗)∇Φ(λ∗) = 0 because D(λ∗) is a nonnegative definite diagonal matrix.

On the other hand, from (C.3), one can show that {Φ(λn)} is a Cauchy sequence in R

in view of
∑∞

n=0 α
2
n < ∞ and

∑∞
n=0 αn∇Φ(λn)′D(λn)∇Φ(λn) < ∞. This implies that

{Φ(λn)} converges [110, p. 46].

Lemma C.3. Suppose that {λn} is a sequence generated by (4.12) with αn > 0 such that

limn→∞ αn = 0. If λn,m ∈ B, ∀n,m, then limn→∞(λn,m − λn) = 0, ∀m.

Proof. Since D(λ)∇Φm(λ) is bounded on B, ∀m, and limn→∞ αn = 0, we have:

λn,m − λn = αn

m
∑

k=1

D(λn,k−1)∇Φk(λ
n,k−1) → 0

as n→ ∞.

Corollary C.4. limn→∞(λn+1 − λn) = 0.

Lemma C.5. The limit point λ∗ ∈ B in Lemma C.2 such that D(λ∗)∇Φ(λ∗) = 0 is a

maximizer of Φ(λ) over B if λn,m ∈ IntB, ∀n,m.
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Proof. We extend the proof of Proposition 3 of [18]. It is clear that (∂Φ/∂λj)(λ
∗) = 0

if 0 < λ∗j < U . Considering the optimality conditions [100, p. 203], we need to prove

that λ∗j = 0 implies (∂Φ/∂λj)(λ
∗) ≤ 0, and λ∗

j = U implies (∂Φ/∂λj)(λ
∗) ≥ 0. Define

J = J1∪J2 where J1 = {j = 1, . . . , p : λ∗
j = 0 and (∂Φ/∂λj)(λ

∗) > 0} and J2 = {j =

1, . . . , p : λ∗
j = U and (∂Φ/∂λj)(λ

∗) < 0}. We show that J = ∅. Since ∇Φ is continuous

on B, there exists 0 < δ < U/2 such that if λ ∈ Bδ then (∂Φ/∂λj)(λ) > 0, ∀j ∈ J1 and

(∂Φ/∂λj)(λ) < 0, ∀j ∈ J2 where Bδ 4
= {λ ∈ B : ‖λ − λ∗‖ < δ}.

Suppose that λn ∈ Bδ where n is sufficiently large. Then, by using Lemma C.3, we

have λn,m ∈ Bδ, ∀m since n is large. For j ∈ J2, since dj(λn,m) = (U − λn,mj )/pj, ∀m,

one can show:

U − λn,mj = (U − λn,m−1
j )

(

1 − αn
pj

∂Φm

∂λj
(λn,m−1)

)

.

Then using the Lipschitz continuity of ∇Φm, we have:

U − λn+1
j = (U − λnj )

M
∏

m=1

(

1 − αn
pj

∂Φm

∂λj
(λn,m−1)

)

= (U − λnj )

(

1 − αn
pj

M
∑

m=1

∂Φm

∂λj
(λn,m−1) +O(α2

n)

)

= (U − λnj )

(

1 − αn
pj

∂Φ

∂λj
(λn) +O(α2

n)

)

.

Now we have U−λn+1
j > U−λnj , that is, λn+1

j < λnj since (∂Φ/∂λj)(λ
n) < 0. Similarly,

one can show that λn+1
j > λnj for j ∈ J1.

