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CHAPTER I

Introduction

The quality or performance of imaging systems is often quantified in terms of the

spatial resolution of the images that those systems produce. A measure of resolution

relates how well small features in the image can be resolved. If a true image has been

convolved with a space-invariant filter, the blur filter is called the impulse response

and completely specifies the resolution properties of the resultant image. However,

many imaging systems do not produce images that can be represented in this form.

For such systems, the resolution properties are space-variant and must be quantified

locally.

Even systems that are intrinsically space-invariant can yield reconstructed images

with space-variant resolution properties. This is because the resolution properties

of an image are a function of both the imaging system and the image estimator.

Regularized statistical estimators are often subject to space-variant effects, since the

implicit data-weighting of the statistical model will induce different resolutions based

on the local statistics. Thus, the resolution properties are image-dependent as well.

For images, space-variant resolution means that different image locations exhibit

different blurs. These blurs can vary in both magnitude and shape. Anisotropic

blur will preferentially smooth features of an image in certain directions. This can

1
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complicate some tasks. For example, any task that involves extraction of the shape

of image features can potentially suffer from anisotropic blur. Discs in a true im-

age will appear elliptical after such a blur is applied. Similarly, object-dependent

space-variant blur can complicate comparisons between images. If images are not

resolution matched, detection tasks, registration, and boundary identification can

yield misalignments or mismatches from the image-dependent shape distortions.

Thus, it is useful to have ways to measure the resolution properties of an image.

The local impulse response is a generalization of the impulse response and is one tool

for measuring space-variant resolution. The local impulse response has been widely

used for space-variant resolution investigation. We provide a new derivation of the

local impulse response in Chapter III, appropriate for a class of regularized statistical

estimators, where a finite number of measurements are obtained from a continuous

object and a discrete representation of the object is estimated.

In some cases, the local impulse response can be formulated as a function of the

data measurements and the resolution properties can be predicted without perform-

ing any reconstruction. Such resolution predictors are also a function of the estimator

parameters. Thus, resolution predictors may be used to select parameters like the

level of regularization for a regularized statistical estimator. Since traditional reg-

ularization parameters are only obliquely related to resolution, predictors allow for

more concrete resolution control. Specifically, resolution predictors can be used to de-

sign estimators with user-specified resolution properties. The idea of using resolution

predictions to design estimators with specific resolution properties is investigated in

detail in Chapter IV. Chapter V outlines many practical aspects of the implemen-

tation of the parameter design, with a concentration on the application to emission

tomography estimators. We apply this estimator design technique with the goal of
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uniform resolution properties (i.e., space-invariant and isotropic) to positron emis-

sion tomography (PET) and single photon emission computed tomography (SPECT)

systems in Chapter VI.

Such resolution control is important for comparing different estimators. However,

resolution is only one of many potentially important factors in image quality. In fact,

many estimators can be designed that specify arbitrarily “good” resolution. Gen-

erally, the trade-off is that for finer resolutions, estimated images exhibit increased

noise. Thus, to make a fair comparison of different estimation methods, one should

consider resolutions at a fixed image noise level, or, equivalently, noise levels at a

fixed image resolution. We include such performance investigations in Chapter VII.

Resolution is only one of many measures of bias that is used in such bias ver-

sus variance comparisons. Other measures like bias-gradient length[54] have been

used. Resolution is a convenient measure because it is easily interpreted and task-

independent. Ultimately, the best performance comparisons are made by evaluating

an estimator with a specific task in mind. For example, detection tasks can be eval-

uated by forming a receiver operating characteristic (ROC) curve, that shows the

probability of detection for a given false alarm rate. There are also many extensions

to the ROC curve that include localization in the detection task[121, 43]. These

performance curves necessitate an observer to perform the detection task. Many

computer observers have been developed which model human detectors[139]. These

observer models generally require knowledge of the covariance of the reconstructed

images. Typically, these covariance predictors require a large amount of computa-

tion. However, the same new techniques presented in Chapter V for rapid resolution

predictions can also be used to yield rapid covariance predictions.

Thus, in the future, one logical extension of this work is to use fast resolution and
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covariance predictors to design an estimator that is optimal for a specific task (e.g.,

regularization that is tailored to a certain task). While it is unclear whether uniform

resolution will play a part in the optimal estimator for certain tasks, the ability to

make fast resolution and covariance predictions will remain important for situations

where many resolution or covariance estimates are made.

The main contributions discussed in this work are:

• A new derivation of the local impulse response for a general class of imaging

systems and noise models where a finite number of measurements are made from

a continuous object and are reconstructed using a discrete object model and a

penalized-likelihood estimator. [118]

• Development and validation of fast techniques for evaluating the local impulse

response (and approximating covariance) in tomographic systems with partic-

ular attention to both shift-invariant and shift-variant emission tomography

systems.[119, 120]

• Development of practical penalty design methods for penalized-likelihood esti-

mators that allow the specification of user-defined resolution properties prior to

image reconstruction. [118, 117, 116, 115, 114]

• A study of estimators that can provide uniform resolution. Specifically, which es-

timators can provide the most uniform resolution, and among resolution matched

estimators, which estimators have the best noise performance.[118, 116]

While these topics are discussed in detail in this work, they have also been discussed

in a number of conference and journal papers as indicated above.



CHAPTER II

Background

While many contributions of this thesis can be applied generally to generic imaging

problems, the initial impetus for this work arose from discussions with clinicians on

the resolution properties of reconstructed images formed from emission tomography

systems. Therefore, most of the studies and discussions presented in this work focus

on emission tomography and incorporate physical effects appropriate for such systems

into the system models. Thus, we begin the background introduction with a summary

of some important aspects of emission tomography.

2.1 Emission Computed Tomography

Emission computed tomography (ECT) is a medical imaging modality that can

provide unique functional information about physiological processes in the body.

Typically, a small amount of a radioactive compound (or radiotracer) is introduced

into a subject via injection or inhalation. Sometimes the radiotracer itself is of phys-

iological interest as in 15O imaging in the brain. In other situations, the radioisotope

is attached to a molecule that is selectively taken up in different anatomical regions,

such as 18F labeled fluorodeoxyglucose (FDG) in tumors. After allowing the radio-

tracer to distribute throughout the body, an image of the radiotracer distribution

can be made. This image indicates the concentration of the radiotracer in different

5



6

r

r

x

x1

2

φ

(a) Positron Emission Tomography
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Figure 2.1: Idealized emission computed tomography systems.
(a) The PET system obtains projection data over a range of angles (φ) and radial positions (r) by
detecting pairs of coincident gamma photons. (b) The SPECT system obtains projection data via
collimation of gamma photons emitted from the object and rotation of the detector system around
the object. Lines of response (LORs) are shown with dotted lines in both figures.

anatomical regions. This is important for diagnosis, for example, in cancer studies,

since tumors tend to use more glucose than other regions in the body. Therefore,

FDG images often show “hot spots” or regions of higher concentration where tumors

lie. In other studies physicians are interested in “cold spots” due to improper blood

circulation.

The two most common types of ECT are positron emission tomography (PET)

and single photon emission computed tomography (SPECT). In PET imaging, as

the radioisotope decays it emits positrons. These positrons travel a short distance

before annihilating with an electron. (This effect, known as positron range[74] is

usually small and therefore neglected.) Each annihilation event creates two 511 keV

gamma photons that travel in opposite directions. If both of these photons travel

coplanar with the coincidence detector ring that surrounds the patient and deposit

energy in a pair of detectors, the number of events for that line of response (LOR) is

incremented. In other words, we know the annihilation event took place somewhere

along the line connecting the pair of coincidence detectors. See Figure 2.1a for a
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simplified representation of a PET system. To determine which events are coincident,

detectors look for a pair of events in a short duration coincidence window[122]. In

this way, projection data are obtained over a range of angles and radial positions.

(A single projection at angle φ is shown to the right of the simplified PET diagram

in Figure 2.1a.) All projection data are collectively called a sinogram.

In SPECT imaging, the radioisotope that is used decays and emits a single gamma

photon. These photons are detected by a rotating array of detectors. To obtain

LOR information, a collimator is placed in front of the detectors so that the gamma

photons can only enter at known angles. (Often a parallel hole collimator is used

so that the photons enter perpendicularly.) As the detector array rotates around

the object, a full range of angles may be obtained. See Figure 2.1b for a simplified

representation of a SPECT system.

2.1.1 Detectors

The detectors and their geometry (and the associated detector components like

the collimator in SPECT) are probably the most important items when it comes

to system resolution properties. Therefore, for reconstruction from high resolution

imaging systems an accurate detector model is important. A simple gamma ray

detector is composed of a scintillating crystal, which is optically coupled to a photo-

multiplier tube (PMT). When a gamma photon interacts inside a scintillating crystal,

such as sodium iodide (NaI) or bismuth germanate (BGO), a burst of many light

photons is produced. This burst of light is converted into a short electrical pulse by

the photomultiplier tube. These pulses may then be counted, recording the number

of detected gamma photons. Simple detection is not sufficient to construct an image

of the object. Localization of this detected gamma photon is also required, so that

the LOR along which the gamma photon originated is known.
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Figure 2.2: Localization in different detection systems.

In PET systems, a block detector is typically used (see Figure 2.2a). In a block

detector a rectangular bundle of crystals is optically coupled to several PMTs. The

crystal block is fabricated so that the light collected by the PMTs varies uniquely

for each of the rectangular crystals. Therefore, the crystal in which a scintillation

takes place can be identified by looking at the output of the PMTs.

In SPECT systems, the detectors are usually in the form of an Anger camera

(shown in Figure 2.2b). In an Anger camera, a large crystal is optically coupled to

many PMTs. PMTs closer to a scintillation event will gather more light; those further

away will gather less light. Since light gathered by the PMTs is position-dependent,

the (x, y) position in the crystal can be estimated from the PMT outputs.

There are a number of physical and geometric effects that can complicate event

localization. These factors create an ambiguity in measuring the exact LOR for a

particular event. For example, because scintillations often consist of one or more

Compton scattering interactions before photoelectric absorption, the light created in

a crystal has a spatial distribution.

In PET, the block detector has crystals of finite size (often on the order of a few

millimeters) and can only localize an event to within a crystal and the probabilities
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Figure 2.3: Detectors in PET and SPECT systems.
(a) In PET, the depth of interaction in the scintillating crystal causes an ambiguity in the LOR. The
probability distribution of LORs for a given pair varies depending on the detector configuration.
Generally, the greater the relative angle between a detector pair, the greater the range of LORs.
(b) In SPECT, due to finite collimator depth and hole size, photons are detected within some
acceptance angle even for an ideal collimator. This has the effect of increasing the area of accepted
photons with increasing distance from the collimator.

of detection are spatially nonuniform within that crystal. These probabilities are

highly dependent on the exact detector geometry and emission positions. In SPECT,

Anger camera position estimates are related to the number of photons given off in a

scintillation event and are subject to noise and thus have a spatial distribution (which

is often approximated by a 2D Gaussian function). Such effects are often lumped

together and called the detector response. The detector response is fully specified

by a detector sensitivity pattern. In general this sensitivity pattern is a function of

x, y, and z, and expresses the probability that a given detector1 will detect gamma

photons originating at a given position (x, y, z).

There are a number of effects that contribute to space-variant detector responses.

That is, the sensitivity patterns for all detectors are not simple rotations and trans-

lations of a single detector’s sensitivity pattern. In PET, the depth of interaction

(DOI) in the crystal leads to space-variant detector responses. (This effect is illus-

trated in Figure 2.3a.) Because of the ring geometry in PET, pairs of detectors are

1Strictly speaking, in PET, any localization involves a pair of detectors. However, it is convenient to consider the
pair of detectors a single LOR detector.
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not necessarily parallel to each other. Since the detectors localize only in the x-y

plane,2 ambiguity in the z direction leads to an ambiguity of the LOR. This effect

becomes worse for increasingly oblique detectors and leads to space-variant detector

responses.

Additionally, there are other physical effects that can alter the magnitude or

relative sensitivity of the detector response. This effect is known as detector efficiency

and generally varies from detector to detector[108]. For example, since PMTs are

relatively sensitive analog devices, the PMT sensitivity tends to change or drift over

time[99]. Detector efficiency can be measured by performing a normalization scan[56,

53, 6]. Such scans are performed periodically with long acquisition times to obtain

good estimates of detector efficiency.

The shape of the detector response is also important. As mentioned previously, in

SPECT, a collimator is required in order to obtain LOR information. An enlarged

view of a collimator and detector for a SPECT system is shown in Figure 2.3b. The

collimator is typically made of lead and is meant to prevent oblique gamma photons

from passing through to the scintillating crystal. It is obvious from the geometry

that even if no photons pass through the lead, photons enter the detector over a

range of angles. For a collimator with holes of diameter x0 and depth l, the diameter

of the circle over which photons are accepted at depth z is r0(1+2z/l). The result is

a detector response whose size increases linearly with increasing distance. Therefore,

there is increasing spatial ambiguity with increasing distance from the detector. In

real collimators, gamma photons pass through the lead with a probability given by

Beer’s law. This is called penetration. These penetration effects tend to smooth out

the detector response from the ideal detector response function.

2There has been much work in designing detectors that also measure depth of interaction[86, 42]. However, while
these new detectors can minimize space-variant effects, in general the detector responses will still be space-variant
due to ambiguity of the DOI estimate.
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2.1.2 Physical Effects

There are other physical effects that are not directly related to the detectors

themselves that also complicate the measured data. Gamma photons are prone to

two dominant interactions: absorption and Compton scatter. Both absorption and

scatter can have a similar effect. Many scattered photons are never detected (they

are scattered out of the detector planes), and absorption in the object prevents the

photons from reaching the detector. These effects are jointly termed attenuation.

The survival probability[80] of a photon along a line l is given by

Pl = exp

{
−
∫

l

µ(x)dx

}
, (2.1)

where µ(x) is the linear attenuation coefficient at position x. Therefore, for a PET

system as in Figure 2.4a, where a pair of photons are emitted, the survival probability

for both photons is

P = Pl1Pl2 = exp

{
−
∫ x0

x1

µ(x)dx

}
exp

{
−
∫ x2

x0

µ(x)dx

}
= exp

{
−
∫ x2

x1

µ(x)dx

}
,

(2.2)

which is just the line integral along the LOR connecting the detector pair. Since the

survival probability involves the complete line integral connecting the two detectors,

attenuation can be incorporated as a ray-dependent scaling factor. This is not the

case in SPECT. Consider the single detector system given by Figure 2.4a, when

detector #2 is ignored. In this case the survival probability is given as Pl1 . This

survival probability is depth-dependent and cannot be included as a simple ray-

dependent factor. However, one can still include this effect in a system model by

including attenuation in the detector model. In both PET and SPECT, in order

to include attenuation effects, a transmission scan must be performed to estimate

the attenuation map given by µ(x). To obtain the attenuation map, a radioactive
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Figure 2.4: Physical effects in ECT systems.

rod source is typically rotated around the object prior to the emission scan in a

transmission scan[72]. In addition, a blank scan is performed without any object

in the scanner. The blank scan and transmission scan (or their ratio) are used

to reconstruct the attenuation map[31, 44]. Once an attenuation map has been

reconstructed, the emission system model can be modified to include these effects.

Sometimes, scattered photons are still detected. In PET, this means the photon

paths are no longer colinear; and, in SPECT, this means the single photon has not

originated along the detected LOR. This is illustrated in Figure 2.4b and c. Because

scattered photons typically have less energy than unscattered photons, many scat-

tered events can be eliminated by energy discrimination. For example, in 18F PET

imaging, the annihilation photons are emitted with 511 keV; and, in 99mTc SPECT

imaging, the photons are at 140 keV. If photons are detected at lower energies (in

either case), they can be assumed to be scatter and are rejected. Unfortunately,

the detectors have finite energy resolution, and this scatter rejection is no longer

completely straightforward. A number of energy windowing techniques[59, 79] and

model-based methods[92, 131, 130] have been suggested to solve this problem. How-

ever, generally the measurement data will still contain a scatter component.
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There is an additional concern in PET. This effect is called randoms or accidental

coincidences and is illustrated in Figure 2.4b. Consider the case where one of the

photons of a photon pair is scattered or attenuated so that it never reaches the

detector. If this happens with two pairs of photons (such that only one photon of

each pair is detected) within the duration of the coincidence window, the resulting

event is termed an accidental coincidence[55]. These random events can be estimated

by considering detected events in a delayed window. Pairs of photons detected with

one photon in the coincidence (or prompt) window and one photon in the delayed

window can only be due to accidental coincidences (since these photons travel at the

speed of light and the windows are timed to include only events with the field of

view of the scanner).

In addition, both PET and SPECT are susceptible to background radiation, that

is, radiation from external sources such as naturally occurring radioactive decay.

Much background radiation can also be eliminated through energy windowing meth-

ods; however, there will still be a background component present in the measure-

ments.

2.2 Imaging System Models

Generally, any model of a real system must make certain approximations or neglect

certain effects. Different models can have a number of different advantages. For

example, more accurate models may contain parameters that are too numerous or

difficult to measure, more complicated models are often difficult to analyze, and

certain models will not lead to computationally feasible estimators, etc. For this

reason we will present various models one might adopt for image reconstruction or

analysis.
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Figure 2.5: Generic continuous tomographic model and coordinate system.

2.2.1 Idealized Continuous Model

In tomographic systems the measurements are projections of the object distribu-

tion onto a detector array. In Figure 2.1, all LORs for a given projection angle are

shown for an idealized PET and SPECT system. A more generic simplified model is

shown in Figure 2.5, which introduces the continuous model and its notation.

Let f(x1, x2) denote an object intensity function defined over IR2. Assuming a

continuum of detectors oriented at an angle φ, a projection pφ(r) is obtained which

is a function of the radial distance, r. An ideal projection is related to the object

distribution as a line integral along the line L(r, φ). However, we also include a

(possibly) depth-dependent radial detector blur, b(r, z), where z is defined as the

perpendicular distance from an image location to the face of the detector. Thus, we

write

pφ(r) =

∫ ∞

−∞

∫
L(s,φ)

b (r − s, z(l, s)) f(x1, x2) dl ds

=

∫ ∞

−∞

∫ ∞

−∞
b (r − s, z(l, s)) f(l cosφ+ s sinφ, l sinφ− s cosφ) dlds.(2.3)

If b(r, z) = δ(r), there is no detector blur and the complete collection of projections

{pφ(r) : φ ∈ [0, π], r ∈ (−∞,∞)} is known as the Radon transform[97] of the object,
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Figure 2.6: Example of a piecewise constant object and its Radon transform.

f(x1, x2). We define the Radon transform operator, P , where

p = Pf, P : L2(IR
2) −→ L2([0, π]× IR). (2.4)

An example of an object, f , and samples of its Radon transform, g, are shown in

Figure 2.6. The samples of the Radon transform are often called a sinogram due to

shape of the projections of a single point. If b(r, z) is not a delta function, then we

will call the complete collection of projections the blurred Radon transform and will

refer to the blurred Radon transform operator Pblur.

We also identify the adjoint operation, backprojection, which transforms projec-

tions back into the image-domain:

fb(x, y) =

∫ ∞

0

∫ ∞

∞
b(s)pφ(x1 cosφ+ x2 sinφ− s)ds dφ, (2.5)

where the backprojection operators are denoted by P ′ and P ′
blur for the ideal and

blurred transforms, respectively.

The above continuous tomographic model is useful for analysis and insight. How-

ever, real systems yield discrete measurements; thus, there is an inherent model

mismatch.
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2.2.2 A Generic Continuous-Discrete Measurement Model

We can put the emission tomography problem within the context of a wider set of

imaging problems using a more generic system model, where a finite set of measure-

ments are obtained from a system that makes measurements on a continuous object

function. Let Y ∈ IRN denote the measurement vector recorded by the imaging

system. We will recognize these measurements are noisy. Therefore, Y denotes a

random vector whose unknown means depend on a continuous-domain object func-

tion, f(x), where x ∈ IR2 or IR3. We assume that elements of mean vector, Ȳ , have

the following form:

Ȳ †
i (f) , E [Yi] = τ †i

(∫
hi(x)f(x)dx

)
= τ †i ([Hf ]i) , (2.6)

where hi(x) is the system “sensitivity” function for the ith measurement and includes

all detector response and attenuation effects. The τ †i function denotes a transforma-

tion relating the weighted integral to the mean measurements. We write the collection

of weighted integrals for all measurements concisely using the continuous-to-discrete

operator, H, which maps a continuous image into N (untransformed) measurements.

The model in (2.6) can be used for many imaging systems. For example, emission

tomography systems have measurements that are linearly related to the object, thus

τ †i (l) = l + ri, (2.7)

where ri represents the mean contribution of background, scatter, and/or randoms.

A transmission tomography system includes an exponential transformation, such

that

τ †i (l) = bi exp(−l) + ri, (2.8)
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where bi represents detector normalization factors.

The true hi(x) and τ †i (·) functions are rarely known exactly, thus the reconstruc-

tion model is inherently mismatched to the measurement model. Additionally, it is

common to adopt a discrete reconstruction model, where the image is approximated

using a linear combination of basis functions.

2.2.3 Discrete Reconstruction Model

A discrete reconstruction model is often adopted to simplify reconstruction, dis-

play, and storage of reconstructed images. In this case, both the measurement data

and the object fall into discrete bins or are pixelized in some fashion. While the

object discretization typically takes the form of pixels or voxels, which are easily

displayed on computer systems, other basis functions[7, 81, 75] may also be used.

Let the object function be represented as a linear combination of P basis functions

with coefficient vector θ ∈ IRP . Elements of the vector of mean measurements, Ȳ ,

are assumed to be related to the discretized object as follows:

Ȳi(θ) = τi

(
P∑

j=1

hijθj

)
= τi ([Hθ]i) , (2.9)

where the elements {hij} collectively make up the system matrix H , and τi(·) is a

function that relates weighted sums of image parameters to the mean measurements.

The N×P system matrix, H , is meant to approximate the action of the continuous-

to-discrete operator, H, and τi(·) is meant to approximate the transformation τ †i (·).

It is common to decompose the system matrix into several components that rep-

resent different physical aspects of the imaging system. For example, a reasonable

formulation for PET or SPECT is

Ȳi(θ) = τi

(∑
j=1

ciaijgijsjθj

)
= τi

(
[diag{ci} (A�G) diag{sj} θ]i

)
, (2.10)
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where the ci terms represent ray-dependent factors like detector efficiency or PET

attenuation coefficients. The sj terms represent pixel-dependent factors like spatial

variations in sensitivity. The {aij} terms or, equivalently, the matrix A represents

factors that are dependent both on the detector and image position (e.g., SPECT

attenuation factors). And lastly, the collection of {gij} terms or, equivalently, the

matrix G denotes the geometric system model. This factorization is relatively generic

and can be used to model many imaging systems.

For a typical PET model, the ci terms are found by multiplying the attenuation

factors specified by the survival probabilities in (2.2) with the detector efficiencies

discussed in Section 2.1.1, which are derived from a normalization scan. Thus, the

SPECT-type attenuation terms are typically eliminated (i.e., A = 1). Similarly,

PET is usually modeled without pixel-dependent factors (i.e., sj = 1). The system

geometry and detector response is modeled through the specification of the {gij}

terms. One simple modeling method is the strip-integral model. This method is

illustrated in Figure 2.7a. The detector response is modeled as a rectangular strip

and gij is proportional to the area of the intersection of ith measurement strip and

the jth pixel. Thus, this discrete model approximates the continuous model in (2.3),

with b(r, z) = 1/w rect (r/w), a rectangle function with width w.

For a typical SPECT model, the ci terms represent detector efficiencies, which can

be found with a uniformity scan, and sj = 1. The attenuation terms, aij, are found

by calculating the survival probability in (2.1), where the line segment connects

the ith detector to the position j. The strip integral model may be appropriate

for PET systems, but, as discussed previously, SPECT detectors generally have a

depth-dependent response. In this case, the gij terms are often chosen to specify a

depth-dependent response with a Gaussian profile.
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Figure 2.7: Modeling the detector response in a discrete tomographic system model.

Sample sensitivity patterns for a single detector are shown for the strip integral

model and a depth-dependent Gaussian model in Figures 2.7b and c, respectively.

2.2.4 Noise Models

Under ideal circumstances, emission tomography systems count individual pho-

tons, and the measurements should be Poisson distributed. However, due to other

noise effects or data preprocessing, this is not always the case and other noise mod-

els are used. For example, for randoms-corrected PET data the measurements are

more accurately represented by a shifted-Poisson model[140, 141]. In other cases one

might adopt a Gaussian noise model[30] or other noise model[142].

Similarly, we would like the methods discussed in this paper to apply generally

to other imaging systems. Thus, we will derive our main results for general noise

models and will defer choosing a particular noise model until specific systems are

investigated.

2.3 Space-Invariant versus Space-Variant Systems

In studying the resolution properties of an imaging system, one very important

aspect is the intrinsic geometric response of the system. Of particular interest is
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how this intrinsic response varies spatially. The intrinsic response is defined as the

projection of an impulse followed by backprojection. Adopting the continuous model

from Section 2.2.1, the backprojected projection of an image can be written as

fb(x1, x2) = P ′Pf(x1, x2) =
1

r
∗ ∗ f(x1, x2), (2.11)

where r =
√
x2

1 + x2
2. This is the well-known 1/r space-invariant response of the

Radon transform[80]. When the radial blur function in (2.3) and (2.5) is not depth-

dependent, such that b(r, z) = b(r); one can show that (see Appendix A)

fb(x1, x2) = P ′
blurPblurf(x1, x2) =

1

r
∗ ∗ H−1

{
B2(ρ)

}
∗ ∗ f(x1, x2), (2.12)

where B(ρ) is the 1D Fourier transform of the blur function and H−1 {·} denotes

the inverse Hankel transform[17]. Thus, ideal PET systems that can be modeled

with a detector blur that is not depth-dependent have an intrinsic response that

is space-invariant. When the detector response is depth-dependent, the response is

space-variant, and one cannot represent the blur properties in convolution form.

For the discrete model, the geometric response is defined by the action of G′G.

Therefore, the response is dependent on the exact choice of {gij}. Consider the strip

integral model where the radial measurements are uniformly spaced. As the strip

width and the pixel size are made arbitrarily small, the discrete model (see (2.10))

approaches the continuous model with b(r) = 1/w rect (r/w), where w is the strip

width. Therefore, under the strip integral model, the response is approximately

space-invariant except for discretization effects.

In contrast, consider a model that includes a depth-dependent detector response,

such as the one shown in Figure 2.7c. Intuitively, one can see that this choice results

in space-variant responses. Object points close to the detector will be measured with

relatively high resolution and those far away will be measured with lower resolution.
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(a) Strip Integral Model (b) Depth-Dependent Gaussian Model

Figure 2.8: Comparison of space-invariant and space-variant geometric responses.
(a) A set of space-invariant geometric responses and (b) a set of space-variant geometric responses.

For measurements covering 360◦ camera rotation, points in the center of the field

of view will on average have worst resolution than those at the edges. Additionally,

since the resolution changes with detector angle, anisotropic responses are expected.

We can illustrate the geometric response for these two discrete models by con-

sidering the operation of G′G on discrete impulse functions. That is, we calculate

G′Gej, where ej is the jth unit vector, for several pixels positions, j. We calcu-

lated G′Gej for 21 pixel locations using two geometric system models with detector

responses that match the sensitivity patterns presented in Figures 2.7b and c. Fig-

ure 2.8 shows the superposition of these 21 responses for each model. Not only the

does the average resolution differ, the responses for the depth-dependent Gaussian

model in Figure 2.8b are anisotropic.

While the geometric response of an idealized PET system is space-invariant, a sys-

tem response model that includes attenuation effects is rarely space-invariant. Adopt-

ing the discrete PET model in Section 2.2.3, the system response is Gdiag{c2i }G.

Since the ci terms are generally nonuniform, this response is also generally space-

invariant. Similarly, incorporating the effects of attenuation and detector efficiencies

generally increases the space-variance of SPECT system models.

The above examples (strip integrals and depth-dependent Gaussians) are only two
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Figure 2.9: Three-dimensional PET and SPECT systems.

of many possible choices for a system model. Other detector effects, like depth of

interaction and uneven sample spacing (note the radial sampling at the edges versus

the center in Figure 2.1a), may also be incorporated into the system model[61, 102,

128, 62]. In general, such effects also contribute to the space-variance of a real PET

system.

2.3.1 2D versus 3D

The systems described so far have all been two-dimensional. However, real PET

systems are capable of three-dimensional acquisition and SPECT systems are inher-

ently 3D because of the detector response.

Let us first consider the case of 3D SPECT. If the detector cross section shown in

Figure 2.3b represents a collimator with round holes, the ideal detector response is

given by a cone shown in Figure 2.9b. The 2D sensitivity map shown in Figure 2.7c

is easily generalized to the 3D case, where each element of the system matrix, gij,

represents the ith detector sensitivity at the jth voxel. The problem with this ex-

tension is that the system matrix becomes very large. Therefore, instead of storing

the matrix, the projection and backprojection operators are often implemented as

computer subroutines[26]. For the Gaussian model, it is possible to implement the

depth-dependent response using Gaussian diffusion techniques[84, 82] or approximate
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Figure 2.10: Projections in fully three-dimensional systems.

fast methods like those in [46], which use the frequency-distance principle.

The geometric responses for 3D SPECT systems are shift-variant just as the 2D

case because of the depth-dependent response. In the 3D case, one can see at the

center of the field of view there will be decreased resolution not only in-plane but

along the axis. This results in increased blur between slices at the center of the field

of view. There is additional shift-variance at the axial extremes of the detector, since

the first and last axial slice (and their neighbors) are “sampled” by fewer projections

than at the center of the field of view.

PET systems can typically be operated in a 2D or 3D mode. In 2D mode, tungsten

septa (annular rings placed in the scanner near the detectors) act as a collimator and

isolate the axial planes from each other. In 3D mode, these septa are removed and

interslice projections may be obtained. See Figure 2.9a for an illustration.

Figure 2.10a shows an ideal model for a fully 3D system. In this case, the projec-

tions are two-dimensional and are dependent on angular indices. For a continuous

model, projections are given by

gφ,θ(z1, z2) =

∫
b(z1, z2; z3) ∗ ∗ f(x1, x2, x3)dz3, (2.13)
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with 
x1

x2

x3

 =


− sinφ − cosφ sin θ cosφ cos θ

cosφ − sinφ sin θ sinφ cos θ

0 cos θ sin θ




z1

z2

z3

 , (2.14)

where the blur function is 2D, but possibly depth-dependent and a function of z3.

The complete set of projections (with no blur) over all φ and θ are termed the X-ray

transform. Again, for discrete models the system matrix may be generalized to the

3D case so that each element of the geometric system matrix, gij, represents the ith

detector sensitivity at the jth voxel.

With an ideal fully sampled projection model (i.e.: covering all φ and θ), one can

show that the geometric response is shift-invariant, as in the ideal 2D case. However,

since real PET systems generally have a (finite length) cylindrical geometry, one does

not obtain a full range of θ angles. This results in truncated data. See Figure 2.10b.

Certain regions within the scanner are effectively “shadowed” and projections are

not obtained for some angle pairs. Such truncated data can complicate some recon-

struction methods and generally lead to increased space-variance of the geometric

system response.

2.4 Nonstatistical Reconstruction Methods

2.4.1 Filtered Backprojection

The classic reconstruction method for tomographic imaging is called filtered back-

projection (FBP) and is based on a continuous model like the one discussed in Sec-

tion 2.2.1. The main idea of FBP is to remove the 1/r blur in (2.11) caused by

projection and backprojection. Since convolution with 1/r is equivalent to multi-

plication by 1/ρ in the frequency-domain, this can be accomplished by applying a

2D cone filter (ρ) to the 2D Fourier transform of the backprojected measurement
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(a) Ramp Filtered Backprojection (b) Windowed Filtered Backprojection

Figure 2.11: Filtered backprojection with and without windowing.

data (followed by inverse 2D Fourier transformation). Equivalently, one may apply

(in the radial direction) a 1D ramp filter |ρ| to the 1D Fourier transform of the

projections followed by inverse 1D Fourier transform, and then backprojecting the

filtered projections. In practice, this process uses discretized samples and the latter

method is used for computational speed. Additionally, for models that include non-

depth-dependent detector blur, one may deconvolve the blur in the projection data,

or equivalently modify the cone filter using (2.12).

In real systems the use of ramp or cone filters tends to yield unacceptable results.

Any real system has a practical frequency limit imposed by the system geometry

or noise. A pure ramp or cone filter will amplify high frequencies more than low

frequencies without any cutoff frequency. Therefore, practical implementations re-

quire some kind of windowing. Many different windowing techniques may be applied

which yield different overall responses, but each has the effect of imposing a cut-

off frequency. Example reconstructions of a piecewise constant phantom with and

without windowing are shown in Figure 2.11.

Different windowing methods induce different resolution properties in the recon-

structed image. For a given windowing function, W (ρ), we write the reconstructed

image as

f̃(x1, x2) = P ′F−1
1 {F1 {gφ(r)} |u|W (u)} , (2.15)
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where F1 {·} and F−1
1 {·} denote the 1D Fourier transform and its inverse, and gφ(r)

denotes the ideal unblurred projections. One can derive the response (see Ap-

pendix B) due to this window function to be

f̃(x1, x2) = f(x1, x2) ∗ ∗w(r), (2.16)

where w(r) is the inverse Hankel transform of the window function. For discrete

implementations of FBP, one can use (2.16) to approximate the nearly space-invariant

response.

Thus, for FBP we can easily specify the resolution properties of the reconstructed

image. As we have seen in Figure 2.11, there is a noise-resolution trade-off that must

be made in the reconstruction process. Figure 2.11a has reconstructed with single

pixel resolution (i.e.: a pure ramp filter means W (p) = 1 and therefore w(r) = δ(r)),

and clearly there is more noise than in the windowed reconstruction in Figure 2.11b.

Depending on the task involved, different reconstruction resolutions may be desired.

However, it is relatively easy to find a direct relation between the resolution of

the reconstructed image and a parameterized window function. For example, for

a Gaussian window W (ρ) = e−π(ρ/ρ0)2 , the resulting impulse response is w(r) =

ρ2
0e
−π(ρ0r)2 . The full-width half-maximum (FWHM) resolution of this response is

2
ρ0

√
log 2

π
. Therefore, the resolution may be specified prior to reconstruction.

One can apply Fourier methods in the three-dimensional case as well. For the

complete data case, where the data covers the entire range of angles, one can apply

3D FBP[20]. Since 3D data contain redundancies (i.e.: acquisition of data with θ = 0

only, is sufficient for reconstruction), there is no unique reconstruction filter unlike

the 2D case. However, valid reconstruction filters must satisfy certain conditions[25].

This technique is attractive, since it provide shift-invariant resolution properties for

a completely sampled (ideal) system.
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2.4.2 Extensions for Real Systems

Unfortunately, real PET and SPECT systems rarely provide the ideal unblurred

and appropriately sampled projections. Recall that PET systems have detectors in

a cylindrical pattern, and FBP techniques generally assume parallel projections with

a linear sampling. Thus, an arc-correction procedure to resample the data evenly is

generally required. (There have also been some extensions to FBP that accommodate

PET-type sampling[12].) Also recall that real 3D PET data are rarely completely

sampled, which is a requirement for 3D FBP. Techniques have been developed that

fill in missing data using a preliminary reconstruction and reprojection, and then

reconstruct using 3D FBP. This method is known as 3D reprojection (3DRP)[100, 63].

