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ABSTRACT

Statistical Methods for Transmission Image Reconstruction with Nonlocal

Edge-Preserving Regularization

by

Feng Yu

Chair: Jeffrey A Fessler

Tomographic image reconstruction using statistical methods can improve image quality

over the conventional filtered backprojection (FBP) method. The effectiveness of a statisti-

cal image reconstruction method depends on its three principal components: the statistical

measurement model, the regularization method, and the iterative algorithm for maximizing

the objective function. This dissertation contributes new methodology and/or analysis to

each of these three components, emphasizing PET and SPECT transmission scans, which

are essential for accurate attenuation correction in emission tomography.

The first part considers edge-preserving regularization. We propose an objective func-

tion that incorporatesnonlocalboundary information. We use an alternating minimization

scheme with deterministic annealing to minimize our new objective function; we use vari-

ational techniques implemented using level sets to perform boundary extraction. We com-

pare the bias/variance tradeoff of this novel algorithm with a penalized likelihood (with

local Huber roughness penalty) algorithm.

The second part analyzes the effect of deadtime on the counting statistics of detectors.

We present a new way of analyzing the moments of the counting process for a counter

system affected by various models of deadtime related to PET and SPECT imaging. We

derive simple and exact expressions for the first and second moments of the number of



recorded events under various models, for both singles counting and coincidence counting.

From this analysis, we study the suitability of the Poisson statistical model assumed in most

statistical image reconstruction algorithms.

The third and final part considers the problem of reconstructing images for a certain

transmission imaging geometry, where the transmitted “beams” of photons overlap on

the detector, such that a detector element may record photons that originated in differ-

ent sources or source locations and thus traversed different paths through the object. We

propose a new algorithm for statistical image reconstruction of attenuation maps that ex-

plicitly accounts for overlapping beams in transmission scans. The algorithm is guaranteed

to monotonically increase the objective function at each iteration. The availability of this

algorithm enables the possibility of deliberately designing systems with increased beam

overlap so as to increase count rates.



c
 Feng Yu 2000
All Rights Reserved



I dedicate this thesis to my family for their love, patience, and support during my doctoral

work.

ii



ACKNOWLEDGEMENTS

I would like to express my thanks to my supervisor Dr. Jeff Fessler for his excellent

guidance and encouragement, his patience in discussing my questions and listening to and

respecting my ideas throughout my doctoral work. It was his financial and professional

support that enabled me to finish this work.

I also extend my gratitude to my colleagues: Idris Elbakri, Hakan Erdogan, Jeongtae

Kim, Robinson Piramuthu, Web Stayman, Nan Sotthivirat, and Mehmet Yavuz with whom

I shared the same or neighboring offices.

In addition, I would also like to thank the Mathematics department at the University of

Michigan, for providing so many interesting and challenging courses. In particular, I would

like to thank Prof. Igor Dolgachev and Prof. Dror Varolin of the University of Michigan,

and Prof. Dr. Dietmar Vogt of the University of Wuppertal, Germany, for providing valu-

able guidance on mathematical matters.

Finally, I thank my family, my parents, my aunts, and my grandma for their loving

support and patience. I thank them for the sacrifice they made during this hard-working,

yet fun-filled period in my life.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTERS

1 Introduction/Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Overview of PET Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Attenuation, Scatter, and Randoms . . . . . . . . . . . . . . . . . 5
2.2 Transmission Scans in PET . . . . . . . . . . . . . . . . . . . . . 6
2.3 Emission Scan Model . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Edge-Preserving Tomographic Reconstruction With Nonlocal Regularization 10
3.1 Maximum Penalized Likelihood Reconstruction with Local Reg-

ularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Image Segmentation Techniques . . . . . . . . . . . . . . . . . . 14

3.2.1 General Techniques . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Level Set Approach to Front Propagation . . . . . . . . . . 18
3.2.3 Shape Recovery with Front Propagation . . . . . . . . . . 21
3.2.4 Shape Recovery Using Energy Minimization . . . . . . . . 27
3.2.5 Segmentation Techniques for PET Attenuation Correction . 29

3.3 A New Approach to Edge-Preserving Regularization . . . . . . . . 31
3.3.1 A New Objective Function . . . . . . . . . . . . . . . . . 31
3.3.2 An Alternating Minimization Scheme . . . . . . . . . . . 34
3.3.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.5 Deterministic Annealing . . . . . . . . . . . . . . . . . . 41

3.4 Accuracy of the Estimated Boundary . . . . . . . . . . . . . . . . 44

iv



3.4.1 A Metric For the Accuracy of Estimated Boundary . . . . 44
3.4.2 Accuracy of the Boundary Extraction . . . . . . . . . . . . 44

3.5 Statistical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Extension to Three-Dimensional Images . . . . . . . . . . . . . . 61
3.7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . 69

4 Singles Counting Statistics Affected by Deadtime . . . . . . . . . . . . . . 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Statistical Analysis of Deadtime . . . . . . . . . . . . . . . . . . 73

4.2.1 Asymptotic Analysis via Renewal Theory . . . . . . . . . 74
4.2.2 Exact Mean and Variance of Counting Processes . . . . . . 76

4.3 Single Photon Counting . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1 Mean and Variance of Recorded Singles Counts, Model

Type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Mean and Variance of Recorded Singles Counts, Model

Type III . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Recorded Singles Counts by Block Detectors . . . . . . . . . . . . 83
4.5 Count Rate Correction for System Type III . . . . . . . . . . . . . 84
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Coincidence Counting Statistics Affected by Deadtime . . . . . . . . . . . 87
5.1 General Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Random Coincidences . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Mean of Random Coincidence Counts . . . . . . . . . . . 89
5.2.2 Ideal Detectors (No Deadtime) . . . . . . . . . . . . . . . 91
5.2.3 Non-ideal Detectors (With Deadtime) . . . . . . . . . . . 93

5.3 Prompt Coincidences . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.3 Attenuation Effects . . . . . . . . . . . . . . . . . . . . . 97

5.4 Delayed Coincidences . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Maximum Likelihood Transmission Image Reconstruction for Overlap-
ping Transmission Beams . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Separable Paraboloidal Surrogate Algorithm . . . . . . . . 107
6.3.2 Coordinate Ascent Algorithm . . . . . . . . . . . . . . . . 109

6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Collimation Angle Optimization . . . . . . . . . . . . . . . . . . 119
6.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 128

v



7.1 Edge-Preserving Tomographic Reconstruction With Nonlocal Reg-
ularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Counting Statistics Affected by Deadtime . . . . . . . . . . . . . 129
7.3 Maximum Likelihood Transmission Image Reconstruction for Over-

lapping Transmission Beams . . . . . . . . . . . . . . . . . . . . 130

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

vi



LIST OF TABLES

Table
3.1 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Normalized standard deviation (%) for the six ROI’s using 1,000,000 counts

transmission reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Normalized standard deviation (%) for the six ROI’s using 300,000 counts

transmission reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vii



LIST OF FIGURES

Figure
2.1 (a) scatter. (b) random. Dashed line denotes the detected LOR. . . . . . . . 7
3.1 A comparison of quadratic, Huber, and the broken-parabola penalty function 13
3.2 Level set formulation of equation of motion. (a) shows the curveC att = 0

and its level set representation. (b) shows the curveC, after expanding, at
t = � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 (a) noisy image. (b) its corresponding� function. . . . . . . . . . . . . . . 22
3.4 (a) extension of the speed term. (b) gray area is the narrow band constructed

around the black contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Boundary detection of an ellipse. Black contour indicates the propagating

front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Boundary detection of 2 objects with one initial contour . . . . . . . . . . . 26
3.7 the contour is (a) on the boundary (c) not on the boundary; background is

the speed function. (b) (d)� function on the contour. In (d)� function is 1
at most places. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 (a) Phantom (b) A profile of the phantom: row 60. . . . . . . . . . . . . . . 31
3.9 (a) Example of a 1-D object (b) Signed distance to the boundary (c) One

possibleh function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.10 Plot of change inJ2 when the “curve” is very far from the actual boundary . 36
3.11 ~p1 is the closest point to~p0 on the curve. . . . . . . . . . . . . . . . . . . . 38
3.12 White dots denote image points; black dots denote boundary points;J2

evaluated on points represented by shaded dots. . . . . . . . . . . . . . . . 39
3.13 The solid line denotes the curve�; the dotted line denotes the set of critical

points inR2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.14 (a) Implicith function used in local regularization. (b) Edge-preservingh

function as a function of signed distance to the boundary. . . . . . . . . . . 41
3.15 The evolution ofh function . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.16 Deformation of pointx0 on the true boundary (thick line) to pointx on the

estimated boundary (thin line). . . . . . . . . . . . . . . . . . . . . . . . . 45
3.17 Noiseless image (a) Boundary extraction by Matlab’s contour program (b)

Boundary extraction with the proposed method . . . . . . . . . . . . . . . 46

viii



3.18 Effect of discretization: deformation of the boundary curve extracted by
Matlab’s contour program (“curve 1”), scaled by 10 . . . . . . . . . . . . . 47

3.19 Noisy image: boundary extraction with the proposed method . . . . . . . . 47
3.20 Effect of image smoothing andJ1 term: deformation of the boundary curve

extracted from the noiseless image by the proposed method (“curve 2”),
scaled by 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.21 Initial contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.22 1,000,000 counts transmission reconstruction (a) FBP reconstruction (b)

reconstruction with Huber penalty (c) Proposed penalty . . . . . . . . . . . 51
3.23 1,000,000 counts transmission reconstruction: Comparison of Huber penalty

and proposed penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.24 1,000,000 counts transmission reconstruction, bias-variance plot of (a) Re-

gion 1 (b) Region 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.25 Emission phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.26 Histogram of�proposed=�Huber for emission reconstruction using transmis-

sion scans with 1,000,000 counts . . . . . . . . . . . . . . . . . . . . . . . 55
3.27 Emission reconstruction using transmission scans (1,000,000 counts) re-

constructed by (a) FBP (b) Huber penalty (c) Proposed penalty . . . . . . . 56
3.28 300,000 counts transmission reconstruction (a) FBP reconstruction (b) Re-

construction with Huber penalty (c) Proposed penalty . . . . . . . . . . . . 57
3.29 300,000 counts transmission reconstruction: Comparison of Huber penalty

and proposed penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.30 300,000 counts transmission reconstruction, bias-variance plot of (a) Re-

gion 1 (b) Region 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.31 Histogram of�proposed=�Huber for emission reconstruction using transmis-

sion scans with 300,000 counts . . . . . . . . . . . . . . . . . . . . . . . . 59
3.32 Emission reconstruction using transmission scans (300,000 counts) recon-

structed by (a) FBP (b) Huber penalty (c) Proposed penalty . . . . . . . . . 60
3.33 Three-dimensional transmission reconstruction with proposed penalty: slice

1 to 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.34 Three-dimensional transmission reconstruction with proposed penalty: slice

26 to 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.35 Slice No. 6: left column, 3-minute scan; right column, 10-minute scan;

top row, FBP reconstruction; middle row, 3-D Huber penalty; bottom row,
proposed penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.36 Boundary surfaces extracted by the proposed penalty: the lungs . . . . . . . 66
3.37 Boundary surfaces extracted by the proposed penalty: the body . . . . . . . 67
3.38 Boundary surfaces extracted by the proposed penalty: the lungs . . . . . . . 68
3.39 Boundary surfaces extracted by the proposed penalty: the body . . . . . . . 68
4.1 Illustration of systems affected by three types of deadtime . . . . . . . . . . 72
4.2 Mean and variance for nonparalyzable (type I) systems, witht = 1s; � = 2�s. 76
4.3 Mean and variance for paralyzable (type II) systems, witht = 1s; � = 2�s. . 81

ix



4.4 Mean and variance for type III systems, witht = 1s; � = 2�s. . . . . . . . 83
4.5 20 realizations, witht = 10s; � = 2�s. . . . . . . . . . . . . . . . . . . . . 85
5.1 Model for coincidence counts . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Mean and variance for paralyzable systems, random coincidence counts,

with t = 1s; � = 2�s; � = 12ns; �1 = �2. . . . . . . . . . . . . . . . . . . . 94
6.1 Digital Phantom used in our simulations and the ROI used for collimation

angle optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Scaled illustration of the system setup; the two fan-beams on the left have

collimation angle2:6�; the two fan-beams on the right side have collimation
angle5:6�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Distribution of blank counts (a) collimation angle2:6� (b) collimation angle
5:6�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 New sources; collimation angle:2:6�; 785,000 counts; top row: resolution
4.7 pixels; bottom row, resolution 6.8 pixels. . . . . . . . . . . . . . . . . . 116

6.5 New sources; collimation angle:3:6�; 994,000 counts; top row: resolution
4.7 pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was
not achievable with FBP in this case. . . . . . . . . . . . . . . . . . . . . . 116

6.6 Old sources; collimation angle:2:6�; 392,000 counts; top row: resolution
4.7 pixels; bottom row, resolution 6.8 pixels. . . . . . . . . . . . . . . . . . 117

6.7 Old sources; collimation angle:3:6�; 497,000 counts; top row: resolution
4.7 pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was
not achievable with FBP in this case. . . . . . . . . . . . . . . . . . . . . . 117

6.8 Reconstruction using the parallel and proposed algorithms with almost no
regularization; collimation angle4:6� (a) (b) Parallel algorithm (c) (d) Pro-
posed algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 High count case: ROI resolution/variance curves for the proposed algorithm. 122
6.10 High count case: ROI resolution/variance curves for the parallel algorithm. 123
6.11 High count case: ROI variances at desired spatial resolution 4.7 pixels. . . . 123
6.12 High count case: ROI variances at desired spatial resolution 6.8 pixels. . . . 124
6.13 High count case: A comparison of optimal collimation angles, at different

resolutions for the proposed and parallel algorithms. . . . . . . . . . . . . . 124
6.14 High count case: A comparison of minimum achievable normalized stan-

dard deviation, at different resolutions for the proposed and parallel algo-
rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

D.1 Graphic aid forE[Ya(0; �)Ya(s; s+�)jX1(0; �) = 1;X1(s; s+�) = 1; T1;1 =
s1; T1;2 = s2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.2 Graphic aid forE[Yb(0; �)Ya(s; s+�)jX1(0; �) = 1;X1(s; s+�) = 1; T2;1 =
s1; T1;2 = s2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

E.1 Graphic aid forE[Ya(0; �)Ya(s; s+�)jY1(0; �) = 1; Y1(s; s+�) = 1; T1;1 =
s1; T1;2 = s2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

E.2 Graphic aid forE[Yb(0; �)Ya(s; s+�)jY2(0; �) = 1; Y1(s; s+�) = 1; T2;1 =
s1; T1;2 = s2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

x



LIST OF APPENDICES

APPENDIX
A Deadtime Analysis: Variance Derivation for Deadtime Model II . . . . . . 133
B Deadtime Analysis: Variance Derivation for Deadtime Model III . . . . . . 135
C Deadtime Analysis: Mean Derivation for Inhomogeneous Arrival Process . 137
D Deadtime Analysis: Partial Derivation of Variance for the Coincidence Pro-

cess with Ideal Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
E Deadtime Analysis: Partial Derivation of Variance for the Coincidence Pro-

cess with Non-ideal Detectors . . . . . . . . . . . . . . . . . . . . . . . . 144

xi



CHAPTER 1

Introduction/Contributions

In statistical image reconstructions for ECT (emission computed tomography), one

must consider the following three important aspects of the problem: the statistical model,

the regularization method, and the iterative maximization/minimization algorithm. An ac-

curate statistical model is a prerequisite for a good reconstruction. Secondly, the user usu-

ally has somea priori information about the image to be reconstructed; this information

can be incorporated into the regularization method to produce “reasonable-looking” im-

ages. Finally, a good algorithm is necessary to ensure that a good reconstructed image can

be obtained in a tolerable amount of time.

An important physical factor one must consider when reconstructing emission maps is

the effect of attenuation. Transmission scans are usually performed to estimate the attenu-

ation parameters, which are then used to correct the emission scans for attenuation effects.

In the first part of our work (Chapter 3), we focus on the regularization problem in ECT

transmission reconstructions. Because this reconstruction problem is usually ill-posed, a

roughness penalty is imposed on the solution. Conventional penalty functions penalize

the differences between the values of neighboring pixels; the larger the difference, the

higher the penalty (one such penalty is the square of the difference, henceforth called the

“quadratic penalty”); thus this penalty encourages a globally smooth image. However, the

image in the transmission reconstruction problem is not always globally smooth. Instead,

it usually consists of smooth regions separated by sharper boundaries. The global rough-

ness penalty over-smoothes the edges. Thus variousedge-preservingpenalties have been

1



proposed. The main idea behind these penalties is: large differences between values of

neighboring pixels are usually due to a sharp edge, while small differences are assumed to

be primarily due to noise. Thus these edge-preserving penalties penalize large differences

between neighboring pixels less severely than the quadratic penalty. But these schemes still

only rely on information fromlocal neighborhood to determine the existence of edges, not

using thenonlocalinformation that the image is made up of regions separated by smooth

boundaries. In this part of our work, we propose an objective function that incorporates

nonlocalboundary information into our regularization. We use an alternating minimiza-

tion scheme with deterministic annealing to minimize our new objective function. Because

of the nonconvexity of our objective function, we use deterministic annealing in the hope

that we will reach a “better” local minimum.

In the second part of our work (Chapters 4 and 5), we focus on the effect of dead-

time on the counting statistics of detectors. The consideration is especially important in

post-injection transmission scans for PET. Post-injection protocols for PET are more con-

venient for the patient than conventional PET protocols. However, one has to deal with the

contamination of the transmission scan with undesirable emission counts. Because of this

contamination, the singles rate will greatly increase under the post-injection protocol, thus

deadtime becomes an even more important issue. Since the singles rate is higher than in

the conventional protocols, the percentage of lost events will be higher, too. Traditional

methods of correcting for deadtime mainly use methods of moments,i.e., the true counts

are estimated from the observed counts by solving the equation relating the mean of the

true counts and mean of the observed counts; the estimated true counts are then used to

reconstruct the image. From a statistical point of view, the estimated true counts are not

Poisson distributed, and using a Poisson likelihood in the reconstruction may be subopti-

mal. We propose a new approach for deriving the moments of the counting process, and

analyze how non-Poisson the counting process really is from its first and second moments.

In the third part of our work (Chapter 6), we design a reconstruction algorithm for

a source/detector configuration encountered in SPECT transmission scans. The system

configuration has several fixed-position collimated line sources opposing a parallel-beam

collimator. The main difficulty with such a configuration is that a photon registered by one

2



detector may originate from two or more sources, and there is no previous algorithm that

properly models this effect. We propose a statistical model that takes this into account, and

design a reconstruction algorithm for this model that is monotonic and convergent (to a

local minimum).

The original contributions made by this dissertation are summarized in the following.

� Proposed a novel nonlocal regularization method for ECT transmission scans, which

incorporates region and boundary information, and preserves edges.

� Proposed a new approach for deriving the moments of the counting process by real-

istic detectors,i.e., affected by deadtime.

� For single photon counting, derived exact and closed-form expressions for mean and

variance of the counting process affected by type II or type III deadtime.

� For coincidence photon counting, derived exact (or approximate) and closed-form

expressions for mean and variance of the coincidence counting process, for both

ideal detectors and non-ideal (type II deadtime) detectors.

� Analyzed the suitability of the commonly-assumed Poisson model for various types

of photon counting systems.

� Designed a reconstruction algorithm for a source/detector configuration where there

are several fixed-position collimated line sources.

� Analyzed the optimal collimation angle in such a system.

These contributions have been summarized in three manuscripts submitted for publication[93,

94, 95], which form the basis of this dissertation.
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CHAPTER 2

Overview of PET Physics

Emission Computed Tomography (ECT) is a medical imaging technique that gives

functional information about physiological processes, as opposed to CT or MRI which usu-

ally give structural and anatomical information. In ECT, a radioactive compound (radio-

tracer) is injected into the body; this compound radio-labels certain substances, such as

glucose. After the radio-tracer has distributed throughout the body, an image that indicates

where the radio-tracer has distributed in higher or lower concentration can be made. In the

case of glucose, the result will be an image related to glucose metabolism. The most popu-

lar emission tomography techniques are Positron Emission Tomography (PET) and Single

Photon Emission Tomography (SPECT).

In PET, the radioisotope emits a positron which annihilates with an electron after travel-

ing up to a few millimeters. This annihilation event produces two 511 keV gamma photons

which travel at nearly180� from one another. If both these photons travel coplanar with

the coincidence detector ring that is around the body and both survive until reaching the

detectors, the sinogram bin corresponding to the line joining the two detectors (line of re-

sponse or LOR) is incremented. The detector circuits check for whether the two photons

have arrived within a coincidence window of a short duration�.

The detectors in most current PET cameras are made from blocks of large crystals

of BGO (bismuth-gernamate) coupled to a group of photo-multiplier tubes (PMTs). The

detector efficiency for a detector pair is defined as the probability that a photon pair arriving

at the crystals actually get detected. This efficiency varies from detector to detector. For
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example, detector efficiency is lower for a crystal located at the edge of a block, because the

probability that a photon will be scattered out of the block and go undetected is higher for

edge crystals. Furthermore, it takes some time (about 2�s) to process a photon detection,

during which any new events are not detected. The period is called “dead time”.

The measurements are usually organized in an array with the projection angles in the

vertical axis and the projection bins in the horizontal axis. This array is called the sinogram,

since a single point in the original image approximately traces a sine wave in the projection

domain. Each sinogram bin corresponds to a line of response.

2.1 Attenuation, Scatter, and Randoms

At 511 keV, the photons suffer from two different interactions: photoelectron absorp-

tion and Compton scatter. Although absorption is very small at this energy, scattering

causes the photon not to arrive at its original destination. Most scattered photons are not

detected at all. Thus, these interactions affect the detection probability of annihilations;

this effect, called attenuation, is one of the most important physical factors to be corrected

for. The probability that a photon pair will survive along a LOR (survival probability) is:

�i = e
�
R
LORi

�(x)dx
; (2.1)

where�(x) is the linear attenuation coefficient at 511 keV as a function of distance along

the line joining the two detectors; it is nearly 0 in the air. The attenuation correction factor

(ACF) is defined as1=�i. Since the survival probability is independent of the location of

annihilation along the LOR, the scan count for each LOR can be corrected (by multiplica-

tion) by the ACF.

Detected single photons (by detectors) are calledsingles. Sometimes, however, one or

both of the annihilation photons can be Compton scattered and still be detected. These

events are called scattered events. They are false detections since the photon paths are not

collinear. Energy discrimination is used to reject some of these events, since scattered pho-

tons usually have less energy. But not all the scattered photons can be rejected. Figure 2.1a

illustrates a scattered event.
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If two pairs of photons are emitted within the same coincidence window of duration

�, and one photon out of each pair is absorbed or scattered out of the plane, another type

of false detection occurs. This event, called a random event, along with scatter, will con-

tribute to measurement error. Figure 2.1b illustrates a random event. There is a relationship

between the singles rate and the randoms rate for a given pair of detectors:

R = 2�S1S2; (2.2)

whereR is the randoms rate,S1 andS2 are the singles rate for each detector, and� is the

coincidence window duration. (A random event is caused by two unrelated singles striking

two detectors in the same time interval.)

Randoms can be estimated by observing “delayed” coincidences over detectors: if two

single events detected by two elements of a detector pair are within neighboring coinci-

dence windows (e.g., they have been detected with a time difference of2�), they are called

the delayed coincidences. Delayed coincidences can be caused only by randoms; neither

true annihilations nor scattered events can cause randoms because the difference in arrival

time is greater than�. Since single event occurrences are uniformly distributed over time

in a PET scan, the number of delayed coincidences for a detector pair is an estimate of

the number of random events in that particular pair of detectors. The delayed coincidence

randoms estimates are usually smoothed in the sinogram domain, since randoms are known

to be almost constant no matter what object is in the FOV. In this work, we assume that the

mean number of randoms for every detector pair is known.

2.2 Transmission Scans in PET

For attenuation correction, an accurate estimate of the survival probabilities�i or atten-

uation correction factors1=�i needs to be made. Early methods of attenuation correction

employed simple geometric approximations to the attenuating medium (e.g., a uniform el-

lipse). While this approximation may be satisfactory in some cases, e.g., the brain, it is

not suitable for every case; one example is the thorax, where the two lungs inside the body

have very different attenuation coefficients than the soft tissue outside the lungs.
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(a) (b)

Figure 2.1: (a) scatter. (b) random. Dashed line denotes the detected LOR.

Measured attenuation correction methods provide more accurate estimates of ACF’s.

Typically, a transmission scan using only external radioactive sources is done to measure

the ACF’s before the body is injected with the radio-tracer. For calibration purposes, an-

other transmission scan should be done when the patient is not in the scanner. This “blank

scan” can be made relatively noise free because long scanning times can be used.

The statistical model of the transmission scan is:

~Yi � Poissonfbi�i + rig; (2.3)

wherebi is the blank scan rate (deadtime corrected),ri is the background noise such as

randoms and scatters, and�i is the survival probability as given in (2.1). We can estimate

�i’s directly using:

�̂i = smooth

�
yi � ri
bi

�
: (2.4)

Smoothing is done to reduce noise.

