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ABSTRACT

Statistical Methods for Transmission Image Reconstruction with Nonlocal

Edge-Preserving Regularization

by
Feng Yu

Chair: Jeffrey A Fessler

Tomographic image reconstruction using statistical methods can improve image quality
over the conventional filtered backprojection (FBP) method. The effectiveness of a statisti-
cal image reconstruction method depends on its three principal components: the statistical
measurement model, the regularization method, and the iterative algorithm for maximizing
the objective function. This dissertation contributes new methodology and/or analysis to
each of these three components, emphasizing PET and SPECT transmission scans, which
are essential for accurate attenuation correction in emission tomography.

The first part considers edge-preserving regularization. We propose an objective func-
tion that incorporatesonlocalboundary information. We use an alternating minimization
scheme with deterministic annealing to minimize our new objective function; we use vari-
ational techniques implemented using level sets to perform boundary extraction. We com-
pare the bias/variance tradeoff of this novel algorithm with a penalized likelihood (with
local Huber roughness penalty) algorithm.

The second part analyzes the effect of deadtime on the counting statistics of detectors.
We present a new way of analyzing the moments of the counting process for a counter
system affected by various models of deadtime related to PET and SPECT imaging. We

derive simple and exact expressions for the first and second moments of the number of



recorded events under various models, for both singles counting and coincidence counting.
From this analysis, we study the suitability of the Poisson statistical model assumed in most
statistical image reconstruction algorithms.

The third and final part considers the problem of reconstructing images for a certain
transmission imaging geometry, where the transmitted “beams” of photons overlap on
the detector, such that a detector element may record photons that originated in differ-
ent sources or source locations and thus traversed different paths through the object. We
propose a new algorithm for statistical image reconstruction of attenuation maps that ex-
plicitly accounts for overlapping beams in transmission scans. The algorithm is guaranteed
to monotonically increase the objective function at each iteration. The availability of this
algorithm enables the possibility of deliberately designing systems with increased beam

overlap so as to increase count rates.
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CHAPTER 1

Introduction/Contributions

In statistical image reconstructions for ECT (emission computed tomography), one
must consider the following three important aspects of the problem: the statistical model,
the regularization method, and the iterative maximization/minimization algorithm. An ac-
curate statistical model is a prerequisite for a good reconstruction. Secondly, the user usu-
ally has some priori information about the image to be reconstructed; this information
can be incorporated into the regularization method to produce “reasonable-looking” im-
ages. Finally, a good algorithm is necessary to ensure that a good reconstructed image can
be obtained in a tolerable amount of time.

An important physical factor one must consider when reconstructing emission maps is
the effect of attenuation. Transmission scans are usually performed to estimate the attenu-
ation parameters, which are then used to correct the emission scans for attenuation effects.

In the first part of our work (Chapter 3), we focus on the regularization problem in ECT
transmission reconstructions. Because this reconstruction problem is usually ill-posed, a
roughness penalty is imposed on the solution. Conventional penalty functions penalize
the differences between the values of neighboring pixels; the larger the difference, the
higher the penalty (one such penalty is the square of the difference, henceforth called the
“quadratic penalty”); thus this penalty encourages a globally smooth image. However, the
image in the transmission reconstruction problem is not always globally smooth. Instead,
it usually consists of smooth regions separated by sharper boundaries. The global rough-

ness penalty over-smoothes the edges. Thus vaeidgs-preservingenalties have been



proposed. The main idea behind these penalties is: large differences between values of
neighboring pixels are usually due to a sharp edge, while small differences are assumed to
be primarily due to noise. Thus these edge-preserving penalties penalize large differences
between neighboring pixels less severely than the quadratic penalty. But these schemes still
only rely on information fromlocal neighborhood to determine the existence of edges, not
using thenonlocalinformation that the image is made up of regions separated by smooth
boundaries. In this part of our work, we propose an objective function that incorporates
nonlocalboundary information into our regularization. We use an alternating minimiza-
tion scheme with deterministic annealing to minimize our new objective function. Because
of the nonconvexity of our objective function, we use deterministic annealing in the hope
that we will reach a “better” local minimum.

In the second part of our work (Chapters 4 and 5), we focus on the effect of dead-
time on the counting statistics of detectors. The consideration is especially important in
post-injection transmission scans for PET. Post-injection protocols for PET are more con-
venient for the patient than conventional PET protocols. However, one has to deal with the
contamination of the transmission scan with undesirable emission counts. Because of this
contamination, the singles rate will greatly increase under the post-injection protocol, thus
deadtime becomes an even more important issue. Since the singles rate is higher than in
the conventional protocols, the percentage of lost events will be higher, too. Traditional
methods of correcting for deadtime mainly use methods of momiemighe true counts
are estimated from the observed counts by solving the equation relating the mean of the
true counts and mean of the observed counts; the estimated true counts are then used to
reconstruct the image. From a statistical point of view, the estimated true counts are not
Poisson distributed, and using a Poisson likelihood in the reconstruction may be subopti-
mal. We propose a new approach for deriving the moments of the counting process, and
analyze how non-Poisson the counting process really is from its first and second moments.

In the third part of our work (Chapter 6), we design a reconstruction algorithm for
a source/detector configuration encountered in SPECT transmission scans. The system
configuration has several fixed-position collimated line sources opposing a parallel-beam

collimator. The main difficulty with such a configuration is that a photon registered by one



detector may originate from two or more sources, and there is no previous algorithm that
properly models this effect. We propose a statistical model that takes this into account, and
design a reconstruction algorithm for this model that is monotonic and convergent (to a
local minimum).

The original contributions made by this dissertation are summarized in the following.

e Proposed a novel nonlocal regularization method for ECT transmission scans, which

incorporates region and boundary information, and preserves edges.

e Proposed a new approach for deriving the moments of the counting process by real-

istic detectorsi.e., affected by deadtime.

e For single photon counting, derived exact and closed-form expressions for mean and

variance of the counting process affected by type Il or type Ill deadtime.

e For coincidence photon counting, derived exact (or approximate) and closed-form
expressions for mean and variance of the coincidence counting process, for both

ideal detectors and non-ideal (type Il deadtime) detectors.

¢ Analyzed the suitability of the commonly-assumed Poisson model for various types

of photon counting systems.

¢ Designed a reconstruction algorithm for a source/detector configuration where there

are several fixed-position collimated line sources.

¢ Analyzed the optimal collimation angle in such a system.

These contributions have been summarized in three manuscripts submitted for publication[93,

94, 95], which form the basis of this dissertation.



CHAPTER 2

Overview of PET Physics

Emission Computed Tomography (ECT) is a medical imaging technique that gives
functional information about physiological processes, as opposed to CT or MRI which usu-
ally give structural and anatomical information. In ECT, a radioactive compound (radio-
tracer) is injected into the body; this compound radio-labels certain substances, such as
glucose. After the radio-tracer has distributed throughout the body, an image that indicates
where the radio-tracer has distributed in higher or lower concentration can be made. In the
case of glucose, the result will be an image related to glucose metabolism. The most popu-
lar emission tomography techniques are Positron Emission Tomography (PET) and Single
Photon Emission Tomography (SPECT).

In PET, the radioisotope emits a positron which annihilates with an electron after travel-
ing up to a few millimeters. This annihilation event produces two 511 keV gamma photons
which travel at nearly80° from one another. If both these photons travel coplanar with
the coincidence detector ring that is around the body and both survive until reaching the
detectors, the sinogram bin corresponding to the line joining the two detectors (line of re-
sponse or LOR) is incremented. The detector circuits check for whether the two photons
have arrived within a coincidence window of a short duration

The detectors in most current PET cameras are made from blocks of large crystals
of BGO (bismuth-gernamate) coupled to a group of photo-multiplier tubes (PMTSs). The
detector efficiency for a detector pair is defined as the probability that a photon pair arriving

at the crystals actually get detected. This efficiency varies from detector to detector. For



example, detector efficiency is lower for a crystal located at the edge of a block, because the
probability that a photon will be scattered out of the block and go undetected is higher for
edge crystals. Furthermore, it takes some time (abqu#)20 process a photon detection,
during which any new events are not detected. The period is called “dead time”.

The measurements are usually organized in an array with the projection angles in the
vertical axis and the projection bins in the horizontal axis. This array is called the sinogram,
since a single pointin the original image approximately traces a sine wave in the projection

domain. Each sinogram bin corresponds to a line of response.

2.1 Attenuation, Scatter, and Randoms

At 511 keV, the photons suffer from two different interactions: photoelectron absorp-
tion and Compton scatter. Although absorption is very small at this energy, scattering
causes the photon not to arrive at its original destination. Most scattered photons are not
detected at all. Thus, these interactions affect the detection probability of annihilations;
this effect, called attenuation, is one of the most important physical factors to be corrected

for. The probability that a photon pair will survive along a LOR (survival probability) is:

a; = 6_ fLORi M<$)d$ (21)

Y

wherep(z) is the linear attenuation coefficient at 511 keV as a function of distance along
the line joining the two detectors; it is nearly 0 in the air. The attenuation correction factor
(ACF) is defined ad /«;. Since the survival probability is independent of the location of
annihilation along the LOR, the scan count for each LOR can be corrected (by multiplica-
tion) by the ACF.

Detected single photons (by detectors) are calagles Sometimes, however, one or
both of the annihilation photons can be Compton scattered and still be detected. These
events are called scattered events. They are false detections since the photon paths are not
collinear. Energy discrimination is used to reject some of these events, since scattered pho-
tons usually have less energy. But not all the scattered photons can be rejected. Figure 2.1a

illustrates a scattered event.



If two pairs of photons are emitted within the same coincidence window of duration
A, and one photon out of each pair is absorbed or scattered out of the plane, another type
of false detection occurs. This event, called a random event, along with scatter, will con-
tribute to measurement error. Figure 2.1b illustrates a random event. There is a relationship

between the singles rate and the randoms rate for a given pair of detectors:
R — 2A5152, (22)

whereR is the randoms ratey; and S, are the singles rate for each detector, anis the
coincidence window duration. (A random event is caused by two unrelated singles striking
two detectors in the same time interval.)

Randoms can be estimated by observing “delayed” coincidences over detectors: if two
single events detected by two elements of a detector pair are within neighboring coinci-
dence windows (e.g., they have been detected with a time differeRce)pthey are called
the delayed coincidences. Delayed coincidences can be caused only by randoms; neither
true annihilations nor scattered events can cause randoms because the difference in arrival
time is greater thar\. Since single event occurrences are uniformly distributed over time
in a PET scan, the number of delayed coincidences for a detector pair is an estimate of
the number of random events in that particular pair of detectors. The delayed coincidence
randoms estimates are usually smoothed in the sinogram domain, since randoms are known
to be almost constant no matter what object is in the FOV. In this work, we assume that the

mean number of randoms for every detector pair is known.

2.2 Transmission Scans in PET

For attenuation correction, an accurate estimate of the survival probahilitbeatten-
uation correction factors/«; needs to be made. Early methods of attenuation correction
employed simple geometric approximations to the attenuating medium (e.g., a uniform el-
lipse). While this approximation may be satisfactory in some cases, e.g., the brain, it is
not suitable for every case; one example is the thorax, where the two lungs inside the body

have very different attenuation coefficients than the soft tissue outside the lungs.



(@) (b)

Figure 2.1: (a) scatter. (b) random. Dashed line denotes the detected LOR.

Measured attenuation correction methods provide more accurate estimates of ACF’s.
Typically, a transmission scan using only external radioactive sources is done to measure
the ACF’s before the body is injected with the radio-tracer. For calibration purposes, an-
other transmission scan should be done when the patient is not in the scanner. This “blank
scan” can be made relatively noise free because long scanning times can be used.

The statistical model of the transmission scan is:

Y; ~ Poisson{b;a; + r;}, (2.3)

whereb; is the blank scan rate (deadtime corrected)s the background noise such as
randoms and scatters, angis the survival probability as given in (2.1). We can estimate

«;'s directly using:

&; = smooth (yi b_ ri) : (2.4)

Smoothing is done to reduce noise.

The ACF’s can also be calculated from an attenuation map reconstructed from the trans-
mission scan. Since we only have finite-dimensional measurements, it is only possible to
reconstruct finite-dimensional attenuation maps. Itis natural to represent this map in terms

of pixels. If we let;; be the attenuation coefficient of theh pixel, the statistical model



for the transmission scan is:
Y; ~ Poisson{b;e™ 29k 4 rit, (2.5)

by = e 29l (2.6)
whereY; is a random variable measuring the photon count ofttheay, andy,; is an entry
in the system matrixa. In matrix form, the statistical model is:

Yi ~ POiSSOH{bZ’G_[G“]i +r;}. (2.7)

We can use Taylor expansion to approximate the log-likelihood around thelpeiid
(1 is an initial estimate, e.g., an FBP reconstruction) to obtain the following quadratic log-

likelihood function which is easy to minimize [74]:

1
Lip; 1) = o'(Gu) + (1 = Gu) W(l = Gp), (2.8)
wherev; = (2 — 1)be™', andW = Diag[(1 — m)bie—’]. Or we can estimate

the ACF’s directly by maximizing the Poisson log-likelihood:
L) = yilog(be 190 ) — (bie7 G4 4y, (2.9)

A new efficient algorithm for maximizing this objective is given in [30, 31], and used for

the results in Chapters 3 and 6.

2.3 Emission Scan Model

After the transmission scan is done to measure the ACF’s (if we choose to do the trans-
mission scan), the body is injected with radio-tracer and the emission scan is done. The
statistical model for the emission scan is:

Y ~ Poisson{z aijN; + i}, (2.10)

J
wherer; is the background events (e.g., randoms and scatigfis)ihe emission measure-
ment of thesth ray, ands,;; = ¢;¢g;; IS an entry in the system matriX (c; is ray-dependent

calibration factors, such as previously mentioned detector efficigncis the probability
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that a detection is made on rayiven that a photon is emitted from pixgl. In matrix

form, the statistical model is:
Y; ~ Poisson{[A) + r].}. (2.11)

For the first part of this thesis (Chapter 3), however, we will not focus on the “like-
lihood” part of the problem (but rather, as we will discuss later, on the “regularization”
part). Thus we will simply usé.(f;y) (f represents the image or image parameters to be

estimatedy is the measurement) to denote the suitable likelihood in our objective.



CHAPTER 3

Edge-Preserving Tomographic Reconstruction With

Nonlocal Regularization

3.1 Maximum Penalized Likelihood Reconstruction with
Local Regularization

The problem of reconstructing an unknown imgg&om a measurement vectoris
usually ill-posed in the sense of Hadamard [5, 6]. Knowledge of the direct model is rarely
sufficient to determine a satisfactory solution. If we obtain the maximum likelihood es-
timate (MLE) of the image by maximizing the log-likelihood functidff;y), then the
resulting image is very noisy. Thus it is necessary to regularize the solution by imposing
a priori assumptions. One simple regularization method supposes that images are globally
smooth, and enforces a roughness penalty on the solution by adding a quadratic function
to the negative log-likelihood. Such a “penalized” likelihood objective function has the

following form:

O(f) = —L(f;y) +BV(S), (3.1)

where

V(f) = / NIGIE (32)
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is a measure of image roughnksBhe image estimate is obtained by:

] = argmin (f), (3.3)

where the minimization with regard tbis often restricted to the nonnegative values. The
function given in (3.2) is often unsatisfactory, due to the fact that many images are not
globally smooth. They have region boundaries across which the image values can vary
rapidly. The quadratic regularization in (3.2) causes edges to become blurred. In many
images, small differences between neighboring pixels are often due to noise, while large
differences are due to the presence of edges. This assumption has formed the basis for many
edge-preserving regularization schemes proposed in the literature. Although a few region-
based Baysian priors have been proposeg, [8], most edge-preserving regularization
methods rely on information fromocal neighborhood to determine the presence of edges.
One such scheme is to replace the quadratic penalty function in (3.2) with a non-
guadratic function) that increases less rapidly than the quadratic function for sufficiently

large arguments, such as the Huber function [39, 37]:

vin = v (3.4)

or V(f) = /¢<%>df+...+/¢<dfn>df, (3.5)
1?/2, [t] < §

where (1) = (3.6)

SIt| = 82/2, |t| > 6.

This functiorf increases linearly, instead of quadratically, for arguments largesthEmus

the objective function penalizes large differences between neighboring pixels less severely
than the quadratic penalty, while maintaining the same level of penalty for small differ-
ences. This property allows sharper edges in the reconstructed image. If the log-likelihood
is concave, then the objective function incorporating the regularization term given in (3.6)
will be globally convex, so it is usually possible to find a global minimum of the objective

function by using suitable iterative algorithms [39, 25, 16].

lIn practice, a discretized solution is usually implemented; an example of such an implementation is
V(f) = 22; >on wik(fi — fr)* wherew;y, is nonzero only for neighboring pixelg7 is a shorthand for
dzq . ..dz,, wheren is the dimension of the “image”.

2We observe that'( f) described by (3.4) is rotationally invariant, whilg f) described by (3.5) is not.
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One could also use a nonconvex penalty function, such as the broken-parabola function
used by Leeet al [60, 47, 59]:
1, yt? <a
o(t) = (3.7)

a, At > a.

The broken-parabolafunction makes the objective function non-convex and non-differentiable,
thereby ruling out gradient-based descent methods. Instead, a deterministic annealing al-
gorithm is proposed in [60], so that a series of objective functions using differénas

the penalty function are minimized:
1 —yet? —Yya
oy(t) = —;log(e T e ). (3.8)

This ¢., function resembles a quadratic function wheis small; it approaches the broken-
parabola function as — oo. Thus the minimization of a nonconvex nondifferentiable
objective function is transformed into a series of minimizations of nonconvex but differen-
tiable objective functions, during whichis increased for each minimization, so that the
final penalty function is close to the broken-parabola. During each minimization over a
certain~, auxiliary variables that represent the local strength of an edge are introduced.
The minimization method alternates between updating these auxiliary variables and updat-
ing pixel intensities. This approach also uses information fromlabel neighborhood.
Figure 3.1 compares the quadratic, Huber, and the broken-parabola function.

Both edge-preserving method., replacing the quadratic penalty function with the
Huber function or the broken-parabola function, modify the local penalty fun¢tmmthat
it will penalize large differences between neighboring pixels less than the quadratic penalty.
A related approach to these methods is the “total variation” method, where one attempts to
remove noise from an image by solving a nonlinear minimization problem involving a total
variation criterion[27, 28, 85]. All the approaches reviewed above rely on information from
local neighborhood to determine the presence of an edge locally. This chapter describes a
method for includinghonlocalinformation into the regularization method, thus hopefully
achieving better results under certain cases. In the specific case of emission computed to-

mography, accurate attenuation correction is usually necessary for a satisfactory emission
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Figure 3.1: A comparison of quadratic, Huber, and the broken-parabola penalty function

reconstruction[51]. Accurate attenuation correction requires an accurate map of attenua-
tion coefficients. A PET attenuation map consists of a small number of regienkings,

spine, body tissue, etc. The attenuation coefficients within each region are fairly uniform,
but they vary a great deal between neighboring regions and the transition between regions
can be fairly rapide.g, across a few pixels. A regularization method that incorporates
this additional prior information should be able to outperform a puoagl regularization
method. In this chapter, we propose a new objective function for image reconstruction that
incorporates boundary and region information into its regularization. Section 3.3 describes
our new reconstruction algorithm; Section 3.5 compares the proposed algorithm to a “con-
ventional” statistical reconstruction algorithm and FBP; Section 3.7 summarizes the results

and outlines possible future work.
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3.2 Image Segmentation Techniques

Our new regularization approach to image reconstruction exploits boundary and region
information. The ideas we use are derived from the image segmentation community. We
will now review a few image segmentation techniques, and present an attractive imple-
mentation technique for certain snake models called the “level set technique”. Finally in
this section, we will review a few transmission attenuation map segmentation techniques.
Please note that our goal is to incorporate segmentation techniques into our reconstruction

problem, rather than a 2-step method of “first reconstruct then segment”.

3.2.1 General Techniques

Image segmentation is a critical problem of early vision and it has been extensively

studied. Approaches to image segmentation can be roughly divided into four types:

1. Local Filtering approaches such as the Canny edge detector [11].

2. Boundary models, such as Snakes [53] and Balloon methods [20];
also parametric models such as used in [83, 80]

3. Region growing techniques [2].

4. Global optimization approaches (for labels) based on some criteria, such as
Bayesian or Minimum Description Length (MDL)[7, 46, 45, 58].

Local Filtering Techniques

Usually local filtering approaches do not have a criteria which is to be minimized by the
method. Since in our case, we do not have an image to start with, it is very difficult to incor-
porate a local filtering technique into our method. Furthermore, local filtering techniques
usually only consider local information, thus it would not suit our objective of incorporat-
ing nonlocal information into the regularization. Thus we will not consider local filtering

techniques.
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Boundary Models

These methods can be divided into two broad categories: parametric and non-parametric.

Staibet al [80] uses the Fourier basis to describe the boundary curve:

x(t) _ | @ N zn: ay by, cos kt (3.9)

y(t) Co =1 | Ck dg sin kt
One drawback of this approach is that the initialization must be fairly close to the actual
boundary; furthermore, changing any one parameter in the representation affects the global
shape of the boundary. Titus [83] used B-Splines to represent the boundary curve radially
relative to a fixed center point. The number of knots in the curve in faxpdori. Then
estimating the boundary is turned into a problem of estimating the parameters describing
the spline function. This approach can achieve a good local fit for shapes whose behavior
in one region is not necessarily related to their behavior everywhere else. The drawback in
both these two parametric approaches is that the number of parameters must be decided in
advance and calculating the derivatives of the objective function with regard to these pa-
rameters (so that a gradient descent method can be used to minimize the objective function)
is very cumbersome. Also, depending on the choice of parameterization, the shape of the
object may be restricted.