Another method involves rebinning the 3D data into 2D projections followed

by 2D FBP. There are a number of methods based on this idea: namely, single

slice rebinning (SSRB)[21], multi-slice rebinning (MSRB)[77], and Fourier rebinning

(FORE)[24]. These methods are generally faster than the above techniques since

only 2D reconstructions are performed. However, methods such as SSRB suffer from

significant off-axis geometric distortion from the rebinning procedure.

Even if appropriately sampled projections can be obtained or estimated, one must

still correct for other physical effects. Additive factors like background radiation,

randoms, and scatter can be subtracted from the projections. In PET, attenuation

correction (and detector efficiencies) can be corrected by simply multiplying the

projections by the ci terms in (2.10). However, the same correction is not possible

for SPECT attenuation.

In SPECT, attenuation is both a ray and pixel-dependent factor. Additionally, one

cannot simply deconvolve the depth-dependent detector blur because of the inherent

depth-dependence. A number of methods have been developed to deal with these
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issues. Approximate attenuation correction factors may be applied to reconstruc-

tions of uncompensated projections[19]; however, these factors cannot completely

compensate for nonuniform attenuation.

There has been much work on so-called “exact” methods, which replace FBP

with a reconstruction method that is inherently suited to a more realistic projec-

tion transformation. For example, reconstruction methods have been derived for the

attenuated Radon transform, where either uniform attenuation[9, 83] or nonuniform

attenuation[64, 45] is incorporated directly into the projection transformation. Un-

fortunately these methods do not incorporate the depth-dependent blur of SPECT

detectors.

However, approximate methods based on the frequency-distance principle can

be used to partially compensate for the SPECT detector blur with an appropri-

ate projection-domain filtering operation[76, 135, 138, 93, 47]. Similarly, van Elmbt

and Walrand have developed an approximate technique which compensates for both

Gaussian detector response and uniform attenuation[126]. Appledorn[5] derived an

“exact” method for cases when the depth-dependent blur is a Cauchy function. Oth-

ers have expanded this derivation to accommodate uniform attenuation[107].

Unfortunately, to date an “exact” method has not been derived that can in-

corporate both nonuniform attenuation and a realistic SPECT detector response.

Additionally, these “exact” methods generally do not incorporate any noise model

in the reconstruction.

2.4.3 Nonstatistical Iterative Methods

Another alternative is to adopt the discrete measurement model like the one

discussed in Section 2.2.3. If the transformation τ(·) is linear, then (2.9) is a linear

system of equations that relates the object parameters to the measurements. Given
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measurements, one can solve these equations to reconstruct the object. Such an

estimator is identified as the algebraic reconstruction technique (ART) and generally

requires an iterative method to find the solution because of the number of object

parameters and measurements[49, 52, 48].

2.5 Statistical Image Reconstruction

One problem with all the methods discussed so far is that the noise model is not

taken into account. It is also difficult for many of the methods to completely model

all of the physical aspects of the system. For these reasons, one often uses a statistical

reconstruction technique. Using the discrete reconstruction model from Section 2.2.3

and choosing an appropriate noise model, one can construct a maximum-likelihood

estimator (MLE) for image reconstruction. Mathematically,

θ̂ML(Y ) = arg max
θ∈Θ

l(θ, Y ),= arg max
θ∈Θ

L(θ, Y ), , (2.17)

where Θ denotes the set of feasible images, Y is a single realization of the ran-

dom vector Y , and l(θ, Y ) represents the likelihood function. Equivalently, we may

maximize the log-likelihood function L(θ, Y ). Under the assumption of independent

measurements, we may write the log-likelihood as a sum of marginal log-likelihoods,

L(θ, Y ) =
N∑
i

Li(Yi, Ȳi(θ)), (2.18)

where the marginal log-likelihood, Li(·, ·), is a two-dimensional function of the ith

measurement, Yi, and its mean, Ȳi. The system model enters (2.18) through the

model for the mean measurements in (2.9).

Many noise models can fit into the framework provided by (2.18), including those

discussed in Section 2.2.4. When the measurements are well modeled with Poisson
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noise, the marginal log-likelihoods are

LPoisson
i = Yi log Ȳi(θ)− Ȳi(θ)− log Yi!, (2.19)

which may be plugged into (2.17) and (2.18). Unfortunately, there is no closed

form for the maximizer of the objective in (2.17) and one typically uses an iterative

algorithm to find the solution. There has been a good deal of work on iterative

algorithms. Section 2.5.2 discusses many of the algorithms utilized for our work.

When the Gaussian noise model is adopted and the mean measurements are a

linear function of the object (i.e., τi(l) = l + ri), the maximum-likelihood estimator

does have a closed form. The log-likelihood for the Gaussian model is

LGaussian(θ, Y ) =
N∑

i=1

−1

2

[Yi − Ȳi(θ)]
2

σi

− log σi

√
2π (2.20)

= −1

2
[Y − Ȳ (θ)]′Σ−1[Y − Ȳ (θ)]−

N∑
i=1

log σi

√
2π, (2.21)

where Σ = diag{σi} and σi represents the variance of measurement i. Therefore,

dropping constant terms, we can write the estimator as

θ̂
Gaussian

ML (Y ) = arg min
θ

[Y −Hθ − r]′Σ−1[Y −Hθ − r] (2.22)

= [H ′Σ−1H ]−1H ′Σ−1(Y − r), (2.23)

where the vector r represents additive terms in the linear model. This is the well-

known weighted least-squares estimator[113]. While the Gaussian noise model leads

to a closed-form estimator, in practice (2.23) is still solved iteratively since the system

matrix is typically quite large and the above estimator involves a matrix inverse.

Unfortunately, since the image reconstruction problem is ill-conditioned and there

is noise in real systems, MLEs tend to produce overly noisy images, much in the same

way exact FBP reconstruction with a pure ramp filter produces poor images. An
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(a) Maximum Likelihood Reconstruction (b) Regularized Likelihood Reconstruction

Figure 2.12: Statistical reconstruction with and without regularization.
Reconstruction of measurements obtained for a piecewise constant image are plagued by noise in a
pure maximum-likelihood reconstruction (left), but the noise can be greatly reduced by regularizing
the reconstruction problem (right).

example image from a MLE is shown in Figure 2.12a. There are a number techniques

that are used to improve image quality. Many of these methods fall under the general

topic of regularization. One example of a regularized reconstruction is shown in

Figure 2.12b. Note the obvious decrease in noise.

2.5.1 Noise Reduction Techniques and Regularization

As demonstrated above, the image reconstruction problem requires some form

of noise reduction; otherwise, overly noisy images result. There are a wide range

of possibilities when it comes to reducing noise. Each method comes with certain

advantages and disadvantages. The following is a brief discussion of several popular

choices.

Truncated Iterations

One of the simplest forms of noise reduction is to stop the iterative algorithm be-

fore convergence. If one initializes an iterative algorithm with a uniform image, the

image starts very smooth and high-frequency components tend to increase with iter-

ation. Visually, the images start smooth and become noisy with increasing iteration.

Therefore, stopping the algorithm before convergence acts as a kind of regulariza-

tion. Much work has been done on this type of noise reduction, including selection
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of stopping criterion[127, 50]. This method is implemented relatively easily. How-

ever, in terms of resolution control and flexibility this method is very limited. The

resolution properties depend on the iterative algorithm that is used and how far it

is iterated, as well as the imaging system and object that is being imaged.

Post-Smoothed Maximum Likelihood

Another simple alternative is to simply post-smooth a maximum-likelihood image

that has been iterated until convergence[105]. Since maximum-likelihood attempts

to find a perfect reconstruction with a delta impulse response, the post-filtering

operation can be customized to any desired resolution properties. Another advantage

is that a variety of filters may be applied and only a single iterative solution needs

to be found. However, there are also disadvantages. Unregularized MLEs are ill-

conditioned and tend to take many iterations to converge to a solution. Therefore,

reconstructions tend to take longer.

Sieves

Yet another technique that is used is the method of sieves[105, 104]. The main

idea of this method is to constrain the estimate, θ̂, to a subset of feasible images

(called a sieve) that are smooth. Typically, this is accomplished by defining a kernel

sieve through which the emission image is related to a “pre-emission image.” The

iterative maximization algorithm estimates this pre-image, then the kernel is applied

to yield the emission image estimate. Resolution properties of the resulting image

estimate are controlled easily through the selection of the kernel sieve. One disadvan-

tage of this method is the large number of iterations required for convergence[85, 78].

By adding the kernel sieve to the estimator, the estimator must essentially perform

additional deconvolution of the measurement data, making an ill-conditioned prob-
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lem even more ill-conditioned, thus increasing the number of iterations. This addi-

tional deconvolution is removed by the final application of the kernel sieve. There

are other disadvantages as well. One cannot find appropriate kernels for arbitrary

combinations of desired resolution properties and system models. Additionally, a

space-invariant sieve cannot provide uniform resolution properties for space-variant

systems.

Blob-Type Image Discretization

A similar approach is to adopt smooth basis functions for the image discretization

like the so-called blob bases[81]. If implemented poorly, this approach can be com-

putationally expensive since the blobs overlap. Much like the sieve approach, this

modification can increase the ill-conditioning of the reconstruction problem. Thus,

in general, more iterations are required with blobs than voxels.

Penalized-Likelihood Estimation

The penalized-likelihood estimator (PLE) is another popular technique that yields

images with decreased noise. In a Bayesian framework, these estimators are also

known as maximum a posteriori (MAP) estimators[87, 69]. These techniques involve

changing the maximum-likelihood objective function to a different objective where a

priori information about the object is included. Thus, one forms a prior distribution

for the object and then finds a MAP solution. In a penalty framework, one includes

a roughness penalty in the objective function. Mathematically, the two frameworks

often produce similar forms, and the differences are largely semantic.

We concentrate on PLEs which can be written in the following form:

θ̂PL(Y ) = arg max
θ∈Θ

Φ(θ, Y ) = arg max
θ∈Θ

L(θ, Y )−R(θ). (2.24)

The penalty term R(θ) should yield large values for undesirable images (i.e.: noisy
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Figure 2.13: Illustration of the construction of a roughness penalty.
Illustration of the construction of C and the resulting roughness penalty R(λ). The picture on the
left represents a small image with arrows showing pairs of penalized pixels.

images). Therefore, the objective function, Φ(θ, Y ), specifies the image estimate

should fit the data model (the likelihood term), but should be balanced by avoiding

noisy images.

The penalty term can take a wide variety of forms. One class of penalty functions

is given by

R(θ) = β
∑

k

ψ([Cθ]k), where [Cθ]k =

p∑
j=1

ckjθj. (2.25)

This model is fairly general and includes most popular penalties. (Exceptions include

line-site models [103, 60] and the median root prior [4].) The β term is called the

regularization parameter (or sometimes the hyperparameter) and controls the noise-

resolution trade-off. A large β puts a heavier weight on the roughness penalty and

thus yields smoother reconstructed images. A smaller β yields higher resolution but

noisier images. In the case where β = 0, we have a maximum-likelihood estimator.

Equation (2.25) allows for functions, ψ(t), of linear combinations of pixels, Cθ.

These combinations of pixels are defined by the elements of C. For many practical

penalties, a given pixel will be combined with only a few of its neighbors. This pixel

set is called a neighborhood. Figure 2.13 shows an example of how the matrix C can

specify the penalty. In this example, only the horizontal and vertical neighbors are

included in the penalty. For the case where C is an identity matrix and a quadratic
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Figure 2.14: A pairwise roughness penalty with first-order neighborhood on a small image area.

penalty is adopted (i.e.: C = I and ψ(t) = 1
2
t2), one has the classic Tikhonov-Miller

regularization [123].

If one chooses to penalize only the differences between pairs of pixels, we may

write the penalty as

R(θ) =
1

2

p∑
j=1

p∑
k=1

wjkψ(θj − θk), (2.26)

where the wjk terms are the interpixel weighting strengths between pixel j and pixel

k, and wjk = wkj. The wjk terms absorb the β term mentioned earlier. Weights

between pixels not in each other’s neighborhoods are set to zero.

Typically, penalties are chosen that are nonnegative definite functions. This as-

sures that (2.24) has a unique solution when the likelihood term is convex. For

the penalty in (2.26) it is common to adopt the sufficient condition where interpixel

weightings are constrained to be nonnegative.

Consider the roughness penalty shown in Figure 2.14. This penalty uses only a

pixel’s vertical and horizontal neighbors, known as a first-order penalty (a second-

order penalty includes the diagonal neighbors). Looking at pixel e, for terms of the

form we?, only web, wed, wef , and weh have nonzero values. If the four interpixel

weights are identical regardless of the pixel location, the R(θ) is called a space-

invariant penalty. If the weights are space-invariant and are identical for all pixel
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pairs in a neighborhood, the penalty is called a uniform penalty.3 For example, a

conventional uniform first-order penalty is to choose the wjk terms equal to β for

the horizontal and vertical neighbors and zero otherwise. A uniform second-order

penalty adds wjk = β/
√

2, for the diagonal neighbors (where the
√

2 is a distance

scaling).

The selection of the ψ(t) functions has not yet been discussed. These functions

are very important in determining the resolution properties of the reconstructed

image. It is natural to choose functions that are symmetric about t = 0. One of the

simplest choices is to use a quadratic penalty. The pairwise quadratic penalty has

the advantage of having the simple matrix form:

R(θ) =
1

2
θ′Rθ where Rjk =


p∑

l=1

1

2
(wlj + wjl), k = j

−wjk, k 6= j.

(2.27)

For the conventional uniform quadratic penalty (i.e.: the wjk terms equal to β), we

may write the penalty matrix, R, as a simple scaling, R = βR0. We refer to this R

as a scaled penalty matrix. The matrix R0 specifies unit interpixel weightings and a

particular neighborhood size.

One property of quadratic penalties is that increasing pixel differences are penal-

ized with increasing weight. Because there are large pixel differences even in noise-

less images (e.g.: edges), the quadratic choice discourages edges in the reconstructed

image. This is often interpreted as oversmoothing. Because of this effect, many

nonquadratic penalties have also been proposed which have edge-preserving effects.

In the case of a truncated quadratic penalty [10], the penalty becomes constant for

differences greater than some value. Unfortunately, this yields a nonconvex objective

that requires more complicated maximization algorithms[90]. Additionally, noncon-
3Note that a uniform penalty is uniform only in the sense that it penalizes uniformly. A uniform penalty, as we

shall see in Chapter III, does not imply uniform resolution properties.
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Figure 2.15: Examples of edge-preserving penalty functions.
The quadratic penalty is shown with a dashed line for comparison. The penalty functions are scaled,
or parameters are chosen so that they all pass through (0,0) and (2,2).

vex functions can add a data-dependence, where small changes in measurements can

yield large changes in the image[14]. Such data sensitivity may be undesirable, partic-

ularly in medical imaging applications. Therefore, many practical penalties become

linear (or more linear) after some point, penalizing less steeply than the quadratic

function, thus preserving edges, while maintaining a convex objective. Two such

penalties are the penalties of Huber [57] and Lange [69]:

ψHuber(t) ,

 t2/2, |t| ≤ δ

δ|t| − δ2/2, |t| > δ

ψLange(t) , |t| − ln(1 + |t|). (2.28)

Plots of these penalties are shown in Figure 2.15.

Penalized-likelihood methods have advantages over other regularization techniques.

These methods improve the conditioning of the reconstruction problem and tend to

increase the convergence rates of iterative algorithms. PLEs converge faster than

MLEs and estimators using sieves. Penalty functions also allow for a wide range

of resolution control, including edge-preserving penalties[69, 51], the inclusion of

anatomical information through modification of the interpixel weightings[73, 36, 16],

and space-variant regularizations for other goals, such as contrast optimization[95].

There are some possible disadvantages with penalized-likelihood methods, most



38

notably the nonintuitive relation between the penalty function and the resolution

properties of the reconstructed image. However, such limitations may only be prob-

lems with conventional penalty functions. In this work we choose to use specially

designed penalty functions to correct for space-variant resolution properties inherent

in real imaging systems and statistical estimators. This topic is the central focus

of the research presented in this thesis and will be discussed in-depth beginning in

Chapter III.

2.5.2 Algorithms

There are a wide variety of algorithms for performing the objective function max-

imization in (2.24). In general, these algorithms depend on the exact form of the

objective. Perhaps most important is what form of the likelihood portion of the

objective is chosen. Under the Gaussian model, the estimates have a closed-form

solution and iterative techniques are used because of size of system matrix and the

infeasibility of matrix inversion. Under the Poisson model, there is no closed form

and thus an iterative technique is required.

For reconstruction methods that wish to maximize (or minimize) an objective

function,4 the algorithm itself does not effect the solution. Only the speed at which

the solution is found is controlled by the algorithm. This assumes, of course, that

the algorithm eventually reaches the objective’s minimum. Certain algorithms such

as ordered-subsets [58] are not guaranteed to converge. (Although, new modified

algorithms have been developed that do converge[3].) Ordered subsets algorithms

are often used due to their increased “convergence” rates and can always be followed

by an application of a convergent algorithm if convergence is an issue. In practice, we

have used coordinate ascent[15], conjugate gradient methods[37], and paraboloidal

4This eliminates techniques that use stopping criterion to impose image smoothness.
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surrogate routines[109, 28, 27] for the penalized weighted least-squares objective. For

the penalized-likelihood (Poisson) objective we have used the SAGE algorithm[38],

ordered-subsets versions of De Pierro’s algorithms[23, 22], and paraboloidal surrogate

routines[29, 27, 28]. We have used expectation-maximization[70] (EM) and ordered-

subsets EM (OSEM) for unpenalized maximum-likelihood solutions.

2.6 Summary of Methods with Practical Resolution Control

Different estimators offer varying degrees of resolution control. With some estima-

tors, one can easily specify the exact blur function that defines the global resolution

properties of the reconstructed image; in others the resolution control is more oblique

and only an average global resolution can be specified. Table 2.1 summarizes the

degree of resolution control for various methods. Specifically, the table identifies

qualitatively how well (space-invariant) resolution properties can be controlled on

an ideal PET system with an inherently space-invariant (SI) response, and on a

space-variant (SV) SPECT system. We assume the true attenuation maps, scatter,

randoms, etc., are known and available to the estimators.

In addition to the methods discussed in Sections 2.4 and 2.5, we present a few

more reconstruction methods. These are penalized unweighted least-squares (PULS),

FBP with post-reconstruction filtering, and statistical sinogram deblurring. PULS is

equivalent to a penalized-likelihood estimator under the assumption of white Gaus-

sian measurement noise. Post-reconstruction Kalman filtering has been applied to

SPECT FBP reconstruction in [13], in an attempt to correct for the space-variant

blur. Lastly, statistical sinogram deblurring has been demonstrated in [65] that can

provide nearly uniform resolution properties.

Moving from the top to the bottom of the list in Table 2.1, we discuss the rel-
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Table 2.1: Relative controllability of resolution for different estimators.
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Resolution Control

Reconstruction Method Relative Speed Noise Model SI PET SV SPECT
Plain FBP Fast None Excellent Poor

3DRP Fast None Good N/A
3D-2D Rebinning Fast None Fair N/A

FDP-Corrected FBP Fast None N/A Good
Appledorn + ext. FBP Fast None N/A Good

“Exact” Methods Fast-Moderate None Very Good Fair/Good
Post-Filtered ART Slow None Excellent Excellent

PULS Slow Incorrect Good Poor
Post-Recon. Filtering Fast-Moderate Incorrect N/A Fair
Sinogram Deblurring Moderate Yes Good Unknown

Post-Filtered ML Very Slow Yes Excellent Excellent
Inter-Update Filtering Slow Yes Fair Poor

Sieves Very Slow Yes Very Good N/A
ML Blob Bases Very Slow Yes Excellent Excellent

Truncated OSEM Moderate Yes Poor Poor
Conventional PL Slow Yes Fair Poor

ative controllability of the estimators. First, we discuss nonstatistical estimators.

Ordinary FBP is well suited to the SI problem (2D or untruncated 3D) and the

blur function can be specified exactly. However, for the SV problem, FBP is inher-

ently mismatched with the system and will yield very nonuniform resolution. The

3DRP routine can probably be implemented so that the resolution properties are

anisotropic; however, this will require careful design of both the initial 2D reconstruc-

tion filter and the final 3D reconstruction filter. 3D-to-2D rebinning techniques will

generally introduce nonuniform axial distortion for the PET problem. For SPECT,

the frequency-distance principle (FDP)-based corrections and Appledorn-type cor-

rections can compensate for the space-variant response. However, this compensation

is not complete due to the inherent model mismatches or approximations made by

these methods. Similarly, an “exact” method that completely models SPECT de-

tector response and nonuniform attenuation has not yet been developed. Thus,

resolution control will generally not be complete. For PET, “exact” methods like

Chebyshev-domain FBP[12] should be very well matched to the system and reso-
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lution properties are well specified by the filtering operations that are applied to

control noise. The resolution properties of ART techniques are highly dependent on

the exact noise reduction method that is adopted. For unregularized ART meth-

ods applied to fully determined systems, fully converged ART solutions should have

“perfect” single pixel resolutions. Thus, if noise control is applied via post-filtering,

the resolution properties are fully specified by the post-filter.

The following two estimators are statistical, but are based on incorrect noise

models. A PULS estimator is a linear estimator, but is generally not space-invariant

due to attenuation effects and the system geometry. Similarly, resolution is often

controlled with a regularization parameter that is only obliquely related to the reso-

lution properties. However, if the tomographic data comes from an intrinsically shift-

invariant system and is first precorrected for attenuation and other ray-dependent

effects, PULS can be used to provide uniform resolution, with the FWHM resolution

controlled through the regularization parameter. Post-reconstruction filtering has

been used in [13] for correcting for the space-variant response in FBP reconstructed

SPECT images. Unfortunately, as implemented in [13], the space-variant blurs are

measured using point sources that ignore attenuation effects, and the noise model of

the FBP reconstructed images is unknown and must be estimated using small neigh-

borhoods of pixels. Thus, the post-filtering generally cannot completely compensate

for the space-variant blurs.

Lastly, we identify the resolution control in statistical estimators. Statistical sino-

gram deblurring has been applied by [65] for PET-type geometries, followed by FBP

reconstruction. The resulting resolution properties are highly uniform and good con-

trol is provided by the FBP filtering. Post-filtered ML provides excellent resolution

control for fully determined systems, since the resolution properties are fully spec-
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ified by the post-filter. Sometimes this filtering is applied between iterations and

is referred to as inter-update filtering. Because resolution properties are iteration-

dependent and a function of the data, these methods generally provide only coarse

resolution control. Sieves can yield very good resolution control when the desired

sieve kernel exists. This is possible for many desired resolutions and space-invariant

PET geometries. However, space-variant kernels for SPECT systems have not yet

been developed. Alternative discretizations like the “blobs” of [81], can provide very

good resolution control, assuming the system model is fully determined and the solu-

tion is fully converged. Most versions of maximum-likelihood reconstruction that use

truncated iterations, including truncated OSEM, will yield space-variant resolution

properties that are object-dependent, iteration-dependent, and system-dependent.

Thus, resolution control is generally poor. Lastly, penalized-likelihood estimators

with conventional space-invariant penalties yield images with space-variant resolution

properties[32, 41]. Rough control of resolution is specified through the regularization

parameter.

Having reviewed many reconstruction techniques, while there are many estima-

tors that provide good resolution control, there appears to be no single estimator

that allows good resolution control, incorporates a noise model, and provides fast

estimates. Among the statistical reconstruction techniques, we have chosen to in-

vestigate the penalized-likelihood approach in detail to see if good resolution control

can be incorporated into the estimator.

In the following sections we investigate in detail why penalized-likelihood estima-

tors have space-variant resolution properties, what kind of resolution properties they

yield, and ultimately how to control the resolution properties of such estimators.



CHAPTER III

Quantifying Resolution

To investigate or control resolution properties of an estimator, one needs effective

methods for quantifying resolution. In this chapter we discuss how to measure resolu-

tion, including a new derivation of the local impulse response for penalized-likelihood

estimators using the continuous-discrete measurement model of Section 2.2.2 and the

discrete reconstruction model of Section 2.2.3. We use the local impulse response

and other techniques to investigate resolution properties of conventional penalized-

likelihood estimators.

3.1 Prior Work in Quantifying Resolution

One of the simplest techniques for investigating the resolution properties of an

imaging system is to propagate known signals through the system. For example,

images like radial “spoke” test patterns are often used to identify what frequencies are

passed through optical imaging systems. In nuclear imaging systems, test phantoms

can be prepared with cylinders of varying sizes. As smaller cylinders approach the

resolution limit, the contrast of those rods decreases.

Imaging of test patterns and phantoms is an important aspect of resolution inves-

tigation. Since the images themselves are often the point of interest, these investiga-

tions directly show which features can be resolved. Unfortunately, as we will show in

43
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following sections of this chapter, the resolution properties of an image are not only

system- and estimator-dependent, they are also object-dependent. Since the test

patterns or phantoms are often very different from the typical objects that are being

imaged, sample reconstructions often cannot offer a great deal of predictive value.

Similarly, because resolution properties are typically shift-variant, it is difficult to

fully investigate the shift-variant properties with a single phantom.

In systems with shift-invariant resolution properties, one can fully represent the

resolution properties of a system with a shift-invariant convolutional filter. This filter

is called the impulse response function, since it represents how an impulse function

would be imaged by the shift-invariant system.

Many investigators have extended this idea of an impulse response by looking

at reconstructions with impulses added to an object of interest[112, 133]. These

responses depend on the location of the impulse and are referred to as local point

responses, or local impulse responses. Strictly speaking, for nonlinear estimators,

the response is also dependent on the magnitude of the added impulse; however,

for locally linear estimators the responses are relatively insensitive to this scaling.

Wilson focused on the resolution properties of EM as a function of iteration and found

that the resolution improves as a function of iteration, but is generally shift-variant.

Such impulse addition methods are powerful, since they take the estimator-, system-

, and object-dependence into account. However, it would be advantageous to have

analytic forms so that resolution properties may be predicted without performing

reconstructions.

There has been much work analyzing the image properties as a function of itera-

tion. Barrett et al. demonstrated methods showing how the variance or covariance

may be estimated by identifying how noise is propagated through EM iterations[8].
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These methods have been extended to identify the mean and variance properties of

MAP[129] and OSEM[106] estimates as a function of iteration.

Rather than focusing on the properties of an estimator as a function of iteration,

another approach is to concentrate on the properties of solution that maximizes

the objective function. When the local impulse response is defined in terms of the

mean reconstruction, it is possible to develop unbiased estimators to find the reso-

lution properties[54, 125, 124]. However, these methods generally involve perform-

ing many reconstructions. Analytic forms based on a locally linear approximation

for the mean and variance[33] and local resolution properties[32, 41] have been de-

rived for penalized-likelihood estimators. In Section 3.3, we extend the methods

of [32, 41] to the continuous-discrete measurement model of Section 2.2.2 and the

generic penalized-likelihood estimator discussed in Section 2.5.1.

3.2 Resolution Investigation via Phantom Reconstruction

Before we discuss analytic forms for the local impulse response, we would like to

provide further motivation for the investigation of resolution properties. In this sec-

tion we show sample reconstructions in which the nonuniform resolution properties

are readily apparent. Specifically, we demonstrate the emission tomography recon-

structions from noiseless projections. Without noise, we can show the resolution

properties of the reconstructed image by comparing the reconstructed image and

the original true emission distribution. We demonstrate that nonuniform resolution

properties can arise even for intrinsically shift-invariant systems and simple noise

models.
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3.2.1 Nonuniform Resolution in Ideal ECT

Consider the case of a penalized-likelihood estimator with a linear measurement

model and the Gaussian log-likelihood given in (2.21). Adopting the quadratic

penalty of (2.27) with a conventional shift-invariant first-order scaled penalty matrix,

we may write this estimator as

θ̂PWLS = [H ′Σ−1H + βR0]
−1H ′Σ−1(Y − r), (3.1)

where Σ = Cov(Y ), the covariance of the measurements. As with (2.23), the estima-

tor is linear and may be evaluated using standard iterative approaches. For emission

tomography, the Gaussian model is sometimes adopted for precorrected data that

no longer obey a Poisson model. Typically, the variance of the (independent) mea-

surement noise is assumed to be the same as the mean. Thus, Σ−1 = diag
{
1/Ȳi

}
. In

practice, one often uses Σ−1 = diag
{
1/max{Ȳi, tc}

}
for some small positive value tc

to prevent inordinate weighting for measurements with means near zero.

Recall the system matrix factorization presented in (2.10). Using this factorization

with H = diag{ci} (A�G)diag{sj}, consider the case of an idealized PET system

where A = 1, sj = 1, and the geometric response, G′Gej, is shift-invariant (except

for small discretization effects). For this PET system, we may write the estimator

as

θ̂PWLS = [G′WG + βR0]
−1G′W (Y − r), (3.2)

with W = diag
{
ci/Ȳi

}
.

For the first sample reconstruction, we will further simplify the PET system by

eliminating attenuation (ci = 1) and any additive terms (ri = 0). Consider the

emission distribution shown in Figure 3.1a. The object has a hot circular region on

the right, a cold circular region on the left, a cool background ellipse. Additionally,
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(a) True Emission Image (b) Filtered Backprojection (c) Conventional PWLS
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Figure 3.1: Nonuniformities in ideal ECT phantom reconstruction.
Nonuniform resolution properties arise even in the case of an idealized shift-invariant ECT system
model without attenuation, detector efficiencies, and randoms.

a small hot spot is placed in each circular region. From this emission distribution,

we will obtain noiseless projections, Ȳ , simulated with 1 million total mean counts

using a discrete measurement model that matches the reconstruction model. Recon-

structions are performed on those noiseless projections.

A filtered-backprojection reconstruction is shown in Figure 3.1b. Since the system

is shift-invariant, FBP yields shift-invariant resolution properties given by (2.16). All

regions of the image are smoothed identically. A PWLS reconstruction is shown in

Figure 3.1c. The elements of the diagonal weighting matrix, W , for this PWLS

estimator are represented in image form in Figure 3.1d. Comparing the FBP and

PWLS reconstructions, we see a decreased contrast in the small hot spot (in the
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hot region) in the PWLS reconstruction. This is an indication of the nonuniform

resolution properties even in this very simplified imaging system. The effect is more

apparent if we look at the profiles of the reconstructions in Figure 3.1e. The profiles of

the two hot spots in the FBP image are nearly identical (both have a relative intensity

of +1 compared to the local background and nearly identical shape). In comparison

the hot spots in the PWLS reconstruction have different heights, even though we have

selected β to match resolution with FBP at the center of the image. In the cold region

the height is roughly +1.3, as opposed to +0.5 for the hot region. Consequently, the

FWHM resolution at these two points is markedly different. The resolution is much

lower in the hot region than in the cold region due to the nonuniform diagonal

weighting, W .

This particular system and object do not demonstrate the possible anisotropy of

the local smoothing properties. While the resolution is nonuniform, the hot spots

appear fairly symmetric, indicating relatively isotropic smoothing. In more real-

istic systems, attenuation effects contribute to less uniform weightings and more

anisotropic resolution properties.

3.2.2 Nonuniform Resolution in PET

Consider a PWLS estimator of the form in (3.2) that includes the PET attenuation

factors ci. We use this estimator on an object whose attenuation map and emission

distribution are shown in Figure 3.2a and Figure 3.2b, respectively. This digital

phantom is anthropomorphic, representing a human thorax. The linear attenuation

coefficients are chosen to be appropriate for 512 keV photons and are 0.001 mm−1 for

the lungs, 0.016 mm−1 for the spine, and 0.0096 mm−1 for the remaining soft tissue.

The relative emission intensities of the lungs is 0.4, the spine is 0.0, the heart is 3.0,

and the remaining soft tissue is 2.0. Four radially symmetric hot spots have been
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(a) Attenuation Map (b) Emission Distribution

(c) Filtered Backprojection (d) Conventional PWLS
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Figure 3.2: Nonuniformities in an anthropomorphic torso phantom PET reconstruction.

added in the left half of the emission image, each with a relative emission intensity

of 4. The PET system model represents the CTI 921 ECAT EXACT system which

includes 160 radial bins and 192 angles evenly spaced over 180◦, with 3.375 mm strip

integrals (3.375 mm center-to-center spacing) and 4.21875 mm square pixels.

Again, we perform FBP and PWLS reconstruction on noiseless projections to

obtain the images given in Figure 3.2c and Figure 3.2d. The weights for the PWLS

estimator are for data with a mean of 1 million counts and are shown in Figure 3.2e,

and β and the FBP cutoff frequency are chosen to match resolutions at the object

center.

FBP will still have uniform resolution properties. (The measurements must be

precorrected for attenuation effects, however.) The FBP image appears uniformly

smoothed for all points in the image. The hot spots appear radially symmetric

indicating isotropic smoothing in those regions. Compare this with the PWLS re-

construction in Figure 3.2d. The most striking nonuniformities in this image are the
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two hot spots in the left lung of the image. These hot spots are smoothed nonuni-

formly with greater blur in the vertical direction than in the horizontal direction,

making the circular hot spots appear elliptical. Other resolution nonuniformities are

also apparent. The outer edges of the object are smoothed much less than the inter-

nal edges of the phantom. (Compare the air-soft tissue boundary with the lung-soft

tissue boundary and the difference between the appearance of the arms in the FBP

and PWLS images.)

3.2.3 Nonuniform Resolution in SPECT

While some standard reconstruction techniques yield resolution nonuniformities

in PET due to the noise and attenuation coefficients, many more methods have dif-

ficulty obtaining uniform resolution in SPECT due to the depth-dependent detector

response. We perform a brief investigation showing sample reconstruction for such a

shift-variant SPECT system.

We adopt a SPECT (reconstruction) system model whose circular orbit contains

a field of view of 128 × 128 2 mm pixels. The detector head rotates at a radius

of 12.8 cm, and collects data for 110 projection angles over 360◦ with 128 evenly

spaced 2 mm radial bins. The system response is modeled after a high resolution

collimator with a linearly varying depth-dependent Gaussian response that has a

1.75 mm FWHM at face of the collimator and a slope of 0.044, which corresponds

to about 7.4 mm FWHM at the center of the field of view. We model the true

projections (i.e., the H operator) using a discrete system model that is upsampled

by a factor of three. That is, the image-domain support contains 384 × 384 pixels

for the true projector. The projections and reconstruction models are matched in all

other respects.

We simulated a 23 cm diameter cold rod phantom with uniform attenuation coef-
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(a) Emission Distribution (b) Filtered Backprojection (c) Conventional PL

Figure 3.3: Nonuniformities in a cold rod phantom SPECT reconstruction.

ficient of 0.015 mm−1 (the approximate attenuation coefficient of water at 140 keV)

and rod diameters of 6.4, 9, 10.25, 12.8, 17.9, and 25.6 mm. The emission image

for this object is shown in Figure 3.3a. To represent scatter, the model includes

5% uniformly distributed background events and 10 million counts total.