The ACF’s can also be calculated from an attenuation map reconstructed from the trans-

mission scan. Since we only have finite-dimensional measurements, it is only possible to

reconstruct finite-dimensional attenuation maps. It is natural to represent this map in terms

of pixels. If we let�j be the attenuation coefficient of thejth pixel, the statistical model
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for the transmission scan is:

~Yi � Poissonfbie
�
P

j gij�j + rig; (2.5)

�̂i = e�
P

j gij�̂j ; (2.6)

where~Yi is a random variable measuring the photon count of theith ray, andgij is an entry

in the system matrixG. In matrix form, the statistical model is:

~Yi � Poissonfbie
�[G�]i + rig: (2.7)

We can use Taylor expansion to approximate the log-likelihood around the pointl = G~�

(~� is an initial estimate, e.g., an FBP reconstruction) to obtain the following quadratic log-

likelihood function which is easy to minimize [74]:

L(�; l) = v0(G�) +
1

2
(l �G�)0W(l�G�); (2.8)

wherevi = ( yi
bie�l+ri

� 1)bie�l, andW = Diag[(1� yiri
(bie�l+ri)2

)bie�l]. Or we can estimate

the ACF’s directly by maximizing the Poisson log-likelihood:

L(�) =
X
i

yi log(bie
�[G�]i + ri)� (bie

�[G�]i + ri): (2.9)

A new efficient algorithm for maximizing this objective is given in [30, 31], and used for

the results in Chapters 3 and 6.

2.3 Emission Scan Model

After the transmission scan is done to measure the ACF’s (if we choose to do the trans-

mission scan), the body is injected with radio-tracer and the emission scan is done. The

statistical model for the emission scan is:

~Yi � Poissonf
X
j

aij�j + rig; (2.10)

whereri is the background events (e.g., randoms and scatters),Yi is the emission measure-

ment of theith ray, andaij = cigij is an entry in the system matrixA (ci is ray-dependent

calibration factors, such as previously mentioned detector efficiency;gij is the probability
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that a detection is made on rayi given that a photon is emitted from pixelj). In matrix

form, the statistical model is:

~Yi � Poissonf[A�+ r]ig: (2.11)

For the first part of this thesis (Chapter 3), however, we will not focus on the “like-

lihood” part of the problem (but rather, as we will discuss later, on the “regularization”

part). Thus we will simply useL(f ; y) (f represents the image or image parameters to be

estimated;y is the measurement) to denote the suitable likelihood in our objective.
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CHAPTER 3

Edge-Preserving Tomographic Reconstruction With

Nonlocal Regularization

3.1 Maximum Penalized Likelihood Reconstruction with

Local Regularization

The problem of reconstructing an unknown imagef from a measurement vectory is

usually ill-posed in the sense of Hadamard [5, 6]. Knowledge of the direct model is rarely

sufficient to determine a satisfactory solution. If we obtain the maximum likelihood es-

timate (MLE) of the image by maximizing the log-likelihood functionL(f ; y), then the

resulting image is very noisy. Thus it is necessary to regularize the solution by imposing

a priori assumptions. One simple regularization method supposes that images are globally

smooth, and enforces a roughness penalty on the solution by adding a quadratic function

to the negative log-likelihood. Such a “penalized” likelihood objective function has the

following form:

�(f) = �L(f ; y) + �V (f); (3.1)

where

V (f) =

Z
jrf(~x)j2d~x (3.2)
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is a measure of image roughness1. The image estimate is obtained by:

f̂ = argmin
f

�(f); (3.3)

where the minimization with regard tof is often restricted to the nonnegative values. The

function given in (3.2) is often unsatisfactory, due to the fact that many images are not

globally smooth. They have region boundaries across which the image values can vary

rapidly. The quadratic regularization in (3.2) causes edges to become blurred. In many

images, small differences between neighboring pixels are often due to noise, while large

differences are due to the presence of edges. This assumption has formed the basis for many

edge-preserving regularization schemes proposed in the literature. Although a few region-

based Baysian priors have been proposed,e.g. [8], most edge-preserving regularization

methods rely on information fromlocal neighborhood to determine the presence of edges.

One such scheme is to replace the quadratic penalty function in (3.2) with a non-

quadratic function that increases less rapidly than the quadratic function for sufficiently

large arguments, such as the Huber function [39, 37]:

V (f) =

Z
 (jrf(~x)j)d~x (3.4)

or V (f) =

Z
 

����� dfdx1
����
�
d~x+ : : :+

Z
 

����� dfdxn
����
�
d~x; (3.5)

where  (t) =

8<
: t2=2; jtj � �

�jtj � �2=2; jtj > �:
(3.6)

This function2 increases linearly, instead of quadratically, for arguments larger than�. Thus

the objective function penalizes large differences between neighboring pixels less severely

than the quadratic penalty, while maintaining the same level of penalty for small differ-

ences. This property allows sharper edges in the reconstructed image. If the log-likelihood

is concave, then the objective function incorporating the regularization term given in (3.6)

will be globally convex, so it is usually possible to find a global minimum of the objective

function by using suitable iterative algorithms [39, 25, 16].

1In practice, a discretized solution is usually implemented; an example of such an implementation is
V (f) =

P
j

P
k wjk(fj � fk)

2 wherewjk is nonzero only for neighboring pixels;d~x is a shorthand for
dx1 : : :dxn, wheren is the dimension of the “image”.

2We observe thatV (f) described by (3.4) is rotationally invariant, whileV (f) described by (3.5) is not.
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One could also use a nonconvex penalty function, such as the broken-parabola function

used by Leeet al [60, 47, 59]:

�(t) =

8<
: 
t2; 
t2 � �

�; 
t2 > �:
(3.7)

The broken-parabola function makes the objective function non-convex and non-differentiable,

thereby ruling out gradient-based descent methods. Instead, a deterministic annealing al-

gorithm is proposed in [60], so that a series of objective functions using different�
 ’s as

the penalty function are minimized:

�
(t) = �
1



log(e�
ct

2

+ e�
�): (3.8)

This�
 function resembles a quadratic function when
 is small; it approaches the broken-

parabola function as
 ! 1. Thus the minimization of a nonconvex nondifferentiable

objective function is transformed into a series of minimizations of nonconvex but differen-

tiable objective functions, during which
 is increased for each minimization, so that the

final penalty function is close to the broken-parabola. During each minimization over a

certain
, auxiliary variables that represent the local strength of an edge are introduced.

The minimization method alternates between updating these auxiliary variables and updat-

ing pixel intensities. This approach also uses information from thelocal neighborhood.

Figure 3.1 compares the quadratic, Huber, and the broken-parabola function.

Both edge-preserving methods,i.e., replacing the quadratic penalty function with the

Huber function or the broken-parabola function, modify the local penalty function so that

it will penalize large differences between neighboring pixels less than the quadratic penalty.

A related approach to these methods is the “total variation” method, where one attempts to

remove noise from an image by solving a nonlinear minimization problem involving a total

variation criterion[27, 28, 85]. All the approaches reviewed above rely on information from

local neighborhood to determine the presence of an edge locally. This chapter describes a

method for includingnonlocalinformation into the regularization method, thus hopefully

achieving better results under certain cases. In the specific case of emission computed to-

mography, accurate attenuation correction is usually necessary for a satisfactory emission
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Figure 3.1: A comparison of quadratic, Huber, and the broken-parabola penalty function

reconstruction[51]. Accurate attenuation correction requires an accurate map of attenua-

tion coefficients. A PET attenuation map consists of a small number of regions,i.e., lungs,

spine, body tissue, etc. The attenuation coefficients within each region are fairly uniform,

but they vary a great deal between neighboring regions and the transition between regions

can be fairly rapid,e.g., across a few pixels. A regularization method that incorporates

this additional prior information should be able to outperform a purelylocal regularization

method. In this chapter, we propose a new objective function for image reconstruction that

incorporates boundary and region information into its regularization. Section 3.3 describes

our new reconstruction algorithm; Section 3.5 compares the proposed algorithm to a “con-

ventional” statistical reconstruction algorithm and FBP; Section 3.7 summarizes the results

and outlines possible future work.
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3.2 Image Segmentation Techniques

Our new regularization approach to image reconstruction exploits boundary and region

information. The ideas we use are derived from the image segmentation community. We

will now review a few image segmentation techniques, and present an attractive imple-

mentation technique for certain snake models called the “level set technique”. Finally in

this section, we will review a few transmission attenuation map segmentation techniques.

Please note that our goal is to incorporate segmentation techniques into our reconstruction

problem, rather than a 2-step method of “first reconstruct then segment”.

3.2.1 General Techniques

Image segmentation is a critical problem of early vision and it has been extensively

studied. Approaches to image segmentation can be roughly divided into four types:

1. Local Filtering approaches such as the Canny edge detector [11].

2. Boundary models, such as Snakes [53] and Balloon methods [20];

also parametric models such as used in [83, 80]

3. Region growing techniques [2].

4. Global optimization approaches (for labels) based on some criteria, such as

Bayesian or Minimum Description Length (MDL)[7, 46, 45, 58].

Local Filtering Techniques

Usually local filtering approaches do not have a criteria which is to be minimized by the

method. Since in our case, we do not have an image to start with, it is very difficult to incor-

porate a local filtering technique into our method. Furthermore, local filtering techniques

usually only consider local information, thus it would not suit our objective of incorporat-

ing nonlocal information into the regularization. Thus we will not consider local filtering

techniques.
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Boundary Models

These methods can be divided into two broad categories: parametric and non-parametric.

Staibet al [80] uses the Fourier basis to describe the boundary curve:2
4 x(t)

y(t)

3
5 =

2
4 a0

c0

3
5 +

nX
k=1

2
4 ak bk

ck dk

3
5
2
4 cos kt

sin kt

3
5 (3.9)

One drawback of this approach is that the initialization must be fairly close to the actual

boundary; furthermore, changing any one parameter in the representation affects the global

shape of the boundary. Titus [83] used B-Splines to represent the boundary curve radially

relative to a fixed center point. The number of knots in the curve in fixeda priori. Then

estimating the boundary is turned into a problem of estimating the parameters describing

the spline function. This approach can achieve a good local fit for shapes whose behavior

in one region is not necessarily related to their behavior everywhere else. The drawback in

both these two parametric approaches is that the number of parameters must be decided in

advance and calculating the derivatives of the objective function with regard to these pa-

rameters (so that a gradient descent method can be used to minimize the objective function)

is very cumbersome. Also, depending on the choice of parameterization, the shape of the

object may be restricted.

The non-parametric approach to the boundary model simply deals with boundary curve

directly. One of the most popular non-parametric approaches is the snake model [53]. A

snake is an active contour defined by the parametric mapping

�(p) = (x(p); y(p)); (3.10)

wherep 2 [0; 1] parameterizes the contour,�(0) = �(1), and all derivatives match at

0 and 1. Instead of considering a single curve, we consider a smooth family of closed

curves�(p; t) = (x(p; t); y(p; t)) wheret parameterizes the family andp the given curve,

p 2 [0; 1]. A typical energy for a snake is:

E[�(�; t)] =

Z 1

0

�
1

2
(�j�pj

2 + �j�ppj
2)� �jrIj2

�
dp; (3.11)

where�p(p; t)
4
= (xp(p; t); yp(p; t)). To find the curve that minimizes this energy, one can

perform steepest descent (in the sense that the snake evolves in the direction that decreases

15



the energy most rapidly,i.e., in the direction of the negative functional derivative�E
��

):

@�

@t
= �

�E

��(�; t)
= ���pp + ��pppp + �rjrIj2: (3.12)

In computer implementation, an approximation to the derivatives is made and a finite time

step (�t) is taken:

�(�; t+�t) � �(�; t)�
�E

��(�; t)
�t: (3.13)

For the classical snake model to work satisfactorily, the initial snake must be fairly close to

the actual boundary, as the only force pushing the snake to the boundary is the third term,

�rjrIj2, which is only effective near the boundary. To increase the “capture range” of

snake models, the balloon models introduce an additional force� ~N (� is a constant) which

pushes the contour out in the normal direction (no matter where the contour is). This is

not very satisfying since even if the contour has reached the true boundary, the force acting

on the contour will not go to zero; so if the additional force is not carefully controlled, the

curve may expand indefinitely. A more satisfying way of increasing the capture range is

proposed in [86]; in their work, rather than a constant force, a spatially variant “gradient

vector flow” field is generated from the image; then the contour is put under the influence

of this force and the internal forces which aim to keep the contour smooth. This snake

model has a fairly large capture range and does not expand out uncontrollably (unlike if a

constant expansion force is added) after it reaches the true boundary.

Region Growing Techniques

The goal of snake models is to find closed boundary contours; in contrast, the goal

of the region growing (merging) is to divide the image
 into, say M, of regions, so that


 = [Mi=1Ri, Ri \ Rj = ; if i 6= j, and eachRi satisfies a homogeneity criterion. Region

merging builds up complicated regions by combining smaller regions using a statistical

similarity test,e.g., Fisher’s test. If there are two adjacent regionsR1 andR2 wheren1,

n2, �̂1, �̂2, �̂21, and �̂22 are the sizes, sample means, and sample variances ofR1 andR2,

respectively. Then, to decide whether or not to merge them, the squared Fisher distance is

evaluated:
(n1 + n2)(�̂1 � �̂2)

2

n1�̂21 + n2�̂22
=

n�̂2

n1�̂21 + n2�̂22
� 1; (3.14)
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wheren = n1 + n2 and�̂2 is the sample variance of the mixture region. If this statistic is

below a certain threshold then the regions are merged. Region growing can be seen as a

special case of region merging, whereR1 is a region andR2 is a single pixel at the boundary

ofR1. Although region growing algorithms are very intuitive, it is rarely know what, if any,

global cost function they are minimizing, let alone whether the algorithm converges to the

minimum of such a global cost function, and the resulting regions often end up with jagged

boundaries.

Both Bayes and MDL specify ways for segmenting images using global cost function

criteria. They have different motivations but are actually equivalent to each other, in the

sense that one can be transformed to the other. Under the Bayes approach, the observed

image is modeled as a degraded version of an ideal image assumed to be piecewise smooth.

For example, Mumford and Blake use the following criteria:

E[f;�] = �

Z Z



(f � I)2dxdy + �

Z Z
R��

jrf j2dxdy + �j�j; (3.15)

whereI is the input image,f is the output image, and� labels the discontinuities. Leclerc

suggests that segmenting the images according to the above Baysian model should be

equivalent to obtaining its minimum description length in terms of a previously specified

description language. A typical MDL criterion occurs in (3.16); it differs from (3.15) by

letting the�’s be unknown variables which are assumed to be constant within each region.

It is usually very difficult to minimize this type of energy functional; algorithms such as

simulated annealing, graduated nonconvexity, and deterministic annealing are sometimes

successful.

Global Optimization Approaches

All these approaches have their advantages and disadvantages. The filtering approach

only takes into account local information and cannot guarantee closed edge contours. Snake

models only make use of information along the boundary and require good initialization (or

adding ballooning force) to yield satisfactory results. Region growing techniques take into

account region information, but the boundaries they generate are often not smooth. Global

optimization techniques impose a global criterion for segmenting the image, but it is often
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difficult and time-consuming to find their minima.

In [96], the region competition algorithm was presented. Region competition minimizes

the following generalized Bayes/MDL criterion using the variational principle:

E[�; f�ig] =
MX
i=1

�
�

2

Z
�Ri

ds� logP (fI(x;y) : (x; y) 2 Rigj�i) + �

�
; (3.16)

where the first term is the length of the boundary curve for regionRi; the second term is

the sum of the cost for coding the intensity of every pixel(x; y) inside regionRi according

to a distributionP (fI(x;y) : (x; y) 2 Rigj�i); � is the code length needed to describe the

distribution and code system for regionRi. They employed alternating minimization: with

� fixed,

�̂i = arg min
�i

�
�

Z Z
Ri

logP (�ijI(x;y))dxdy

�
: (3.17)

With �i’s fixed, they employed steepest descent (for any point~v = (x; y)):

d~v

dt
= �

�E[�; f�ig]

�~v
=
X

k2Q(~v)

�
�
�

2
�k(~v) ~Nk(~v) + logP (I~vj�k) ~Nk(~v)

�
; (3.18)

whereQ(~v) = fkj~v lies on�kg, i.e., the summation is done over those regionsRk for

which~v is on�k. It turns out there is a simple intuitive interpretation for the above equation:

the first term maintains the smoothness of the contour; the second term is the statistic force,

f = logP (Ij�) ~N ; this force always tries to compress the region, and the better the point~v

satisfies the homogeneity requirement the weaker the statistic force; hence the neighboring

regions compete to get the points along its common boundary. The region competition

algorithm combines some of the most attractive aspects of snakes, region growing, and

global cost function approaches. The segmentation is parameterized in terms of boundaries,

but the energy function also takes into account region information. This technique is also

not very time-consuming (in the sense that the number of parameters is only ofO(n),

rather thanO(n2) if we assign every pixel a label, and minimize a cost function dependent

on these labels).

3.2.2 Level Set Approach to Front Propagation

Now we describe the level set implementation technique for active contours. This ap-

proach has many advantages when compared to traditional snake implementations; we
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use this implementation throughout our work. The traditional approach to the problem

of a closed curve (snakes)C(s; t), moving in the plane along its normal vector field with

curvature-dependent speed, is to take the equations describing the motion for the posi-

tion vectorC(s; t), and then discretize the parameterization with a set of discrete marker

particles lying on the moving front. These discrete markers are updated in time by approxi-

mating the spatial derivatives in the equations of motion, thereby advancing their positions.

This approach has several problems [76]. First, small errors in the computed particle po-

sitions are tremendously amplified by the curvature term, leading to instability unless an

extremely small time step is employed. Second, topological changes are difficult to manage

when the evolving interface breaks or merges. Third, extension of this technique to three

dimensions is difficult.

The level set technique was proposed by Osher and Sethian [72, 77] to deal with these

problems; in the level set technique, the evolving frontC(t) (a function of time) is repre-

sented as the level setf	 = 0g of a function	 (called the hypersurface in this setting); the

main idea is to embed a 1-D curve in a 2-D function. Thus given an initial closed contour

Ct=0(p) = (x(p); y(p))T in R2 where0 � p � 1, the function	 at t = 0 will be:

	(x; y; t = 0) =

8<
: 0; if (x; y) is onC

d; otherwise;
(3.19)

whered is the closest distance to initial level0 of 	 (it can be some other function of(x; y),

and the plus (minus) sign is chosen if the point(x; y) outside (inside) level0). Hence we

have the initial function	(x; y; t = 0) : R2! Rwith the property that

Ct=0(p) = ((x(p); y(p))T j	(x(p); y(p); t = 0) = 0): (3.20)

Figure 3.2 illustrates an expanding circle and its level set representation.

A relationship must be established between evolution of the contourC and evolution

of the function	, so that8t � 0; Ct(p) = ((x(p); y(p))T j	(x(p); y(p); t) = 0). Let

C(p; t) : S1 � [0;1) ! R
2 be a family of curves3 satisfying the following (curvature-

dependent) evolution equation:
@C

@t
= �(�) ~N (3.21)

3In three dimensions,C(p; t) : S2 � [0;1)! R3 denotes a family of surfaces; refer to [64, 90] for more
details.
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Figure 3.2: Level set formulation of equation of motion. (a) shows the curveC at t = 0

and its level set representation. (b) shows the curveC, after expanding, att = � .
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The equation that evolves the function	 so that the contourC is always the zero level set

of 	 must satisfy:

	(C(t); t) = 0: (3.22)

By the chain rule,

	t +r	(C(t); t) � C 0(t) = 0: (3.23)

If � is the speed in the inward normal direction, thenC 0(t) � ~N = � where ~N = � r	
jr	j ,

and this yields the evolution equation for	:

	t = �(�)kr	k (3.24)

The curvature can be calculated directly from function	 using the following formula [68]:

� = div

�
r	

kr	k

�
: (3.25)

There are several advantages in this formulation. The first is that the evolving function

always remains a function even if the contourC changes topology, breaks, or merges. The

second is that	 can be approximated using a discrete grid; finite difference approximation

can be made to calculate the derivatives. It is also easy to determine the embedded contour

from the level set	. Finally, going to three or higher dimensions requires no significant

change. Because of these advantages, the level set approach, since its introduction, has

been used in a wide collection of problems involving evolving interfaces.

3.2.3 Shape Recovery with Front Propagation

Malladi et al [64] proposed an application of the front propagation using the level set

approach to the problem of shape recovery. A constant inflation (or deflation) termF0

is added to the curvature-dependent speed term, and an image-dependent speed function

�(x; y) is also incorporated; the equation describing the evolution of the level set becomes:

@	

@t
= �(x; y)kr	k

�
div

�
r	

kr	k

�
+ F0

�
: (3.26)

The constantF0 is added to keep the curve moving in the proper direction (either expanding

with a negativeF0 or shrinking with a positiveF0). The image-dependent speed function
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�(x; y) is defined in a way such that it has very small magnitude in the vicinity of an edge

and so acts to stop the evolution when the contour gets close to an edge. The following

speed function can be used:

� =
1

1 + krG� � Ik
n or � = e�krG��Ik; (3.27)

whereG� is a Gaussian smoothing filter which is used to smooth out noise. Both of these

definitions make� close to0 if the magnitude of the local gradient is large, and close to

1 if the magnitude of the local gradient is close to zero. Thus the initial curve will shrink

or expand until it meets a boundary of the image. Figure 3.3 shows a noisy image and its

corresponding� function.
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Figure 3.3: (a) noisy image. (b) its corresponding� function.

The image-dependent speed term only describes the speed of the evolving curve,i.e.,

the level0 of the hypersurface; it does not describe the motion of other levels of the hy-

persurface, thus it has no meaning on other levels. However,	 is defined over the entire

hypersurface, thus the speed term on nonzero levels must be defined, in order to evolve

the level set according to (3.26). The image-dependent speed function� is extendedfrom

level 0 to all other levels in the following manner: let̂� at a pointP lying on a level set

f	 = Cg be the value of� at a pointQ, such thatQ is the closest toP and lies on the level
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Figure 3.4: (a) extension of the speed term. (b) gray area is the narrow band constructed

around the black contour.

setf	 = 0g. This extension of the image-dependent speed term has the important property

that the level sets evolving under such a speed term will not collide. This is, however, an

expensive operation ofO(N3) (if there areN � N pixels in the image), because a search

for the smallest distance to level0 must be carried out for every pixel in the hypersurface.

Figure 3.4a illustrates the extension of the speed term.

To save time, the “narrow-band” extension can be used [1]. Instead of extending the

image-dependent speed function to the entire hypersurface, only extension to a band around

level 0 is performed. Once the front is about to expand or shrink out of this band, a new

band is constructed around the new front, and the new band is used until the new front is

about to get out of this band. This requires re-initialization of the band and the hypersurface

every certain number of iterations. In this re-initialization, a search for the smallest distance

to level0 is performed, and those that are within a certain threshold are made into the new

band. Figure 3.4b illustrates the narrow band approach.

Every time an extension of the speed term is performed, level0 must first be re-acquired.

This is not trivial since after a few iterations, there will be no values on the hypersurface
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exactly equal to0. Thus a contour must be extracted4 from hypersurface.

This method of shape recovery works well. Figure 3.5 and 3.6 show successful bound-

ary extraction of two images. One major disadvantage is that it still requires a small time

step, because a large time step will risk the contour expand out of (or into) the actual bound-

ary. Once that happens, it will keep expanding uncontrollably. This problem is remedied

in the work done by Yezziet aldescribed in the next subsection.

4We use Matlab’s contour program to extract a discrete version of the level-0 curve,i.e., the output of the
contour program consists of samples of the continuous curve.
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Figure 3.5: Boundary detection of an ellipse. Black contour indicates the propagating front.
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Figure 3.6: Boundary detection of 2 objects with one initial contour
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3.2.4 Shape Recovery Using Energy Minimization

Yezzi et al [90] proposed an improvement to the above approach by modifying the

length functional fromL(t) =
R 1
0
k@C
@p
kdp to:

L�(t) =

Z 1

0

����@C@p
�����dp; (3.28)

where� is the image-dependent speed function as defined in (3.27). This new length func-

tional is the “shortest” when the contour lies right on the boundary of an object where

the magnitude of local gradient is very large and consequently the image-dependent speed

function is very close to 0. Thus whenL�(t) is minimized, the contour is on the boundary

of the object. Figure 3.7 shows the same contour will result in different lengths measured

by this new length functional.

Taking first variation of the usual length functionalL(t) =
R 1

0 k
@C
@p
kdp, we have:

�L
0

(t) =

Z Lt

0

h
@C

@t
; � ~Nids: (3.29)

Hence the direction in whichL(t) is decreasing most rapidly is when

@C

@t
= � ~N : (3.30)

A simple closed curve converges to “round” points when evolved according to (3.30) with-

out developing singularities [48]. Applying the same technique to the new length functional

and taking first variation of (3.28), and using integration by parts:

�L
0

�(t) =

Z L�(t)

0

h
@C

@t
; �� ~N � (r� � ~N ) ~Nids; (3.31)

which means that the direction in which theL� perimeter is shrinking as fast as possible is

given by:
@C

@t
= (���r� � ~N ) ~N : (3.32)

This is the gradient flow corresponding to the minimization of the length functionalL�.