Let {λnk} be a subsequence of {λn} such that limk→∞ λnk = λ∗. Let tk = max{q <

nk : λq /∈ Bδ}. If λq ∈ Bδ, ∀q < nk for some k, set tk = 0. Then {tk} is a monotone

increasing sequence of nonnegative integers such that λq ∈ Bδ for tk + 1 ≤ q ≤ nk for

large k. Suppose that limk→∞ tk = t < ∞, that is, λn stays in Bδ for large n. Then

λkj > λlj > 0, ∀k > l, ∀j ∈ J1 and λkj < λlj < U, ∀k > l, ∀j ∈ J2 for some large

l. This is a contradiction since we have assumed that {λn} has a limit point λ∗ such that
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λ∗j = 0, ∀j ∈ J1 and λ∗j = U, ∀j ∈ J2. So it must be the case that limk→∞ tk = ∞. Now

we have λnk

j > λtk+1
j ≥ 0, ∀j ∈ J1 and λnk

j < λtk+1
j ≤ U, ∀j ∈ J2 for large k. Since

limk→∞ λnk

j = 0, ∀j ∈ J1 and limk→∞ λnk

j = U, ∀j ∈ J2, we have limk→∞ λtk+1
j =

0, ∀j ∈ J1 and limk→∞ λtk+1
j = U, ∀j ∈ J2. By Corollary C.4, limk→∞ λtkj = 0, ∀j ∈

J1 and limk→∞ λtkj = U, ∀j ∈ J2. Now one can construct a subsequence {λtkl} of {λtk},

which is also a subsequence of {λn}, such that liml→∞ λtkl = λ∗∗ with λ∗∗j = 0, ∀j ∈ J1

and λ∗∗j = U, ∀j ∈ J2 but λ∗∗ 6= λ∗ (since λtk /∈ Bδ and thus λ∗∗ /∈ Bδ). Then

Φ(λ∗) = Φ(λ∗∗) by Lemma C.2. We have two different maximizers λ∗ and λ∗∗ of Φ over

{λ ∈ B : λj = 0, ∀j ∈ J1 and λj = U, ∀j ∈ J2}. This is a contradiction since Φ is

strictly concave. So it must be the case that J = ∅.

Theorem C.6. A sequence {λn} generated by (4.12) with sufficiently small αn > 0 such

that
∑∞

n=0 αn = ∞ and
∑∞

n=0 α
2
n <∞, converges to λ̂ = arg maxλ∈B Φ(λ).

Proof. By Lemmas C.1, C.2, and C.5, the maximizer λ̂ is a limit point of {λn}. Suppose

that λ∗∗ is a limit point of {λn}. Then Φ(λ∗∗) = Φ(λ̂) by Lemma C.2. This implies that

λ∗∗ is also a maximizer. By the uniqueness of the maximizer, λ∗∗ = λ̂. So {λn} has

a unique limit point λ̂. This implies that the bounded sequence {λn} converges to λ̂ by

Proposition A.5 of [15, p. 652].

Corollary C.7. limn→∞ λn,m = λ̂, ∀m.

Proof. Use Lemma C.3 and Theorem C.6.
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APPENDIX D

Convergence Proofs for Diagonally-Scaled Incremental Gradient
Method

We prove the global convergence of the diagonally-scaled incremental gradient method

in (4.21). The required assumptions on the objective function are the following: ∇Φm

are bounded on B, and Φm are concave. They are satisfied by the emission PL objective

function. Define a norm ‖·‖D−1 on R
p by ‖λ‖D−1 = (λ′D−1λ)1/2 for λ ∈ R

p. Suppose

that Φ∗ = supλ∈B Φ(λ).

Lemma D.1. Let {λn} be a sequence generated by (4.21). Then for any λ ∈ B, one can

show:
∥

∥λn+1 − λ
∥

∥

2

D−1 ≤ ‖λn − λ‖2
D−1 − 2αn(Φ(λ) − Φ(λn)) + α2

nC

for all n and some C > 0.

Proof. One can verify that the algorithm in (4.21) is equivalent to the following:

ηn,m = PB′

(

ηn,m−1 + αn∇gm(ηn,m−1)
)

for m = 1, · · · ,M , where ηn,m
4
= D−1/2λn,m, gm(η) = Φm(D1/2η), and B′ = {η ∈

R
p : 0 ≤ ηj ≤ Ud

−1/2
j }. Use Lemma 2.1 of [89].