Figure 3.3b and 3.3c show sample reconstructions of noiseless data using filtered

backprojection and a conventional penalized likelihood estimator, respectively. As

is typical of many SPECT reconstructions, there is coarser resolution at the center

of the field of view than at the edges. Moreover, there are additional reconstruction

artifacts in the filtered-backprojection reconstruction (e.g., the slight bulging at the

center of the field of view), despite using a Chang-type attenuation correction[19].

This is because the depth-dependent response and attenuation factors are not mod-

eled in the FBP backprojection. Close inspection of Figure 3.3c shows the nonuniform

resolution properties are also anisotropic with increased radial blur. (Note that the

rods appear slightly elliptical.)

While these sample reconstructions are helpful in seeing the actual results of a

particular estimator, it is difficult to identify the local resolution properties quantita-
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tively. Therefore, we can also look at the local impulse response at various locations

to quantify the smoothing properties.

3.3 The Local Impulse Response

In [41] an approximate local impulse response was derived for discrete object mod-

els. Here, we extend those derivations for the continuous projection model described

in Section 2.2.1 and for the discrete reconstruction model in Section 2.2.3. That

is, we present the local impulse response for the discrete reconstruction of a finite

number of measurements, which arise from a continuous object.

The local impulse response is defined in terms of the mean reconstruction,

µ(f) = Ef [θ̂(Y )] =

∫
θ̂(Y )p(Y ; f)dY , (3.3)

where p(Y ; f) is the probability density function of the measurements. The local

impulse response is the limiting difference between mean reconstructions of an image

and reconstructions of a perturbed image, which we define mathematically at spatial

location x0 as

l(x0) , lim
ε→0

µ
(
f + εδx0

)
− µ (f))

ε
, (3.4)

where δx0
, δ(x− x0) is a Dirac impulse at position x0. This formulation is similar

to the influence function introduced by Hampel, which is used a heuristic tool in

robust statistics[57].

Many investigators have noted that the ensemble mean of likelihood-based es-

timators is approximately equal to the likelihood-based reconstruction of noiseless

data[8, 134, 18]. Mathematically, one may write µ(f) ≈ θ̂(Ȳ
†
(f)). One can obtain

the same approximation by finding the first-order Taylor approximation about the
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noiseless measurements[41]. Substituting this approximation into (3.4), we obtain

l(x0) = lim
ε→0

θ̂
(
Ȳ
†
(f + εδx0

)
)
− θ̂

(
Ȳ
†
(f)
)

ε

= ∇Y θ̂
(
Ȳ
†
(f)
)
·

(
lim
ε→0

Ȳ
†
(f + εδx0

)− Ȳ
†
(f)

ε

)
= ∇Y θ̂

(
Ȳ
†
(f)
)
· 4Ȳ †

(f ;x0), (3.5)

where ∇Y = [ ∂
∂Y1

· · · ∂
∂YN

] and 4Ȳ denotes the variational derivative of Y (f) with

respect to f . We evaluate 4Ȳ †
(f ;x0) using the mean measurements in (2.6) and

applying the chain rule. Assuming the transformation τ(·) is differentiable, the ith

element is [
4Ȳ †

(f ;x0)
]

i
= τ̇ †i (〈hi, f〉) lim

ε→0

〈ai, f + εδx0
〉 − 〈hi, f〉

ε

= τ̇ †i (〈hi, f〉)hi(x0)

= τ̇ †i ([Hf ]i)
[
Hδx0

]
i
, (3.6)

where τ̇ †i (l) = ∂
∂l
τ †i (l).

Following [41], we may find an equation for ∇Y θ̂ (Y ). Adopting the implicitly de-

fined estimator in (2.24) and disregarding the nonnegativity constraints, the solution

to that estimator must satisfy the following equation,

∂

∂θj

Φ(θ, Y )

∣∣∣∣
θ=θ̂(Y )

= 0, j = 1, . . . , p (3.7)

for any Y . This equation can be written concisely in vector form as

∇10Φ
(
θ̂(Y ), Y

)
= 0, ∀Y , (3.8)

where ∇10 =
[

∂
∂θ1

. . . ∂
∂θP

]
is the row gradient operator, which returns a vector of

partial derivatives with respect to the first argument of Φ. Differentiating with

respect to Y and using the chain rule, we write

∇20Φ
(
θ̂(Y ), Y

)
∇Y θ̂(Y ) +∇11Φ

(
θ̂(Y ), Y

)
= 0, (3.9)
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where the ∇20 operator yields a matrix whose (j,k)th element is ∂2

∂θj∂θk
, and the

∇11 operator yields a matrix with the (j,i)th element equal to ∂2

∂θj∂Yi
. Assuming

−∇20Φ
(
θ̂(Y ), Y

)
is positive definite, we may rearrange (3.9) to obtain:

∇Y θ̂(Y ) =
[
−∇20Φ

(
θ̂(Y ), Y

)]−1

∇11Φ
(
θ̂(Y ), Y

)
. (3.10)

Recalling the form of the objective function, Φ(θ, Y ), in (2.24), and the form of the

log-likelihood in (2.18), we may write (3.10) as

∇Y θ̂(Y ) =

[
−

N∑
i=1

∇20Li

(
Y , Ȳ (θ̂(Y ))

)
∇20R(θ̂(Y ))

]−1

·[
N∑

i=1

∇11Li

(
Y , Ȳ (θ̂(Y ))

)]
, (3.11)

where we have used the fact that the penalty function is not a function of Y , which

means ∇11R(θ) = 0. Recalling the reconstruction measurement model in (2.9), the

derivatives of the marginal log-likelihoods may be written as

[
∇20Li

(
Y , Ȳ (θ)

)]
jk

= L02
i

(
Yi, τi

(∑
l

hilθl

))[
τ̇

(∑
l

hilθl

)]2

hijhik

+ L01
i

(
Yi, τi

(∑
l

hilθl

))[
τ̈

(∑
l

hilθl

)]
hijhik (3.12)

[
∇11Li

(
Y , Ȳ (θ)

)]
ji

= L11
i

(
Yi, τi

(∑
l

hilθl

))[
τ̇

(∑
l

hilθl

)]
hij, (3.13)

where the derivatives of Li(u, v) and τi(l) are defined as

L01
i (u, v) = ∂

∂v
Li(u, v)

L02
i (u, v) = ∂2

∂v2Li(u, v)

L11
i (u, v) = ∂2

∂u∂v
Li(u, v)

τ̇i(l) = ∂
∂l
τi(l)

τ̈i(l) = ∂2

∂l2
τi(l).

(3.14)

Thus, we may write the local impulse response in (3.5) using (3.6) and (3.11) with

(3.12) and (3.13) as

l(x0) = [H ′D1H + R(θ̆)]−1H ′D2Hδx0
, (3.15)
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where D1 and D2 are the following N ×N diagonal matrices:

[D1]ii = −L02
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [
τ̇i([H θ̆]i)

]2
−L01

i

(
Ȳ †

i (f), Ȳi(θ̆)
) [
τ̈i([H θ̆]i)

]
(3.16)

[D2]ii = L11
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [
τ̇i([H θ̆]i)

]
·
[
τ̇ †i ([Hf ]i)

]
, (3.17)

and where θ̆ , θ̂(Ȳ
†
(f)) denotes the estimate of θ using the mean data, and R(θ)

denotes the Hessian of the penalty function. In the typical cases where g(·) and

τ †(·) are invertible functions, we can write the diagonal matrices (3.16) and (3.17)

as functions of the mean measurements. Later, we shall see that this observation

that the local impulse response is dependent on the object only through its measure-

ments (except possibly for the penalty term) is very important for penalty design.

Specifically, we write

[D1]ii = −L02
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [
τ̇i

(
τ−1
(
Ȳi(θ̆

))]2
−L01

i

(
Ȳ †

i (f), Ȳi(θ̆)
) [
τ̈i

(
τ−1
(
Ȳi(θ̆

))]
(3.18)

[D2]ii = L11
i

(
Ȳ †

i (f), Ȳi(θ̆)
) [
τ̇i

(
τ−1
(
Ȳi(θ̆

))]
·
[
τ̇ †i

(
τ †i
−1
(
Ȳ
†
i (f)

))]
. (3.19)

When the mean measurements and Hessian of the penalty are known, the local

impulse response in (3.15) may be evaluated with iterative techniques. (Note that

(3.15) has the same form as the solution to a linear system of equations.)

Strictly speaking, to calculate the impulse response, one must substitute (3.18)

and (3.19) into (3.15). However, when the system model, H and τi(x), closely ap-

proximates the actual system, H and τ †i (x), the means, Ȳ †
i (f) and Ȳi(θ̆) are often

very similar to each other. Such is the case in tomography where the smoothing

inherent to the tomographic model often dominates over the blur due to the estima-

tor. Thus, we can use the same estimate of Ȳi for both arguments of the derivatives
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of Li in (3.18) and (3.19). Typically, in cases where the mean measurements are

unknown, a simple plug-in technique where we replace Ȳi by Yi yields very good

approximations[41].

Because we will generally be evaluating derivatives of Li(u, v) with u = v, it is

interesting to note a few properties of Li under this condition. First, L01
i (v, v) often

equals zero. Such is the case when Li(v, u) ≤ Li(v, v),∀u. Recall that the second

term of Li represents the mean measurements, and Li is the log-likelihood for the ith

measurement. Thus, this case is satisfied when the log-likelihood attains a peak at

its mean. For such noise models, the second term of (3.18) disappears. Similarly, for

many practical noise models like those in Table 3.1, L11
i (v, v) = −L02

i (v, v). Thus,

when τi(l) = τ †i (l),∀i, the diagonal matrices, D1 and D2, are equal, and the local

impulse response simplifies to

l(x0) =
[
H ′DH + R(θ̆)

]−1

H ′DHδx0

Dii = L11
i (Ȳi, Ȳi)

[
τ̇i
(
g−1(Ȳi)

)]2
, (3.20)

where D , D1 = D2.

Using (3.20), one can estimate local impulse responses for many imaging systems.

For example, for the emission tomography problem which fits the linear measurement

model given in (2.7) and Poisson noise, it is straightforward to calculate the diagonal

matrix in (3.20) as

Demis = diag

{
1

Yi

}
, (3.21)

where we have used the simple plug-in technique for unknown means. In contrast,

adopting a Gaussian noise model (see Table 3.1) and the transmission tomography

model in (2.8), one may write

Dtrans = diag

{
(Yi − ri)

2

σ2
i

}
. (3.22)
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Thus, we may evaluate (3.20) for various locations, imaging systems, and esti-

mator parameters. In some simulation studies or approximations, we may also be

interested in the “artificial” case of a discrete projection model and a discrete re-

construction model. It is straightforward to show that the local impulse response in

that case has the similar form:

lj =
[
H ′DH + R(θ̆)

]−1

H ′DHej, (3.23)

where Hej is the discrete projection of the jth unit vector, and lj is discrete response

centered at position j.

3.4 Resolution Properties of Tomographic Reconstructions

3.4.1 Sample Local Impulse Responses for PET

Let us return to the sample reconstruction presented in Section 3.2.2. We may

write the local impulse response for the PWLS estimator in (3.1) as

lj = [H ′DH + βR]−1H ′DHej, (3.24)

with D = diag{1/Yi}. For the factorized PET model of Section 3.2.2, the PWLS

local impulse response can be written:

lj = [G′WG + βR0]
−1G′WGej, (3.25)

where W = diag{ci/Yi}. While this expression is closed-form, because of the size

of the system matrix, the matrix inverse is typically impractical to compute. One

alternative is to use iterative methods to approximate a solution.1

Considering the torso phantom introduced in the Section 3.2.2, we can use (3.25)

to investigate the resolution properties at different points in the image. Selecting the

1Note that (3.25) is in the same form as the solution to a linear system of equations, [G′W G+βR0]lj = G′W Gej .
There are a number of iterative techniques that may be used to approximate a solution. We often use a coordinate
ascent or conjugate gradient algorithm.
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Figure 3.4: A 2D local impulse response for the torso phantom and a PET model with attenuation.

The PWLS reconstruction with the conventional penalty is shown in (a) and the location of the
local impulse response is marked with a + mark. The local impulse response and its contours are
shown in (b) and (c), respectively.

pixel position j, so that it lies within one of the hot spots (shown in Figure 3.4a.), we

may evaluate (3.25) to obtain the local impulse response at that position. That 2D

function is shown in Figure 3.4b. Since it is difficult to see some of the anisotropic

effects in this figure, we present contours of the local impulse response in Figure 3.4c.

As we have seen in the sample reconstruction in Figure 3.2d, there is more vertical

smoothing than horizontal smoothing at this image location. This is confirmed by

looking at the local impulse response. Note that the contours of the local impulse

response are much wider in the vertical direction than the horizontal in Figure 3.4c.

The local impulse response allows us to quantify resolution properties at different

image locations. For example, from the local impulse response we can specify ver-

tical and horizontal FWHM resolution. Since the local impulse responses are not

generally aligned with the Cartesian axes, we can use other measures of resolution,

including the maximum and minimum FWHM resolution. For example, after one

obtains the half-maximum contour, one finds the minimum or maximum contour

diameter. Two measures we find useful in quantifying the uniformity of a local im-
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pulse response are the mean and standard deviation of the contour radius. (For an

isotropic response, the standard deviation should be zero.) Similarly, we can find the

mean absolute deviation from some desired resolution. For example, if the desired

response is isotropic with 4.0-pixel FWHM resolution, the mean absolute deviation

is given by the average over all FWHM contour radii of |4.0− radius|. For an exactly

matched response, this deviation is zero.

For a complete investigation of resolution uniformity, one would have to consider

the local impulse response at all pixel locations. This tends to be impractical, since

the local impulse response calculation involves iterative approximation and is the

same dimension as the imaging problem itself. However, since the local impulse

responses generally vary slowly with position, a subsampling of image positions is

often sufficient for investigating the global resolution properties.

Consider the digital phantom in Figure 3.5. This is the same phantom presented

in [41]. This 128× 64 phantom is composed of warm background ellipse, a cold left

disc, and a hot right disc with relative emission intensities of 2, 1, and 3, and attenu-

ation coefficients 0.0096, 0.003, and 0.013 mm−1, respectively. Sample positions are

represented by the cross-hairs that are arranged in a grid pattern. The system model

specifies projection data with 128 radial bins and 110 angles uniformly spaced over

180◦ with 3 mm pixels, 6 mm wide strip integrals (3 mm center-to-center spacing),

and detector efficiencies with a pseudo-random log normal variance with σ = 0.3 to

model detector efficiency effects. We simulate data with 1 million mean total counts.

Choosing a PLE with a Poisson noise model, matched discrete measurement and

reconstruction system models, and a conventional quadratic shift-invariant penalty,

leads to local impulse responses that are written as

lj = [H ′DH + βR0]
−1H ′DHej, (3.26)
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Figure 3.5: Emission distribution and sample positions for the local impulse response investigation.
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Figure 3.6: Local impulse response map for a PLE with conventional penalty.
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with D = diag{1/Yi}. Note that this form is identical to the PWLS local impulse

response in (3.24), thus (3.25) is the local impulse response under the Poisson model

for PET systems. For each location the local impulse response for the PLE with

conventional first-order penalty is evaluated, and contours are formed at 25%, 50%,

75%, and 99% of the peak value. (The regularization parameter β for this particu-

lar estimator was chosen to yield 4.0 pixels FWHM resolution at the center of the

image.) These contours are shown in Figure 3.6. The contours are arranged in the

same order as the sampling grid so that the spatial positioning of the local impulse

response roughly identifies the position of the local impulse response in the phantom.

Additionally, we have indicated the boundaries of the uniform emission regions on

this map. Above each response, the mean (m) and standard deviation (s) of the

radius of the FWHM contour is presented.

This investigation demonstrates the shift-variant resolution for a conventional

PLE and a shift-invariant system. We see the greater smoothing in high count

regions, as demonstrated by the broader responses in the hot disc region. These

responses are anisotropic and shift-variant. Even though the estimator was designed

with a 4.0 pixel FWHM target resolution, one can see the variation of mean resolution

with location in looking at the different m values.

3.4.2 Sample Local Impulse Responses for SPECT

We may perform the same kind of local impulse response investigation for the

SPECT system of Section 3.2.3. Recall from Section 3.2.3 that we have used a

mismatched true projection model and reconstruction model. Thus, we use the form

of the local impulse in (3.20).

Returning to the cold rod phantom presented in Figure 3.3, we present a sub-

sampling of local impulse responses for the FBP and PL estimators in Figures 3.7A
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A) B)A) B)A) B)

Figure 3.7: Local impulse responses for shift-variant SPECT reconstructions.
This figure shows responses the upper left quadrant of the phantom in Figure 3.3 for A) FBP with
Chang attenuation correction and B) Conventional PL with space-invariant penalty.

and 3.7B, respectively. These are the same methods used in the FBP and PL recon-

struction shown in Figure 3.3B and 3.3C, respectively. Because FBP (with Chang

correction) is a linear reconstruction technique, we may form the local impulse re-

sponses for this method simply by propagating true projections of impulse functions

through the estimator.

As one might expect, due to the depth-dependent detector response, the local

impulse responses for both the standard FBP method and the penalized-likelihood

approach are broader in the center of the field of view and narrower at the edges.

Moreover, the anisotropic blur at different locations in the image is immediately

obvious.

3.4.3 Analysis of the Local Impulse Response

While evaluating the local impulse response serves as an important tool for reso-

lution investigation, one can learn much by considering the form of the local impulse

response. Consider the case of an ECT system in which the measurements have

homoscedastic measurement noise. If the measurement noise has variance, σ2, then
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the local impulse response for the conventional PLE in (3.26) may be written[41] as

lj = [H ′diag
{
1/σ2

}
H + βR0]

−1H ′diag
{
1/σ2

}
Hej

=

[
1

σ2
H ′H + βR0

]−1
1

σ2
H ′Hej

= [H ′H + σ2βR]−1H ′Hej. (3.27)

Thus, for different noise levels, the regularization parameter is effectively scaled by

the variance term. Since the variance equals the mean for Poisson data, higher count

data will have higher variance and thus be smoothed more than low count data.

From a Bayesian standpoint, higher noise levels require more reliance on the prior,

which leads to increased smoothness. Thus, this intuitively explains Figure 3.1,

where high count regions appear to be smoother than low count regions. (Recall

that this tomographic system has a shift-invariant response H ′Hej.)

For the PET models, where we may factor H into geometric and ray-dependent

factors, we may write an analogous equation to (3.27) with constant ray-dependent

factors as

lj =

[
G′G +

σ2

c2
βR0

]
G′Gej. (3.28)

Thus, we expect that increased PET attenuation factors lead to decreased smooth-

ing. Therefore, rays in directions that have more attenuation should exhibit finer

resolutions. This is exactly what we see in Figure 3.6. There is less attenuation for

vertical rays since the object’s major axis is along the x-axis, and we see a general

tendency for increased local impulse response width in the vertical direction. Simi-

larly, at the edges of the field of view, we see that the local impulse responses tend

to show increased tangential smoothing, since rays that are oblique to the object

are subject to less attenuation than those rays that intersect a large portion of the

object.
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In summary, the resolution properties of images formed from penalized-likelihood

reconstruction are generally nonuniform (i.e., shift-variant and anisotropic). This is

true even for shift-invariant systems when the measurements have different noisse

levels. The local impulse response can be used to predict the resolution properties of

images without performing reconstructions, and is an important tool for analyzing

and quantifying nonuniform resolution.



CHAPTER IV

Quadratic Penalty Design

We have demonstrated that resolution nonuniformities are an inherent aspect of

penalized-likelihood methods with space-invariant penalties. Because these nonuni-

formities are noticeable in reconstructions and can potentially distort the shape

and quantitation of image features, it would be advantageous to have a penalized-

likelihood technique that can produce images without such nonuniformities. In this

chapter, we discuss how to design penalties for penalized-likelihood estimators for

user-specified resolution properties like uniform resolution.

4.1 Prior Work in Penalty Design

It has been widely recognized that the specification of the penalty function in a

penalized-likelihood estimator can be used to produce images with desirable prop-

erties. As discussed in Section 2.5.1, penalty functions can be chosen that preserve

edges or other features. Thus, performing penalized-likelihood image reconstruction

with a modified penalty for user-specified resolution properties is a natural approach

for controlling the resolution. However, since we have found that the local impulse

response is typically shift-variant and a function of the data and the image being

estimated, we expect that we will need to locally modify the penalty. That is, we

believe simply specifying a certain global ψ(·) function in (2.25) is not sufficient to

66
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adequately control resolution properties. (We discuss this further in Section 4.2.1.)

Thus, generally we will be performing a shift-variant penalty design.

Shift-variant regularization has previously been used to provide user-specified

space-variant resolution properties[98, 91] or for edge-preservation by locally modify-

ing penalty weights[73, 36, 16]. However, these techniques are not concerned with the

exact form of the local impulse response functions, and yield only coarse resolution

control.

Qi has used local impulse response functions and variance estimates to locally

adapt penalty weights for contrast optimization[95]. While this is a form of resolu-

tion control, these methods are not trying to specify the exact shapes of the local

impulse responses. Therefore, reconstructions using the regularization techniques of

[95] typically will exhibit shift-variant and anisotropic resolution properties.

However, some work has been done that uses the local impulse response to provide

user-specified resolution properties like uniform resolution. Mustafovich has used

local filter design techniques to attempt to provide uniform resolution for likelihood-

based estimators with inter-update filtering[88]. In [41], Fessler and Rogers developed

a certainty-based approach that attempts to locally modify the penalty weights to

provide uniform resolution. The certainty-based approach has been an important

starting point for us and we have used this method as a baseline in comparison with

the methods developed in this dissertation. Thus, we review the certainty-based

approach in the following section.

4.1.1 Certainty-Based Penalty

The local impulse responses given in (3.23) and (3.26) are dependent on the Fisher

information matrix, which for the PET-style factorization (i.e., (2.10) with A = 1)
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may be written as

F (θ) , H ′DH = diag{sj}G′diag
{
c2i di(θ)

}
Gdiag{sj}

= diag{sj}G′diag{qi(θ)}Gdiag{sj} , (4.1)

where di(θ) = [D]ii, the ith element of the diagonal matrix, D, and qi(θ) = c2i di(θ).

Recall in (3.18) and (3.19) that elements of D are object-dependent, through a

function of the measurements Y (θ). The certainty-based approach is applicable to

systems where G′G is approximately a shift-invariant operator and, therefore, we

adopt the above factorization of the Fisher information matrix. The nonuniformity

of the qi(θ) terms makes F (θ) a shift-variant operator even for shift-invariant systems.

The diagonal elements of F (θ) are given by

Fjj(θ) = s2
j

∑
i

g2
ijqi(θ) = κ2

j(θ)
∑

i

g2
ij, j = 1, . . . , p (4.2)

where

κj(θ) , sj

√√√√∑
i

g2
ijqi(θ)

/∑
i

g2
ij . (4.3)

These κj(θ) terms are a kind of normalized backprojection of qi, which is related

to the inverse of the variance of the ith corrected measurement. Thus, κj(θ) quan-

tifies the aggregate certainty of the measurements intersecting the jth pixel. Since

the inherent response in tomographic systems is 1/r, Fjj(θ) concentrates along the

diagonal, and one can make the following approximation:

diag{sj}G′diag{qi(θ)}Gdiag{sj} ≈ diag{κj(θ)}G′Gdiag{κj(θ)} (4.4)

F (θ) ≈ DκG
′GDκ, (4.5)

where Dκ = diag{κj(θ)}. This approximation is exact for the diagonal elements of

F (θ). The off-diagonal elements would be exact if the qi terms were uniform. This
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approximation tends to be accurate even for nonuniform qi because of the implicit

smoothing in (4.3) and the fact that the response at pixel j is mainly affected by the

qi terms for measurements intersecting the pixel j.

Substituting (4.5) into the expression for the local impulse response in (3.23)

yields

lj ≈ [DκG
′GDκ + R(θ̆)]−1DκG

′GDκe
j

= D−1
κ [G′G + D−1

θ R(θ̆)D−1
κ ]−1G′GDκe

j

= κj(θ)D
−1
κ [G′G + D−1

κ R(θ̆)D−1
κ ]−1G′Gej, (4.6)

since Dκe
j = κj(θ)e

j. Since the local impulse response is highly localized about

position j, (4.6) may be further approximated with the following form:

lj ≈ [G′G + 1/κ2
j(θ)R(θ̆)]−1G′Gej. (4.7)

The approximations in (4.6) and (4.7) suggest the following modified form for

pairwise roughness penalties:

R?(θ) =
1

2

p∑
j=1

p∑
j=1

wjkκ̂jκ̂kψ(θj − θk), (4.8)

where κ̂j denotes an estimate of the certainty κj(θ), typically formed through an

application of (4.3) to estimates q̂i of qi. Since the Hessian of this modified penalty

is given by

R?
jk(θ) =


∑
l 6=j

wjlκ̂jκ̂lψ̈(θj − θl), j = k

−wjkκ̂jκ̂kψ̈(θj − θk), j 6= k,

and diag{κ̂j} ≈ Kθ, we may write

R?(θ) ≈ KθR(θ)Kθ. (4.9)
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Substituting the Hessian for the modified penalty into the approximate local impulse

given in (4.6), we get

lj(θ) ≈ κj(θ)K
−1
θ [G′G + R(θ̆)]−1G′Gej. (4.10)

Since κj(θ)/κk(θ) ≈ 1 when j and k represent nearby pixels, for narrow impulse

responses which cover a relatively small set of pixels, we can ignore the first term

in (4.10). For systems where G′G represents a shift-invariant system response and

R(θ) is chosen to be a uniform quadratic penalty, the above local impulse response

is approximately shift-invariant. Nonquadratic penalties generally introduce object-

dependent nonuniformities (like edge-preservation); however, this penalty attempts

to remove those nonuniformities that are due to the interaction of the nonuniform

measurement statistics and the penalty function.

Problems with the Certainty-Based Penalty

The certainty-based penalty generally improves the spatial uniformity; however,

there are still problems with this penalty. Because κj(θ)K
−1
θ cannot be ignored in

general, this technique tends to produce asymmetric responses due to the additional

scaling of the local impulse response. Similarly, the Fisher information approximation

in (4.5) can be inaccurate for nonuniform qi(θ).

The limitations of the certainty-based method can be shown simply by consider-

ing the form of the penalty in (4.8). Since the κj terms vary relatively slowly with

position, κj ≈ κk for neighboring j and k. This means locally, the certainty-based

penalty acts as multiplicative factor on the local penalty (much like the regulariza-

tion parameter β does on the entire image). In fact, we see in the local impulse

response approximation with conventional penalty in (4.7) there is an “effective”

smoothing parameter of β/κ2
j . The certainty-based penalty, in effect, adjusts this
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“effective” parameter locally in an attempt to yield uniform resolution properties.

Simply changing the local smoothing parameter tends to increase or decrease the

average resolution at that position. Generally, the shape of the response varies rel-

atively little with such parameter scaling. Therefore, the certainty-based penalty

should be able to provide resolution properties whose radially averaged FWHM res-

olution is nearly equal, but will not be able to eliminate the anisotropy in the local

impulse responses.

Returning to the test phantom and PET model illustrated in Figure 3.5, we

computed the local impulse responses over the same subsampling of image locations.

For the certainty-based penalty, we have adopted a penalty of the form in (4.9),

where R(θ) = βR0, a scaled quadratic first-order penalty matrix. The parameter β

is chosen to yield reconstructions of 4.0 pixels FWHM resolution at the image center.

Figure 4.1 presents the results of this local impulse response investigation.

In the local impulse responses in this figure much of the variability in the size of

the local impulse response has decreased compared to the local impulse response map

shown in Figure 3.6. Further evidence of this improvement in the mean resolution

can be seen in the mean FWHM resolutions stated above each response. These values

are generally much closer to the 4.0 pixel FWHM target resolution. However, the

anisotropy is still clear throughout the image. This is obvious from looking at the

stretched responses and by noting the nonzero radial standard deviations (s) stated

above each response.

The certainty-based penalty was originally developed for shift-invariant PET sys-

tems and may be calculated very quickly using (4.3), which is roughly equivalent to

a single backprojection operation. While one might be able to extend these tech-

niques to shift-variant systems by calculating position-dependent κj terms, this has
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Figure 4.1: Local impulse response map for a PLE with certainty-based penalty.

not yet been thoroughly investigated, and would presumably take significantly more

computation.

As mentioned before, the certainty-based penalty simply scales the penalty func-

tion locally. As seen in the local impulse responses in Figure 3.6, this scaling is

insufficient for providing uniform resolution properties. In the following sections we

develop a penalty where directional weightings are modified to control resolution.
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4.2 Choosing and Parameterizing the Penalty Function

4.2.1 Choosing a Family of Penalty Functions

We wish to find a penalty function that induces user-specified resolution properties

like uniform resolution. We believe it is unlikely that simply choosing a specific global

ψ(·) function in (2.25) will suffice, since the resolution properties are intimately tied

to physical system aspects like attenuation and detector response. However, certain

penalty choices may be advantageous because they can provide uniform resolution

under some kind of ideal circumstances, or because they are easy to approximate or

evaluate.

Since uniform resolution is one class of user-specified resolutions that we would like

to accommodate, we shall not adopt any of the edge-preserving penalties described

in Figure 2.15. (The concept of edge preservation is inherently nonuniform, since

edges will have higher resolution than other portions of the image.)

Square-Root Penalty

It has been suggested that the penalizing the square-root of pixel values in an

image will lead to more uniform resolution. For example, in the statistical sinogram

deblurring work of La Riviere[65], a square-root penalty was used successfully to

provide nearly uniform resolution properties.

Consider the square-root penalty which is written as

R(θ) = β
∑

j

∑
k

wjk

(√
θj −

√
θk

)2

. (4.11)

It is straightforward to find the Hessian of this penalty. The (j, k)th element of the
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Hessian is

[R(θ)]jk =


β
∑

l

(wjl + wlj)

√
θl

2θ
3
2
j

, j = k

−β(wjk + wkj)

2
√
θjθk

, j 6= k.

(4.12)

If the image θ is locally flat, the Hessian of the penalty is

R(θ) ≈ β

θj

R, where R =


∑

l

1

2
(wjl + wlj), j = k

−1

2
(wjk + wkj), j 6= k.

(4.13)

Recall the homoscedastic measurement noise example in Section 3.4.3 where the noise

model leads to an effective regularization parameter, σ2β. Extending this analysis to

the square-root penalty, we find that in regions that are nearly constant the square-

root penalty has an effective regularization parameter of σ2β/θj.

The square-root penalty generally will not completely compensate for the nonuni-

form smoothing induced by the estimator for the general imaging problem. However,

for the image restoration problem, where measurements are a slightly blurred ver-

sion of the image, the square-root penalty can yield relatively uniform resolution.

Under the Poisson noise model the variance equals the mean measurement. Thus,

σ2 ≈ θj, and the two terms approximately cancel out, making the effective regular-

ization parameter uniform across the image. Similarly, one can apply such a penalty

to statistical sinogram deblurring methods as La Riviere did in [65]. La Riviere also

noted the greater resolution uniformity of reconstructions from deblurred sinograms

when the square root penalty is applied.

Because the local impulse response is a function of all the physical effects in H ,

including attenuation and detector response, it seems that any penalty that is applied

in an effort to control resolution must be a function of these components as well.
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Desirable Properties of a Penalty Function

While there are many choices of penalty functions, some have better properties

than others for penalty design. For example, it would be advantageous to have a

penalty that results in a simple form for the local impulse response. Since the local

impulse response is a function of the Hessian of the penalty (see (3.15)), we would like

penalties whose Hessians have simple forms. For example, if we choose the quadratic

penalty in (2.27), the Hessian is simply R. Thus, the local impulse response in (3.15)

depends on the object only through its projections, and an estimate of the image

is not required to find the local impulse response. We can use the local impulse

response in turn to find an appropriate quadratic penalty.

Strictly speaking, this means that the penalty is dependent on the measurements.

Thus, the second term in (3.10) requires that the gradient of the objective (and,

therefore, the penalty term as well) with respect to Y be calculated. However, even

though we will eventually design a penalty that is dependent on the projection data,

we have found that ignoring the dependence of R on Y nevertheless leads to good

estimates of the local impulse response. In other words, the derivatives of the penalty

with respect to Y are sufficiently small as to be disregarded when evaluating (3.10)

and (3.11).

4.2.2 The Quadratic Penalty

We chose to adopt the quadratic penalty since it leads to an object-independent

form for the local impulse response and since the linearized response derived in

Section 3.3 is a good predictor of the local resolution properties. (For some penalties,

the linearized response may not be a good predictor.) Recalling (2.25), we may write
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the quadratic penalty as

R(θ) = β
∑

k

1

2
([Cθ]k)

2 = β
1

2
θ′C ′Cθ =

1

2
θ′Rθ. (4.14)

We note that this form is slightly more general than the pairwise quadratic penalty,

since one can include a nonzero magnitude penalty on θ2
j . That is, if one adds a

magnitude penalty to the pairwise penalty of (2.26) with ψ(t) = 1
2
t2, then

1

2

∑
j

∑
k

wjk
1

2
(θj − θk)

2 +
1

2

∑
j

wjθ
2
j

=
1

2

∑
j

∑
k

−wjkθjθk +
1

2

∑
j

(∑
k

wjk

2

)
θ2

j +
1

2

∑
k

(∑
j

wjk

2

)
θ2

k +
1

2

∑
j

wjθ
2
j

=
1

2

∑
j

∑
k 6=j

−wjk︸ ︷︷ ︸
rjk,j 6=k

θjθk +
1

2

∑
j

(
wj +

∑
k 6=j

1

2
(wjk + wkj)

)
︸ ︷︷ ︸

rjj

θ2
j

=
1

2

∑
j

∑
k

rjkθjθk =
1

2
θ′Rθ. (4.15)

Given the above equalities and using the bracketed equations above as a definition

for the elements of R, we find that the pairwise and magnitude penalties completely

span all quadratic penalties. That is, a set of pairwise weights, {wjk}, and magni-

tude penalty weights, {wj}, can be represented by a corresponding set of {rjk} (the

elements of R), and vice versa.

The quadratic penalty is completely specified by the matrix R. One may use

asymmetric penalty matrices; however, only the symmetric portion of the matrix is

important in the penalized-likelihood objective. This is because the penalty evaluates

to a scalar value and θ′Rθ = (θ′Rθ)′ = θ′R′θ. Similarly, if one evaluates the Hessian

of a quadratic penalty specified by an asymmetric penalty matrix:

∇20R(θ) =
1

2
(R + R′) , Rsym. (4.16)
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While the penalty matrix form provides an elegant form for writing the local im-

pulse response, R is typically very sparse since only small pixel neighborhoods are

used. Thus, it is helpful to be able to specify the penalty with a reduced number of

coefficients.

4.2.3 Parameterizing the Quadratic Penalty

The sparsity of R scales with the size of the neighborhood used in the penalty

function. A given column of R contains roughly the same number of values as the

size of the neighborhood and should be able to be represented with the same number

of coefficients.

Recalling (4.15), we may write a column of a symmetric penalty matrix as

Rej =



−w1,j

...

−wj−1,j

wj +
∑

l 6=j wl,j

−wj+1,j

...

