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Synopsis
This abstract explores non-Cartesian sampling trajectories that are optimized specifically for various reconstruction methods (CG-SENSE, penalized least-

squares, compressed sensing, and unrolled neural networks). The learned sampling trajectories vary in the k-space coverage strategy and may reflect

underlying characteristics of the corresponding reconstruction method. The reconstruction-specific sampling trajectory optimization leads to the most

reconstruction quality improvement. This work demonstrates the potential benefit of jointly optimizing imaging protocols and downstream tasks (i.e.,

image reconstruction).

Introduction
For accelerated MRI, optimized sampling patterns can improve the image quality for a given acquisition time. Due to limited theories, MRI sampling

pattern optimization often uses heuristics and grid search, such as variable density sampling [1]. By making the reconstruction method “differentiable”

[2,3], this work used gradient-based methods to optimize sampling patterns w.r.t. reconstruction quality for several specific image reconstruction

methods.

We optimized trajectories with three types of reconstruction methods, namely smooth convex regularization (CG-SENSE, quadratic penalized least-

squares (QPLS)), sparsity regularizer (compressed sensing, CS [4]), and model-based deep learning (MoDL [5]). Optimized trajectories exhibit different

geometrical shapes and k-space coverage. Quantitative experiments show that the image quality benefited from the tailored sampling trajectory

optimization.

Methods
For regularized MRI reconstruction, the cost function generally has the following form

CG-SENSE uses a Tikhonov regularizer 

QPLS uses a finite-difference regularizer that encourages smoothness 

In compressed sensing, one regularizer option is an l1 norm of a discrete wavelet transform 

In unrolled neural networks, the optimization often alternates between two updates:

Here,  is a denoising/de-aliasing convolutional neural network [5]. In each case, the system matrix  depends on the k-space sampling pattern , so

the reconstructed image  is also a function of the trajectory .

To optimize the sampling trajectories, this study used the loss function

where  is the conjugate phase reconstruction of fully-sampled k-space. As is shown in Figure 1, the optimizer uses the negative of the loss gradient 

 to update trajectories [3]. 

Experiments
We used the fastMRI dataset [6] as the training set. The training process adopted the Adam optimizer with a learning rate = 1e-4, a batch size of 12, and 6

epochs. We also put a soft penalty on the maximum slew rate and gradient strength [2,7] (150 T/m/s, 50 mT/m). The initialization is a 16-spoke radial

trajectory; each spoke is 5ms long with 1280 sampling points. To avoid sub-optimal local minimizers, we parameterized the sampling trajectories with 40

quadratic B-spline kernels [2]. Here we optimized a freeform non-Cartesian trajectory. Furthermore, the proposed method can also optimize parameters

of predetermined geometrical shapes, such as the rotation angle of the radial trajectory.

Results
Figure 2 showcases the optimized sampling trajectories for different reconstruction methods. The “density” of sampling points varies, especially in the

center k-space. Figure 3 displays an example of reconstructed images. To investigate the transferability of learned trajectories, we reconstructed images

with different methods using test data from each of the optimized trajectories. Table 1 displays the average quantitative reconstruction results on 500

test slices. The best results are when the trajectory is matched to the reconstruction method; the trajectory optimization can still improve the

reconstruction quality with different reconstruction methods than that was used for training. Figure 3 displays examples of reconstructed images.

Trajectory optimization results in reduced artifacts.
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Discussion
Via differentiable reconstruction and stochastic optimization, one may tailor sampling patterns for specific reconstruction methods. This work shows that

different regularized reconstruction algorithms lead to distinct sampling trajectories, a trend that was also observed when optimizing Cartesian sampling

[8]. This finding may encourage us to view acquisition and reconstruction as a unified problem.

For simplicity, the current work uses the l2-norm as the loss function during training, which unavoidably focuses more on lower frequencies. In the

future, we plan to use more advanced image quality metrics and possibly downstream tasks such as image segmentation as the training loss.
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Figures

Figure 1. Diagram of the proposed stochastic optimization method. We used the chain rule to calculate the gradient of reconstruction loss with respect to

the sampling trajectory.

Figure 2. Optimized sampling trajectories for different reconstruction methods by gradient-based optimization. The second row shows the  zoomed-in

central k-space. The leftmost column shows the initialization of the trajectory optimization.
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Figure 3. Examples of reconstructed test images with optimized trajectories by different methods. The first row shows the reconstructed images with the

un-optimized trajectory, and the third row displays the results from optimized trajectories. The second and fourth row show the error maps, respectively.

Table 1: The average quantitative reconstruction quality on the test set. The horizontal axis ('learned') stands for the sampling trajectory optimized with

specific reconstruction methods. The vertical axis ('test') labels the reconstruction methods used for the test. The un-optimized label refers to the

initialization (an undersampled radial trajectory).
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