The level set implementation of this flow can be obtained using the same technique outlined

in (3.22), (3.23), and (3.24):

@	

@t
= �(x; y)kr	kdiv

�
r	

kr	k

�
+r� � r	: (3.33)
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Figure 3.7: the contour is (a) on the boundary (c) not on the boundary; background is the

speed function. (b) (d)� function on the contour. In (d)� function is 1 at most places.

In actual implementation, a constant inflation termF0 is added (proposed by Malladiet al

in [64]), making the level set implementation:

@	

@t
= �(x; y)kr	k

�
div

�
r	

kr	k

�
+ F0

�
+r� � r	: (3.34)

This modified level set approach has all the advantages of Malladi [64], but has the

added benefit of being able to tolerate a larger time step. For a� as defined in (3.27),r�
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will look like a “doublet” near an edge. It attracts the evolving contour as it approaches an

edge, and pushes it back if it should pass the edge [54]. Thus a larger time step can be used.

Furthermore, when the contour rests on the edge, the energy functional (3.28) is actually

minimized.

3.2.5 Segmentation Techniques for PET Attenuation Correction

Instead of using a reconstructed attenuation map for PET attenuation correction, many

authors have proposed applying various segmentation techniques to the reconstructed at-

tenuation map, then assigning some (often constant) values to each region.

Xu et al [87] segmented the transmission image into anatomic regions by first calcu-

lating the threshold between regions using the histogram of the attenuation values; then

the image is segmented using these thresholds into different regions; every pixel in every

region is then assigned the average attenuation values within that region. Meikleet al [66]

used a more sophisticated method of thresholding for thorax transmission images: first,

the histogram obtained from a reconstruction with no smoothing at all (but after median-

filtering) is used to fit three Gaussian PDF’s (corresponding to lung, air and soft tissue);

then every pixel’s new value is calculated using:

�0 =
1

N
(�airP (�airj�) + �lungP (�lungj�) + �stP (�stj�)); (3.35)

where

N = P (�airj�) + P (�lungj�) + P (�stj�): (3.36)

So a continuous range of� values is possible in the “segmented” image. Then a median

filter is applied to the “segmented” image.

Instead of reconstructing the attenuation map then segmenting this map, some authors

have proposed calculating directly the boundaries from projection data. Tomitani [84] used

this approach to find the boundary of the human skull. First, the boundary contours on

the projection data is estimated by thresholding the sinogram; these contours are often

jagged, thus only the lower order Fourier coefficients of the contours are retained; finally

the boundary contours are transformed into the image domain. Although this approach
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is only applied to human skull transmission images, it may also be possible to use this

approach for the thorax.

Instead of first reconstructing the image and then segmenting the reconstructed image,

Fessler [36] presented a “unified reconstruction/segmentation method” based on a penal-

ized weighted least-squares objective function. But the parameterization is discrete,i.e.,

there are only a discrete set of possible attenuation coefficients (the lungs, soft tissue, bone,

etc.). Even though this method minimizes a single objective, the parameters are still dis-

crete, and the different pixels within a “region” cannot take on different values. This is not

the case for lungs. Furthermore, this method also relies only on local information.

Most of these segmentation techniques impose a constant value on a certain region,

which is not true under certain cases,e.g., the lung region usually does not have uniform

attenuation coefficients and different patients have different attenuation coefficients in this

region. Most of these approaches assign a constant number to a certain region, while the

others assign some number decided using somead hocformula to every pixel, so that the

attenuation coefficients have a continuous range. We will apply our new nonlocal regular-

ization approach to this problem, so that we take into account boundary information while

still estimating the attenuation coefficient at every point directly from the projection data.

30



3.3 A New Approach to Edge-Preserving Regularization

3.3.1 A New Objective Function

Our development of the new objective function was motivated by the specific applica-

tion of PET and SPECT transmission tomography, but its use is not restricted to attenuation

map reconstructions. We assume that the actual object to be reconstructed is everywhere

differentiable (and thus continuous). We also assume that the object consists of regions

that are piecewise smooth everywhere except very close to the region boundaries where

the object intensity changes rapidly but continuously to values in its neighboring region(s).

Thus an edge-preserving penalty function should penalize local gradients that are within

each region more than local gradients that are very close to a boundary. Furthermore, we

assume that the boundaries separating the regions are smooth. Figure 3.8 shows an exam-

ple object (representative of an attenuation map of a thorax image at 511 KeV) and one

of its vertical profiles. This object is piecewise smooth, but not piecewise constant, due to

variations in lung density.
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Figure 3.8: (a) Phantom (b) A profile of the phantom: row 60.

Like (3.1), the objective function we propose also consists of a data-fit term and a

penalty term. However, our penalty considers not only the image values but also the char-
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acteristics of region boundaries within the image. Following the convention in PDE-based

image analysis literature, we present a non-discretized formulation. Letf denote the ob-

ject,�k 2 G denote thekth boundary curve, and
 denote the domain of the image. Let

Rm(�) � R2 denote themth region5, where eachRm does not include its boundary, hence

they are open sets. The regions are separated by boundary curves�, where� = [Kk=1�k.

We assume that the number of boundary curvesK is fixed (and knowna priori) and that

the boundary curves do not touch each other,i.e. �k1 \ �k2 = ; if k1 6= k2, which is

reasonable for transmission tomography. Hence the number of regions isM = K + 1 and

Rm1
\Rm2

= ; if m1 6= m2.

We propose the following objective function of the objectf and the boundaries� [92]:

J(f;�) = �L(f ; y) + V (f;�) (3.37)

V (f;�) =
KX
k=1

h
�J2(f; k;�) + �J1(�k)

i
(3.38)

J1(f;�k) =

Z
�k

ds (3.39)

J2(f; k;�) =

Z



hk(�k(~x;�))jrf(~x)j
2d~x: (3.40)

The first term�L(f ; y) is the negative log-likelihood that measures the “faithfulness”

of the reconstructed object to the measured data. The term
R
�k
ds penalizes the length of

the boundary, so that the boundary curves remain smooth. The termJ2(f; k;�), which is

rotationally invariant, penalizes local gradients inside each region more than local gradients

close to the boundary;�k : R2�Gk ! R is the signed distance of~x to� if the closest point

on� to ~x lies on�k, otherwise, the function is zero (hence all locationsx where�k(x;�)

is nonzero are necessarily in the two regions that are separated by�k). The functionhk :

R! [0; 1] maps small arguments to values near zero and larger arguments to values near

unity. For simplicity, we only usehk ’s that belong toC1(�1;+1). The J2 term has

a similar effect on the reconstructed image as the penalty described by Eqn (3.5); but in

J2, how much the local gradients at a specific location is penalized is decided by where

this location is with regard to the boundary, hence the penalty is “nonlocal”. An example

of hk is shown in Figure 3.9. Figure 3.9a shows a one-dimensional object. Figure 3.9b

5We present our model in 2D, but extension to 3D should be straightforward.
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Figure 3.9: (a) Example of a 1-D object (b) Signed distance to the boundary (c) One possi-

bleh function.

shows the signed distance to the boundary, in this case, the boundary points are at�3

and+3. Figure 3.9c illustrates the type ofh function we may want to use; the value of

hk(�k(�)) is 1 well inside each region, but gradually decreases close to the boundary. This

approach allows larger gradients in the reconstructed object close to the boundary. In two

dimensions (or three dimensions), the value ofhk(�k(�)) at every point is determined by the

signed distance between the point and the boundary curves.

The weighting parameters,�, �, and the functionshk must be chosen carefully to avoid

over-smoothing of the reconstructed image or the boundary curves. If we know certain

regions are more nonuniform than other regions,e.g., the lungs in PET transmission scans,

then we should design the correspondinghk ’s such that the local gradients are less penal-

ized in the lung regions. Whath function one uses,e.g., how “wide” the non-unity part

of h is, depends on the degree of certainty in the accuracy of boundary extraction; see

Section 3.3.5 for more details on how one chooses theh function. Furthermore, the curve

length term (3.39), which acts to keep the boundary smooth, will cause a shorter curve to

be favored against a longer curve even though the region roughness penaltyJ2 hopefully

keeps this force in check. Nevertheless, the associated parameter� should always be small
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to avoid excess shrinking of the boundary curve.

3.3.2 An Alternating Minimization Scheme

We use alternating minimization to jointly minimize the objective function given in (3.37)

over f and�, i.e., we first holdf constant and minimize� with regard to�, then using

the most recent estimate of�, we minimize� with regard tof ; we alternate between these

two steps until convergence. Whenf is fixed, the second and third terms depend on�. We

must minimize the following objective:

Jf (�) =
KX
k=1

�
�J2(f; k;�) + �

Z
�k

ds

�
(3.41)

�n+1 = arg min
�
Jfn(�); (3.42)

whereJ2 was defined in (3.40). As is common in PDE-based image analysis, we perform

steepest descent with respect to�. For any point~v = (x; y) on the boundary� we evolve

that point according to the following differential equation:

d~v

dt
= �

�Jf(�)

�~v
; (3.43)

where the right-hand side is the negative functional derivative of the objective. Since it is

difficult to analytically derive the functional derivatives ofJ2, we evaluate its functional

derivatives numerically. The functional derivative ofJ2 must point in the normal direc-

tion of the curve, as any movement in the tangential direction would not change the curve.

We use a scheme similar to the central difference method for evaluating local derivatives.

(Central differences are usually accurate to a higher order than one-sided differences.) For a

given point~p0 on the contour�, we define a functionz which is zero except in the neighbor-

hood of~p0 and for which�+z differs from� only in the normal direction. (We can imagine

some force being exerted on the curve; this force is nonzero only in the neighborhood of~p0;

if we exert this force in the normal direction of the curve at~p0 for an infinitesimal period

of time, then we will have a small perturbation of the curve at~p0 in the normal direction).

Using this idea, we approximate the functional derivative ofJ2(�) at~v = ~p0 as follows:

�J2
�~v

�
1

2

J2(� + z)� J2(�� z)

��
(3.44)
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=
1

2

�
J2(� + z)� J2(�)

��
�
J2(�� z)� J2(�)

��

�
(3.45)

4
=

1

2
(u1 � u2); (3.46)

where�� is the area lying between the curve� and the perturbed curve� + z [44].

For the last term inJf(�), the direction in which the curve length decreases most rapidly

is when [90]:
@�

@t
= �� ~N ; (3.47)

i.e., the speed of the evolution at any point is the curvature of the boundary at that point,

and the curve evolves in the inward normal direction. Combining (3.43), (3.45), and (3.47),

we evolve the boundary using the level set method[64, 90, 54] according to the following:

d~v

dt
= �(��+

�

2
(u1 � u2)) ~N : (3.48)

Evolving the curve according to (3.48) yields a curve that approximately minimizesJf ; we

call this step the “boundary estimation” step.

The force exerted byJ2 in (3.41) is nearly zero in smooth regions, and is only signif-

icant close to the actual boundary where local gradients are large. Figure 3.10 illustrates

this property in one dimension. Letf 0 denote the derivative off in the x direction; let

�o denote the old boundary at 0.3 and�n denote the new boundary at 0.35. Moving the

boundary� from 0.3 to 0.35 would changeh(�(�;�)) from h(�(�;�n)) to h(�(�;�n)), i.e.,

the “valley” ofh(�(�;�)) is moved from 0.3 to 0.35, but the change in the roughness penalty,

i.e.,
R
(h(�(x;�n)) � h(�(x;�o)))jf 0jdx, would be very small. Thus evolution according

to (3.48) alone would require a fairly close initialization to the actual boundary. As dis-

cussed near (3.55) below, we circumvent this problem by using the initialization procedure

for the boundary that employs another force (from a global measure) which ensures that

the boundary moves no matter where the contour is.

For the second stage of the minimization, we hold� fixed at its previous estimate�n

and minimize with regard tof . When� is held fixed, the relevant terms in the objective

function (3.37) are the following:

J�(f) = �L(f ; y) + �

KX
k=1

J2(f; k;�) (3.49)
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Figure 3.10: Plot of change inJ2 when the “curve” is very far from the actual boundary

J2(f; k;�) =

Z



hk(�k(~x;�))jrf(~x)j
2d~x: (3.50)

Hence we minimizeJ�(f) with regard tof as follows:

fn+1 = arg min
f
J�n(f): (3.51)

When updating the boundary using (3.42), theh function inJ2 pushes the boundary toward

image locations where the gradient is large; when updating the objectivef using (3.51),

theh function imposes a space-varying weighting of the penalty on local gradients. This

weighting depends on the signed distance from each pixel to the nearest estimated bound-

ary. Every term in (3.49) is quadratic inf , except possibly the log-likelihood term, which

involves logarithms in the case of Poisson measurements. Therefore, the minimization

problem (3.51) is a standard penalized likelihood problem, and we can minimizeJ� over

f using methods such as the conjugate gradient method [73, 41] (if quadratic) or the

paraboloid surrogates/coordinate ascent method (if not) [30].

We iteratively alternate between the two steps (3.42) and (3.51). Both these two steps

will, under ideal circumstances6, monotonically decrease the objective as defined in (3.37).

In addition, the objective is bounded below, so the algorithm will presumably converge

toward a local minimum.
6Under realistic circumstances, wheredt is taken to be finite, the minimization of (3.41) according to

a discretized version of (3.43) may not be exactly monotonic. Such effects are inevitable when continuous
formulations are discretized.
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3.3.3 Discretization

We discretize the imagef using the usual square grid. We discretize the level sets,

which embed the boundary curves, into a square grid using the same sampling grid as the

image. However, the sampling spacing of the boundary curve itself may be finer than the

image pixel spacing. Equation (3.48) describes the evolution of the boundary. The first

term is the smoothing term which is independent of the image; its implementation using

the level set method is as described in [64]. In addition to smoothing term, the evolution of

the boundary is determined by the functional derivatives ofJ2.

To implement the approximation described in (3.48), we observe that for a point~p1 on

the boundary curve to be the closest to a point~p0 in the image, the line connecting~p0 and

~p1 must be perpendicular to the tangent line of the boundary curve at~p1 (see Figure 3.11).

Thus if we make a small enough perturbation of the boundary curve in a neighborhood of

~p1, the only points in the image that are possibly affected by this change of the boundary

curve (in terms of their distances to the curve) will be restricted to a narrow band perpen-

dicular to the boundary curve (see Figure 3.12). Since this band can be made arbitrarily

narrow by making the boundary curve perturbation small enough, we can make the ap-

proximation that the image values remain constant in the lateral direction of the band and

evaluate the functional derivative ofJ2 using equally spaced points on the line perpendicu-

lar to the boundary curve at~p1; we use bi-cubic interpolation from the neighboring points

[73] whererf is not available. At every time step of the evolution of the boundary curve,

we also keep a record of which point on the boundary each image point is closest to. When

we evaluate the functional derivative ofJ2 at a point~p1, we make the approximation that a

very small movement in the curve at~p1 will not cause any image point that is not closest to

~p1 previously to be closest to~p1 after the movement of the boundary curve, hence we only

need to evaluate the change inJ2 on those points that are already closest to~p1. In total, the

evaluation of the functional derivative ofJ2 is anO(n) operation, where the image is of

sizen� n.

Using these ideas, we arrived at the following conjecture for the expression of the func-
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~p0

~p1

Figure 3.11:~p1 is the closest point to~p0 on the curve.

tional derivative ofJ2:

�J2
�~v

=

�Z
l

(hk � �k)
0(r)jrf(l(r))j2I(l(r);�k)(r)dr

�
~N ; (3.52)

wherel(r) denotes the line perpendicular to the boundary curve�k at the point~v (l is

parameterized byr such thatr increases in the same direction as the outward normal vector

of �k at~v), (hk � �k)0 denotes the derivative of the function(hk � �k) with regard to its first

parameter, andI(l(r);�k) is an indicator function:

I(l(r);�k)(r) =

8<
: 1 ~v is the closest point in� to l(r)

0 otherwise.
(3.53)

A proof of this conjecture has been elusive. The difficulty mainly lies determining the size

of “critical points” with regard to a closed curve,i.e., whether it has Lebesgue measure 0;

we define a critical point is to be a point inR2 that has more than one closest point on the

curve�. In Figure 3.13, the solid line denotes the curve� and the dotted line denotes the set

of critical points. With this simple shape, the set of critical points on the line perpendicular

to every point has Lebesgue measure 0 inR. But for a more complex shape, the author

does not know how the set of critical points will behave. The�-neighborhood theorem

states[49]: for a compact boundaryless manifold� in RM and a positive number�, let ��

be the open set of points inRM with distance less than� from �; if � is sufficiently small,

then each pointw 2 �� possesses a unique closest point in�. However, the theorem only
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Figure 3.12: White dots denote image points; black dots denote boundary points;J2 eval-

uated on points represented by shaded dots.

works in an�-neighborhood of the curve, and how large� can be depends on how high

the maximum curvature of the curve is; the author does not know of any theorem that

characterizes number of closest points (on�) for all points inRM.

Even though we cannot prove the correctness of (3.52), the boundary curves seem to

evolve to a local minimum of (3.41) when we use a discretized version of (3.52) to imple-

ment our method.

�

Figure 3.13: The solid line denotes the curve�; the dotted line denotes the set of critical

points inR2.
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3.3.4 Initialization

We first use a local penalty such as the space-invariant quadratic penalty (as described

in (3.1) and (3.2)) to reconstruct an initial image estimatef0. As discussed in Section 3.3.2,

performing steepest descent with respect to the objective given in (3.41) may not push the

curve toward the boundaries if the initial curve is too far away from the boundary. To

address this limitation, we add a third penaltyJ3 (within-region homogeneity) toJf :

~Jf (�)
4
=

KX
k=1

�
�J2(f;Rk) + �

Z
�k

ds

�
+

MX
m=1


J3(f;Rm(�)) (3.54)

J3(f;Rm)
4
=

Z
Rm

�����f(~x)�
R
Rm

f(~x0)d~xR
Rm

d~x

�����
2

d~x; (3.55)

J3 penalizes the difference between every pixel value and the average pixel value of its

region. This is a global measure which exerts a force on the curve no matter how close

the boundary estimate is to the image gradients. The evolution of the curve, as determined

by J3, is essentially a competition between bordering regions. Each pixel on the curve

borders two regions; each of these two regions exerts a force trying to pull the pixel inside;

the boundary will evolve towards whichever region exerts a stronger force, as determined

by (3.55). We gradually reduce
 to zero. Eventually, we only rely onJ2 to move the curve

to a local minimum ofJf (�)7. The implementation of the differential equation as described

in (3.43) using the level set method (“narrow band” approach), taking into account of all

the forces, is[64, 90]:

@	

@t
= kr	k

�
�div

�
r	

kr	k

�
+ F0

�
; (3.56)

where	 is the function that embeds the curve�k, andF0(~v) = � �J2
�~v

+ 

PM

m=1
�J3(f;Rm)

�~v

is only meaningful on level 0; the extension of the speed termF0 has been described in

Section 3.2.3.
7In practice, we run a fixed number of iterations determined sufficient for the boundary curve to converge

to a local minimum. One could also stop the curve evolution when the maximum force exerted byJ2 falls
below a preset threshold.
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3.3.5 Deterministic Annealing

To form an initial estimate of the imagef prior to applying boundary estimation step,

we perform penalized likelihood tomographic reconstruction using a standard space-invariant

penalty. There is noh function as given in (3.40) in such a reconstruction, but we can think

of h as simply being a constant, say unity (Figure 3.14a),i.e., h is independent of the

boundary. But for the reconstructed image to have sharp boundaries, we must assign small

weights to differences in pixel pairs close to the boundary,e.g., as shown in Figure 3.14b.

Thus to avoid getting stuck in a poor local minimum, we must change the shape ofh func-

tion gradually from the initial constant function to the desiredh function, i.e., we employ

deterministic annealing.
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Figure 3.14: (a) Implicith function used in local regularization. (b) Edge-preservingh

function as a function of signed distance to the boundary.

Instead of going from the implicit constant function to the desiredh function in one

step, we take several steps. Suppose that from empirical experience with a given category

of images with similar noise levels (e.g., 3-minute PET transmission scans of the thorax),

we have found that the initial boundary is within, say, five pixels. Then we assign small

weights (via theh function) to all pixel pairs within a distance of five or six pixels to the

detected boundary, and assign large weights (unity) to all other pixel pairs; thus neighboring
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pixels that are more than five or six pixels away from the detected boundary will be coupled,

while the boundary is allow to shift to within those pixels between which the weights are

very small. We gradually evolve theh function from the constant function toward the final

desiredh function, as shown in Figure 3.15. Hopefully, the final boundary will eventually

be a very good local minimum. The functions used in Figure 3.15 are [60]:

h(t) = � log

 
e�b�t

2

+ e�b

2

!
; (3.57)

with (b; �) = (2:5; 1=6); (5; 1=4); (15; 2=5); (25; 1); and (50; 3).
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Figure 3.15: The evolution ofh function
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Table 3.1 shows an outline of the algorithm.

Reconstruct an initial imagef (0) using a local penalty

for each cyclem = 1; : : : ;M

choosehmk ’s, k = 1; : : : ; k, e.g., using (3.57)

evolve the boundaries according to (3.42) and (3.48) using the level set method

update the image according to (3.51)

end

Table 3.1: Algorithm outline

Evolving hinitialk to hdesiredk usually involves 4-5 “cycles”; one cycle consists of two

stages,i.e., the “image reconstruction” stage, and the “boundary estimate” stage8.

8Thehmk ’s need not be different for every cycle; one may hold any or all ofhk ’s fixed for a few cycles.
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3.4 Accuracy of the Estimated Boundary

3.4.1 A Metric For the Accuracy of Estimated Boundary

Defining a metric for the accuracy of our estimated boundaries is not a trivial task. We

would like this metric to have some physical meaning while at the same time, have the

property of being rotational invariant. Fourier descriptors satisfy this requirement, but a

change in any Fourier coefficients will lead to a change in the shape of the contour ev-

erywhere. Using B-splines would avoid this problem, but we still would have to decide

how many parameters to use; and the variance of the each coefficient in the representa-

tion do not necessarily have clear physical interpretations. Thus we propose the following

non-parametric way to evaluate the accuracy of our estimated boundaries: for any point on

the true boundaryx0, we find the point on our estimated boundaryx that has the shortest

distance (among all points on our estimated boundary) tox0, i.e.,

x = argminx02�jx
0 � x0j; (3.58)

where� is the estimated boundary; the vector fromx0 to x (i.e., x � x0) is defined as the

“deformation” of our true boundary at pointx0 (see figure 3.16). Using this metric, we can

average the deformation vectors across all realizations to obtain an average deformation

for a given point on the true boundary; from that, we can plot our average boundary, by

deforming our true boundary according to the average deformation at every point. We can

also investigate average magnitude of our deformation and other properties of our boundary

estimation process.

3.4.2 Accuracy of the Boundary Extraction

As discussed in Section 3.3.1, the curve length termJ1 in (3.39) favors a shorter curve.

However, even if we set the weighting parameter forJ1 to zero, there would still be bound-

ary curve shrinkage simply due to the fact that we discretize the differential equation. This

effect is commonly known asnumeric diffusion[61]: by approximating the differential

equation in the discrete domain, we introduce diffusion terms into the differential equa-

tion; this new differential equation with the diffusion terms included is commonly known
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x

x0

Figure 3.16: Deformation of pointx0 on the true boundary (thick line) to pointx on the

estimated boundary (thin line).

as themodified equation. Another way to put it is: we are approximating the modified equa-

tion better than the original differential equation. The effect of numerical diffusion can be

reduced by using finer discrete grids; however, as the grid gets finer, the computational cost

goes up at least linearly.

To quantify how much the estimated boundary curve shrink, we focus on the boundary

extraction part of the proposed method,i.e., with imagef known, we evolve the curve

according to (3.43). First, we apply the proposed method, with the weight ofJ1 set to

zero, to a noiseless image. We use the output of Matlab’s contour program as the ideal

boundary extraction (“curve 1”). The noiseless image and the boundary extraction obtained

by Matlab’s contour program are shown in Figure 3.17a; the boundary extraction obtained

with the proposed method (“curve 2”) is shown in Figure 3.17b. The deformation of the

ideal boundary extraction (arrows point from “curve 1” to “curve 2”), scaled by 10, is

shown in Figure 3.18. The maximum inward deformation is 0.2767 pixels; the maximum

outward deformation is 0.2765 pixels; the average signed deformation is 0.0155 pixels

inward; the average magnitude of deformation of all the pixels on the boundary curve is

0.0995 pixels. The deformation shown here is solely due to discretization, since the weight

assigned toJ1 is set to zero.