−wp,j


= wje

j +
∑
l 6=j

wlj(e
j − el) (4.17)

= wjvec {δ(m−mj, n− nj)}+
B−1∑
q=1

wljq ,jvec {bq(m−mj, n− nj)}(4.18)

= Bjwj. (4.19)

In (4.17), we demonstrate that a column of the penalty matrix may be written as

a weighted sum of differences of unit vectors plus a weighted unit vector for the

magnitude penalty. We may rewrite this weighted sum as a weighted sum of basis

functions in (4.18). For a 2D imaging problem these basis functions have the form:

bq(m,n) = δ(m,n)− δ(m+mq, n+ nq), (4.20)

where (m,n) are image coordinates and (mq, nq) are coordinate offsets for the qth
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neighbor (basis). There is one additional basis function for the magnitude weighting

that is simply a discrete delta function. Thus, in (4.18) we write the parameterization

as a weighted sum over the B bases, which are lexicographically reordered into vector

form (as denoted by vec{·}). The bases are shifted by (mj, nj) which represent the

coordinates of the jth pixel. In (4.18), ljq represents the vector position which

corresponds to the pixel identified by position (mj, nj) and the offset (mq, nq). This

sum may also be written succinctly, as in (4.19), in a matrix form using a P × B

basis matrix, Bj, and a vector wj that is composed of the weights {wljq ,j}B−1
q=1 and

wj.

The basis representation is an important form for representing R, since one can

think of the local weightings, wj, as local filter coefficients. Penalty design can then

be thought of as local filter design, rather than the design of a large R matrix. For

example, the Hessian of the conventional 2D first-order shift-invariant penalty can

be represented using the following filter: 0 −1 0

−1 4 −1

0 −1 0

 . (4.21)

This filter can be represented using the following first-order basis set:

b(−1,0)=

 0 0 0

−1 1 0

0 0 0

 b(1,0)=

 0 0 0

0 1 −1

0 0 0

 b(0,−1)=

 0 0 0

0 1 0

0 −1 0

 b(0,1)=

 0 −1 0

0 1 0

0 0 0

 , (4.22)

and equal weightings. If Bj is formed from the bases in (4.22), then the conventional

shift-invariant penalty can be represented by {Bj1}p
j=1. This parameterization is

easily extended to 3D penalties. For example, the conventional 3D first-order shift-
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invariant penalty can be represented with the following filter:

−1

0

1 −1

0

1

−1

0

1

Y

−1

−1

−1

6

−1

−1

−1

X

Z

. (4.23)

Thus, the following bases can be used to specify 3D penalties over a first-order

neighborhood:

b(−1,0,0) =

−1

0

1 −1

0

1

−1

0

1

Y

1
−1

X

Z

b(0,−1,0) =

−1

0

1 −1

0

1

−1

0

1

Y

1
−1

X

Z

b(0,0,−1) =

−1

0

1 −1

0

1

−1

0

1

Y

1

−1

X

Z

b(1,0,0) =

−1

0

1 −1

0

1

−1

0

1

Y

−1
1

X

Z

b(0,1,0) =

−1

0

1 −1

0

1

−1

0

1

Y

−1
1

X

Z

b(0,0,1) =

−1

0

1 −1

0

1

−1

0

1

Y

−1

1

X

Z

(4.24)

These basis sets can specify a possibly asymmetric penalty. However, recall that

only the symmetric portion of a quadratic penalty is important in the penalized-

likelihood objective. If a symmetric penalty matrix is required (e.g., for a specific

algorithm), one can always obtain the symmetric portion simply by using (4.16).

4.3 Penalty Design for Resolution Control

Having selected the quadratic penalty and a simple way of specifying the penalty

coefficients, we next develop a technique for finding those coefficients. Because our

local impulse response approximation (3.15) is a function of the measurements, Y ,

but not of the object θ, we can find approximate local impulse responses prior to

image reconstruction. Thus, we can use the impulse response estimates to generate

a penalty matrix, R, that yields user-specified resolution properties.
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4.3.1 An Explicit Form for the Penalty Matrix

Recalling the form of the local impulse response in (3.15), we wish to select a

penalty matrix such that the local impulse responses equal a desired response, lj0.

Although one can evaluate local impulse responses in (3.15) or (3.20) for any spatial

coordinates denoted by the continuous variable x0, for penalty design we would like

to implement a design over a finite set of positions. For example, for a pixel basis

representation of the object, we can consider a single local impulse response for each

pixel. Thus, for each location ideally we would like to choose R such that

l(xj) , [H ′D1H + Rsym]−1H ′D2Hδxj
= lj0, (4.25)

where xj denotes the coordinates of the j voxel. Letting L0 denote the matrix of

desired responses for all voxel locations such that L0e
j = lj0, and assuming that

Hej ≈ Hδxj
, we may write

[H ′D1H + Rsym]−1H ′D2H = L0. (4.26)

Following [40], we may solve for the penalty matrix that yields the collection of

desired responses. Assuming the appropriate matrix inverses exist, we may write

H ′D2H = [H ′D1H + Rsym]L0

H ′D2H −H ′D1HL0 = RsymL0

Rsoln
sym , H ′D2HL−1

0 −H ′D1H . (4.27)

While (4.27) is a theoretically attractive closed form for specifying the penalty ma-

trix for a given set of desired responses, there are a number of problems. First, the

solution in (4.27) will only exist if the right-hand side is symmetric and the appro-

priate invertibility conditions hold. Thus, there are some desired responses that are
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impossible to attain. Second, due to the size of the matrices involved, (4.27) does not

generally represent a practically implementable design. (Although, one might be able

to derive an iterative technique to solve for Rsym.) Similarly, practical penalties have

small order neighborhoods so that the penalty portion of the penalized-likelihood ob-

jective function is not too expensive to calculate. No sparsity conditions are imposed

on Rsym in (4.27). Therefore, while the above explicit formula is attractive for the-

oretical investigations, it does not represent practical penalty design.

4.3.2 Fitting a Desired Response

Another approach is to set up an objective function, where one attempts to fit a

desired response for a given parameterization of the penalty matrix. Thus, rather

than attempting to find an impractically large penalty matrix, we may choose weights

in a parameterized penalty that best fit the user-specified desired responses.

Mathematically, if we consider the local impulse response to be a function of the

penalty matrix, R, we would like to find

R̂ = arg min
R≥0

p∑
j=1

d(lj(R), lj0), (4.28)

where

lj(R) , l(xj; R) = [H ′D1H + Rsym]−1HD2Hδxj
(4.29)

and d(lj, lj0) is some measure of disparity between the local impulse response, lj, and

a desired space-invariant response,1 lj0. Moreover, we have constrained this mini-

mization such that the penalty matrix is nonnegative definite (R ≥ 0). As discussed

in Section 2.5.1, a nonnegative definite penalty will guarantee unique solutions when

used with convex likelihood functions. For quadratic penalties this translates into a

1One might choose a space-variant lj0 for user-specified nonuniform resolution properties. For a desired space-

invariant response lj0 is a function of the pixel position j only in that the desired response must be centered at pixel
j. That is, since the local impulse response at pixel j is centered at pixel j, we must shift the desired response to
that location for comparison using d(·, ·).
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nonnegative definite constraint on the penalty matrix, R, which may also be stated

as a (complicated) set of constraints on the elements of R.

As mentioned in Section 4.3.1, some desired responses are unachievable. Similarly,

if one constrains R to represent only a small order neighborhood, the set of achievable

responses is also reduced. Similarly, in trying to fit a desired response, some desired

responses are easier to fit than other responses. While it may be fairly easy to match

penalized-likelihood responses throughout an image with the response at the center

of the field of view, it may be difficult to match an arbitrary response without using

very large neighborhoods. In Chapter V we will discuss a class of “natural” responses

that are relatively easy to fit.

Adopting the penalty parameterization of Section 4.2.3, in which the penalty

matrix is fully specified by local coefficients, {wj}, means we may write the penalty

design as

{ŵk}p
k=1 = arg min

{wk}p
k=1≥0

p∑
j=1

d(lj({wk}p
k=1), l

j
0). (4.30)

This minimization has the advantage of reducing the dimension of the design prob-

lem. However, the design objective is slightly different than the one posed in (4.28).

In (4.30), a nonnegative definite penalty matrix, R, is enforced by requiring the

local penalty coefficients to be nonnegative. This is a sufficient constraint but not

a necessary constraint. (One can see how this forces the penalty to be nonnegative

by looking at the first line of (4.15). Only negative weights could possibly lead to a

negative overall penalty.) Simply restricting the weights to be nonnegative is a con-

straint that is easy to implement; however, we discuss other constraints in Section 4.4

that might lead to better fits in the penalty design.

Unfortunately, solving either (4.28) or (4.30) appears to be computationally in-

tractable, since all coefficients (or equivalently the entire penalty matrix) must be
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solved for simultaneously. It may be feasible to develop iterative routines to solve

these objectives (particularly in the case of (4.30) where the constraints are local).

However, it would be advantageous to find an approximate method that yields results

more quickly.

Similarly, although the local impulse response in (4.29) may be evaluated using

iterative techniques[41], we would like to evaluate local responses over many locations

and would prefer a faster approximate technique for the purpose of penalty design.

4.3.3 Penalty Design using a Circulant Approximation

Because H ′DH is generally locally space-invariant, we use the following circulant

approximation (as in [116] and [96]) to the local impulse response at the jth pixel:

lj ≈ ljcirc , F−1

 F {ej} � F
{

H ′D2Hδxj

}
F {H ′D1Hej}+ F {Rsymej}

 , (4.31)

where � denotes element-by-element multiplication and the division is an element-

by-element division. The function F {·} takes the 2D or 3D Fourier transform of

its argument. Such circulant approximations have been used for preconditioning

iterative algorithms, and rely on the fact that the 2D or 3D Fourier transform of a

column of a matrix diagonalizes a matrix that is doubly or triply block circulant.

Thus, one can find the eigenvalues of a circulant matrix and easily perform operations

like matrix inversion.

Returning briefly to the PET phantom investigated in Section 3.4.1, we compare

local impulse responses calculated iteratively and from the circulant approximation

in (4.31). The results of this investigation are summarized in Figure 4.2. The contour

lines of the responses calculated by the two methods are nearly identical for many

of the response locations. The relatively minor mismatches for some responses are

concentrated at the edge and outside the object.
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Figure 4.2: A comparison between iteratively evaluated local impulse responses and responses cal-
culated using the circulant approximation.

This figure reproduces the iteratively evaluated local impulse responses shown in Figure 3.6 with the
contours shown in red. In addition, the same responses calculated using the circulant approximation
in (4.31) are shown in black. Not only are the responses very similar with overlapping contour lines,
the mean squared differences between the two estimates (shown above each response) are remarkably
small.

One can calculate (4.31) relatively quickly for any j using fast Fourier transforms

(FFTs). This circulant approximation includes the term, F {ej}, which includes

the appropriate complex exponentials such that the response is centered at the jth

position, and ljcirc ≈ lj.

Recalling the basis representation of the penalty matrix in (4.19), we use the sub-

stitution2 Rsyme
j ≈ Bjwj in (4.31). We may then write the local impulse response

2Strictly speaking, this substitution does not yield a symmetric R. However, one may calculate a symmetric R
after the design, or simply apply an asymmetric R, since only the symmetric portion is important for penalties of
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as a function of only the local weightings, wj, and use this in a separable design

objective. Specifically, we may design penalty coefficients locally using

ŵj = arg min
wj≥0

d(ljcirc(w
j), lj0), (4.32)

with

ljcirc(w
j) = F−1

 F {ej} � F
{

H ′D2Hδxj

}
F {H ′D1Hej}+ F {Bjwj}

 . (4.33)

Because (4.32) may be evaluated successively for each position j, the penalty matrix

can be formed from these individual designs. Thus, (4.32) represents a computation-

ally feasible design technique. For example, choosing the distance metric to be the

sum of the squared differences between the responses, one can solve a constrained

nonlinear least-squares problem for every pixel or voxel to design the entire quadratic

penalty. We denote this penalty design as the constrained nonlinear least-squares

(CNLLS) design.

While performing these nonlinear designs is feasible, in practice it typically takes

more time than we would like. Since the computation time scales directly with the

number of pixels, we would like the local optimization problems to be evaluated as

quickly as possible. While we do investigate the performance of the CNLLS design

in Section 6.2.1, there are a number of simplifications that can help to reduce the

computational burden significantly.

4.3.4 Linearized Penalty Design

Because the designs specified by (4.32) are nonlinear, iterative methods generally

must be used to solve the minimization. We would prefer to use a linear least-squares

objective that is much easier to solve.

the form 1
2 θ′Rθ.
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Using the circulant approximation to the local impulse response in (4.33), we

would like to perform a design (choose wj) such that

ljcirc(w
j) = F−1

 F {ej} � F
{

H ′D2Hδxj

}
F {H ′D1Hej}+ F {Bjwj}

 ≈ lj0. (4.34)

As introduced in [116], we move the wj terms out of the denominator by Fourier

transforming both sides of (4.34) and cross-multiplying to obtain:

Lj
0 � F

{
Bjwj

}
≈ F

{
ej
}
� F

{
H ′D2Hδxj

}
− Lj

0 � F
{
H ′D1Hej

}
, (4.35)

where Lj
0 = F

{
lj0
}

represents the Fourier transform of the desired response, lj0. The

form of (4.35) suggested that we could design the local penalty weights, wj, using

the following constrained, weighted least-squares approach[116]:

ŵj = arg min
wj≥0

∣∣∣∣Φjwj − αj
∣∣∣∣2 , (4.36)

with

Φj , W jdiag
{
Lj

0

}
F
{
Bj
}

(4.37)

αj , W jdiag
{
F
{
ej
}}

F
{

H ′D2Hδxj

}
−W jdiag

{
Lj

0

}
F
{
H ′D1Hej

}
, (4.38)

where W j represents a user-selected, nonnegative-definite, least-squares weighting

that could possibly be space-variant. The penalty design in (4.36) is a linearly con-

strained linear least-squares problem, which may be solved using the nonnegative

least-squares (NNLS) algorithm[71]. This is an iterative algorithm; however, it is

guaranteed to converge in a finite number of iterations. (Specifically, in ≤ 2B it-

erations, where B is the number of constrained coefficients.) One could also use

suboptimal approaches, like the one in Table 4.1, that find approximate solutions

more quickly.
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Table 4.1: Suboptimal greedy routine used to constrain penalty coefficients.

Set Ψj = [Φj ]′Φj and γj = [Φj ]′αj .
Let ŵj = [Ψj ]−1γj .
while ŵj contains negative values,

Let i equal the index of the minimum value of ŵj .
Remove the ith row and ith column of Ψj .
Remove the ith row from γj .
Set the ith element of ŵj to zero.
Find the remaining elements of ŵj by [Ψj ]−1γj .

end

The penalty design described in (4.36) represents the final form in developing a

least-squares design. However, for typical applications, straightforward evaluation

of (4.36) for every pixel generally requires significantly more computation time than

it takes to solve the actual image reconstruction problem. Therefore, for practical

use, it is desirable to find an efficient procedure for computing the penalty. The

practical implementation of the penalty design is discussed at length in Chapter V.

However, before we discuss the practical implementation, we discuss some potential

improvements to the least-squares design in (4.36).

4.4 Relaxed Design Constraints

While the previous sections discuss a practical design, they all rely on a design

constraint that forbids negative coefficients. Using these methods that individually

constrain the interpixel weightings to be nonnegative, we found that in many cases

(particularly for large neighborhood penalties) the nonnegativity constraint can be

quite active. In looking at the fits of actual local impulse responses to the target

responses, we find that, in some cases, even when a particular interpixel weighting

is zero, the estimator can still induce too much smoothness between pixels. Thus,

we have investigated so-called relaxed design constraints that increase the size of the

feasible parameter space in an attempt to perform more flexible designs[117].
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Recall from Section 4.3, the penalty design is stated in terms of the minimization

of some objective function. We would like to ensure the convexity of the penalty

function R(θ), so that the image reconstruction problem has unique solutions. For

quadratic penalties this can be expressed as a nonnegative definiteness constraint on

R, or equivalently as a nonnegativity constraint on the eigenvalues of R. Thus, for

a particular penalty design objective function, Υ(R), we may write

R̂ = arg min
eig(R)≥0

Υ(R). (4.39)

This eigenvalue constraint does not preclude negative pairwise weights between pixels

and will yield increased design freedom over the individual nonnegativity constraints

adopted in the previous section.

The main problem with the formulation presented in (4.39) is that the minimiza-

tion will generally be impractical due to the size of R. Evaluation of the constraint,

eig(R), and possibly the cost, Υ(R), will generally be too computationally intensive

for most applications.

In the case of a shift-invariant penalty, R is block circulant and its eigenvalues

may be computed using fast Fourier transforms. It is straightforward to formulate a

shift-invariant “toy” design problem where the Fourier constraints may be applied.

Specifically, we have formed a shift-invariant problem using the circulant approxima-

tion in (4.31). That is, for any given location j, there is an analogous shift-invariant

problem to which (4.31) corresponds.

Figure 4.3 shows a summary of this “toy” problem investigation. We have pur-

posely chosen a location in the shift-variant problem where we know the nonnega-

tively constrained penalty design of (4.36) has difficulty achieving the desired uniform

response. Thus, the shift-invariant “toy” problem should have similar problems. The

right half of this figure shows contours of the resulting impulse response functions
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Figure 4.3: Design of a circulant penalty for a “toy” PET problem.
At left the figure shows a difficult design location in the PET phantom study of Figure 3.5. The
local circulant approximation at this location is used to construct a difficult shift-invariant “toy”
design problem. At right we show local impulse responses arising from penalty designs using the
simple nonnegativity constraints and the Fourier constraints, with penalties using 8, 16, and 24
neighboring pixels. The target response for the design is isotropic.

designed using the individual nonnegativity constraints and the Fourier constraints.

Two things are immediately evident in this figure: (1) the Fourier constraints lead

to more uniform responses, and (2) increasing the size of the penalty neighborhood

does not improve uniformity for the individually applied nonnegativity constraints.

Clearly the incorporation of negative weights has allowed for greater design freedom.

The Fourier constraints are just one way of constraining a shift-invariant R. An

alternative is to use simpler constraints such as those derived by Lakshmanan for

2D Gaussian Markov random fields[66, 67]. Unfortunately, it is unclear how to

extend either these constraints or the Fourier constraints to the shift-variant case.

More general methods that bound the distance to the nearest singular methods

for perturbations of single components of R have been developed[101]. However,

these bounds generally depend on all of the elements of R and will typically lead to

impractical constraints.
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Figure 4.4: Pointwise constraints for a single pixel with eight neighbors/interpixel weights.

c

b a
R =

 a+ b −a −b
−a a+ c −c
−b −c b+ c



Figure 4.5: A three pixel image and its penalty matrix.

As in Section 4.3.3, one typically wants to develop a shift-variant penalty by

performing a local design. That is, one would like to determine the weights in a

pixel-by-pixel fashion, rather than all weights simultaneously. For example, at a

given pixel, one would like to determine all the weights between that pixel and

its neighbors (see Figure 4.4). Unfortunately, the only pointwise constraint is the

individual nonnegativity constraint. Thus, one needs to consider groups of pixels to

incorporate negative weights.

Consider the small three pixel image shown in Figure 4.5. There are three weights

associated with the three pixel pairs, labeled a, b, and c. (We have restricted ourselves

to interpixel weightings without any magnitude penalty.) The penalty matrix for this

image is also shown. Finding the characteristic polynomial for R and applying the

Routh-Hurwitz criterion[143], it is straightforward to derive the following constraints

on the weights themselves:

a+ b+ c ≥ 0

ab+ bc+ ac ≥ 0. (4.40)

These constraints allow for at most one of the weights to be arbitrarily negative, as
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Figure 4.6: Illustration of how constraints over loops of three weights may be used to ensure non-
negative definiteness of the penalty matrix.

long as the other two weights are sufficiently large and positive.

While one would rarely deal with an image this small, the constraints found

here can still be quite useful. Since the sum of nonnegative definite functions is

nonnegative definite, one can break the summation in (4.15) into more manageable

portions and satisfy nonnegative definiteness constraints locally. Specifically, using

the constraints in (4.40), one can satisfy a nonnegative definiteness constraint on any

sum of three weights in a large image, provided they form a loop.

A sample application of the constraints in (4.40) applied to a larger image is shown

in Figure 4.6. All of the weights represented by white arrows form loops of three

weights and must satisfy the constraints in (4.40). The remaining weights (black

arrows) are not part of a loop constraint and, thus, must satisfy the usual individual

nonnegativity constraint. Thus, the nonnegative definiteness of R can be guaranteed,

the weights are locally constrained (allowing some form of local design), and negative

weights are allowed. (Again, we have ignored any magnitude penalty. However, those

too can easily be incorporated using simple nonnegativity constraints.)

These constraint loops may be chosen somewhat arbitrarily, as long as each weight

is constrained exactly once (using either (4.40) or the simple individual nonnegativity

constraint). Clearly, the number of ways to choose these loops increases tremendously
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with the number of pixels. The (impractical) optimal solution is to optimize over all

possible loop configurations and select the set that yields the best R according to

the penalty design objective, Υ(R).

The best way to choose these loops will be dependent on the specific penalty design

goal. We would like to be able to perform the penalty design using the least-squares

objective in (4.36). Specifically,

ŵj = arg min
wj∈C

||Φjwj − αj||2, (4.41)

where C denotes the feasible region using whatever particular combination of loop

constraints and nonnegativity constraints have been adopted.

Thus, to choose loops we have adopted the following heuristics:

• Calculate the unconstrained local solution, wj
uc, to (4.41) for each pixel j.

• Choose only from loops that include the most negative element of wj
uc.

• Select from remaining loops by finding the loop that allows for the most negative

weight. (Plug in the unconstrained solutions for the two positive values in (4.40)

and find the bounds on the remaining weight.)

While these heuristics do not necessarily yield an optimal choice for the weight

constraints, such choices should generally increase design flexibility and allow for

the most important negative (i.e., the most negative weight in the unconstrained

problem) to go negative in the constrained problem. Because neighboring pixel

locations share interpixel weighting, this selection task is somewhat difficult. In

practice, we have used a greedy approach where the above heuristics are applied

over a grid of locations with no shared weightings, then a “second pass” is performed

where the remaining constraints are chosen using the same heuristics, but also as to

not interfere with the previous constraint choices.
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Figure 4.7: An illustration of the update approach for penalty design with relaxed constraints.
In the first image a pointwise design is used to update only the interpixel weights lying in the gray
region. Nearby weights (not in the pointwise design) that are used to constrain the design are held
constant. In the following image, the pointwise design is applied to the next pixel in the sequence,
cycling through all pixel positions.

Once a set of constraints has been chosen (i.e., a “map” such as Figure 4.6 is

available), one must still find R. Unfortunately, the minimization shown in (4.41)

couples all {wj} through the constraints. Thus, this minimization should technically

be solved simultaneously for all pixel positions. We have opted to use an iterative

approach where all non-local weights are held constant, the constrained (4.41) is

minimized using a sequential quadratic programming algorithm[111, 110], and the

local solution is used as an update to the current estimate of R. This approach is

illustrated in Figure 4.7. We cycle through all pixel positions until the weightings

appear to have sufficiently “converged.”

This method has not been proven to converge. However, consider Figure 4.8. If

we initialize the above procedure using the nonnegatively constrained solution (point

B), and step slowly toward the solution to the relaxed constraint design (point C) at

a given position as we cycle through pixel positions, we should increase the chances

that monotonic updates to the weights are applied. In practice this method appears

to “converge” to solutions with lower costs than the design in (4.36) with the indi-

vidual nonnegativity constraints. Thus, these relaxed constraints may be used for

more flexible penalty design. We demonstrate their use in Section 6.2.1. Unfortu-

nately, these methods significantly complicate the penalty design as compared with
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Figure 4.8: Illustration of the solution to the relaxed constraint design.
Because the penalty design objective function in (4.36) is a least-squares cost function, the uncon-
strained solution (A) lies at the bottom of a parabola. While the nonnegatively constrained solution
(B) can be found relatively easily, the relaxed constraint solution (C) generally requires iterative
methods.

(4.36), because of the difficulty in specifying the constraints and the nonlinearities

introduced into the optimization.

We note that even more relaxed constraints may be obtained by selecting a subim-

age of weightings that is larger than those presented in Figure 4.5, and finding the

corresponding characteristic polynomial and applying the Routh-Hurwitz criterion.

However, for larger numbers of weights, the constraints analogous to those in (4.40)

quickly become very complicated, which makes the selection of those constraints and

the optimization even more difficult.

4.5 Summary

In this chapter, we have discussed and developed a number of penalty design

approaches to control the resolution properties of the reconstructed images from

penalized-likelihood estimators. These techniques are based on a circulant approx-

imation of the local impulse response that allows one to write the local resolution

properties as a function of local penalty parameters. A global penalty is designed
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by systematically (over all image locations) choosing the local penalty penalty pa-

rameters so that the local impulse responses are approximately equal to some set of

desired responses.

We have identified three specific design techniques: 1) the CNLLS design which

is based on a nonnegatively constrained nonlinear least-squares design objective,

2) the nonnegatively constrained linearized design expressed in (4.36), and 3) the

linearized design with relaxed design constraints from Section 4.4. We apply these

design approaches in Chapter VI and discuss the relative performance of these and

other methods, when the goal is uniform resolution.

While the mathematical forms of these penalty design methods have been devel-

oped in this chapter, these forms generally do not relate directly to computationally

practical techniques. In the next chapter, we discuss methods that can be used

(particularly for tomographic systems) that allow for fast penalty design.



CHAPTER V

Rapid Calculation of Resolution and Covariance

While the local impulse response derived in Section 3.3 serves as an important

formula for predicting resolution, typically it must be evaluated iteratively. Thus,

when many resolution prediction need to be made, or when resolution predictors

need to be made repeatedly for a given system (as with the penalty design discussed

in Chapter IV), it is important to have fast routines for evaluating these predictions.

Because covariance predictors are very similar in form to the resolution predic-

tors, many fast techniques that are applicable to one predictor are applicable to

the other. Therefore, we briefly review covariance prediction and apply our fast

prediction methods to the covariance predictor as well.

In this chapter, we show that rapid calculation of resolution and covariance is inti-

mately tied to fast calculation of weighted projection-backprojections of an impulse.

We develop efficient routines for calculating these weighted responses and show how

they may be applied to rapid resolution prediction, fast covariance prediction, and

efficient penalty design for resolution control. These routines involve precomput-

ing and storing components of the geometric system response and are applicable

to 2D and 3D systems that include nonuniform attenuation effects and complicated

geometries and detector responses.

96
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5.1 Covariance in Reconstructed Images

Predicting the covariance between pixels in reconstructed images has a history

that has closely paralleled resolution predictions. As with resolution, there have

been many investigations on the noise properties of images as a function of various

estimator and system parameters. For iterative methods, noise has been investigated

as function of iteration. For example, Wilson et al. studied the image covariance

properties for MLEM[132] by reconstructing a large set of emission images, and

calculating the empirical sample covariance. Similar noise studies as a function of

iteration have been performed for OSEM[68]. Several groups have developed analytic

methods that formulate how noise is propagated from iteration to iteration. These

studies include techniques for analyzing noise propagation in EM[8], MAP-EM[129],

and OSEM[106].

However, as with resolution, instead of focusing on how subsequent iterations

effect the image, one can analyze the covariance properties of the solution of an

iterative technique. In [33], Fessler derived an expression for the covariance of an

implicitly defined estimator like the one defined in (2.24). Adopting our previously

defined notation, we restate that predictor here:

Cov{θ̂} =
[
H ′D1H + R(θ̆)

]−1

H ′D3H
[
H ′D1H + R(θ̆)

]−1

, (5.1)

where D3 = D2Cov{Y }D2 is a diagonal matrix if the measurements are independent.

Because the covariance matrix in (5.1) is generally too large to compute in its

entirety, people often focus on calculating a single row or column of the covariance

matrix. This row or column is denoted as Covj{θ̂}, and can be interpreted as the

covariance function at position j. Iterative methods to calculate the variance or

covariance function at position j were discussed in [33].
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5.2 Prior Work in Rapid Resolution and Covariance Prediction

While the explicit formula for the local impulse responses derived in Section 3.3 or

a row of the covariance in (5.1) can be evaluated quickly by developing fast iterative

methods, we concentrate on noniterative methods that can be used to evaluate the

resolution or covariance predictions quickly.

5.2.1 Circulant Approximation

We have already discussed one such approximation. Specifically, the circulant

approximation in (4.31). This approximation has been used to provide fast reso-

lution predictions[116], fast covariance predictions[94, 11], and fast predictions of

contrast[95]. We assume that we can model the continuous-to-discrete projection

well with the discrete model,1 i.e., Hδxj
= Hej. Then as in (4.31), we may write

the circulant approximation of the resolution predictor as

lj ≈ ljcirc , F−1

 F {ej} � F {H ′D2Hej}

F {H ′D1Hej}+ F
{

R(θ̆)ej
}
 . (5.2)

Similarly, using the circulant approximation and applying it to (5.1) yields the

following predictor for the covariance function at position j:

Covj{θ̂} ≈ Covj
circ{θ̂} , F−1

 F {ej} � F {H ′D3Hej}∣∣∣F {H ′D1Hej}+ F
{

R(θ̆)ej
}∣∣∣2
 , (5.3)

where the complex exponentials represented by [F {ej}]2 term incorporate the appro-

priate shifts so that the covariance function is “centered” at location j.

Although (5.2) and (5.3) may be calculated relatively quickly using fast Fourier

transform operations, the repeated calculation of the weighted projection-backprojections

of a unit vector, H ′DHej, can be quite computationally expensive. For example, in
1The methods discussed in Section 5.3 can apply equally well to predictors that rely on H′DHδxj

. However, we

develop the methods for H′DHej only. It is straightforward to obtain the analogous methods for H′DHδxj
.
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fully 3D SPECT, where the matrix H is implemented as an “on-the-fly” routine, the

projections and backprojections greatly outweigh the Fourier transforms in terms of

the time required to evaluate a resolution or covariance prediction. Similarly, the

frequency-domain multiplications and divisions correspond to very little of the total

evaluation time. (The multiplication by the complex exponentials like [F {ej}] can be

eliminated by appropriately shifting (permuting) the image-domain vectors.) Thus,

for fast predictions it is crucial to be able to provide rapid evaluation of H ′DHej.

5.2.2 Approximations Based on “Outer” Diagonalization

We have already discussed one approximation involving H ′DH , when H has a

PET-style factorization. This approximation arises from the certainty-based penalty

developed in [32, 41] and reviewed in Section 4.1.1. When H = diag{ci}Gdiag{sj},

with G′G approximately block circulant, the following approximation can be made:

H ′DH ≈ DκG
′GDκ, (5.4)

where Dκ = diag{κj} and

κj , sj

√∑
i g

2
ijc

2
i di∑

i g
2
ij

, (5.5)

with di denoting the ith diagonal element of D. Thus, the weighted response is

approximated as

H ′DHej ≈ DκG
′GDκe

j = κjDκG
′Gej. (5.6)

We categorize this method as an “outer” diagonalization approximation, since all of

the object-dependences are moved into pre- and post-multiplications by the diagonal

matrix, Dκ.

Since G′G is approximately shift-invariant for PET systems, one may calculate

G′Gej for a single position j0 (perhaps at the center of the image) and the remaining
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geometric responses may be formed from shifted versions of G′Gej0 . Thus, calculat-

ing (5.5) once for a given diagonal weighting D and set of PET attenuation factors,

{ci}, allows one to use (5.6) to form an approximate weighted response, H ′DHej, at

any location from a shifted G′Gej0 . This technique is very fast since (5.5) is equiv-

alent to a single backprojection and G′Gej0 may be precomputed and stored for a

given system geometry. This technique was used successfully to provide approximate

variance predictors in [34].

Unfortunately this technique is only very fast for systems with a shift-invariant

geometric response, and does not incorporate SPECT-style attenuation factors. Xing

et al. has endeavored to extend these methods to resolution and variance prediction in

SPECT[137, 136], where the SPECT factorization, H = diag{ci} (A�G)diag{sj},

applies. In this case,

H ′DHej ≈ Dκ̃S
′SDκ̃e

j = κ̃jDκ̃S
′Sej, (5.7)

where

κ̃j ,

√∑
i h

2
ijdi∑

i s
2
ij

= sj

√∑
i g

2
ija

2
ijc

2
i di∑

i s
2
ij

, (5.8)

and S′Sej is an object-independent approximation of the response. For example, one

could choose S = G, so that one can multiply the geometric response, G′Gej, by

the appropriate κ̃j to incorporate the effects of the diagonal weighting and SPECT

attenuation terms. This is an interesting extension to (5.6), whose computational

requirements depend on the exact choice of S. (Xing has suggested using an S

operator that produces projections and backprojections using the frequency-distance

principle[46] to approximate the SPECT detector response.) We will discuss the

performance of this approximation in more detail in Section 5.3.2.
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5.3 Rapid Calculation of Weighted Projection-Backprojections

In this section we present an alternate way to approximate the weighted response,

H ′DHej. As with the approximations discussed in Section 5.2.2, the key to rapid

evaluation of the weighted response is to separate object-dependent portions of the

response from geometric components that may be precalculated or evaluated quickly,

and to be able to recombine these separate components rapidly to approximate the

response.

In this section we describe a series of approximations that allow many operations

to be precomputed for the evaluation of H ′DHej, when the system matrix fits a PET

or SPECT model. (Portions of this work were originally presented in [118] and [119].)

In the special case of a space-invariant system and a PET-style attenuation model,

the results simplify to the methods we presented in [116]. These methods should

apply to other imaging systems that have a system matrix factorization similar to

the object-dependent and object-independent factors discussed in (2.10).

5.3.1 Linear Operators

One important property of H ′DHej used in [116] is that it is linear in terms of

the diagonal elements of D. That is, we may write

H ′DHej =
N∑

i=1

mj
i [D]ii = M jd, (5.9)

where mj
i are position-dependent vectors that are related to H . Similarly, we may

write this linear combination in terms of a P ×N matrix, M j = [mj
1 . . .m

j
N ], and a

vector of the diagonal elements of D, which are denoted as d with [d]i = [D]ii.

One could construct M j using the superposition principle. Specifically, mj
i may

be found by applying diagonalized unit vectors for each measurement such that

mj
i = H ′diag

{
ei
}

Hej. (5.10)
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In principle, if {M j}P
j=1 could be precalculated, then H ′DHej can be evaluated

quickly for different diagonal matrices. Unfortunately, there are several problems

with this kind of precomputation. Perhaps the most significant problem is that,

even if one were to calculate all {M j}P
j=1 operators, these linear operators are object-

dependent because the SPECT system matrix depends on the attenuation properties

of the object. Thus, any such “precalculation” would need to be performed for every

object. While one might be able to use a generic attenuation model in cases like

brain imaging where there is less variability, we would like to develop an efficient

technique that applies to a wide range of attenuating objects.

Another problem is the sheer size of {M j}P
j=1. One must be able to store these

precomputed linear operators to exploit any computational speed-up. Recall that

each operator M j is P × N in size. Generally it would be infeasible to store all P

operators since they have a similar degree of sparsity as the system matrix, H .

We address these issues in the following sections.