Lemma D.2. Suppose that {λn} is a sequence generated by (4.21) with αn > 0 such that

limn→∞ αn = 0 and
∑∞

n=0 αn = ∞. Then lim supn→∞ Φ(λn) = Φ∗.
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Proof. The proof is due to Proposition 1.2 of [28]. Assume for contradiction that there

are δ > 0, N ∈ N, and ν ∈ B such that Φ(ν) > Φ(λn) + δ for all n ≥ N . Since

limn→∞ αn = 0, one can assume that N is so large that αnC < δ where C > 0 is a

constant from Lemma D.1. Using Lemma D.1, one obtains:

∥

∥λn+1 − ν
∥

∥

2

D−1 ≤ ‖λn − ν‖2
D−1 + αn(αnC − 2δ)

≤ ‖λn − ν‖2
D−1 − αnδ

for all n ≥ N . Summing up, this gives:

0 ≤ ‖λn − ν‖2
D−1 ≤

∥

∥λN − ν
∥

∥

2

D−1 − δ
n−1
∑

k=N

αn

for all n > N . This is a contradiction since
∑∞

n=0 αn = ∞.

Theorem D.3. Let {λn} be the sequence generated by (4.21) with αn > 0 such that
∑∞

n=0 αn = ∞ and
∑∞

n=0 α
2
n < ∞. Then {λn} converges to some λ∗ ∈ Λ∗ = {ν ∈ B :

Φ(ν) ≥ Φ(λ), ∀λ ∈ B}.

Proof. Using Lemma D.1 with some ν ∈ Λ∗, we have:

∥

∥λn+1 − ν
∥

∥

2

D−1 ≤
∥

∥λ0 − ν
∥

∥

2

D−1 − 2
n
∑

k=0

αk(Φ
∗−Φ(λk)) +

n
∑

k=0

α2
kC (D.1)

for all n. Since
∑∞

n=0 α
2
n <∞, we have

2
n
∑

k=0

αk(Φ
∗ − Φ(λk)) ≤

∥

∥λ0 − ν
∥

∥

2

D−1 +
n
∑

k=0

α2
kC < q <∞

for all n and some q whereC is a constant from Lemma D.1. This implies that
∑∞

k=0 αk(Φ
∗−

Φ(λk)) < ∞ since Φ∗ − Φ(λk) ≥ 0, ∀k. Therefore, (D.1) implies that {λn} is bounded.

By Lemma D.2, there exists a subsequence {λnk} of {λn} such that limk→∞ Φ(λnk) =

Φ∗. Since {λnk} is bounded, there exists a subsequence {λnkl} of {λnk} such that {λnkl}

converges to some λ∗ ∈ B [15, p. 652]. By the continuity of Φ, we have Φ(λ∗) = Φ∗,
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that is, λ∗ ∈ Λ∗. We have obtained a limit point λ∗ ∈ Λ∗ of {λn}. Now we fol-

low the line of the proof of Proposition 1.3 of [28]. For any δ > 0, take N ∈ N

such that
∥

∥λN − λ∗
∥

∥

2

D−1 ≤ δ/2 and
∑∞

k=N

(

−2αk(Φ
∗ − Φ(λk)) + α2

kC
)

≤ δ/2. Us-

ing Lemma D.1, one obtains:

∥

∥λn+1 − λ∗
∥

∥

2

D−1 ≤
∥

∥λN − λ∗
∥

∥

2

D−1 +
n
∑

k=N

(

−2αk(Φ
∗ − Φ(λk)) + α2

kC
)

≤ δ

for all n ≥ N .

Corollary D.4. limn→∞ λn,m = λ∗ ∈ Λ∗, ∀m.