The non-parametric approach to the boundary model simply deals with boundary curve

directly. One of the most popular non-parametric approaches is the snake model [53]. A

snake is an active contour defined by the parametric mapping

I'(p) = (z(p),y(p)), (3.10)

wherep € [0, 1] parameterizes the contodr(0) = I'(1), and all derivatives match at
0 and 1. Instead of considering a single curve, we consider a smooth family of closed
curvesl'(p,t) = (x(p,t),y(p,t)) wheret parameterizes the family andthe given curve,

p € [0,1]. Atypical energy for a snake is:
el
B ] = [ (Glally + 510, = A1) . 311)
0

wherel',(p, t) 2 (2p(p, 1), yp(p,1)). To find the curve that minimizes this energy, one can

perform steepest descent (in the sense that the snake evolves in the direction that decreases
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the energy most rapidlye., in the direction of the negative functional derivatéafe):

or  SE
ot (- t)

In computer implementation, an approximation to the derivatives is made and a finite time

= —al,, + BT, + AV|VI]2. (3.12)

step (At) is taken:

D(-t+At) = T(- 1) — %At. (3.13)

For the classical snake model to work satisfactorily, the initial snake must be fairly close to
the actual boundary, as the only force pushing the snake to the boundary is the third term,
AV|V1]?, which is only effective near the boundary. To increase the “capture range” of
snake models, the balloon models introduce an additional foxcé- is a constant) which
pushes the contour out in the normal direction (no matter where the contour is). This is
not very satisfying since even if the contour has reached the true boundary, the force acting
on the contour will not go to zero; so if the additional force is not carefully controlled, the
curve may expand indefinitely. A more satisfying way of increasing the capture range is
proposed in [86]; in their work, rather than a constant force, a spatially variant “gradient
vector flow” field is generated from the image; then the contour is put under the influence
of this force and the internal forces which aim to keep the contour smooth. This snake
model has a fairly large capture range and does not expand out uncontrollably (unlike if a

constant expansion force is added) after it reaches the true boundary.

Region Growing Techniques

The goal of snake models is to find closed boundary contours; in contrast, the goal
of the region growing (merging) is to divide the imag@ento, say M, of regions, so that
O =UM R, RN R; =0if i £ j, and eachi; satisfies a homogeneity criterion. Region
merging builds up complicated regions by combining smaller regions using a statistical
similarity test,e.g, Fisher’s test. If there are two adjacent regidisand R, wheren;,
na, fi1, fi2, 61, andé; are the sizes, sample means, and sample variancBs and R,
respectively. Then, to decide whether or not to merge them, the squared Fisher distance is
evaluated:

(n1 + n2) (/i —2/562)2 _ et

N N N N )
nlaf + nqoog nlaf + nzag

(3.14)
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wheren = n; + n, ands? is the sample variance of the mixture region. If this statistic is
below a certain threshold then the regions are merged. Region growing can be seen as a
special case of region merging, whetgis a region and; is a single pixel at the boundary

of R;. Although region growing algorithms are very intuitive, it is rarely know what, if any,
global cost function they are minimizing, let alone whether the algorithm converges to the
minimum of such a global cost function, and the resulting regions often end up with jagged
boundaries.

Both Bayes and MDL specify ways for segmenting images using global cost function
criteria. They have different motivations but are actually equivalent to each other, in the
sense that one can be transformed to the other. Under the Bayes approach, the observed
image is modeled as a degraded version of an ideal image assumed to be piecewise smooth.

For example, Mumford and Blake use the following criteria:

E[f.T] :,,L//Q(f— J)dedym//_r IV f|dxdy + v|T), (3.15)

wherel! is the input imagef is the output image, and labels the discontinuities. Leclerc
suggests that segmenting the images according to the above Baysian model should be
equivalent to obtaining its minimum description length in terms of a previously specified
description language. A typical MDL criterion occurs in (3.16); it differs from (3.15) by
letting theo’s be unknown variables which are assumed to be constant within each region.

It is usually very difficult to minimize this type of energy functional; algorithms such as
simulated annealing, graduated nonconvexity, and deterministic annealing are sometimes

successful.

Global Optimization Approaches

All these approaches have their advantages and disadvantages. The filtering approach
only takes into account local information and cannot guarantee closed edge contours. Snake
models only make use of information along the boundary and require good initialization (or
adding ballooning force) to yield satisfactory results. Region growing techniques take into
account region information, but the boundaries they generate are often not smooth. Global

optimization techniques impose a global criterion for segmenting the image, but it is often
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difficult and time-consuming to find their minima.
In [96], the region competition algorithm was presented. Region competition minimizes
the following generalized Bayes/MDL criterion using the variational principle:

El' {a;}] = Z (g /51% ds —log P({I(zy) : (2,y) € Ri}|ey) + )\> ) (3.16)

=1
where the first term is the length of the boundary curve for regigrthe second term is

the sum of the cost for coding the intensity of every pixely) inside regionR; according

to a distributionP({ /., : (z,y) € R:}|a;); A is the code length needed to describe the
distribution and code system for regid. They employed alternating minimization: with
I" fixed,

&; = arg min (— // log P(ai|[($7y))d:1;dy> : (3.17)
Qg Rl
With «;’s fixed, they employed steepest descent (for any poiat(x, y)):
i SE[T, {o}] p o ’
E = —T = ke%(:_‘) <—§lik(g)/\/k(g) —|— 10g P([U|ak)Nk(U)> 5 (318)

whereQ(v) = {k|vliesonl';}, i.e, the summation is done over those regidtsfor
whichv'is onl';. Itturns out there is a simple intuitive interpretation for the above equation:
the first term maintains the smoothness of the contour; the second term is the statistic force,
f =log P([|oz)./\7; this force always tries to compress the region, and the better thegpoint
satisfies the homogeneity requirement the weaker the statistic force; hence the neighboring
regions compete to get the points along its common boundary. The region competition
algorithm combines some of the most attractive aspects of snakes, region growing, and
global cost function approaches. The segmentation is parameterized in terms of boundaries,
but the energy function also takes into account region information. This technique is also
not very time-consuming (in the sense that the number of parameters is otlynof

rather tharO(r?) if we assign every pixel a label, and minimize a cost function dependent

on these labels).

3.2.2 Level Set Approach to Front Propagation

Now we describe the level set implementation technique for active contours. This ap-

proach has many advantages when compared to traditional snake implementations; we
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use this implementation throughout our work. The traditional approach to the problem
of a closed curve (snakes§)(s,t), moving in the plane along its normal vector field with
curvature-dependent speed, is to take the equations describing the motion for the posi-
tion vectorC'(s, t), and then discretize the parameterization with a set of discrete marker
particles lying on the moving front. These discrete markers are updated in time by approxi-
mating the spatial derivatives in the equations of motion, thereby advancing their positions.
This approach has several problems [76]. First, small errors in the computed particle po-
sitions are tremendously amplified by the curvature term, leading to instability unless an
extremely small time step is employed. Second, topological changes are difficult to manage
when the evolving interface breaks or merges. Third, extension of this technique to three
dimensions is difficult.

The level set technique was proposed by Osher and Sethian [72, 77] to deal with these
problems; in the level set technique, the evolving froiit) (a function of time) is repre-
sented as the level s = 0} of a functionV¥ (called the hypersurface in this setting); the
main idea is to embed a 1-D curve in a 2-D function. Thus given an initial closed contour
Ci=o(p) = (z(p), y(p))T in R* where0 < p < 1, the function¥ at¢ = 0 will be:

0, if (x,y)isonC
U(x,y,t=0)= (3.19)
d, otherwise
whered is the closest distance to initial levebf ¥ (it can be some other function ¢f, y),
and the plus (minus) sign is chosen if the pdinty) outside (inside) leved). Hence we

have the initial functionV(z,y, ¢ = 0) : R* — R with the property that

Cizo(p) = ((2(p), y())" [W(x(p), y(p),t = 0) = 0). (3.20)
Figure 3.2 illustrates an expanding circle and its level set representation.

A relationship must be established between evolution of the cordtoamd evolution
of the functionV, so thatvt > 0,Ci(p) = ((z(p),y(p)T|¥(x(p),y(p),t) = 0). Let
C(p,t) : S* x [0,00) — R? be a family of curve’satisfying the following (curvature-
dependent) evolution equation:

ocC -

%In three dimensiong,(p, t) : S? x [0, o0) — R denotes a family of surfaces; refer to [64, 90] for more
details.
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(@)

(b)

Figure 3.2: Level set formulation of equation of motion. (a) shows the clre¢t = 0

and its level set representation. (b) shows the cutyafter expanding, at= r.
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The equation that evolves the functi@nso that the contout’ is always the zero level set

of ¥ must satisfy:

U(C(t),t)=0. (3.22)
By the chain rule,
U, + VU(C(t),t)- C'(t) = 0. (3.23)
If v is the speed in the inward normal direction, th@fit) - N = 1 where N = —
and this yields the evolution equation fér
U, = v(r)|[|VY| (3.24)

The curvature can be calculated directly from functioosing the following formula [68]:

: Vv
k = div (W) . (3.25)

There are several advantages in this formulation. The first is that the evolving function
always remains a function even if the contaéuchanges topology, breaks, or merges. The
second is tha¥ can be approximated using a discrete grid; finite difference approximation
can be made to calculate the derivatives. Itis also easy to determine the embedded contour
from the level setl. Finally, going to three or higher dimensions requires no significant
change. Because of these advantages, the level set approach, since its introduction, has

been used in a wide collection of problems involving evolving interfaces.

3.2.3 Shape Recovery with Front Propagation

Malladi et al [64] proposed an application of the front propagation using the level set
approach to the problem of shape recovery. A constant inflation (or deflation)Herm
is added to the curvature-dependent speed term, and an image-dependent speed function

o(x,y)is also incorporated; the equation describing the evolution of the level set becomes:

ov ) VAl
o= otwivel (v (Zo) + Fa). (3.26)

The constanty, is added to keep the curve moving in the proper direction (either expanding

with a negativefy or shrinking with a positivey). The image-dependent speed function
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o(x,y) is defined in a way such that it has very small magnitude in the vicinity of an edge
and so acts to stop the evolution when the contour gets close to an edge. The following

speed function can be used:

1
_ _ VG| 27
0=17 VG, 1" p=e ’ (3:27)

where(,, is a Gaussian smoothing filter which is used to smooth out noise. Both of these
definitions makep close to0 if the magnitude of the local gradient is large, and close to

1 if the magnitude of the local gradient is close to zero. Thus the initial curve will shrink
or expand until it meets a boundary of the image. Figure 3.3 shows a noisy image and its

corresponding function.

10 ] [} "
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50k _
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10 20 3 40 50 60
(@) (b)

Figure 3.3: (a) noisy image. (b) its correspondinfunction.

The image-dependent speed term only describes the speed of the evolving.eyrve,
the level0 of the hypersurface; it does not describe the motion of other levels of the hy-
persurface, thus it has no meaning on other levels. How&ves,defined over the entire
hypersurface, thus the speed term on nonzero levels must be defined, in order to evolve
the level set according to (3.26). The image-dependent speed fundsaxtendedrom
level 0 to all other levels in the following manner: Iétat a pointP lying on a level set

{¥ = C} be the value of at a point), such that) is the closest t& and lies on the level
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Figure 3.4: (a) extension of the speed term. (b) gray area is the narrow band constructed

around the black contour.

set{¥ = 0}. This extension of the image-dependent speed term has the important property
that the level sets evolving under such a speed term will not collide. This is, however, an
expensive operation @b( N?) (if there areN x N pixels in the image), because a search
for the smallest distance to levémust be carried out for every pixel in the hypersurface.
Figure 3.4a illustrates the extension of the speed term.

To save time, the “narrow-band” extension can be used [1]. Instead of extending the
image-dependent speed function to the entire hypersurface, only extension to a band around
level 0 is performed. Once the front is about to expand or shrink out of this band, a new
band is constructed around the new front, and the new band is used until the new front is
about to get out of this band. This requires re-initialization of the band and the hypersurface
every certain number of iterations. In this re-initialization, a search for the smallest distance
to level0 is performed, and those that are within a certain threshold are made into the new
band. Figure 3.4b illustrates the narrow band approach.

Every time an extension of the speed term is performed, (ewelst first be re-acquired.

This is not trivial since after a few iterations, there will be no values on the hypersurface
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exactly equal t@. Thus a contour must be extractécbm hypersurface.

This method of shape recovery works well. Figure 3.5 and 3.6 show successful bound-
ary extraction of two images. One major disadvantage is that it still requires a small time
step, because a large time step will risk the contour expand out of (or into) the actual bound-
ary. Once that happens, it will keep expanding uncontrollably. This problem is remedied

in the work done by Yezzt al described in the next subsection.

4We use Matlab’s contour program to extract a discrete version of the level-0 cervihe output of the
contour program consists of samples of the continuous curve.
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Figure 3.5: Boundary detection of an ellipse. Black contour indicates the propagating front.
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Figure 3.6: Boundary detection of 2 objects with one initial contour
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3.2.4 Shape Recovery Using Energy Minimization

Yezzi et al [90] proposed an improvement to the above approach by modifying the

length functional fromi.(¢) = [ ||2¢ = ||dp to:

Yoc
L0 = [ |5 o (3.29)

whereg is the image-dependent speed function as defined in (3.27). This new length func-
tional is the “shortest” when the contour lies right on the boundary of an object where
the magnitude of local gradient is very large and consequently the image-dependent speed
function is very close to 0. Thus whéeh,(¢) is minimized, the contour is on the boundary

of the object. Figure 3.7 shows the same contour will result in different lengths measured

by this new length functional.

Taking first variation of the usual length functional) = fo = Hdp, we have:
Ly
—L'(t) = / <ac wNYds (3.29)
o Ot’
Hence the direction in whicl(¢) is decreasing most rapidly is when
aC .
o rN. (3.30)

A simple closed curve converges to “round” points when evolved according to (3.30) with-
out developing singularities [48]. Applying the same technique to the new length functional

and taking first variation of (3.28), and using integration by parts:

—Li(t) = /0 <aC, N = (Vo - NN )ds, (3.31)
which means that the direction in which thg perimeter is shrinking as fast as possible is
given by:

66(; (¢ — Vor- N) (3.32)

This is the gradient flow corresponding to the minimization of the length functibpal
The level set implementation of this flow can be obtained using the same technique outlined
in (3.22), (3.23), and (3.24):

ov

VA4
o = otalvela (S

Vo - VVU. 3.33
HVWO+ ¢ (3:33)
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Figure 3.7: the contour is (a) on the boundary (c) not on the boundary; background is the

speed function. (b) (dp function on the contour. In (d) function is 1 at most places.

In actual implementation, a constant inflation tefis added (proposed by Malladt al

in [64]), making the level set implementation:

ov VU

o = otV (div (ogr ) + ) + 9 V. (3:34)

This modified level set approach has all the advantages of Malladi [64], but has the

added benefit of being able to tolerate a larger time step. Eoaisadefined in (3.27)y ¢
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will look like a “doublet” near an edge. It attracts the evolving contour as it approaches an
edge, and pushes it back if it should pass the edge [54]. Thus a larger time step can be used.
Furthermore, when the contour rests on the edge, the energy functional (3.28) is actually

minimized.

3.2.5 Segmentation Techniques for PET Attenuation Correction

Instead of using a reconstructed attenuation map for PET attenuation correction, many
authors have proposed applying various segmentation techniques to the reconstructed at-
tenuation map, then assigning some (often constant) values to each region.

Xu et al [87] segmented the transmission image into anatomic regions by first calcu-
lating the threshold between regions using the histogram of the attenuation values; then
the image is segmented using these thresholds into different regions; every pixel in every
region is then assigned the average attenuation values within that region. Bteak[66]
used a more sophisticated method of thresholding for thorax transmission images: first,
the histogram obtained from a reconstruction with no smoothing at all (but after median-
filtering) is used to fit three Gaussian PDF’s (corresponding to lung, air and soft tissue);

then every pixel's new value is calculated using:

, 1

p = N(umemm + fitang P (Hrungl1t) + pse P(sel ) ), (3.35)

where

N = P(paiclpe) + P(punglre) + Plpeselp)- (3.36)

So a continuous range @fvalues is possible in the “segmented” image. Then a median
filter is applied to the “segmented” image.

Instead of reconstructing the attenuation map then segmenting this map, some authors
have proposed calculating directly the boundaries from projection data. Tomitani [84] used
this approach to find the boundary of the human skull. First, the boundary contours on
the projection data is estimated by thresholding the sinogram; these contours are often
jagged, thus only the lower order Fourier coefficients of the contours are retained; finally

the boundary contours are transformed into the image domain. Although this approach
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is only applied to human skull transmission images, it may also be possible to use this
approach for the thorax.

Instead of first reconstructing the image and then segmenting the reconstructed image,
Fessler [36] presented a “unified reconstruction/segmentation method” based on a penal-
ized weighted least-squares objective function. But the parameterization is disergte,
there are only a discrete set of possible attenuation coefficients (the lungs, soft tissue, bone,
etc.). Even though this method minimizes a single objective, the parameters are still dis-
crete, and the different pixels within a “region” cannot take on different values. This is not
the case for lungs. Furthermore, this method also relies only on local information.

Most of these segmentation techniques impose a constant value on a certain region,
which is not true under certain casesg, the lung region usually does not have uniform
attenuation coefficients and different patients have different attenuation coefficients in this
region. Most of these approaches assign a constant number to a certain region, while the
others assign some number decided using satneocformula to every pixel, so that the
attenuation coefficients have a continuous range. We will apply our new nonlocal regular-
ization approach to this problem, so that we take into account boundary information while

still estimating the attenuation coefficient at every point directly from the projection data.
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3.3 A New Approach to Edge-Preserving Regularization

3.3.1 A New Objective Function

Our development of the new objective function was motivated by the specific applica-
tion of PET and SPECT transmission tomography, but its use is not restricted to attenuation
map reconstructions. We assume that the actual object to be reconstructed is everywhere
differentiable (and thus continuous). We also assume that the object consists of regions
that are piecewise smooth everywhere except very close to the region boundaries where
the object intensity changes rapidly but continuously to values in its neighboring region(s).
Thus an edge-preserving penalty function should penalize local gradients that are within
each region more than local gradients that are very close to a boundary. Furthermore, we
assume that the boundaries separating the regions are smooth. Figure 3.8 shows an exam-
ple object (representative of an attenuation map of a thorax image at 511 KeV) and one
of its vertical profiles. This object is piecewise smooth, but not piecewise constant, due to

variations in lung density.

0.1

0.09

0.07

0.06

0.05

0.04

0.03

0.02

0.01

ZIO 4IO GIO 8I0 l(I)O 120
(@) (b)

Figure 3.8: (a) Phantom (b) A profile of the phantom: row 60.

Like (3.1), the objective function we propose also consists of a data-fit term and a

penalty term. However, our penalty considers not only the image values but also the char-
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acteristics of region boundaries within the image. Following the convention in PDE-based
image analysis literature, we present a non-discretized formulationf Hehote the ob-
ject, I'y € G denote theith boundary curve, anfl denote the domain of the image. Let
R,.(I') C R? denote thenth regiort, where eachiz,, does not include its boundary, hence
they are open sets. The regions are separated by boundary Eumwbsrel' = UL T,
We assume that the number of boundary curkes fixed (and knowra priori) and that
the boundary curves do not touch each other, I'y, N T'y, = 0 if k&, # ky, which is
reasonable for transmission tomography. Hence the number of regidhsisi” + 1 and
Ry N Ry, = 00f my # mo.

We propose the following objective function of the obj¢and the boundarids [92]:

J(f.T) = —/yL(f;y)JrV(f,F) (3.37)
V(L.T) = i[ﬁJz(f,k,F)le(rk) (3.38)
J(fTx) = /; kds (3.39)
Jo(f, R, T) = /Q hi(64(Z, D))|V f(Z)|2dZ. (3.40)

The first term—L( f; y) is the negative log-likelihood that measures the “faithfulness”
of the reconstructed object to the measured data. The frekrds penalizes the length of
the boundary, so that the boundary curves remain smooth. Thefgrfirk, '), which is
rotationally invariant, penalizes local gradients inside each region more than local gradients
close to the boundary; : R? x G¥ — R is the signed distance afto I if the closest point
onl to Z lies onl';, otherwise, the function is zero (hence all locatianshered,(z,I')
is nonzero are necessarily in the two regions that are separatég.byhe functioniy, :
R — [0, 1] maps small arguments to values near zero and larger arguments to values near
unity. For simplicity, we only usé,’s that belong taC"*(—oc, +o0). The.J, term has
a similar effect on the reconstructed image as the penalty described by Eqn (3.5); but in
J2, how much the local gradients at a specific location is penalized is decided by where
this location is with regard to the boundary, hence the penalty is “nonlocal”. An example

of h; is shown in Figure 3.9. Figure 3.9a shows a one-dimensional object. Figure 3.9b

SWe present our model in 2D, but extension to 3D should be straightforward.
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@ (b)

©

Figure 3.9: (a) Example of a 1-D object (b) Signed distance to the boundary (c) One possi-

ble ~ function.

shows the signed distance to the boundary, in this case, the boundary points-are at
and+3. Figure 3.9c illustrates the type affunction we may want to use; the value of
hi(6x(+)) is 1 well inside each region, but gradually decreases close to the boundary. This
approach allows larger gradients in the reconstructed object close to the boundary. In two
dimensions (or three dimensions), the valué ab.(-)) at every point is determined by the
signed distance between the point and the boundary curves.

The weighting parameters, 1, and the function; must be chosen carefully to avoid
over-smoothing of the reconstructed image or the boundary curves. If we know certain
regions are more nonuniform than other regiang, the lungs in PET transmission scans,
then we should design the correspondiné such that the local gradients are less penal-
ized in the lung regions. What function one uses.g, how “wide” the non-unity part
of h is, depends on the degree of certainty in the accuracy of boundary extraction; see
Section 3.3.5 for more details on how one chooses:thenction. Furthermore, the curve
length term (3.39), which acts to keep the boundary smooth, will cause a shorter curve to
be favored against a longer curve even though the region roughness pg&niadigefully

keeps this force in check. Nevertheless, the associated paranstteuld always be small
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to avoid excess shrinking of the boundary curve.