5.3.2 Attenuation Approximations

To use the linear operator technique effectively we must eliminate the object-

dependence from the precomputed portions of H ′DHej. Consider the following

factorization of the system matrix:

H = Dc (A�G) , (5.11)

where Dc is a diagonal matrix of the ray-dependent factors, ci, and A and G, are col-

lections of the (object-dependent) attenuation terms, aij, and (object-independent)

geometric terms, gij, as described in Section 2.2. This factorization is slightly dif-

ferent than the one in (2.10) in that the pixel-dependent factors, sj, factors have
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been eliminated.2 (Moreover, we do not require that geometric operator G′G be

a shift-invariant operator.) This factorization isolates all of the object-dependence

in the A and Dc terms. Recall that PET attenuation may be modeled in Dc and

SPECT attenuation in A.

Let F = H ′DH denote the entire weighted projection-backprojection operator.

Using the factorization in (5.11), we make the following sequence of observations

regarding the (k, j)th element of F :

[F ]kj = (ek)′F ej

= (ek)′H ′DHej

= (ek)′ [Dc(A�G)]′ D [Dc(A�G)] ej

=
[
(Aek)′ � (Gek)′

]
DcDDc

[
(Aej)� (Gej)

]
= (Gek)′diag

{
Aek

}
DcDDcdiag

{
Aej

}
Gej

= (ek)′G′DjkGej, (5.12)

where the diagonal matrix, Djk, has the following elements:

[
Djk

]
ii

= [Aek]i[D]ii[Dc]
2
ii[Ae

j]i

= c2i aijaik[D]ii. (5.13)

Because Aek generally varies relatively smoothly with changing k, and H ′DHej

is fairly concentrated about the pixel position j, we use (5.12) and (5.13) to make

the following approximation:

F ej = H ′DHej ≈ G′DjGej, (5.14)

with elements of the diagonal matrix, Dj, defined as

[
Dj
]
ii

=
[
Djj

]
ii

= c2i a
2
ij[D]ii. (5.15)

2If the sj terms are object-independent, they may be easily absorbed into G. Otherwise, these terms may be
placed in the object-dependent A.



104

Thus, we approximate H ′DHej using only the geometric model G and a position-

dependent diagonal weighting Dj. This approximation is exact at location j and

yields very good results for the neighborhood around j. Because the SPECT at-

tenuation terms, {aij}, are formed from the integral in (2.1), even discontinuous

attenuation maps will yield smoothly varying attenuation terms. Thus, the above

approximation can perform well for nonuniformly attenuating objects. For most PET

systems, A = 1, and (5.14) is an equality, not an approximation.

Brief Aside: “Inner” versus “Outer” Diagonalizations

In contrast to the “outer” diagonalizations discussed in Section 5.2.2, the approxi-

mation for H ′DHej shown in (5.14) moves all of object-dependence into the “inner”

diagonal term. We perform a brief investigation of these two different kinds of ap-

proximation. Figure 5.1 shows the results of this investigation. Specifically we have

compared the “inner” diagonal approximation3 in (5.14) and the “outer” diagonal

approximation of (5.7) to the unapproximated response, H ′DHej.

In this study we used the SPECT model and emission map used in Section 3.2.3

and Figure 3.3. We used a nonuniform attenuation map with linear attenuation

coefficients appropriate for water for the background disc, and appropriate for air

for the cold “rods.” Weighted responses for three different positions in the phantom

are shown in Figure 5.1. The left column shows the unapproximated responses,

H ′WHej, the center column shows the responses as calculated using the “inner”

diagonalization in (5.14), and the right column shows the responses approximated

by the “outer” diagonalization method in (5.7).

While both approximation methods exactly match the magnitude of the response

3Strictly speaking, we have also used the projection-constant approximation discussed in Section 5.3.4, which
should typically degrade the accuracy of the approximation. However, despite using this additional approximation,
the comparison between the “inner” diagonal approach and the actual response remains quite close.
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Exact “Inner” “Outer”
H ′DHej G′DjGej Dκ̃G′GDκ̃e

j

Figure 5.1: Comparison of “inner” and “outer” diagonalization approximations for calculating
weighted responses for SPECT.

The left column shows the unapproximated weighted responses for three locations for a simulated
phantom with the same emission distribution as the one in Figure 3.3, but with nonuniform atten-
uation. The center column of responses is computed using the “inner” diagonalization of (5.14),
and the right column is computed using the “outer” diagonalization in (5.7). Images in each row
use an identical colormap window.

peak, the “inner” diagonalization yields a better approximation of the overall re-

sponse. For example, much of the anisotropy in the weighted response is not cap-

tured by the “outer” diagonalization method. This is particularly noticeable for the

two off-center responses which have a higher degree of anisotropy due to attenuation

and the diagonal weighting, D.
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Return to Linear Operators

Returning to (5.14), since the right-hand side of the approximation is a linear

function of the diagonal elements of Dj, we may now calculate approximate precom-

puted operators, M j, whose columns are given by

mj
i = G′diag

{
ei
}

Gej. (5.16)

Since these mj
i vectors depend only on the system geometry G, but not on the

object itself, we can precompute the object-independent portion of H ′DHej. These

operators may be applied to form the approximation given in (5.14) as

H ′DHej ≈ M jdj, (5.17)

where dj is a vector constructed from the elements of Dj in (5.15).

It is reasonable to include aij terms in the calculation of dj, since these factors

generally must be computed for the reconstruction method that is chosen to estimate

the SPECT image. In fact, while G is often too large to precompute and store for 3D-

SPECT, if A is modeled with the simple line integral model of (2.1), A is very sparse

with only a single value per row. Thus, it may be possible to compute and store A

for a given object for both estimation of the SPECT image, and for evaluation of

H ′DHej. As mentioned previously, A = 1 in PET and would not be stored at all.

Equation (5.17) represents an approximation that allows for precomputation of

a portion of H ′DHej using the linear operator technique of [116]. If G′Gej rep-

resents a shift-invariant response, only a single operator, M j0 , is required. (This is

discussed in more detail in Section 5.4.2.) The remaining operators may be found by

applying the appropriate shifts. Such shift-invariance holds for PET systems near

the center of the field of view. However, for large field of view PET systems like
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small animal PET scanners, and for most SPECT systems, the geometric response

is shift-variant. Thus, it appears that to use (5.17) one would need to calculate very

many linear operators. Specifically, without further simplifications, one would need

to compute, store, and use one P ×N matrix for each voxel. In the following sections

we demonstrate ways to reduce both storage requirements and computation time.

5.3.3 Image-Domain Simplifications

There are a number of observations and approximations that allow us to reduce

the computation and storage requirements to practical levels. We break these sim-

plifications into two groups: 1) Image-domain simplifications, that reduce either the

number of operators that are stored, or the number of rows in each of the matrices.

2) Projection-domain simplifications, that reduce the number of columns required

for each M j, and consequently the number of diagonal weighting elements (i.e., a

smaller D). We discuss the image-domain simplifications in this section, and discuss

projection-domain simplifications in Section 5.3.4.

For each approximation, we first describe the basic principle in words, and then

give an explicit mathematical representation. Since matrices in the following sections

represent operations on 3D projections or images, care should be taken in interpreting

the mathematical forms.

Single Slice Sampling

Because H is object-dependent due to attenuation, there are generally few sym-

metries that would allow one to reduce computation and storage requirements. How-

ever, because we are utilizing (5.18), which requires only the geometric model, G,

we can take advantage of symmetries in the PET or SPECT geometry.

For many tomographic systems there are a number of symmetries in the imaging
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system that can simplify our goals. For example, in SPECT, most parallel hole and

fan collimators have a detector response that is essentially shift-invariant for axial

shifts of the detector, excluding magnitude scaling factors like detector efficiency

(i.e., the ci terms). Similarly, PET systems operating in 2D mode (with septa in

place) are made of rings or blocks of detectors where the detector response changes

little with axial shifts. Thus, if one varies j only in the transaxial direction, G′Gej

changes only by a transaxial shift. Similarly, for the same j, the columns of our

precalculated M j in (5.16) would differ only by transaxial shifts.

Therefore, it is not necessary to compute (5.16) for all j. A single slice is sufficient.

Thus, we let

m
(xj ,yj)
i = G′diag

{
ei
}

Ge(xj ,yj ,z0), (5.18)

where xj and yj denote the x and y-coordinates of the jth voxel, and z0 reflects the

transaxial coordinate of the center slice. Consequently,

H ′DHej ≈ SzjM (xj ,yj)[S
zj

P ]−1dj, (5.19)

where Szj shifts an image from the center slice to the z-coordinate of the j voxel,

M (xj ,yj) is formed from columns of (5.18), and S
zj

P is the projection-domain analogue

of Szj , which shifts projection values along the transaxial direction. In terms of

storage, we may now store Px · Py operators instead of P = Px · Py · Pz.

Even in systems that do not have axially shift-invariant detector responses like 3D

PET, there are often partial symmetries. Recall that 3D PET generally has shift-

variant detector responses due to the truncated projections discussed in Section 2.3.1.

However, since PET systems are generally cylindrical, there is typically a symmetry

through the center of the cylinder axis and only half the slices need to be stored.
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III

II I

IV

Normal Orbit

Reverse Orbit + 180      o

Figure 5.2: Symmetries in elliptical orbit SPECT.

In fact, as we shall see in the following sections, one can use other symmetries to

further reduce storage.

Partial Orbital Sampling

We can also take advantage of symmetries in the SPECT detector orbit or, equiv-

alently, the PET ring geometry. Consider the 360◦ elliptical orbit SPECT system

shown in Figure 5.2. Suppose that we may only compute weighted projection-

backprojections for points in quadrant IV. Because this elliptical orbit is symmet-

ric about both axes, we may compute weighted projection-backprojections for the

remaining quadrants. For example, consider the black point in quadrant IV in Fig-

ure 5.2. The gray point in quadrant I is “seen” by the rotating detector head with

the same detector response as the black point, if the orbit direction is reversed and

is started 180◦ from the normal orbit’s starting point. In other words, if one has

obtained the projections for the black point in quadrant IV, one can obtain the pro-

jections for the gray point in quadrant I simply by reordering the projection images.

Similarly, if one may only backproject projections obtained from points in quad-

rant IV, one can obtain projection-backprojections for points in the other quadrants
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ejI GejI DGejI G′DGejI

IVIII

II I

ejIV GejIV diag
{
P Id

}
GejIV G′diag

{
P Id

}
GejIV V IG′diag

{
P Id

}
GejIV

IVIII

II I

Figure 5.3: Using symmetries in elliptical orbit SPECT to compute weighted responses.
Specifically, an illustration showing the calculation of a weighted response in quadrant I from
calculations based on a point in quadrant IV. The top row shows a straightforward calculation
of the weighted projection-backprojection for a point in quadrant I. The bottom row shows an
approximation of the same weighted projection-backprojection, using a point in quadrant IV in
conjunction with the permutation operator, P I, and the flip operator, V I.

using simple flips about the axes. Thus, we need to precompute only a single quad-

rant of linear operators. For circular system geometries, only a single radial line of

operators is required.

We illustrate the application of these symmetries to the calculation of weighted

projection-backprojections in Figure 5.3. In the top row of this figure, we show

a straightforward calculation of a weighted response for a point in quadrant I. In

the bottom row we show a sequence of images representing the calculation of the

same response using projections and backprojections in quadrant IV. In order to

use the quadrant IV calculations, we must appropriately permute elements of the

diagonal weighting matrix. We represent this reordering by multiplying diagonal

elements, d, by the matrix P I, which reorganizes projection weightings by reversing

the projection order and shifting the weightings by 180◦. Additionally, we require an

image-domain transformation that flips the image about the x-axis. This operation
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is equivalent to a change of variables with ynew = −y and is represented by the

matrix V I. The resulting weighted responses shown in the rightmost images are

nearly indistinguishable for the two calculations.

Recalling (5.18), since our linear operators involve only weighted responses using

the geometric model, G, we need to calculate only a single quadrant of operators.

Responses in the other quadrants may be obtained using simple permutation and flip-

ping operations. The permutations and flips are quadrant-dependent (as indicated

by the superscripts). Therefore, we define generic permutation, P j, and transfor-

mation operators, V j, that are position-dependent. If one stores operators only for

quadrant IV, these operators are defined as follows:

Quadrant V j Action P j Action

I V I x-axis flip P I reverse + 180◦

II V II x-axis + y-axis flip P II + 180◦

III V III y-axis flip P III reverse

IV V IV no action P IV no action.

Incorporating this calculation technique into (5.19), we write the approximation

of the weighted response as

H ′DHej ≈ V jSzjM (xj ,yj)[S
zj

P ]−1P jdj, (5.20)

where the M (xj ,yj) operators are still calculated via (5.18), but only over a subset of

locations appropriate for the specific system symmetries.

For circular orbit SPECT, or PET systems with ring geometries, one might choose

to store a single radial line4 of linear operators. In this case, P j still represents

a simple permutation, but V j must be defined as a position-dependent rotation
4We assume that only a single axial slice of operators is being stored. For 3D PET systems, it may be appropriate

to store many slices due to the truncated projections. Thus, instead of a radial line of operators, an angular slice is
considered.
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operation, which can take significantly more time than simple flip operations. Thus,

even if circular symmetries are being used, one might choose to precalculate more

operators (e.g., over a quadrant), trading off more storage for faster evaluation.

Small Volume of Support

Because H ′DHej is fairly concentrated about voxel j, many calculations involv-

ing H ′DHej are also very concentrated about j. For example, in the resolution

calculation in (5.2) and the covariance formulation in (5.3), the results of these eval-

uations typically trend to zero farther from the point of interest. In other words,

resolution and covariance functions generally go to zero far from j.

For many applications it is not necessary to estimate far from j. For example, for

resolution calculations, one may require only a sampling of the local impulse response

that covers two or three times the full-width half-maximum resolution. Beyond this

region, the local response is essentially zero.

We have found one can use relatively small regions of support to obtain very

good resolution approximations[118]. Thus, it is not necessary to store all the rows

of M j. Instead, we choose to store a relatively small volume of support centered

around voxel j. If one chooses a small η × η × η volume,5 each M j is η3 ×N . For a

typical SPECT system where P = 1282 · 64, a choice of η = 30 represents a decrease

in storage by a factor of almost 40.

Thus, (5.18) and (5.20) become

m
(xj ,yj)
i = T jG′diag

{
ei
}

Ge(xj ,yj ,z0), (5.21)

and

T jH ′DHej ≈ V jM (xj ,yj)[S
zj

P ]−1P jdj, (5.22)

5There is no fundamental reason why the subvolumes must be cubical. We choose a cubical subvolume for
simplicity.
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where T j represents a position-dependent η3×P matrix that represents a truncation

function that selects a small volume about pixel j. The image-domain shift operation

in (5.19) is no longer necessary due to the truncation function T j, since there is an

implicit “centering” of the subvolume. In fact, as we will discuss in Section 5.4.1,

this also allows one to eliminate the multiplications involving the [F {ej}] terms in

(5.2) and (5.3).

One could generalize the truncation function, T j, to include an invertible transfor-

mation that reduces storage requirements. For example, if T j were a transformation

that allows the storage of M j with fewer coefficients, one could store “compressed”

operators. Generally this would require additional computation for the “decompres-

sion” step when the operators are applied. We have found that simple truncation

can perform quite well without the need for additional transformations. However, it

is possible that some system geometries may require larger volumes of support for

good noise and resolution predictions.

Spatial Subsampling

The weighted responses, H ′DHej, typically vary smoothly with position. Be-

cause this is the case, we have found that one can subsample the image-domain and

evaluate H ′DHej over a subset of positions and find the remaining positions using

interpolation[118].

Using the approximations described earlier in this section, we may subsample the

image slice or smaller orbital section (depending on symmetries), calculating linear

operators over a grid of every ndth voxel in both in-plane directions. This reduces

storage requirements by 1/n2
d.

There are a number of ways to perform the interpolation for the between sample

positions. Consider the following two interpolation methods: 1) Bilinear interpola-
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(a) 3D SPECT Spatial Subsampling (b) 3D PET Spatial Subsampling

Figure 5.4: Typical regions which are spatially subsampled for 3D PET and SPECT.
For elliptical orbit SPECT and 3D PET with truncated projections, one can typically sample geo-
metric responses over the gray regions to fully characterize the system. Responses at other locations
may be formed using the transformation operator, V j , which rotates or changes coordinates (as
indicated by the arrows).

tion of the nearest four linear operators to obtain an approximate operator, M̂ (xj ,yj),

and application of this approximate operator to the vector, d(xj ,yj). 2) Trilinear inter-

polation of the weighted response from the eight nearest responses. The eight nearest

responses are calculated using the sampled operators and the diagonal weights as-

sociated with those samples. This second method is appropriate when d(xj ,yj) does

not vary too quickly, since both the geometric response and the diagonal weights are

interpolated. On the other hand, the first method interpolates only the linear oper-

ators and applies the uninterpolated weights, d(xj ,yj). Which method is appropriate

depends on a number of factors, including computation time for d(xj ,yj), the size of

the truncation function, T j, the degree of space-variance of the diagonal weights,

and the acceptable amount of approximation error.

While we have assumed that this sampling takes place in the x-y plane (as is ap-

propriate for SPECT with axially shift-invariant geometric responses), we note that

this kind of spatial sampling can be done for any systems with smoothly varying geo-

metric responses. The partial plane which is spatially subsampled for elliptical orbit



115

SPECT is shown as the gray quadrant in Figure 5.4a. As we mentioned previously,

for circular geometries we may sample a single radial line and apply the appropriate

permutation, P j, and transformation, V j. However, for 3D PET with truncated

projections one should sample many axial slices. Thus, instead of sampling a por-

tion of the x-y plane, one would sample a single angular slice (like the x-z plane) as

shown in Figure 5.4b.

5.3.4 Projection-Domain Simplifications

Just as one can approximate H ′DHej using image-domain simplifications, one

can make projection-domain approximations that reduce dimensionality, storage re-

quirements, and computation times. Specifically, in the following subsections, we

describe approximations that will reduce the number of columns required for the

linear operators, M j.

Projection-Constant Weightings

One approximation investigated in [116] relies on the observation that projections

of a point are highly localized. That is, for individual projection angles, Hej yields

a relatively narrow response. Figure 5.5a shows several projections of a point. The

diagonal term, D, simply scales each element of the projection and is typically a

smoothly varying function over each projection. Recall from (3.18) and (3.19), el-

ements of D are often defined as functions of the mean measurements, which are

themselves relatively smooth due to the blur of the projection operator. Because

these weightings are relatively smooth for each projection angle and the point pro-

jections are highly localized, we can approximate D with a new position-dependent

diagonal weighting, D̃j, which scales projections for individual angles by a single

value. In fact, for projection-constant weightings and a shift-invariant geometric re-
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Figure 5.5: Approximation of the weighted point projection-backprojection using a projection-
constant weighting.

Figure a) shows a particular point within the imaging volume and a few of its projections, Hej .
Figure b) shows several projection weightings in the diagonal weighting D, and a cross-section of
the associated weighted response, H ′DHej . We identify the approximate positions of the point
projection using a small black circle in each projection. Because the point projections are highly
localized, we may approximate the projection weighting using a position-dependent projection-
constant weighting, D̃j , shown in Figure c). The associated weighted response, H ′D̃jHej , is
nearly identical to the unapproximated response, H ′DHej .

sponse, one can show that the weighted projection-backprojection is shift-invariant

(see Appendix A for the 2D continuous case). Thus, for shift-invariant penalties

and projection-constant weights,6 the circulant approximation to the local impulse

response in (5.2) is exact.

Let [H ]′(i,1:P ) denote the ith row of H , and Pa denote the set of measurements in

the projection at angle a. We make the approximation:

H ′DHej ≈
na∑

a=1

∑
i∈Pa

[H ]′(i,1:P )[d̃
j
]a[H ](i,1:P )e

j

= H ′diag
{

C ′
P d̃

j
}

Hej,

= H ′D̃jHej, (5.23)

where [d̃
j
]a represents the position-dependent, projection-constant weighting for the

6The diagonal weights in D are rarely projection-constant. However, it is interesting to note that such weights
can lead to a shift-invariant response.
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ath angle, and the vector d̃
j

denotes the collection of all projection-constant weight-

ings over all na angles. The na×N matrix CP combines measurements within a single

projection angle into a single value and is used to form the new diagonal matrix, D̃j.

The combination matrix can be written as:

CP =

[
IP1

· · · IPna

]′
, (5.24)

where IPa
is an indicator vector where the ith element of the vector is one if the

element belongs in the projection at angle a, and is zero otherwise.

While there are many ways to calculate d̃
j
, elements of this vector can generally be

approximated by some form of position-dependent weighted average. For example,

one simple technique that weights elements of D by the intensity of a point projection

is

[d̃
j
]a =

I ′Pa
DĤej

I ′Pa
Ĥej

, (5.25)

where Ĥ is some form of the system matrix, H . Because we have found that the

approximation in (5.23) is relatively insensitive to the exact weightings, it is often

sufficient to use an approximate Ĥ . In fact, we find using a simple line integral

model without attenuation is often sufficient for Ĥ . Thus, it is straightforward to

precompute and store the necessary weightings to compute D̃j.

Figure 5.5 demonstrates the efficacy of this technique. Figure 5.5a shows a few un-

weighted projections of a single point. Figure 5.5b shows sample projection weights

and a transaxial cross section of the associated weighted response. Approximate

positions of the point projection are indicated with small black circles. We find an

approximate projection-constant weighting based on (5.25), with Ĥ equal to a simple

line integral model with no attenuation. Thus, (5.25) is simply a bilinear interpo-

lation for each projection. (We suspect that an even simple nearest-neighborhood
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interpolation would also be adequate.) Figure 5.5c shows the projection-constant

weights and a cross section of the weighted response. The two transaxial cross sec-

tions are nearly indistinguishable.

Before we discuss the resulting linear operator form of the approximation, we

discuss one additional approximation that further reduces the size of the diagonal

weighting.

Angular Subsampling

Rather than computing the projections, Hej, over all angles, we further approx-

imate the projection (and backprojection) by reducing the number of projection

angles involved. We will divide projection angles into K contiguous blocks, where

a single block combines a neighborhood of ns angles. Letting Sk denote the set of

angles belonging to the kth block, we write

H ′DHej ≈
K∑

k=1

∑
a∈Sk

∑
i∈Pa

[H ]′(i,1:P )[ď
j
]k[H ](i,1:P )e

j

= Hdiag
{

C ′
SC

′
P ď

j
}

Hej.

= Hdiag
{

C ′
PS ď

j
}

Hej,

= HĎjHej, (5.26)

where the combination matrix is defined as

CS = [IS1
· · · ISK

]′, (5.27)

where the indicator vector, ISk
, indicates membership of an angle in the set Sk. We

also define CPS , CPCS .

Again, while there are many ways to approximate the position-dependent weight-

ing vector, ď
j
, we choose approximate weights by simply averaging over angles in
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each set, Sk. Specifically,

[ď
j
]k =

1

ns

∑
a∈Sk

I ′Pa
DĤej

I ′Pa
Ĥej

. (5.28)

The vector, ď
j
, represents a significant decrease in the dimension from the original

weighting, D. Recall that the diagonal matrix D is N ×N , where N is the product

of the number of measurements per projection (i.e.: the number of pixels in each

projection), and the number of projection angles, na. In comparison, ď
j

is contains

onlyK values, whereK is the number of projection angles, na, divided by the number

of angles in each subset, ns.

5.3.5 Simplified Linear Operators

We now combine the simplifications discussed in the previous sections to obtain

a set of linear operators that is practical to implement and store.

Section 5.3.4 discussed two approximations that reduce the dimension of D from

N to K = na/ns. We may calculate the reduced dimension linear operator by

applying the approximations in Section 5.3.4 to (5.21) to obtain

m
(xj ,yj)
k = T jG′diag

{
C ′
PSe

k
}

Ge(xj ,yj ,z0). (5.29)

The projection-constant weighting discussed in Section 5.3.4 eliminates the need

for the projection-domain shift operation introduced in (5.19). Thus, we may now

write7

T jH ′DHej ≈ V jM (xj ,yj)P j ď
j
. (5.30)

The vector ď
j

is formed from joining (5.28) with the attenuation approximation in

7Note that the P j operator has the same function as was described in Section 5.3.3, but now operates on the

smaller vector, ď
j
, which contains projection weights for blocks of angles.
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(5.15). Specifically, the kth element of ď
j

is

[
ď

j
]

k
=

1

ns

∑
a∈Sk

I ′Pa

[
D2

cdiag{Aej}2
D
]
Ĥej

I ′Pa
Ĥej

. (5.31)

In terms of storage, we now have matrices, M (xj ,yj), that are η3 × K. From

Section 5.3.3, we need to store these matrices within only a single slice, or a single-

quadrant of a single slice for orbits with two-fold symmetries. We may further

subsample this quadrant to reduce computational costs. Thus, for elliptical orbit

SPECT, using all these simplifications in conjunction means we must store

1

4

PxPy

n2
d

η3na

ns

(5.32)

floating point numbers. Consider a sample SPECT system that incorporates a 128×

128× 64 image volume and projections over 110 angles. For a sampling of every 4th

image pixel in x and y, a subvolume of 30×30×30, and blocks of 10 angles, we must

store about 76 million floating point numbers. If stored as standard single precision

floating point numbers, this represents about 290 Mb of storage space.

Equations (5.29), (5.30), and (5.31) represent a set of precomputations and the

necessary operations for approximating H ′DHej. While this weighted projection-

backprojection may be of interest for some applications, additional simplifications

can be made when resolution or covariance prediction is the goal. The following

section discusses such simplifications.

5.4 Novel Fast Resolution and Covariance Predictors

5.4.1 Additional Simplifications

To predict resolution or covariance, one can plug the approximation of the weighted

projection-backprojection in (5.30) directly into the resolution or covariance predic-

tors in (5.2) and (5.3). However, further investigation allows us to make additional
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simplifications that reduce both storage and computation time.

Both (5.2) and (5.3) are based on using a circulant approximation to H ′DH .

Because circulant matrices can be diagonalized using Fourier bases, we may find the

eigenvalues of the circulant approximation using Fourier transforms, which allows

one to avoid the full matrix inverse computations in (3.15) and (5.1). Because D

is a diagonal matrix composed of nonnegative elements, the eigenvalues of H ′DH

are necessarily real and nonnegative. It is common to enforce these constraints when

Fourier transforming the (appropriately shifted) weighted response H ′DHej. The

real constraint is typically enforced by ensuring point symmetry through the center

of the response (i.e., voxel j). An equivalent approach is to only use the real part

of the Fourier transformed image. The nonnegativity constraint is often enforced

simply by zeroing any negative components. The same constraints are applied to

the penalty terms in (5.2) and (5.3). Thus, the resolution and covariance predictors

may be written as follows:

ljcirc = F−1

F {ej} � f̃
j

2

f̃
j

1
+ r̃j

 , Covj
circ = F−1

F {ej} � f̃
j

3[
f̃

j

1
+ r̃j

]2
 , (5.33)

where

f̃
j

n
, max

{
re

{
F {H ′DnHej}

F {ej}

}
, 0

}
(5.34)

r̃j , max

re

F
{

R(θ̆)ej
}

F {ej}

 , 0

, (5.35)

and the F {ej} are applied to shift the local impulse response or covariance mea-

surement to the jth voxel. (Equivalently, this may be applied as an image-domain

shifting operation.)

Since the approximation to H ′DHej discussed in Section 5.3 is eventually plugged

into the above expressions, it would be advantageous to include as many of the op-
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erations in (5.34) in the precomputation step as possible. Because the Fourier trans-

form is a linear operation, it is natural to incorporate these operations in M j as

well. Specifically, we may now redefine the operators specified in (5.29) as

m
(xj ,yj)
k = re

{
F
{
T jG′diag

{
C ′
PSe

k
}

Ge(xj ,yj ,z0)
}}

. (5.36)

Noting that the change of coordinates represented by V j is invertible, approximation

(5.30) becomes

re
{
F
{
(V j)−1T jH ′DHej

}}
≈ M (xj ,yj)P j ď

j
. (5.37)

The transformation (V j)−1 appears inside the Fourier transform, which seems to

complicate our task. Fortunately, because the transformation V j is only a renaming

of image coordinates, we may apply the transformation in either image-domain. That

is, it may be applied either before the F {·} operation or after the F−1 {·} operation.

Therefore, we may rewrite the circulant approximation to the predictors as

ljcirc ≈ V jF−1

{
f̌

j

2

f̌
j

1
+ řj

}
, (5.38)

Covj
circ ≈ V jF−1

 f̌
j

3[
f̌

j

1
+ řj

]2
 , (5.39)

with

f̌
j

n
, max

{
M (xj ,yj)P j ď

j
, 0
}
, (5.40)

řj , max
{

re
{

F
{

(V j)−1T jR(θ̆)ej
}}

, 0
}
. (5.41)

Because of the truncation operations, T j, in (5.36) and (5.41), there is an implicit

“centering” about location j and the F {ej} terms of (5.33) are no longer needed.

Consequently, the predicted local impulse response in (5.38) and the covariance pre-

diction in (5.39) are evaluated over a smaller support defined by T j. Thus, in order
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to form even an (approximate) equality with (5.2) and (5.3), these small support

approximations must be embedded into the larger image space. (We have ignored

this embedding in (5.38) and (5.39).)

We have found that M (xj ,yj) generally contains negative values that are important

for prediction. Thus, we cannot apply the negative thresholding in the precompu-

tation step. It must be applied after the operator is applied to P j ď
j
, as shown in

(5.40).

5.4.2 Summary of Computational Burden and Storage

Shift-Variant SPECT

Equations (5.38-5.41) represent the final form of the approximate predictors de-

veloped in this paper. For a typical shift-variant SPECT system,8 these predictors

require storage of a set of matrices, {M (xj ,yj)}, which consist of

1

4

PxPy

n2
d

(η/2 + 1)η2na

ns

(5.42)

floating point numbers. The storage requirements are roughly one-half of that which

is stated in (5.32) since the Fourier transform of a real signal results in coefficients

whose real part is symmetric.

Once the linear operators have been precomputed, the following set of calculations

is required for resolution and covariance prediction: 1) The ď
j

term is calculated via

(5.31). Using a simple line integral model requires approximately 25na floating point

operations (flops). 2) One must calculate (5.40), which takes about 2η3na/ns flops,

due to the application of the linear operator. (We concentrate on the case when

f̌
j

1
= f̌

j

2
= f̌

j

3
, which is a realistic assumption for most SPECT systems.) 3) Lastly,

one must compute the resolution or covariance prediction using (5.38) or (5.39),

8Shift-variant PET systems will have similar storage requirements if the sampling shown in Figure 5.4b is used.
Computational requirements will be slightly larger due to the required rotation operations. However, these may still
be computed relatively quickly since the truncation operator, T j , reduces the support size.
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respectively. This entails a single inverse Fourier transform plus roughly 2η3 flops

for a local resolution prediction and 3η3 flops for a local covariance estimate.

In many cases (5.41) can be computed once, such as elliptical orbit systems with

penalties for which T jR(θ̆)ej exhibits three-fold planar symmetry9 across each coor-

dinate axis. For example, such is the case if the penalty is isotropic. For anisotropic

penalties, one can decompose the penalty into symmetric and asymmetric portions,

which can be formed from a small set of bases precomputed from řj terms. Thus,

(5.41) generally involves relatively little computation.

The remaining computation is in applying a linear operator and a single η×η×η

inverse Fourier transform for each position j of interest. In comparison, recall the

original expressions for the predictors in Section 5.2, which require multiple Px ×

Py × Pz Fourier transform operations, a point projection, and a full backprojection

for every position.

For some prediction tasks, even the single inverse Fourier transform may be elim-

inated. For example, for variance prediction one needs only to calculate the peak of

the covariance function. Thus, one can eliminate both leading transform operations

in (5.39) and simply sum over the η3 Fourier coefficients and perform an appropriate

normalization. Similar simplifications can be made to (5.38) for the contrast recovery

coefficient studied in [95].

Shift-Invariant PET

For a PET system with a shift-invariant geometric response, the storage require-

ments are greatly reduced. Recall that for shift-variant PET systems the system

matrix may be factored such that H = diag{ci}G, where G′Gej is shift-invariant.

Also recall that the precomputed operators, such as the one described in (5.36), are

9It is important not to confuse the orbital symmetries associated with the V j transformations with the point
symmetry through the origin, which is imposed by the real constraint on the Fourier coefficients.
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d DGej

G′DGej

T jG′DGej

C ′
PS ď

j diag
{

C ′
PS ď

j
}

Gej

G′diag
{

C ′
PS ď

j
}

Gej

T jG′diag
{

C ′
PS ď

j
}

Gej

C ′
PS ď

j diag
{

C ′
PS ď

j
}

Gej0

G′diag
{

C ′
PS ď

j
}

Gej0

T j0G′diag
{

C ′
PS ď

j
}

Gej0

Figure 5.6: Application of approximations to a shift-invariant PET system.
The top row of images shows the direct calculation of the weighted response, G′DGej . The center
row shows the calculation of the same weighted response using projection-constant weights (radially
constant weights for the 2D case). Since the PET model has a shift-invariant geometric response,
we may calculate the same weighted response using only projections and backprojections of the
center pixel (shown in the bottom row).

based only on the geometric model, G. Consider the case of a weighted response for

a 2D PET system and radially constant weights (i.e., projection-constant weights).

In Appendix A we show that such radially constant weights lead to a shift-invariant

response under a continuous model. Thus, for a system with approximately shift-
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invariant G′Gej, the weighted response, G′DGej will also be approximately shift-

invariant if D represents a radially constant weighting. Since our linear operators,

like the one in (5.36), are functions of a weighted response with radially constant

(projection-constant for the 3D case) weights, they too will be shift-invariant. There-

fore, for an intrinsically shift-invariant system, only one linear operator needs to be

computed.

This important property of weighted responses is illustrated in Figure 5.6. The di-

rect calculation of a weighted response for PET is shown in the top row of Figure 5.6.

Using the position-dependent projection-constant approximations of Section 5.3.4,

we may calculate an approximate response (which is shown in the middle row of the

figure). Because we have used a radially constant weighting in this approximation,

we may alternately calculate the same (shifted) response using projections and back-

projections at the center pixel. These calculations are shown in the bottom row of

Figure 5.6. The truncated responses in the rightmost column of this figure are nearly

indistinguishable. Since the linear operator technique is simply an efficient way of

calculating the same weighted responses, only the linear operator precalculated for

the center pixel is required.

While the storage considerations for the shift-invariant PET case are greatly re-

duced, the actual penalty design calculation times are typically the same as in the

shift-variant case. This is because the linear operator and the position-dependent

diagonal weighting must still be computed once for each location of interest.

5.5 Fast Penalty Design

In the previous section we discussed fast techniques for evaluating local impulse

responses and covariance estimates. In this section, we discuss methods for perform-



127

ing fast penalty design for resolution control.

5.5.1 Practical Linearized Penalty Design

Recall the constrained linearized penalty design stated in (4.36). This least-

squares design is a function of the B × P matrix, Φj, and the vector, αj, that is

length P . It is the αj term, that requires the most computation due to the weighted

projection-backprojections. Therefore, the methods discussed in Section 5.3 can also

be applied to penalty design.