Proof. Use limn→∞ αn = 0 with the assumption that ∇Φm is bounded on B.
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APPENDIX E

Convergence Proofs for Incremental Optimization Transfer
Algorithms

In this appendix we prove the convergence of the incremental optimization transfer algo-

rithm given in Table 5.1. Define z
4
= (x; x̄1, . . . , x̄M) ∈ DM+1, and define a mapping

M : DM+1 → DM+1 such that M(zn) = zn+1 where zn+1 = (xn+1; x̄n+1
1 , . . . , x̄n+1

M )

is computed by (5.8)–(5.10) for zn = (xn; x̄n1 , . . . , x̄
n
M). Suppose that the algorithm gen-

erates a sequence {zn} (or a sequence {xn} by taking the first component of zn), given

some initial point z0 ∈ DM+1. Define an augmented solution set as follows:

Λ
4
= {z = (x; x, . . . ,x) ∈ DM+1 : x ∈ Γ} (E.1)

where Γ is defined in (5.12). We impose the following assumptions.

Assumption E.1. Each Φm and φm(·; ·) is continuously differentiable on a nonempty,

closed, and convex set D ⊂ R
p and D2 ⊂ R

p × R
p, respectively.

Assumption E.2. The iterates {zn} are bounded where zn = (xn; x̄n1 , . . . , x̄
n
M).

Assumption E.2 is ensured by either of the following sufficient conditions.

Assumption E.2′. The feasible set D is bounded.

Assumption E.2′′. A level set defined by {z ∈ DM+1 : F (z) ≥ F (z0)} is bounded.

We assume that the surrogates φm satisfy the following conditions.
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Condition E.3. The functionals φm satisfy the minorization conditions in (5.3).

Condition E.4. The following derivatives match for all m and x ∈ D:

∇Φm(x) = ∇10φm(x; x) (E.2)

where ∇10 is the column gradient operator with respect to the first argument (see [58] for

less restrictive conditions).

Condition E.5. There exists a unique maximizer in (5.8).

The following is sufficient for Condition E.5.

Condition E.5′. Each φm(·; x̄m) is strictly concave for all x̄m ∈ D, and there exists a

maximizer of F (·; x̄1, . . . , x̄M) over D for all x̄1, . . . , x̄M ∈ D.

Using the above assumptions and conditions, we prove a series of lemmas necessary

for proving convergence.

Lemma E.6. The iterates {zn} generated by (5.8)–(5.10) yield monotonic increases in F ,

that is, F (zn+1) ≥ F (zn) for all n.

Proof. It follows from the cyclic block coordinate ascent updates in (5.8) and (5.9).

Lemma E.7. Suppose that z∗ ∈ DM+1 is a fixed point of M, that is, M(z∗) = z∗. Then

z∗ ∈ Λ where Λ is defined in (E.1).

Proof. For the fixed point z∗ = (x∗; x̄∗
1, . . . , x̄

∗
M ), in view of Condition E.5, one can show

that x∗ = x̄∗
1 = . . . = x̄∗

M . Since x∗ is a maximizer of
∑M

m=1 φm(·; x∗) over D, it

follows that
∑M

m=1 ∇10φm(x∗; x∗)′(x − x∗) ≤ 0 for all x ∈ D [15, p. 194]. Therefore,

by Condition E.4, ∇Φ(x∗)′(x − x∗) ≤ 0 for all x ∈ D, and it follows that x∗ ∈ Γ.

Lemma E.8. If z /∈ Λ, then F (M(z)) > F (z).
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Proof. The z /∈ Λ is not a fixed point of M by Lemma E.7. Combining Condition E.5 and

Lemma E.6 leads to the conclusion.

Now we prove the following theorem on the convergence of the incremental optimiza-

tion transfer algorithm.

Theorem E.9. Suppose that {zn} is a sequence generated by (5.8)–(5.10) with z0 ∈

DM+1 and that Assumptions E.1 and E.2 and Conditions E.3–E.5 hold. Then any limit

point of {zn} is an element of Λ.

Proof. Following [78, p. 209 and p. 228], one can show that the mapping M is closed, in

other words, M is continuous. The conclusion then follows from Zangwill’s Convergence

Theorem [136, p. 91] with Assumption E.2, Lemmas E.6 and E.8, and the closedness of

M.

