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Synopsis
Inspired by two open questions of dynamic MRI reconstruction, we propose a novel voxel-wise attention network for temporal modeling for the

undersampled reconstruction. The voxel-wise design of the network enables voxel-wise training, and we further propose a two-stage training scheme

that pretrains the network with voxel-wise simulated data when dynamics are easy to obtain with physical models. With a factor of 12 undersampling,

our proposed model outperforms other reconstructions with higher PSNR and better fMRI performance.

Introduction
Deep learning-based approaches have been successful for structural MRI undersampled reconstruction . However, there are fewer works on learning-
based dynamic MRI reconstruction  with two main open questions: 1) what would be a good learning-based approach for temporal or spatial-temporal

signal modeling, 2) for dynamic MRI sequence of images, how to get enough training data for the learning schemes that are data hungry? Inspired by
these two questions, we propose a voxel-wise attention network based on the emerging attention mechanism  for temporal modeling, together with a
matched transfer learning approach to handling the problem of limited amounts of training data. 

Our work has three novel contributions: 1) incorporate an attention mechanism for temporal learning and mapping, 2) propose a voxel-wise network
architecture based on attention and Transformers for spatial-temporal undersampled reconstruction, 3) propose a two-stage learning scheme that
pretrains the network with voxel-wise simulated data, and then fine-tunes with human temporal data for dynamic MRI.

Proposed Model
(1) Attention Mechanism

De-aliasing of a dynamic sequence with undersampling artifacts can be viewed as mapping a temporal sequence with aliasing to a sequence without

aliasing. The self-attention mechanism [5, 6] maps a sequence of input vectors to another sequence of output vectors with a weighted combination of all
the input vectors for each of the output vectors. It can be expressed as:

where  is an input sequence of time dimesion  and feature dimension . , ,  are learned matrices. We use the attention mechanism

as a key component for the dynamic sequence reconstruction.

(2) Proposed Voxel-Wise Attention Network

We propose a voxel-wise attention network with Transformers as building blocks. The voxel-wise attention network is composed of three components: 1)
an encoder that brings the input time-series to the feature domain, 2) two consecutive Transformer blocks [6, 7] that consist of attention, feed-forward
operations, and residual connections, and maps the sequence of temporal features to another sequence of temporal features, 3) a decoder that brings

the transformer sequence to the image domain. We used 1 1 convolutions in both the encoder and decoder to ensure the voxel-wise operations of the
network. 

(3) Two-Stage Training and Data Simulation

The overall framework with an attention network and data consistency is presented in Fig. 1. We performed two-stage training to handle the problem
with limited human data for learning. We pretrain the attention network with voxel-wise simulated temporal sequences (which could be easier to

simulate than spatial-temporal sequences). After pretraining, we fine-tune the attention network together with data consistency in an end-to-end
fashion. For simulated data, we generated the ground truth sequence  using Bloch simulation with varying physics parameters, and the inputs for the
network are complex Gaussian noise corrupted sequences. 

We compared our proposed approach to 3D U-Net  that takes spatial-temporal images as 3D volumes for processing. Because 3D U-Net is a spatial-
temporal network, we cannot easily pretrain the network with simulated data.

Experimental Methods
The human data were acquired with OSSI sequence [10]. We formed a human data training set with 10 oscillatory temporal images for each subject and
22 subjects in total. The k-space data are multi-coil and undersampled with spiral trajectories with an undersampling factor of 12. We used data-shared
initializations as inputs for the network. The simulated data contains 8,662,000 voxel-wise time courses of dimension 10 1. We pretrained the network

with simulated data for 60 epochs and fine-tuned the network with human data patches for 60 epochs. 

In the testing stage, we reconstructed every 10 dynamic images of the OSSI fMRI data using the proposed network, and L2-combined every
reconstructed 10 images to get fMRI images for evaluation. The functional task was a left/right reversing-checkerboard visual stimulus.
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Results
Fig. 2 presents attention map visualization for simulated and human temporal sequence mapping. Each sample of the output sequence is formed based

on a weighted combination of all the samples in the input sequence, and the weights are given by the rows of the attention map. 

For reconstruction, Fig. 3 shows that the proposed method leads to less structure in the difference maps than other reconstruction methods such as 3D

U-Net. Every 10 reconstructed images are combined with L2-norm for fMRI. Fig. 4 provides functional maps for the reconstructions. The proposed model
results in fewer false positives and cleaner time courses compared to the fully sampled data. Fig. 5 summarizes quantitative evaluations of the
reconstruction and functional performance. The proposed model improves the PSNR by about 2 dB and presents lower NRMSE. The proposed method
also provides the largest area under the ROC curve.

Conclusions
We propose a novel voxel-wise attention network for dynamic MRI temporal modeling. The voxel-wise network design enables pretraining with voxel-
wise simulated data that might be easier to obtain than spatial-temporal data, and resolves the training data limitation for dynamic imaging. Our

proposed model reconstructs dynamic MRI images with a factor of 12 undersampling, provides high-quality reconstruction and functional maps, and
without spatial smoothing. The proposed voxel-wise, attention-based model can potentially be used for MR fingering reconstruction and other dynamic
reconstruction applications.
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Figures

Fig. 1. Our proposed voxel-wise temporal attention network architecture and the dynamic OSSI MRI images (with temporal dimension = 10) to be

reconstructed. The data fidelity contains 2 iterations of CG-SENSE for multi-coil NUFFT reconstruction. The main part of the network (encoder-
Transformer-decoder) can take voxel-wise simulations or spatial images/patches from human data as inputs.
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Fig. 2. Attention map visualization at the testing stage for voxel-wise simulation data (left) and human data patch mapping (right). In the attention
mechanism, each output value in a 10x1 sequence is generated with a weighted combination of all the values in the input sequence, and the learned
weights are given by each row of the 10x10 attention maps for each output value. The figure presents absolute values of the complex input/output for
illustration while the proposed network inputs real and imaginary parts and uses deep representations from the encoder for attention calculation.

Fig. 3. The proposed voxel-wise model presents less residual in the difference maps than spatial-temporal reconstruction using 3D U-Net.

Fig. 4. The proposed approach results in fewer false positives in the activation map, less noisy temporal SNR map, and a time course more similar to the
ground truth.

Fig. 5. The table presents NRMSE and PSNR values for the dynamic undersampled reconstructions. Both quantitive values for reconstruction and the ROC

curves for fMRI demonstrate that the proposed model outperforms other reconstructions.
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