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Electron tomography, used in combination with electron energy loss (EELS) or energy dispersive X-ray (EDX) spectroscopy, can
characterize three-dimensional (3D) material chemistry at the nanoscale [1,2]. However, due to the high radiation doses required,
especially for core excitation spectroscopy (e.g., > 107 e/Å2), the specimen limits are typically surpassed. Recently, advancements
in multi-modal data fusion have opened new possibilities to lower the dose requirements for achieving high-resolution chemical
imaging [3]. With data fusion, chemical imaging no longer strictly relies on dose-demanding spectroscopic maps but can leverage
the high signal-to-noise provided by annular dark-field (ADF) modalities. For chemical tomography, the benefits are more signifi-
cant—we can measure a material’s 3D chemical distributions with two orders of magnitude less electron dose. To achieve the
desired chemical accuracy in the new form of fused 3D spectroscopy, experimental strategies must be reconsidered. Now, opti-
mized sampling from both the HAADF projections and spectroscopic maps should be determined.
Here we present optimized sampling requirements, via large-scale simulations, for accurate chemical recovery with fusedmulti-

modal electron tomography. Synthetic gold decorated CoO / CuO nanocubes (Fig. 1c) inspired by real experimental data [4] were
used as a ground truth to evaluate the accuracy among several sampling configurations. Fig. 1a highlights the relationship between
the number of tilts per modality and the average normalized rootmean square error (NRMSE) among all elements. In all cases, we
observe a 2-3-fold improvement in reconstruction accuracy whenmulti-modal tomography is used over traditional chemical tom-
ography (bottom row). The advantages of multi-modal tomography are clearly visible in 2D slices (Fig. 1b) taken from the 3D
reconstructions. Data fusion strongly benefits from exploiting structural information available in the HAADF modality
(Fig. 1b, middle column).
When comparing multi-modal data fusion to traditional and compressed sensing regularized algorithms, multi-modal tomog-

raphy always outperforms both approaches (Fig. 2a & 2b). Notably, a large number of chemical projections are not required
when many HAADF projections have also been measured. Increasing the ADF SNR provides dose-efficient improvements in re-
construction quality. We find advised experimental conditions exist when the SNR for the HAADF and chemical modality are
above 50 and 4, respectively (Fig. 2c).
To efficiently optimize solutions for the fused multi-modal optimization, we employed Bayesian optimization (BO) on super-

computing GPU clusters. Algorithmically, fused multi-modal tomography is an inverse problem whose regularization parame-
ters can significantly influence the reconstruction quality and distort scientific conclusions. Using BO alongside Gaussian process
regression enables autonomous optimization of reconstruction parameters with minimal evaluations [5]. When coupled with
supercomputer GPU clusters, these simulations can be run in parallel, reducing phase diagram generation from 125 days to
17.5 hours [6].
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Fig. 1. Sampling Limits for Multi-Modal Tomography. a, NRMSE map representing the reconstruction error as a function of the number of HAADF and
chemical tilts. Brighter pixels denote results containing incorrect reconstructions from the ground truth. b, Visualization of the three points on the phase
diagram corresponding to conventional chemical tomography (without any HAADF projections), low and high dose fused multi-modal electron
tomography. c, The 3D models used for generating synthetic chemical and ADF projections. Scale bar, 75 nm.

Fig. 2. SNR Dependency for Successful Fused Multi-Modal Reconstructions. a, SNR plot highlighting average reconstruction error as a function of
chemical SNR. b, Visualization of the 2D slices from the reconstructions from each of the three curves. c, SNR plot highlighting average reconstruction
error as a function of chemical SNR.

References

1. M Weyland and P Midgley, Microsc. Microanal. 9 (2003), p. 542.
2. A Yurtsever, M Weyland and D Muller, Appl. Phys. Lett. 89 (2006).
3. J Schwartz et al., npj Comp. Mat.
4. E Padgett et al., Microsc. Microanal. 23 (2017), p. 1150.
5. MJ Jonas, Glob. Optim. 4 (1994), p. 347.
6. This research used the Oak Ridge Leadership Computing Facility and Argonne Leadership Computing Facility by DOE Contract No.

DE-AC05-00OR22725 and DE-AC02-06CH11357.

Microscopy and Microanalysis, 29 (Suppl 1), 2023 1969

D
ow

nloaded from
 https://academ

ic.oup.com
/m

am
/article/29/Supplem

ent_1/1968/7228078 by guest on 26 February 2024


	Dose Requirements for Fused Multi-Modal Electron Tomography
	References