3.3.2 An Alternating Minimization Scheme

We use alternating minimization to jointly minimize the objective function given in (3.37)
over f andl’, i.e, we first holdf constant and minimizé with regard tol’, then using
the most recent estimate Bf we minimize® with regard tof; we alternate between these
two steps until convergence. Wh¢ns fixed, the second and third terms depend’okiVe

must minimize the following objective:

K

Jr) = Z(wf,k,r)w / ds) (3.41)
k=1 Lk
et = argrr%injfn(F), (3.42)

where.J; was defined in (3.40). As is common in PDE-based image analysis, we perform
steepest descent with respecttoFor any point’ = (x, y) on the boundary' we evolve
that point according to the following differential equation:

do_ 0J4(I)
dt §v

(3.43)

where the right-hand side is the negative functional derivative of the objective. Since it is
difficult to analytically derive the functional derivatives @f, we evaluate its functional
derivatives numerically. The functional derivative .6f must point in the normal direc-

tion of the curve, as any movement in the tangential direction would not change the curve.
We use a scheme similar to the central difference method for evaluating local derivatives.
(Central differences are usually accurate to a higher order than one-sided differences.) For a
given pointj, on the contour’, we define a function which is zero except in the neighbor-
hood ofp, and for whichl'+ = differs fromI” only in the normal direction. (We can imagine
some force being exerted on the curve; this force is nonzero only in the neighborh&od of

if we exert this force in the normal direction of the curvepgffor an infinitesimal period

of time, then we will have a small perturbation of the curvgyan the normal direction).

Using this idea, we approximate the functional derivativedgt") atv = p, as follows:

% N lJz(F—I—Z)—Jg(F—Z)
562 Ao

(3.44)
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B % (JQ(F + Z)a_ J(I) ol = Z)a_ JQ(F)> (3.45)
2 %(ul — uy), (3.46)

whereAo is the area lying between the curbeand the perturbed cunié+ = [44].

Forthe lasttermin/;(I'), the direction in which the curve length decreases most rapidly

is when [90]:
aa_z = kN, (3.47)

i.e, the speed of the evolution at any point is the curvature of the boundary at that point,
and the curve evolves in the inward normal direction. Combining (3.43), (3.45), and (3.47),
we evolve the boundary using the level set method[64, 90, 54] according to the following:

‘;—f = —(pk + g(ul —uy))N. (3.48)
Evolving the curve according to (3.48) yields a curve that approximately minindizese
call this step the “boundary estimation” step.

The force exerted by, in (3.41) is nearly zero in smooth regions, and is only signif-
icant close to the actual boundary where local gradients are large. Figure 3.10 illustrates
this property in one dimension. Let denote the derivative of in the = direction; let
I', denote the old boundary at 0.3 ahig denote the new boundary at 0.35. Moving the
boundaryl” from 0.3 to 0.35 would change(d(-,T')) from A(6(-, T',)) to A(6(-, ), i.e,
the “valley” of h(4(-,I')) is moved from 0.3 to 0.35, but the change in the roughness penalty,
i.e, [(h(d(z,I'n)) — h(é(z,T)))|f'|dz, would be very small. Thus evolution according
to (3.48) alone would require a fairly close initialization to the actual boundary. As dis-
cussed near (3.55) below, we circumvent this problem by using the initialization procedure
for the boundary that employs another force (from a global measure) which ensures that
the boundary moves no matter where the contour is.

For the second stage of the minimization, we hblfixed at its previous estimate®
and minimize with regard tg. WhenT' is held fixed, the relevant terms in the objective

function (3.37) are the following:

K
Jo(f) = =L(fiy)+ 8 D(f kD) (3.49)

k=1
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Figure 3.10: Plot of change i, when the “curve” is very far from the actual boundary

BEET) = [ h(5(3.0))|V F(3) 2. (3.50)
Q

Hence we minimize/r-( f) with regard tof as follows:

[t = arg min Jra(f). (3.51)

When updating the boundary using (3.42), tHenction in./, pushes the boundary toward
image locations where the gradient is large; when updating the objectigng (3.51),

the i function imposes a space-varying weighting of the penalty on local gradients. This
weighting depends on the signed distance from each pixel to the nearest estimated bound-
ary. Every term in (3.49) is quadratic jiy except possibly the log-likelihood term, which
involves logarithms in the case of Poisson measurements. Therefore, the minimization
problem (3.51) is a standard penalized likelihood problem, and we can minifniaeer

f using methods such as the conjugate gradient method [73, 41] (if quadratic) or the
paraboloid surrogates/coordinate ascent method (if not) [30].

We iteratively alternate between the two steps (3.42) and (3.51). Both these two steps

will, under ideal circumstanc&smonotonically decrease the objective as defined in (3.37).

In addition, the objective is bounded below, so the algorithm will presumably converge
toward a local minimum.

SUnder realistic circumstances, wheteis taken to be finite, the minimization of (3.41) according to

a discretized version of (3.43) may not be exactly monotonic. Such effects are inevitable when continuous
formulations are discretized.
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3.3.3 Discretization

We discretize the imag¢ using the usual square grid. We discretize the level sets,
which embed the boundary curves, into a square grid using the same sampling grid as the
image. However, the sampling spacing of the boundary curve itself may be finer than the
image pixel spacing. Equation (3.48) describes the evolution of the boundary. The first
term is the smoothing term which is independent of the image; its implementation using
the level set method is as described in [64]. In addition to smoothing term, the evolution of
the boundary is determined by the functional derivatives,of

To implement the approximation described in (3.48), we observe that for ajpaomt
the boundary curve to be the closest to a pginin the image, the line connecting and
p1 must be perpendicular to the tangent line of the boundary curye(aee Figure 3.11).

Thus if we make a small enough perturbation of the boundary curve in a neighborhood of
p1, the only points in the image that are possibly affected by this change of the boundary
curve (in terms of their distances to the curve) will be restricted to a narrow band perpen-
dicular to the boundary curve (see Figure 3.12). Since this band can be made arbitrarily
narrow by making the boundary curve perturbation small enough, we can make the ap-
proximation that the image values remain constant in the lateral direction of the band and
evaluate the functional derivative @f using equally spaced points on the line perpendicu-
lar to the boundary curve at; we use bi-cubic interpolation from the neighboring points
[73] whereV f is not available. At every time step of the evolution of the boundary curve,
we also keep a record of which point on the boundary each image point is closest to. When
we evaluate the functional derivative &f at a pointy;, we make the approximation that a
very small movement in the curve@atwill not cause any image point that is not closest to

p1 previously to be closest 1@ after the movement of the boundary curve, hence we only
need to evaluate the change/non those points that are already closesi;tdn total, the
evaluation of the functional derivative of, is anO(n) operation, where the image is of
sizen x n.

Using these ideas, we arrived at the following conjecture for the expression of the func-
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Figure 3.11:p; is the closest point tg, on the curve.

tional derivative of/,:

5. , -
5_172 = (/(hk 0 d) (T)|Vf(l(r))|2[(1(,,)7pk)(7“)d7“> N, (3.52)

l
wherel(r) denotes the line perpendicular to the boundary cuivet the points (I is
parameterized by such that- increases in the same direction as the outward normal vector
of I'; atv), (hy o §;)’ denotes the derivative of the functiohy o d;) with regard to its first

parameter, and;. r,) is an indicator function:

1 disthe closest pointifh to/(r)
Ly ry(r) = _ (3.53)
0 otherwise.

A proof of this conjecture has been elusive. The difficulty mainly lies determining the size
of “critical points” with regard to a closed curvee. whether it has Lebesgue measure 0;
we define a critical point is to be a pointRY that has more than one closest point on the
curvel'. In Figure 3.13, the solid line denotes the curvand the dotted line denotes the set
of critical points. With this simple shape, the set of critical points on the line perpendicular
to every point has Lebesgue measure ®RinBut for a more complex shape, the author
does not know how the set of critical points will behave. FEhseighborhood theorem
states[49]: for a compact boundaryless manifolsth R and a positive number;, let I

be the open set of points R with distance less thanfrom I'; if ¢ is sufficiently small,

then each pointv € I'* possesses a unique closest point irHowever, the theorem only
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Figure 3.12: White dots denote image points; black dots denote boundary phietsl-

uated on points represented by shaded dots.

works in ane-neighborhood of the curve, and how largean be depends on how high
the maximum curvature of the curve is; the author does not know of any theorem that
characterizes number of closest points [9rior all points inR™,

Even though we cannot prove the correctness of (3.52), the boundary curves seem to
evolve to a local minimum of (3.41) when we use a discretized version of (3.52) to imple-

ment our method.

Figure 3.13: The solid line denotes the cuivethe dotted line denotes the set of critical

points inR?
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3.3.4 Initialization

We first use a local penalty such as the space-invariant quadratic penalty (as described
in (3.1) and (3.2)) to reconstruct an initial image estim@teAs discussed in Section 3.3.2,
performing steepest descent with respect to the objective given in (3.41) may not push the
curve toward the boundaries if the initial curve is too far away from the boundary. To

address this limitation, we add a third penalty(within-region homogeneity) td;:

~ A K M
Jy(1) = Z(ﬁb(f,m)w / ds>+ZvJ3<f,Rm<F>> (3.54)
k=1 m=1
— f _}/ dx —
S(f.Ry) 2 7y Jra ST dz, 3.55
rm 2 [ - medx (3.55)

J; penalizes the difference between every pixel value and the average pixel value of its
region. This is a global measure which exerts a force on the curve no matter how close
the boundary estimate is to the image gradients. The evolution of the curve, as determined
by .J;, is essentially a competition between bordering regions. Each pixel on the curve
borders two regions; each of these two regions exerts a force trying to pull the pixel inside;
the boundary will evolve towards whichever region exerts a stronger force, as determined
by (3.55). We gradually redueeto zero. Eventually, we only rely o/, to move the curve

to a local minimum of/;(T")’. The implementation of the differential equation as described

in (3.43) using the level set method (“narrow band” approach), taking into account of all
the forces, is[64, 90]:

8\11 : VU

whereU is the function that embeds the culig, and Iy () = 552 4 4 M| 2allfim)

57

is only meaningful on level O; the extension of the speed tésnmas been described in
Section 3.2.3.

’In practice, we run a fixed number of iterations determined sufficient for the boundary curve to converge
to a local minimum. One could also stop the curve evolution when the maximum force exerfeddils
below a preset threshold.
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3.3.5 Deterministic Annealing

To form an initial estimate of the imageéprior to applying boundary estimation step,
we perform penalized likelihood tomographic reconstruction using a standard space-invariant
penalty. There is né function as given in (3.40) in such a reconstruction, but we can think
of h as simply being a constant, say unity (Figure 3.14®&), / is independent of the
boundary. But for the reconstructed image to have sharp boundaries, we must assign small
weights to differences in pixel pairs close to the boundeuy, as shown in Figure 3.14b.
Thus to avoid getting stuck in a poor local minimum, we must change the shapieot-
tion gradually from the initial constant function to the desitefiinction,i.e., we employ

deterministic annealing.

12 T 12

0.4 1 0.4

0.2 1 0.2

o
o

(@) (b)

Figure 3.14: (a) Implicit: function used in local regularization. (b) Edge-preserving

function as a function of signed distance to the boundary.

Instead of going from the implicit constant function to the desikefdinction in one
step, we take several steps. Suppose that from empirical experience with a given category
of images with similar noise levelg g, 3-minute PET transmission scans of the thorax),
we have found that the initial boundary is within, say, five pixels. Then we assign small
weights (via theh function) to all pixel pairs within a distance of five or six pixels to the

detected boundary, and assign large weights (unity) to all other pixel pairs; thus neighboring
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pixels that are more than five or six pixels away from the detected boundary will be coupled,
while the boundary is allow to shift to within those pixels between which the weights are
very small. We gradually evolve thefunction from the constant function toward the final
desiredh function, as shown in Figure 3.15. Hopefully, the final boundary will eventually
be a very good local minimum. The functions used in Figure 3.15 are [60]:

—bAt? —b
h(t) = —log (%) : (3.57)

with (b, \) = (2.5,1/6), (5,1/4), (15,2/5), (25,1), and (50, 3).

12

0.4f

0.2

1o
3,1

Figure 3.15: The evolution df function
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Table 3.1 shows an outline of the algorithm.

Reconstruct an initial imagg® using a local penalty

for eachcyclen =1,..., M
chooser’’s, k= 1,...,k, e.g, using (3.57)
evolve the boundaries according to (3.42) and (3.48) using the level set method
update the image according to (3.51)

end

Table 3.1: Algorithm outline

Evolving hiritial tg pdesied ysyally involves 4-5 “cycles”; one cycle consists of two

stagesi.e., the “image reconstruction” stage, and the “boundary estimate”S%tage

8The h™’s need not be different for every cycle; one may hold any or al;d$ fixed for a few cycles.
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3.4 Accuracy of the Estimated Boundary

3.4.1 A Metric For the Accuracy of Estimated Boundary

Defining a metric for the accuracy of our estimated boundaries is not a trivial task. We
would like this metric to have some physical meaning while at the same time, have the
property of being rotational invariant. Fourier descriptors satisfy this requirement, but a
change in any Fourier coefficients will lead to a change in the shape of the contour ev-
erywhere. Using B-splines would avoid this problem, but we still would have to decide
how many parameters to use; and the variance of the each coefficient in the representa-
tion do not necessarily have clear physical interpretations. Thus we propose the following
non-parametric way to evaluate the accuracy of our estimated boundaries: for any point on
the true boundary,, we find the point on our estimated boundaryhat has the shortest

distance (among all points on our estimated boundary) tae.,
@ = argminplz’ — xol, (3.58)

wherel is the estimated boundary; the vector fremto = (i.e, ©+ — x,) is defined as the
“deformation” of our true boundary at poimg (see figure 3.16). Using this metric, we can
average the deformation vectors across all realizations to obtain an average deformation
for a given point on the true boundary; from that, we can plot our average boundary, by
deforming our true boundary according to the average deformation at every point. We can
also investigate average magnitude of our deformation and other properties of our boundary

estimation process.

3.4.2 Accuracy of the Boundary Extraction

As discussed in Section 3.3.1, the curve length térnm (3.39) favors a shorter curve.
However, even if we set the weighting parameter.foto zero, there would still be bound-
ary curve shrinkage simply due to the fact that we discretize the differential equation. This
effect is commonly known asumeric diffusiof6l]: by approximating the differential
equation in the discrete domain, we introduce diffusion terms into the differential equa-

tion; this new differential equation with the diffusion terms included is commonly known
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Figure 3.16: Deformation of point, on the true boundary (thick line) to pointon the

estimated boundary (thin line).

as themodified equationAnother way to putitis: we are approximating the modified equa-
tion better than the original differential equation. The effect of numerical diffusion can be
reduced by using finer discrete grids; however, as the grid gets finer, the computational cost
goes up at least linearly.

To quantify how much the estimated boundary curve shrink, we focus on the boundary
extraction part of the proposed metho,. with imagef known, we evolve the curve
according to (3.43). First, we apply the proposed method, with the weiglit eét to
zero, to a noiseless image. We use the output of Matlab’s contour program as the ideal
boundary extraction (“curve 1”). The noiseless image and the boundary extraction obtained
by Matlab’s contour program are shown in Figure 3.17a; the boundary extraction obtained
with the proposed method (“curve 27) is shown in Figure 3.17b. The deformation of the
ideal boundary extraction (arrows point from “curve 1” to “curve 2”), scaled by 10, is
shown in Figure 3.18. The maximum inward deformation is 0.2767 pixels; the maximum
outward deformation is 0.2765 pixels; the average signed deformation is 0.0155 pixels
inward; the average magnitude of deformation of all the pixels on the boundary curve is
0.0995 pixels. The deformation shown here is solely due to discretization, since the weight
assigned to/; is set to zero.

Then, we applied the proposed method to an image contaminated by Gaussian noise.
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@ (b)

Figure 3.17: Noiseless image (a) Boundary extraction by Matlab’s contour program (b)

Boundary extraction with the proposed method

Figure 3.19 shows boundary extraction of such an image; this time, the weight assigned
to J; is not set to zero. We performed 50 realizations, and obtained the average boundary
curve. We compare the average boundary curve to the curve extracted from the noiseless
image by the proposed method (“curve 2”). The deformation of “curve 2", scaled by 10, is
shown in Figure 3.20. The maximum inward deformation is 0.1401 pixels, the maximum
outward deformation is 0.1377 pixels; the average signed deformation is 0.0160 pixels
inward; the average magnitude of deformation of all the pixels on the boundary curve is
0.0576 pixels.
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Figure 3.18: Effect of discretization: deformation of the boundary curve extracted by Mat-

lab’s contour program (“curve 17), scaled by 10

Figure 3.19: Noisy image: boundary extraction with the proposed method
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Figure 3.20: Effect of image smoothing ardterm: deformation of the boundary curve

extracted from the noiseless image by the proposed method (“curve 2”), scaled by 10
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3.5 Statistical Results

In this section, we compare the proposed algorithm to the edge-preserving reconstruc-
tion method described in [31] which is based on local regularizatiah, tvereafter referred
to as the “Huber method”, in terms of bias/variance tradeoffs. We simulated PET transmis-
sion scans of a digital phantom that resembles the human thorax. The body has attenuation
coefficient0.096 /cm. Inside the body, there are two “lungs”; the left lung has nonuniform
attenuation coefficients; the right lung has uniform attenuation coefficients; both lungs have
average attenuation coefficign022/cm. The “spine” has uniform attenuation coefficients
0.13/cm. Figures 3.8 shows the phantom and a profile of the phantom. The image consists
of 128 x 128 pixels, each of siz€.42 x 0.42cm?. The sinogram consisted of 192 radial
samples and 160 angular samples, similar to the CTI ECAT921 PET scanner; the ray spac-
ing is 0.3375 cm. Random coincidences account for about 5% of the recorded counts. We
performed two studies, one with 1,000,000 counts, the other with 300,000 counts (about
equivalent to a 10 and 3-minute scans, respectively). Our initial image was reconstructed
using conventional space-invariant quadratic penalty over first-order neighbors for the pro-
posed method. The boundaries were initialized mantialyshown in Figure 3.21.

For the transmission reconstructions, we considered two regions of interest (ROI) in the
reconstructed images: the left lung (region 1) and the right lung (region 2). We performed
50 realizations for this study. For each ROI, we calculated the average attenuation coeffi-
cient from each group of 50 ROI values. For the Huber penalty, we plotted ROI bias versus
standard deviation as a function of the regularization parameter threej: 0.002, 0.004,
and 0.008, where 0.004 is abaytl 0 of minimum contrast; for the proposed penalty, we
manually selected and/ to cover a range of bias-variance tradeoffs.

For the high count case, one realization from FBP, Huber, and proposed reconstructions
are shown in Figure 3.22. A comparison of two profiles (row 65) from the Huber and
the proposed reconstruction methods are shown in Figure 3.23. We selected images of
similar bias to be shown,e,, the average attenuation coefficients of the left lung region

(and the right lung region) from images reconstructed with all three methods have similar

9A procedure can be easily developed to obtain better initial boundaries.
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Figure 3.21: Initial contours

bias. Judging the variability in the Huber and the proposed reconstructions, we can see
that the proposed method yields less variance at this biag9evidis initial observation
is confirmed quantitatively by plotting the bias against the variance of the two ROI's we

defined above (Figure 3.24, error bars in the bias direction are too small to be shown).

1°The unevenness of the reconstruction using the proposed penalty near the boundary, as shown in Fig-
ure 3.22c, is due to the fact that théunction is near zero at these locations. A simple remedy to this problem
would be to increase thee function near the boundary curves. One could also use a “directional” penalty,
i.e., penalize more heavily in the tangential direction of the boundary curve, while decrease the penalty in the
perpendicular direction.
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Figure 3.22: 1,000,000 counts transmission reconstruction (a) FBP reconstruction (b) re-

construction with Huber penalty (c) Proposed penalty
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Figure 3.23: 1,000,000 counts transmission reconstruction: Comparison of Huber penalty

and proposed penalty
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To investigate how the proposed non-local regularization performs when the transmis-
sion map is applied to the attenuation correction of emission reconstructions (for details, see
[89]), we simulated PET emission scans of the digital phantom shown in Figure 3.25. The
relative activities of the lungs, spine, heart, and body were 12, 9, 40, and 22, respectively.
The emission projections included the effects of nonuniform attenuation corresponding to
the attenuation map in Figure 3.21. We reconstructed emission images using FBP with
attenuation correction based on two sets of transmission maps: one set regularized by the

proposed non-local penalty, and the other set by the Huber penalty.

Figure 3.25: Emission phantom

Figure 3.27 shows emission reconstructions using transmission maps reconstructed
with the Huber penalty and the proposed penalty. To compare the effect of the two dif-
ferent penalties on the emission reconstruction, we selected two groups of reconstructed
transmission maps, one using the Huber penalty, and the other using the proposed penalty.
Then [17] we smoothed the projection of the emission phantom (with ideal attenuation ap-
plied) and the transmission map, so that the resolution of the final emission reconstructions

using Huber penalty and the proposed penalty matched eachH'ofiteruse the follow-

1The smoothing was donesbause the reconstructed attenuation maps using tpoged penalty have
fairly sharp edges. Because of noise, bloeindary detection is not perfect and severe artifacts will result if
we do not smooth the reconstructed attenuation map. We also attempted to reconstruct attenuation maps with
blurry edges directlyi.e., use “broader’s functions. We are, however, less successful with this approach,
since the reconstruction with space-invariaritinctions have highly spatially varying resolution. To achieve
uniform spatial resolution, one would most likely need space-varkifugctions.
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ing simple method to determine the resolution of a set of reconstructions. Given the ideal

imagey '™ and the average reconstructed imagéhe resolution of: is:
geu

2

arg min, » |[Gop™; — 1 (3.59)

JEM
whered/, represents a Gaussian smoothing filter with FWHMand M denotes a mask
used during reconstruction. The normalizestandard deviation (in units of %) for the
mean of the six regions 8fx 3 pixels, with a fixed spatial resolution of 4.2 pixels (computed

according to (3.59)), are shown in Table 3.2.