Then, we applied the proposed method to an image contaminated by Gaussian noise.
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(a) (b)

Figure 3.17: Noiseless image (a) Boundary extraction by Matlab’s contour program (b)

Boundary extraction with the proposed method

Figure 3.19 shows boundary extraction of such an image; this time, the weight assigned

to J1 is not set to zero. We performed 50 realizations, and obtained the average boundary

curve. We compare the average boundary curve to the curve extracted from the noiseless

image by the proposed method (“curve 2”). The deformation of “curve 2”, scaled by 10, is

shown in Figure 3.20. The maximum inward deformation is 0.1401 pixels, the maximum

outward deformation is 0.1377 pixels; the average signed deformation is 0.0160 pixels

inward; the average magnitude of deformation of all the pixels on the boundary curve is

0.0576 pixels.
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Figure 3.18: Effect of discretization: deformation of the boundary curve extracted by Mat-

lab’s contour program (“curve 1”), scaled by 10

Figure 3.19: Noisy image: boundary extraction with the proposed method
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Figure 3.20: Effect of image smoothing andJ1 term: deformation of the boundary curve

extracted from the noiseless image by the proposed method (“curve 2”), scaled by 10
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3.5 Statistical Results

In this section, we compare the proposed algorithm to the edge-preserving reconstruc-

tion method described in [31] which is based on local regularization onL, hereafter referred

to as the “Huber method”, in terms of bias/variance tradeoffs. We simulated PET transmis-

sion scans of a digital phantom that resembles the human thorax. The body has attenuation

coefficient0:096=cm. Inside the body, there are two “lungs”; the left lung has nonuniform

attenuation coefficients; the right lung has uniform attenuation coefficients; both lungs have

average attenuation coefficient0:022=cm. The “spine” has uniform attenuation coefficients

0:13=cm. Figures 3.8 shows the phantom and a profile of the phantom. The image consists

of 128 � 128 pixels, each of size0:42 � 0:42cm2. The sinogram consisted of 192 radial

samples and 160 angular samples, similar to the CTI ECAT921 PET scanner; the ray spac-

ing is 0.3375 cm. Random coincidences account for about 5% of the recorded counts. We

performed two studies, one with 1,000,000 counts, the other with 300,000 counts (about

equivalent to a 10 and 3-minute scans, respectively). Our initial image was reconstructed

using conventional space-invariant quadratic penalty over first-order neighbors for the pro-

posed method. The boundaries were initialized manually9 as shown in Figure 3.21.

For the transmission reconstructions, we considered two regions of interest (ROI) in the

reconstructed images: the left lung (region 1) and the right lung (region 2). We performed

50 realizations for this study. For each ROI, we calculated the average attenuation coeffi-

cient from each group of 50 ROI values. For the Huber penalty, we plotted ROI bias versus

standard deviation as a function of the regularization parameter�, for three�: 0.002, 0.004,

and 0.008, where 0.004 is about1=10 of minimum contrast; for the proposed penalty, we

manually selected� andh to cover a range of bias-variance tradeoffs.

For the high count case, one realization from FBP, Huber, and proposed reconstructions

are shown in Figure 3.22. A comparison of two profiles (row 65) from the Huber and

the proposed reconstruction methods are shown in Figure 3.23. We selected images of

similar bias to be shown,i.e., the average attenuation coefficients of the left lung region

(and the right lung region) from images reconstructed with all three methods have similar

9A procedure can be easily developed to obtain better initial boundaries.
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Figure 3.21: Initial contours

bias. Judging the variability in the Huber and the proposed reconstructions, we can see

that the proposed method yields less variance at this bias level10. This initial observation

is confirmed quantitatively by plotting the bias against the variance of the two ROI’s we

defined above (Figure 3.24, error bars in the bias direction are too small to be shown).

10The unevenness of the reconstruction using the proposed penalty near the boundary, as shown in Fig-
ure 3.22c, is due to the fact that theh function is near zero at these locations. A simple remedy to this problem
would be to increase theh function near the boundary curves. One could also use a “directional” penalty,
i.e., penalize more heavily in the tangential direction of the boundary curve, while decrease the penalty in the
perpendicular direction.
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(a) (b)

(c)

Figure 3.22: 1,000,000 counts transmission reconstruction (a) FBP reconstruction (b) re-

construction with Huber penalty (c) Proposed penalty
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Figure 3.23: 1,000,000 counts transmission reconstruction: Comparison of Huber penalty

and proposed penalty
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(b)

Figure 3.24: 1,000,000 counts transmission reconstruction, bias-variance plot of (a) Region

1 (b) Region 2
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To investigate how the proposed non-local regularization performs when the transmis-

sion map is applied to the attenuation correction of emission reconstructions (for details, see

[89]), we simulated PET emission scans of the digital phantom shown in Figure 3.25. The

relative activities of the lungs, spine, heart, and body were 12, 9, 40, and 22, respectively.

The emission projections included the effects of nonuniform attenuation corresponding to

the attenuation map in Figure 3.21. We reconstructed emission images using FBP with

attenuation correction based on two sets of transmission maps: one set regularized by the

proposed non-local penalty, and the other set by the Huber penalty.

1

2
56

4

3

Figure 3.25: Emission phantom

Figure 3.27 shows emission reconstructions using transmission maps reconstructed

with the Huber penalty and the proposed penalty. To compare the effect of the two dif-

ferent penalties on the emission reconstruction, we selected two groups of reconstructed

transmission maps, one using the Huber penalty, and the other using the proposed penalty.

Then [17] we smoothed the projection of the emission phantom (with ideal attenuation ap-

plied) and the transmission map, so that the resolution of the final emission reconstructions

using Huber penalty and the proposed penalty matched each other11 We use the follow-

11The smoothing was done because the reconstructed attenuation maps using the proposed penalty have
fairly sharp edges. Because of noise, theboundary detection is not perfect and severe artifacts will result if
we do not smooth the reconstructed attenuation map. We also attempted to reconstruct attenuation maps with
blurry edges directly,i.e., use “broader”h functions. We are, however, less successful with this approach,
since the reconstruction with space-invarianth functions have highly spatially varying resolution. To achieve
uniform spatial resolution, one would most likely need space-varyingh functions.
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ing simple method to determine the resolution of a set of reconstructions. Given the ideal

image�true and the average reconstructed image��, the resolution of�� is:

arg min�
X
j2M

��[G��
true]j � ��j

��2 (3.59)

whereG� represents a Gaussian smoothing filter with FWHM�, andM denotes a mask

used during reconstruction. The normalized12 standard deviation (in units of %) for the

mean of the six regions of3�3 pixels, with a fixed spatial resolution of 4.2 pixels (computed

according to (3.59)), are shown in Table 3.2.

Interior Boundary

Region 1 2 3 4 5 6

Huber penalty 4:8� 0:5 11:0 � 1:1 6:7� 0:7 14:8 � 1:5 16:4 � 1:6 15:9 � 1:6

Proposed penalty 1:1� 0:1 8:1 � 0:8 1:9� 0:2 14:4 � 1:4 17:1 � 1:7 18:1 � 1:8

Table 3.2: Normalized standard deviation (%) for the six ROI’s using 1,000,000 counts

transmission reconstructions

We also calculated�proposed=�Huber for all pixels within the image; Figure 3.26 shows

a histogram of these standard deviation ratios. For 85.8% of pixels, the proposed penalty

produced lower standard deviations than the Huber penalty. The median reduction in the

standard deviations is 47.1%.

12Normalized by the mean of each region.
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Figure 3.26: Histogram of�proposed=�Huber for emission reconstruction using transmission

scans with 1,000,000 counts
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(a) (b)

(c)

Figure 3.27: Emission reconstruction using transmission scans (1,000,000 counts) recon-

structed by (a) FBP (b) Huber penalty (c) Proposed penalty
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We performed similar studies for the low count case. One realization from the FBP,

Huber, and proposed transmission reconstructions are shown in Figure 3.28. (The streaks

in the FBP reconstruction in this case are caused by the fact that some rays recorded zero

counts). Figure 3.29 compares two profiles (row 65) from the Huber and proposed recon-

struction methods; these profiles came from images of similar bias. Figure 3.30 shows the

bias/variance tradeoffs for the two lung regions.

(a) (b)

(c)

Figure 3.28: 300,000 counts transmission reconstruction (a) FBP reconstruction (b) Recon-

struction with Huber penalty (c) Proposed penalty
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Figure 3.29: 300,000 counts transmission reconstruction: Comparison of Huber penalty

and proposed penalty
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(b)

Figure 3.30: 300,000 counts transmission reconstruction, bias-variance plot of (a) Region

1 (b) Region 2
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The emission reconstructions from noiseless emission data corrected using transmission

maps regularized by the proposed penalty and the Huber penalty are shown in Figure 3.32.

We observe that the heart region is much more uniform in reconstructed images using the

proposed penalty than using the Huber penalty. The histogram of�proposed=�Huber for all

pixels within the image is shown in Figure 3.31. For 81.7% of pixels, the proposed penalty

produced lower standard deviations than the Huber penalty. The median reduction in the

standard deviations is 34.6%. The normalized standard deviation (in units of %) for the

mean of the six regions of3 � 3 pixels as defined in Figure 3.25, with a fixed spatial

resolution of 6.4 pixels (computed according to (3.59)), are shown in Table 3.3.

Interior Boundary

Region 1 2 3 4 5 6

Huber penalty 5:0� 0:5 14:1 � 1:4 9:0� 0:9 14:0 � 1:4 15:7 � 1:6 15:3 � 1:5

Proposed penalty 1:7� 0:2 8:5 � 0:9 3:9� 0:4 13:4 � 1:3 18:0 � 1:8 14:9 � 1:5

Table 3.3: Normalized standard deviation (%) for the six ROI’s using 300,000 counts trans-

mission reconstructions
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Figure 3.31: Histogram of�proposed=�Huber for emission reconstruction using transmission

scans with 300,000 counts
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(a) (b)

(c)

Figure 3.32: Emission reconstruction using transmission scans (300,000 counts) recon-

structed by (a) FBP (b) Huber penalty (c) Proposed penalty
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3.6 Extension to Three-Dimensional Images

In this section, we formulate our 3-D nonlocal edge-preserving regularization. Concep-

tually, this is a simple extension of our 2-D formulations. We simply replace the penalty

on the curve length term,J1 in (3.39), with a surface area functional, and the penaltyJ2

in (3.40) remains the same, except~x now denotes 3-D spatial coordinates. Let�k denote

thekth boundary surface (the number of boundary surfaces is still assumed to be fixed and

known),f(~x) denote the 3-D object, andy denote the 3-D measurement13.

J(f;�) = �L(f ; y) + V (f;�) (3.60)

V (f;�) =
KX
k=1

h
�J2(f; k;�) + �J1(�k)

i
(3.61)

J1(f;�k) =

Z
�k

dS (3.62)

J2(f; k;�) =

Z



hk(�k(~x;�))jrf(~x)j
2d~x: (3.63)

To minimizeJ(f;�) with f fixed, we still perform steepest descent on� as in (3.43). The

conjecture we had about the expression of the functional derivative ofJ2, as given in (3.52),

can also be applied to (3.63); in fact, the expression of the functional derivative does not

change at all, except that~v now denotes a point on the surface, rather than a curve. The

direction in whichJ1 decreases rapidly is [90]:

@�

@t
= H ~N ; (3.64)

whereH denotes the mean curvature,i.e., the arithmetic mean of the principal curvatures.

Implementation of (3.64) using level sets is also given in [90]. There is a subtle theoretical

difference between 2-D curve evolution and 3-D surface evolution; whereas the geometric

heat equation for curves (3.47) will shrink a simple closed curve to a round point without

developing singularities, the surface evolution equation (3.64) may cause the development

of singularities[90]. This abstract concern is of little importance to us, since our surface is

13The 3-D measurement can be a stack of 2-D measurements,i.e., there is no inter-slice rays as in the case
of 2.5-D transmission scans; or it can be truly 3-D.
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mainly influenced by the other penalty termJ2; however, a possible remedy to this problem

has been given in [90].

We obtained a 10-minute transmission scan of a real patient on a CTI 921 PET scanner,

then we thinned this data to the equivalent of a 3-minute transmission scan. The image

consists of 134�134�47 pixels; the sinogram has 47 slices, each consisting of 192 radial

samples and 160 angular samples. The reconstructions using the proposed penalty are

shown in Figure 3.33 and 3.34. A comparison of the 6th slice of the reconstruction using

FBP, the Huber penalty, and the proposed penalty is shown in Figure 3.35. The boundary

surfaces extracted using the proposed penalty are shown in Figures 3.36 and 3.37.
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Figure 3.33: Three-dimensional transmission reconstruction with proposed penalty: slice

1 to 25
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Figure 3.34: Three-dimensional transmission reconstruction with proposed penalty: slice

26 to 47
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Figure 3.35: Slice No. 6: left column, 3-minute scan; right column, 10-minute scan; top

row, FBP reconstruction; middle row, 3-D Huber penalty; bottom row, proposed penalty

65



(a) (b)

Figure 3.36: Boundary surfaces extracted by the proposed penalty: the lungs
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Figure 3.37: Boundary surfaces extracted by the proposed penalty: the body
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(a) (b)

Figure 3.38: Boundary surfaces extracted by the proposed penalty: the lungs

Figure 3.39: Boundary surfaces extracted by the proposed penalty: the body

68



3.7 Discussion and Future Work

We have presented a new regularization method for tomographic image reconstruction

based on a nonlocal penalty function. The nonlocal penalty produces transmission recon-

structions with better ROI bias/variance tradeoffs than a local Huber penalty. When these

transmission reconstructions are applied to ideal emission data, the nonlocal penalty used

for transmission reconstruction produces emission images with smaller variances (for a

fixed spatial resolution) for most pixels in the image,i.e., from 80% to 85%; the median

standard deviation in the image is reduced by 35% to 50%.

However, reconstruction using the proposed penalty is more time consuming than using

“conventional” local penalties. Each cycle of the annealing process requires one “stage” of

image reconstruction. Thus if one runs 5 cycles for the annealing process, the time devoted

to updating the image is up to 5 times that of the local penalties, though for “reconstruction”

stage of the second to fifth annealing cycles, we do not need to run as many iterations as

in the first annealing cycle. The “boundary estimate” stage is also most time-consuming

during the first cycle of the annealing process. Since we used initial boundaries that were

far away from the true boundary (to demonstrate the robustness of our boundary estimate

algorithm), it took about 60 time steps for the two lung boundary curves to converge (the

body and spine boundary curves converges much faster). Each time step of curve evolution

for each of the two lungs takes about 0.6 of the time needed for a single iteration of Huber

reconstruction. The total time needed by the “boundary estimate” stages in all annealing

cycles greatly depends on initialization of curves, size of the time steps, etc. In the present

implementation, the boundary estimate stage of the first annealing cycle takes about twice

the time of an “image reconstruction” stage. Subsequent boundary estimations were much

faster since we evolved from the curve estimated by the previous cycle in the annealing

process. In total, computing the boundary estimates takes about the time of three to four

reconstructions14.

A related but fundamentally different approach to the problem of reconstructing atten-

14In the present implementation, the “boundary estimate” stage is written in Matlab code, as compared to
fairly optimized C code for the image reconstruction stage; hence significant improvement can be made by
converting the code for “boundary estimate” to C.

69



uation maps based on region information has been proposed by Debreuveet al[24]. They

proposed the following functional of the boundary curvesC:

J(C) =

Z �

0

W (C(p))jC 0(p)jdp;

wherep parameterizesC andW is a data consistency term. They minimized this functional

by evolving a PDE to obtain a “segmentation” of the attenuation map without actually “re-

constructing” the attenuation map. Their approach assumed that the attenuation coefficient

inside each region is constant, whereas our approach allows for nonuniform regions which

may arise in clinical situations.

Currently, theh functions are chosen experimentally,i.e., trial and error. A more sys-

tematic approach in choosingh functions, so that the transition in pixel values between

neighboring regions can be carefully controlled, will make this method much easier to use.

Furthermore, the choice of differenth functions at various stages of the deterministic an-

nealing process should have a great deal of effect on how “good” a local minimum the

algorithm eventually converges to. A study on this effect will be also very useful toward

applying this algorithm in clinical situations.
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CHAPTER 4

Singles Counting Statistics Affected by Deadtime

4.1 Introduction

Every photon counting system exhibits a characteristic calleddeadtime. Since the

pulses produced by a detector have finite time duration, if a second pulse occurs before

the first has disappeared, the two pulses will overlap to form a single distorted pulse [78].

Depending on the system, one or both arrivals will be lost. In PET or SPECT scanners,

the length of pulse resolving time, often just called “deadtime”, denoted� , is around2�s.

Counting systems are usually classified into two categories: nonparalyzable (type I) or par-

alyzable (type II). In a nonparalyzable system, each recorded photon produces a deadtime

of length� ; if an arrival is recorded att, then any arrival fromt to t+� will not be recorded.

In a paralyzable system, each photon arrival, whether recorded or not, produces a deadtime

of length� ; if there is an arrival att, then any arrival fromt to t+ � will not be recorded.

In some SPECT systems [29], we encounter a third model that is similar to the paralyzable

model: if two photons arrive within� of each other, then neither photon will be recorded

(e.g., due to pulse pile-up); we call this the type III model. The asymptotic moments of the

nonparalyzable model are well known [35]. For the paralyzable model, the exact expres-

sion for the mean of the number of recorded events from time 0 tot, denotedY (t), has been

derived previously [12]. However, for the type III model, only an approximate expression

for the mean number of recorded events has been derived [29]. In this chapter, we derive

the exact mean and variance expressions ofY (t) for both type II and type III models.
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Figure 4.1: Illustration of systems affected by three types of deadtime

This investigation of deadtime statistics was originally motivated by the goal of find-

ing appropriate statistical models for image reconstruction of PET and SPECT scans with

high deadtime losses. There are four natural choices for dealing with deadtime in image

reconstruction:

(i) ignore it altogether;

(ii) correct the number of recorded events for deadtime losses and plug the cor-

rected data into the reconstruction algorithm;

(iii) incorporate deadtime losses into the system matrix of the usual Poisson statis-

tical model;

(iv) develop reconstruction algorithms based on the exact statistics of the counting

process.

For a quantitatively accurate reconstruction, we must correct for the effect of deadtime

to avoid underestimation of source activity. This consideration rules out the first choice.
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Previous work [81, 22, 65, 88, 82] in this field usually involves the second choice,i.e.,

using the method of moments to correct the sinograms for deadtime losses, and recon-

structing the image using these corrected counts. In statistical image reconstruction, it is

generally assumed that the number of recorded events at a detector is Poisson distributed.

However, in the presence of deadtime, the fact that there can be no recorded events within

� of each other makes the counting process non-Poisson[55]. However, if the process is

approximately Poisson, then a simple modification of the system matrix,i.e., correct the

elements of the system matrix,aij, by the deadtime loss factor, should suffice. This is the

third choice as listed above, which would yield estimates with lower variance than plugging

thecorrectedcounts into a statistical reconstruction algorithm with anuncorrectedsystem

matrix. But simply correcting the number of recorded events or building this as a “loss

factor” in the system model while assuming that the number of recorded events is Poisson

distributed may be suboptimal. In this work, we investigate not only the mean, but also

the variance of the number of recorded events. If the mean and variance disagree signif-

icantly, then reconstructions based on Poisson statistical model would have suboptimally

large variances. We discuss this further in Section 4.6 after we derive the exact mean and

variance for the counting process.

4.2 Statistical Analysis of Deadtime

We define a “photon arrival” to mean a photon interacting with the scintillator with suf-

ficient deposited energy to trigger detection. The photon arrival processN(t) counts the

number of arrivals during the time interval(0; t], and the photon recording processY (t)

counts the number of recorded events. For simplicity, we assume thatN(t) is a homoge-

neous Poisson process with constant rate� (photon arrivals per unit time)i.e., we neglect

radio-isotope decay and other physical or physiological effects that may cause variable ar-

rival rate (see Appendix C for a generalization). We first review a few simple and useful

facts about the Poisson process [35]. The incrementN(t2)�N(t1), which is the number of

photon arrivals during the time interval(t1; t2], is Poisson distributed with mean(t2� t1)�.

N(t) has stationary and independent increments. IfTn denotes the time of thenth pho-
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ton arrival, then the waiting time (or inter-arrival time)Wn = Tn � Tn�1 is exponentially

distributed with mean1=�.

For simplicity, we also assume that the deadtime� is known and deterministic. Most

systems can be adequately modeled to have a constant deadtime, independent of count rate.

4.2.1 Asymptotic Analysis via Renewal Theory

The counting processes in all three types of systems discussed above are examples of

“renewal processes” [35], and renewal theory has been the classical basis for deadtime

analysis[63, 70, 69, 34]. A renewal process involves recurrent patterns connected with

repeated trials. Roughly speaking, if after each occurrence of a patternE, the random

process starts from scratch in the sense that the trials following an occurrence ofE form a

replica of the whole process, then the process qualifies as a renewal process. If we define

E to be the state1 of “the counter is ready to record the next photon arrival”, then after each

occurrence ofE, the counting process is statistically equivalent. A very useful random

variable to define isTE, the waiting time between one renewal and the next (renewal here

means return toE). Note that in the context of photon counting system, withE defined as

above, the number of renewals from 0 tot is almost2 exactly the number of recorded events

from 0 tot. If TE has ensemble mean�E and variance�2E , then the number of renewals from

0 to t, ~Y (t), is asymptotically Gaussian distributed [21][35] with the following moments:

E[ ~Y (t)] � t=�E ;Var[ ~Y (t)] � t�2E=�
3
E ; (4.1)

where� indicates that the ratio of the two sides tends to unity ast=�E ! 1. Hence

asymptotically, the mean and variance of the waiting time between renewals forms a sort of

“duality” relationship with the mean and variance of the number of renewals. We observe

that when� = 0, i.e., no deadtime,TE is exponentially distributed with mean1=� and

variance1=�2; thusE[ ~Y (t)] � �t andVar[ ~Y (t)] � �t, as expected since~Y (t) would

1For type III deadtime, we define renewal as “return toE after recording an event”.
2Almost since we have to consider photons arriving shortly before time 0 (ort) but renewal occurring

shortly after time 0 (ort). If one redefines the time of a recorded event to be� after the the photon arrives at
the detector, then the number of recorded events and the number of renewals during(0; t] would be exactly
the same. For stationary increment processes, which definition one adopts makes absolutely no difference in
terms of the statistics of the process.
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be Poisson distributed with mean�t when there is no deadtime. In realistic cases where

deadtime loss becomes significant,�E is usually very small when compared tot, hence the

Gaussian approximation is often very good.

For the nonparalyzable deadtime model (type I model), it is easy to derive the asymp-

totic mean and variance of~Y (t) from the moments ofTE . After each recording of an event,

the “deadtime” when the system cannot record any incoming arrival is simply� . Thus

TE = T + � , whereT is an exponentially distributed random variable with mean1=�.

Hence,

�E = 1=� + � =
1 + ��

�
(4.2)

�E = 1=�: (4.3)

Thus from (4.1), the counting process for a nonparalyzable (type I) system is asymptotically

Gaussian distributed with:

E[ ~Y (t)] �
�t

1 + ��
;Var[ ~Y (t)] �

�t

(1 + �� )3
: (4.4)

Figure 4.2 shows the mean and variance of the counting process of systems affected by

nonparalyzable deadtime. When�� > 0:1, the mean and variance of~Y (t) differ by at

least 20%. Carloniet al derived the following exact expression for theith moment for the

nonparalyzable deadtime model [13]:

E[Y i(t)] =

bt=�cX
k=0

[(k + 1)i � ki]�(k + 1; �(t� k� ))=k!; (4.5)

wherei = 1; 2; : : :, and�(j; t) =
R t
0
e�xxj�1dx is the incomplete gamma function. From

this expression, they derived asymptotic expressions for the mean and variance of the num-

ber of recorded events that coincide with (4.4).

For the other two deadtime models, if we try to deriveE[Y (t)] fromE[TE], it is much

more difficult to obtain a simple closed form expression because if we try to deriveE[TE],

we get an infinite sum and it is not easy to obtain every term in this sum, let alone a closed-

form expression forE[TE]. The variance ofTE is even more complicated. Therefore, in

the following section, we describe a new approach for deriving the moments of counting

processes.
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Figure 4.2: Mean and variance for nonparalyzable (type I) systems, witht = 1s; � = 2�s.

4.2.2 Exact Mean and Variance of Counting Processes

We first consider a general counting processY whereY (t1; t2) denotes the number of

recorded events during the time interval(t1; t2] andY (t) is a shorthand forY (0; t). We

define the instantaneous rate
 : IR! [0;1) of the processY (t) as:


(s)
4
= lim

�!0
E[Y (s+ �)� Y (s)]=�; (4.6)

and the instantaneous second moment� : IR! [0;1) as:

�(s)
4
= lim

�!0
E[(Y (s+ �)� Y (s))2]=�: (4.7)

We also define the correlation function� : IR2 ! [0;1) as:

�(s1; s2)
4
= lim

�1;�2!0
E[(Y (s1 + �1)� Y (s1))(Y (s2 + �2)� Y (s2))]=(�1�2): (4.8)

We assume that the following regularity conditions hold3

(i) 
 and� are well-defined�-almost everywhere, and� is well defined�2-almost

everywhere, and
 and� are integrable with respect to� and�2 over any finite

interval and rectangle, respectively;

(ii) E[Y (s; s + �)]=� andE[Y 2(s; s + �)]=� are uniformly bounded for alls and

� 2 (0; 1);

3� and�2 denote Lebesgue measures onIR andIR2, respectively.
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(iii) E[Y (s1; s1+ �1)Y (s2; s2+ �2)]=(�1�2) is uniformly bounded for alls1, s2, and

�1; �2 2 (0; 1) such that(s1; s1 + �1) \ (s2; s2 + �2) = ;.