The following corollaries and lemmas also hold when “{xn}” is replaced with “{x̄nm}”

for all m.

Corollary E.10. Suppose {xn} is a sequence obtained by taking the first component from

zn in Theorem E.9. Then any limit point of {xn} is an element of Γ.

Proof. Use Theorem E.9, Assumption E.2, and the definition of Λ in (E.1).

Corollary E.11. If Φ is concave, then any limit point of {xn} is a global maximizer of Φ

over D. Moreover, if Φ is strictly concave, then {xn} converges to the global maximizer

of Φ over D.

Proof. Use Corollary E.10 and [15, Proposition 2.1.2].

When Φ is not strictly concave, there is no guarantee that the algorithm converges to a

limit. However, convergence can be established by additionally assuming that the solution

set Γ is discrete.
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Lemma E.12. Suppose {xn} is a sequence from Corollary E.10. Then ‖xn+1 − xn‖ → 0.

Proof. It follows from [82, Theorem 3.1] that ‖zn+1 − zn‖ → 0. Since ‖zn+1 − zn‖2 =

‖xn+1 − xn‖2 +
∑M

m=1 ‖x̄n+1
m − x̄nm‖2, it must be a case that ‖xn+1 − xn‖ → 0.

Lemma E.13. Suppose {xn} is a sequence from Corollary E.10. Additionally, suppose

that the set Γ is discrete. Then {xn} converges to an element in Γ.

Proof. Let S be a set of limit points of {xn}. Then S ⊂ Γ by Theorem E.9. But, by

Lemma E.12, S is connected [97, p. 173]. Since S is both discrete and connected, it is a

singleton.

The above lemma implies that if stationary points of (5.2) are isolated, then the algo-

rithm converges to one of them.
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APPENDIX F

Local Convergence Rate Analysis for Incremental Optimiazaiton
Transfer Algorithms

F.1 Asymptotic Convergence Rate

We analyze the asymptotic convergence rate of the incremental optimization transfer

algorithm given in Table 5.1. As in usual local convergence analysis, we assume that a

sequence {x̄nm}∞n=1 generated by the algorithm converges to an optimal point x̂ of (5.2)

for all m, and that every iterate x̄nm and the limit x̂ lie in the interior of D.

Consider the following first-order Taylor’s expansion of ∇10φm(·; x̄nm) with respect to

the first argument about x̄nm:

∇10φm(x; x̄nm) ≈ ∇10φm(x̄nm; x̄nm) + ∇20φm(x̄nm; x̄nm)(x − x̄nm) (F.1)

where ∇20 is the Hessian operator with respect to the first argument. The first term on the

right hand side can be further approximated as

∇10φm(x̄nm; x̄nm) = ∇Φm(x̄nm)

≈ ∇Φm(x̂) + ∇2Φm(x̂)(x̄nm − x̂) (F.2)

where the equality is due to (E.2). Because of the assumption of x̂ and x̄n+1
1 being in the

interior of D, and the construction of x̄n+1
1 = arg maxx∈D F (x; x̄n1 , · · · , x̄nM ) [see (5.8)
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and (5.9)], it follows that

M
∑

m=1

∇Φm(x̂) = ∇Φ(x̂) = 0

M
∑

m=1

∇10φm(x̄n+1
1 ; x̄nm) = 0.

Now combining (F.1) and (F.2) yields the following approximation:

en+1
1 ≈

[

M
∑

m=1

∇20φm(x̄nm; x̄nm)

]−1 M
∑

m=1

[

∇20φm(x̄nm; x̄nm) −∇2Φm(x̂)
]

enm

where enm
4
= x̄nm−x̂ for allm and n. Similarly, one can obtain the following approximation

for all m:

en+1
m ≈

[

m−1
∑

k=1

∇20φk(x̄
n+1
k ; x̄n+1

k ) +
M
∑

k=m

∇20φk(x̄
n
k ; x̄

n
k)