Interior Boundary
Region 1 2 3 4 5 6

Huber penalty || 4.84+0.5 | 11.0£1.1 | 6.74+0.7 || 148+ 1.5 16.4+1.6 | 1594+ 1.6

Proposed penalty 1.1+ 0.1 | 81+08 |1.9+0.2 || 144+1.4|171+1.7 | 181+1.8

Table 3.2: Normalized standard deviation (%) for the six ROI's using 1,000,000 counts

transmission reconstructions

We also calculated ,,oposed/ oruber fOr all pixels within the image; Figure 3.26 shows
a histogram of these standard deviation ratios. For 85.8% of pixels, the proposed penalty
produced lower standard deviations than the Huber penalty. The median reduction in the

standard deviations is 47.1%.

2Normalized by the mean of each region.
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Figure 3.26: Histogram of ,;oposed/ Oruber fOr €mission reconstruction using transmission

scans with 1,000,000 counts
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Figure 3.27: Emission reconstruction using transmission scans (1,000,000 counts) recon-

structed by (a) FBP (b) Huber penalty (c) Proposed penalty
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We performed similar studies for the low count case. One realization from the FBP,
Huber, and proposed transmission reconstructions are shown in Figure 3.28. (The streaks
in the FBP reconstruction in this case are caused by the fact that some rays recorded zero
counts). Figure 3.29 compares two profiles (row 65) from the Huber and proposed recon-
struction methods; these profiles came from images of similar bias. Figure 3.30 shows the

bias/variance tradeoffs for the two lung regions.

@ (b)

©

Figure 3.28: 300,000 counts transmission reconstruction (a) FBP reconstruction (b) Recon-

struction with Huber penalty (c) Proposed penalty
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Figure 3.29: 300,000 counts transmission reconstruction: Comparison of Huber penalty

and proposed penalty
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Figure 3.30: 300,000 counts transmission reconstruction, bias-variance plot of (a) Region

1 (b) Region 2

58



The emission reconstructions from noiseless emission data corrected using transmission
maps regularized by the proposed penalty and the Huber penalty are shown in Figure 3.32.
We observe that the heart region is much more uniform in reconstructed images using the
proposed penalty than using the Huber penalty. The histogram,&fscd/ oruber for all
pixels within the image is shown in Figure 3.31. For 81.7% of pixels, the proposed penalty
produced lower standard deviations than the Huber penalty. The median reduction in the
standard deviations is 34.6%. The normalized standard deviation (in units of %) for the
mean of the six regions of x 3 pixels as defined in Figure 3.25, with a fixed spatial

resolution of 6.4 pixels (computed according to (3.59)), are shown in Table 3.3.

Interior Boundary
Region 1 2 3 4 5 6

Huber penalty || 5.0 +0.5 | 141 +1.4{9.04+09 || 140+ 1.4 | 15.7+1.6 | 1534+ 1.5

Proposed penalty 1.7+ 0.2 | 85+0.9 [3.9+04 | 134£1.3|18.0£1.8|14.9+1.5

Table 3.3: Normalized standard deviation (%) for the six ROI’s using 300,000 counts trans-

mission reconstructions

1000

Figure 3.31: Histogram of ,;oposed/ Oruber fOr €mission reconstruction using transmission

scans with 300,000 counts
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Figure 3.32: Emission reconstruction using transmission scans (300,000 counts) recon-

structed by (a) FBP (b) Huber penalty (c) Proposed penalty
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3.6 Extension to Three-Dimensional Images

In this section, we formulate our 3-D nonlocal edge-preserving regularization. Concep-
tually, this is a simple extension of our 2-D formulations. We simply replace the penalty
on the curve length termj; in (3.39), with a surface area functional, and the penalty
in (3.40) remains the same, excephow denotes 3-D spatial coordinates. Lgtdenote
the kth boundary surface (the number of boundary surfaces is still assumed to be fixed and

known), /(%) denote the 3-D object, anddenote the 3-D measuremént

J(f,T) = —/yL(f;y)+V(f,F) (3.60)
V(L.T) = ;B;{Wz(f,k,r)wjl(rk) (3.61)
AV /;de (3.62)
Jo(f, k1) = /Q hi(64(Z, D))|V f(Z)|2dZ. (3.63)

To minimize.J(f,I') with f fixed, we still perform steepest descentloas in (3.43). The
conjecture we had about the expression of the functional derivatilg a6 given in (3.52),

can also be applied to (3.63); in fact, the expression of the functional derivative does not
change at all, except thatnow denotes a point on the surface, rather than a curve. The

direction in which.J; decreases rapidly is [90]:

ar .

whereH denotes the mean curvature,, the arithmetic mean of the principal curvatures.
Implementation of (3.64) using level sets is also given in [90]. There is a subtle theoretical
difference between 2-D curve evolution and 3-D surface evolution; whereas the geometric
heat equation for curves (3.47) will shrink a simple closed curve to a round point without
developing singularities, the surface evolution equation (3.64) may cause the development

of singularities[90]. This abstract concern is of little importance to us, since our surface is

13The 3-D measurement can be a stack of 2-D measurementshere is no inter-slice rays as in the case
of 2.5-D transmission scans; or it can be truly 3-D.
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mainly influenced by the other penalty terly) however, a possible remedy to this problem
has been given in [90].

We obtained a 10-minute transmission scan of a real patient on a CTl 921 PET scanner,
then we thinned this data to the equivalent of a 3-minute transmission scan. The image
consists of 134 134x47 pixels; the sinogram has 47 slices, each consisting of 192 radial
samples and 160 angular samples. The reconstructions using the proposed penalty are
shown in Figure 3.33 and 3.34. A comparison of the 6th slice of the reconstruction using
FBP, the Huber penalty, and the proposed penalty is shown in Figure 3.35. The boundary

surfaces extracted using the proposed penalty are shown in Figures 3.36 and 3.37.
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Figure 3.34: Three-dimensional transmission reconstruction with proposed penalty: slice
26 to 47
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Figure 3.35: Slice No. 6: left column, 3-minute scan; right column, 10-minute scan; top

row, FBP reconstruction; middle row, 3-D Huber penalty; bottom row, proposed penalty
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Figure 3.36: Boundary surfaces extracted by the proposed penalty: the lungs
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Figure 3.37: Boundary surfaces extracted by the proposed penalty: the body
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Figure 3.38: Boundary surfaces extracted by the proposed penalty: the lungs

Figure 3.39: Boundary surfaces extracted by the proposed penalty: the body
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3.7 Discussion and Future Work

We have presented a new regularization method for tomographic image reconstruction
based on a nonlocal penalty function. The nonlocal penalty produces transmission recon-
structions with better ROI bias/variance tradeoffs than a local Huber penalty. When these
transmission reconstructions are applied to ideal emission data, the nonlocal penalty used
for transmission reconstruction produces emission images with smaller variances (for a
fixed spatial resolution) for most pixels in the image, from 80% to 85%; the median
standard deviation in the image is reduced by 35% to 50%.

However, reconstruction using the proposed penalty is more time consuming than using
“conventional” local penalties. Each cycle of the annealing process requires one “stage” of
image reconstruction. Thus if one runs 5 cycles for the annealing process, the time devoted
to updating the image is up to 5 times that of the local penalties, though for “reconstruction”
stage of the second to fifth annealing cycles, we do not need to run as many iterations as
in the first annealing cycle. The “boundary estimate” stage is also most time-consuming
during the first cycle of the annealing process. Since we used initial boundaries that were
far away from the true boundary (to demonstrate the robustness of our boundary estimate
algorithm), it took about 60 time steps for the two lung boundary curves to converge (the
body and spine boundary curves converges much faster). Each time step of curve evolution
for each of the two lungs takes about 0.6 of the time needed for a single iteration of Huber
reconstruction. The total time needed by the “boundary estimate” stages in all annealing
cycles greatly depends on initialization of curves, size of the time steps, etc. In the present
implementation, the boundary estimate stage of the first annealing cycle takes about twice
the time of an “image reconstruction” stage. Subsequent boundary estimations were much
faster since we evolved from the curve estimated by the previous cycle in the annealing
process. In total, computing the boundary estimates takes about the time of three to four
reconstruction's.

A related but fundamentally different approach to the problem of reconstructing atten-

In the present implementation, the “boundary estimate” stage is written in Matlab code, as compared to
fairly optimized C code for the image reconstruction stage; hence significant improvement can be made by
converting the code for “boundary estimate” to C.
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uation maps based on region information has been proposed by Deletealj#]. They

proposed the following functional of the boundary cur¢és

J(C) = / W(C(p)IC(p)|dp.

wherep parameterize§ andlV is a data consistency term. They minimized this functional

by evolving a PDE to obtain a “segmentation” of the attenuation map without actually “re-
constructing” the attenuation map. Their approach assumed that the attenuation coefficient
inside each region is constant, whereas our approach allows for nonuniform regions which
may arise in clinical situations.

Currently, thei functions are chosen experimentallg,, trial and error. A more sys-
tematic approach in choosingfunctions, so that the transition in pixel values between
neighboring regions can be carefully controlled, will make this method much easier to use.
Furthermore, the choice of differentfunctions at various stages of the deterministic an-
nealing process should have a great deal of effect on how “good” a local minimum the
algorithm eventually converges to. A study on this effect will be also very useful toward

applying this algorithm in clinical situations.
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CHAPTER 4

Singles Counting Statistics Affected by Deadtime

4.1 Introduction

Every photon counting system exhibits a characteristic calleadtime Since the
pulses produced by a detector have finite time duration, if a second pulse occurs before
the first has disappeared, the two pulses will overlap to form a single distorted pulse [78].
Depending on the system, one or both arrivals will be lost. In PET or SPECT scanners,
the length of pulse resolving time, often just called “deadtime”, denefesi around2s.
Counting systems are usually classified into two categories: nonparalyzable (type I) or par-
alyzable (type II). In a nonparalyzable system, each recorded photon produces a deadtime
of lengthr; if an arrival is recorded &t then any arrival from to ¢ + = will not be recorded.
In a paralyzable system, each photon arrival, whether recorded or not, produces a deadtime
of lengthr; if there is an arrival at, then any arrival front to ¢ + 7 will not be recorded.
In some SPECT systems [29], we encounter a third model that is similar to the paralyzable
model: if two photons arrive withim of each other, then neither photon will be recorded
(e.g, due to pulse pile-up); we call this the type Ill model. The asymptotic moments of the
nonparalyzable model are well known [35]. For the paralyzable model, the exact expres-
sion for the mean of the number of recorded events from time Odenoted(¢), has been
derived previously [12]. However, for the type Il model, only an approximate expression
for the mean number of recorded events has been derived [29]. In this chapter, we derive

the exact mean and variance expressions @f for both type Il and type Ill models.
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Figure 4.1: lllustration of systems affected by three types of deadtime

This investigation of deadtime statistics was originally motivated by the goal of find-
ing appropriate statistical models for image reconstruction of PET and SPECT scans with
high deadtime losses. There are four natural choices for dealing with deadtime in image

reconstruction:
(i) ignore it altogether;

(i) correct the number of recorded events for deadtime losses and plug the cor-

rected data into the reconstruction algorithm;

(i) incorporate deadtime losses into the system matrix of the usual Poisson statis-

tical model;

(iv) develop reconstruction algorithms based on the exact statistics of the counting

process.

For a quantitatively accurate reconstruction, we must correct for the effect of deadtime

to avoid underestimation of source activity. This consideration rules out the first choice.
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Previous work [81, 22, 65, 88, 82] in this field usually involves the second chige,

using the method of moments to correct the sinograms for deadtime losses, and recon-
structing the image using these corrected counts. In statistical image reconstruction, it is
generally assumed that the number of recorded events at a detector is Poisson distributed.
However, in the presence of deadtime, the fact that there can be no recorded events within
7 of each other makes the counting process non-Poisson[55]. However, if the process is
approximately Poisson, then a simple modification of the system magix¢orrect the
elements of the system matrix;;, by the deadtime loss factor, should suffice. This is the
third choice as listed above, which would yield estimates with lower variance than plugging
thecorrectedcounts into a statistical reconstruction algorithm withusicorrectedsystem

matrix. But simply correcting the number of recorded events or building this as a “loss
factor” in the system model while assuming that the number of recorded events is Poisson
distributed may be suboptimal. In this work, we investigate not only the mean, but also
the variance of the number of recorded events. If the mean and variance disagree signif-
icantly, then reconstructions based on Poisson statistical model would have suboptimally
large variances. We discuss this further in Section 4.6 after we derive the exact mean and

variance for the counting process.

4.2 Statistical Analysis of Deadtime

We define a “photon arrival” to mean a photon interacting with the scintillator with suf-
ficient deposited energy to trigger detection. The photon arrival pra€ésscounts the
number of arrivals during the time interv@l, ¢], and the photon recording processt)
counts the number of recorded events. For simplicity, we assuméVitiatis a homoge-
neous Poisson process with constant pafphoton arrivals per unit tima)e., we neglect
radio-isotope decay and other physical or physiological effects that may cause variable ar-
rival rate (see Appendix C for a generalization). We first review a few simple and useful
facts about the Poisson process [35]. The increm&ng) — N(¢;), which is the number of
photon arrivals during the time intervidh, ¢,], is Poisson distributed with meaty, — ¢, ).

N(t) has stationary and independent incrementsl’,Iflenotes the time of theth pho-
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ton arrival, then the waiting time (or inter-arrival timg}, = 7,, — T,,_; is exponentially
distributed with mean /\.
For simplicity, we also assume that the deadtime known and deterministic. Most

systems can be adequately modeled to have a constant deadtime, independent of count rate.

4.2.1 Asymptotic Analysis via Renewal Theory

The counting processes in all three types of systems discussed above are examples of
“renewal processes” [35], and renewal theory has been the classical basis for deadtime
analysis[63, 70, 69, 34]. A renewal process involves recurrent patterns connected with
repeated trials. Roughly speaking, if after each occurrence of a pattaire random
process starts from scratch in the sense that the trials following an occurrefiéeraf a
replica of the whole process, then the process qualifies as a renewal process. If we define
£ to be the stafeof “the counter is ready to record the next photon arrival”, then after each
occurrence of, the counting process is statistically equivalent. A very useful random
variable to define i, the waiting time between one renewal and the next (renewal here
means return t¢). Note that in the context of photon counting system, Wittefined as
above, the number of renewals from Q¢ is almost exactly the number of recorded events
from O to¢. If Te has ensemble mean and variance?, then the number of renewals from

0tot, Y(t), is asymptotically Gaussian distributed [21][35] with the following moments:
BIY ()] ~ t/pe, Var[Y (1)) ~ tod /g, (4.1)

where~ indicates that the ratio of the two sides tends to unity as — oc. Hence
asymptotically, the mean and variance of the waiting time between renewals forms a sort of
“duality” relationship with the mean and variance of the number of renewals. We observe
that whenr = 0, i.e, no deadtime] is exponentially distributed with mealry A and
variancel /\?; thus E[Y (1)] ~ At and Var[Y(1)] ~ M, as expected sincg(t) would

For type Il deadtime, we define renewal as “returigtafter recording an event”.
2Almost since we have to consider photons arriving shortly before time @) (out renewal occurring
shortly after time O (ot). If one redefines the time of a recorded event to ladter the the photon arrives at
the detector, then the number of recorded events and the number of renewals/@duflimguld be exactly
the same. For stationary increment processes, which definition one adopts makes absolutely no difference in
terms of the statistics of the process.
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be Poisson distributed with meamn when there is no deadtime. In realistic cases where
deadtime loss becomes significam,is usually very small when compareditdience the
Gaussian approximation is often very good.

For the nonparalyzable deadtime model (type | model), it is easy to derive the asymp-
totic mean and variance of(¢) from the moments df :. After each recording of an event,
the “deadtime” when the system cannot record any incoming arrival is simplyhus
Te = T + 7, whereT is an exponentially distributed random variable with mean.
Hence,

1+ A
pe = 1/A47= )\T

gg = 1/)\ (43)

(4.2)

Thus from (4.1), the counting process for a nonparalyzable (type I) system is asymptotically
Gaussian distributed with:

E[V(1)] ~ Li\it)”_,\/ar[f/(t)] ~ ﬁ

Figure 4.2 shows the mean and variance of the counting process of systems affected by

(4.4)

nonparalyzable deadtime. Wheém > 0.1, the mean and variance df(¢) differ by at
least 20%. Carlonet al derived the following exact expression for tiie moment for the
nonparalyzable deadtime model [13]:

1t/7)
EY ()] =) [(k+1)" = K0k + LA(L = k) /K, (4.5)

k=0

where: = 1,2,..., andl'(j,¢) = fot e~"2/~1dx is the incomplete gamma function. From
this expression, they derived asymptotic expressions for the mean and variance of the num-
ber of recorded events that coincide with (4.4).

For the other two deadtime models, if we try to dervg’(¢)] from E[T¢], it is much
more difficult to obtain a simple closed form expression because if we try to defiug,
we get an infinite sum and it is not easy to obtain every term in this sum, let alone a closed-
form expression fo[T:]. The variance of ¢ is even more complicated. Therefore, in
the following section, we describe a new approach for deriving the moments of counting

processes.
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Figure 4.2: Mean and variance for nonparalyzable (type I) systemst withs, 7 = 2us.

4.2.2 Exact Mean and Variance of Counting Processes

We first consider a general counting proc&ss/hereY (¢,,¢2) denotes the number of
recorded events during the time interval, ¢;] andY'(¢) is a shorthand fok"(0,¢). We

define the instantaneous rate R — [0, co) of the proces3’(t) as:

¥(s) £ lim E[Y (s + &) — Y (s)]/6, (4.6)

§—0

and the instantaneous second momenik — [0, co) as:

a(s) £ lim E[(Y (s + §) — Y(s))?/s. (4.7)

§—0

We also define the correlation function R* — [0, ) as:

2 lim El(Y(s1401) = Y(s1))(Y(s24 62) — Y(s2))]/(6192). (4.8)

51,52—)0

ﬁ(slv 52)
We assume that the following regularity conditions Kold

(i) v anda are well-definedi-almost everywhere, anglis well definedu,-almost
everywhere, and and( are integrable with respect toand;:, over any finite

interval and rectangle, respectively;

(i) E[Y(s,s+d)]/é and E[Y?(s,s + 6)]/¢ are uniformly bounded for alf and
5 e (0,1);

3,1 andy, denote Lebesgue measuresiRrandIR?, respectively.
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(|||) E[Y(Sl, S1 + 51)Y(82, S92 + 52)]/(5152) |S unifOI’m|y bounded fOI‘ au;l, S92, and
81,09 € (0,1) such thatsy, sy + d1) N (s2, 52 + §2) = 0.

These assumptions hold for a wide variety of counting processes, including any homoge-
neous Poisson process with finite intensity. Furthermore, for an arbitrary random process
Y, if E[Y(s,s+8)]/d, E[Y?*(s,s+46)]/d,andE[Y (51,51 + 61)Y (52,52 + d2)]/(6162) are
respectively uniformly bounded above by those of a homogeneous Poisson process, then
assumption (ii) and (iii) hold fo". Specifically, if a random process results from some
form of selection from a Poisson process with bounded intensity, then assumptions (ii) and
(iii) hold.

For analysis purposes, we artificially divide the time intefval]| into n segments of

lengthé eachj.e., ¢ = nd. We have

Y(t) = ”z_: Y (16, (2 4+ 1)d), (4.9)
EY ()] = i: EY (10, (1 + 1)d)], (4.10)
= /ng(s)ds, (4.11)

where we define the following piecewise constant function:

>

f5(s) (4.12)

E[Y(56,(5 +1)8)]/6, if s € (jo,(j+1)d],0<j<n—1
0, otherwise.