These assumptions hold for a wide variety of counting processes, including any homoge-

neous Poisson process with finite intensity. Furthermore, for an arbitrary random process

Y , if E[Y (s; s+ �)]=�,E[Y 2(s; s+ �)]=�, andE[Y (s1; s1 + �1)Y (s2; s2 + �2)]=(�1�2) are

respectively uniformly bounded above by those of a homogeneous Poisson process, then

assumption (ii) and (iii) hold forY . Specifically, if a random process results from some

form of selection from a Poisson process with bounded intensity, then assumptions (ii) and

(iii) hold.

For analysis purposes, we artificially divide the time interval[0; t] into n segments of

length� each,i.e., t = n�. We have

Y (t) =
n�1X
i=0

Y (i�; (i+ 1)�); (4.9)

E[Y (t)] =
n�1X
i=0

E[Y (i�; (i+ 1)�)]; (4.10)

=

Z
IR

f�(s)ds; (4.11)

where we define the following piecewise constant function:

f�(s)
4
=

8<
: E[Y (j�; (j + 1)�)]=�; if s 2 (j�; (j + 1)�]; 0 � j � n� 1

0; otherwise.
(4.12)

Since
(t) is well-defined almost everywhere in the interval[0; t] andE[Y (s; s + �)]=� is

uniformly bounded, by the Lebesgue Dominated Convergence theorem (LDCT)[10],

lim
�!0

Z
IR

f�(s)d�(s) =

Z
IR

lim
�!0

f�(s)d�(s)

=

Z t

0


(s)ds: (4.13)
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Hence, we have the following simple general expression for the mean of the counting pro-

cess in terms of its instantaneous rate4:

E[Y (t)] =

Z t

0


(s)ds: (4.14)

We consider the second moment by a similar argument:

E[Y 2(t)] = E[(
n�1X
i=0

Y (i�; (i+ 1)�))2]

=
n�1X
i=0

E[Y 2(i�; (i+ 1)�))] +
n�1X
i=0

n�1X
j=0;j 6=i

E[Y (i�; (i+ 1)�)Y (j�; (j + 1)�)]

=

n�1X
i=0

E[Y 2(i�; (i+ 1)�))]

+2

n�2X
i=0

n�1X
j=i+1

E[Y (i�; (i+ 1)�)Y (j�; (j + 1)�)]

=

Z
IR

g�(s)d�(s) + 2

Z
IR2

h�(s1; s2)d�2(s1; s2); (4.15)

where we define the following piecewise constant functions:

g�(s)
4
=

8<
: E[Y 2(j�; (j + 1)�)]=�; if s 2 (j�; (j + 1)�] and0 � j � n� 1

0; otherwise,
(4.16)

and

h�(s1; s2)
4
=

8>>>>>>>>><
>>>>>>>>>:

E[Y (i�; (i+ 1)�)Y (j�; (j + 1)�)]=�2; if s1 2 (i�; (i+ 1)�],

s2 2 (j�; (j + 1)�],

0 � i � n� 2,

andi+ 1 � j � n� 1

0; otherwise.

(4.17)

Since� is well-defined almost everywhere in[0; t]� [0; t] andE[Y (s1; s1 + �)Y (s2; s2 +

�)]=�2 is uniformly bounded, by LDCT and Fubini’s Theorem[10],

lim
�!0

Z
IR2

h�(s1; s2)d�2(s1; s2) =

Z
IR2

lim
�!0

h�(s1; s2)d�2(s1; s2)

4If E[Y (t)] is differentiable for allt, then
(t) = dE[Y (t)]
dt

, and (4.14) results from the fundamental
theorem of calculus. However,E[Y (s)Y (t)] is not everywhere differentiable even for very simple random
processes,e.g., for the Poisson processN with intensity�,E[N (s)N (t)] = �min(s; t) + �2st. So a similar
argument involving the fundamental theorem of calculus runs into difficulties for the second moment.

78



=

Z t

0

Z t

s1

�(s1; s2)ds2ds1

=

Z t

0

Z t

s2

�(s1; s2)ds1ds2: (4.18)

Similarly, one can show that

lim
�!0

Z
IR

g�(s)d�(s) =

Z t

0

�(s)ds: (4.19)

Thus using (4.15), (4.18), and (4.19), we have the following general expression for the

second moment ofY (t):

E[Y 2(t)] =

Z t

0

�(s)ds+ 2

Z t

0

Z t

s1

�(s1; s2)ds2ds1: (4.20)

In the context of counting processes with deadtime, which includes all random processes

considered in this work, the process satisfies this additional assumption:

(iv) there exists a positive�0 such that8� 2 (0; �0), Y (s; s+ �) � 1.

If we pick �0 < � , then assumption (iv) holds. For� < �0, since02 = 0 and12 = 1,

E[Y 2(s; s+ �)] = E[Y (s; s+ �)]; (4.21)

so

�(s) = 
(s): (4.22)

Thus we obtain the following corollary of (4.20) for random processes satisfying assump-

tions (i) to (iv):

E[Y 2(t)] = E[Y (t)] + 2

Z t

0

Z t

s1

�(s1; s2)ds2ds1: (4.23)

Furthermore, ifY (t) has stationary increments, then
(s) is constant and�(s1; s2) =

�(0; s2 � s1) and we can further simplify the results (4.14) and (4.23) to the following:

E[Y (t)] = 
t (4.24)

E[Y 2(t)] = 
t+ 2

Z t

0

(t� s)�(0; s)ds: (4.25)

The above general approach used to find the second moment ofY (t) could be extended

to higher order moments. However, as the order gets higher, the expressions get more

complicated.
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4.3 Single Photon Counting

4.3.1 Mean and Variance of Recorded Singles Counts, Model Type II

First we consider the paralyzable model in which if the waiting time for a photon arrival

is less than� , then this photon is not recorded. We derive the mean and variance ofY (t),

the number of recorded events from time 0 to timet. We observe thatY (t) inherits the

stationary increment property of the arrival processN(t). We first deriveE[Y (0; �)], where

we pick� < � such that the number of recorded events during(0; �] is either 0 or 1. LetT1

denote the time of the first photon arrival after time 0; it is exponentially distributed. If there

is an arrival atT1 = s, 0 < s < �, and there is no arrival betweens � � ands (in fact, we

only need to make sure there is no arrival betweens� � and 0,i.e.,N(0)�N(s� � ) = 0,

since the first arrival after 0 occurs ats), then there will be a recorded event during the

interval(0; �]. Thus

E[Y (0; �)] = P[Y (0; �) = 1]

=

Z 1

0

P[Y (0; �) = 1jT1 = s]fT1(s)ds

=

Z �

0

P[no arrival during(s� �; 0)jT1 = s]fT1(s)ds

=

Z �

0

P[N(s� �; 0) = 0jT1 = s]fT1(s)ds

=

Z �

0

e��(��s)�e��sds =

Z �

0

�e���ds = ��e��� : (4.26)

Hence by the definition given in (4.6), the instantaneous rate ofY (t) is


 = �e��� ; (4.27)

and by (4.24), we easily obtain the following result (e.g., [78]),

E[Y (t)] = �te��� ; (4.28)

i.e., the recorded/arrival ratio for type II systems, denoted�2, is

�2
4
=
E[Y (t)]

E[N(t)]
= e��� : (4.29)
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The variance ofY (t) for the type II model is (see Appendix A):

Var[Y (t)] = �te���(1� (2�� � �� 2=t)e��� ): (4.30)

We can compute numerically thatmax��(2��e��� ) � 0:74, henceVar[Y (t)] will always

be positive. To compare the variance and the mean, we note that

lim
t!1

Var[Y (t)]

E[Y (t)]
= 1� 2��e��� = 1� 2�2 log �2: (4.31)

Figure 4.3 shows the mean and variance of the singles count for a detector affected by

deadtime of type II. Since the mean and variance can differ greatly,Y (t) is not Poisson.
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Figure 4.3: Mean and variance for paralyzable (type II) systems, witht = 1s; � = 2�s.

4.3.2 Mean and Variance of Recorded Singles Counts, Model Type III

Now we turn to the type of system described in [29], in which if the waiting time for

a photon arrival is less than� , then neither this photon nor the previous photon will be

recorded. We again observe thatY (t) inherits the stationary increment property of the

arrival processN(t). We first deriveE[Y (0; �)], where we pick� < � such that the number

of recorded events during(0; �] is still either 0 or 1. Hence,

E[Y (0; �)] = P[Y (0; �) = 1]
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=

Z �

0

P[Y (0; �) = 1jT1 = s]fT1(s)ds

=

Z �

0

P[N(s� �; 0) = 0]P[(s; s+ � ) = 0]fT1(s)ds

=

Z �

0

e��(��s)e����e��sds =

Z �

0

�e��2�ds = ��e��2�: (4.32)

Hence for this system, the instantaneous rate as defined in (4.6) is


 = �e��2� ; (4.33)

and by (4.24), the expected number of recorded events for a type III system is exactly:

E[Y (t)] = �te��2� : (4.34)

The type III system was analyzed using approximations in [29]. To compare our exact

result (4.34) with the approximate analysis presented in [29], we note that the mean waiting

time between recorded events is:

�E = t=E[Y (t)] =
1

�
e�2� (4.35)

=
1

�
(1 + 2�� + 2(�� )2 +

4

3
(�� )3 +

2

3
(�� )4 +O(�� )5): (4.36)

Comparing this exact expansion to the approximate mean waiting time derived in [29,

eqn. 16], we find that the approximation in [29] is accurate to 2nd order.

The variance ofY (t) for the type III model is (see Appendix B):

Var[Y (t)] = �te��2� + 2e�3��(�t� �� � 1)

+e�4��(4�2� 2 � 4�2t� + 2� 2�t + 4�� ): (4.37)

To compare the variance and the mean, we observe that

lim
t!1

Var[Y (t)]

E[Y (t)]
= 1 � 2(1 + 2�� � e��)e�2��: (4.38)

To simplify this expression, we observe that when�� � 1, e�� � 1 � �� , and

lim
t!1

Var[Y (t)]

E[Y (t)]
� 1� 2��e�2�� = 1� �3 log �3; (4.39)

where�3
4
= E[Y (t)]=E[N(t)] = e�2�� . Figure 4.4 shows the (exact) mean and variance of

the singles countY (t) for type III systems. AgainY (t) is not Poisson, but the difference

between the variance and the mean is much smaller than type I or type II systems.
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Figure 4.4: Mean and variance for type III systems, witht = 1s; � = 2�s.

4.4 Recorded Singles Counts by Block Detectors

In many photon counting systems, several detectors are grouped into a “block”; ex-

amples include block PET detectors and Anger cameras. When a photon arrives at any

detector in the block, the whole block goes dead for� , i.e., no detector in the block can

record any photon for� . For analysis purposes, we can initially treat the block of detectors

as a single big detector. Let�1; : : : ; �l denote the incident photon arrival rates for each

of the l detectors in the block. LetYj(t) denote the number of events recorded by thejth

detector, and letZ(t) denote the total number of events recorded by all detectors in the

block (Z =
Pl

j=1 Yj). We have derived above the exact first and second moments ofZ(t)

for detector blocks affected by type II and type III deadtime, and in each case, the mean

and the variance ofZ(t) can differ greatly. However, what is of greater interest in image

reconstruction is the mean and variance of the number of events recorded by each detector

in the block. Given thatZ(t) events are recorded by the entire block, the conditional dis-

tribution of the number of events recorded by any individual detector is multinomial where

the fraction of events allotted to thejth detector is�j
4
= �j=�. Thus from [3, p. 99],

E[Yj(t)] = �jE[Z(t)] (4.40)
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Var[Yj(t)] = �j(1� �j)E[Z(t)] + �2jVar[Z(t)]: (4.41)

We observe that the variance to mean ratio is

Var[Yj(t)]

E[Yj(t)]
= 1� �j(1 �Var[Z(t)]=E[Z(t)]) (4.42)

� 1� �j: (4.43)

For a system with say, 64 detectors in a block,�j � 1=64 (assuming that the count rates�j ’s

are nearly uniform), so from (4.43) the mean and the variance of the number of recorded

events by a single detector will differ by less than 2%, regardless of count rates and dead-

time losses. Furthermore, sinceE[Z(t)] must be quite large for deadtime to have a signifi-

cant effect, when�j is small, the distribution ofYj(t) will be approximately Poisson by the

usual binomial argument. The only case where the variance to mean ratio is significantly

less than 1 would be when�j is large (i.e. the count rates�j ’s are very heterogeneous) and

Var[Z(t)]=E[Z(t)] is small (i.e., the total count rate
Pl

j=1 �j is large). In all other cases,

the mean and the variance would be approximately equal. However, thecovariancebe-

tween the measurements recorded by different elements within the block can be nonzero[3,

p. 101]:

Cov(Yi(t); Yj(t)) = �i�j(Var[Z(t)]� E[Z(t)]): (4.44)

Thus in the presence of deadtime, the assumption that the measurements are independent

(which is made ubiquitously in statistical reconstruction methods) is incorrect. However,

when�i and�j are small, so is the covariance between individual detector elements, so the

impact of this dependence may be small.

4.5 Count Rate Correction for System Type III

For a quantitatively accurate reconstruction, we must correct for the effect of dead-

time to avoid underestimation of source activity. For type III systems, Engelandet al [29]

proposed the following correction formula,

�̂ =
Y

t
(1 +

2Y

t
� +

6Y

t2
� 2); (4.45)
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which they obtained by solving an approximate mean waiting time expression up to second

order in� by means of the expansion� = a + b� + c� 2. We propose to estimate the true

count rate by solving numerically our exact expression (4.34),i.e., solve

Y

t
= �̂e�2�̂� (4.46)

for �̂ given Y and t. One could solve analytically the exact mean waiting time expres-

sion (4.35) up to second order in� , which yields exactly the same estimator as (4.45), but

this estimator does not solve (4.35) exactly. Figure 4.5 compares our new estimator (4.46)

and the estimator proposed in [29]. It shows that our new estimator is unbiased even at

very high count rates. The error bars are not shown in the figure as they are smaller than

the plotting symbols. Whent is large, the standard deviation is very small when compared

to the mean ofY (t), thus these estimates have extremely small standard deviations. By

solving (4.46) numerically, we obtain essentially perfect deadtime correction for a type III

system.
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Figure 4.5: 20 realizations, witht = 10s; � = 2�s.

4.6 Discussion

We have analyzed the mean and variance of the recorded singles counts for three distinct

models of deadtime. In all three cases, the variance can be significantly less than the mean,

indicating that the counting statistics are not Poisson in the presence of deadtime. Dead-

time losses can be significant in practical SPECT and PET systems, particularly in fully 3D
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PET imaging and in SPECT transmission measurements with a scanning line source. The

count rates for a detector block (PET) or detector zone (SPECT) can be significant enough

to yield non-Poisson statistics for the total counts recorded by the block or zone. How-

ever, in the practical situations that we are aware of, the count rates for individual detector

elements within the block or zone are usually not high enough to correspond to signifi-

cant differences between the mean and the variance. As we have shown in Section 4.4,

even though the variance of the counts recorded by a block can be significantly lower than

the mean, the variance of the counts recorded by an individual detector within a block is

nevertheless quite close to the mean and likely to be well approximated by a Poisson dis-

tribution. Furthermore, the correlation between individual detectors will be fairly small.

Thus it appears that statistical image reconstruction based on Poisson models, while cer-

tainly not optimal, should be adequate in practice even under fairly large deadtime losses,

provided the deadtime loss factor is included in the system matrix. We must add one caveat

to this conclusion however. Although pairs of individual detectors have small correlation,

the correlation coefficient between thesumof one group of detectors and thesumof all

other detectors in a block may not be small in the presence of deadtime. The effect of

such correlations on image reconstruction algorithms is unknown and may deserve further

investigation. Another natural extension of this work would be to consider systems with

random resolving times� . As long as the minimum resolving time is greater than zero,

assumption (iv) would still hold and the derivations would be similar.
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CHAPTER 5

Coincidence Counting Statistics Affected by Deadtime

The statistics of the coincidence counting process by detectors affected by deadtime is

of fundamental importance to the problem of statistical image reconstruction. However,

to our knowledge, not even the mean of the random coincidence process has been derived

rigorously. In this chapter, we give a rigorous derivation of the mean and variance of the

coincidence counting process under various scenarios, and analyze the suitability of the

commonly assumed Poisson statistical model used in image reconstruction.

5.1 General Result

We assume the following model with no attenuation of the true coincidences (see Fig-

ure 5.1):

X1(t) = X(t) +N1(t);

X2(t) = X(t) +N2(t); (5.1)

there are two detectors each recording single photons according to deadtime model type II,

with deadtime� known and deterministic; the arrival processes at the two detectors are de-

notedX1(t) andX2(t);X(t) denotes photons originating from the true coincidence source,

N1(t) andN2(t) denote photons originating from the random singles sources arriving at the

two detectors;X(t), N1(t), andN2(t) are independent and all are homogeneous Poisson

processes,i.e., we neglect radio-isotope decay for simplicity;�1, �2, and�X denote the
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Figure 5.1: Model for coincidence counts

intensity ofN1, N2, andX, respectively;X1 andX2 are statistically dependent due toX,

unless�X = 0 (i.e., the random coincidence case);Y (t) denote the number of recorded

coincidence events. For simplicity, we assume that pairs ofX photons are recorded by

their respective detectors at exactly the same time; we also ignore uncertainty in the time-

stamping of recorded singles [19]. LetY1(t) andY2(t) denote the number of recorded

singles at detectors 1 and 2, respectively. Let� denote the length of the coincidence tim-

ing window; we assume2� < � . For a pair of photons to be recorded as a coincidence

event, both photons must first be recorded by their respective detectors, and if one photon

is recorded by detector 1 at timet1, and one photon is recorded by detector 2 at timet2, and

jt1 � t2j < �, then this pair of photons is recorded as a coincidence event. To avoid ambi-

guity, we define the time of coincidence to be the arrival time of the later photon. Thus if

there is one photon recorded by detector 1 at timet1 and no photon is recorded by detector

2 at timet1, then the number of coincidences at timet1 is the number of photons recorded

by detector 2 during(t1 � �; t1]. If there is one photon recorded by both detectors both at

time t1, then the number of coincidences at timet1 is the sum of the number of photons

recorded by detector 1 and detector 2 during(t1 � �; t1].

In addition to the four assumptions made in Section 4.2.2, we also make the following

additional assumptions about the singles processYi:

(v) lim�!0
Pr[Yi(s;s+�)=k]

�
= 0;8s;8k � 2;

(vi) 9�0 > 0;
P1

k=2 k
i�p(k; �0) <1 for i = 1, 2, or 3,
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where�p(k; �0)
4
= supfP[Yi(s; s + �) = k]=� : s 2 [0; t); � 2 (0; �0)g. These assumptions

hold for a wide variety of (singles) counting processes, including all (singles) processes

considered hereafter. Specifically with regard to assumption (vi), ifYi is a homogeneous

Poisson process with intensity�, thenP[Yi(s; s+ �) = k]=� = e����k�k�1=k! < �k=k! for

� < 1, and
P1

k=2 k
i�k=k! <1 for any integeri.

5.2 Random Coincidences

In this section, we derive the mean and variance of the random coincidence process

(assuming�X = 0), first for the case of ideal detectors (no deadtime), and then for realistic

detectors (with deadtime). In the next section, we derive the mean and variance (bounds)

of the counting process having both true and random coincidences. LetY (t) denote the

number of recorded coincidence events during(0; t]. LetYa(t) andYb(t) denote the number

of recorded coincidence events during(0; t] that have the later singles event arriving at

detector 1 and detector 2, respectively. Then

Y (t) = Ya(t) + Yb(t): (5.2)

5.2.1 Mean of Random Coincidence Counts

For the purely random coincidence process, We derive the mean ofY (t) for a general

class of (recorded singles) processes,i.e., we do not assume any particular model such as

Poisson. For this derivation, we only assume that the singles processesY1(t) andY2(t) are

independent, have stationary increments with rates
i
4
= E[Yi(s;s+�)]

�
; i = 1; 2, and satisfy

assumptions (i) - (iii), (v), and (vi). For an arbitrary time interval(0; �],

E[Ya(0; �)] =

1X
k=0

E[Ya(0; �)jY1(0; �) = k]P[Y1(0; �) = k]

= 0 + E[Ya(0; �)jY1(0; �) = 1]P[Y1(0; �) = 1]

+
1X
k=2

E[Ya(0; �)jY1(0; �) = k]P[Y1(0; �) = k]:

Given that there isonearrival at detector 1 during(0; �], the number of recorded coinci-

dence events with the later singles event recorded by detector 1 is the number of singles
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event recorded by detector 2 during a time interval of length�. Furthermore, if there arek

arrivals at detector 1 during(0; �], then the number of recorded coincidence events with the

later singles event recorded by detector 1 can be no more thankX2(��; �). Hence

lim
�!0

1

�

1X
k=2

E[Ya(0; �)jY1(0; �) = k]P[Y1(0; �) = k]

� lim
�!0

1

�

1X
k=2


2(�+ �)kP[Y1(0; �) = k]: (5.3)

Using assumption (vi) and applying the Lebesgue Dominated Convergence Theorem (LDCT)

[10], we obtain:

lim
�!0

1

�

1X
k=2

E[Ya(0; �)jY1(0; �) = k]P[Y1(0; �) = k] =
1X
k=2

lim
�!0


2(�+ �)k

�
P[Y1(0; �) = k]

= 0;

by assumption (v). Hence

lim
�!0

1

�
E[Ya(0; �)] = lim

�!0

1

�

2�P[Y1(0; �) = 1] + 0: (5.4)

Furthermore, since


1 = lim
�!0

E[Y1(0; �)]

�

= lim
�!0

P[Y1(0; �) = 1] +
P1

k=2 kP[Y1(0; �) = k]

�

= lim
�!0

P[Y1(0; �) = 1]

�
; (5.5)

we have

lim
�!0

E[Ya(0; �)]

�
= �
1
2: (5.6)

By symmetry,

lim
�!0

E[Yb(0; �)]

�
= �
2
1: (5.7)

From (5.2), we conclude that the random coincidence rate is:


 = lim
�!0

E[Y (0; �)]

�
= 2�
1
2: (5.8)
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It is easy to verify using (5.3) thatE[Y (0; �)]=� is uniformly bounded for all� 2 (0; 1),

hence applying (4.14),

E[Y (t)] = 2�
1
2t: (5.9)

This result is well known (when the recorded singles process is Poisson,i.e., recorded with

no deadtime) [50, 75] but has not been derived formally to our knowledge. Remarkably,

the result holds for a fairly broad class of singles processes, as we have shown.

5.2.2 Ideal Detectors (No Deadtime)

We now show that the (random) coincidence process is not exactly Poisson1 even when

the recorded singles processes are Poisson (i.e., in the hypothetical case of no deadtime

losses) by showingVar[Y (t)] 6= E[Y (t)] using (4.20). We first find�(0; s). For s > �,

Y (0; �) andY (s; s+ �) are independent for� < min(s; s� �), hence

�(0; s) = (2�
1
2)
2: (5.10)

For0 < s < �, we show in Appendix A that

�(0; s) = (2�
1
2)
2 + (
1 + 
2)
1
2(2�� s): (5.11)

It is easy to verify thatY satisfies assumption (iii) by using ideas similar to those used

for (D.8) and (D.12). However,Y does not satisfy assumption (iv) in the absence of dead-

time, hence we must use (4.23) to derive its second moment. We have

E[Y 2(�)] = E[(Ya(�) + Yb(�))
2]

= E[Y 2
a (�)] + E[Y 2

b (�)] + 2E[Ya(�)Yb(�)]; (5.12)

and

E[Y 2
a (�)] =

1X
k=0

E[Y 2
a (0; �)jX1(0; �) = k]P[X1(0; �) = k]

= 0 + E[Y 2
a (0; �)jX1(0; �) = 1]P[X1(0; �) = 1]

+
1X
k=2

E[Y 2
a (0; �)jX1(0; �) = k]P[X1(0; �) = k]:

1In the absence of deadtime, the coincidence process will be Poisson if the two coincidence photons
always arrive at the two detectors at exactly the same time and there is no uncertainty in the time-stamping
of recorded photons. It appears that coincidence processes are exactly Poisson only in thishighly idealized
case.
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If X1(0; �) = k, thenYa(0; �) � kX2(��; �), so

lim
�!0

1

�

1X
k=2

E[Y 2
a (0; �)jX1(0; �) = k]P[X1(0; �) = k]

� lim
�!0

1

�

1X
k=2

(
2(�+ �) + (
2(�+ �))2)k2P[X1(0; �) = k]

= 0: (5.13)

Thus by similar argument made in (D.10):

lim
�!0

1

�
E[Y 2

a (�)] = (�
2 + (�
2)
2)
1: (5.14)

Furthermore,

lim
�!0

1

�
E[Ya(�)Yb(�)]

= lim
�!0

1

�

1X
k;l=1

E[Ya(�)Yb(�)jX1(0; �) = k;X2(0; �) = l] �

P[X1(0; �) = k;X2(0; �) = l]

� lim
�!0

1

�

1X
k;l=1

(k + 
1(� + �))(l+ 
2(� + �))klP[X1(0; �) = k;X2(0; �) = l]

= lim
�!0

1

�

 
1X
k=1

(k + 
1(� + �))kP[X1(0; �) = k]

! 
1X
l=1

(l+ 
1(� + �))lP[X2(0; �) = l]

!