Taking full advantage of the methods in Section 5.3 requires that the approximated

responses are highly localized in the image-domain. Thus, recognizing that we have

allowed for an arbitrary least-squares weighting in (4.37) and (4.38), we may choose

W j = F−1 {·}, so that (4.37) and (4.38) become:

Φj , F−1
{
diag

{
Lj

0

}
F
{
Bj
}}

(5.43)

=

[
vec
{
lj0(m−mj, n− nj) ∗ ∗ b1(m−mj, n− nj)

}
. . .

vec
{
lj0(m−mj, n− nj) ∗ ∗ bB(m−mj, n− nj)

} ]
(5.44)

and

αj , F−1
{

diag
{
F
{
ej
}}

F
{

H ′D2Hδxj

}}
−

F−1
{
diag

{
Lj

0

}
F
{
H ′D1Hej

}}
(5.45)

= vec
{
δ(m−mj, n− nj) ∗ ∗ image

{
H ′D2Hδxj

}}
−

vec
{
lj0(m−mj, n− nj) ∗ ∗ image

{
H ′D1Hej

}}
, (5.46)

where image {·} an operation that is the opposite of vec {·}, reorganizing a elements

of a vector back into an image. Thus, instead of performing the frequency-domain

design that was described in Section 4.3, we may now perform an image-domain

design. (As in Section 4.2, we have adopted notation for a 2D reconstruction with
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a 2D desired response function, lj0(m,n), and 2D penalty bases, bb(m,n). These

2D functions can easily be replaced with 3D functions for the 3D reconstruction

problem.) Similarly, recognizing that image-domain shifts of both components (Φj

and αj) does not change the least-squares design, we may redefine (5.44) and (5.46)

as

Φj ,

[
vec
{
lj0(m,n) ∗ ∗ b1(m,n)

}
. . . vec

{
lj0(m,n) ∗ ∗ bB(m,n)

} ]
(5.47)

αj , vec
{
δ(m+mj, n+ nj) ∗ ∗ image

{
H ′D2Hδxj

}}
−

vec
{
lj0(m+mj, n+ nj) ∗ ∗ image

{
H ′D1Hej

}}
. (5.48)

Thus, if the desired response lj0 is shift-invariant (which means it is no longer a func-

tion of position j), the “centered” design represented by (5.47) and (5.48), requires

the calculation of Φj0 at a single voxel (i.e., the center voxel, j0). Moreover, if

H ′D2Hδxj
≈ H ′D1Hej (as is often the case for good system models and typical

noise models), we may write a simplified αj as

αj , vec
{(
δ(m+mj, n+ nj)− lj0(m+mj, n+ nj)

)
∗ ∗ image

{
H ′DHej

}}
.(5.49)

Let us consider what typical evaluations of the columns of Φj in (5.47) and αj

in (5.49) look like. Using the shift-variant 2D PET system we will discuss in Sec-

tion 6.2.2, Figure 5.7 shows a typical evaluation of a column of Φj and αj. The

calculation of a single column of Φj is represented in the upper row of images, and a

typical αj evaluation is shown in the bottom row. Because we are typically designing

penalties with small order neighborhoods, the columns of Φ (of which the rightmost

upper image is an example) generally will be localized in a region similar in size to the

desired response, lj0(m,n). Similarly, though H ′DHej can have a modest support

region, αj is often very localized. This is because δ(m,n) − lj0(m,n) typically takes
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Figure 5.7: An example calculation of least-squares penalty design components.
The top row shows the convolution operation for one column of Φ, and the bottom row shows a
typical convolution operation for calculation of the dj term. While the image size for this example
is 170× 170 pixels, the above images are presented zoomed-in for clarity. All images have a linear
colormap except for δ(m + mj , n + nj) − l0(m + mj , n + nj) which has been windowed to show
details.

the form of a high pass filter (for standard choices of lj0) and H ′DHej is generally

smoothly varying.

Similarly, even though there may be some structure in αj far away from the origin,

these regions are arguably less important for the design. As shown in the top right

image in Figure 5.7, far away from the origin, (small neighborhood) penalties have

little influence. Similarly, we expect the approximation in (5.2) to be less accurate

far from position j, which is equivalent to being far from the origin in Φj and αj.

Therefore, only a small region near the origin need be evaluated.

Because these components of the least-squares design are highly localized it is

natural to incorporate the truncation operator introduced in Section 5.3.3 into an

approximation of these terms. Specifically, if the convolution operations are imple-
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mented using Fourier transforms,

Φj = F−1
{
F
{
T jlj0

}
� F

{
T jBj

}}
(5.50)

αj = F−1
{
F
{
T j(ej − lj0)

}
� F

{
T jH ′DHej

}}
. (5.51)

Since the truncation operator implicitly “centers” the design, there is no need for

shifting operations or offsets.

In some cases, such as when the system matrix has been precomputed and stored,

T jH ′DHej may be computed by evaluating partial projections and backprojections.

That is, Hej is “evaluated” by simply reading out a column of H . Similarly, the

partial backprojection, T jH ′, uses only a small subset of columns representing the

neighborhood around location j. Thus, the penalty design represented by (4.36)

using (5.50) and (5.51) can be performed relatively quickly when H has directly

accessible columns. This method for fast design was discussed and applied to shift-

variant PET and SPECT systems in [118].

Moreover, when the penalty design is for uniform resolution with a desired shift-

invariant response given by l0, one may use

Φj0 = F−1
{
F
{
T j0l0

}
� F

{
T j0Bj0

}}
(5.52)

αj = F−1
{
F
{
T j0(ej0 − l0)

}
� F

{
T jH ′DHej

}}
. (5.53)

Additionally, for the NNLS algorithm or the greedy algorithm discussed in Table 4.1,

which is used to solve the constrained least-squares objective, one needs only [Φj0 ]′Φj0

and [Φj0 ]′αj. Thus, the relatively small B × B matrix, [Φj0 ]′Φj0 , needs to be com-

puted only once and takes little space to store. Actual computation times for this

method are discussed in Section 6.3.1 in the application to a 2D SPECT system.
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5.5.2 Evaluating Penalty Design Components using Linear Operators

In many cases, one cannot precompute and store the system matrix. This is

typically true for systems like 3D SPECT, where the size of the system matrix and

its sparsity lead to prohibitively large storage sizes. Thus, these system models

are often implemented as “on-the-fly” routines and system matrix is “stored” as a

procedure. Because these routines do not necessarily admit to fast column access, the

fast penalty design methods from the previous section are not always applicable. In

fact, even in cases where the techniques of Section 5.5.1 may be applied, sometimes

they are still too slow for some applications. Thus, in this section we describe how

one can apply the linear operator methods of Section 5.3 for fast penalty design.

Since the dominant source of computation remains in the evaluation of the weighted

projection-backprojection operators it is natural to incorporate the simplified lin-

ear operator of Section 5.3.5 into the penalty design. Specifically, substituting

T jH ′DHej ≈ V jM (xj ,yj)P j ď
j

from (5.30) into (5.51) yields:

αj ≈ F−1
{

F
{
T j(ej − lj0)

}
� F

{
V jM (xj ,yj)P j ď

j
}}

, (5.54)

where the linear operator is defined with the columns given in (5.29) and the vector,

ď
j
, is given in (5.31). In many cases (5.54) may be used for fast and practical penalty

design.10 However, notice that all the terms to the left of M in (5.54) amount to

another linear operation (which is essentially a linear blurring operation). This

suggests that these operations may be stored in a precomputed operator as well.

Recalling that V j may be applied in either the pre- or post-Fourier transform

image-domain, we may rewrite (5.54) as

αj ≈ V jF−1
{

F
{
[V j]−1T j(ej − lj0)

}
� F

{
M (xj ,yj)P j ď

j
}}

. (5.55)

10We also recognize for the case where the discrete operator, H, is not so well matched with the continuous
operator, H, one may choose to use two separate linear operators for each of the weighted responses in (5.48).
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Thus, one main complication to precomputing a linear operator to approximate αj is

the [V j]−1T j(ej− lj0) term. One alternative is to simply eliminate V j by eliminating

the partial orbital sampling of Section 5.3.3, and sample the orbit completely. (With

the appropriate spatial subsampling, this may be practical. We will discuss this later

in Section 5.5.3.) However, we note that for many desired responses [V j]−1T j(ej −

lj0) = T j(ej− lj0). This, of course, depends on the exact nature of V j and the desired

response. However, V j typically denotes a rotation or flip operation. Thus, for

isotropic desired responses, or other responses with a high degree of symmetry, the

transformation V j has no effect. Therefore, we may approximate αj as

αj ≈ V jM̆ (xj ,yj)P j ď
j
, (5.56)

where the η3 ×K linear operator M̆ (xj ,yj) is defined with columns given by

m̆
(xj ,yj)
k = F−1

{
F
{
T j(ej − lj0)

}
� F

{
T jG′diag

{
C ′
PSe

k
}

Ge(xj ,yj ,z0)
}}

(5.57)

Thus, the αj component of the constrained least-squares design may be almost en-

tirely computed, except for the dependence on the diagonal weighting, D, which

enters (5.56) through the ď
j

term, which is computed via (5.31).

5.5.3 Smaller Design Components and Linear Operators

As mentioned previously, for many algorithms that are used to solve the con-

strained least-squares problem in (4.36), it is sufficient to provide the algorithm with

[Φj]′Φj and [Φj]′αj. Because [Φj]′ also represents a linear operation on αj, this gives

us an opportunity to further precompute design components. Similarly, since Φj only

has B columns (representing the number of penalty basis functions and consequently

the neighborhood size), this should also greatly reduce the storage requirements on

the linear operators.
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Recalling (5.50) and (5.56), we may write

[
Φj
]′
αj ≈

[
F−1

{
F
{
T jlj0

}
� F

{
T jBj

}}]′
V jM̆ (xj ,yj)P j ď

j
(5.58)

=
[
F−1

{
F
{
T jlj0

}
� F

{[
V j
]−1

T jBj
}}]′

M̆ (xj ,yj)P j ď
j
, (5.59)

where we have again assumed that the desired response is sufficiently symmetric to be

insensitive to the transformation operation, [V j]−1. Once again, the V j term poses

some difficulty, since the penalty bases in Bj are generally asymmetric. However,

recalling the parameterization of the quadratic penalty discussed in Section 4.2.3, one

typically selects penalty basis pairs. For example, in (4.22), the horizontal penalty is

represented by both b(−1,0) and b(1,0). Thus, in cases where V j denotes flip operations,

[V j]−1T jBj can be represented by an appropriate column permutation operator, P j
V ,

such that

[V j]−1T jBj = T jBjP j
V . (5.60)

Thus, (5.59) becomes

[
Φj
]′
αj ≈

[
F−1

{
F
{
T jlj0

}
� F

{
T jBjP j

V

}}]′
M̆ (xj ,yj)P j ď

j
(5.61)

=
[
P j

V

]′ [
F−1

{
F
{
T jlj0

}
� F

{
T jBj

}}]′
M̆ (xj ,yj)P j ď

j
, (5.62)

which may be calculated using linear operators as

[
Φj
]′
αj ≈

[
P j

V

]′
M̌ (xj ,yj)P j ď

j
, (5.63)

with columns of the B ×K operator, M̌ (xj ,yj), defined as

m̌
(xj ,yj)
k =

[
F−1

{
F
{
T jlj0

}
� F

{
T jBj

}}]′ ·[
F−1

{
F
{
T j(ej − lj0)

}
� F

{
T jG′diag

{
C ′
PSe

k
}

Ge(xj ,yj ,z0)
}}]

. (5.64)

As mentioned previously, some complications can be removed by performing a

more complete orbital sampling, and eliminating the transformations indicated by
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V j and equivalently P j
V in (5.63). (This does not preclude the type of spatial sub-

sampling where every ndth voxel is sampled, and the remaining positions are inter-

polated.) Because we have developed reduced dimension linear operators that are

only B ×K, it is often feasible to perform such a complete orbital sampling.

Computation and Storage Requirements for Penalty Design

In general, the precomputation phase of the penalty design can be quite compu-

tationally expensive. However, since the precomputation step in (5.64) must only be

performed once for a given system geometry and desired response, these computa-

tions typically do not present a major problem for most applications.

One must store the precomputed design components. For a desired shift-invariant

local impulse response, the storage requirements are generally determined by the

number and size of the precomputed linear operators used for approximating [Φj0 ]′αj.

(There is some additional storage required for the B×B matrix [Φj0 ]′Φj0 .) Thus, for

a shift-variant PET system that is sampled over the entire volume (i.e., no attempt

to use orbital symmetries) with a 3D subsampling on a grid of every ndth voxel:

B

n3
d

PxPyPz
na

ns

(5.65)

floating point numbers must be stored. For a shift-variant elliptical orbit SPECT

system that is subsampled over a single quadrant in one slice:

B

4

PxPy

n2
d

na

ns

(5.66)

floats are needed. Lastly, in an idealized PET system where the geometric response

is shift-invariant only a single B × na

ns
operator is required.

All methods involve application of a B × na

ns
matrix to the position-dependent

weights evaluated via (5.31) at each voxel. While there is some computational cost
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associated with various permutations and transformations, this is generally small.

Additionally, there is a nonnegligible cost in interpolating the matrices for unsampled

positions. (One can alternately, interpolate the design weights themselves, although

this will yield different results since the penalty design is constrained.) Overall, these

methods yield very practical computation times for many applications.

5.5.4 A Scalable Penalty Design

In all of the penalty design methods previously discussed, one must recompute a

new penalty matrix R for every desired response, lj0. For example, one might want

to perform reconstructions with a set of desired responses with different FWHM

resolutions. Each resolution requires a separate R calculation, much of which may

be precomputed as discussed earlier in this chapter. For further simplification, in

this section we present a specific class of desired shift-invariant impulse responses

appropriate for idealized PET systems, which require only a single penalty matrix

computation.

As mentioned below (2.26), for traditional space-invariant penalties, the wjk terms

in (2.26) include the regularization parameter β, which controls the mean global

resolution. For shift-invariant penalties where β is a simple multiplication factor we

may write R = βR0, where R0 specifies the relative penalty strength between pixel

pairs and β controls the mean global resolution. Therefore, it is simple to generate

new R for different desired resolutions. (One does not have to recompute R0.)

Just as the conventional shift-invariant penalty is a simple function of β, we

would like to design the penalty matrix R as a product of a user-selected β and a

β-independent R?, i.e. R = βR?, yet still yields uniform resolution properties. In

terms of our parameterization of R, we would like factorable coefficients such that



136

wj = βvj. Making this substitution into (4.36) yields

ŵj = βv̂j, v̂j , arg min
vj≥0

∥∥βΦjvj − αj
∥∥2
. (5.67)

The penalty matrix R? is completely specified by {vj}p
j=1. However, the minimization

in (5.67) depends on β. We eliminate this dependence by a particular choice of the

target frequency response Lj
0 and the weighting W j in (4.37) and (4.38).

Let us consider the idealized PET system where H = diag{ci}G is an appropriate

system matrix factorization. In this case, the penalty design components in (4.37)

and (4.38) may be written as

Φj = W jdiag
{
Lj

0

}
F
{
Bj
}

(5.68)

αj = W jdiag
{
ej − Lj

0

}
F
{
G′DGej

}
. (5.69)

We will choose the desired response to be equal to the local impulse response of a

penalized unweighted least-squares (PULS) estimator with penalty matrix R = βR0

and with ci’s are all unity. Not only does this choice for a desired response result in

a class of scalable penalties, it closely resembles the responses for conventional PL

estimators, and should be relatively easy to achieve via penalty design. (Recall from

the discussion in Section 4.3.1, that some desired responses are unachievable, or will

require very large penalty neighborhoods.) This response is written:

lj0 = [G′G + βR0]
−1G′Gej. (5.70)

We note that if the ci terms are not unity, we may obtain the same response by

precorrecting the measurement data (by multiplying the data by diag
{
c−1
i

}
) and

performing a PULS reconstruction using only the geometric model, G. If R0 is chosen

to be a space-invariant penalty, the response, lj0, is approximately independent of the

choice of j since G′G is a nearly shift-invariant operator. This particular choice of
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lj0 has a form very similar to the local impulse response in (3.15) and has resolution

controlled by the parameter β.

Using the circulant approximation, we express the desired frequency response as

Lj
0 ≈

F {G′Gej}
F {G′Gej}+ βF {R0ej}

. (5.71)

Similarly we may write

1− Lj
0 ≈

βF {R0e
j}

F {G′Gej}+ βF {R0ej}
(5.72)

For the particular choice (5.70) of lj0, the denominators of (5.71) and (5.72) are

identical. Additionally, β is in the numerator of (5.72) and not in the numerator of

(5.71). If we choose a least-squares weighting of W j = W̆ jdiag{F {(G′G + βR0)e
j}}

the denominators of (5.71) and (5.72) disappear in (5.68) and (5.69), and we can

rewrite the penalty design as

v̂j = arg min
vj≥0

∥∥Φjvj − αj
∥∥2

(5.73)

Φj = W̆ jdiag
{
F
{
G′Gej

}}
F
{
Bj
}

αj = W̆ jdiag
{
F
{
R0e

j
}}

F
{
G′DGej

}
,

where W̆ j is an additional (optional) least-squares weighting. Note that the design

(5.73) is independent of β, as desired.

Once we have calculated the parameters {v̂j}p
j=1 using (5.73), we construct the

penalty matrix R? using (4.19) with wj = βv̂j. This R? has been designed to provide

global isotropic resolution properties and, because of the least-squares weighting

leading to (5.73), R? is independent of the choice of the regularization parameter β.

Therefore, once R? is calculated one may specify a desired global resolution through

β. The penalty matrix is given by the simple relation R = βR?. (A method relating

β to the FWHM resolution is discussed in [32].)
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The computational speed-ups discussed in Sections 5.5.1, 5.5.2, and 5.5.3 can

also be applied to (5.73) by using W̆ j = F {·} and following the same series of

developments.

5.6 Summary

In this chapter we have discussed approximations and observations that allow

one to calculate weighted projection-backprojections with greatly reduced compu-

tation. The key to these fast methods involves factoring the system model into

object-independent and object-dependent portions, and applying a precomputed lin-

ear operator to the object-dependent component. Once these operators have been

precomputed for the object-independent system factors, they may be applied repeat-

edly using far fewer computation, than if the weighted projection-backprojections

were computed directly.

Because the precomputed operators are linear, we may precompute any additional

linear operations (like the Fourier transform) that must be applied to the weighted

projection-backprojections. This leads to fast computation of local impulse responses

and covariance estimates. Similarly, since we have developed a linearized penalty

design technique in Section 4.3, one can precompute relatively small operators that

may be applied very quickly to generate a space-variant penalty. In the next chapter

we demonstrate the use of these operators for resolution and covariance prediction,

and for penalty design for uniform resolution.



CHAPTER VI

Application to Emission Tomography

In this chapter we investigate the performance of the fast predictors and resolution

control methods discussed for penalized-likelihood estimators in Chapters IV and V.

In Section 6.1, we demonstrate the accuracy of our fast resolution and covariance

predictors for a fully 3D SPECT system and a simulated anthropomorphic phantom

with realistic emission rates and nonuniform attenuation coefficients.

In Section 6.2, we demonstrate the application of the penalty design for resolution

control in PET systems. This study includes 2D and 3D systems, systems with shift-

invariant and shift-variant geometric responses, test phantoms and anthropomorphic

phantoms, simulated data and real data, and various versions of the penalty design

techniques discussed in Sections 4.3, 4.4, and 5.5.

In Section 6.3, we demonstrate the application of the penalty design for resolution

control in SPECT systems. In this section we are particularly interested in finding

methods with exactly matched resolution properties, and methods that can provide

uniform resolution across a wide range of desired responses.

6.1 Validation of the Fast Resolution and Covariance Predictors

In this section, we present a study on fast resolution and covariance predictors for

penalized-likelihood image reconstructions. Predictors based on the circulant approx-

139
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imation in Section 5.2.1 have been used extensively. Thus, the goal is not to validate

that approximation, but to investigate the various other approximations that were

discussed in Chapter V. Specifically, we are interested in the SPECT attenuation

approximation in (5.14) and the truncation and reduced angle approximations.

We have seen previously in Figure 5.6 that the approximated weighted projection-

backprojections for PET are nearly indistinguishable from the direct evaluations.

In fact, under certain conditions (projection-constant weights and a shift-invariant

geometric response), we know that the PET approximations will be exact. Because

we can observe slight differences in the approximated weighted responses for SPECT

systems (recall Figure 5.1), it seems more likely that the local impulse response and

covariance predictions could be inaccurate in that case. For that reason we present a

SPECT investigation on the validity of the resolution and covariance predictors that

use the fast techniques of Chapter V. We demonstrate that our fast predictions are

highly accurate and we compare the performance of our resolution and covariance

predictors versus more traditional predictors and estimators on a simulated fully 3D

SPECT system.

6.1.1 3D SPECT system and object model

The SPECT model includes 128 projection angles and 128 × 30 pixel projection

views with 4.5 mm pixels. The image volume is discretized into 128 × 128 × 30

voxels, where each voxel is a 4.5 mm cube. The SPECT camera follows an elliptical

orbit with a 283 mm radius on the x-axis and a 220 mm radius on the y-axis.

The SPECT detector model includes a depth-dependent Gaussian response that is

1.75 mm FWHM at the face of the collimator and increases linearly with a slope of

0.044 as the distance to the collimator is increased. When the camera aims along

the x-axis, this slope corresponds to a FWHM of about 14.2 mm at the center of the
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Figure 6.1: 3D digital anthropomorphic phantom used in the 3D SPECT simulation studies.
The anthropomorphic phantom simulates a 99mTc bone scan, with high activity in the bones and
kidneys. A central transverse slice of the emission image and the attenuation map is also shown.
The orbit of the SPECT camera is indicated by the black ellipse. Additionally, five positions are
indicated with + marks for the investigation of resolution and covariance predictors.

field of view.

We chose to simulate a human abdomen 99mTc bone scan using the Zubal phantom[2,

144]. We modified this phantom to include an attenuating table and resampled the

data onto a 4.5 mm grid. Figure 6.1 displays this phantom data. We assigned relative

emission rates of 3.0 to the spine, rib cage, and kidneys, 1.5 to the long bones in the

arms, 3.0 to the long bone marrow, and 0.5 to the remaining soft tissue background.

The attenuation map used attenuation coefficients appropriate for 140 keV photons

with 0.23 cm−1 for bone, 0.15 cm−1 for all soft tissues, and 0.18 cm−1 for the table.

We generated simulated SPECT measurements from the above phantom and sys-

tem model. All studies used pseudo-random Poisson measurement data with a mean

of 500,000 counts per slice, including a 20% known uniform background level (the ri
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terms in (2.7)) to approximate the effects of scatter.

6.1.2 Reconstruction

We applied the penalized-likelihood estimator in (2.24) for reconstructing the

emission images from the measurement data. The penalized-likelihood objective

was maximized using an ordered-subsets paraboloidal surrogates iterative approach

[29, 27, 28]. The algorithm was initialized with a filtered backprojection reconstruc-

tion. Following many iterations using 16 subsets, we applied convergent single subset

iterations, to ensure a nearly converged solution. For the penalty function we use a

shift-invariant first-order quadratic penalty with the regularization parameter cho-

sen to yield a spatial resolution of about 2 cm at the center of the field of view. For

this penalty, the resolution at the edge of the object was about 4.5 mm. The recon-

struction model matches the projection model exactly and used the true attenuation

map.

6.1.3 Resolution Prediction

For the above SPECT system with Poisson measurements, the local impulse re-

sponse of the penalized-likelihood estimator is given in (3.15) with diagonal compo-

nents,1

D1 = D2 = diag

{
1

Ȳi(θ)

}
. (6.1)

The “traditional” slow approach to computing the local impulse response is to eval-

uate (3.15) iteratively. We initialized iterations with an impulse at the response

position and used 500 conjugate gradient iterations to estimate the response. This

yields a well-converged estimate. We compare this approach to the fast predictions

described in Section 5.4. For all fast predictions, we used the precomputed linear
1For the diagonal in (6.1), we have assumed that the blur due to the system model is much greater than the blur

induced by regularization of the estimator. Thus, Ȳ (θ) ≈ Ȳ (θ̆).
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operators given in (5.36). The predictors were applied using the modified diagonal

elements in (5.31).

Because the resolution properties of SPECT systems are space-variant, we investi-

gated the resolution at several positions in the object. These positions are identified

with + marks in the left two central slice images in Figure 6.1. From left to right,

we label these positions: “Rib,” “Left kidney,” “Center,” “Soft tissue,” and “Right

elbow.”

For the first resolution investigation, we used precomputed operators with a

30 × 30 × 30 subvolume (i.e., η = 30 in (5.42)) and 32 blocks of 4 angles. We

stored operators within a single quadrant of the elliptical orbit and used a spatial

subsampling with nd = 6. Operators for unsampled positions are formed using bi-

linear interpolation. Thus, the precomputed and stored operators may be stored as

single precision floating point numbers in approximately 125 Mb.

Figure 6.2 compares the local impulse responses at four different locations. The

left set of figures compares local impulse responses calculated at the “Rib” position.

Transverse, sagittal, and coronal slices of the 3D response are shown for the iteratively

calculated response (top row) and for our fast prediction (middle row). The bottom

row shows profiles through each axis of the iteratively calculated response (dashed

line) and the fast prediction (solid line). The right set of figures shows axial profiles

for three more points. (None of these locations coincide with operator sampling

positions. Thus, all fast predictions are based on interpolated operators.) The local

impulse responses are space-variant and anisotropic with coarser resolution near the

center of the field of view. Despite the multiple approximations and subsampling,

our predictions are very close to the iteratively calculated responses. This is true

even for the “Rib” position where the attenuation map changes rapidly near the
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evaluation position.

Assuming the A and Ĥ matrices in (5.31) have been precomputed and loaded,

the Matlab implementation of the resolution predictor used to compute the above

predictions, takes roughly 1/15 of a second to compute a single local impulse response

on an 800 Mhz Pentium III computer. For comparison with the “traditional” slow

iterative approach, we note that a single projection operation, Hθ, implemented

as an “on-the-fly” procedure in an efficient compiled C program takes more than a

minute on the same computer.

The required size of the precomputed operators depends on a number of factors

including the desired accuracy of the approximation, available storage, desired com-

putation speed, the space-variance of the system, and the space-variance due to the

object. We present two studies where the size of the operators are varied and briefly

discuss the associated trade-offs.

We first studied the local impulse responses at the five positions shown in Fig-

ure 6.1 using operators computed with a range of support sizes. Specifically, cases

where 603, 303, 203, and 143 voxels are stored. All angles are stored (i.e., 128 blocks)

and the locations are sampled positions (therefore no interpolation of operators is

performed). The results of this investigation are presented in Figure 6.3.

Most support sizes give remarkably similar predictions across the supported pix-

els, even for the smaller support sizes where there is significant truncation of the

local impulse response function. However, there are some noticeable differences for

the smaller support sizes. Specifically, with additional truncation there are growing

mismatches in the sidelobe behavior shown in the profiles for the center pixel’s re-

sponse. Similarly, for the smallest subvolume, a mismatch in the peak value of the

local impulse response begins to be evident. We quantify this local impulse response
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Comp.
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603 871 ms 4.3% 3.6% 5.0% 7.4% 4.7%
303 109 ms 4.8% 4.1% 5.0% 7.8% 6.5%
203 32 ms 7.1% 4.2% 5.0% 12% 8.1%
143 13 ms 8.0% 7.1% 5.4% 13% 9.5%

Figure 6.3: Resolution prediction with varying support size.
The plots above show profiles through the X, Y, and Z axes of the 3D local impulse response at the
center voxel with a support size of 603 voxels (+), 303 voxels (◦), 203 voxels (�), and 143 voxels (4).
The iteratively computed response is also shown (dashed line). The table summarizes normalized
error and computation time for resolution predictions at various locations and support sizes.
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mismatch for the five locations in the table in Figure 6.3, where we have defined the

normalized error as

maxk

∣∣∣l̂jk − ljk

∣∣∣
maxk

∣∣ljk∣∣ · 100%, (6.2)

where ljk denotes elements of the local impulse response at the jth location, as calcu-

lated by the “traditional” iterative approach, and l̂jk denotes elements of the response

as calculated by the fast approach. We also list the computation time for a single

local impulse response evaluation for each support size. Since it appears that rela-

tively good approximations can be made within the stored support, one may only

need to store voxels over a region slightly larger than the desired portion of the

response. This not only saves storage space for the precomputed operators, but

also decreases prediction computation time by greatly reducing the dimension of the

matrix multiplications.

We performed a second study, where the support size is held constant using 303

voxels and the angular subsampling is varied with 128 blocks, 16 blocks, 8 blocks,

and a single block. Figure 6.4 summarizes these results. For the coarser angular

sampling, there are significant differences in the sidelobe behavior. These differences

are most noticeable in the negative sidelobes in the X profile for the two coarsest

samplings. These mismatches should be most pronounced in locations that differ

from the geometric response in a very anisotropic fashion. The degree of mismatch

will of course depend on the particular angular sampling and the properties of the

object and system geometry. For this particular object and geometry, using only

8 blocks still yields approximations with less than 10% normalized error. We note

that the “Rib” location generally has higher errors than the other locations. This is

most likely due to the rapid local changes in attenuation, which are less likely to fit

the approximation made in (5.14).



148

−10 −5 0 5 10
−2

0

2

4

6

8

10

12

14

16
x 10

−3

X (pixels)
−10 −5 0 5 10

−2

0

2

4

6

8

10

12

14

16
x 10

−3

Y (pixels)
−10 −5 0 5 10

−2

0

2

4

6

8

10

12

14

16
x 10

−3

Z (pixels)

Summary of Normalized Errors

Angular
Blocks

Comp.
Time

Center Left
Kidney

Right
Elbow

Rib Soft
Tissue

128 109 ms 4.8% 4.1% 5.0% 7.8% 6.5%
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1 48 ms 21% 15% 15% 19% 20%

Figure 6.4: Resolution prediction with varying angular sampling.
The plots above show profiles through the X, Y, and Z axes of the 3D local impulse response at
the center voxel with 128 blocks (+), 16 blocks (◦), 8 blocks (�), and a single block (4). The
iteratively computed response is also shown (dashed line). The table summarizes normalized error
and computation time for resolution predictions at various locations and angular samplings.
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One other adjustable value is the coarseness of the operator position sampling

represented by nd. We have found that one can use a fairly coarse sampling (nd = 6),

since the (unweighted) geometric response varies very smoothly. Finer sampling helps

reduce interpolation computations. However, the required sampling is quite coarse,

and ultimately depends on the particular system geometry.

6.1.4 Covariance Prediction

We also investigated local covariance predictions. We compared the fast predicted

covariance functions versus empirical covariance functions estimated from 500 noisy

reconstructions. As with the resolution predictors, we use the precomputed operators

given in (5.36) in conjunction with the modified diagonal elements stated in (5.31).

We use the covariance equation given in (5.39) and the diagonal weighting D3 = D1,

as in (6.1). We used the same operator dimensions and subsamplings as in the initial

resolution investigation.

Figure 6.5 presents the empirical covariance functions and the predicted covari-

ance functions for four positions in the digital phantom. The variation in the sample

covariances is quite evident in the image slices and the profiles. Thus, we have in-

cluded error bars on the sample covariance estimates (based on an assumption of a

Gaussian distribution of the reconstructed image values). These error bars indicate

plus and minus one standard deviation of the covariance estimate. The covariance

predictions appear quite accurate over these four positions, lying within the error

bars for most locations. It seems likely that these predictions would be sufficiently

accurate for typical applications such as making variance images or evaluating com-

puter observer performance.

We performed one final investigation of the accuracy and speed of the predictions.

We calculated a variance image for the central slice of the 3D phantom. We used
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precomputed operators with 123 voxels and 16 blocks of 8 pixels. We stored oper-

ators with nd = 1 over a single quadrant (within the elliptical orbit). This takes

approximately 160 Mb of storage space.

We used the variance predictor discussed in Section 5.4.2, which eliminates the

inverse Fourier transforms. We applied the scaling technique developed by Qi in [96]

in an attempt to account for the effects of nonnegativity constraint on the recon-

structed images. Figure 6.6 shows the predicted and empirical standard deviation

images. Sample standard deviations were calculated using the 500 noisy reconstruc-

tions (left image) and the fast predictors (center). We also show a central horizontal

profile of the standard deviations, which have been normalized to be a percentage

of the warm background in the phantom. Plus and minus single standard deviation

error bars on the sample variance estimates are also shown.

The predictions agree very well with the sample variance estimates. The regions

with the greatest disagreement appear to be the regions where the nonnegativity con-

straint is active. This suggests that the post-computation correction factor developed

in [96] does not fully model the nonnegativity constraint.

Given the precomputed matrices specified by (5.36) and the precomputed bilinear

interpolator, Ĥ in (5.31), the entire (single slice) standard deviation image was

computed in less than 20 seconds using a Matlab implementation on an 800 MHz

Pentium III processor. Thus, the variance of the entire volume can be predicted

in less than 10 minutes. We expect that efficient routines written in a compiled C

program would be significantly faster.

The prediction speed is a function of the size and sampling of the precomputed

operators, M j. Thus, the speed is directly related to how many precomputations

one is willing to store. We have demonstrated that accurate predictions can be made
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Figure 6.6: A comparison of standard deviations predicted for the 3D anthropomorphic phantom.
This figure shows the central slice standard deviation images created from calculating the sample
standard deviation of 500 3D reconstructions, and from our fast variance predictor. A horizontal
profile shows the sample standard deviation values (dashed line) with error bars and the predicted
values (solid line).
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for practical storage sizes (e.g., better than 10% error with 125 Mb of storage for

the sample SPECT system we have investigated), but the exact trade-off must be

specified by the user’s requirements on the accuracy and speed of the predictions.

The fast predictors we have developed are most appropriate for situations that

require repeated predictions for a static system geometry. Such situations include

object-dependent penalty design like that discussed in Chapter IV and in [95], where

predictions are required for every voxel. Without fast techniques for resolution and

noise prediction, these penalty designs methods would be too slow for practical imple-

mentations. Similarly, such fast predictors are also important for the study of com-

puter observers [11], where repeated covariance estimates may be required. While

these fast techniques have focused on emission tomography, many of the general ideas

may be able to be extended to other imaging systems.

6.2 Resolution Control for PET Systems

In this section, we apply the penalty design methods of Chapter IV to PET

systems. Specifically, we concentrate on the goal of uniform resolution. We also use

many of the practical techniques discussed in Chapter V to design penalties with

reasonable computation times.

6.2.1 2D PET with Shift-Invariant Geometric Response

We first apply our penalty design with the goal of uniform resolution to an ideal-

ized PET system that has a shift-invariant geometric response. After calculating the

penalty, we performed a local impulse response investigation comparing the relative

resolution uniformity of different estimators and regularization schemes.

We return to the system model discussed at the end of Section 3.4.1 with the

digital phantom shown in Figure 3.5. We have already shown local impulse response
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maps for a conventional first-order shift-invariant penalty in Figure 3.6 and for the

certainty-based penalty of [41] in Figure 4.1. To obtain these local impulse responses,

we approximated the solution of (3.15) using 40 iterations of a coordinate ascent al-

gorithm initialized with a circulant approximation of the solution. In this section

we do the same for our proposed penalty. In addition, we show local impulse re-

sponse maps for FBP and PULS to demonstrate the relative uniformity. We have

implemented the PULS estimator using measurement data that is precorrected for

nonuniform ci terms, so that the estimator has a global response given by (5.70).