Since~(t) is well-defined almost everywhere in the interf@lt] and E[Y (s, s + 8)]/d is
uniformly bounded, by the Lebesgue Dominated Convergence theorem (LDCT)[10],

i [ Aits)dnts) = [ i fo(s)auts)
_ /Ot’y(s)ds. (4.13)
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Hence, we have the following simple general expression for the mean of the counting pro-

cess in terms of its instantaneous fate

EY ()] = /Ot v(s)ds. (4.14)

We consider the second moment by a similar argument:

n—1

EY*(1)] = E[(Z Y (id, (i + 1)5))°]

n—1

S BV G DY S EYS G+ DAY G+ 1)

=0 i=0 j=0,5%#¢
1

_ ZE[W(M, (1+1)d))]

n—2 n-—1

+2) N E[Y(i6, (i + 1)8)Y (j8, (j + 1)8)]

1=0 j=14+1
— [ aslduto) +2 [ hslsrsada(onsa), (4.15)
R R2
where we define the following piecewise constant functions:

E[Y2(j6, (5 + 1)8)]/8, if s € (j6,(j+1)6and0 <j<n—1

gs(s) = _ (4.16)
0, otherwise,
and
EY (56, (i + 1)0)Y (56, (5 +1)9)]/62, if sy € (i6, (i + 1)d],
Sg € (]57 (.] + 1)5]1
h5(81782) é 0 S ? S n — 2, (417)

and: +1 <j7<n-—1

0, otherwise.
Since(s is well-defined almost everywhere fioy ¢] x [0,¢] and E£[Y (s1,s1 + §)Y (82,82 +
§)]/6% is uniformly bounded, by LDCT and Fubini’s Theorem[10],

lim hs(s1, 82)dpa(s1,82) = / lim hs(s1,s2)duz(s1, s2)

§—0 R2 R2 5§—0

“4If E[y(1)] is differentiable for allt, then~(t) = 2 and (4.14) results from the fundamental
theorem of calculus. HoweveF[Y (s)Y (¢)] is not everywhere differentiable even for very simple random
processe.g, for the Poisson process with intensityA, E[N (s) N ()] = Amin(s, ) + A%st. So a similar

argument involving the fundamental theorem of calculus runs into difficulties for the second moment.
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t pt
= / / 6(81782)d82d81
0 51
t pt
= / / 6(81,82)d81d82. (418)
0 52
Similarly, one can show that
t
lim/ gs(s)dp(s) :/ a(s)ds. (4.19)
=0 JR 0

Thus using (4.15), (4.18), and (4.19), we have the following general expression for the

second moment df (¢):

E[Y(1)] = /Otoz(s)ds—l—Q/ot /Sjﬁ(sl,sz)dszdsl. (4.20)

In the context of counting processes with deadtime, which includes all random processes

considered in this work, the process satisfies this additional assumption:
(iv) there exists a positivé, such thatvs € (0,d0), Y(s,s+ ) < 1.
If we pick &y < 7, then assumption (iv) holds. Fér< &y, sinced? = 0 and1? = 1,
E[Y?(s,s 4 8)] = E[Y (5,5 +§)], (4.21)
SO
a(s) = ~(s). (4.22)
Thus we obtain the following corollary of (4.20) for random processes satisfying assump-
tions (i) to (iv):
E[Y?(t)] = E[Y ()] + Q/Ot /tﬁ(sl,SQ)dSstl. (4.23)

Furthermore, ifY'(¢) has stationary increments, thefs) is constant an@(s;, s;) =

3(0, s5 — s1) and we can further simplify the results (4.14) and (4.23) to the following:
ElY(t)] = vt (4.24)
t
E[Y*(t)] = 7t+2/ (t —$)B(0,s)ds. (4.25)
0

The above general approach used to find the second momé(tt ptould be extended
to higher order moments. However, as the order gets higher, the expressions get more

complicated.
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4.3 Single Photon Counting

4.3.1 Mean and Variance of Recorded Singles Counts, Model Type Il

First we consider the paralyzable model in which if the waiting time for a photon arrival
is less tharr, then this photon is not recorded. We derive the mean and variance pf
the number of recorded events from time O to titné/Ve observe that’(¢) inherits the
stationary increment property of the arrival procags). We first derivel[Y (0, §)], where
we pickd < 7 such that the number of recorded events duting] is either 0 or 1. Lefl}
denote the time of the first photon arrival after time O; it is exponentially distributed. If there
is an arrival atl; = s, 0 < s < 4, and there is no arrival between-  ands (in fact, we
only need to make sure there is no arrival betweenr and O0,i.e, N(0) — N(s —7) = 0,
since the first arrival after O occurs &t then there will be a recorded event during the
interval (0, 6]. Thus

E[Y(0,6)] = P[Y(0,6)=1]

OOP[Y(O,é) = 1Ty = s]fr,(s)ds

)
Plno arrival during(s — 7,0)|Ty = s] fr, (s)ds

)
P[N(s —7,0) = 0|Ty = s]fr,(s)ds

§

S—— S o

e M Ne™ N s = / 5 e Mds = Ade V. (4.26)
0
Hence by the definition given in (4.6), the instantaneous rai& of is
= Xe T, (4.27)
and by (4.24), we easily obtain the following reswtq, [78]),
EIY (1) = Me™, (4.28)
i.e., the recorded/arrival ratio for type Il systems, denatgeds
A E[Y(t)] -7

S ENm 2
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The variance of’(¢) for the type Il model is (see Appendix A):
Var[Y (1)] = Me (1 — (2A1 — A2/1)e™7). (4.30)

We can compute numerically thatax,,(2Are=*7) ~ 0.74, henceVar[Y (¢)] will always

be positive. To compare the variance and the mean, we note that

m Var[Y(t)]

=1—2X e =1 —2& log &s. 4.31
A ) §21og € (4.31)

Figure 4.3 shows the mean and variance of the singles count for a detector affected by

deadtime of type II. Since the mean and variance can differ gréafty,is not Poisson.

95X 10 ‘ ‘
Ideal mean: E[N(t)]
— Type Il mean: E[Y()] 2
ol - - Type Il variance: Var[Y(t)] 0.
= a
g b
> £
3 o
Sis =0.
— Q
g c
> £
Wt S
= °
z 8
b a
05 o2
<
0
0 2 4 6 8 0 9 1 2 3 4 5

(@) (b)

Figure 4.3: Mean and variance for paralyzable (type Il) systems,iwiths, 7 = 2us.

4.3.2 Mean and Variance of Recorded Singles Counts, Model Type IlI

Now we turn to the type of system described in [29], in which if the waiting time for
a photon arrival is less than, then neither this photon nor the previous photon will be
recorded. We again observe thatt) inherits the stationary increment property of the
arrival processV (¢). We first deriveFs[Y (0, 6)], where we picki < 7 such that the number

of recorded events durin@, ] is still either 0 or 1. Hence,
ElY(0,8)] = P (0,6) =1]
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)
= [ P08 = 11T = o)
0
)
= / P[N(s —7,0) = 0]P[(s,s + 7) = 0] fr,(s)ds
05 )
= / e NI M NN s = / Ae T ds = Me™ . (4.32)
0 0
Hence for this system, the instantaneous rate as defined in (4.6) is
y = e T (4.33)
and by (4.24), the expected number of recorded events for a type Il system is exactly:
ElY (1)] = Me™ . (4.34)

The type Ill system was analyzed using approximations in [29]. To compare our exact
result (4.34) with the approximate analysis presented in [29], we note that the mean waiting

time between recorded events is:

pe = 1EY()]= (4.35)
= %(1 +2M7 +2(A7)? + %(Ar)?’ + %()\7)4 + O(AT)?). (4.36)

Comparing this exact expansion to the approximate mean waiting time derived in [29,
egn. 16], we find that the approximation in [29] is accurate to 2nd order.
The variance of’(¢) for the type Ill model is (see Appendix B):
Var[Y ()] = Me ¥ 4+ 27 (At — At — 1)
+eT AN — ANHT 4 2 — 20+ 4DT). (4.37)

To compare the variance and the mean, we observe that
Var[Y(1)]

. _ . ATy —2AT
tliglo BV L =2(14 2 7 — e T)e™ ", (4.38)
To simplify this expression, we observe that when< 1, e*” — 1 ~ A7, and
: VELI’[Y(t)] ~ —2AT __
tli}l’(l;lo m ~1—2\te =1- 53 log 53, (439)

whereé; 2 E[Y()]/E[N(t)] = e=*\". Figure 4.4 shows the (exact) mean and variance of
the singles count’(¢) for type Ill systems. AgairY’(¢) is not Poisson, but the difference

between the variance and the mean is much smaller than type | or type Il systems.
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Figure 4.4: Mean and variance for type Ill systems, with s, 7 = 2us.
4.4 Recorded Singles Counts by Block Detectors

In many photon counting systems, several detectors are grouped into a “block”; ex-
amples include block PET detectors and Anger cameras. When a photon arrives at any
detector in the block, the whole block goes dead+fpr.e. no detector in the block can
record any photon for. For analysis purposes, we can initially treat the block of detectors
as a single big detector. Let, ..., \; denote the incident photon arrival rates for each
of the!/ detectors in the block. Lé&t;(¢) denote the number of events recorded by jitne
detector, and le¥(¢) denote the total number of events recorded by all detectors in the
block (7 = E;Zl Y;). We have derived above the exact first and second momeat§ pf
for detector blocks affected by type Il and type Il deadtime, and in each case, the mean
and the variance af (¢) can differ greatly. However, what is of greater interest in image
reconstruction is the mean and variance of the number of events recorded by each detector
in the block. Given tha¥(¢) events are recorded by the entire block, the conditional dis-
tribution of the number of events recorded by any individual detector is multinomial where

the fraction of events allotted to th¢éh detector is;; 2 A;/A. Thus from [3, p. 99],

ElY;(0)] = nE[Z(1)] (4.40)
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Var[Yi(t)] = n;(1 —n;) E[Z(t)] + n; Var[Z(1)]. (4.41)

We observe that the variance to mean ratio is

Var[V;(1)]

E[Yi(1)] L —n;(1 = Var[Z(1)]/ E[Z(1)]) (4.42)

For a system with say, 64 detectors in a blogks: 1/64 (assuming that the count ratess

are nearly uniform), so from (4.43) the mean and the variance of the number of recorded
events by a single detector will differ by less than 2%, regardless of count rates and dead-
time losses. Furthermore, siné&/(t)] must be quite large for deadtime to have a signifi-
cant effect, whem; is small, the distribution of;(¢) will be approximately Poisson by the
usual binomial argument. The only case where the variance to mean ratio is significantly
less than 1 would be wheyp is large (.e. the count rates;’s are very heterogeneous) and
Var[Z(t)]/F[Z(t)] is small {.e. the total count ratQj;:1 A; is large). In all other cases,

the mean and the variance would be approximately equal. Howevetpttagiancebe-

tween the measurements recorded by different elements within the block can be nonzero[3,
p. 101]:

Cov(Yi(1), Yj(1)) = min;(Var[Z(8)] — E[Z(1)]). (4.44)

Thus in the presence of deadtime, the assumption that the measurements are independent
(which is made ubiquitously in statistical reconstruction methods) is incorrect. However,
whenr; andn; are small, so is the covariance between individual detector elements, so the

impact of this dependence may be small.

4.5 Count Rate Correction for System Type Il

For a quantitatively accurate reconstruction, we must correct for the effect of dead-
time to avoid underestimation of source activity. For type Il systems, Engelaald29]

proposed the following correction formula,

Y 2Y Y
A=—(1+ TT + %72)7 (4.45)
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which they obtained by solving an approximate mean waiting time expression up to second
order inT by means of the expansion= « + br + ¢7%. We propose to estimate the true

count rate by solving numerically our exact expression (4i34) solve

% = Ne72V (4.46)

for \ givenY andt. One could solve analytically the exact mean waiting time expres-
sion (4.35) up to second order i which yields exactly the same estimator as (4.45), but
this estimator does not solve (4.35) exactly. Figure 4.5 compares our new estimator (4.46)
and the estimator proposed in [29]. It shows that our new estimator is unbiased even at
very high count rates. The error bars are not shown in the figure as they are smaller than
the plotting symbols. Whenis large, the standard deviation is very small when compared

to the mean oft’(¢), thus these estimates have extremely small standard deviations. By
solving (4.46) numerically, we obtain essentially perfect deadtime correction for a type Il
system.

x 10°

— A

10|« our estimate of A

© uncorrected estimate of A
+ Engelands estimate

0 2 4 \ 6 8 10
x 10"

Figure 4.5: 20 realizations, with= 10s, 7 = 2us.

4.6 Discussion

We have analyzed the mean and variance of the recorded singles counts for three distinct
models of deadtime. In all three cases, the variance can be significantly less than the mean,
indicating that the counting statistics are not Poisson in the presence of deadtime. Dead-

time losses can be significant in practical SPECT and PET systems, particularly in fully 3D
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PET imaging and in SPECT transmission measurements with a scanning line source. The
count rates for a detector block (PET) or detector zone (SPECT) can be significant enough
to yield non-Poisson statistics for the total counts recorded by the block or zone. How-
ever, in the practical situations that we are aware of, the count rates for individual detector
elements within the block or zone are usually not high enough to correspond to signifi-
cant differences between the mean and the variance. As we have shown in Section 4.4,
even though the variance of the counts recorded by a block can be significantly lower than
the mean, the variance of the counts recorded by an individual detector within a block is
nevertheless quite close to the mean and likely to be well approximated by a Poisson dis-
tribution. Furthermore, the correlation between individual detectors will be fairly small.
Thus it appears that statistical image reconstruction based on Poisson models, while cer-
tainly not optimal, should be adequate in practice even under fairly large deadtime losses,
provided the deadtime loss factor is included in the system matrix. We must add one caveat
to this conclusion however. Although pairs of individual detectors have small correlation,
the correlation coefficient between teemof one group of detectors and teamof all

other detectors in a block may not be small in the presence of deadtime. The effect of
such correlations on image reconstruction algorithms is unknown and may deserve further
investigation. Another natural extension of this work would be to consider systems with
random resolving times. As long as the minimum resolving time is greater than zero,

assumption (iv) would still hold and the derivations would be similar.
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CHAPTER 5

Coincidence Counting Statistics Affected by Deadtime

The statistics of the coincidence counting process by detectors affected by deadtime is
of fundamental importance to the problem of statistical image reconstruction. However,
to our knowledge, not even the mean of the random coincidence process has been derived
rigorously. In this chapter, we give a rigorous derivation of the mean and variance of the
coincidence counting process under various scenarios, and analyze the suitability of the

commonly assumed Poisson statistical model used in image reconstruction.

5.1 General Result

We assume the following model with no attenuation of the true coincidences (see Fig-
ure 5.1):

Xi(t) = X()+ Ni(1),
Xo(t) = X(1)+ Nao(1); (5.1)

there are two detectors each recording single photons according to deadtime model type II,
with deadtimer known and deterministic; the arrival processes at the two detectors are de-
notedX, (¢) andX,(¢); X (¢) denotes photons originating from the true coincidence source,

N (t) andN,(t) denote photons originating from the random singles sources arriving at the
two detectors;X (¢), N,(¢), and N,(¢) are independent and all are homogeneous Poisson

processesi,.e., we neglect radio-isotope decay for simplicity;, A», and Ay denote the
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Source 1 _ Source , Source 29
Xi(t): rated; + Ay Xo(t): rateds + Ay
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Yi(¢) Y5 (t)

Singles Singles
Coincidence
Processor

V(1)
Coincidence Events

Figure 5.1: Model for coincidence counts

intensity of V;, N,, and X, respectively;X; and X, are statistically dependent due Xg
unlessAy = 0 (i.e, the random coincidence caséj(t) denote the number of recorded
coincidence events. For simplicity, we assume that pair¥ gdhotons are recorded by
their respective detectors at exactly the same time; we also ignore uncertainty in the time-
stamping of recorded singles [19]. L&t(¢) andY;(¢) denote the number of recorded
singles at detectors 1 and 2, respectively. ddenote the length of the coincidence tim-
ing window; we assumec < 7. For a pair of photons to be recorded as a coincidence
event, both photons must first be recorded by their respective detectors, and if one photon
is recorded by detector 1 at timg and one photon is recorded by detector 2 at tignand
|t1 — t2] < ¢, then this pair of photons is recorded as a coincidence event. To avoid ambi-
guity, we define the time of coincidence to be the arrival time of the later photon. Thus if
there is one photon recorded by detector 1 at tiirend no photon is recorded by detector
2 at timet,, then the number of coincidences at times the number of photons recorded
by detector 2 duringt; — ¢, ¢,]. If there is one photon recorded by both detectors both at
time ¢, then the number of coincidences at timds the sum of the number of photons
recorded by detector 1 and detector 2 dufing- ¢, #1].

In addition to the four assumptions made in Section 4.2.2, we also make the following

additional assumptions about the singles progéss
(V) limg_yo ZRtD=H — gy vk > 9,

(vi) 38 > 0,307, k'p(k,d) < cofori =1, 2, 0r3,
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wherep(k, o) = sup{P[Y;(s,s + ) = k]/é : s € [0,1),0 € (0,0p)}. These assumptions
hold for a wide variety of (singles) counting processes, including all (singles) processes
considered hereafter. Specifically with regard to assumption (W), i a homogeneous
Poisson process with intensity thenP[Y;(s, s + &) = k]/§ = e "M\ §5=1 [kl < XF / k! for

§ < 1,and) 7, k'AF/k! < oo for any integet.

5.2 Random Coincidences

In this section, we derive the mean and variance of the random coincidence process
(assuming\x = 0), first for the case of ideal detectors (no deadtime), and then for realistic
detectors (with deadtime). In the next section, we derive the mean and variance (bounds)
of the counting process having both true and random coincidencesY (Lgtlenote the
number of recorded coincidence events duting]. LetY,(¢) andY;(¢) denote the number
of recorded coincidence events durif@¢] that have the later singles event arriving at

detector 1 and detector 2, respectively. Then

V(1) = Yalt) + (1), (52)

5.2.1 Mean of Random Coincidence Counts

For the purely random coincidence process, We derive the megf pfor a general
class of (recorded singles) processes, we do not assume any particular model such as
Poisson. For this derivation, we only assume that the singles prodgsseandY:(¢) are
independent, have stationary increments with rates 222+l ; — 1 2 and satisfy

assumptions (i) - (iii), (v), and (vi). For an arbitrary time intery@l ],

E[Y.(0,6)] ZE (0,6)[Y1(0,8) = KP[Y1(0,8) = ]
= 0+E[ 2(0,8)[Y1(0,8) = 1]P[¥1(0,8) = 1]
—|—ZE (0,8)[v1(0,8) = k]P[Y1(0,6) = k].
Given that there i®nearrival at detector 1 during, §], the number of recorded coinci-

dence events with the later singles event recorded by detector 1 is the number of singles
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event recorded by detector 2 during a time interval of lerngthurthermore, if there are
arrivals at detector 1 durin@, 6], then the number of recorded coincidence events with the

later singles event recorded by detector 1 can be no morektan-¢, §). Hence

hm(SZE (0,6)]Y1(0,6) = k]P[Y1(0,4) = k]

§—0

< lim s Zyz ¢ + 6)kP[Y1(0,6) = k]. (5.3)

Using assumption (vi) and applying the Lebesgue Dominated Convergence Theorem (LDCT)
[10], we obtain:

R [ g Yole+ )k
i £ 3 FIG0.0M0,5) = KP(0.5) = = 3l AL by 0.0) = 4
= 0,
by assumption (v). Hence
1 1E 05—1'1 P[Y1(0,6) =1]+0 5.4
lim <E[Y,(0,8)] = lim Z3,cP[¥1(0,8) = 1] + 0. (5.4)
Furthermore, since
i EDA(0,)
5§—0
o PIV(0.6) = 1] + S0 RPYi(0.6) = K]
= 1m
5§—0 )
L PM(0,8) = 1]
= g% - , (5.5)
we have
. ElY, (0,6
(151_1;% [ <($ = 2. (5.6)
By symmetry,
. EY(0,6
(151_1;% w = €Y2V1. (5.7)
From (5.2), we conclude that the random coincidence rate is:
E[Y (0,6
7—(1;1_1;%7[ ES ) = 2e7172. (5.8)
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It is easy to verify using (5.3) that[Y (0, d)]/4 is uniformly bounded for alb € (0, 1),
hence applying (4.14),

EY(1)] = 2ev172t. (5.9)
This result is well known (when the recorded singles process is Poissprgcorded with

no deadtime) [50, 75] but has not been derived formally to our knowledge. Remarkably,

the result holds for a fairly broad class of singles processes, as we have shown.

5.2.2 Ideal Detectors (No Deadtime)

We now show that the (random) coincidence process is not exactly Pb@samwhen
the recorded singles processes are Poisson (i.e., in the hypothetical case of no deadtime
losses) by showinyar[Y(¢)] # E[Y(¢)] using (4.20). We first findi(0,s). Fors > e,
Y (0,0) andY (s, s + ) are independent far < min(s, s — ¢), hence
B(0,5) = (2em72)°. (5.10)

For0 < s < ¢, we show in Appendix A that

B(0,5) = (2e9172)% + (11 4+ 72)1172(2€ — ). (5.11)

It is easy to verify that” satisfies assumption (iii) by using ideas similar to those used
for (D.8) and (D.12). Howevely” does not satisfy assumption (iv) in the absence of dead-

time, hence we must use (4.23) to derive its second moment. We have

E[Y*(0)] = E[(Ya(5) +Yi(6))*]
= EN;(6)]+ ENP(0)] + 2E[Ya(5)Y5(0)], (5.12)
and
E[Y(0)] = iE[ﬁ(Oﬁ)le(M)Zk]P[Xl(M) = K]

= 0_+ E[Y?(0,8)|X,(0,8) = 1]P[X,(0,6) = 1]

£ 37 EY0.8)1X(0.8) = HPLY,(0,6) = H.

k=2

In the absence of deadtime, the coincidence process will be Poisson if the two coincidence photons
always arrive at the two detectors at exactly the same time and there is no uncertainty in the time-stamping
of recorded photons. It appears that coincidence processes are exactly Poisson onlyighpidealized
case.
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If X,(0,0) =k, thenY,(0,6) < kX3(—¢, ), SO

lim - Z [Y2(0,8)X,(0,6) = KP[X,(0.6) =

§—0

= 0.

Thus by similar argument made in (D.10):

lim ~ BV2(8)] = (32 + (32)2)71.

§—0 5
Furthermore,
li 1E Y. (Y, (d
lim  E[Y, ()Y4(9)]
-
= (1;1_1;%5 z]: ED/G((S)%((SﬂXl(O,(S) = kvXQ(Ov(S) = l] :

P[Xl(d,:) =k, X5(0,6) =1]

o0

IA

§—0
k=1

Mg

< hm(sz:: vale 4+ 8) + (yae + 6)))k*P[X;1(0,6) = k]

lim% 3" (k4 71(8 + )L+ 72(8 + ))RIP[X1(0,6) = k, X5(0,8) = ]

(5.13)

(5.14)

. }g%i (k 1(k+%(5+6))k13[x1 (0,6) _k> (g (1 4+ 71(8 + €))IP[X,(0, 5)_z]>

= 0.

Hence applying (5.14) and (5.15) to (5.12) and using symmetry:

a(s) = 722 + e(n +72)).

(5.15)

(5.16)

Using ideas leading to (5.13) and (5.15), one can easily verify g€ (0, §)] /¢ is uni-
formly bounded. Hence from (5.11), (5.10), (5.16), and (4.20)¢ fer¢, the variance of

Y(t)is:

Var[Y(t)]

= /Ot a(s)ds +2 /Ot(t — 5)(2e7172)*ds + 2 /OE(t — s) (11 + Y2)172(2e — s)ds — (y1)°

4
= Eyma(n +72)t 4 267172t + (2emy2t)? + € (31 + 12) 1723t — 36—

2ev1v2t (1 4 2€(y1 + y2)(1 — €/31)).
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The variance (5.17) is “inflated” relative to the mean (5.9) by the faatoy; + v2)(1 —
¢/3t); hence the random coincidence process is not Poisson even in the absence of dead-

time.