= 0: (5.15)

Hence applying (5.14) and (5.15) to (5.12) and using symmetry:

�(s) = �
1
2(2 + �(
1 + 
2)): (5.16)

Using ideas leading to (5.13) and (5.15), one can easily verify thatE[Y 2(0; �)]=� is uni-

formly bounded. Hence from (5.11), (5.10), (5.16), and (4.20), fort > �, the variance of

Y (t) is:

Var[Y (t)]

=

Z t

0

�(s)ds+ 2

Z t

0

(t� s)(2�
1
2)
2ds+ 2

Z �

0

(t� s)(
1 + 
2)
1
2(2�� s)ds � (
t)2

= �2
1
2(
1 + 
2)t+ 2�
1
2t+ (2�
1
2t)
2 + �2(
1 + 
2)
1
2(3t�

4

3
�)� (2�
1
2t)

2

= 2�
1
2t(1 + 2�(
1 + 
2)(1� �=3t)): (5.17)
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The variance (5.17) is “inflated” relative to the mean (5.9) by the factor2�(
1 + 
2)(1 �

�=3t); hence the random coincidence process is not Poisson even in the absence of dead-

time.

5.2.3 Non-ideal Detectors (With Deadtime)

We now derive the variance ofY (t) in the presence of deadtime with� > 2�. We

proceed as in the case of recorded singles process being Poisson. We first derive�(0; s).

Since we assume� > 2�, forming two coincidence events would require two recorded pairs

of photons, each pair forming a coincidence event. The minimum time separation for the

two later-recorded photons is at least� , hence2 �(0; s) = 0 for 0 < s < � . If � +� < s < t,

thenY (0; �) andY (s; s + �) are independent for� < s � � � �, hence�(0; s) = 
2. The

most complicated case is when� < s < � + �; we show in Appendix B that

�(0; s) = �21�
2
2e
�(�1+�2)� (�2 + (s� � )(4�� s+ � )) (5.18)

under this case. We observe that0 � (s� � )(4�� s+ � ) � 3�2 when0 < s� � < �, hence

0 < �(0; s) < 
2 for � < s < � + �. Thus fort > � + �:

Var[Y (t)]

= 
t+ 2

Z t

�+�

(t� s)(2�
1
2)
2ds + 2

Z �+�

�

(t� s)(
1
2)
2(�2 + (s� � )(4�� s+ � ))ds � (
t)2

= 2�
1
2t+ (
1
2)
21

6
�2(5�2 � 16�(t� � ) + 24(t � � )2)� (2�
1
2t)

2

= 
t(1� 
� (2� �=t)) +

2

24
(5�2 � 16�(t� � )); (5.19)

where
 = 2�
1
2 = 2��1�2e�(�1+�2)� from (5.8) and the mean ofY (t) is 
t. When� �

� � t, we can approximate (5.19) by
t(1� 2
� ), hence the variance is “deflated” relative

to the mean by approximately2
� which is extremely small under normal circumstances.

5.3 Prompt Coincidences

Now we generalize to the case in which there are both random coincidences and true

coincidences,i.e., �X 6= 0. Since we assume� < �=2, the event[Y (�) � 2] can never

2Note that if� < � < 2�, then�(0; s) 6= 0 if s < �.
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Figure 5.2: Mean and variance for paralyzable systems, random coincidence counts, with

t = 1s; � = 2�s; � = 12ns; �1 = �2.

occur when� < �.

5.3.1 Mean

We derive the mean of the prompt coincidences using (4.24). In the presence of dead-

time, the event that there is one recorded coincidence event during(0; �] consists one of the

following 4 mutually exclusive events:

(E1) oneN1 photon and oneN2 photon form a coincidence event;

(E2) oneX photon at detector 1, and oneN2 photon at detector 2;

(E3) oneX photon at detector 2, and oneN1 photon at detector 1;

(E4) A pair ofX photons is recorded.

We will derive the probability for each of these 4 events.

We splitE1 into two disjoint sub-events:E1a andE1b, whereE1a denotes the event

that oneN1 photon and oneN2 photon form a coincidence event and furthermore the later

photon is recorded by detector 1. LetT1 denote the time of the firstN1 photon arrival after

time0, andT2jT1 denote the time of the firstN2 photon arrival afterT1 � �:

P[E1a] =

Z �

0

Z s1

s1��

P[N1(s1 � �; 0) = 0; N2(s2 � �; s1 � �) = 0;

X(s2 � �; s1) = 0jT1 = s1; T2 = s2]fT2jT1(s2js1)fT1(s1)ds2ds1
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=

Z �

0

Z s1

s1��

e��1(��s1)e��2(s1��+��s2)e��X(s1�s2+�)�2e
��2(s2�s1+�)�1e

��1s1ds2ds1

= ��1�2�e
�(�1+�2+�X)� 1 � e��X�

�X�
: (5.20)

By symmetry,P[E1b] = P[E1a], so

P[E1] = 2��1�2�e
�(�1+�2+�X)� 1 � e��X�

�X�
: (5.21)

ForE2, theX photon arriving at detector 2 must be lost due to deadtime caused by an

N2 photon arriving at detector 2 within� before. It cannot be due to anX photon arrival at

detector 2 because otherwise, theX photon at detector 1 would also be lost. If anN2 photon

arriving at detector 2 and anX photon arriving at detector 1 form a coincidence event, the

N2 photon arriving at detector 2 must arrive before theX photon because otherwise theN2

will be lost due to theX photon at detector 2; hence theX photon arriving at detector 1

will be the later arriving photon. LetTX denote the time of the firstX photon arrival after

time0, andT2jTX denote the time of the firstN2 photon arrival afterTX � �:

P[E2] =

Z �

0

Z s1

s1��

P[X(s2 � �; 0) = 0; N1(s1 � �; s1) = 0;

N2(s2 � �; s1 � �) = 0jTX = s1; T2 = s2]fT2jTX(s2js1)fTX(s1)ds2ds1

=

Z �

0

Z s1

s1��

e��X(��s2)e��1�e��2(s1���s2+�)�2e
��2(s2�s1+�)�Xe

��Xs1ds2ds1

= �(1� e��X�)�2e
�(�1+�2+�X)� : (5.22)

By symmetry,

P[E3] = �(1� e��X�)�1e
�(�1+�2+�X)� : (5.23)

ForE4, the simplest of all four cases, we only need to make sure there is at least one

coincidence arrival during(0; �], and there is no coincidence or random arrival less than�

before:

P[E4] =

Z �

0

P[X(s � �; 0) = 0; N1(s� �; s) = 0; N2(s � �; s) = 0jTX = s]fTX(s)ds

=

Z �

0

e��X(��s)e��1�e��2��Xe
��Xsds

= e�(�1+�2)��X�e
��X�

= �X�e
�(�X+�1+�2)� : (5.24)
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Thus in total,

E[Y (0; �)] = P[E1] + P[E2] + P[E3] + P[E4]


 =

��
2�1�2
�X

+ �1 + �2

��
1� e��X�

�
+ �X

�
e�(�X+�1+�2)� (5.25)

E[Y (t)] = t

��
2�1�2
�X

+ �1 + �2

��
1� e��X�

�
+ �X

�
e�(�X+�1+�2)� (5.26)

We observe that since� is very small,1�e
��X�

�X�
� 1 and since�X is usually very small,

(�1 + �2)(1 � e��X�) � 0. Hence

E[Y (t)] � t(2��1�2 + �X )e
�(�X+�1+�2)� : (5.27)

5.3.2 Variance

Trying to find the exact expression for variance would be a painful exercise in this case;

instead, we choose to bound it. As argued previously,�(0; s) = 0 for 0 < s < � , and

�(0; s) = 
2 for �+� < s < t. For� < s < �+ �, an event recorded at times could be lost

due to the deadtime effect of an event recorded at time0, so we can bound�(0; s) between

0 and
2. Hence
R t
0 (t� s)�(0; s)ds in (4.25) can be bounded between

R t
�+�(t� s)�(0; s)ds

and
R t
�
(t� s)�(0; s)ds. Hence


t(1� 
(� + �)(2� (� + �)=t)) � Var[Y (t)] � 
t(1� 
� (2� �=t)); (5.28)

where
 is as given in (5.25). This bound is very tight since usually�� � .

In PET,X photons can only originate from a narrow strip that connects the two detec-

tors, whileN1 andN2 photons can come from all other directions. Hence under normal

circumstances,i.e., when�1 � �2 � �X , the loss ratio of variance over mean:

�
4
= 1 �Var[Y (t)]=E[Y (t)]; (5.29)

which is approximately the expected number of recorded coincidences from 0 to2� , is

extremely small. Only when�X is large enough to cause significant deadtime effect of its

own, will the loss ratio be significant; the behavior of the system would then resemble the

singles case where we have shown there would be significant loss of variance[94].
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5.3.3 Attenuation Effects

The model (5.1) is unrealistic because it assumes bothX photons are always recorded.

In practice, due to attenuation, the probability that anX photon is recorded is less than 1.

We assume the following model to include the effect of attenuation:

X1(t) = M1(t) +N1(t);

X2(t) = M2(t) +N2(t); (5.30)

whereM1(t) andM2(t) are independently binomial-thinned from the same Poisson process

X(t) of intensity�X , i.e., given thatX(�) = 1, the event[M1(�) = 1] and the event

[M2(�) = 1] are independent. The survival probability forM1 andM2 are denotedp1

andp2, respectively. Let~X denote the (independently) binomial-thinned true coincidence

process; it has intensityp1p2�X ; let ~M1 denote the number of pairs ofX photons that

only survived to reach detector 1, but not 2, and~M2 those that only survived to reach

detector 2, but not 1. Then~M1 and ~M2 have intensityp1(1 � p2)�X andp2(1 � p1)�X ,

respectively. Furthermore,~X , ~M1, and ~M2 are statistically independent, and,~M1 and ~M2

contributes to the singles counts at detector 1 and 2, respectively. Hence this case reduces

to the no-attenuation case (5.1), but nowX in (5.1) has intensityp1p2�X , N1 has intensity

�1 + p1(1 � p2)�X , andN2 has intensity�2 + p2(1 � p1)�X . Hence we can obtain the

exact expression ofE[Y (t)] by plugging the appropriate values into (5.26). When�X is

very small compared to�1 or �2, we can approximateE[Y (t)] by

E[Y (t)] � t(2��1�2 + p1p2�X)e
�(p1p2�X+�1+�2)� : (5.31)

5.4 Delayed Coincidences

In PET systems, delayed coincidences are usually recorded for use in estimating the

number of random coincidences recorded in the prompt window, so that coincidences in

the prompt window can be corrected to reflect only “true” coincidences,i.e., X photons

[50, 79]. The inherent assumption in this scheme is that the mean of the coincidences in

the delayed window is equal to the mean of the random coincidences in the prompt window.
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Now we investigate the validity of this assumption. We denoted as the delay; we assume

3�=2 < d < � � �=2. For a pair of photons to be recorded as adelayedcoincidence

event, both photons must first be recorded by their respective detectors and if one photon

is recorded by detector 1 at timet1, and one photon is recorded by detector 2 at timet2,

andjjt1 � t2j � dj < �=2, then this pair of photons is recorded as a delayed coincidence

event. From this definition, no coincidence event can be counted as a delayed coincidence

event. To avoid ambiguity, we define the time of a delayed coincidence to be the arrival

time of the later photon. Thus if there is one photon recorded by detector 1 at timet1 and

no photon is recorded by detector 2 at timet1, then the number of delayed coincidences at

timet1 is the number of photons recorded by detector 2 during(t1� d� �=2; t1� d+ �=2).

Let Y (t) denote the number of recorded delayed coincidence events during(0; t]. As

in the coincidence case, we splitY (t) into Ya(t) andYb(t), whereYa(t) andYb(t) denote

the number of recorded coincidence events during(0; t] that have the later singles event

arriving at detector 1 and detector 2, respectively. LetT1 denote the time of the first photon

arrival at detector 1 after time 0, andT2 denote the time of the first photon arrival at detector

2 after timeT1� d� �=2. We deriveE[Ya(0; �)] for � < � . For this derivation, we assume

there is no attenuation; extension to the attenuation-case is straightforward. We have:

E[Ya(0; �)] =

Z 1

0

P[Ya(0; �) = 1jT1 = s1]fT1(s1)ds1

=

Z �

0

P[Y2(s1 � d� �=2; s1 � d+ �=2) = 1; Y1(0; �) = 1jT1 = s1]fT1(s1)ds1

=

Z �

0

Z s1�d+�=2

s1�d��=2

P[N2(s2 � �; s1 � d� �=2) = 0; N1(s1 � �; 0) = 0;

X(s2 � �; s1) = 0jT1 = s1; T2 = s2]fT2jT1(s2js1)fT1(s1)ds2ds1

=

Z �

0

Z s1�d+�=2

s1�d��=2

e��2(s1�d��=2�s2+�)e��1(��s1)e��X(s1+��s2)

�2e
��2(s2�s1+d+�=2)�1e

��1s1ds2ds1

=

Z �

0

Z s1�d+�=2

s1�d��=2

�2e
��2��1e

��1�e��X(s1+��s2)ds2ds1

= �2e
��2��1e

��1�e��X(�+d+�=2)�
(e�X� � 1)

�X
: (5.32)
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Hence

lim
�!0

1

�
E[Ya(0; �)] = �
1
2

e�X� � 1

�X�
e��X(�+d+�=2): (5.33)

Using symmetry and the fact thatY = Ya + Yb, we have the following expression for the

mean number of delayed coincidences:

E[Y (t)] = 2�
1
2t
e�X� � 1

�X�
e��X(�+d+�=2): (5.34)

Hence in the presence of deadtime, the mean number of delayed coincidences is not exactly

the same as the mean number of prompt random coincidences unless�X = 0. Nevertheless,

since�, d, and�X are usually very small,E[Y (t)] � 2�
1
2t.

5.5 Discussion

We have analyzed the mean and variance of recorded coincidence counts under various

scenarios. Under all these scenarios, the coincidence counting process is not Poisson, even

in the case of random coincidence counts recorded by ideal detectors. Nevertheless, we

have shown that the variance is very close to the mean for any detector pair. For non-ideal

detectors, the loss ratio of variance over mean� is approximately the expected number of

recorded events during the time interval(0; 2� ]. Unless the true coincidence rate is so high

that� � 0, the ratio of variance over mean will be very close to 1. For coincidence counts

recorded by two detector elements in two different detector blocks,� is even smaller, by

similar analyses as in Section 4.4. Hence it appears that statistical image reconstruction

based on Poisson models, while certainly not optimal, should be adequate in practice even

under fairly large deadtime losses, provided the deadtime loss factor is included in the

system matrix.

It is interesting to compare the coincidence counting process to the singles counting

process. Whereas deadtime causes the single photon counting process to be significantly

non-Poisson, in the sense that the variance of the process is significantly less than mean, the

variance of the coincidence counting process is extremely close to the mean from previous

analyses. The reason for this lies in the fact that the loss ratio of variance over mean,�, is
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primarily determined by
 (in addition to� ), the instantaneous rate of the counting process

itself. In the single photon counting process,
 is relatively large, but in the coincidence

counting process,
 is usually very small even though
1 and
2 (the rates of recorded

random single photons) may be very large. Thus deadtime causes significant loss in the

mean of the process, but not in the ratio of the variance over the mean.

A possible extension to this work is to take into account the fact that twoX photons do

not necessarily arrive at the two detectors at exactly the same time, and furthermore, there

is uncertainty in the time-stamping of recorded singles[19]. It is plausible that due to this

uncertainty, some coincidences in the delayed window would be counted as coincidences

in the prompt window, andvice versa, though any sensibly designed system should make

the probability of such events extremely low.
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CHAPTER 6

Maximum Likelihood Transmission Image Reconstruction

for Overlapping Transmission Beams

6.1 Introduction

To reconstruct quantitatively accurate images of radioisotope emission distributions in

SPECT, one must compensate for the effects of photon absorption or attenuation. Accurate

attenuation correction requires good attenuation maps, and one can reconstruct such maps

from transmission scan measurements obtained either prior to or simultaneously with the

SPECT emission scan.

Several source/detector configurations for SPECT transmission scans have been investigated[9],

including a single fixed line source opposite a symmetric fan-beam collimator, used in

triple-head SPECT cameras, a scanning line source for orthogonal dual-head cameras, and

offset line sources opposite asymmetric fan-beam collimators. Cellaret al [14] describe

an alternative geometry based on several fixed-position collimated line sources opposing

a parallel-beam collimator. In that system design, the source collimation was selected to

minimize overlap on the detector of the transmitted “fan-beams.” They then applied the

filtered back-projection (FBP) algorithm to reconstruct the attenuation map (an ART al-

gorithm was also mentioned without details). This source collimation has the undesirable

consequence of very nonuniform count profiles, as shown in Figure 4 of [14]. It is natural

to expect that higher and more uniform count profiles could lead to better reconstructed
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attenuation mapsif the overlap can be properly modeled by the reconstruction method.

In both the scanning line source geometry and the geometry of Celleret al [14], there

can be overlap of the beam footprints, as illustrated in Figure 6.2. Previously published

statistical algorithms for transmission tomography, e.g. [30, 31, 56, 74, 57, 71, 39], are

inapplicable to the multiple source problem when the beams overlap. In this chapter we

formulate a statistical model for multiple-source transmission measurements with arbitrary

overlapping beams, and then derive an iterative algorithm for maximizing the likelihood

(or a regularized variant thereof). The log-likelihood is not necessarily globally concave,

which usually precludes proofs of convergence to a global maximum. The algorithm that

we present is guaranteed to increase the likelihood at every iteration, and the set of fixed

points of the algorithm is the same as the set of stationary points of the objective function.

The algorithm also satisfies the continuity conditions of Meyer [67]. Therefore, by the

convergence results in [67], the proposed algorithm produces a sequence of estimates that

converge from any nonnegative initial image to a stationary point of the objective, provided

the set of stationary points is not a continuum. This is nearly as strong of a convergence

result as one might expect for a possibly nonconcave objective function. In Section 6.2, we

give the statistical model and the proposed maximum-likelihood algorithm; in Section 6.3,

we present some simulation results; in Section 6.4, we present the results from our pre-

liminary study on optimal source collimation angles for a fixed system setup; and finally

Section 6.5 is discussion and conclusion.
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6.2 Statistical Model

Let Yi denote the number of photons counted by theith detector element1 during the

transmission scan, fori = 1; : : : ; N , whereN is the number of measurement elements.

Each detector element conceivably may count photons that originated in any of theM � 1

sources. We assume that separate blank scans are available for each of the sources (or

source positions for a scanning line source). (This information is essential for unscrambling

the multiplexing of overlapping beams.) Letbim denote the mean number of photons that

would be observed during a transmission scan by theith detector originating in themth

source in the absence of any patient in the scanner. Typically thebim’s would be determined

by a periodically acquired calibrating “blank scan”, performed separately for each of the

M sources, and then scaled by the relative durations of the blank scan and transmission

scans. However, we ignore any statistical uncertainty in thebim’s and treat them as known

constants. This assumption is reasonable provided the blank scans are sufficiently lengthy.

Let �true = [�true1 ; : : : ; �truep ]0 denote the vector of unknown attenuation coefficients for

each of thep pixels or voxels in the attenuation map (or the coefficients of some other basis

for the attenuation distribution such as B-splines [25]). The line integral between themth

source and theith detector location through the attenuating object is approximated by the

following sum:

[Am�]i =

pX
j=1

amij�j;

whereAm = famijg is aN � p matrix with nonnegative elements and theamij ’s represent

line-lengths or normalized strip-intersection areas2. Thus by Beer’s law the “survival prob-

ability” for a photon transmitted from themth source in the direction of thei detector is

(approximately)exp(�[Am�]i):

We assume theYi’s have independent Poisson distributions:

Yi � Poisson
�
�yi(�

true)
	
;

1Each “detector element” corresponds to a unique radial position and view angle, i.e., for typical 2D
reconstructionN = NrN� whereNr is the number of radial samples along the detector andN� is the
number of view angles or “steps.”

2Normalized by strip width
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where the means are given by

�yi(�) =

"
MX

m=1

bim exp(�[Am�]i)

#
+ ri: (6.1)

Theri’s are nonnegative constants that one can include to account for the mean contribu-

tions of scatter, room background, and emission crosstalk[43]. We treat theseri’s as known

constants, though in practice they must be determined experimentally. However, since scat-

ter is a spatially smooth function, one can safely smooth scatter estimates fairly heavily, so

generally the uncertainty in theri’s can be made much smaller than that of theYi’s.

The summation overm in (6.1) allows for arbitrary overlap of the beams transmitted

from each source. Non-overlapping beams would correspond to the assumption that if

bim 6= 0, thenbik = 0 for all k 6= m, i.e. bimbik = 0 for all k 6= m.

Under the above statistical model, given a particular measurement realizationY =

[y1; : : : ; yN ]0, we can write the log-likelihood for� in the following convenient form:

L(�; Y ) =

NX
i=1

hi

 
MX
m=1

uim(�)

!
; hi(t) = yi log t� t; (6.2)

uim(�) = bim exp(�[Am�]i) + ri=M;

ignoring constants independent of�. Since the form of this log-likelihood is sufficiently

different from the usual models for emission tomography and transmission tomography

[56], previously derived algorithms for maximum likelihood estimation are not directly

applicable to this problem.

One could easily derive an expectation-maximization (EM) algorithm [26] that would

monotonically increase the likelihoodL(�; Y ) for this problem, generalizing [56]. How-

ever, the convergence would be as painfully slow and the M-step as difficult as the usual

transmission EM algorithm. Instead, we propose an algorithm based on an extension of our

recent work on paraboloidal surrogates methods [30, 31]. For even faster “convergence”

one could apply ordered subsets ideas [33].

Because of the ill-posedness of the reconstruction problem, a penalty term is usually

added to the likelihood to encourage piecewise smoothness in the reconstructed image,
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resulting in the following objective function:

�(�; Y ) = L(�; Y )� �R(�): (6.3)

Our goal is to produce a penalized-likelihood estimate:

�̂ = arg max
�� 0

�(�; Y ): (6.4)

Most roughness penaltiesR(�) can be expressed in the following general form:

R(�) =

KX
k=1

 k([C�]k); (6.5)

where the k’s are potential functions acting as a norm on the “soft constraints”C� � 0

andK is the number of such constraints. The functions k we consider here are convex,

symmetric, nonnegative and differentiable [31].

6.3 Algorithm

We focus on the unregularized maximum-likelihood problem; the regularized approach

easily follows from [31]. Since maximizing the log-likelihood directly is difficult to do,

we apply the principle of optimization transfer [57, 4] and define a “surrogate function”

Q(�;�n) that is easier to maximize. Since this surrogate function depends on the previ-

ous estimate�n at thenth iteration, the algorithm consists of repeatedly maximizing the

surrogate function,i.e.

