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Synopsis
The proposed approach, BJORK, provides a robust and generalizable work�ow to jointly optimize non-Cartesian sampling patterns and a physics-
informed reconstruction. Several approaches, including re-parameterization of trajectories, multi-level optimization, and non-Cartesian unrolled neural
networks, are introduced to improve training e�ect and avoid sub-optimal local minima. The in-vivo experiments show that the networks and trajectories
learned on simulation dataset are transferable to the real acquisition even with di�erent parameter-weighted MRI contrasts and noise-levels, and
demonstrate improved image quality compared with previous learning-based and model-based trajectory optimization methods.

Introduction
The work proposes an approach for jointly optimizing the reconstruction algorithm and sampling trajectories with regard to reconstruction quality. The
trajectories are parameterized with quadratic B-spline kernels to reduce the number of parameters and enable multi-scale optimization, helping to avoid
sub-optimal local minima. An e�cient non-Cartesian unrolled neural network reconstruction and an accurate approximation for backpropagation
through NUFFT operator are combined to accurately reconstruct multi-coil, undersampled, non-Cartesian data. To correct the potential eddy-current
e�ect brought by the trajectory, we used a pencil-beam trajectory mapping technique. In both simulation and in-vivo experiments, the learned trajectory
demonstrates signi�cantly improved image quality compared to previous trajectory optimization methods under high acceleration ratio.

Methods
Problem formulation: Figure 1 shows the overall work�ow. The goal of the proposed supervised approach is to use a set of fully sampled training images
to optimize jointly a multi-shot k-space sampling pattern  and the parameters  of an unrolled neural network (UNN) reconstruction method by
minimizing the following training losses:

where  is the fully-sampled reference image from the training data set and  is the simulated additive noise.  and  are the �rst-order and second-
order di�erential matrices. The second and third terms are the penalties on maximum gradient strength ( ) and slew rate ( ).  is the UNN
reconstruction algorithm for non-Cartesian data [1], with parameters . 
We parameterize the sampling pattern with 2nd order quadratic B-spline kernels , where  is the  interpolation matrix and  is the
coe�cient. This approach reduces the number of gradient constraints from  to  [2]. Also, the parameterization allows multi-level optimization with
variable B-spline kernel lengths from large to small.
Joint learning of trajectories and reconstruction: We use the fastMRI initiative dataset [3] to train the proposed model. The initialization of  uses
common trajectories, such as radial spokes and spiral interleaves.  
Eddy current correction: We used the ‘k-space mapping’ method by exciting a pencil-beam region multiple times using orthogonal slice selection with a
90  and 180  pulse pair [4,5]. Zeroth eddy current phase �uctuation is also subtracted from the acquisition. 
Experiments: We compared our method with SPARKLING [6], a model-based trajectory optimization method. For the simulation experiment, a test case
consisting of 950 slices were undersampled and then reconstructed w.r.t. di�erent trajectories. The unrolled neural networks (UNN) are �ne-tuned for
di�erent trajectories. The compressed sensing reconstruction is implemented using the SigPy package [7]. 
For the in-vivo acquisition, we compare di�erent readout waveforms on a gradient-echo sequence with T1w contrast, and the protocols are detailed in
Fig 5(a). Both SPARKLING and BJORK are initialized with the same 20  undersampled radial trajectory. The sequences were programmed via TOPPE [5]
and implemented on a GE MR750 3.0T scanner with a Nova Medical 32RX head coil. Subjects gave informed consent under local IRB approval.

Results
Figure 2(a) shows the evolution of the learned trajectories. Di�erent widths of the B-spline kernels introduce di�erent levels of improvement as the
acquisition is optimized. Also, the results of multi-level optimization and un-parameterized (PILOT-like [8]) were compared. Directly optimizing sampling
points introduce only small perturbations of the initialization. Figure 2(b) shows the training set's in�uence on the learned sampling pattern. Di�erent
anatomical features may lead to di�erent spatial encoding strategies, suggesting that scan-speci�c trajectories may improve imaging quality. 

Figure 3 exhibits the eddy-current correction results for both BJORK and SPARKLING. Figure 4 showcases the results of simulation experiments. For both
learning-based and model-based reconstruction, the BJORK trajectory shows signi�cant improvement compared to un-optimized trajectories and
SPARKLING-like trajectories. Figure 5(b) displays the results of the in-vivo study. BJORK has the lowest level of artifacts compared to SPARKLING and
undersampled radial trajectories. 