5.2.3 Non-ideal Detectors (With Deadtime)

We now derive the variance df (¢) in the presence of deadtime with > 2¢. We
proceed as in the case of recorded singles process being Poisson. We firstderiye
Since we assume > 2¢, forming two coincidence events would require two recorded pairs
of photons, each pair forming a coincidence event. The minimum time separation for the
two later-recorded photons is at leashencé 3(0,s) = 0for0 < s < 7. If 7 +¢ < s < ¢,
thenY(0, ) andY (s, s + ¢) are independent fof < s — 7 — ¢, hence3(0, s) = 2. The

most complicated case is when< s < 7 + ¢; we show in Appendix B that

3(0,5) = NAZemMT2)7(2 4 (5 — 7)(de — s + 7)) (5.18)
under this case. We observe that (s —7)(4e —s+7) < 3¢? when0 < s — 7 < ¢, hence
0 < 3(0,s) <~v*forr <s<r7+e Thusfort > 7+
Var[Y(t)]

= 742 /: (t = 5)(2en172) ds + 2 /m(t —5)(M72)*(€" + (s = 7)(de — 5 4 7))ds — (y1)*

1
= 2eyy9t + (’)/1’)/2)2862(562 — 16€(t — 1) + 24(t — 7')2) — (26’)/1’}/2t)2
2
= Al =2 = T/t) + ;—4(58 — 16e(t — 7)), (5.19)

wherey = 2ey,7, = 2ed e~ M1F22)7 from (5.8) and the mean df (¢) is v¢. Whene <
T < t, we can approximate (5.19) by(1 — 2v7), hence the variance is “deflated” relative

to the mean by approximately~ which is extremely small under normal circumstances.

5.3 Prompt Coincidences

Now we generalize to the case in which there are both random coincidences and true

coincidencesi.e, Ax # 0. Since we assume < 7/2, the even{Y'(J) > 2] can never

2Note thatife < 7 < 2¢, then3(0,s) # 0if s < e.
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Figure 5.2: Mean and variance for paralyzable systems, random coincidence counts, with

t=1s,7 =2us, e = 12ns, A\ = Xs.

occur when) < e.

5.3.1 Mean

We derive the mean of the prompt coincidences using (4.24). In the presence of dead-
time, the event that there is one recorded coincidence event darifigconsists one of the

following 4 mutually exclusive events:

(1) one N, photon and onéV, photon form a coincidence event;
(#,) one X photon at detector 1, and oié photon at detector 2;
(#3) one X photon at detector 2, and o photon at detector 1;
(F4) A pair of X photons is recorded.

We will derive the probability for each of these 4 events.

We split £, into two disjoint sub-eventst,;, and Fy;, where £}, denotes the event
that oneN; photon and onéV, photon form a coincidence event and furthermore the later
photon is recorded by detector 1. ligtdenote the time of the first; photon arrival after

time 0, and7;|7; denote the time of the firsY, photon arrival afteff; — ¢:
Ela // NlSl—TO)—ONQ(SQ—TSl—G)—O
82 -7, 81) = 0|T1 = 51,1y = Sz]fT2|T1(82|81)fT1(51)d82d81
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5 51
— / / e_Al(T_Sl)e_A2(51_E+T_52)e_AX(Sl_52+7—))\2€_A2(52_51 +E))\1€—A151 dSQdSl

_ _AXE
= My deitletix)r lze® (5.20)
)\Xé

By symmetry,P[Fy;] = P[E1.], SO

1 _ e—AxE

P[] = 2eA Apde™Mitiatdx)r (5.21)

Axe
For F,, the X photon arriving at detector 2 must be lost due to deadtime caused by an

N, photon arriving at detector 2 withinbefore. It cannot be due to an photon arrival at

detector 2 because otherwise, ftigghoton at detector 1 would also be lost. If &nphoton

arriving at detector 2 and al photon arriving at detector 1 form a coincidence event, the

N, photon arriving at detector 2 must arrive before h@hoton because otherwise the

will be lost due to theX photon at detector 2; hence thephoton arriving at detector 1

will be the later arriving photon. Létxy denote the time of the first photon arrival after

time 0, and7;|7x denote the time of the firsY, photon arrival aftefl’y — «:

PlFy] = / / X(sg —7,0) =0,Ny(sy —7,81) =0,
252 — 7,51 —€) =0|Tx = 51,15 = sa] fro s (52]51) fry (51)dsadsy
_ / / e~ Ax(rms2) =T (s —emsatT) ) =Na(sa=siHe) ) L o=Axo g s
= §(1 — e XY Ny PathatinT, (5.22)
By symmetry,
P[Fs] = §(1 — e M%)\ e~ itdatin)r, (5.23)

For F,, the simplest of all four cases, we only need to make sure there is at least one
coincidence arrival durin@, 6], and there is no coincidence or random arrival less than

before:
§
P[E4] = / P X(s—7,0)=0,Ni(s—7,5) =0,Na(s —7,8) = 0|Tx = s]fr,(s)ds
0

)
— / e—/\X(T—s)e—/\lTe—/\gT)\Xe—/\Xst
0

e—(Al-l—AQ)T)\X(Se—AxT
= Ayl Oxthtda)r (5.24)
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Thus in total,

v = K% L A+ )\2> (1—ex) + AX] e~ Px it (5 25)

E[Y(t)] = t KQT\ L M+ /\2> (1—e) + /\X] ~Qxthth)T (5 26)
X

We observe that sinceis very small,l‘j;xe ~ 1 and since\y is usually very small,
(A1 + A2)(1 — e=*x¢) = 0. Hence

ElY(1)] ~ t(2eM Ay + Ay e PxFhitda), (5.27)

5.3.2 Variance

Trying to find the exact expression for variance would be a painful exercise in this case;
instead, we choose to bound it. As argued previousl9,s) = 0for0 < s < 7, and
B(0,5) =~v*forr+e < s < t. Forr < s < 7+¢, an event recorded at tisecould be lost
due to the deadtime effect of an event recorded at finse we can bound(0, s) between
0 and+?. Hencef; (t — s)3(0, s)ds in (4.25) can be bounded betwegh (¢ — 5)3(0, s)ds
and ['(t — 5)B(0, s)ds. Hence

M=t + )2 = (r+ /1)) < Var[Y ()] < 7t(1 =972 =7/1)),  (5.28)

where~ is as given in (5.25). This bound is very tight since usualy 7.
In PET, X photons can only originate from a narrow strip that connects the two detec-
tors, while N; and N, photons can come from all other directions. Hence under normal

circumstances,e., when); ~ )\, >> Ay, the loss ratio of variance over mean:

€21 — Var[Y(1)]/E[Y(1)], (5.29)

which is approximately the expected number of recorded coincidences from-A te
extremely small. Only wheny is large enough to cause significant deadtime effect of its
own, will the loss ratio be significant; the behavior of the system would then resemble the

singles case where we have shown there would be significant loss of variance[94].
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5.3.3 Attenuation Effects

The model (5.1) is unrealistic because it assumes Koginotons are always recorded.
In practice, due to attenuation, the probability that™aphoton is recorded is less than 1.

We assume the following model to include the effect of attenuation:

Xi(t) = M)+ Ni(2),
Xo(t) = M(t) + Na(t), (5.30)

wherel, (t) andM,(¢) are independently binomial-thinned from the same Poisson process
X(¢) of intensity Ax, i.e, given thatX(d) = 1, the evend/,(§) = 1] and the event
[M,(6) = 1] are independent. The survival probability fdf, and M, are denoted,
andp,, respectively. LetX denote the (independently) binomial-thinned true coincidence
process; it has intensity; pAy; let M; denote the number of pairs 6f photons that
only survived to reach detector 1, but not 2, alid those that only survived to reach
detector 2, but not 1. Thef/; and M, have intensityy; (1 — p,)Ax andp,(1 — py)Ax,
respectively. Furthermorey, M;, and M, are statistically independent, and; and A7,
contributes to the singles counts at detector 1 and 2, respectively. Hence this case reduces
to the no-attenuation case (5.1), but ndwn (5.1) has intensity; p; A x, /V; has intensity

A1+ pi(1 — p2)Ax, and N, has intensity\; 4+ p2(1 — p;)Ax. Hence we can obtain the
exact expression af'[Y(¢)] by plugging the appropriate values into (5.26). Whenis

very small compared t&, or A\», we can approximat&[Y (¢)] by

EY (1)] & t(2eM Ay + pipodx e~ Proedxthitda)r, (5.31)

5.4 Delayed Coincidences

In PET systems, delayed coincidences are usually recorded for use in estimating the
number of random coincidences recorded in the prompt window, so that coincidences in
the prompt window can be corrected to reflect only “true” coincidenices,X photons
[50, 79]. The inherent assumption in this scheme is that the mean of the coincidences in

the delayed window is equal to the mean of the random coincidences in the prompt window.
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Now we investigate the validity of this assumption. We denbés the delay; we assume
3¢/2 < d < 7 — ¢/2. For a pair of photons to be recorded agedayedcoincidence
event, both photons must first be recorded by their respective detectors and if one photon
is recorded by detector 1 at timg and one photon is recorded by detector 2 at time
and||t; — t2] — d| < €/2, then this pair of photons is recorded as a delayed coincidence
event. From this definition, no coincidence event can be counted as a delayed coincidence
event. To avoid ambiguity, we define the time of a delayed coincidence to be the arrival
time of the later photon. Thus if there is one photon recorded by detector 1 af; tame
no photon is recorded by detector 2 at timethen the number of delayed coincidences at
timet, is the number of photons recorded by detector 2 dufing d — ¢/2,t; — d + ¢/2).

Let Y(¢) denote the number of recorded delayed coincidence events ddritjg As
in the coincidence case, we split(¢) into Y, (¢) andY;(¢), whereY,(¢) andY;(¢) denote
the number of recorded coincidence events dufing|] that have the later singles event
arriving at detector 1 and detector 2, respectively. Liedenote the time of the first photon
arrival at detector 1 after time 0, afiel denote the time of the first photon arrival at detector
2 after timel; — d — ¢/2. We deriveL[Y,(0,0)] for 6 < 7. For this derivation, we assume

there is no attenuation; extension to the attenuation-case is straightforward. We have:

E,0.5)] = [ PYA0.5) = 1Ty = sl (s1)ds
0
1)
= / PlYa(sy —d—€/2,81 —d+¢/2) = 1,Y1(0,0) = 1|Ty = s1]fr,(s1)dsq
s1—d+e/2
= / / N2 82—7' 81 — —G/Q)ZO,Nl(Sl—T,O):O,
s1—d—e/2

32 -7, 31) = 0|T1 = 51,1y = 52]fT2|T1(52|51)fT1(51)d52d51
s1—d+e/2
= / / —/\2 (s1—d—€/2—5247) —/\1(7—51)6_/\X(51+7—_52)

1— —d— 6/2
)\ e—AQ 50— 51-|—d-|—6/2))\ e AlsldS dSl

51— d—|—5/2
— / / AQT}\le—AlTG—Ax(Sl-I—T—SQ)d82d81
S

1— —d— 6/2
Axe
_ /\27')\ e—/\lﬂ' —/\X(T—I—d—I—E/Z)(S(e X — 1)

= e Y (5.32)
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Hence

erxe — 1

1
lim —FE[Y,(0,6)] = ev1y2 e Ax(THd+e/2), (5.33)

§—0 ¢ )\Xé

Using symmetry and the fact that = Y, + Y;, we have the following expression for the
mean number of delayed coincidences:
AXE

etxe —1
EY ()] = 267172tv6_AX(7+d+5/2). (5.34)

Hence in the presence of deadtime, the mean number of delayed coincidences is not exactly
the same as the mean number of prompt random coincidences Mgles$. Nevertheless,

sincee, d, andAy are usually very smallf)[Y ()] ~ 2ey172t.

5.5 Discussion

We have analyzed the mean and variance of recorded coincidence counts under various
scenarios. Under all these scenarios, the coincidence counting process is not Poisson, even
in the case of random coincidence counts recorded by ideal detectors. Nevertheless, we
have shown that the variance is very close to the mean for any detector pair. For non-ideal
detectors, the loss ratio of variance over méas approximately the expected number of
recorded events during the time inter¢@|27]. Unless the true coincidence rate is so high
thaté > 0, the ratio of variance over mean will be very close to 1. For coincidence counts
recorded by two detector elements in two different detector blacksgeven smaller, by
similar analyses as in Section 4.4. Hence it appears that statistical image reconstruction
based on Poisson models, while certainly not optimal, should be adequate in practice even
under fairly large deadtime losses, provided the deadtime loss factor is included in the
system matrix.

It is interesting to compare the coincidence counting process to the singles counting
process. Whereas deadtime causes the single photon counting process to be significantly
non-Poisson, in the sense that the variance of the process is significantly less than mean, the
variance of the coincidence counting process is extremely close to the mean from previous

analyses. The reason for this lies in the fact that the loss ratio of variance overgnisan,
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primarily determined by, (in addition tor), the instantaneous rate of the counting process
itself. In the single photon counting processis relatively large, but in the coincidence
counting processy is usually very small even though and~, (the rates of recorded
random single photons) may be very large. Thus deadtime causes significant loss in the
mean of the process, but not in the ratio of the variance over the mean.

A possible extension to this work is to take into account the fact thatvphiotons do
not necessarily arrive at the two detectors at exactly the same time, and furthermore, there
is uncertainty in the time-stamping of recorded singles[19]. It is plausible that due to this
uncertainty, some coincidences in the delayed window would be counted as coincidences
in the prompt window, andice versathough any sensibly designed system should make

the probability of such events extremely low.
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CHAPTER 6

Maximum Likelihood Transmission Image Reconstruction

for Overlapping Transmission Beams

6.1 Introduction

To reconstruct quantitatively accurate images of radioisotope emission distributions in
SPECT, one must compensate for the effects of photon absorption or attenuation. Accurate
attenuation correction requires good attenuation maps, and one can reconstruct such maps
from transmission scan measurements obtained either prior to or simultaneously with the
SPECT emission scan.

Several source/detector configurations for SPECT transmission scans have been investigated
including a single fixed line source opposite a symmetric fan-beam collimator, used in
triple-head SPECT cameras, a scanning line source for orthogonal dual-head cameras, and
offset line sources opposite asymmetric fan-beam collimators. Gallar[14] describe
an alternative geometry based on several fixed-position collimated line sources opposing
a parallel-beam collimator. In that system design, the source collimation was selected to
minimize overlap on the detector of the transmitted “fan-beams.” They then applied the
filtered back-projection (FBP) algorithm to reconstruct the attenuation map (an ART al-
gorithm was also mentioned without details). This source collimation has the undesirable
consequence of very nonuniform count profiles, as shown in Figure 4 of [14]. It is natural

to expect that higher and more uniform count profiles could lead to better reconstructed
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attenuation mapi$ the overlap can be properly modeled by the reconstruction method

In both the scanning line source geometry and the geometry of @el{14], there
can be overlap of the beam footprints, as illustrated in Figure 6.2. Previously published
statistical algorithms for transmission tomography, e.g. [30, 31, 56, 74, 57, 71, 39], are
inapplicable to the multiple source problem when the beams overlap. In this chapter we
formulate a statistical model for multiple-source transmission measurements with arbitrary
overlapping beams, and then derive an iterative algorithm for maximizing the likelihood
(or a regularized variant thereof). The log-likelihood is not necessarily globally concave,
which usually precludes proofs of convergence to a global maximum. The algorithm that
we present is guaranteed to increase the likelihood at every iteration, and the set of fixed
points of the algorithm is the same as the set of stationary points of the objective function.
The algorithm also satisfies the continuity conditions of Meyer [67]. Therefore, by the
convergence results in [67], the proposed algorithm produces a sequence of estimates that
converge from any nonnegative initial image to a stationary point of the objective, provided
the set of stationary points is not a continuum. This is nearly as strong of a convergence
result as one might expect for a possibly nonconcave objective function. In Section 6.2, we
give the statistical model and the proposed maximume-likelihood algorithm; in Section 6.3,
we present some simulation results; in Section 6.4, we present the results from our pre-
liminary study on optimal source collimation angles for a fixed system setup; and finally

Section 6.5 is discussion and conclusion.
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6.2 Statistical Model

Let Y; denote the number of photons counted by stihedetector elemehiduring the
transmission scan, far= 1,..., N, where/NV is the number of measurement elements.
Each detector element conceivably may count photons that originated in any/df the
sources. We assume that separate blank scans are available for each of the sources (or
source positions for a scanning line source). (This information is essential for unscrambling
the multiplexing of overlapping beams.) Lk, denote the mean number of photons that
would be observed during a transmission scan by:theletector originating in the:th
source in the absence of any patient in the scanner. Typically,tleewould be determined
by a periodically acquired calibrating “blank scan”, performed separately for each of the
M sources, and then scaled by the relative durations of the blank scan and transmission
scans. However, we ignore any statistical uncertainty irb{his and treat them as known
constants. This assumption is reasonable provided the blank scans are sufficiently lengthy.

Let u'™¢ = [ui™e, ..., )" denote the vector of unknown attenuation coefficients for
each of they pixels or voxels in the attenuation map (or the coefficients of some other basis
for the attenuation distribution such as B-splines [25]). The line integral betweentthe
source and théh detector location through the attenuating object is approximated by the
following sum:

P

(A7) = alu;,

7=1
whereA™ = {a7}} is a N x p matrix with nonnegative elements and #fg's represent
line-lengths or normalized strip-intersection afedus by Beer’s law the “survival prob-
ability” for a photon transmitted from thexth source in the direction of thedetector is

(approximatelyyxp(—[A™ p];).

We assume th&;’s have independent Poisson distributions:

Y: ~ Poisson{gi(gtrue)} )

'Each “detector element” corresponds to a unique radial position and view angle, i.e., for typical 2D
reconstructionN = N, Ny where N, is the number of radial samples along the detector &ads the
number of view angles or “steps.”

°Normalized by strip width
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where the means are given by

M
yi(p) = Z bim exp(—[A™" u];) | + 7. (6.1)

Ther;’s are nonnegative constants that one can include to account for the mean contribu-
tions of scatter, room background, and emission crosstalk[43]. We treattlseseknown
constants, though in practice they must be determined experimentally. However, since scat-
ter is a spatially smooth function, one can safely smooth scatter estimates fairly heavily, so
generally the uncertainty in the's can be made much smaller than that of Yfis.

The summation over: in (6.1) allows for arbitrary overlap of the beams transmitted
from each source. Non-overlapping beams would correspond to the assumption that if
bim # 0, thenb,, = 0 for all &£ # m,i.e.b;,,b;, = 0 forall &£ # m.

Under the above statistical model, given a particular measurement realizatien

[y1,...,yn]', we can write the log-likelihood fgi in the following convenient form:

L(p,Y) = Zhi (Z Uim(ﬂ)) . hi(t) = yilogt — 1, (6.2)

ignoring constants independentaf Since the form of this log-likelihood is sufficiently
different from the usual models for emission tomography and transmission tomography
[56], previously derived algorithms for maximum likelihood estimation are not directly
applicable to this problem.

One could easily derive an expectation-maximization (EM) algorithm [26] that would
monotonically increase the likelihodd ., Y') for this problem, generalizing [56]. How-
ever, the convergence would be as painfully slow and the M-step as difficult as the usual
transmission EM algorithm. Instead, we propose an algorithm based on an extension of our
recent work on paraboloidal surrogates methods [30, 31]. For even faster “convergence”
one could apply ordered subsets ideas [33].

Because of the ill-posedness of the reconstruction problem, a penalty term is usually

added to the likelihood to encourage piecewise smoothness in the reconstructed image,
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resulting in the following objective function:

Our goal is to produce a penalized-likelihood estimate:

[t = arg max ®(u, V). (6.4)

w>0

Most roughness penaltidg;.) can be expressed in the following general form:

R(p) =Y ul([Cple). (6.5)

where they,’s are potential functions acting as a norm on the “soft constraifis’~ 0
and K is the number of such constraints. The functignsve consider here are convex,

symmetric, nonnegative and differentiable [31].

6.3 Algorithm

We focus on the unregularized maximume-likelihood problem; the regularized approach
easily follows from [31]. Since maximizing the log-likelihood directly is difficult to do,
we apply the principle of optimization transfer [57, 4] and define a “surrogate function”
Q(u; 1) that is easier to maximize. Since this surrogate function depends on the previ-
ous estimate:" at thenth iteration, the algorithm consists of repeatedly maximizing the

surrogate function,e.

E”‘H = arg max Q(u; p"). (6.6)

uw>0
Note that the maximization is constrained to enforce the nonnegativity constraint. The key

algorithm design requirement is to cho@géunctions that satisfy the following conditions:

Q") = L(p",Y), Vu" >0 (6.7)
Q) dL ,
—— (5 1" = —(u Ni=1,...,p (6.8)
9#;‘( ) pmun 9#;‘( ) e

Qlusp") < L{pY), Vp = 0. (6.9)

These conditions ensure that the proposed iteration monotonically increases the likelihood.
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A difficulty in maximizing L is the sum overn within the logarithm in (6.2). To move
the summation outside of the logarithm, we first adapt De Pierro’s multiplicative convexity

trick [23]. Becausé:; is concave:

hf(Zuim@) - hf(Z @“’”fﬁ)yy) (6.10)

m=1 m=1 Yi i,
N m=1 yZ u?m ' 7
whereu?, 2 Ui ("), @Ndy? 2 y:(1"). This inequality leads to our first surrogate func-
tion:
A N M u” U )
RS 33 ( /) €32
=1 m=1 Uim
N M
uzm n
= D ) —mgn ([A™ ), (6.13)
i=1 m=1 Yi
where
Uim,
pn 2 g i
m un M

m

g (1) yilog (b2, e+l ) — (b e™ 407 ).

The surrogate functio@, remains too difficult to maximize directly because the argument
of eachh; still depends on,,, which has a complicated exponential form. However, it

follows easily from the results in [30, 31] that the following paraboloidal function is a valid

surrogate for),:
A N M u” N
Qalpsp) = 3 > k(A7 1)) = Qs ) (6.14)
i=1 m=1 “°
where
n AN n ) n n 1 n n \2
and



2
ﬁgim(l)
p
=A™ = ) Al

i=1

>

Gim (1)

To ensure (6.9), we must choose the curvatdrés} appropriately[30, 31]. As discussed

in [31], for the fastest convergence rate, we would like to choose the curvatures as small as
possible, subject to the constraint that the surrogate fungfjoties below the functions

g . For completeness, we include the following formula for the optimum curvatere,

el =min{c>0:g2 () <q? (I)VI >0} derived in [31]:

Tm

r n — g™ (7 an (1m ) (7
_QQZW(O) gzm( 2777’1;) —Iz_glm( zm)( zm) , lZ’Lm > 0
o= L (i) + (6.16)
2/(12,)%) 2, (1 = e~V — yilog 2T g pn o=t (g ) L e g
m m g n motm T m
- L o Yim im + (6.17)
1o —dvem [
], ;

where
_ A _n
Uiy = b0 el ol

Other curvature choices that lead to even faster convergence (but do not guarantee mono-
tonicity) can be found in [31].