�n+1 = arg max
�� 0

Q(�;�n): (6.6)

Note that the maximization is constrained to enforce the nonnegativity constraint. The key

algorithm design requirement is to chooseQ functions that satisfy the following conditions:

Q(�n;�n) = L(�n; Y ); 8�n � 0 (6.7)

@Q

@�j
(�;�n)

����
�=�n

=
@L

@�j
(�)

����
�=�n

;8j = 1; : : : ; p (6.8)

Q(�;�n) � L(�; Y ); 8� � 0: (6.9)

These conditions ensure that the proposed iteration monotonically increases the likelihood.
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A difficulty in maximizingL is the sum overm within the logarithm in (6.2). To move

the summation outside of the logarithm, we first adapt De Pierro’s multiplicative convexity

trick [23]. Becausehi is concave:

hi

 
MX

m=1

uim(�)

!
= hi

 
MX
m=1

unim
�yni

uim(�)

unim
�yni

!
(6.10)

�
MX

m=1

unim
�yni
hi

�
uim(�)

unim
�yni

�
; (6.11)

whereunim
4
= uim(�n), and�yni

4
= �yi(�n). This inequality leads to our first surrogate func-

tion:

Q1(�;�
n)

4
=

NX
i=1

MX
m=1

unim
�yni
hi

�
uim(�)

unim
�yni

�
(6.12)

=
NX
i=1

MX
m=1

unim
�yin

gnim([A
m�]i); (6.13)

where

bnim
4
=

�yin

unim
bim;

rnim
4
=

�yin

unim

ri
M

gnim(l)
4
= yi log

�
bnime

�l + rnim
�
�
�
bnime

�l + rnim
�
:

The surrogate functionQ1 remains too difficult to maximize directly because the argument

of eachhi still depends onuim, which has a complicated exponential form. However, it

follows easily from the results in [30, 31] that the following paraboloidal function is a valid

surrogate forQ1:

Q2(�;�
n)

4
=

NX
i=1

MX
m=1

unim
�yni
qnim([A

m�]i)
4
= Q(�;�n) (6.14)

where

qnim(l)
4
= gnim(l

n
im) + _gnim(l

n
im)(l � lnim)�

1

2
cnim(l� lnim)

2 (6.15)

and

_gnim(l)
4
=

d

dl
gnim(l)
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�gnim(l)
4
=

d2

dl2
gnim(l)

lnim = [Am�n]i =

pX
j=1

A
m
ij�

n
j :

To ensure (6.9), we must choose the curvaturesfcnimg appropriately[30, 31]. As discussed

in [31], for the fastest convergence rate, we would like to choose the curvatures as small as

possible, subject to the constraint that the surrogate functionqnim lies below the functions

gnim. For completeness, we include the following formula for the optimum curvature,i.e.,

cnim = minfc � 0 : gnim(l) � qnim(l) 8l � 0g derived in [31]:

cnim =

8><
>:

�
�2

gnim(0)� gnim(lnim) + _gnim(lnim)(lnim)

(lnim)2

�
+

; lnim > 0

[��gnim(0)]+ ; lnim = 0

(6.16)

=

8>><
>>:

�
(2=(lnim)2)

�
bnim(1� e�l

n
im)� yi log

bnim + rnim
�ynim

+ bnimlnime�l
n
im

�
yi
�ynim

� 1

���
+

; lnim > 0�
1�

yir
n
im

(bnim + rnim)2

�
+

; lnim = 0,
(6.17)

where

�ynim
4
= bnime

�lnim + rnim:

Other curvature choices that lead to even faster convergence (but do not guarantee mono-

tonicity) can be found in [31].

Since our second surrogateQ2 is a quadratic functional, it is easily maximized by a

variety of algorithms, including the coordinate ascent algorithm[74, 37]. Adding a penalty

function is straightforward. However,Q2 is not separable and if we want to apply the

ordered subsets idea, we must have a separable surrogate function.

6.3.1 Separable Paraboloidal Surrogate Algorithm

Now we derive a separable paraboloidal surrogate algorithm; we do not use this al-

gorithm for the simulation described in this chapter since it converges very slowly even

though it is guaranteed to be monotonic. As noted by De Pierro in [23]:

[Am�]i =

pX
j=1

zmij

�
amij
zmij

(�j � �nj ) + [Am�]i

�
; (6.18)
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provided
Pp

j=1 z
m
ij = 1 for all i andm. Thus ifzmij � 0 then it follows from the concavity

of qnim that

qnim([A
m�]i) �

pX
j=1

zmij q
n
im

�
amij
zmij

(�j � �nj ) + [Am�]i

�
: (6.19)

If we choosezmij = amij=

m
i , where
mi =

Pp
j=1 a

m
ij (such that

Pp
j=1 a

m
ij=


m
i = 1 for all i

andm), then from (6.12) and (6.19) we obtain our third surrogate function as follows:

Q3(�;�
n) =

NX
i=1

MX
m=1

pX
j=1

unima
m
ij

�yin

m
i

qnim(

m
i (�j � �nj ) + [Am�n]i): (6.20)

This surrogate function is a quadratic form, and one that is trivial to maximize because it is

a separable function. The partial derivatives ofQ3 are given as follows:

�
@2

@�2j
Q3(�;�

n) =
NX
i=1

MX
m=1

unima
m
ij


m
i

�yin
cnim

4
= dj(�

n) (6.21)

@

@�j
Q3(�;�

n) =
NX
i=1

MX
m=1

unima
m
ij

�yin
_gim(l

n
im)�

NX
i=1

MX
m=1

unima
m
ij


m
i

�yin
cnim(�j � �nj ):(6.22)

Note that (6.8) is satisfied since

@

@�j
Q3(�;�

n)

����
�j=�

n
j

=

NX
i=1

MX
m=1

unima
m
ij

�yin
_gim(l

n
im) =

@

@�j
Q2(�;�

n)

����
�j=�

n
j

=
@

@�j
L(�; Y )

����
�=�n

:(6.23)

From the above expressions for the partial derivatives ofQ3, the unconstrained maximizer

of Q3(�;�n) with regard to�j is given by:

�nj +
1

dj(�n)

@

@�j
Q3(�;�

n)

����
�j=�nj

: (6.24)

SinceQ3 is separable and concave, the iterative algorithm for the maximization ofL is:

�n+1 = [�n +D(�n)�1r0L(�n; Y )]+; (6.25)

wherer0 = [ @
@�1

: : : @
@�p

]0 denotes the (column) gradient operator,[x]+ = x for x > 0

and zero otherwise, andD(�n) is ap � p diagonal matrix withjth diagonal entrydj(�n).

The ordered subsets idea could also be easily applied to this algorithm [52, 32] and adding

regularization is straightforward as given in [32].

The iteration (6.25) monotonically increases the likelihood, however, it has very slow

convergence due to the small curvatures of the surrogate parabolas. Applying the ordered

subsets idea leads to faster “convergence” but monotonicity is no longer guaranteed.
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6.3.2 Coordinate Ascent Algorithm

To obtain a monotonic algorithm that converges relatively quickly, we can apply coor-

dinate ascent to the surrogateQ defined in (6.14),i.e., sequentially update one pixel at a

time while holding all other pixels fixed. First, we obtain the likelihood surrogate parabola

for a particular pixel with every other pixel value fixed:

Q̂n
j (�j)

4
= Q([�̂1; : : : ; �̂j�1; �j ; �̂j+1; : : : ; �̂p];�

n)

= Q(�̂;�n) + _Qn
j (�̂j)(�j � �̂j)�

1

2
dnj (�j � �̂j)

2; (6.26)

where�̂ denotes the most recent estimate of�, �̂j denotes thejth entry of�̂, �n denotes

the estimate for� after thenth iteration (with whichQ(�; �n) is constructed), and̂Qn
j (�j)

is treated as a function of�j only. The derivative of the likelihood surrogate parabola at�̂j

is:

_Qn
j (�̂)

4
=

@

@�j
Qn
j (�j)

����
�j=�̂j

=

NX
i=1

MX
m=1

unim
�yni
amij [ _g

n
im(l

n
im)� cnim(l̂im � lnim)]; (6.27)

where

l̂im
4
= [Am�̂]i =

pX
j=1

A
m
ij �̂j

_gnim(l) =

�
yi

bnime
�l + rnim

� 1

�
bnime

�l:

The curvature of the parabolâQn
j (�j) is

dnj
4
=

NX
i=1

MX
m=1

unim
�yni

(amij )
2cnim: (6.28)

Extension to the penalized likelihood case is straightforward following the methods

in[30, 31], so we omit the details and only comment on notations:R̂j(�j) denotes the

penalty surrogate parabola for�j , andp̂j denotes its curvature. Combining the likelihood

surrogate parabolas in (6.26) and the penalty surrogate parabolas, the maximization step of

the coordinate ascent for pixelj is:

�̂newj = argmax
�j�0

Q̂n
j (�j)� �R̂j(�j) =

"
�̂j +

_Qn
j (�̂)� � _Rj(�̂)

dnj + �p̂j

#
+

: (6.29)
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Because of our construction based on surrogate functions that satisfy (6.9), this update is

guaranteed to monotonically increase the value of�. One iteration is finished when all

pixels are updated via (6.29) in a sequential order. We update the paraboloidal surrogate

function after one iteration of coordinate ascent (CA), although one could also perform

more than one CA iteration per surrogate. An outline of this algorithm is given in Table 6.1,

where k denote the potential function used in the penalty acting as a norm on the “soft

constraints”C� � 0, K is the number of such constraints, and ̂k denotes the surrogate

function used for k; see [31] for details about possible surrogate functions used for k.
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Initialize: �̂ = FBPflog((
PM

m=1 bim)=(yi � ri))gNi=1 andl̂im =
Pp

j=1 a
m
ij �̂j ; i = 1; : : : ; N

for each iterationn = 1; : : : ;niter

uim = bime
�[A�̂]i + ri=M

�yi =
MX

m=1

bime
�[A�̂]i + ri

bnim =
�yi
uim

bim; r
n
im =

�yi
uim

ri
M

Computecim according to (6.16)

_qim = _gim =

�
yi

bnime
�l̂im + rnim

� 1

�
bnime

�l̂im ; for i = 1; : : : ; N

for j = 1; : : : ; p

_Qj =
MX
m=1

NX
i=1

uim
�yi
amij _qim

dj =

MX
m=1

NX
i=1

uim
�yi

(amij )
2cim

�oldj = �j

�̂j :=

2
4�̂j + _Qj � �

PK
k=1 ckj

_ k([C�̂]k)

dj + �
PK

k=1 c
2
kj

�̂
 k([C�̂]k)

3
5
+

_qim := _qim � amijcim(�̂j � �oldj )

end

l̂im := l̂im +
_qim � _gim
cim

; for i = 1; : : : ; N

end

Table 6.1: Algorithm outline
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6.4 Simulation Results

We compared the proposed reconstruction algorithm to the “conventional” reconstruc-

tion algorithms (statistical and FBP) that treat the transmission measurements simply as

ideal normalized parallel “strip-integrals”. The system geometry corresponded fairly closely

to the SiemensPro�leTM system (Hoffman Estates, IL) [42]. The sources for the simulated

system consisted of a multiple line source array with 14 sources, unequally spaced, located

on a line parallel to the detector and 110 cm away from the detector plane. The detec-

tor plane was located 22 cm away from the center of rotation. We simulated a range of

source collimation angles, from1:6� (with almost no overlap in the transmission beams) to

6:6�, and disregarded detector collimation. The image consisted128 � 128 pixels of size

3:56� 3:56mm2. The sinogram size was128� 60 with detector bins of width4:8mm (i.e.,

the simulated detector response was rectangular with width4:8mm). We performed the

simulation for two levels of transmitted counts, one corresponding to a system whose cen-

ter rods have just been replaced (the new source case), and the other with sources that have

all decayed by one half-life (the old source case). At1:6�, we simulated 321,000 transmit-

ted counts for the new source case (160,000 counts for the old source case), and 263,000

background counts (on average). As the source collimation angle increases, the number

of transmitted counts increases, naturally, but the number of background counts remains

the same; at2:6�, there are 523,000 transmitted counts for the new source case (261,000

counts for the old source case); and at6:6�, there are 1,396,000 transmitted counts for the

new source case. For simplicity, we used a space-invariant quadratic penalty over first-

order neighbors throughout our simulations. The phantom used in our simulations, the ROI

used for the evaluation of variance in Section 6.5 (outlined by solid lines), and the large

region used for the evaluation of spatial resolution (outlined by dashed lines) are shown in

Figure 6.1. Figure 6.2 illustrates the system setup. The radial distribution of blank counts

(at any projection angle) is shown in Figure 6.3.
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Figure 6.1: Digital Phantom used in our simulations and the ROI used for collimation angle

optimization.

Sources

Detectors

Figure 6.2: Scaled illustration of the system setup; the two fan-beams on the left have

collimation angle2:6�; the two fan-beams on the right side have collimation angle5:6�.
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Figure 6.3: Distribution of blank counts (a) collimation angle2:6� (b) collimation angle

5:6�.

Figures 6.4 and 6.5 show reconstructions of noisy data using FBP, the parallel algo-

rithm3, and the proposed algorithm, with new sources. Figure 6.4 shows reconstructions

with 2:6� source collimation and Figure 6.5 shows reconstructions with3:6� source colli-

mation. Figures 6.6 and 6.7 show the same reconstructions with old sources. The spatial

resolution of the images in these figures is 4.7 pixels on the top row and 6.8 pixels on the

bottom row. We use the following simple method to determine the resolution of a particular

(noiseless) reconstruction. Given the ideal image�true and the reconstructed image�� using

ideal data:

�� = arg max
�� 0

�(�; �yi(�
true)); (6.30)

we define the resolution of�� to be:

arg min�
X
j2R

��[G��
true]j � ��j

��2 (6.31)

whereG� represents a Gaussian smoothing filter with FWHM�, and theR is a large region

encompassing both the right lung and our ROI as illustrated in Figure 6.1.

We observe from Figures 6.4-6.7 that the proposed algorithm consistently produces

less noisy reconstructions than both the parallel algorithm and FBP (this conclusion from
3We refer to the penalized-likelihood reconstruction assuming ideal normalized parallel “strip-integrals”

(and ignoring beam overlap) as the parallel algorithm.
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anecdotal evidence will be confirmed in Section 6.5). The noise reduction is especially

significant when the collimation angle is large (i.e., 3:6�) and the desired spatial resolution

is high (i.e., 4.7 pixels). In such cases, FBP simply cannot produce a reconstructed image

of the desired resolution even with an unapodized ramp filter. Since the parallel algorithm

is based on an incorrect system and statistical model, one expects artifacts due to model

mismatch. The absence of apparent artifacts in Figures 6.4-6.7 is due to regularization

and noise. Figure 6.8 shows the reconstructed images from noiseless data (4:6� collimation

angle) using the parallel and proposed algorithms with almost no regularization (� = 2�10).

The reconstructed image from noiseless data using the parallel algorithm shows severe

artifacts resulting from model mismatch, which are absent in the reconstructed image from

noiseless data using the proposed algorithm (Figure 6.8c).

As the collimation angle increases, the artifacts generated by the parallel algorithm

worsen. In fact, even the noiseless reconstruction has a spatial resolution of about 5.6 pixels

when the collimation angle is4:6� (Figure 6.8a)4, and at6:6�, the noiseless reconstruction

has a spatial resolution of 7.7 pixels. Thus for system setups with significantly overlap-

ping transmission beams, the parallel algorithm simply cannot produce a high-resolution

reconstruction, no matter how many counts one collects.

4The noiseless reconstruction (Figure 6.8c) using the proposed algorithm has a spatial resolution of 1.4
pixels.
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FBP Parallel algorithm Proposed algorithm

Figure 6.4: New sources; collimation angle:2:6�; 785,000 counts; top row: resolution 4.7

pixels; bottom row, resolution 6.8 pixels.

FBP Parallel algorithm Proposed algorithm

Figure 6.5: New sources; collimation angle:3:6�; 994,000 counts; top row: resolution 4.7

pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not achievable

with FBP in this case.
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FBP Parallel algorithm Proposed algorithm

Figure 6.6: Old sources; collimation angle:2:6�; 392,000 counts; top row: resolution 4.7

pixels; bottom row, resolution 6.8 pixels.

FBP Parallel algorithm Proposed algorithm

Figure 6.7: Old sources; collimation angle:3:6�; 497,000 counts; top row: resolution 4.7

pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not achievable

with FBP in this case.
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Figure 6.8: Reconstruction using the parallel and proposed algorithms with almost no reg-

ularization; collimation angle4:6� (a) (b) Parallel algorithm (c) (d) Proposed algorithm.
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6.5 Collimation Angle Optimization

We performed a preliminary study of the optimal source collimation angle given that the

system configuration, source strength, and background counts remain constant. As source

collimators open up,i.e., the collimation angle increases, there would be more counts, but

there would also be more overlap of transmission beams. Hence initially, when the trans-

mission beams widen from no overlap to some overlap, we expect better resolution/variance

tradeoffs; however, as the transmission beams open up more and more, we expect less and

less improvements, and eventually worse resolution/variance tradeoff since eventually each

detected photon hitting will yield very little information about where it originated. We

want to obtain the collimation angle that minimizes a region of interest (ROI) variance for

a fixed spatial resolution. We investigated the proposed algorithm, the parallel algorithm

(i.e., the conventional statistical algorithm), and FBP (derived assuming ideal parallel “line-

integrals”). For the statistical algorithms, instead of performing numerical simulations, we

used the approach outlined in [38] to compute the variance of the ROI. For FBP, since

numerical simulations are relatively inexpensive, we performed 2000 realizations for each

data point.

The approximate covariance for an implicitly defined biased estimator is[38]:

Cov(�̂) � [�r20�(��; �y)]�1r11�(��; �y)CovfY g[r11�(��; �y)]0[�r20�(��; �y)]�1; (6.32)

where�� is defined in (6.30). We first deriver20�(�; Y ) andr11�(�; Y ), which are needed

for computing the variance of a ROI for the proposed algorithm. Defining

pim(�)
4
= bime

�
P

j a
m
ij�j (6.33)

�yi(�) =
MX

m=1

pim(�) + ri; (6.34)

then

@pim(�)

@�j
= �amijpim(�) =

@�yi(�)

@�j
: (6.35)

Since

L(�; Y ) =
NX
i=1

yi log �yi(�) � �yi(�); (6.36)
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we have

@L(�; Y )

@�j
=

NX
i=1

yi
�yi(�)

@�yi(�)

@�j
�
@�yi(�)

@�j
=

NX
i=1

�
1 �

yi
�yi(�)

� MX
m=1

amijpim(�);(6.37)

and, applying the chain rule:

@2L(�; Y )

@�j@yi
= �

PM
m=1 a

m
ijpim(�)

�yi(�)
(6.38)

@2L(�; Y )

@�j@�k
=

@

@�k

NX
i=1

�
1�

yi
�yi(�)

� MX
m=1

amijpim(�)

= �
NX
i=1

�
1 �

yi
�yi(�)

� MX
m=1

amija
m
ikpim(�)

�
NX
i=1

yi
�y2i (�)

 
MX
m=1

amijpim(�)

! 
MX
m=1

amikpim(�)

!
: (6.39)

LetC(�)
4
= fcij(�)g, wherecij(�)

4
=
PM

m=1 a
m
ijp

m
i (�) soC(�) =

PM
m=1 diagfp

m
i (�)gA

m.

Then we obtain:

r11�(�; Y ) = �C(�)0diagf1=�yi(�)g (6.40)

�r20�(�; Y ) =
MX
m=1

(Am)0diagf(�yi(�) � ri)(1� yi=�yi(�))gA
m

+TC(�)0diagfyi=�y
2
i (�)gC(�) + �R(�); (6.41)

whereR(�) = r2R(�). (For a detailed derivation of the penalty part, see [38].) We use

the following recipe to compute the approximate estimator (using the proposed algorithm)

variance of a ROI:

(i) Compute�� by applying the proposed algorithm to noise-free dataf�yi(�true)g;

(ii) Forward project�� to compute�yi(��) =
PM

m=1 pim(��) + ri;

(iii) Use an iterative method such as conjugate gradient [91] or Gauss-Siedel [18]

to solve

[�r20�(��; �y)]uROI = eROI, whereeROI is a vector with entries1=nROI for

pixels inside the region and zeros for pixels outside;nROI denotes the number

of pixels in the ROI;
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(iv) Compute(uROI)0r11�(��; �y)CovfY g[r11�(��; �y)]0uROI by first forward pro-

jectinguROI to computev = diagf1=�yi(��)gC(��)uROI, and then summing:

Var(�̂ROI) �
NX
i=1

v2i yi(�
true): (6.42)

For the parallel algorithm, the computation of the approximate variance has been out-

lined in [38], except that we useCov(Y ) = diagf�yi(�true)g in (23) of [38], where�yi is

based on the overlapping beam model (6.34) rather than the parallel strip-integral model of

[38].

We analyzed the resolution/variance tradeoffs for the ROI illustrated in Figure 6.1: it

is a2 � 9 region that goes across the boundary of the soft tissue, the lung, and the heart.

We performed the analysis at two levels of transmitted counts, one with new sources (the

high count case) and the other with old sources (the low count case),i.e., the same as

was done for Section 6.4. The background count level for both cases remains the same

throughout. We only discuss the high count case; the low count case gives similar results.

Figures 6.9 and 6.10 show the resolution/variance curves of the proposed algorithm and the

parallel algorithm, respectively, for various collimation angles ranging from1:6� to 6:6�.

Based on these two figures, we calculated (using cubic spline interpolation when needed)

the variances of the ROI versus collimation angle at two fixed resolutions: 4.7 pixels and

6.8 pixels, as shown in Figures 6.11 and 6.12. The proposed algorithm outperforms the

parallel algorithm which in turn outperforms FBP at both resolutions, and at all collimation

angles. The performance gain of the proposed algorithm over the parallel algorithm is more

impressive at larger collimation angles,e.g., more than2:5�. Using the proposed algorithm,

it seems that the optimal collimation angle for a resolution of 4.7 pixels is around5�, and

> 7� for a resolution of 6.8 pixels, both much larger than typical collimation angles found

on SPECT cameras. However, if the suboptimal parallel algorithm were used for recon-

struction, then the optimal collimation angle would be2:6� for a resolution of 4.7 pixels,

and4:1� for a resolution of 6.8 pixels. Even though the optimal collimation angle for the

parallel algorithm is closer to what is typically found on SPECT cameras than the proposed

algorithm, the proposed algorithm outperforms the parallel algorithm at all collimation an-

gles. Furthermore, for collimation angles larger than3:5�, a resolution requirement of 4.7
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pixels would probably mean very high variances in the parallel reconstruction. Figure 6.13

shows the optimal collimation angle for the proposed and parallel algorithms at different

desired spatial resolutions. Naturally, as the desired spatial resolution improves, the opti-

mal collimation angle decreases. Figure 6.14 shows the minimum achievable normalized

standard deviation for the the proposed and parallel algorithms at different desired spa-

tial resolutions. As expected, the proposed algorithm consistently outperforms the parallel

algorithm, resulting in reduction in the standard deviation by as much as 40%.
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Figure 6.9: High count case: ROI resolution/variance curves for the proposed algorithm.
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Figure 6.10: High count case: ROI resolution/variance curves for the parallel algorithm.
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Figure 6.11: High count case: ROI variances at desired spatial resolution 4.7 pixels.
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Figure 6.12: High count case: ROI variances at desired spatial resolution 6.8 pixels.
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6.6 Discussion and Conclusion

We have presented a new algorithm for statistical image reconstruction of attenuation

maps that explicitly accounts for overlapping beams in transmission scans; an example of

such a system can be found in [15]. The algorithm is guaranteed to monotonically increase

the objective function at each iteration, and consistently achieves better variance/resolution

tradeoffs than “conventional” image reconstruction algorithms, both statistical (the parallel

algorithm) and non-statistical (FBP).

From our preliminary study on the optimal collimation angle, we find that it is desir-

able to open up the source collimators and allow beam overlap — provided the overlap

is modeled appropriately in the reconstruction algorithm. (This conclusion applies to our

ideal simulation settings where system geometry is known perfectly. Robustness of the

proposed algorithm to model mismatch needs investigation.) However, detector collima-

tion currently limits usable source collimation angles to� 2:6�, so alternatives to widening

source collimation are needed to improve the counting statistics on this system.

The proposed algorithm is more time-consuming and uses more memory than conven-

tional statistical algorithms. For our simulations, we used 14 system matrices (one for each

source) with appropriate collimation angles. The system matrices with collimation angle

2:6� occupy 20 MBytes of disk space, and the system matrices with collimation angle7�

occupy 50 MBytes of disk space, compared to 8 MBytes occupied a single system matrix

used by the parallel algorithm. It also takes longer to project or backproject an image in

the proposed algorithm than the parallel algorithm; in fact, for collimation angle2:6�, each

iteration of the proposed algorithm takes about 1.9 seconds, compared to about 0.8 seconds

needed for the parallel algorithm, on a Sun Ultra2 workstation. Furthermore, because of the

overlap between transmission beams, the convergence rate of the proposed algorithm is also

slower than the parallel algorithm; as the overlap between transmission beams increases,

i.e., the collimation angle gets larger, the curvaturescim as given in (6.16) get larger, hence

the convergence rate becomes even slower. In fact, if one goes from a collimation angle

of 1:6� to 5:6�, the average curvature of the surrogate parabolas increases by a factor of

3. With regard to the number of iterations necessary for convergence,i.e., the smallest
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n such that�(�n) � �(�0) > 0:999 [�(��)� �(�0)], where�(��) is the largest objec-

tive value obtained in 40 iterations, the parallel algorithm required 22 iterations and the

proposed algorithm required 30 iterations for collimation angle2:6� and a desired spatial

resolution of4:7 pixels. Hence the total amount time required by the proposed algorithm

would be 3.3 times that of the parallel algorithm for collimation angle2:6� and a desired

spatial resolution of4:7 pixels.
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CHAPTER 7

Conclusion and Future Work

7.1 Edge-Preserving Tomographic Reconstruction With Non-

local Regularization

In this part of our work, we presented a new regularization method for tomographic

image reconstruction based on a nonlocal penalty function. The nonlocal penalty pro-

duces transmission reconstructions with better ROI bias/variance tradeoffs than a local Hu-

ber penalty. When these transmission reconstructions are applied to ideal emission data,

the nonlocal penalty used for transmission reconstruction produces emission images with

smaller variances (for a fixed spatial resolution) for most pixels in the image,i.e., from 80%

to 85%; the median standard deviation in the image is reduced by 35% to 50%.