]−1

·
(

m−1
∑

k=1

[

∇20φk(x̄
n+1
k ; x̄n+1

k ) −∇2Φk(x̂)
]

en+1
k +

M
∑

k=m

[

∇20φk(x̄
n
k ; x̄

n
k) −∇2Φk(x̂)

]

enk

)

. (F.3)

Assuming that ∇20φm(·; ·) is continuous, it will converge to ∇20φm(x̂; x̂) as limn→∞ x̄nm =

x̂. For notational convenience, define Dm
4
= ∇20φm(x̂; x̂), Hm

4
= ∇2Φm(x̂), and

Tm
4
= (
∑M

k=1 Dk)
−1(Dm − Hm) for all m. Then one can write the asymptotic approxi-

mation of (F.3) in matrix form as follows:

E
n+1 ≈ (IpM − Γl)

−1
ΓuE

n

where E
n 4

= [(en1 )′, · · · (enM)′]′ is a pM × 1 column vector, Ik is a k × k identity matrix,
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and

Γl =





























0 0 · · · 0 0

T1 0 · · · 0 0

T1 T2 · · · 0 0

...
...

...
...

T1 T2 · · · TM−1 0





























(F.4)

Γu =





























T1 T2 · · · TM−1 TM

0 T2 · · · TM−1 TM

...
...

...
...

0 0 · · · TM−1 TM

0 0 · · · 0 TM





























(F.5)

with 0 being a p × p zero matrix. Thus, the root-convergence factor [96, p. 288] of the

sequence {[(x̄n1 )′, · · · , (x̄nM)′]′}∞n=1 for the incremental optimization transfer algorithm is

given by the spectral radius

ρM = ρ
(

(IpM − Γl)
−1

Γu

)

(F.6)

where ρ(·) denotes spectral radius. One can show that the root-convergence factor of the

sequence {x̄nm}∞n=1 is also governed by the above spectral radius for all m. For ordinary

optimization transfer algorithms, that is, when M = 1, the spectral radius (F.6) reduces to

ρ1 = ρ
(

Ip − [∇20φ(x̂; x̂)]−1∇2Φ(x̂)
)

, (F.7)

as is well known [70]. To compare ρ1 and ρM for M > 1, we provide an illustrative

example in the following subsection.
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F.2 One-Parameter Example

We consider a simple one-parameter transmission problem. Suppose the measurement

model is:

yi ∼ Poisson
{

bie
−ax
}

, i = 1, · · · , N

where a > 0 and bi > 0, ∀i. Assuming
∑N

i=1 yi > 0, the ML estimate is given by

x̂ =

[

1

a
log

∑N
i=1 bi

∑N
i=1 yi

]

+

where [x]+ = max{x, 0}. Assuming µ̂ > 0, which is very likely for high SNR data, the

root-convergence factor ρM for an incremental optimization transfer algorithm, TRIOT-

MC (see Section 5.3.2 for details), is given by (F.6) with substituting

Tm =

∑

i∈Sm
bi

∑N
i=1 bi

(

1 −
∑N

i=1 yi
∑N

i=1 bi

)

, m = 1, · · · ,M (F.8)

in (F.4) and (F.5), where {Sm}Mm=1 is a partition of {1, . . . , N}. Fig. F.1 shows the mean

root-convergence factor E[ρM ] as a function of the number M of subsets for an example

where xtrue = 0.7, N = 128, a = 1, and bi was simulated using pseudorandom uniform

variates with mean of 0.5. The mean was approximately computed by replacing yi in (F.8)

with its mean bie
−axtrue ; this approximation is reasonably accurate for high SNR. For

example, for M = 1, that is, for a nonincremental version, ordinary SPS-MC, the mean of

the root-convergence factor is given by

E[ρ1] ≈ 1 − e−ax
true

.

As shown in Fig. F.1, for this one-parameter example, the asymptotic convergence rates

of incremental optimization transfer algorithms (M > 1) are faster than that of the nonin-

cremental one (M = 1), and the convergence rate of the incremental one becomes faster

as the number M of subsets increases.
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