Local Impulse Responses

We present two versions of our penalty: (1) the CNLLS penalty of (4.32) com-

puted using a BFGS quasi-Newton method[89], and (2) the computationally efficient

linear operator approach in conjunction with the β-independent design discussed in

Section 5.5.4 and stated in (5.73). Moreover, for the second approach, we found con-

strained penalty coefficients using the greedy approach outlined in Table 4.1. The

desired response is chosen to be the PULS response given in (5.70) where R0 repre-

sents the conventional first-order shift-invariant penalty represented by the filter in

(4.21). Both of our proposed designs used a second order neighborhood with eight

basis functions (for the eight nearest pixel neighbors2). FBP used the apodizing

window discussed in [32] to match the PULS target response. All reconstruction

methods and penalties were designed with a target resolution of 4.0 pixels (1.2 cm)

FWHM resolution. (The relationship between global FWHM resolution and β, and

how to calculate β is discussed in [32].)

Figure 6.7 shows the local impulse response map for the penalized-likelihood es-

2We have not included the 0th-order magnitude penalty in this penalty design. We have included a basis function
for the magnitude penalty in some studies; however, the penalty design almost always results in a zero coefficient for
this basis. Thus, in most circumstances this basis can be eliminated.
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Figure 6.7: Local impulse response map for a PLE with the CNLLS penalty.
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Figure 6.8: Local impulse response map for a PLE with the fast proposed penalty.
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Figure 6.9: Local impulse response map for FBP.
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Figure 6.10: Local impulse response map for PULS with a conventional first-order penalty.
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timator using the CNLLS penalty. The contours for these responses are nearly radi-

ally symmetric and close to the 4.0 pixel FWHM target resolution for pixel locations

within the phantom. Outside the phantom the local impulse responses are more

irregular. However, these responses are arguably less important since there are few

counts outside the image and there is “nothing to smooth.” Figure 6.8 presents the

responses for the proposed computationally efficient method. The local impulse re-

sponse contours are also quite symmetric and the average FWHM resolution is very

close to the target resolution of 4.0 pixels. Again, the responses outside the object

are more irregular. Additionally, note the close agreement between the CNLLS and

proposed penalty’s responses. The responses are quite similar (particularly inside the

phantom). Both these techniques provide much improved spatial uniformity inside

the phantom over the conventional shift-invariant penalty shown in Figure 3.6 and

the certainty-based penalty in Figure 4.1.

The local impulse responses for FBP are shown in Figure 6.9 and for the precor-

rected PULS in Figure 6.10. These responses are nearly perfectly symmetric. Recall,

our proposed penalty is designed with a target response given by the PULS response

(5.70). We see that this response is indeed nearly shift-invariant. Additionally, the

responses for FBP and PULS are nearly identical, which is expected since we have

designed the FBP window to match the FBP response to the PULS response. Inside

the phantom the proposed responses nearly match the PULS responses.

As a quantitative assessment of the resolution uniformity, we calculated the mean

absolute radial deviation of the 50% contour from the 2.0 pixel half-maximum target

radius. Then we calculated the average value of this deviation over a set of sample

locations within the phantom. We performed these calculations over four pixel sets:

Set A consists of all pixels within the digital phantom object; Set B contains roughly
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C D

B

A

Pixel Set
Estimator A B C D
PLE: Conventional 0.29 0.26 0.27 0.23
PLE: Certainty-Based 0.33 0.26 0.31 0.20
PLE: CNLLS Penalty 0.19 0.10 0.06 0.08
PLE: Proposed Penalty 0.24 0.12 0.07 0.09
Filtered Backprojection 0.02 0.02 0.02 0.02
PULS 0.05 0.05 0.05 0.05

Figure 6.11: Summary of resolution uniformity in shift-invariant PET for different estimators.
The mean absolute radial deviations in the FWHM contours of the local impulses responses for
various methods applied to the PET reconstruction of the object in Figure 3.5. Uniformity over the
following regions are presented: (A) All Phantom Pixels, (B) Interior Pixels, (C) Cold Disc Pixels,
and (D) Hot Disc Pixels.

80% of the interior pixels of the phantom excluding the outer edge pixels; Set C

contains all pixels in the cold disc; and Set D contains all pixels in the hot disc.

These results are summarized in Figure 6.11. All values are in pixels. The certainty-

based penalty and the conventional penalty have the greatest deviation, while the

CNLLS penalty and the proposed penalty are more uniform. The improvement in

uniformity with these penalties is more dramatic for the interior pixels (sets B, C,

and D), indicating that these penalties provide less uniform resolution at the edges of

the phantom. FBP and PULS have the lowest deviations with no variation between

sets.

Comparing the Proposed Penalties

In this local impulse response investigation we have seen that the CNLLS penalty,

and the penalty calculated using linear operators with the greedy constraint approach

yield very similar results. We present the actual penalty coefficients for these two

penalty designs in Figure 6.12. These two designs produce very similar coefficients;

however, there are some discrepancies between the two sets of coefficients. However,

despite the differences between the two designs, we have seen that the local impulse

responses for the two methods are very similar. This indicates that the fast penalty
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Figure 6.12: Comparison of calculated penalty weights for the CNLLS penalty and the penalty
computed using the fast linear operator approach.

The four interpixel weightings associated with a second-order penalty are shown for both methods.
Note the logarithmic color scale. White regions indicate a value of zero.

design using linear operators is a practical method. In fact, while the computation

of the CNLLS design for this problem took about two hours, the application of

the design using precomputed linear operators took less than two seconds (on a

266 MHz Pentium II processor using an efficient C program). For comparison, a single

reconstruction on the same machine using 30 iterations of the SAGE algorithm[38]

took about 20 seconds. Because the precomputation step requires only a single linear

operator for this intrinsically shift-invariant system, the precomputations took only

23 seconds.

While the precomputed operator technique represents a method that is fast enough

to use in practical situations, both this method and the CNLLS penalty yield local

impulse responses that still have residual anisotropy. Returning to the penalty co-

efficients shown in Figure 6.12, we see that the nonnegativity constraints are quite

active. It appears that the nonnegativity constraints may be preventing full resolu-

tion control. Thus, we have attempted to use the relaxed constraints of Section 4.4

to provide increased resolution uniformity.
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Relaxed Design Constraints

To use the relaxed design constraints from Section 4.4, we have applied the heuris-

tics following (4.41) to the same shift-invariant PET system and test phantom in

Figure 3.5 and the same PULS target response discussed previously. Figure 6.13

shows the resulting “constraint map” over a large portion of the image area for this

particular study. The figure shows all the loop-type constraints of (4.40) using tri-

angles to connect the constrained penalty coefficients. The remaining coefficients

which are not shown are constrained using the simple nonnegativity constraint. We

have used a larger penalty neighborhood than the previous studies. Specifically, we

have used a pixel neighborhoods including the 20 nearest neighbors. (Recall that the

Fourier constrained “toy” problem in Figure 4.3 required a fairly large neighborhood

to show significant improvement.)

Once the constraint map has been calculated, we perform the penalty design rep-

resented by (4.41) using a sequential quadratic programming algorithm[111, 110].

Figure 6.14 shows the penalty coefficients3 for one particular direction (i.e., the hor-

izontal penalty) for both the traditional nonnegativity constraints and the proposed

relaxed constraints. (Both methods used a 20 pixel neighborhood.)

The upper half of each image shows the positive weight values and the lower half

shows the negative values. For the individual nonnegativity method, there are no

negative values and the lower half is blank. All those positions colored white indicate

a zero weight. In comparison, the design with the proposed relaxed constraints does

include negative weights. Additionally, if one visually combines the top and bottom

halves of the right image, there are relatively few positions that are zero (i.e.neither

3We note that these penalty coefficients are slightly different than those shown in Figure 6.12. This is due not
only to the larger penalty neighborhood, but also because the system model is slightly different. Specifically, the
model used here does not include random detector efficiencies. However, other than that, the models are identical.
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Figure 6.14: Comparison of calculated penalty weights for the nonnegatively constrained penalty
and the penalty using relaxed constraints.

The vertical interpixel weightings for each method are shown. Positive values are indicated in the
upper half of each image, and negative values in the lower half. The color scale is logarithmic and
values that are zero are shown as white in both halves.

positive nor negative). Other weighting “directions” show similar results.

After designing quadratic penalties using the two different constraint choices, we

found the resulting local impulse responses. Local impulse responses for one partic-

ular location are shown in Figure 6.15. This position, is the same position shown in

Figure 4.3 that was used for the “toy” design problem, where resolution anisotropy

persisted even after the application of a penalty designed using the individual non-

negativity constraints. Local impulse responses for both the old and new constraint

choices are shown in Figure 6.15. Specifically, we present the 20%, 40%, 60%, 80%,

and 99% contours of the local impulse response for not only the nonnegatively con-

strained design and design with relaxed constraints, but also the responses for the

conventional shift-invariant penalty and the certainty-based penalty of Section 4.1.1.

The local impulse response using the proposed relaxed constraints shows contours

(particularly the innermost contour) that are closer to the desired response for which

the penalty was designed (indicated by the dashed contours). While the nonnega-

tively constrained design shows increased blur in a slightly off-vertical direction, the

relaxed design shows improved isotropy of the response. Thus, the increased design

flexibility of the proposed constraints yields improved resolution uniformity.



163

50 55 60

16

18

20

22

24

26

28

Conventional 1st−Order

50 55 60

16

18

20

22

24

26

28

Certainty−Based 1st−Order

50 55 60

16

18

20

22

24

26

28

NNLS Design (20 Neighbors)

50 55 60

16

18

20

22

24

26

28

Relaxed Design (20 Neighbors)

Figure 6.15: Illustration of the relative resolution uniformity using the relaxed design constraints.

The above images show contours of the desired local impulse response (dashed) and actual local
impulse response (solid) for various penalties including the proposed design using the individual
nonnegativity constraints and the relaxed design constraints.

Most local impulses throughout the image show either similar improvements or

performance as good as the individual nonnegativity constraints. Indeed, we expect

that the proposed constraints should yield a design no worse than the nonnega-

tively constrained design, since the nonnegative solution is in the feasible region of

the proposed constraints. However, there are a few locations where there are slight

degradations in the uniformity. We suspect that such degradations are the result of

the suboptimal greedy iterative optimization approach used to calculate the weights.

Such results may be due to incomplete convergence of the design optimization, or

limit cycles. It is possible that some kind of regularization (i.e.: smoothing of the

weight values between iterations) might decrease these effects. It may also be possi-

ble to develop an alternative optimization approach that is less susceptible to such

problems. However, it should also be noted that these effects are generally relatively

small, and that the uniformity improvements outweigh the degradations.

While the relaxed constraints lead to a penalty design with increased design flexi-

bility, the uniformity improvements are somewhat marginal, especially in light of the

increased complication of the penalty design. Because the relaxed design requires

iterative solution, it takes a few hours to find a constraint map and to perform the
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subsequent penalty design. Moreover, while the relaxed design yields improvement

in some regions, the relatively large anisotropy found at the edges of the phantom do

not change appreciably from the nonnegatively constrained design. Thus, we suspect

the relaxed design method is inappropriate for many practical applications.

The relatively large anisotropy at the edges of the phantom appears to be a

very difficult nonuniformity to correct. We suspect that designing for uniform lo-

cal impulse responses in these regions requires either a combination of very large

penalty neighborhoods and relaxed constraints, or such responses are fundamentally

unattainable with this kind of penalized-likelihood reconstruction (recall that from

the discussion in Section 4.3.1, some responses may not be achievable). While recon-

structions can be visually improved by truncating penalty coefficients at the edges, or

by designing for a finer resolution at the edges, the uniform resolution goal appears

difficult or impossible to attain using this kind of penalized-likelihood estimation.

Sample reconstructions of an Anthropomorphic Phantom

While the local impulse responses shown previously may be used to quantitatively

identify the degree of resolution uniformity, it is often the images themselves that

are the point of interest. Thus, we return to the anthropomorphic torso phantom

that was shown in Figure 3.2 and discussed in Section 3.2.2

We reconstructed the noiseless emission measurements using FBP, penalized un-

weighted least-squares, and penalized-likelihood estimators with the conventional,

certainty-based, and (linearized) proposed penalties. All statistical methods enforced

nonnegativity of the image and negatives in the image reconstructed via FBP were

set to zero. All methods used a target FWHM resolution of 3.0 pixels (1.25 cm). For

PULS and PL with conventional regularization, the penalties were chosen so that

R0 corresponds to the shift-invariant first-order penalty represented by the filter
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a) b) c)

d) e)

Figure 6.16: Reconstruction of a 2D PET thorax phantom using various reconstruction methods.
We reconstruct simulated data from the phantom in Figure 3.2 using a) filtered backprojection,
b) Penalized unweighted least-squares, c) Penalized-likelihood with conventional regularization,
d) Penalized-likelihood with certainty-based penalty, and e) Penalized-likelihood with the proposed
penalty.

in (4.21). The proposed penalty uses the β-independent design (5.73) with second-

order bases, and the same target R0 as PULS, and is applied using the (single) linear

operator approach.

The reconstructions using these methods are presented in Figure 6.16. The FBP

reconstruction in Figure 6.16a has uniform resolution properties. This is evident

from the uniformly smooth edges and radially symmetric tumors. Similarly, the

PULS reconstruction in Figure 6.16b shows the expected nearly identical results.

(Recall the nearly identical local impulse responses of FBP and PULS in Figures 6.9

and 6.10.) The PL reconstruction using conventional regularization is shown in Fig-

ure 6.16c. There is significant distortion of the four round “tumors” (particularly in

the lungs) in this reconstruction. These hot spots are preferentially blurred verti-

cally and appear elliptical. Another indication of resolution nonuniformity is evident

at the outer boundaries of the arms. These boundaries are sharper than those in

FBP and PULS. The reconstruction with certainty-based penalty in Figure 6.16d

shows some improvement. Most notably, the outer edges of the arms are smoothed
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Figure 6.17: A space-variant small animal PET system.
The above PET system model has physical characteristics chosen to simulate the MicroPET rodent
scanner. In the above image, rays connecting every 10th detector are shown. Both nonuniform
sampling and varying detector response due to crystal penetration are incorporated in this model.

in a more uniform fashion. However, the tumors are still smoothed preferentially

in the vertical direction. Figure 6.16d shows the PL reconstruction with our pro-

posed penalty. The resolution uniformity appears much improved over the other PL

methods. The tumors appear nearly radially symmetric and the edges appear more

uniformly smoothed, although some anisotropy at the edges remains.

6.2.2 2D PET with Shift-Variant Geometric Response

We have also applied our penalty design technique to a space-variant small animal

PET system. Specifically, we have modeled a MicroPET rodent scanner. This system

has 2 mm (square) by 10 mm crystals in 30 8 × 8 blocks. The full field of view of

170×170, 1 mm pixels, is modeled using finite integration of over all angles and pixels,

and includes crystal penetration effects. Figure 6.17 shows responses for detectors
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Figure 6.18: The small animal PET system with a simulated rat phantom.
This figure shows the attenuation map for a transverse slice of a rat’s lower pelvis and thighs, where
the animal takes up a very wide field-of-view. The emission image is uniform, except for a hot lesion
in the location indicated by the white circle.

pairs over regular intervals. Both the nonuniform sampling and the space-variant

detector responses are evident in this figure.

Figure 6.18 shows a sample digital phantom placed in the scanner. This image

shows the attenuation map for a digital rat phantom in a slice at the bottom of the

pelvis, where the rat takes up a very large portion of the field of view. This data

was obtained by manually segmenting MRI data obtained from [1]. The attenuation

values are 0.0096, 0.013, and 0.010 mm−1 for the soft tissue, bone, and the table,

respectively, and correspond to appropriate values for 512 keV photons. The emission

image has a uniform background with emission rate of 1.0, and a single circular lesion

in the right half of the phantom with an emission rate of 2.0 (indicated in Figure 6.18

by the white circle). Projections contain 10 million counts with 5% percent random

coincidences.
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A)

B)

C)

D)

Figure 6.19: Local impulse responses in shift-variant PET reconstructions.
This figure shows contours of the local impulse responses for A) filtered-backprojection, B) PL with
space-invariant penalty, C) PL with proposed penalty, and D) post-smoothed ML. Contours are
superimposed on the emission image to show position.
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Figure 6.19 presents local impulse response contours for four different reconstruc-

tion methods. These contours are made at the 25%, 50%, 75%, and 99% levels of

the target response. The target response was chosen to be the PULS response at the

center of the field of view (recall PULS will not yield shift-invariant responses for a

shift-variant system; however, at the center of the field of view, the response is highly

symmetric) with β such that the response has a FWHM resolution of 4.0 mm. The

local impulse response contours are superimposed on the rat slice emission image so

that the position of the responses are apparent. We performed FBP reconstruction

by radially resampling the cylindrical projections (arc correction). And although the

system is shift-variant, we again used the least-squares filter of [32] in an attempt to

match resolution properties. Figure 6.19A shows responses for FBP, which, while rel-

atively well-matched at the center, have reduced peaks toward the edges, indicating

coarser resolution properties as expected.

In contrast, the responses arising from conventional PL (shift-invariant first-order

penalty) shown in Figure 6.19B are narrower at the edges. There are competing

effects in PL reconstruction. While the system model suggests decreased resolution

at the edges due to the detector responses, there is actually finer sampling at the edges

(in effect better conditioning the reconstruction than if uniformly sampled data were

acquired). However, for emission tomography, the FWHM resolution of conventional

PL varies inversely with ray certainty. Thus, at the edges, where ones obtains lower

count measurements and thus increased certainty (under the Poisson model), one

expects decreased (finer) resolution. While these competing effects actually appear

to yield more uniform resolution than if the system model were idealized to have

uniformly sampled projections, the effects of attenuation are clear in the responses,

resulting in greater vertical smoothing.
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Figure 6.19C shows contours for PL with the proposed space-variant (second-

order) penalty. The responses are very uniform in the interior of the object, but

degrade near the edges and outside the object. In general, the proposed technique

yields more uniform results than conventional PL. If more uniform results are desired,

a larger order penalty neighborhood may be required, or relaxed design constraints

of Section 4.4 may need to be applied.

Lastly, we present the contours for the case of post-smoothed ML in Figure 6.19D.

These responses are very uniform throughout the image and are very well matched

to the target response. We find the greatest uniformity and the ability to match a

target response with the post-smoothed ML and proposed PL techniques.

6.2.3 3D PET with Shift-Invariant Geometric Response

We have also used our penalty design methods on a 3D PET system with a shift-

invariant geometric response (i.e., no truncation of projections). In order to evaluate

the 3D design, we used the anthropomorphic phantom presented in Figure 6.20.

This phantom is 86 × 86 × 32 with 5mm pixels. The PET system model used 32

transaxial rotation angles covering 360◦ and 9 axial “tilt” angles covering -15 to 15

degrees. Attenuation effects are also modeled using the previously mentioned linear

attenuation coefficients appropriate for 512 keV photons in the lungs, soft tissue, and

bone.

For the desired response, we chose a PULS response. If one chooses a conventional

uniform first-order 3D penalty represented by the filter in (4.23), the response gener-

ally will not be radially symmetric due to incomplete sampling of the spherical data.

Usually not all axial “tilts” from −90◦ to 90◦ are included, leading to less intrinsic

smoothing in the axial direction. The geometric response tends to be isotropic in the

transaxial planes, since the image space is uniformly sampled in transaxial angles.
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Figure 6.20: 3D PET simulated thorax phantom with sample locations for a local impulse response
investigation.

In this case one often splits the penalty into in-plane and cross-plane portions. For

example, using the filter representation, the penalty is
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The βxy term controls the in-plane resolution and βz controls the smoothing between

planes. Therefore, we choose βxy and βz to make the desired PULS response have

isotropic smoothing with 3.3 pixel FWHM resolution.

Sample Reconstructions

To compare the conventional penalty versus our proposed penalty we use a mod-

ified version of the phantom presented in Figure 6.20, that has a spherical hot spot
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Figure 6.21: Sample reconstruction of the 3D PET thorax phantom using a conventional penalty
and the proposed penalty.

These reconstructions use the 3D thorax phantom of Figure 6.20 with the addition of a single hot
spot in the lung.

added to the left lung region. From this phantom we obtained noiseless projections

and reconstructed the image volume using the following two methods: (1) a con-

ventional penalty with a kernel of the form given in (6.3), where βxy and βz are

chosen to be the same as the PULS values, and (2) the proposed 3D penalty with

26 basis functions filling the 3x3x3 cube and a desired response equal to the PULS

response. Slices of this reconstructed volume using the two penalties are presented

in Figure 6.21.

In the reconstruction that uses the conventional penalty, the nonuniform smooth-

ing properties of the estimator are evident. The spherical hot spot has been stretched

vertically in the transaxial slice and horizontally in the sagittal slice. Compare this

to the reconstruction using the proposed penalty. With the proposed penalty re-

construction, the hot spot is nearly radially symmetric in both the transaxial and

sagittal slices.
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(a) Local impulse responses in the lung region

(b) Local impulse responses in the heart region

(c) Local impulse responses in the liver region

Figure 6.22: Local impulse response investigation for three points in the 3D PET phantom.
These points lie in the (a) lung, (b) heart, and (c) liver. For each location, the half-maximum surface
of the 3D local impulse response is plotted for reconstruction using a PWLS with conventional
penalty, a PWLS with proposed penalty, and PULS with conventional penalty. Additionally, slice
contours are presented on the planes passing through the coordinate axes.
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3D Local Impulse Responses

In addition to the noiseless reconstructions, we performed a local impulse response

investigation. In Figure 6.20, we have identified three locations for this investigation;

(1) a voxel in the right lung, (2) a voxel in the heart, and (3) a voxel in the liver.

This investigation compares three different methods: the conventional penalty and

the proposed penalty used in 3D sample reconstructions earlier in this section, and

the PULS response that was used as a desired response. The results of this investiga-

tion are presented in Figure 6.22. As in the 2D local impulse response investigation

discussed earlier in this section, for locations in the interior of the phantom, the pro-

posed penalty yields increased resolution uniformity with responses closely matching

the PULS objective.

6.2.4 Reconstruction of Real PET Data

All of the reconstructions shown up to this point have been performed on simulated

data. In this section we show the reconstruction of PET data acquired from a CTI

921 ECAT EXACT scanner. The CTI PET system was modeled using equally spaced

strip integrals. Data were acquired with 1.5 million counts per slice from a phantom

prepared with several hot spheres and a warm background.

We performed 2D reconstruction of this data using various methods and a target

response equal to the “natural” response of (5.70) with 1.2 cm FWHM resolution. We

show these reconstructions in Figure 6.23. Figure 6.23a shows the filtered backpro-

jection reconstruction. While the spheres are generally fairly symmetric, the image

appears significantly noisier than the other reconstructions. Figures 6.23b and c

show penalized-likelihood estimates using a conventional shift-invariant penalty and

the certainty-based penalty of Section 4.1.1. Both of these reconstructions exhibit
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(a) Filtered Backprojection (b) PL - Shift-Invariant Penalty (c) PL - Certainty-Based Penalty

(d) PL - Penalty Design (e) Post-Filtered ML

Figure 6.23: Rconstructions of PET data from a CTI 921 ECAT EXACT scanner using various
reconstruction methods.

nonuniform resolution properties with the cross-sections of the spheres appearing

elliptical. In comparison, consider the penalized-likelihood reconstruction with our

penalty design4 for uniform resolution shown in Figures 6.23d. The resolution in this

image is highly uniform and the spheres are very symmetric except for the leftmost

sphere, which is not symmetric in any of the reconstructions. (This could possibly

be due to noise or model mismatches.) Lastly, a post-filtered maximum-likelihood

estimate is shown in Figure 6.23e. This estimate also has very uniform resolution

with slightly better uniformity at the edges (see rightmost sphere). Thus, we see

that our penalty design can be successfully applied to real data to provide nearly

4Specifically, we used the efficient scalable design procedure of Section 5.5.4.



176

uniform resolution properties.

6.3 Resolution Control for SPECT Systems

In this section we concentrate on applying our penalty design techniques to

SPECT systems, which are inherently shift-variant. We pay particular attention

to what methods can provide uniform resolution and how to exactly match the res-

olution properties of two different methods.

6.3.1 2D SPECT

For our SPECT investigation we return to the 2D SPECT model of Section 3.2.3

with a depth-dependent Gaussian response, and the “cold rod” phantom in Fig-

ure 3.3. Recall from Section 5.5.1, when the system matrix is precomputed, we

have direct access to the columns of H . Since this is the case for our simulated 2D

SPECT system, we may apply the “truncated” design5 represented by (5.52) and

(5.53) without using linear operators or the associated precomputations.

A Brief Discussion of Penalty Computation Times

Before discussing the resolution properties of various reconstruction techniques,

we first demonstrate the feasibility of the proposed “truncated” design in terms of

computation time. Table 6.1 lists computation times for the space-variant penalty

for this SPECT system using a gcc-compiled ANSI C implementation of the design

discussed in Section 5.5.1. For comparison, the time to complete a single projection-

backprojection, (i.e., H ′Hθ), is approximately 1.5 seconds. We present results for

two different support sizes and four different spatial subsamplings (i.e., evaluating at

every ndth pixel and filling in the penalty coefficient gaps by interpolation). Due to

5Generally the linear operator approach will yield penalties faster than the “truncated” design approach. However,
if one does not wish to perform such precomputations and one has direct access to the columns of H, then this method
is often still quite practical (as we demonstrate here).
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Table 6.1: Calculation times for the proposed penalty on an 800 MHz Pentium-III processor.

Spatial Subsampling 20× 20 Support 12× 12 Support
1 128 s 60 s
2 33 s 16 s
3 15 s 8 s
5 6 s 4 s

zero padding6 and the use of radix-2 FFTs, the 20×20 support size uses 32×32 FFTs

and the 12×12 support uses 16×16 FFTs. All methods used a second-order penalty,

incorporating the eight nearest pixels. The computation times are very reasonable,

particularly for the larger subsampling values.

SPECT Reconstructions

For our resolution investigation we would like to compare a number of different

methods and to match the resolution properties of those methods as closely as pos-

sible. Since different methods have different resolution properties and are generally

at least slightly shift-variant, we have attempted to match resolution as closely as

possible for the center pixel in the image.

Furthermore, we have chosen the following target impulse response,

l0 = [H ′H + R0]
−1H ′Hej0 , (6.4)

where we have selected a conventional space-invariant penalty and j0 denotes the

center pixel in the image. Equation (6.4) represents the local impulse response for

a conventional penalized unweighted least-squares reconstruction. We evaluate this

target response (6.4) using iterative techniques. This response is also essentially

radially symmetric since the response lies at the center pixel for a SPECT model

6Technically the zero padding applied these cases is insufficient to completely eliminate wrap-around effects from
periodic convolution. However, because the H′DHej responses are fairly smooth (especially at the edges) and
the blur operation uses a high pass filter, we accept small amount of wrap-around in the penalty design to reduce
computation.
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A) B) C) D)

E) F) G) H)

Figure 6.24: Noiseless 2D SPECT reconstructions using various estimators.
A) True emission image, B) FBP with uniformity correction using the frequency-distance principle
and attenuation correction, C) Truncated OSEM, D) PL with standard space-invariant penalty,
E) (Subsampled) true image smoothed with desired blur, F) Post-smoothed ML, G) PL with mod-
ified penalty, and H) the hybrid post-smoothed PL approach of Section 6.3.2.

that incorporates a circular orbit, and since the object is a centered, uniformly at-

tenuating, disc-shaped object. For R0 in (6.4), we chose a standard penalty matrix

that uses a first-order neighborhood with four equal penalty weights and a weighting

chosen to yield a FWHM resolution of 10 mm.

Choosing the target response (6.4) allows one to match exactly the reconstruc-

tion resolutions for many methods since it represents a form achievable by many

penalized-likelihood and filtering methods. Figure 6.24E shows the true image down-

sampled to 128× 128 and blurred with the target response (6.4).

Figure 6.24 shows images reconstructed from noiseless projections of the cold rod

phantom using a variety of techniques. Figure 6.24B shows a filtered-backprojection

(FBP) reconstruction using the frequency-distance principle to correct for nonuni-

form resolution[135] and Chang-type attenuation correction[19]. Because the nonuni-

form detector response cannot be completely eliminated by frequency-distance prin-
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ciple filtering, we use the following approach to match the resolution properties with

the target response in (6.4).

When the response of an estimator, such as FBP, is known, and does not match

(6.4) perfectly, one can force a match by applying post-filtering. The overall response

is then a combination of the estimator response and the post-filter. Specifically,

loverall(m,n) = lest(m,n) ∗ ∗ lpost(m,n), (6.5)

where loverall(m,n), lest(m,n), and lpost(m,n) represent the overall response, the re-

sponse due to the estimator, and the post-smoothing filter, respectively. Thus, given

an overall desired target response and the estimator response, one can find the ap-

propriate post-smoothing filter by

lpost(m,n) = F−1

{
F {loverall(m,n)}
F {lest(m,n)}

}
. (6.6)

Depending on the form of lest(m,n), it may not be possible to obtain any overall

desired response because of zeros in the frequency-domain. However, one can find

approximate post-filters for a wide range of overall desired responses.

Therefore, even though ramp-filtered FBP with the frequency-distance-based uni-

formity correction yields an imperfect response, we match the overall target response,

(6.4), by using a post-filter calculated from (6.6). Because the ramp-filtered FBP

estimator generally yields space-variant results, we match the target response only

at the center pixel. That is, we find lest(m,n) for the center pixel by propagating an

impulse through the ramp-filtered FBP estimator, and find a single shift-invariant

post-filter using (6.6) to match the target response. The resulting reconstruction,

shown in Figure 6.24B, has relatively good resolution uniformity, but suffers from

ringing artifacts, most noticeable at the edges of the object.
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Figure 6.24C shows a reconstruction using an ordered subsets expectation max-

imization (OSEM) algorithm with 10 subsets. We initialize the algorithm with a

uniform image and perform nine iterations. Starting with a flat image and using

only a few iterations is sometimes used as a noise-control technique, since higher

spatial frequencies generally take more iterations to appear in the image estimate.

The resolution properties are highly nonuniform, and only roughly matched even at

the center due to the poor (object-dependent) resolution control available with this

method.

Figure 6.24D shows a standard penalized-likelihood reconstruction using a space-

invariant penalty. We may write an approximate local impulse response for this

estimator at the center pixel as

lj0PL = [H ′DH + βR0]
−1H ′DHej0 . (6.7)

However, for the center pixel in this particular phantom the diagonal weighting

denoted by D is very uniform and the response (6.7) is indistinguishable from

lj0PL ≈ [dH ′H + βR0]
−1dH ′Hej0

= [H ′H +
β

d
R0]

−1H ′Hej0 , (6.8)

where d denotes the uniform diagonal weighting. Thus, using the same penalty, R0,

as in (6.4) with an appropriate scaling β, we have matched the center pixel’s response

nearly exactly. We estimate the solution with 200 iterations of an ordered subsets

version of De Pierro’s algorithm[22] with 10 subsets, initialized with an FBP recon-

struction, followed by 20 iterations with one subset. For typical image reconstruction

problems, this represents many more iterations than are generally necessary to form

a good image estimate. However, we would like a solution that is well-converged so

that we may guarantee that any resolution mismatches (or, noise mismatches later in



181

Section 7.2) are due entirely to the objective function, not to insufficient convergence

of the algorithm used to find the estimate. While the resolution properties for the PL

estimate in Figure 6.24D are nearly exactly matched at the center, the nonuniform

resolution properties away from the center are clearly evident.

Figure 6.24F is a reconstruction using a post-smoothed ML technique, using

200 OSEM iterations (10 subsets) initialized with an FBP image, followed by 20 EM

iterations to ensure a nearly converged solution. Since we have post-smoothed with

the desired target response in (6.4), the resolution properties are essentially exactly

matched, as seen by comparing Figure 6.24E and Figure 6.24F.

Lastly, we applied our proposed space-variant penalty, using 200 iterations of the

ordered-subsets De Pierro’s algorithm (10 subsets), initialized with an FBP image

and followed by 20 iterations using one subset. Figure 6.24G shows the reconstruc-

tion resulting from our penalty design using the 20 × 20 support with no spatial

subsampling. The resolution properties are virtually exactly matched at the center

since the target response is easily achieved using the space-variant design. That is,

because a space-invariant penalty achieves this response, the space-variant design

easily achieves the same response. The global resolution properties are mostly very

uniform, with some mild nonuniformities at the object edges, where approximation

(3.20) is less accurate.

Using the other choices of support size and spatial subsampling shown in Table 6.1

yielded nearly identical results in the interior of the object. Significant nonuniformity

was noticeable only at the edges of the object when using coarser spatial subsampling.

One could use a region-dependent subsampling of positions in (4.36) to sample more

finely at the object edges to provide nearly the same results with fast computation.
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Local Impulse Responses

We also investigate the resolution properties various techniques for this SPECT

system by evaluating7 the local impulse response at a variety of locations and compare

them to the target response. Such a sampling of responses is shown in Figure 6.25.

The local impulse responses are contoured at four levels indicating the 25%, 50%,

75%, and 99% levels of the target response.

The relatively narrow responses of conventional PL are evident away from the

center of the object in Figure 6.25B. In contrast, the uniformity-corrected FBP, PL

with the space-variant penalty, and post-smoothed ML, shown in Figures 6.25A,

6.25C, and 6.25D, respectively, yield very uniform responses. That is, the responses

show a high degree of symmetry and spatial uniformity, and the response peaks and

contours are closely matched to the target in (6.4). The response of the center pixel

(shown in the lower right corner of each subfigure) is indistinguishable from the target

response for all these methods. (We do not present local impulse responses for OSEM

with truncated iterations; however, we would expect very nonuniform responses that

have mismatch even at the center pixel.) Post-smoothed ML appears to have the

best uniformity, whereas our proposed PL method shows very slight asymmetries at

the edges of the object.

While post-smoothed ML appears to yield more uniform resolution properties

than the proposed PL technique, we find that there are still resolution nonuniformi-

ties for the post-smoothed ML techniques. When we investigate the the resolution

properties of conventional ML with no filtering through a systematic evaluation of lo-

cal impulse responses, we find that the FWHM resolution of the responses varies from

7For most statistical methods we evaluate (3.15) using iterative techniques (we choose 100 iterations of a coordinate
ascent algorithm initialized with the target response). For ML techniques where the invertibility conditions for (3.15)
may not hold, we use the techniques described in [133], where the emission image is perturbed with an impulse, and
differences in reconstructions with and without the perturbation are obtained. For linear techniques like FBP, we
simply propagate an impulse response through the system to find the local response.
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A) B)

C) D)

Figure 6.25: Local impulse responses for various methods in shift-variant SPECT.
This figure shows responses for A) Uniformity and attenuation-corrected FBP, B) PL with space-
invariant penalty, C) PL with proposed penalty, and D) post-smoothed ML. Each estimator tries to
match a 10.0 mm FWHM target at the center of the field of view. All responses are superimposed
on the upper left quadrant of the phantom to illustrate the sample locations for these impulse
response.

about 3 mm at the edges of the phantom to nearly 7 mm at the center. This is an in-

dication that the system matrix, H , is rank-deficient, and the ML estimator cannot

resolve single pixels. Thus, the post-smoothed estimates must also have nonuniform

resolution properties. For relatively large target responses, the post-smoothing blur

dominates and these nonuniformities are very small (as we have seen for the 10.0 mm

target). However, for smaller desired responses, simple post-smoothing will not yield

the desired target. However, we can adopt a post-filter approach that compensates

for the intrinsic blur of the ML estimator by applying (6.6).