Since our second surrogat® is a quadratic functional, it is easily maximized by a
variety of algorithms, including the coordinate ascent algorithm[74, 37]. Adding a penalty
function is straightforward. Howevet), is not separable and if we want to apply the

ordered subsets idea, we must have a separable surrogate function.

6.3.1 Separable Paraboloidal Surrogate Algorithm

Now we derive a separable paraboloidal surrogate algorithm; we do not use this al-
gorithm for the simulation described in this chapter since it converges very slowly even
though it is guaranteed to be monotonic. As noted by De Pierro in [23]:

A= 3 [ - )+ 147 619
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provided> "
of ¢» that

iy 21y = 1forallz andm. Thus ifz7 > 0 then it follows from the concavity

(A" > Z it (s — )+ 14700, (6.19)

1]
If we choose:[? = aff /", wherey” = > °_ al? (such thaty *_, af? /7" = 1 for all i
andm), then from (6.12) and (6.19) we obtain our third surrogate function as follows:

P
Z Z Z i g (7 (g — ) + [A™ ). (6.20)
1=1 m=1 j=1 yZ 72
This surrogate function is a quadratic form, and one that is trivial to maximize because it is

a separable function. The partial derivativegfare given as follows:

82 n uzmaz 72 o A n
—a—/ﬂ@:a(/l;/l ) = Z Z — e = 4 (i) (6.21)
J 1=1 m=1
a N M ur a™ N M ut amfym
g Qalin’) = > S im(lf) = > — il — 1(6.22)
J i — 2 2

0 0
L Qalps " = 2 wy) (623
oy el i) T oY) (629

Mg =y

uma” . 0 "
:ZZ = Gim (i, )_a—MQQ(’“‘”")

From the above expressions for the partial derivative@-pfthe unconstrained maximizer

p=p"

of Qs(u; 1) with regard tqu; is given by:

L0
di(p™) Ou;

pi+ Qs(p ") (6.24)

py=py

Since(); is separable and concave, the iterative algorithm for the maximizationsof
Pt = [+ D) TV L, Y )y, (6.25)

whereV’ = [8% . %]’ denotes the (column) gradient operatotl, = « for z > 0
and zero otherwise, anB(1") is ap x p diagonal matrix withjth diagonal entryl; (n").
The ordered subsets idea could also be easily applied to this algorithm [52, 32] and adding
regularization is straightforward as given in [32].

The iteration (6.25) monotonically increases the likelihood, however, it has very slow
convergence due to the small curvatures of the surrogate parabolas. Applying the ordered

subsets idea leads to faster “convergence” but monotonicity is no longer guaranteed.
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6.3.2 Coordinate Ascent Algorithm

To obtain a monotonic algorithm that converges relatively quickly, we can apply coor-
dinate ascent to the surrogdpedefined in (6.14)j.e., sequentially update one pixel at a
time while holding all other pixels fixed. First, we obtain the likelihood surrogate parabola

for a particular pixel with every other pixel value fixed:

An A ~ ~ ~ ~ n
Q7 (1) = QUi -+ s fljms fs fljgrs - ooy flp]s 1)
~ n YA ~ 1 n ~
= Qi p )+Qj(uj)(uj—Mj)—§dj(uj—uj)27 (6.26)

where: denotes the most recent estimate:of:; denotes thgth entry of/i, ¢ denotes
the estimate fop: after thenth iteration (with whichQ(-, ¢™) is constructed), an@;?(/,nj)

is treated as a function @f; only. The derivative of the likelihood surrogate parabola at

N M . X
=2 D Sraiilatallh,) = il = 5] (6.27)

py = =1 m=1 Y%

>

A N M .
&= ) ah)e, (6.28)

Extension to the penalized likelihood case is straightforward following the methods
in[30, 31], so we omit the details and only comment on notatioRs(;) denotes the
penalty surrogate parabola foy, andp; denotes its curvature. Combining the likelihood
surrogate parabolas in (6.26) and the penalty surrogate parabolas, the maximization step of
the coordinate ascent for pixgis:

~NEW ATL [ ( Q‘n(/jl/) — /BR](IL\L)
iy = argmax Q] (1j) = BRj(pj) = |f1; + = d» + Bp;

(6.29)
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Because of our construction based on surrogate functions that satisfy (6.9), this update is
guaranteed to monotonically increase the valu®ofOne iteration is finished when all
pixels are updated via (6.29) in a sequential order. We update the paraboloidal surrogate
function after one iteration of coordinate ascent (CA), although one could also perform
more than one CA iteration per surrogate. An outline of this algorithm is given in Table 6.1,
where;, denote the potential function used in the penalty acting as a norm on the “soft
constraints"Cy ~ 0, K is the number of such constraints, anddenotes the surrogate

function used for); see [31] for details about possible surrogate functions usegd,for

110



Initialize: i = FBP{log((XN_, bim)/(yi — i) }E, andls, = S0 altjiy,i=1,...
for each iteratiom = 1,. .., niter

Uiy = bime_[Aﬂ]i +ri/M
M

Y = Z bime_[Aﬂ]i +r;
m=1

b= Y b n Yi Ti
e T
Uim Uim

Computer;,,, according to (6.16)

Gim = Gim = | ————— = 1| Bl e fori = 1,..., N
byl v, ) |

forj=1,....p

MoNC
Q] — ZZ jma;r?%m
m=1 1=1 y
MoNC
d = 22 e n
m=1 1=1
p o=
) Q= B etnl[Cy
i g @ BT ei(cil)
d; + B, ¢ k([Calk) N
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Table 6.1: Algorithm outline
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6.4 Simulation Results

We compared the proposed reconstruction algorithm to the “conventional” reconstruc-
tion algorithms (statistical and FBP) that treat the transmission measurements simply as
ideal normalized parallel “strip-integrals”. The system geometry corresponded fairly closely
to the Siemengrofile™ system (Hoffman Estates, IL) [42]. The sources for the simulated
system consisted of a multiple line source array with 14 sources, unequally spaced, located
on a line parallel to the detector and 110 cm away from the detector plane. The detec-
tor plane was located 22 cm away from the center of rotation. We simulated a range of
source collimation angles, from6° (with almost no overlap in the transmission beams) to
6.6°, and disregarded detector collimation. The image consisted 128 pixels of size
3.56 x 3.56mm?. The sinogram size wags x 60 with detector bins of widtH.8mm (i.e,,
the simulated detector response was rectangular with widihm). We performed the
simulation for two levels of transmitted counts, one corresponding to a system whose cen-
ter rods have just been replaced (the new source case), and the other with sources that have
all decayed by one half-life (the old source case)l At, we simulated 321,000 transmit-
ted counts for the new source case (160,000 counts for the old source case), and 263,000
background counts (on average). As the source collimation angle increases, the number
of transmitted counts increases, naturally, but the number of background counts remains
the same; a?.6°, there are 523,000 transmitted counts for the new source case (261,000
counts for the old source case); and &P, there are 1,396,000 transmitted counts for the
new source case. For simplicity, we used a space-invariant quadratic penalty over first-
order neighbors throughout our simulations. The phantom used in our simulations, the ROI
used for the evaluation of variance in Section 6.5 (outlined by solid lines), and the large
region used for the evaluation of spatial resolution (outlined by dashed lines) are shown in
Figure 6.1. Figure 6.2 illustrates the system setup. The radial distribution of blank counts

(at any projection angle) is shown in Figure 6.3.
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Figure 6.1: Digital Phantom used in our simulations and the ROI used for collimation angle
optimization.
Sources
® o

Detectors

Figure 6.2: Scaled illustration of the system setup; the two fan-beams on the left have

collimation angle2.6°; the two fan-beams on the right side have collimation angle
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Figure 6.3: Distribution of blank counts (a) collimation anglé° (b) collimation angle
5.6°.

Figures 6.4 and 6.5 show reconstructions of noisy data using FBP, the parallel algo-
rithm?, and the proposed algorithm, with new sources. Figure 6.4 shows reconstructions
with 2.6° source collimation and Figure 6.5 shows reconstructions Svithsource colli-
mation. Figures 6.6 and 6.7 show the same reconstructions with old sources. The spatial
resolution of the images in these figures is 4.7 pixels on the top row and 6.8 pixels on the
bottom row. We use the following simple method to determine the resolution of a particular
(noiseless) reconstruction. Given the ideal imag# and the reconstructed imageising

ideal data:

fr = arg max & (u, g;(p"™)), (6.30)
w>0

we define the resolution ¢f to be:

argmin, Y [[Gop™); = fiy|’

JER

whereG, represents a Gaussian smoothing filter with FWHNnd theR is a large region

(6.31)

encompassing both the right lung and our ROI as illustrated in Figure 6.1.
We observe from Figures 6.4-6.7 that the proposed algorithm consistently produces

less noisy reconstructions than both the parallel algorithm and FBP (this conclusion from

3We refer to the penalized-likelihood reconstruction assuming ideal normalized parallel “strip-integrals”
(and ignoring beam overlap) as the parallel algorithm.
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anecdotal evidence will be confirmed in Section 6.5). The noise reduction is especially
significant when the collimation angle is large( 3.6°) and the desired spatial resolution

is high (.e, 4.7 pixels). In such cases, FBP simply cannot produce a reconstructed image
of the desired resolution even with an unapodized ramp filter. Since the parallel algorithm
is based on an incorrect system and statistical model, one expects artifacts due to model
mismatch. The absence of apparent artifacts in Figures 6.4-6.7 is due to regularization
and noise. Figure 6.8 shows the reconstructed images from noiseless.@fatal{imation

angle) using the parallel and proposed algorithms with almost no regularizatior{ ).

The reconstructed image from noiseless data using the parallel algorithm shows severe
artifacts resulting from model mismatch, which are absent in the reconstructed image from
noiseless data using the proposed algorithm (Figure 6.8c).

As the collimation angle increases, the artifacts generated by the parallel algorithm
worsen. In fact, even the noiseless reconstruction has a spatial resolution of about 5.6 pixels
when the collimation angle is6° (Figure 6.84), and at6.6°, the noiseless reconstruction
has a spatial resolution of 7.7 pixels. Thus for system setups with significantly overlap-
ping transmission beams, the parallel algorithm simply cannot produce a high-resolution

reconstruction, no matter how many counts one collects.

4The noiseless reconstruction (Figure 6.8c) using the proposed algorithm has a spatial resolution of 1.4
pixels.
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FBP Parallel algorithm Proposed algorithm

PP®

Figure 6.4: New sources; collimation angte6°; 785,000 counts; top row: resolution 4.7

pixels; bottom row, resolution 6.8 pixels.

FBP Parallel algorithm Proposed algorithm

PP

Figure 6.5: New sources; collimation angbe6°; 994,000 counts; top row: resolution 4.7
pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not achievable

with FBP in this case.
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FBP Parallel algorithm Proposed algorithm

Figure 6.6: Old sources; collimation angte6°; 392,000 counts; top row: resolution 4.7

pixels; bottom row, resolution 6.8 pixels.

FBP Parallel algorithm Proposed algorithm

Figure 6.7: Old sources; collimation anglet6°; 497,000 counts; top row: resolution 4.7
pixels; bottom row, resolution 6.8 pixels. A resolution of 4.7 pixels was not achievable

with FBP in this case.
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Figure 6.8: Reconstruction using the parallel and proposed algorithms with almost no reg-

ularization; collimation anglé.6° (a) (b) Parallel algorithm (c) (d) Proposed algorithm.
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6.5 Collimation Angle Optimization

We performed a preliminary study of the optimal source collimation angle given that the
system configuration, source strength, and background counts remain constant. As source
collimators open up,e., the collimation angle increases, there would be more counts, but
there would also be more overlap of transmission beams. Hence initially, when the trans-
mission beams widen from no overlap to some overlap, we expect better resolution/variance
tradeoffs; however, as the transmission beams open up more and more, we expect less and
less improvements, and eventually worse resolution/variance tradeoff since eventually each
detected photon hitting will yield very little information about where it originated. We
want to obtain the collimation angle that minimizes a region of interest (ROI) variance for
a fixed spatial resolution. We investigated the proposed algorithm, the parallel algorithm
(i.e., the conventional statistical algorithm), and FBP (derived assuming ideal parallel “line-
integrals”). For the statistical algorithms, instead of performing numerical simulations, we
used the approach outlined in [38] to compute the variance of the ROI. For FBP, since
numerical simulations are relatively inexpensive, we performed 2000 realizations for each
data point.

The approximate covariance for an implicitly defined biased estimator is[38]:
Cov(ft) m [V (i1, y)] 'V O(fi, y) Cov{Y HV @ (1, y)) [-V* (11, y)] ", (6.32)

wherey: is defined in (6.30). We first derivé*°® (., Y) andV® (g, Y), which are needed

for computing the variance of a ROI for the proposed algorithm. Defining

Pim(it) 2 bige o (6.33)
M
gilp) = D pimlp) + 70, (6.34)
m=1
then
Opim (1) dyi ()
= —a"pim(p) = ) 6.35
o " pim (0) o (6.35)
Since
N
LwY) = ) wiloggi(u) — 5iln). (6.36)
=1
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we have

_ N
IL(p,Y) yz Oyi(pr) — Owi(p) _ 3 (1 Y )

5/@ — yi(p) 5#; I,

and, applying the chain rule:

PLY) Sy alipim(p)
owidyi— wlp) (6.38)
PLY) 0 v\ L
g = a2 (1 7))

N ' M

= -2 (1= 5) X et
Z§1 | . m=1 Ny
_Z yf(;) (Z a?;Pim(/«L)) (Z a%pm(u)) : (6.39)

A A . m
LetC() = {eij(u)}, wherec; (1) = S0 apl (1) SOC(i) = Yoo, diag{p! (1)} A™.
Then we obtain:

VHO(p,Y) = —C(u)diag{1/g:(n)} (6.40)
—VP00(p,Y) = ) (A™)diag{(gi(i) —ri)(1 = yi/Gi(p)) }A™
+TC(p) diag{y; /97 (1) }C (1) + BR(p), (6.41)

whereR(u) = V2R(u). (For a detailed derivation of the penalty part, see [38].) We use
the following recipe to compute the approximate estimator (using the proposed algorithm)

variance of a ROI:
(i) Computei: by applying the proposed algorithm to noise-free daté.¢)};
(i) Forward projecyi to computey;(ji) = S pin (1) + r4;

(i) Use an iterative method such as conjugate gradient [91] or Gauss-Siedel [18]
to solve
[—=V20(j1, §)]ulOt = ROl whereeR©l is a vector with entried /ngo; for
pixels inside the region and zeros for pixels outsigg;; denotes the number

of pixels in the ROI,
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(iv) Compute(u"°NYV1® (i, y)Cov{Y HVH®(j1, y))'uR Ot by first forward pro-
jectingu*°! to computer = diag{1/y:(;z) }C(j2)u°!, and then summing:

N
Var(ifh) & Y ofyi(p™). (6.42)

=1

For the parallel algorithm, the computation of the approximate variance has been out-
lined in [38], except that we us€ov(Y') = diag{y;(x™)} in (23) of [38], wherey; is
based on the overlapping beam model (6.34) rather than the parallel strip-integral model of
[38].

We analyzed the resolution/variance tradeoffs for the ROI illustrated in Figure 6.1: it
is a2 x 9 region that goes across the boundary of the soft tissue, the lung, and the heart.
We performed the analysis at two levels of transmitted counts, one with new sources (the
high count case) and the other with old sources (the low count cese)the same as
was done for Section 6.4. The background count level for both cases remains the same
throughout. We only discuss the high count case; the low count case gives similar results.
Figures 6.9 and 6.10 show the resolution/variance curves of the proposed algorithm and the
parallel algorithm, respectively, for various collimation angles ranging fidih to 6.6°.

Based on these two figures, we calculated (using cubic spline interpolation when needed)
the variances of the ROI versus collimation angle at two fixed resolutions: 4.7 pixels and
6.8 pixels, as shown in Figures 6.11 and 6.12. The proposed algorithm outperforms the
parallel algorithm which in turn outperforms FBP at both resolutions, and at all collimation
angles. The performance gain of the proposed algorithm over the parallel algorithm is more
impressive at larger collimation anglesg, more thare.5°. Using the proposed algorithm,

it seems that the optimal collimation angle for a resolution of 4.7 pixels is arbyrahd

> 7° for a resolution of 6.8 pixels, both much larger than typical collimation angles found
on SPECT cameras. However, if the suboptimal parallel algorithm were used for recon-
struction, then the optimal collimation angle wouldhé° for a resolution of 4.7 pixels,
and4.1° for a resolution of 6.8 pixels. Even though the optimal collimation angle for the
parallel algorithm is closer to what is typically found on SPECT cameras than the proposed
algorithm, the proposed algorithm outperforms the parallel algorithm at all collimation an-

gles. Furthermore, for collimation angles larger tBait, a resolution requirement of 4.7
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pixels would probably mean very high variances in the parallel reconstruction. Figure 6.13
shows the optimal collimation angle for the proposed and parallel algorithms at different
desired spatial resolutions. Naturally, as the desired spatial resolution improves, the opti-
mal collimation angle decreases. Figure 6.14 shows the minimum achievable normalized
standard deviation for the the proposed and parallel algorithms at different desired spa-
tial resolutions. As expected, the proposed algorithm consistently outperforms the parallel

algorithm, resulting in reduction in the standard deviation by as much as 40%.
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Figure 6.9: High count case: ROI resolution/variance curves for the proposed algorithm.
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Figure 6.10: High count case: ROI resolution/variance curves for the parallel algorithm.
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Figure 6.11: High count case: ROI variances at desired spatial resolution 4.7 pixels.
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6.6 Discussion and Conclusion

We have presented a new algorithm for statistical image reconstruction of attenuation
maps that explicitly accounts for overlapping beams in transmission scans; an example of
such a system can be found in [15]. The algorithm is guaranteed to monotonically increase
the objective function at each iteration, and consistently achieves better variance/resolution
tradeoffs than “conventional” image reconstruction algorithms, both statistical (the parallel
algorithm) and non-statistical (FBP).

From our preliminary study on the optimal collimation angle, we find that it is desir-
able to open up the source collimators and allow beam overlap — provided the overlap
is modeled appropriately in the reconstruction algorithm. (This conclusion applies to our
ideal simulation settings where system geometry is known perfectly. Robustness of the
proposed algorithm to model mismatch needs investigation.) However, detector collima-
tion currently limits usable source collimation angle$t@.6°, so alternatives to widening
source collimation are needed to improve the counting statistics on this system.

The proposed algorithm is more time-consuming and uses more memory than conven-
tional statistical algorithms. For our simulations, we used 14 system matrices (one for each
source) with appropriate collimation angles. The system matrices with collimation angle
2.6° occupy 20 MBytes of disk space, and the system matrices with collimation @hgle
occupy 50 MBytes of disk space, compared to 8 MBytes occupied a single system matrix
used by the parallel algorithm. It also takes longer to project or backproject an image in
the proposed algorithm than the parallel algorithm; in fact, for collimation ahgteeach
iteration of the proposed algorithm takes about 1.9 seconds, compared to about 0.8 seconds
needed for the parallel algorithm, on a Sun Ultra2 workstation. Furthermore, because of the
overlap between transmission beams, the convergence rate of the proposed algorithmis also
slower than the parallel algorithm; as the overlap between transmission beams increases,
i.e, the collimation angle gets larger, the curvatusgsas given in (6.16) get larger, hence
the convergence rate becomes even slower. In fact, if one goes from a collimation angle
of 1.6° to 5.6°, the average curvature of the surrogate parabolas increases by a factor of

3. With regard to the number of iterations necessary for convergéecethe smallest
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n such thatd (") — ®(u°) > 0.999 [®(n*) — ®(°)], whered(u*) is the largest objec-

tive value obtained in 40 iterations, the parallel algorithm required 22 iterations and the
proposed algorithm required 30 iterations for collimation arxgéé and a desired spatial
resolution of4.7 pixels. Hence the total amount time required by the proposed algorithm
would be 3.3 times that of the parallel algorithm for collimation angté and a desired

spatial resolution ot.7 pixels.
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CHAPTER 7

Conclusion and Future Work

7.1 Edge-Preserving Tomographic Reconstruction With Non-
local Regularization

In this part of our work, we presented a new regularization method for tomographic
image reconstruction based on a nonlocal penalty function. The nonlocal penalty pro-
duces transmission reconstructions with better ROI bias/variance tradeoffs than a local Hu-
ber penalty. When these transmission reconstructions are applied to ideal emission data,
the nonlocal penalty used for transmission reconstruction produces emission images with
smaller variances (for a fixed spatial resolution) for most pixels in the imagdrom 80%
to 85%; the median standard deviation in the image is reduced by 35% to 50%.

The future work in this part should focus on the criterion upon whichitifienctions
are selected, during both the intermediate and the final stage(s) of the deterministic anneal-
ing process. The findl function one uses controls the transition in pixel values between
neighboring regions. Different functions will result in very different resolutions in the
reconstructed image, at least near the region boundaries. Knowledge of the resolutions of
the reconstructed image is critical to the application of the attenuation coefficient maps to
the emission reconstruction. Secondly, the selectionfahctions during the intermediate
stages of the annealing process will affect how fast the algorithm converges and also how

“good” a local minimum the algorithm finds. Presumably, the slower the annealing pro-
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cess, the “better” the local minimum reached by the algorithm. However, one must balance
between the desire for a good local minimum and the practical concern of how long in time
the algorithm will be run. A study of the what sort bffunctions and how fast to evolve
these functions will be useful if this algorithm is eventually to be used in clinical situations.

As we discussed in Section 3.3.1, the arc-length penalty tarim (3.39) favors a
shorter curve, and hence causes a bias in the boundary extraction. Even though our sim-
ulation showed this bias is negligible, a more theoretically satisfying way to resolve this
issue is to replace the curve-length term with a penalty that does not favor a shorter curve,
e.g[96],

BT = [ S0al(Tay P+l ) Pl 1)

Tx(p)

which can be minimized by steepest descent:

dl'y, dJ1

dat T or =1 (Tk)pp + 112(Lk ) pppps (7.2)

even though the implementation of the fourth derivative will be numerically problematic.
Finally, an analysis of the resolution/noise property of the proposed penalty, though

difficult, will be very useful toward clinical application of the proposed penalty.

