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Introduction
•Goal: better identify task-activated brain regions in task-based fMRI.

•Model: to separate task-correlated signal from non-task background.

•Novelty: use a priori knowledge of activation waveform shape, and
temporal smoothness assumption of background.

•Merit: advance model-based reconstruction from undersampled k-space.

Problem Formulation
Reconstruct MR image series from undersampled k-space data:

argmin
X

1

2
‖EX − d‖22 + λR(X)

E : CNv×Nt → CNs data acquisition operator (where Nv = number of voxels,
Nt = number of time frames, Ns = number of k-space samples)

X ∈ CNv×Nt desired image series
d ∈ CNs undersampled k-space data
R(·) regularizer with parameter λ

Existing Models
•Low-Rank Plus Sparse Decomposition (L+S) [1], [2]

argmin
L,S

1

2
‖E(L + S)− d‖22 + λL‖L‖∗ + λS‖TS‖1

L ∈ CNv×Nt non-task background
S ∈ CNv×Nt pseudo-periodic task signal
T : CNv×Nt → CNvNt temporal Fourier transform operator

•Low-Rank Plus Task-Based Decomposition (L+UV) [3]

argmin
L,U

1

2
‖E(L + UV )− d‖22 + λL‖L‖∗

L ∈ CNv×Nt non-task background
U ∈ CNv×Nr estimated task spatial map
V ∈ CNr×Nt temporal basis with activation waveform

Proposed Model
Smooth Background Plus Spatial-Temporal Decomposition (B+UV)

argmin
B,U

1

2
‖E(B + UV )− d‖22 + λB‖DB‖22 (1)

B ∈ CNv×Nt temporally smooth non-task background
U ∈ CNv×Nr estimated task spatial map
V ∈ CNr×Nt temporal basis with activation waveform and scanner drift
D : CNv×Nt → CNvNt temporal finite difference operator

Optimization Algorithm

•Compatibility of vectorization with Kronecker product:
vec(UV ) = (V > ⊗ I)vec(U)

•Write E(UV ) = EvU , Ẽ = [E Ev], X̃ = [B U ], D̃ = [D 0], then (1) becomes

min
X̃

1

2
‖ẼX̃ − d‖22 +

λB
2
‖D̃X̃‖22

•Practical implementation: conjugate gradient (CG) method

Advantage over existing models:

•L+S: incoherence between L and S might not apply, and temporal
Fourier sparsity assumption of S might not capture activation

•L+UV: both terms are low rank, might not separate signal from background

•B+UV: incoherence between smooth background signal B and task UV

Results
Simulated task: resting-state fMRI with 2 activated Gaussian regions of
interest (ROI) in k-space, 32 coils, Nv = 100× 100, Nt = 300, 4× undersampling

Figure 1: Left: task waveforms and activation maps by all reconstruction results.
Right: B+UV timeseries of two task-activated voxels and a non-task voxel.

Figure 2: Receiver operating characteristic (ROC) curves across activation thresholds with Area Under Curve (AUC).

Finger Tapping Task: 3D task fMRI, 32 coils, Nv = 72× 48× 10, Nt = 235,
4× undersampling

Figure 3: Task waveform and activation maps. Figure 4: ROC curves with AUC values.

Conclusion
•Proposed B+UV model improves activation detection compared with

existing fMRI models, as seen by higher AUC values.

•B+UV components separate task signal and non-task background.

•Solving B+UV is computationally advantageous with simple CG updates.
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