We use (6.6) to find a post-smoothing filter for ML for a target response of the

form in (6.4) with a FWHM resolution of 7.7 mm. Figure 6.25 shows local im-

pulse responses for the 7.7 mm target for the proposed PL estimator and for the
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A) B)

Figure 6.26: SPECT local impulse responses for a 7.7 mm FWHM target.
A) PL with proposed penalty and B) post-smoothed ML.

post-smoothed ML approach. Despite matching the target response at the center

pixel (lower right corners in each subfigure in Figure 6.26), the ML approach clearly

yields nonuniform resolution properties with narrower responses toward the edges.

In comparison, the PL approach yields more uniform results.

In summary, the only 2D SPECT reconstruction methods presented here that

yield nearly uniform resolution properties are post-smoothed ML (for larger FWHM

targets), the proposed PL approach, and FBP with frequency-distance corrections.

We compare the noise properties of these methods in Section 7.2.

6.3.2 A Hybrid Regularization Approach

An interesting alternative to choosing between post-smoothed ML and the space-

variant PL approaches is to use both! One can use a hybrid method that includes a

degree of regularization that keeps responses fairly uniform and increases convergence

rates for iterative algorithms, and then apply a post-smoothing filter to set the overall

target resolution. This approach is attractive for a number of reasons. Using the PL

approach keeps the responses uniform even for fairly small target responses. Post-
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smoothing will generally reduce any of the remaining resolution nonuniformities,

and can be applied quickly for a number of desired FWHM resolutions or responses

without additional iterative reconstructions. And, convergence rates are increased

over the unregularized ML approach, reducing computation.

This hybrid post-smoothed PL approach can implemented easily, using (6.6) to

find the appropriate post-smoothing filter for a desired overall response. In this

case, the lest term represents the “first-pass” resolution induced by the penalized

like-likelihood objective. For our proposed space-variant penalty, lest is equal to the

“first-pass” target response. Figure 6.24H shows a sample reconstruction using this

technique for the SPECT problem. For this hybrid estimator, we apply our PL

approach with a target of the form in (6.4) with a 7.7 mm FWHM, followed post-

filtering via (6.6) using same overall target as the other methods shown in that figure.

One can see the increased uniformity as compared with the non-hybrid PL approach

in Figure 6.24G.

6.4 Summary

In this chaper we have demonstrated the fast resolution and covariance prediction

methods discussed in Chapter V. These methods are fast and accurate, and can be

applied to large shift-invariant tomographic systems like 3D SPECT. Similarly, we

have demonstrated the fast penalty design methods of Chapter V produce highly

uniform resolution properties comparable to the slower design methods (i.e., the

CNLLS penalty) of Section 4.3.3. These methods are practical for both shift-invariant

and shift-variant imaging systems, including 2D and 3D, PET and SPECT systems.



CHAPTER VII

Noise Performance of Uniform Resolution Estimators

In this chapter we discuss the relative performance of different reconstruction

methods. In particular, we are interested in the noise properties of the images pro-

duced by different methods. In Section 7.1 we investigate the noise properties of a

shift-invariant PET system, by looking at standard deviation images, bias-variance

curves, and correlation images. Because we have found that the noise properties of

an image are very closely tied to its resolution properties, we perform noise studies

in Section 7.2 on SPECT estimators that are very carefully resolution matched. This

study includes a discussion of the performance and the advantages and disadvantages

of various uniform resolution reconstruction methods.

7.1 PET Studies

We begin our noise investigation with a study of the noise properties of images

from the shift-invariant PET system and digital phantom in Figure 3.5.

7.1.1 Variance in Reconstructed Images

To form sample standard deviation images, we simulated 400 noisy measurement

realizations for the digital phantom in Figure 3.5. The PET model included 10%

random coincidences and averaged 1 million counts per realization.

186
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We reconstructed each of these 400 realizations using 30 iterations of the SAGE

algorithm [39] with the same regularization methods used in the resolution properties

investigation in Section 6.2.1. For all of the statistical methods except the CNLLS

penalty, we use the noisy measurements, Y , for calculation of R. Because of the

extensive computation time associated with calculation of the CNLLS penalty, the

noiseless, Ȳ were used. (i.e.: The same penalty based on the noiseless measurements

was used for all realizations.)

The results of this noise investigation are presented in Figure 7.1. The sample

standard deviation images are shown on the left side of the figure. Horizontal and

vertical profiles of these images are shown in the remaining plots. The horizontal

profile is taken through the image center and the vertical profile is taken through the

center of the cold disc. These profiles are represented by dotted lines in the images.

Pixel standard deviations in these plots are expressed in terms of a percentage of the

background ellipse intensity. If one included error bars on these plots, the error bars

would be smaller than the plot markers. Therefore, we have eliminated the error

bars for clarity. For conventional regularization, the standard deviation estimate is

nearly uniform. FBP and PULS generally have the highest standard deviation and

the certainty-based penalty have the lowest standard deviation. Not only do FBP

and PULS share similar resolution properties, but also similar noise properties. The

close agreement in standard deviation between the proposed method and the CNLLS

penalty further justifies our computationally efficient design technique.

At first glance, it appears that uniform resolution properties come at the price

of a variance increase as compared with the certainty-based penalty. However, the

certainty-based penalty and the proposed penalty have different resolution properties.

The certainty-based reconstruction often has a greater maximum diameter of the
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local impulse response (compare Figure 4.1 and Figure 6.8). This can be interpreted

as increased smoothing, and therefore yields reconstructions with lower variance.

7.1.2 Bias-Variance Curves

We would like to produce a resolution-noise curve comparing the relative perfor-

mance of these two methods over a range of target resolutions, but this is difficult be-

cause they have different resolution properties. Using the angularly averaged FWHM

as a resolution metric (cf [41]) unfairly handicaps estimators with isotropic resolution

properties.1 Estimators with anisotropic responses can reduce noise by smoothing

“optimally” in each direction while maintaining the same average FWHM as an esti-

mator with isotropic responses. Rather than creating resolution-noise curves where

each point on the curve corresponds to a single resolution value and a single stan-

dard deviation, we created “banded curves” as follows. For the ordinate, we used

the sample standard deviations of pixel values in images reconstructed from 400

noisy sinogram realizations, for each of several target spatial resolutions. For each

target resolution we also computed the local impulse response and found the small-

est and largest diameters of its half-maximum contour. We specified the abscissae

in the banded plot as the interval between the minimum and maximum diameters.

For each pixel location and target resolution, these plots describe the (single) pixel

standard deviation value as well as the range of spatial resolutions spanned by the

local impulse response. A method with isotropic resolution properties would appear

as a single line in such plots, whereas a method with a highly anisotropic response

appears as a thick band.

We calculated such trade-off curves for four pixel positions. The curves for the

conventional and proposed penalties are shown in Figure 7.2. The lighter band

1The angularly averaged FWHM resolution also ignores the tails of the response which can have a large effect on
the bias.
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Figure 7.2: Banded bias-variance curves for a conventional penalty and our proposed penalty.
This figure shows the resolution/noise trade-off for penalized-likelihood emission image reconstruc-
tion with conventional (◦/dark) and proposed penalties (+/light). The four locations for which
these curves are plotted are shown in the lower right figure.

with “+” symbols on the border represents the resolution/noise trade-off curve for

the proposed regularization, while the darker band with “◦” symbols on the border

is the curve for reconstruction with conventional regularization. (The light band

partially obscures the dark band; however, the borders are marked by symbols and

lines so that the degree of overlap is visible.)

We also produced a banded resolution/noise trade-off plot using the certainty-

based regularization of [41]. Since the certainty-based technique produced a curve

nearly identical to the conventional regularization, we have omitted the plot. Similar

behavior was observed in [41] using a mean FWHM resolution criterion. Essentially

this means each pixel simply moves up or down its resolution/noise curve to the
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specified resolution. This is another indication that the certainty-based method does

not yield isotropic resolution properties. While the average FWHM resolution may be

improved, the local impulse responses are still anisotropic yielding a wide resolution

band in our banded resolution/noise trade-off curves.

In Figure 7.2 the banded curves for the proposed penalty span a small resolution

range (i.e., the curve is thin horizontally), indicating isotropic smoothing properties

relative to the conventional penalty. If our design were ideal, minimum and max-

imum FWHM resolution would be identical and we would have a line instead of

a band. Note that the proposed penalty band lies inside the conventional penalty

band. If the proposed penalty band laid above the conventional penalty band over

the same resolution interval, then the proposed penalty would arguably have worse

noise properties. The proposed penalty band generally lies in the center of the con-

ventional penalty band. However, this is not the case for the pixel (45,33) in the cold

disc. Note that the local impulse response for the conventional penalty at this pixel

is especially asymmetric (see Figure 3.6) having the largest difference between the

min and max FWHM resolutions. If this local impulse response yields an “optimal”

kind of smoothing (with its predominantly vertical orientation), it is logical that

an isotropic response would decrease the variance little with additional horizontal

smoothing (note that max resolution for the conventional local impulse response is

very close to the 4.0 target). Using this rationale the proposed penalty bands for

the other pixel locations lie roughly in the middle of the conventional penalty’s band

since the local responses for these points are less asymmetric (with the max resolution

greater than 4.0 and min less than 4.0 pixels). The isotropic response reduces the

max resolution and increases the min resolution as compared with the conventional

response. The “optimal” smoothing of the conventional response is arguably not so
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Figure 7.3: Relative noise performance of FBP and PL estimators.
This figure shows a histogram demonstrating the distribution of the ratio of the pixel standard
deviation using filtered backprojection (σFBP) to the pixel standard deviation using a PLE with
the proposed penalty (σPL).

directionally dependent in this case and an isotropic response can provide roughly

the same variance. While these two methods have different resolution properties, it

appears that our penalty design has not adversely affected the noise properties of

the estimator.

7.1.3 Comparing Estimators with Approximately Matched Resolutions

It is difficult to compare globally our proposed penalty with the conventional and

certainty-based methods for an entire image reconstruction because they possess dif-

ferent resolution properties for every pixel. On the other hand, FBP and the proposed

penalty both yield nearly the same local impulse responses, so a comparison seems

more appropriate. Since these methods have nearly the same resolution properties,

we should be able to identify which provides better global noise properties. Note,

particularly in the vertical profile in Figure 7.1, that reconstructions based on the

proposed penalty often have lower variance than FBP.

There are a few points in Figure 7.1 where the standard deviation estimate is

slightly greater for the proposed penalty. To illustrate the relative global noise prop-
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Figure 7.4: Correlation maps for various estimators for 2D PET.
This figure shows sample absolute correlation maps for pixel (65,49) using the following estimators:
a) Filtered backprojection (FBP), b) Penalized unweighted least-squares (PULS), c) PLE with
conventional regularization, d) PLE with certainty-based penalty, e) PLE with proposed penalty.

erties of FBP and the PLE with the proposed regularization, we generated a his-

togram of the relative variances. For each pixel in the object, we calculated the ratio

of the sample standard deviation at that pixel using filtered backprojection (σFBP) to

the sample standard deviation at that pixel using the PLE with the proposed regular-

ization (σPL). For pixels where σFBP/σPL is greater than one, filtered backprojection

has higher standard deviation. This histogram is shown in Figure 7.3. The vertical

dashed line indicates the position where this ratio equals one. For nearly every pixel

the PLE with the proposed regularization produces lower variance estimates and, for

those pixels that have higher variances the difference is only slight. More than 50%

of the pixels have over a 20% reduction in reconstructed pixel standard deviation.

Although it appears that the PL approach has better noise performance than FBP,

we know these methods are not perfectly resolution-matched. Therefore, particular

care should be taken in interpreting these results. In Section 7.2 we concentrate on

SPECT reconstructions that are nearly exactly resolution matched.



194

7.1.4 Correlation Investigation

In addition to the variance investigation, we present a brief correlation investi-

gation. We have included a set of typical correlation maps in Figure 7.4 for FBP,

PULS, and the PLEs with conventional, certainty-based, and proposed penalties.

These maps represent the absolute value of the correlation between each pixel and

pixel (65,49). FBP and PULS have nearly identical correlation maps (particularly

inside the object). The PLEs with conventional and certainty-based penalties have

similar correlation maps, but are noticeably different due to the different resolutions.

The proposed method is shown in Figure 7.4e. The structure of the correlation imme-

diately surrounding (65,49) is quite similar to FBP and PULS, having lost the nearly

isotropic effect of the other PLEs. This behavior is somewhat counter-intuitive since

PLEs usually have much narrower correlation sidelobes than FBP and PULS.

We have seen that the PL approach with our proposed penalty has noise properties

that are similar to methods like PULS and FBP. The variance properties of our PL

approach appeared only marginally better than FBP and PULS for this particular

shift-invariant PET system and object. We believe more significant differences can be

found in shift-variant systems, where it is often more difficult to reconstruct images

with uniform resolution properties. The next section addresses such a system.

7.2 SPECT Studies

In this section we consider the performance of various estimators that are ap-

plied to an intrinsically shift-variant SPECT system. We first must identify es-

timators with nearly exactly matched resolution properties. We have found that

simply matching FWHM resolution is insufficient for comparison, as the sidelobe

behavior and overall shape of the response can greatly affect the noise performance.
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Recalling the investigations in the Section 6.3.1, the only uniform resolution meth-

ods we have investigated with well matched responses are uniformity-corrected FBP,

post-smoothed ML, and our proposed PL technique. Additionally, we know that

these methods are not globally exactly matched. However, in practice we can match

these methods at (at least) one pixel by choosing to post-smooth the ML and FBP

approaches using (6.6) and a target response equal to the estimated PL response.

Thus, we can very nearly exactly match the local impulse response at, for example,

the center pixel. Other pixel positions will generally be only approximately matched.

7.2.1 Variance of Estimators with Exactly Matched Resolution

Returning to the SPECT model of Section 3.2.3 with the “cold rod” phantom

of Figure 3.3, we performed 400 noisy reconstructions for the uniformity-corrected

FBP techniques (using the frequency-distance principle filtering method), our PL

approach, and the post-smoothed ML method. For these techniques we applied the

same reconstruction algorithms as were applied in Section 6.3.1. This was performed

over a range of target resolutions with FWHM from 7.7 mm to 17 mm, using the

target response of (6.4). No targets below 7.7 mm were calculated because even

unpenalized ML yields a response of about 6.9 mm at the center pixel. This minimum

resolution represents a barrier for both methods since the PL method approaches the

ML estimate for small target resolutions. We chose the post-filters for the FBP and

ML techniques using (6.6) over the entire range of targets. Thus, the resolution

properties are essentially exactly matched for all methods at the center even for the

smaller target responses.

Figure 7.5 shows standard deviations for the center pixel for these methods. One

standard deviation error bars are shown for each estimate. The plots for the pro-

posed PL approach and the post-smoothed ML estimates are nearly identical with
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Figure 7.5: Noise/resolution trade-off for exactly matched SPECT estimators.
This figure shows standard deviations for the uniformity-corrected FBP (+), the penalized-
likelihood (◦), and the post-smoothed maximum-likelihood (×) techniques for the center pixel
where the local impulse responses are exactly matched over a range of target FWHM resolutions.

small differences well within the error bars. Thus, in terms of variance the methods

appear to have the same noise performance when the spatial resolutions are care-

fully matched. In contrast, the FBP approach suffers from increased noise in the

reconstructions.

Covariance Study

We also study the covariances in the reconstructions. Covariance functions are

arguably a more important feature than variances for evaluating different methods

with specific tasks in mind. (For example, many computer observer models re-

quire the covariance functions to assess performance.) We calculated the sample

covariance function for the center pixel for the uniform resolutions methods using

the 400 reconstructions. These covariances are shown in Figure 7.6 for 7.7 mm,

10.0 mm, and 15.0 mm targets. The plots for the post-smoothed ML and our pro-

posed PL approaches are nearly indistinguishable. Thus, for this system and target,

the post-smoothed ML and PL approaches have essentially the same noise perfor-
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Figure 7.6: Comparison of covariance functions for PL and PSML.
These plots show sample covariance functions for PL (◦) and PSML (×) with exactly matched
resolutions for three different target resolutions.

mance. Neither method appears to have an advantage over a wide range of practical

reconstruction resolutions. This result is not entirely unexpected. In Section 7.2.3

we present an analysis for a linear measurement model and a Gaussian noise model,

and argue that the post-smoothed ML and exactly matched PL methods should

yield identical covariance properties. Thus, for cases where the Poisson statistics are

modeled well by a Gaussian approximation, it is not surprising that the same con-

clusions hold. In contrast, the uniformity-corrected FBP yields different covariance

functions. However, whether or not FBP’s covariance is desirable will depend on the

task for which the images are made and if the associated reconstruction artifacts are
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tolerable.

We also explored the noise performance at other pixel locations found similar

equivalence of post-smoothed ML and PL for the target in (6.4). However, for other

pixel positions and other targets at particularly fine matched resolutions sometimes

one or the other algorithm would have lower standard deviation depending on the

particular location and target response. Rather than attempting to draw general

conclusions about the relative merits of the two approaches for all conditions it

seems advisable for algorithm designers to compare the two for the given system

model and target resolutions of interest.

7.2.2 Convergence Rates

Since the noise performance for PL and post-smoothed ML are indistinguishable

for the investigations in the previous section, other considerations such as compu-

tation time may be more important. It is popularly held that unregularized meth-

ods converge more slowly than regularized methods due to the conditioning of the

problems. However, unregularized algorithms converge to different limits than the

regularized algorithms making analytical comparisons difficult.

We performed a simple investigation of the convergence rates of matched post-

smoothed ML and PL approaches. We compared the normalized mean squared

difference between the image estimate at the nth iteration, θ̂n, and the fully converged

solution, θ̂∞. For the PL approach, θ̂n is simply the estimate at the nth iteration.

For the post-smoothed ML technique, θ̂n is the ML estimate at the nth iteration,

with a post-smoothing filter applied.

We initialized with an FBP image and used the same ordered-subsets techniques

and the same 10.0 mm target response mentioned in Section 6.3.1. Estimates of θ̂∞,

were calculated using 500 ordered-subsets iterations, followed by 100 single subset
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Figure 7.7: Convergence rates of PL and ML.
This figure shows the relative convergence rates of the PL (◦) and post-smoothed ML (×) approaches
for a 10 mm target FWHM resolution.

iterations.

Figure 7.7 shows that the PL approach converges more quickly than the ML

approach. For a similar level of convergence, it appears that the ML technique takes

roughly three times the number of iterations. Such speed-ups depend on the target

resolution, since increased regularization leads to better conditioning. However, we

expect similar rank performance for the two methods for different target resolutions.

7.2.3 Theoretical Analysis of PL and PSML with Exactly Matched Resolution

Following [40], in this section we describe conditions under which a post-filtered

weighted least-squares reconstruction is identical to a penalized weighted least-squares

reconstruction. This mathematical equivalence corroborates our empirical findings

for post-filtered ML and penalized-likelihood reconstructions in Section 7.2. Recall

that for a linear measurement model, the PWLS estimate maximizes an objective

function of the following form:

Φ(θ, Y ) = − (Y −Hθ)′ K−1 (Y −Hθ)− θ′Rθ, (7.1)
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where K = cov{Y }. Assuming appropriate invertibility conditions hold, the mini-

mizer has the following closed-form solution

θ̂ = [H ′K−1H + Rsym]−1H ′K−1Y , (7.2)

where Rsym was defined in (4.16). We will also assume that the actual system model

is exactly matched to the reconstruction model with measurements related to the

object through the system matrix, H . From (7.2), it is straightforward to write the

covariance matrix for θ̂ as

[F + Rsym]−1F [F + Rsym]−1. (7.3)

Thus, for a given penalty matrix, we can write out the covariance of the reconstructed

images.

Recall the explicit solution for a penalty matrix presented in Section 4.3.1. While

this is not a convenient form for penalty design, it is convenient for theoretical

investigation. For the specific collection of desired impulse responses represented by

L0, and the PWLS objective, (4.27) may be written2 as

R?
sym = F [L−1

0 − I]. (7.4)

Thus, for a specific set of desired responses, we may plug (7.4) into (7.3) to obtain

the covariance matrix for penalized-likelihood reconstruction:

Cov{θ̂PL} = [FL−1
0 ]−1F [FL−1

0 ]−1

= L0F
−1L0. (7.5)

Similarly, because post-smoothing is a linear operation: θ̂PSML = L0θ̂ML, we may find

the covariance for post-smoothed ML reconstruction by first finding the covariance

2Recall that this solution only exists under particular circumstances discussed in Section 4.3.1.
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for the ML approach by setting Rsym = 0 in (7.3). That is,

Cov{θ̂PSML} = L0Cov{θ̂ML}L0

= L0F
−1L0. (7.6)

Thus, (7.5) and (7.6) are identical. Therefore, when resolution properties are

exactly matched under this system model, the penalized weighted least-squares and

post-smoothed weighted least-squares approaches will yield the exact same noise

performance. In the empirical investigations of Section 7.2 we observed similar results

under the Poisson model.

It is plausible that under other noise models, where the noise cannot be well

approximated by a Gaussian model, or when (7.4) cannot be solved, the noise per-

formance will be significantly different in the post-smoothed ML and PL cases.



CHAPTER VIII

Conclusion

8.1 Summary

In this dissertation we have developed practical methods for controlling the resolu-

tion properties of images produced by penalized-likelihood estimators. The methods

described apply generally to a broad class of imaging systems. We have concentrated

on (emission) tomography systems that can possibly be shift-variant, and have de-

veloped fast methods to compute the shift-variant penalty design, which is necessary

for resolution control.

We also have derived a new formulation for the local impulse response (a reso-

lution predictor) appropriate for systems where the discrete reconstruction model is

mismatched with the “real world” continuous object and measurement model. The

same fast methods used for penalty design may be applied to both resolution and

covariance prediction. We have shown that such predictions can be made for both

PET and SPECT system models with increased speed and accuracy over traditional

prediction techniques.

We have used our resolution control methods for many different tomographic

models to provide images with nearly uniform (shift-invariant and isotropic) resolu-

tion properties. Uniform resolution appears to be important for tasks such as image

202
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registration where the shape of features in the image can potentially be distorted

by nonuniform resolution properties. Previously, conventional penalized-likelihood

techniques were not able to provide uniform resolution even in the case of a shift-

invariant system model. Our methods provide nearly uniform resolution even in the

case of intrinsically shift-variant systems like SPECT. Whereas, very few estima-

tors, including conventional penalized-likelihood methods, are able to achieve good

resolution uniformity.

While it is unclear whether uniform resolution is important for many tasks, it

seems that the issue of resolution controllability is very important. Rather than let-

ting the resolution properties be controlled by the specifics of the system geometry

and measurement noise, using the methods developed in this work, one can now

specify user-defined resolution properties. The methods we have presented are gen-

eral and may be applied to achieve user-specified shift-variant resolution properties

(e.g., creating uniform resolution in regions while preserving edges).

Because we have the ability to match the resolution properties of different esti-

mators, we now have a foundation for the fair comparison of estimators. We have

performed such an investigation for a SPECT system using nearly exactly matched

FBP, post-smoothed ML, and the proposed PL methods. As one might expect the

statistical methods that fully incorporate all physical effects and take the noise model

into account provide reconstructions with lower noise than FBP. However, we have

also found that the noise characteristics of our PL approach and post-smoothed ML

are nearly identical. Thus, the decision to use one estimator over another must be

made on other considerations such as resolution uniformity or computation time.

Such decisions depend on one’s exact reconstruction needs. As we have seen in

some cases, methods that depend on fully resolving (i.e., for pixelized images the
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local response equals to an impulse function) image parameters, like post-smoothed

ML, cannot always provide uniform resolution. Generally this means that the sys-

tem model and the object parameterization results in an underdetermined (or rank-

deficient) problem. Thus, while methods like post-smoothed ML will yield nonuni-

form resolution properties, we have shown that PL with our proposed penalty can

still yield images with very uniform resolution.

In many other cases, the nonuniformities produced by post-smoothed ML are

relatively insignificant. Thus, things like computation time and convergence rates

are important. While we have shown that our PL approach generally has increased

convergence rates, it also often yields images with less resolution uniformity than

post-smoothed ML.

Typically all these factors must be weighed when choosing an estimator. We

have also discussed a hybrid estimator that includes both penalty design and post-

reconstruction filtering. This method provides added flexibility in deciding where

various trade-offs are made.

8.2 Future Work

While we have accomplished much for predicting and controlling resolution for

penalized-likelihood estimators, there are always improvements or extensions that

can be made and other imaging systems to which these methods could be applied.

The prediction and penalty design techniques presented in this paper could also be

applied to other imaging modalities like x-ray computed tomography and magnetic

resonance imaging. Similarly, our techniques may need to be extended to for more

realistic systems. For example, modern SPECT systems use body contouring orbits

to improve image quality. This adds an additional kind of object-dependence into
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the SPECT system model, which must be taken into account to use the fast linear

operator approach discussed in Chapter V.

It is possible that one can find better techniques for relaxing the design constraints

on the penalty design. While we have investigated relaxed constraints in some detail,

the resulting penalty designs were cumbersome and too slow for practical use. Other

relaxed constraints, such as ones that are based on the componentwise distance to

the nearest singular matrix[101], might be applied to a technique that updates a

penalty matrix.

We also believe that more work need to be done on investigating the properties of

images under a wider range of desired responses. We have concentrated on desired

responses that are similar to the “natural” responses penalized-likelihood estima-

tors. We know that some responses are difficult or impossible to achieve. A better

classification of achievable responses would be most helpful. This should include

a deeper investigation of the hybrid approach that mixes both objective function

regularization and post-smoothing. Similarly, since the “natural” responses often

possess ringing, one might choose to adopt a constraint to reduce ringing, such as

the Tchebychev equi-ripple model.

It would also be natural to extend these penalty design approaches to non-

quadratic penalties. Specifically, just as a concept of uniform resolution may be

important for a “smoothing” penalty, there is a concept of uniform “edgeness” for

edge-preserving penalties. For example, one might desire that edges in high count

regions are just as likely to be formed for a given edge size, as those in low count

regions. Recall from Chapter III that nonquadratic penalties have Hessians that are

object-dependent. Thus the local impulse responses (or covariance predictors) can

also be highly object-dependent and may require better approximations. Similarly,
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one might be able to use the square-root penalty discussed in Section 4.2.1 to achieve

more uniform resolution properties in particularly troublesome cases.

Also, we would ultimately like to be able to design the resolution and covariance

properties of an estimator to be optimal for a certain task. Specifically, we might

want to design the optimal regularization for a tumor detection task using a com-

puter observer. It is not obvious that the naturally induced resolution properties

of conventional PL are optimal. We expect that this will require further work in

the area of quantifying performance of many tasks like the joint localization and

detection task (such as LROC curves). However, we have already developed many

important tools for controlling the resolution properties of an image, and predicting

the covariance in reconstructed images with practical computation times.

We believe the approximations for SPECT attenuation made in Section 5.3 have

particular potential for application in other areas. For example, our approximations

could be incorporated into preconditioning methods as in [35] to speed convergence

rates. These approximations can also be incorporated into computer observer inves-

tigations, various estimation bounds, or other areas where the Fisher information

matrix (or the individual weighted responses) must be calculated repeatedly for dif-

ferent measurement data or other geometry-independent parameters.
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APPENDIX A

Space-Invariant Weighted Responses

In this appendix we show that the backprojected weighted projection of an im-

pulse results in a space-invariant blur for radially constant weightings and detector

responses that are not depth-dependent and shift-invariant.

Returning to the idealized continuous model in Section 2.2.1, we may write the

weighted projection-backprojection of an image, f , as P ′
blurWPblurf , where the oper-

ator W represents the application of a projection domain weighting function, wθ(r).

For non-depth-dependent and shift-invariant detector blur, b(r), we may write the

blurred projection of an image, Pblurf , as

pθ(r) =

∫ ∞

−∞

∫ ∞

−∞
b(r − s)f(l cos θ + s sin θ, l sin θ − s cos θ) dl ds. (A.1)

Similarly, when one chooses a radially constant weighting such that wθ(r) = wθ, the

weighted backprojection of the blurred projections is written:

fb(x, y) =

∫ ∞

−∞

∫ π

0

b(s)wθpθ(x cos θ + y sin θ − s) dθ ds. (A.2)

The 2D Fourier transform of the weighted projection-backprojection of an image is
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written as

Fb(ρ, φ) =

∫ ∫
fb(x, y)e

i2πρ(x cos φ+y sin φ) dx dy (A.3)

=

∫ ∫ (∫ ∞

−∞

∫ π

0

b(s)wθpθ(x cos θ + y sin θ − s) dθ ds

)
ei2πρ(x cos φ+y sin φ) dx dy

(A.4)

Making a change of coordinates such that x̃ = x cos θ+y sin θ and ỹ = y cos θ−x sin θ,

we may rewrite (A.4) as

Fb(ρ, φ) =

∫ ∫ ∫ ∞

−∞

∫ π

0

b(s)wθpθ(x̃− s)ei2πρ[x̃ cos(φ−θ)+ỹ sin(φ−θ)] dθ ds dx̃ dỹ

=

∫
wθ

{∫ (∫ ∞

−∞
b(s)pθ(x̃− s) ds

)
ei2πρx̃ cos(φ−θ) dx̃

∫
ei2πρỹ sin(φ−θ) dỹ

}
dθ

=

∫
wθB (ρ cos(φ− θ))Pθ (ρ cos(φ− θ)) δ (ρ sin(φ− θ)) dθ, (A.5)

where B(·) denotes the 1D Fourier transform of the blur function b(r) and Pθ(·)

denotes the 1D Fourier transform of the blurred projections along the radial direction.

Using properties of delta functions,

δ (ρ sin(φ− θ)) =
δ(θ − φ)∣∣ d

dθ
(ρ sin(φ− θ))

∣∣
θ=φ

. (A.6)

Thus, we may write (A.5) as

Fb(ρ, φ) =

∫
wθB (ρ cos(φ− θ))Pθ

1

ρ
δ(θ − φ) dθ

=
wφ

ρ
B(ρ)Pφ(ρ). (A.7)

The 1D Fourier transform of the blurred projections is

Pφ(ρ) = F1 {Pblurf} = F1 {b(r)}F1 {Pf} (A.8)

= B(ρ)F2 {f(x, y)} = B(ρ)F (ρ, φ), (A.9)

where F2 {·} denotes the 2D Fourier transform and we have used the Fourier slice

theorem[80] which says F1 {Pf} = F2 {f(x, y)}. Thus, combining (A.7) and (A.9)
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we find that

Fb(ρ, φ) =
wφ

ρ
B2(φ)F (ρ, φ), (A.10)

which implies

fb(x, y) = f(x, y) ∗ ∗
wφ + π

2

r
∗ ∗ H−1

{
B2(ρ)

}
. (A.11)

Thus, the blur due to a weighted projection-backprojection with radially con-

stant blur is shift-invariant. However, note that this blur is anisotropic when wφ is

nonuniform.
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APPENDIX B

Resolution Properties of Filtered Backprojection

Adopting the idealized continuous model in Section 2.2.1, one can show that the

resolution properties of filtered backprojection (FBP) are space-invariant. Given

ideal projections with no detector blur, gφ(r), the windowed FBP reconstruction

with window W (ρ) is written:

f̃(x1, x2) = P ′F−1
1 {F1 {gφ(r)} |u|W (u)} (B.1)

=

∫ π

0

q̃φ(x1 cosφ+ x2 sinφ)dφ (B.2)

with

q̃φ(ρ) =

∫
Gφ(ρ)|ρ|W (ρ)ei2πrρdρ, (B.3)

where Gφ(u) denotes the 1D Fourier transform of gφ(r). The 2D Fourier transform

of f̃(x1, x2) is F̃ (u1, u2), which may be written as∫∫ (∫ π

0

∫
Gφ(ρ)|ρ|W (ρ)ei2πρ(x1 cos φ+x2 sin φ)dρdφ

)
e−i2π(u1x1+u2x2)dx1dx2

=

∫∫ (∫ π

0

∫
F (ρ, φ)|ρ|W (ρ)ei2πρ(x1 cos φ+x2 sin φ)dρdφ

)
e−i2π(u1x1+u2x2)dx1dx2

=

∫∫ (∫∫
F (v1, v2)W (

√
v2

1 + v2
2)e

i2π(x1v1+x2v2)dv1dv2

)
e−i2π(u1x1+u2x2)dx1dx2

=

∫∫
F (v1, v2)W (

√
v2

1 + v2
2)

(∫∫
ei2π(x1v1+x2v2)e−i2π(u1x1+u2x2)dx1dx2

)
dv1dv2

=

∫∫
F (v1, v2)W (

√
v2

1 + v2
2)δ(u1 − v1, u2 − v2)dv1dv2

= F (u1, u2)W (
√
u2

1 + u2
2), (B.4)
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where F denotes the Fourier transform of the true image. Thus,

F̃ (ρ, φ) = F (ρ, φ)W (ρ) (B.5)

=⇒ f̃(x1, x2) = f(x1, x2) ∗ ∗w(r). (B.6)

The first step follows from the central section theorem (Gφ(ρ) = F (ρ, φ)). The

resulting impulse response w(r) in (B.6) can be found by obtaining the inverse Hankel

transform of W (ρ).
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[27] H Erdoğan and J A Fessler. Monotonic algorithms for transmission tomography. IEEE Tr.
Med. Im., 18(9):801–14, September 1999.

[28] H Erdoğan and J A Fessler. Ordered subsets algorithms for transmission tomography. Phys.
Med. Biol., 44(11):2835–51, November 1999.
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ABSTRACT

Spatial Resolution in Penalized-Likelihood Image Reconstruction

by

Joseph Webster Stayman

Chair: Jeffrey A. Fessler

Penalized-likelihood methods have been used widely in image reconstruction since

they can model both the imaging system geometry and measurement noise very

well. However, images reconstructed by conventional penalized-likelihood methods

are subject to anisotropic and shift-variant spatial resolution properties, which can

complicate selection of the regularization parameter and make the analysis of the

resulting images more difficult. The local impulse response is a resolution predictor

that may be used to quantify these shift-variant spatial resolution properties. We

have derived a new formulation of the local impulse response for penalized-likelihood

estimators. This formulation is appropriate for a general class of imaging systems

that acquire a finite number of measurements from a continuous object and recon-

struct that object using a discrete model. We have developed fast techniques for

evaluating both spatial resolution and covariance predictors for emission tomogra-

phy systems even when the geometric system model is inherently shift-variant. We



have also developed practical methods based on these rapid predictions to provide in-

creased resolution control by designing an appropriate penalty function. The penalty

function design allows for the specification of user-defined resolution properties like

uniform resolution (i.e., both isotropic and shift-invariant). We show that these

penalty design techniques can provide nearly uniform resolution even in intrinsically

shift-variant imaging systems; whereas many traditional reconstruction techniques

cannot fully compensate for the shift-variant effects. We discuss the relative resolu-

tion uniformity of different reconstruction methods and examine the relative noise

performance of estimators for which the resolution properties are exactly matched.

Among these matched estimators we find that the penalized-likelihood approach and

the post-filtered maximum-likelihood approach often produce identical noise proper-

ties, and both provide reduced noise relative to classical filtered backprojection.