7.2 Counting Statistics Affected by Deadtime

In this part of our work, we made original contributions to the fundamental understand-
ing of the random process, by proposing a new method of deriving its moments. However,
this method, in practice, is only useful for the first and second moments; the derivation
of higher moments turns out to be very time-consuming (even prohibitive once 4th or 5th
moment is reached) for any reasonable complicated deadtime models. Nevertheless, we
derivedrigorously, the first and second moments of a number of counting processes, both
single and coincidence; most of these expressions are hitherto unknown. Of course, we
have just began to scratch the surface of this very difficult problem; a great deal more,
including completely new methodologies, may be needed before we can achieve a good

understanding of the nature of the process.
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Most of the possible future work in the part involves applying the proposed method
to more complicated deadtime modedgy, where the deadtime is stochastic instead of
pre-determined, or the time-stamping of recorded singles has random errors. Furthermore,
as we pointed out in Section 4.4, the effect of possibly-not-so-small correlation coefficient
between the sum of one group of detectors and the sum of all other detectors in the block

on the reconstructed images should be studied.

7.3 Maximum Likelihood Transmission Image Reconstruc-
tion for Overlapping Transmission Beams

In this final part of our work, we presented a new algorithm for statistical image recon-
struction of attenuation maps that explicitly accounts for overlapping beams in transmission
scans. The algorithm is guaranteed to monotonically increase the objective function at each
iteration, and consistently achieves better variance/resolution tradeoffs than “conventional”
image reconstruction algorithms, both statistical (the parallel algorithm) and non-statistical
(FBP). We also found that it is desirable to open up the source collimators and allow beam
overlap — provided the overlap is modeled appropriately in the reconstruction algorithm.
However, the convergence speed of the proposed algorithm depends on the amount of the
overlap between transmission beams — this effect should be studied. One should also study
the robustness of the proposed algorithm to model mismatch. Because the proposed al-
gorithm allows for wider source collimation (but detector collimation currently limits how
wide the source collimators open up), a system design that involves transmission sources
with energies high enough to penetrate the detector collimators should be studied. Fi-
nally, the collimation angle optimization in Section 6.5 are performed assuming quadratic
penalties; a similar study on the optimal collimation angle should be done assuming the
non-quadratic penalties, or even the non-local penalty proposed in Chapter 3.

This work can also be applicable to the problem of the sourceless attenuation correction[40],
i.e, completely avoid transmission scans and extract the attenuation map directly from the

noisyemission projections. Because of the extreme ill-posedness of this problem, a strong
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regularizing penalty, such as the non-local penalty proposed in Chapter 3, may be needed.
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APPENDIX A

Deadtime Analysis: Variance Derivation for Deadtime

Model II

We derive the variance df (¢) for deadtime model Il, the paralyzable model. We first
derive3(0, s). We consider two cases.

Casel:0<s<T

We pické such that < 6 < s < s+ < 7. Two recorded events cannot correspond to
photons that arrived within of each other. Hence for< s < =, E[Y(0,4)Y (s, s+ §)] =
0, and by the definition given in (4.6)(0, s) = 0.

CASE2: 7 < s <t

We pick ¢ such thaty < r ands + 4§ < tandé < s — 7. Fors > 7, Y(0,4) and
Y (s, s+ 0) are statistically independent, since the event “there is an arrival diring is
statistically independent from the event “there is an arrival dufing + )", because they

are at least apart in timé. Hence by (4.26),
EIY(0,8)Y (5,54 68)] = E*[Y(0,68)] = (A\Se™*7)?, (A1)
and

B(0,5) = (e )2, (A2)

LI there is one arrival each durin(@, 6], (s/2, s/2 + 4], and(s, s + 4], thenY (0, §)Y (s, s + ) = 0; but
loss of the photon that arrived duririg, s + ¢] is due to the arrival durings/2, s/2 4 ¢]; whether there is
any arrival during0, 4] is independent of whether the arrival durifsgs + J] is recorded.
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Combining the above two cases and using (4.25) yields

E[Y?(1)]

vt + 2 /t(t — 3)()\6_M)2d5
= Me M [t —1)(Ae™ )] (A.3)

UsingVar[Y (¢)] = E[Y?2(t)]— E*[Y ()], with (4.28) and (A.3), and simplifying yields (4.30).
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APPENDIX B

Deadtime Analysis: Variance Derivation for Deadtime

Model Il

We derive the variance df (¢) for the type Il deadtime model. Again, we first derive
the correlation functiog¥(0, s). This derivation is more complicated than the type Il model,
due to the fact that if two photons arrive at timgsands, respectively and < s, — s <
27, then(s; — 7,81+ 7) N (sg — 7,89 + 7) # D andY (sy, 51 + 6) andY (sq, s2 + ¢) would
both depend on what happens during — 7,51 + 7).

Casel:0<s<T

We pické such that < 6 < s < s+ < 7. Two recorded events cannot correspond to
photons that arrived within of each other. Hence for< s < =, E[Y(0,4)Y (s, s+ §)] =
0, andj(0,s) = 0.

CASE2: 7 < s <271

We pické such thats + 6 < 27 (henced < 1) andd < s — 7. As discussed above,
forT < s < 27,Y(0,0) andY'(s, s + ) will be statistically dependent. If there is exactly
one photon arrival each durin@, 6] and(s, s + d] at times; ands, respectively, then both
events will be recorded if and only if there is no arrival duriisg — 7, s1), (s1,s2), Of
(82,82 + 7] (SINCET < 89 — 81 < 27, (81,81 + T) U (82 — 7, 89) = (1, $2).) Hence,

E[Y(0,0)Y(s,s+6)]
= P[Y(0,6)=1,Y(s,s+0) =1]

) )
= / / Plno arrival during(s; — 7,0), or (s1,5), or (s2, 83 + 7]
o Jo
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fr,(s1) fr, (s2)ds1dss
1) 1)
B / / eI M o) AT\ N N2 g s,

— —/\27)\2 —/\s/ / As1 —/\52d81d82

— (6 2 —/\ 27'-|—s-|—5 (Bl)
and
B(0,5) = A2e M), (B.2)

CASE3: 27 < s < ¢

We pickd such that < 2r ands+ 6 < tandé < s —27. For2r < s < t,Y(0,4) and
Y (s, s+ 0) are statistically independent, since the event “there is an arrival diring is
statistically independent from the event “there is an arrival dufing + )", because they

are at leastr apartin time. Thus
EIY(0,8)Y (s,s 4+ 8)] = E*[Y(0,8)] = (ASe™**7)?, (B.3)
and

B(0,5) = (A7), (B.4)

Combining the above three cases and using (4.25) yields

t

2T
b+ 2/ (t— S))\2€_/\(2T+S)d8 + 2/ (t— 5)()\6_A27)2d5
T 2

T

= Me N7 26_4/\7(1 — At +2A7) + 26_3/\7()\t — AT —1)

+[(t = 27)(Ae™ )] (B.5)

E[Y?(1)]

Simple algebra leads to (4.37).
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APPENDIX C

Deadtime Analysis: Mean Derivation for Inhomogeneous

Arrival Process

Due to the decay of an isotope photon source, the photon arrival process is not ex-
actly homogeneous. In medical imaging, the arrival rates are inhomogeneous due to radio-
tracer dynamics. In this section, we deriigY (¢)] for paralyzable deadtime modgehs-
suming only that the instantaneous photon arrival pdte is continuous. This relaxes
the assumption made in Section 4.2 thais constant. For an inhomogeneous process,
ElY(s,s+d)] # E[Y(0,9)] in general. First we observe that the waiting time for the first

photon arrival after time, denoted/’, has the following distribution:

Fr,(r)=P[Ty <r]=1-=P[Ty >r]=1-=P[N(s,r) =0]

=1 — ¢ S M (C.1)
Hence forr > s,
fr(r) = diiFTl(r) = M(r)e Ji Mada, (C.2)
For0 < 6 < 7, we have:
E[Y(s,s+0)] = P[Y(s,s4+¢)=1]

s+4
= / P[Y (s,s +¢) = 1Ty = r]fr,(r)dr

s+4
= / PIN(r —7,s) = 0] fr,(r)dr

!Extension to the type Il deadtime model is straightforward.
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s+4&
_ / e Jror Ma)da A(r)e” I Maz)daz g,
Ss—I—S ,
= / A(r)e™ - Mgy (C.3)
Since) is continuous, and~ J7—- M) i continuous i, we conclude:
(s) = As)e™ Jomr A2, (C.4)
Hencé
t
EY(t)] = / A(s)e” Joio Maydag g (C.5)
0
If 7 is small relative to variations i, then[” _A(q)dg ~ A(s)7, SO
t
EY(1)] = / )\(S)G_A(S)Tds. (C.6)
0

This approximation can be applied to other deadtime models as well. Similarly, the second

moment ofY” is:

E[Y?(t)] = E[Y ()] + 2/0 /+ Y(81)7(82)ds2ds;. (C.7)

2In fact, it is unnecessarily restrictive to limitto continuous functions; all we need is thais integrable
and bounded ove), t]. If A is integrable or0, ¢], thenA, (r) = A(r)e™ /-~ M99 is integrable or{0, t];
then almost every point d6, ¢] is a Lebesgue point of; [10, Theorem 7.40]; and if is a Lebesgue point of

s+
A1, thenlims_, o Mw = A1(s)[10, Theorem 7.39].
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APPENDIX D

Deadtime Analysis: Partial Derivation of Variance for the

Coincidence Process with Ideal Detectors

We derive3(0, s) (for 0 < s < ¢) of the random coincidence process with ideal detec-

tors. We have

E[Y(0,8)Y (s,54+8)] = E[(Ya(0,8) 4+ Y3(0,8))(Ya(s, s+ 8) + Yi(s,5 4+ 6))]
= E[Y(0,0)Ya(s, s +0)] + E[Ya(0,0)Yi(s, s + )]
+E[Y3(0,8)Ya(s, s + 6)] + E[Y3(0,8)Y3(s,s + 6)]. (D.1)

We pickd such that
0<di<s<s+d<e, (D.2)
hencevs; € (0,9],Vs2 € (5,54 6],0 < s2 — 51 < e. We deriveE[Y,(0,6)Y,(s, s+ 9)]:

(s, 4+ 9)]X:1(0,6) =1, X1(s,s +6) = 1]

s—|—5
// Ya(s,s+0)|X1(0,0) =1, X1(s,s+ ) =1,
T171 = Sl,TLQ = 82]/5 dSQdSl, (D3)

whereT’ ; and7) , denote the time of the recorded singles events at detector 1 dariflg
and(s, s + 4], respectively. Fog; € (0, 6] andsy € (s, s + d], sinces; > sy — ¢, we have

(see Figure D.1):
[ (0 (S) (S S—|—(S)|X1(O (S)—le(S S—|—(S)—1T11—81,T12—82]
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= FE[Xa(s1 —€,81)Xa(s2 — €, 52)]
= E[(Xa(s1 — 6,82 —€) + Xa(s2 —€,51))(Xa(s2 — €, 81) + Xa(s1, 52))]
= FE[Xa(s1 — 6,80 — €)Xa(s2 — €,81) + Xa(s1 — €, 85 — €) Xa(51, 82)
+ X7 (s —€,81) + TSz — € 51)X2(51,52)]
= (52— s1)(e—sa+s1) +73(52 — 51)°

+(v5 (€ — 524 51)% + yale — s+ 51)) + v5(c — 52+ 51) (52 — 51)

= (126)* + 12(e — (s2 — 51)). (D.4)
51 52 Detector 1
——
Detector 2
{ | — | — >-
e / 5
sy —e  (0,0] (5,5 4]

Figure D.1: Graphic aid foE[Y,(0,0)Y,(s,s + 6)|.X1(0,6) = 1, Xi(s,s+6) = 1,1y, =
51,T1,2 = 52]

Integrating (D.3) yields:

E[Ya(0,0)Ya(s, s + 0)|X1(0,6) = 1, Xi(s,5 +6) = 1] = (12¢)* + 12(¢ —5).  (D.5)

By total probability:

E[Y,(0,8)Y.(s,s +4)] = i E[Y.(0,8)Y.(s, s + )| X1(0,8) = k, Xy (5,5 + 8) = []
CPX1(0,6) = . Xy (5,5 + 8) = I]. (D.6)

Whenk + [ > 3,
E[Ya(0,6)Ya(s. 5+ 6)|X1(0,6) = k. Xy(s,5+ 8) = ] < 43(s + 6 + )%ki, (D7)

hence,
N EL(0,6)Yi(s, s+ 8)[X1(0,8) = b, Xy (5,54 8) = ]

k1=0,k+1>3
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X P[X1(0,6) = k, X;(s,5 4 ) =[]
= E[Y,(0, 5) (5,8 +0)[X1(0,0) = 2, X (5,54 8) = 1]P[X1(0,6) = 2, X; (5,5 4 §) = 1]
—|—ZZE Ya(s,s 4 0)|X1(0,8) =k, X1(s,5 4+ 8) =]

k=1 [=2

< PX1(0,8) = k, Xi(s,5+8) =]

IA

272(5—|—5—|—6) P[X1(0,6) = 2]P[X1(s, s+ 0) = 1]

+ZZ’73<8 + 6+ €)*kIP[X,(s,5 + 8) = 1].

k=1 [=2
Since bOch:Zo:1 Y2(s+ 5+ €)kP[X1(0,6) = k] ande; Y2(s+d+€)IP[X1(s,54+6) =1

converge absolutely, by Merten’s Theorem [62],

o0

> E[YL(0,6)Ya(s,s 4+ 8)|X1(0,8) = k, Xy (s, 5+ 8) =[]

E,1=0,k+1>3

< P[X1(0,8) = k, Xi(s,5 +8) = ]

IA

272(5—|—5—|—6) P[X1(0,6) =2]P[Xi(s,s +0) =1]+ (Z’yg s+0+ ek

P[X1(0,6) = k]) (i Y2(s + 6 + e)IP[X1(s,s+ ) = l]) : (D.8)

(=2

Applying LDCT to (D.8), we have by similar argument as (5.3):

im— N BYL0,8)a(s,s + 6)[X1(0,8) = k, Xy (5,5 +8) = 1
k=0, k-+1>3
CPX1(0,6) = k, X1(s,5+8) =] =0.  (D.9)
Hence by (D.5) and (D.6), fdr < s < «,

EYa(0,0)Ya(s, s + 9)] [(126)* + 92(€ = 9)[P[Xi(s, 5 + 6) = X,(0,6) = 1]

o 5 R 5 i
_ i 026" A+ 72(e — s)][e=*" (691)]?
50 62
= (en72)" +7172(e — 9). (D.10)

Now we deriveE[Y;(0,0)Y,(s,s + §)] by similar methods. Lef;; and7; , denote
the time of the recorded singles events by detector 2 duifing and by detector 1 during
(s,s + 9], respectively. We have (see Figure D.2):

D/b(o (S) (S S—|—(S)|X2(O (S) —1 Xl(S S—|—(S) —1 T21 = 81,T12 = 82]
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52 Detector 1

1 °1
P
Detector 2
w —
S9 — € T \_K

(0,9]  (s,8 4]

Figure D.2: Graphic aid foE[Y;(0,6)Y,(s,s 4+ 0)|X1(0,0) = 1, Xy (s,s +0) = 1,15, =

51,T1,2 = 52]
= E[Xl(Sl — G,Sl)XQ(SQ — 6,82)|X2(0,(S) = 1,X1(S,S —|— (S) = 1,T271 = Sl,TLQ = 82]
= E[Xl(Sl — 6,81)|X1(S,S —|— (S) = 1,T172 = 82] . E[XQ(SQ — 6,82)|X2(0,(S) = 1,T271 = 81]
= (me)E[Xa(s2 —€,0) + 1 + X3(d, s2)]
= (me(l +12(e—9)). (D.11)

Since this is independent of ands,, the integral as in (D.3) is identical to (D.11). Fur-

thermore, since

> EY0,6)Ya(s,s 4 6)[X1(0.6) =k, Xi(s, s+ 6) =[]
Ek,1=0,k+1>3
< P[X1(0,8) = k, X1(s,s + &) =]
< Y (kFmls+ 6+ €)*kIP[X1(0,8) =k, Xi(s, 5+ 8) =], (D.12)
Ek,1=0,k+1>3

by a similar argument made in (D.8), we have

o0

o1
i 3 EN(0,8)Yils,s + )X (0,6) = b, X (5,54 6) = ]
k=0,k+1>3

<P[X1(0,8) = k, Xi(s,5 +6) =[]
= 0. (D.13)

Thus following (D.10),
E[Y;(0,6)Y, (5,54 9)]

lim 52 = (emm2)® +7imnee (D.14)
By symmetry, from (D.10) and (D.14):
. E[Y3(0,0)Yy(s,s 46

fim PN £ O] ()2 4 20(c— ) (D.15)

§—0 62
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L E[YL(0,8)Yi(s. s +0)]

§—0 62

= (em72)* + vame (D.16)

Hence combining (D.10), (D.14), (D.15), and (D.16), we obtairdfer s < «,

B(0,5) = (2e9172)% + (11 4+ 72)1172(2€ — ). (D.17)
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APPENDIX E

Deadtime Analysis: Partial Derivation of Variance for the

Coincidence Process with Non-ideal Detectors

We derive3(0, s) (for 7 < s < 7 + ¢) of the random coincidence process with non-
ideal detectors. We pick < min(s,7 + ¢ — s, s — 7), which respectively ensures that
(0,6]N (8,8 4+ =0,82—s1 <7+¢ andsy — sy > 7,Vs; € (0,6], Vsy € (5,8 + 4].
Following (D.1) and (D.3),

(s,8+0)|Y1(0,98) = 1,Yi(s, s+ 0) = 1]

s—|—5
// 0,0)Ya(s,s 4+ )|¥1(0,8) = 1,Yi(s, s+ 9) = 1,
T1,1 = 51,T1,2 = 52]/5 dsydsy,

whereT ; andT , are defined as in (D.3). We defifig to be the time of the first photon
arrival afters; — ¢, and7; ; to be the time of the first photon arrival aftey — ¢, both at

detector 2. (If/;; > s; — ¢, thenTy ; = T3 5.) We have (see Figure E.1):

E1Y.(0,0)Y.(s,s 4+ )[Y1(0,6) = 1,Yi(s, s+ 8) = 1,111 = 51, T1 2 = $3]

PlYa(s1 —€,81) = 1, Ya(s2 — €, 82) = 1]

= /51 /52 PlYa(s1 —€,81) = 1,Ya(s2 —€,82) = 1|Ta1 = 83, T22 = 34
;}T; 5524)EfT2 (83)dsadss

= / / P[Ny(s3 — 7,81 —€) = 0, Na(s4 — 7,82 — €) = 0|T21 = 83,129 = 84]
><SfT272(8324)EfT271(53)d54d33
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= / / NQSg—TSl—G)—O N2(84—T82—6)—0|T21—83,T22—S4]
><fT22(S4)fT2 1(53)d‘94d‘93 + / P[NQ(S?) - T,81 — 6) = 07
Nz S4 — 7,82 — 6) = 0|T2 1= 537T2 2 = S4]fT22(54)fT2 1(53)d54d33
= / / P[Ny(s3 — 7,81 — €) = 0]P[Na(s4 — 7,89 — €) = 0]
><fT22(34)fT2 (83)dsadss + / P[Ny(s3 — 7,81 — €) = 0]
So—€e—T o S3+T

XP[Ny(sq — 7,50 — €) = 0] fr, ,(84) f1,, (53)ds4ds3
— / / e—/\Q(sl—5—53—|—T)€—/\2(52—5—54—|—T))\2€—/\2(53—51 +e))\2€—/\2(54—52—|—5)d84d83

S1
_I_/ / —/\2 (s1—e—s5347) —/\2(52—5—54+7’))\2€—/\2(53—sl—l—e))\26—/\2(54—52+5)d84d83
So—€e—T o S3+T

= / / AT dsydss + / / A2 sy dss
Sp—€—T 53-|—T

26_2/\27—6 + (52 — 81 — T)(26 — 82 — 81 — T
- 2
2

(E.1)

Hence, by similarly tedious calculations akin to those for (D.10):

BYL(0,0)Yalsi5 + O _ 1ayp auwnapr € F (8 =12 (s =7) 2oy

(1;5% 52 172 2
S1 S1+7 S Detector 1
\ .
Detector 2
T | —
81 — ¢ / \ 89 — € T
So —€—T (075] (S,S+5]

Figure E.1: Graphic aid foE[Y,(0,0)Y,(s,s + 0)|Y1(0,6) = 1,Yi(s,s +6) = 1,1}, =

51,T1,2 = 52]
And for E[Y;(0,6)Y,(s, s + 0)] (see Figure E.2):
D/b(o (S) (S S—|—(S)|}/2(O (S) =1 1/1(8 S—|—(S) =1 T21 = 81,T12 = 82]
= E[Y(0,0)[Y2(0,6) = 1, Ta1 = s1] - E[Ya(s, 5+ 0)[¥2(0,6) = 1,

Yi(s,s +0)=1,Tp1 = 81,112 = 32
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52

= e [ PN s sy ) = 0T = sl )i

1+7
= e N7 / Aye 27 dsy
s1+71
= sy — 51 — T) A Age” M), (E.3)

Hence by similar calculations made for (D.10) and (E.2):

E[Y5(0,8)Ya(s, s+ 6)]

fim 52 = (s — T)AAZem ()T, (E.4)
s;— € 5 52 Detector 1
| B
Detector 2
-
T s=¢ N
(0, 9] o7 (s,s+ 9]

Figure E.2: Graphic aid foE[Y;(0,6)Y,(s,s 4+ §)|Y2(0,0) = 1,Yi(s,s +6) = 1,15, =

51,T1,2 = 52]

Using symmetry and combining (E.2) and (E.4), we obtain whens < ¢ + ¢,

B(0,s) = )\f)\ge_(Al'M?)T(eQ +(s—7)(4e—s+7)). (E.5)
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