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Synopsis
MIRTorch (Michigan Image Reconstruction Toolbox for PyTorch) is an image reconstruction toolbox implemented with native Python/PyTorch. It provides

fast iterative and data-driven image reconstruction on both CPUs and GPUs. Researchers can rapidly develop new model-based and learning-based

methods (i.e., unrolled neural networks) with its convenient abstraction layers. With the full support of auto-differentiation, one may optimize imaging

protocols, such as sampling patterns and image reconstruction parameters with gradient-based methods.

Inspiration
The rapid development of auto-differentiation toolchains brings our community new computation infrastructure. This abstract presents MIRTorch, which

aims to use the speed and hardware adaptability of PyTorch. Researchers can run fast iterative reconstruction and quickly prototype novel methods. By

the native support of auto-differentiation, the reconstruction methods are differentiable, thus can be easily merged into deep learning-based methods.

By defining the quality of downstream tasks (such as reconstruction or segmentation) as the training loss, gradient-based methods can use

backpropagation to optimize imaging protocols, such as RF pulses and readout trajectories.

Design
Inspired by the MIRT [1], SigPy [2], and PyLops [3], the MIRTorch toolbox contains the following essential components:

Linear operators

The package provides common image processing operations, such as convolution. For MRI reconstruction, the system matrices include Cartesian and

Non-Cartesian, and coil sensitivity- and B0- informed models. Since the Jacobian matrix of a linear operator is itself, the toolbox may actively calculate

such Jacobians during backpropagation instead of the auto-differentiation approach, avoiding the enormous cache cost.

Proximal operators

The toolbox contains common proximal operators such as soft thresholding. These operators also support regularizers that involve multiplication with

diagonal or unitary matrices, such as orthogonal wavelets.

Optimization algorithms

The package includes the conjugate gradient (CG), FISTA [4], POGM [5], PDHG [6], and ADMM [7] algorithms for image reconstruction.

Dictionary learning:

For dictionary learning-based reconstruction, we implemented an efficient dictionary learning algorithm (SOUP-DIL [8]) and orthogonal matching pursuit

(OMP [9]). Due to PyTorch’s limited support of sparse matrices, we use SciPy as the backend.

Usage
Iterative reconstruction

For model-based MRI reconstruction, the cost function usually has this form

To build a user-defined reconstruction method, one should define a system matrix , regularizer  and choose a corresponding optimization

algorithm. If  is smooth and convex, one may consider using basic gradient descent (GD) or the optimized gradient method (OGM [10]) to solve it. If 

 is proximal-friendly, one may use FISTA or POGM. Otherwise, one can use ADMM or PDHG as the optimization algorithm, if applicable.

Model-based deep learning

With MIRTorch, researchers can also easily define new instances of unrolled neural networks.For example, one can build a MoDL model [11] in a few

lines:

A = Sense(sensemap, mask)

I = Identity(A.size_in)

CG_solver = CG(A.H*A + lamda * I)

for i in range(num_iter):

z_i = self.netD(x_i)

x_i = CG_solver(z_i, A.H*self.kdata +lamda*z_i)

Examples
We illustrate several reconstruction methods with Jupyter Notebooks, including (B0-informed) penalized least-squares reconstruction, dictionary learning

reconstruction [8], compressed sensing reconstruction (CS, [12]), and unrolled neural network-based reconstruction [11] for Cartesian and non-Cartesian

multi-coil acquisitions (Fig. 1,2). The iterative notebooks can help researchers learn the basic functionality.

Protocol optimization

With differentiable reconstruction algorithms, one may use the final reconstruction quality as the ultimate objective to optimize the imaging protocols

[13, 14]. 

Performance comparison with Python (SigPy)

Here we compare the reconstruction speed of a simple Cartesian CG-SENSE reconstruction method. The test image size is 320 320 with 32 receiver

channels. The CG algorithm runs 20 iterations. The CPU and GPU used are an Intel Xeon Gold 6138 and an Nvidia RTX2080Ti, respectively. As is shown in
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Table 1, the speed is much faster on both GPU and CPU (the speed comparison may vary based on the linear algebra backend, such as Intel MKL v.s.

OpenBLAS).

Conclusion
MIRTorch provides a native PyTorch reconstruction toolbox for researchers. It inherits the features and hierarchies of previous widely adopted toolboxes

(such as MIRT) for a gradual learning curve. We hope it will facilitate the research into learning-based methods in MRI.
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Figures

Figure 1. Reconstruction examples of Cartesian acquisitions. The sampling pattern here is an 7  1D undersampling mask. QPLS stands for quadratic

penalized least-squares, where the regularizer is a l2-norm of a finite-difference operator. We applied 40 CG iterations. CS stands for compressed

sensing, where the regularizer is a l1-norm of a discrete wavelet transform (DWT). We applied 150 iterations for FISTA and 80 iterations for POGM. DL

stands for dictionary learning [8].

×

https://submissions.mirasmart.com/ISMRM2022/Itinerary/Files/PDFFiles/images/3544_FmlTsLPlp/ISMRM2022-003544_Fig1.png


5/10/22, 8:24 AM https://submissions.mirasmart.com/ISMRM2022/Itinerary/Files/PDFFiles/4982.html

https://submissions.mirasmart.com/ISMRM2022/Itinerary/Files/PDFFiles/4982.html 3/3

Figure 2. Illustration of B0-informed reconstruction examples of non-Cartesian acquisitions. We used a dual-echo GRE sequence to estimate the B0

inhomogeneity map. For regularized reconstruction (QPLS, CS), we retrospectively subtracted 64 spokes from 320 spokes (5  undersampling.) QPLS

means quadratic penalized least-squares. We applied 40 CG iterations. CS stands for compressed sensing, where the regularizer is a l1-norm of a

discrete wavelet transform (DWT). We applied 80 iterations for POGM.

Table 1. Comparison of the proposed toolbox with Sigpy for computation time.
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