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Complex Quasi-Newton Proximal Methods for the Image Reconstruction in Compressed Sensing MRI
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This work studies a complex quasi-Newton proximal method (CQNPM) for MRI reconstruction using wavelets or total variation (TV) based regularization. Our experiments show that our method is faster than the
accelerated proximal method [1,2] in terms of iteration and CPU time.

Introduction
The reconstruction of compressed sensing MRI can be formulated as the following minimization problem:

1
min F(x), F(x) = =[|Ax - y[B+Ahx), (1)
xech 2

f(x)

where A € C™N refers to the forward model describing a mapping from the signal X to the acquired data y and A > O is the trade-off parameter. Here, we focus on h(x) = || Tx||; for a wavelet transform T,
or h(x) = TV(x). Traditionally, one can use the accelerated proximal method (APM) [1,2] to solve (1). Here we propose a complex quasi-Newton proximal method to solve (1) even faster.

Methods

Denote a weighted proximal operator by
w 1 2
Prox,) (v) = arg min 3 Ix = v|I5, + Ah(x) 2)
xeCN
where W € CVN is a Hermitian positive definite matrix and ||x||W = \/XT\N_X denotes the W-weighted Euclidean norm. When W = I, (2) becomes the well-known proximal operator. At the kth iteration, the
CQNPM update is:
B -1
Xt = Proxy (x —a,B'V,f(x))

where a, denotes the step-size. Here, the symmetric rank-1 method is used to compute By [3] so that B, € CV*N = D, + uku]’( with D, a diagonal matrix and u, € CN.

For h(X) = ||X||; ,one can solve (2) efficiently through the following lemma:
Lemma 1 [4]:
Let W = D = uu’. Then,

Proxy(x) = Proxh,(x ¥ D™ ua®),

where o € C is the unique zero of the following nonlinear equation J(a) : v’/ (x - Prox?h(x D! ua)) +a.
We solve J(a) = 0 using “SciPy" library in Python. When h(x) = || Tx||; where T is an invertible transform, we can rewrite (1) as % IAT=-'x —y|3 + X [Ix||; that Lemma 1 is still appliable.

For h(x) = TV(x), we transform (2) to the following dual problem that is differentiable

P*,Q7,P5,Q5) =arg min
(P1.Q1.P3.Qp) = arg (P1.QED
(P>.QpED

”(‘)(PlslePZsQZ)l%V” (4)

RW) -3IW)

where W= [S<W> RW),

] , O denotes a set of real matrix-pairs (P, Q) that satisfy

Pij + ij <1 isotropic TV,
[Pijl <1, |Qijl =1  anisotropic TV,
Rw) -1 [vec@P;,Q1))
P ) ’P i = —)\, w
¢(P1,Q1,P2,Q2) [S(V) (W) [VeC(D(Pz,Qz))

partand vec(:) denotes the vectorization of a matrix. We compute (WY in ¢(P1,Q1,P2,Qy) efficiently through the Schur complement since W = D + uu’. After solving (4), we reach

] ,and I:l(F‘,Q)Lj = Pi‘j + QiJ - Pi_IJ - Qid-_l . Note that R(*) (respectively, I()) refers to an operator to take the real (respectively, imaginary)

[ R(Prox)1(v))
J(Proxy(v))

] — G(P}.Q1P5.QY).

Results
All experiments are implemented in SigPy [5]. We used the data from [6]. Figures 1-4 show the results and experimental details.

Conclusion
For a general matrix W, solving (2) would be as hard as the original problem (1). By using the structure of W, i.e., W = D + uu’, we propose efficient approaches to address (2) when h(x) = || Tx||; or TV(x).
Compared with the computational cost in the proximal operator, i.e., W = I, the increased computation in (2) is insignificant, as illustrated by our CPU time comparisons.
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Figure 1 Test on a Cardiac dataset with regularizer h(x) = || Tx||; for an orthonormal wavelet transform T with 5 levels. Acquisition: spiral trajectory with 3 interleaves, 3996 readout points and under-sampling

= &; 1.5T GE Healthcare scanner with 8-channel cardiac coil. Matrix size = 320 x 320. TR = 25.8ms.
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Figure 2 Test on a radial brain dataset (12 coils, 96 radial projections) with regularizer h(x) = || Tx||; an orthonormal wavelet transform T with 5 levels. This data comes from

https://github.com/mikgroup/sigpy-mri-tutorial [5].
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Figure 3 Same data as Figure 1 but with TV regularizer h(x) = TV(X).
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Figure 4 Same data as Figure 2 but with TV regularizer h(x) = TV (X).
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