Conclusion
This work proposes an e�cient learning-based framework for MRI trajectory design. We introduced several methods to improve the training e�ect,
including trajectory parameterization, multi-level training, and accurate approximation of NuFFT’s Jacobian [9]. Simulation and in-vivo results show that
these approaches stabilize the training and may help avoid sub-optimal local minima. Further study will investigate sequences with longer readout time,
and extending the model to 3D acquisition.

Acknowledgements

1 1 1 2 1

1 2

ω θ

‖ (ω; A(ω)x + ε) − x‖ + (| ω|) + (| ω|) ,arg min
ω∈ ,θ∈ℝ

×2Ns
ℝ

M

𝔼x fθ ϕγΔtg
max

D1 ϕγΔt 2smax
D2

x ε D1 D2

gmax smax (ω; ⋅)fθ
θ

ω = Bc B × LNs c

8Ns 8L

ω

∘ ∘

×



This work is supported in part by NIH Grants R01 EB023618 and U01 EB026977, and NSF Grant IIS 1838179.

References
[1] Aggarwal HK, Mani MP, Jacob M. MoDL: Model-based deep learning architecture for inverse problems. IEEE transactions on medical imaging. 2018
Aug 13;38(2):394-405.

[2] Sun H, Fessler JA, Noll DC, Nielsen JF. Joint design of excitation k-space trajectory and RF pulse for small-tip 3D tailored excitation in MRI. IEEE
transactions on medical imaging. 2015 Sep 15;35(2):468-79.

[3] Zbontar J, Knoll F, Sriram A, Murrell T, Huang Z, Muckley MJ, Defazio A, Stern R, Johnson P, Bruno M, Parente M. fastMRI: An open dataset and
benchmarks for accelerated MRI. arXiv preprint arXiv:1811.08839. 2018 Nov 21.

[4] Robison RK, Li Z, Wang D, Ooi MB, Pipe JG. Correction of B0 eddy current e�ects in spiral MRI. Magnetic resonance in medicine. 2019 Apr;81(4):2501-
13. 

[5] Nielsen JF, Noll DC. TOPPE: A framework for rapid prototyping of MR pulse sequences. Magnetic resonance in medicine. 2018 Jun;79(6):3128-34.

[6] Lazarus C, Weiss P, Chau�ert N, Mauconduit F, El Gueddari L, Destrieux C, Zemmoura I, Vignaud A, Ciuciu P. SPARKLING: variable‐density k‐space
�lling curves for accelerated T2*‐weighted MRI. Magnetic resonance in medicine. 2019 Jun;81(6):3643-61.

[7] Ong F, Lustig M. SigPy: a python package for high performance iterative reconstruction. InProceedings of the ISMRM 27th Annual Meeting, Montreal,
Quebec, Canada 2019 May (Vol. 4819).

[8] Weiss T, Senouf O, Vedula S, Michailovich O, Zibulevsky M, Bronstein A. PILOT: Physics-informed learned optimal trajectories for accelerated MRI.
arXiv preprint arXiv:1909.05773. 2019 Sep.

[9] Wang G, Noll DC, Fessler JA, E�cient NUFFT Backpropagation for Stochastic Sampling Optimization in MRI. Submitted to ISMRM 2021. 

Figures

Figure 1. Diagram for the proposed approach.

Figure 2. (a) shows the evolution of the trajectory during multi-level optimization. Decim means  (or width) of B-spline kernels. Nonparametric
means the locations of each sampling point are independent trainable variables, rather than being parameterized by quadratic B-spline kernels. (b)
shows the trajectories learned from di�erent datasets.
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Figure 3. The correction of the eddy current e�ect. Solid lines stand for nominal trajectories and the dotted ones are the measured trajectories. (a) is the
BJORK trajectory and (b) is the SPARKLING trajectory.

Figure 4. Examples and quantitative results of the simulation experiment. Our trajectory retains the most �ne details with minimal artifacts. Spiral-like
and radial-like means the optimization methods (SPARKLING or BJORK) were initialized with spiral or radial trajectories. CS means the L1-wavelet based
compressed sensing reconstruction. UNN means the unrolled neural network reconstruction algorithm.

Figure 5. (a) displays the scanning protocols. Radial-like corresponds to the undersampled radial trajectory, SPARKLING trajectory initialized with the
undersampled radial trajectory, and BJORK trajectory initialized with the undersampled radial trajectory. (b) showcases one example from the in-vivo
experiment. The �rst row is the CS-based reconstruction and the second row is the unrolled neural network-based reconstruction. For fully-sampled
data, conjugate phase reconstruction is displayed. 
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