The future work in this part should focus on the criterion upon which theh functions

are selected, during both the intermediate and the final stage(s) of the deterministic anneal-

ing process. The finalh function one uses controls the transition in pixel values between

neighboring regions. Differenth functions will result in very different resolutions in the

reconstructed image, at least near the region boundaries. Knowledge of the resolutions of

the reconstructed image is critical to the application of the attenuation coefficient maps to

the emission reconstruction. Secondly, the selection ofh functions during the intermediate

stages of the annealing process will affect how fast the algorithm converges and also how

“good” a local minimum the algorithm finds. Presumably, the slower the annealing pro-
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cess, the “better” the local minimum reached by the algorithm. However, one must balance

between the desire for a good local minimum and the practical concern of how long in time

the algorithm will be run. A study of the what sort ofh functions and how fast to evolve

these functions will be useful if this algorithm is eventually to be used in clinical situations.

As we discussed in Section 3.3.1, the arc-length penalty termJ1 in (3.39) favors a

shorter curve, and hence causes a bias in the boundary extraction. Even though our sim-

ulation showed this bias is negligible, a more theoretically satisfying way to resolve this

issue is to replace the curve-length term with a penalty that does not favor a shorter curve,

e.g.[96],

J1(f;�k) =

Z
�k(p)

1

2
(�1j(�k)pj

2 + �2j(�k)ppj
2)dp; (7.1)

which can be minimized by steepest descent:

d�k
dt

= �
�J1
��

= ��1(�k)pp + �2(�k)pppp; (7.2)

even though the implementation of the fourth derivative will be numerically problematic.

Finally, an analysis of the resolution/noise property of the proposed penalty, though

difficult, will be very useful toward clinical application of the proposed penalty.

7.2 Counting Statistics Affected by Deadtime

In this part of our work, we made original contributions to the fundamental understand-

ing of the random process, by proposing a new method of deriving its moments. However,

this method, in practice, is only useful for the first and second moments; the derivation

of higher moments turns out to be very time-consuming (even prohibitive once 4th or 5th

moment is reached) for any reasonable complicated deadtime models. Nevertheless, we

derivedrigorously, the first and second moments of a number of counting processes, both

single and coincidence; most of these expressions are hitherto unknown. Of course, we

have just began to scratch the surface of this very difficult problem; a great deal more,

including completely new methodologies, may be needed before we can achieve a good

understanding of the nature of the process.
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Most of the possible future work in the part involves applying the proposed method

to more complicated deadtime models,e.g., where the deadtime� is stochastic instead of

pre-determined, or the time-stamping of recorded singles has random errors. Furthermore,

as we pointed out in Section 4.4, the effect of possibly-not-so-small correlation coefficient

between the sum of one group of detectors and the sum of all other detectors in the block

on the reconstructed images should be studied.

7.3 Maximum Likelihood Transmission Image Reconstruc-

tion for Overlapping Transmission Beams

In this final part of our work, we presented a new algorithm for statistical image recon-

struction of attenuation maps that explicitly accounts for overlapping beams in transmission

scans. The algorithm is guaranteed to monotonically increase the objective function at each

iteration, and consistently achieves better variance/resolution tradeoffs than “conventional”

image reconstruction algorithms, both statistical (the parallel algorithm) and non-statistical

(FBP). We also found that it is desirable to open up the source collimators and allow beam

overlap — provided the overlap is modeled appropriately in the reconstruction algorithm.

However, the convergence speed of the proposed algorithm depends on the amount of the

overlap between transmission beams – this effect should be studied. One should also study

the robustness of the proposed algorithm to model mismatch. Because the proposed al-

gorithm allows for wider source collimation (but detector collimation currently limits how

wide the source collimators open up), a system design that involves transmission sources

with energies high enough to penetrate the detector collimators should be studied. Fi-

nally, the collimation angle optimization in Section 6.5 are performed assuming quadratic

penalties; a similar study on the optimal collimation angle should be done assuming the

non-quadratic penalties, or even the non-local penalty proposed in Chapter 3.

This work can also be applicable to the problem of the sourceless attenuation correction[40],

i.e., completely avoid transmission scans and extract the attenuation map directly from the

noisyemission projections. Because of the extreme ill-posedness of this problem, a strong
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regularizing penalty, such as the non-local penalty proposed in Chapter 3, may be needed.
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APPENDIX A

Deadtime Analysis: Variance Derivation for Deadtime

Model II

We derive the variance ofY (t) for deadtime model II, the paralyzable model. We first

derive�(0; s). We consider two cases.

CASE 1: 0 < s < �

We pick� such that0 < � < s < s+ � < � . Two recorded events cannot correspond to

photons that arrived within� of each other. Hence for0 < s < � ,E[Y (0; �)Y (s; s+ �)] =

0, and by the definition given in (4.6):�(0; s) = 0.

CASE 2: � < s < t

We pick � such that� < � ands + � < t and� < s � � . For s > � , Y (0; �) and

Y (s; s+ �) are statistically independent, since the event “there is an arrival during(0; �]” is

statistically independent from the event “there is an arrival during(s; s+ �]”, because they

are at least� apart in time1. Hence by (4.26),

E[Y (0; �)Y (s; s+ �)] = E2[Y (0; �)] = (��e���)2; (A.1)

and

�(0; s) = (�e���)2: (A.2)

1If there is one arrival each during(0; �], (s=2; s=2 + �], and(s; s + �], thenY (0; �)Y (s; s + �) = 0; but
loss of the photon that arrived during(s; s + �] is due to the arrival during(s=2; s=2 + �]; whether there is
any arrival during(0; �] is independent of whether the arrival during(s; s + �] is recorded.
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Combining the above two cases and using (4.25) yields

E[Y 2(t)] = 
t+ 2

Z t

�

(t� s)(�e��� )2ds

= �te��� + [(t� � )(�e��� )]2: (A.3)

UsingVar[Y (t)] = E[Y 2(t)]�E2[Y (t)], with (4.28) and (A.3), and simplifying yields (4.30).
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APPENDIX B

Deadtime Analysis: Variance Derivation for Deadtime

Model III

We derive the variance ofY (t) for the type III deadtime model. Again, we first derive

the correlation function�(0; s). This derivation is more complicated than the type II model,

due to the fact that if two photons arrive at timess1 ands2 respectively and� < s2 � s1 <

2� , then(s1 � �; s1 + � )\ (s2 � �; s2 + � ) 6= ; andY (s1; s1+ �) andY (s2; s2+ �) would

both depend on what happens during(s2 � �; s1 + � ).

CASE 1: 0 < s < �

We pick� such that0 < � < s < s+ � < � . Two recorded events cannot correspond to

photons that arrived within� of each other. Hence for0 < s < � ,E[Y (0; �)Y (s; s+ �)] =

0, and�(0; s) = 0.

CASE 2: � < s < 2�

We pick � such thats + � < 2� (hence� < � ) and� < s � � . As discussed above,

for � < s < 2� , Y (0; �) andY (s; s + �) will be statistically dependent. If there is exactly

one photon arrival each during(0; �] and(s; s+ �] at times1 ands2 respectively, then both

events will be recorded if and only if there is no arrival during(s1 � �; s1), (s1; s2), or

(s2; s2 + � ] (since� < s2 � s1 < 2� , (s1; s1 + � ] [ (s2 � �; s2) = (s1; s2).) Hence,

E[Y (0; �)Y (s; s+ �)]

= P[Y (0; �) = 1; Y (s; s+ �) = 1]

=

Z �

0

Z �

0

P[no arrival during(s1 � �; 0); or (s1; s); or (s2; s2 + � ]]
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fT1(s1)fT1(s2)ds1ds2

=

Z �

0

Z �

0

e��(��s1)e��(s�s1)e����e��s1�e��s2ds1ds2

= e��2��2e��s
Z �

0

Z �

0

e�s1e��s2ds1ds2

= (e�� � 1)2e��(2�+s+�); (B.1)

and

�(0; s) = �2e��(2�+s): (B.2)

CASE 3: 2� < s < t

We pick� such that� < 2� ands+ � < t and� < s� 2� . For2� < s < t, Y (0; �) and

Y (s; s+ �) are statistically independent, since the event “there is an arrival during(0; �]” is

statistically independent from the event “there is an arrival during(s; s+ �]”, because they

are at least2� apart in time. Thus

E[Y (0; �)Y (s; s+ �)] = E2[Y (0; �)] = (��e��2�)2; (B.3)

and

�(0; s) = (�e��2�)2: (B.4)

Combining the above three cases and using (4.25) yields

E[Y 2(t)] = 
t+ 2

Z 2�

�

(t� s)�2e��(2�+s)ds+ 2

Z t

2�

(t� s)(�e��2�)2ds

= �te��2� + 2e�4��(1� �t+ 2�� ) + 2e�3��(�t� �� � 1)

+[(t� 2� )(�e��2�)]2: (B.5)

Simple algebra leads to (4.37).
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APPENDIX C

Deadtime Analysis: Mean Derivation for Inhomogeneous

Arrival Process

Due to the decay of an isotope photon source, the photon arrival process is not ex-

actly homogeneous. In medical imaging, the arrival rates are inhomogeneous due to radio-

tracer dynamics. In this section, we deriveE[Y (t)] for paralyzable deadtime model1, as-

suming only that the instantaneous photon arrival rate�(t) is continuous. This relaxes

the assumption made in Section 4.2 that� is constant. For an inhomogeneous process,

E[Y (s; s+ �)] 6= E[Y (0; �)] in general. First we observe that the waiting time for the first

photon arrival after times, denotedT1, has the following distribution:

FT1(r) = P[T1 � r] = 1 � P[T1 > r] = 1� P[N(s; r) = 0]

= 1� e�
R r
s
�(q)dq: (C.1)

Hence forr > s,

fT1(r) =
d

dr
FT1(r) = �(r)e�

R r
s
�(q)dq: (C.2)

For0 < � < � , we have:

E[Y (s; s+ �)] = P[Y (s; s+ �) = 1]

=

Z s+�

s

P[Y (s; s+ �) = 1jT1 = r]fT1(r)dr

=

Z s+�

s

P[N(r � �; s) = 0]fT1(r)dr

1Extension to the type III deadtime model is straightforward.
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=

Z s+�

s

e�
R s
r��

�(q1)dq1�(r)e�
R r
s
�(q2)dq2dr

=

Z s+�

s

�(r)e�
R r
r��

�(q)dqdr: (C.3)

Since� is continuous, ande�
R r
r��

�(q)dq is continuous inr, we conclude:


(s) = �(s)e�
R s
s��

�(q)dq: (C.4)

Hence2

E[Y (t)] =

Z t

0

�(s)e�
R s
s��

�(q)dqds: (C.5)

If � is small relative to variations in�, then
R s
s��

�(q)dq � �(s)� , so

E[Y (t)] �

Z t

0

�(s)e��(s)�ds: (C.6)

This approximation can be applied to other deadtime models as well. Similarly, the second

moment ofY is:

E[Y 2(t)] = E[Y (t)] + 2

Z t

0

Z t

s1+�


(s1)
(s2)ds2ds1: (C.7)

2In fact, it is unnecessarily restrictive to limit� to continuous functions; all we need is that� is integrable
and bounded over[0; t]. If � is integrable on[0; t], then�1(r) = �(r)e�

R
r

r��
�(q)dq is integrable on[0; t];

then almost every point of[0; t] is a Lebesgue point of�1 [10, Theorem 7.40]; and ifs is a Lebesgue point of

�1, thenlim�!0

R
s+�

s
�1(q)dq

�
= �1(s)[10, Theorem 7.39].
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APPENDIX D

Deadtime Analysis: Partial Derivation of Variance for the

Coincidence Process with Ideal Detectors

We derive�(0; s) (for 0 < s < �) of the random coincidence process with ideal detec-

tors. We have

E[Y (0; �)Y (s; s+ �)] = E[(Ya(0; �) + Yb(0; �))(Ya(s; s+ �) + Yb(s; s+ �))]

= E[Ya(0; �)Ya(s; s+ �)] + E[Ya(0; �)Yb(s; s+ �)]

+E[Yb(0; �)Ya(s; s+ �)] + E[Yb(0; �)Yb(s; s+ �)]: (D.1)

We pick� such that

0 < � < s < s+ � < �; (D.2)

hence8s1 2 (0; �];8s2 2 (s; s+ �]; 0 < s2 � s1 < �. We deriveE[Ya(0; �)Ya(s; s+ �)]:

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = 1;X1(s; s+ �) = 1]

=

Z �

0

Z s+�

s

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = 1;X1(s; s+ �) = 1;

T1;1 = s1; T1;2 = s2]=�
2ds2ds1; (D.3)

whereT1;1 andT1;2 denote the time of the recorded singles events at detector 1 during(0; �]

and(s; s+ �], respectively. Fors1 2 (0; �] ands2 2 (s; s+ �], sinces1 > s2 � �, we have

(see Figure D.1):

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = 1;X1(s; s+ �) = 1; T1;1 = s1; T1;2 = s2]
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= E[X2(s1 � �; s1)X2(s2 � �; s2)]

= E[(X2(s1 � �; s2 � �) +X2(s2 � �; s1))(X2(s2 � �; s1) +X2(s1; s2))]

= E[X2(s1 � �; s2 � �)X2(s2 � �; s1) +X2(s1 � �; s2 � �)X2(s1; s2)

+X2
2 (s2 � �; s1) + x(s2 � �; s1)X2(s1; s2)]

= 
22(s2 � s1)(�� s2 + s1) + 
22(s2 � s1)
2

+(
22(�� s2 + s1)
2 + 
2(�� s2 + s1)) + 
22(�� s2 + s1)(s2 � s1)

= (
2�)
2 + 
2(�� (s2 � s1)): (D.4)

(0; �]
(s; s+ �]

s1 s2

s1 � �

s2 � �

Detector 1

Detector 2

Figure D.1: Graphic aid forE[Ya(0; �)Ya(s; s+ �)jX1(0; �) = 1;X1(s; s+ �) = 1; T1;1 =

s1; T1;2 = s2]

Integrating (D.3) yields:

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = 1;X1(s; s+ �) = 1] = (
2�)
2 + 
2(�� s): (D.5)

By total probability:

E[Ya(0; �)Ya(s; s+ �)] =

1X
k;l=0

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = k;X1(s; s+ �) = l]

�P[X1(0; �) = k;X1(s; s+ �) = l]: (D.6)

Whenk + l � 3,

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = k;X1(s; s+ �) = l] � 
22(s+ � + �)2kl; (D.7)

hence,
1X

k;l=0;k+l�3

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = k;X1(s; s+ �) = l]
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�P[X1(0; �) = k;X1(s; s+ �) = l]

= E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = 2;X1(s; s+ �) = 1]P[X1(0; �) = 2;X1(s; s+ �) = 1]

+
1X
k=1

1X
l=2

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = k;X1(s; s+ �) = l]

�P[X1(0; �) = k;X1(s; s+ �) = l]

� 2
22(s+ � + �)2P[X1(0; �) = 2]P[X1(s; s+ �) = 1]

+
1X
k=1

1X
l=2


22(s+ � + �)2klP[X1(s; s+ �) = l]:

Since both
P1

k=1 
2(s+ �+ �)kP[X1(0; �) = k] and
P1

l=2 
2(s+ �+ �)lP[X1(s; s+ �) = l

converge absolutely, by Merten’s Theorem [62],

1X
k;l=0;k+l�3

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = k;X1(s; s+ �) = l]

�P[X1(0; �) = k;X1(s; s+ �) = l]

� 2
22(s+ � + �)2P[X1(0; �) = 2]P[X1(s; s+ �) = 1] +

 
1X
k=1


2(s+ � + �)k

� P[X1(0; �) = k]

! 
1X
l=2


2(s+ � + �)lP[X1(s; s+ �) = l]

!
: (D.8)

Applying LDCT to (D.8), we have by similar argument as (5.3):

lim
�!0

1

�2

1X
k;l=0;k+l�3

E[Ya(0; �)Ya(s; s+ �)jX1(0; �) = k;X1(s; s+ �) = l]

�P[X1(0; �) = k;X1(s; s+ �) = l] = 0: (D.9)

Hence by (D.5) and (D.6), for0 < s < �,

lim
�!0

E[Ya(0; �)Ya(s; s+ �)]

�2
= lim

�!0

[(
2�)2 + 
2(�� s)]P[X1(s; s+ �) = X1(0; �) = 1]

�2
+ 0

= lim
�!0

[(
2�)2 + 
2(�� s)][e��
1(�
1)]2

�2

= (�
1
2)
2 + 
21
2(�� s): (D.10)

Now we deriveE[Yb(0; �)Ya(s; s + �)] by similar methods. LetT2;1 andT1;2 denote

the time of the recorded singles events by detector 2 during(0; �] and by detector 1 during

(s; s+ �], respectively. We have (see Figure D.2):

E[Yb(0; �)Ya(s; s+ �)jX2(0; �) = 1;X1(s; s+ �) = 1; T2;1 = s1; T1;2 = s2]
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(0; �] (s; s+ �]

s1
s2

s1 � �

s2 � �

Detector 1

Detector 2

Figure D.2: Graphic aid forE[Yb(0; �)Ya(s; s + �)jX1(0; �) = 1;X1(s; s+ �) = 1; T2;1 =

s1; T1;2 = s2]

= E[X1(s1 � �; s1)X2(s2 � �; s2)jX2(0; �) = 1;X1(s; s+ �) = 1; T2;1 = s1; T1;2 = s2]

= E[X1(s1 � �; s1)jX1(s; s+ �) = 1; T1;2 = s2] � E[X2(s2 � �; s2)jX2(0; �) = 1; T2;1 = s1]

= (
1�)E[X2(s2 � �; 0) + 1 +X2(�; s2)]

= (
1�)(1 + 
2(�� �)): (D.11)

Since this is independent ofs1 ands2, the integral as in (D.3) is identical to (D.11). Fur-

thermore, since
1X

k;l=0;k+l�3

E[Yb(0; �)Ya(s; s+ �)jX1(0; �) = k;X1(s; s+ �) = l]

�P[X1(0; �) = k;X1(s; s+ �) = l]

�
1X

k;l=0;k+l�3

(k + 
1(s+ � + �))2klP[X1(0; �) = k;X1(s; s+ �) = l]; (D.12)

by a similar argument made in (D.8), we have

lim
�!0

1

�2

1X
k;l=0;k+l�3

E[Yb(0; �)Ya(s; s+ �)jX1(0; �) = k;X1(s; s+ �) = l]

�P[X1(0; �) = k;X1(s; s+ �) = l]

= 0: (D.13)

Thus following (D.10),

lim
�!0

E[Yb(0; �)Ya(s; s+ �)]

�2
= (�
1
2)

2 + 
21
2�: (D.14)

By symmetry, from (D.10) and (D.14):

lim
�!0

E[Yb(0; �)Yb(s; s+ �)]

�2
= (�
1
2)

2 + 
22
1(�� s) (D.15)
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lim
�!0

E[Ya(0; �)Yb(s; s+ �)]

�2
= (�
1
2)

2 + 
22
1�: (D.16)

Hence combining (D.10), (D.14), (D.15), and (D.16), we obtain for0 < s < �,

�(0; s) = (2�
1
2)
2 + (
1 + 
2)
1
2(2�� s): (D.17)
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APPENDIX E

Deadtime Analysis: Partial Derivation of Variance for the

Coincidence Process with Non-ideal Detectors

We derive�(0; s) (for � < s < � + �) of the random coincidence process with non-

ideal detectors. We pick� < min(s; � + � � s; s � � ), which respectively ensures that

(0; �] \ (s; s + �] = ;, s2 � s1 < � + �, ands2 � s1 > � , 8s1 2 (0; �], 8s2 2 (s; s + �].

Following (D.1) and (D.3),

E[Ya(0; �)Ya(s; s+ �)jY1(0; �) = 1; Y1(s; s+ �) = 1]

=

Z �

0

Z s+�

s

E[Ya(0; �)Ya(s; s+ �)jY1(0; �) = 1; Y1(s; s+ �) = 1;

T1;1 = s1; T1;2 = s2]=�
2ds2ds1;

whereT1;1 andT1;2 are defined as in (D.3). We defineT2;1 to be the time of the first photon

arrival afters1 � �, andT2;2 to be the time of the first photon arrival afters2 � �, both at

detector 2. (IfT2;1 > s2 � �, thenT2;1 = T2;2.) We have (see Figure E.1):

E[Ya(0; �)Ya(s; s+ �)jY1(0; �) = 1; Y1(s; s+ �) = 1; T1;1 = s1; T1;2 = s2]

= P[Y2(s1 � �; s1) = 1; Y2(s2 � �; s2) = 1]

=

Z s1

s1��

Z s2

s2��

P[Y2(s1 � �; s1) = 1; Y2(s2 � �; s2) = 1jT2;1 = s3; T2;2 = s4]

�fT2;2(s4)fT2;1(s3)ds4ds3

=

Z s1

s1��

Z s2

s2��

P[N2(s3 � �; s1 � �) = 0; N2(s4 � �; s2 � �) = 0jT2;1 = s3; T2;2 = s4]

�fT2;2(s4)fT2;1(s3)ds4ds3
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=

Z s2����

s1��

Z s2

s2��

P[N2(s3 � �; s1 � �) = 0; N2(s4 � �; s2 � �) = 0jT2;1 = s3; T2;2 = s4]

�fT2;2(s4)fT2;1(s3)ds4ds3 +

Z s1

s2����

Z s2

s2��

P[N2(s3 � �; s1 � �) = 0;

N2(s4 � �; s2 � �) = 0jT2;1 = s3; T2;2 = s4]fT2;2(s4)fT2;1(s3)ds4ds3

=

Z s2����

s1��

Z s2

s2��

P[N2(s3 � �; s1 � �) = 0]P[N2(s4 � �; s2 � �) = 0]

�fT2;2(s4)fT2;1(s3)ds4ds3 +

Z s1

s2����

Z s2

s3+�

P[N2(s3 � �; s1 � �) = 0]

�P[N2(s4 � �; s2 � �) = 0]fT2;2(s4)fT2;1(s3)ds4ds3

=

Z s2����

s1��

Z s2

s2��

e��2(s1���s3+�)e��2(s2���s4+�)�2e
��2(s3�s1+�)�2e

��2(s4�s2+�)ds4ds3

+

Z s1

s2����

Z s2

s3+�

e��2(s1���s3+�)e��2(s2���s4+�)�2e
��2(s3�s1+�)�2e

��2(s4�s2+�)ds4ds3

=

Z s2����

s1��

Z s2

s2��

�22e
�2�2�ds4ds3 +

Z s1

s2����

Z s2

s3+�

�22e
�2�2�ds4ds3

= �22e
�2�2�

�2 + (s2 � s1 � � )(2�� (s2 � s1 � � ))

2
: (E.1)

Hence, by similarly tedious calculations akin to those for (D.10):

lim
�!0

E[Ya(0; �)Ya(s; s+ �)]

�2
= �21�

2
2e
�2(�1+�2)�

�2 + (s� � )(2�� (s� � ))

2
: (E.2)

(0; �] (s; s+ �]

s1 s2

s1 � �

s2 � �� �

s2 � �

s1 + � Detector 1

Detector 2

Figure E.1: Graphic aid forE[Ya(0; �)Ya(s; s + �)jY1(0; �) = 1; Y1(s; s + �) = 1; T1;1 =

s1; T1;2 = s2]

And forE[Yb(0; �)Ya(s; s+ �)] (see Figure E.2):

E[Yb(0; �)Ya(s; s+ �)jY2(0; �) = 1; Y1(s; s+ �) = 1; T2;1 = s1; T1;2 = s2]

= E[Yb(0; �)jY2(0; �) = 1; T2;1 = s1] � E[Ya(s; s+ �)jY2(0; �) = 1;

Y1(s; s+ �) = 1; T2;1 = s1; T1;2 = s2]
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= �1�e
��1� �

Z s2

s1+�

P[N2(s3 � �; s1 + � ) = 0jT2;2 = s3]fT2;2(s3)ds3

= �1�e
��1� �

Z s2

s1+�

�2e
��2�ds3

= �(s2 � s1 � � )�1�2e
�(�1+�2)� : (E.3)

Hence by similar calculations made for (D.10) and (E.2):

lim
�!0

E[Yb(0; �)Ya(s; s+ �)]

�2
= �(s� � )�21�

2
2e
�(�1+�2)� : (E.4)

(0; �] (s; s+ �]

s1
s2s1 � �

s2 � �

s1 + �

Detector 1

Detector 2

Figure E.2: Graphic aid forE[Yb(0; �)Ya(s; s + �)jY2(0; �) = 1; Y1(s; s + �) = 1; T2;1 =

s1; T1;2 = s2]

Using symmetry and combining (E.2) and (E.4), we obtain when� < s < t+ �,

�(0; s) = �21�
2
2e
�(�1+�2)�(�2 + (s� � )(4�� s+ � )): (E.5)
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