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Synopsis
Regularization in MRI reconstruction often involves sparse representation of signals using linear combinations of dictionary atoms. In 'blind' settings,
these dictionaries are learned during reconstruction from the corrupt/aliased images, using no training data. In contrast, 'Fully supervised' dictionary
learning (DL) requires uncorrupted/fully sampled training images, and the learned dictionary is used to regularize image reconstruction from
undersampled data. We combine the aforementioned DL frameworks to learn two separate dictionaries in a residual fashion to jointly reconstruct an
undersampled image. Our algorithm, Super-BReD Learning, shows promising results on reconstruction from retrospectively undersampled data, and
outperforms recent DL schemes.

Introduction
Sparse representation of signals using a linear combination of dictionary atoms is a popular choice in regularizing MR image reconstruction. Data-driven
dictionary learning has often shown to provide better results than hand-crafted dictionaries in Compressed Sensing(CS)-MRI . Data-driven dictionaries are
either learned in a 'supervised' fashion from training images obtained from fully sampled k-space measurements, and then used to reconstruct images from
undersampled k-space measurements, or are learned assuming knowledge of only the undersampled k-space measurements, and hence dubbed 'blind'.

This work investigates combining supervised and blind learning of patch-based dictionaries for image reconstruction, especially when very limited fully sampled
data is available for supervised training. We represent the image being reconstructed jointly using two dictionaries : one learned from uncorrupted data, and
one in a semi-blind fashion, combined in a residual manner. We also 'tailor' the supervised learning to the undersampled image being reconstructed using a
block matching operation. Including a supervised dictionary should boost image quality when blind dictionary learning alone is insufficient.

Methods
Given , an undersampled k-space measurement vector,  a matrix of  vectorized patches (as columns) from a few images obtained from
fully sampled k-space measurements, and  an image being reconstructed from , the proposed reconstruction approach alternates between solving the
following sub-problems:

Block-Matching (For each patch in , find the best matching patch in the training data  ):

where

extracts patches from an image as a vector and places them as columns of a matrix with , is a DCT matrix,  is the
hard-thresholding operator, indexes the columns of , and indexes the columns of . We applied DCT hard-thresholding before non-local
block-matching to reduce the influence of aliasing artifacts on the results.

Supervised Dictionary Learning (learn a dictionary from the selected training patches):

where  is the th column of the supervised dictionary ,  is a matrix of sparse codes, and  is a regularization parameter.

Semi-Blind Residual Dictionary Learning and Image Update:

where  is the undersampled Fourier encoding matrix, is the th column of , and ,  are matrices of sparse codes,
and  are regularization parameters. 

Effectively, we learn a blind dictionary to fit the residual of the supervised dictionary representation of the aliased image patches. Once the image  is updated,

1 2 1

1 2

[1,5]

[2]

y ∈ ℂp T ∈ ℂn×N1  N1

x ̂  y

 x ̂   T

(P0) S = [ , … , , … , ]S1 Sj SN2

= (T, ) = , (j) = ‖ (W( − )) ,Sj τj jx ̂  T
(j)i ̂  i ̂  arg min

i∈{1,..., }N1

Hλ0
Ti jx ̂  ‖2

2

   ( × ) n‾√ n‾√  ∈x ̂  ℂn×N2  W ∈  ℂn×n   (⋅)Hλ

j  S,  ∈x ̂  ℂn×N2 i   T

   D̂ 
1

(P1) = ‖S − + ‖ s.t. ‖( = 1 ∀ j,D̂ 
1 arg min 

D1

min 
Z3

D1Z3 ‖2
F

λ2
3

Z3 ‖0 d1 )j‖2

(d1 )j j ∈D1 ℂn×J1 ∈Z3 ℂ ×J1 N2 λ3

(P2) = ν‖ x − y + ‖x − − + ‖ + ‖ s.t. ‖( = 1 ∀ j,x ̂  arg min 
x

min 
, ,D2 Z2 Z1

Fu ‖2
2

D̂ 
1Z1 D2Z2 ‖2

F
λ2

1
Z1 ‖0 λ2

2
Z2 ‖0 d2 )j‖2

Fu (  d2 )j j ∈D2 ℂn×J2 ∈Z1 ℂ ×J1 N2 ∈Z2 ℂ ×J2 N2

,λ1 λ2

x ̂ 



We repeat the steps  as an outer iteration, as shown in Fig 1, to iteratively refine the image and the Super-BReD model.

We use overlapping patches from three fully-sampled complex images depicted in Fig 2 as our training data. The updates in  and  are done in a highly
efficient block-coordinate descent fashion similar to [3]. We test our methods for reconstructing two T1-weighted complex brain images and two knee images
(simulated single-coil) retrospectively undersampled at 4x and 5x acceleration factors using variable density masks (brain) and phase-encode lines (knee). We
compared our method to the recent state-of-the-art SOUP-DIL algorithm, which uses blind dictionary learning and has been shown to provide competitive
performance in CS-MR image reconstruction.

For our experiments, we used =36, =50, and =144. We set , and  in each outer iteration, and  decreased in log-space
between 0.35-0.04  across 75 outer iterations. 5 inner iterations for dictionary learning and sparse coding was used in and . For fairness, SOUP-DIL
also used the same number of inner and outer iterations, and 144 unsupervised atoms. Both algorithms were initialized with a zero-filled reconstruction and
overcomplete inverse DCT dictionaries.

Results
From the table in Fig 3, it is evident that including the supervised dictionary provides significant PSNR gains (0.2-1.1 dB) across most test cases, in both 4x and
5x undersampling. The error maps in Fig 4 show that in the reconstructed brain images, a lot of the improvements were in regions in the skull, which explains
the very high PSNR gains from Super-BReD, whereas there are other regions where the details were more clearly preserved for the proposed methods than
blind SOUP-DIL. This observation hints at the proposed method's potential for faithful reconstruction of patterns in the data common to both training and test.
These improvements can partially be attributed to the supervised block-matching. For the reconstructed knee images as well, we see significant PSNR gains
using our method and more fidelity with the ground truth in the finer details, as indicated with arrows. Fig 5 shows that Super-BReD leads to higher gains in
PSNR over iterations than blind SOUP-DIL.

Conclusion
We investigated combining supervised and blind dictionary learning for CS-MRI. Our preliminary results indicate that, even without careful tuning of
hyperparameters, Super-BReD learning provides better image quality than blind dictionary learning. Our proposed method allows for tailoring of supervised
learning with blind learning via a block matching step, and presents a novel approach for incorporating supervision in model-based image reconstruction in the
presence of limited training data. 

Our future work will involve comparison to other machine learning methods, and application to multi-coil MR image reconstruction as well as dynamic MRI,
where high-quality training data is typically unavailable. Given the direct connection between deep-learning and dictionary learning , we also plan to explore
incorporating the proposed ideas in such generalized dictionary learning.
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Figure 1: Flow-chart depicting one outer-loop of the Super-BReD learning-based reconstruction. Each test image in our experiments uses 75 such iterations for
reconstruction. Within each outer-iteration, steps  and  use 5 inner iterations of Block Coordinate Descent (BCD) to update the supervised and blind
dictionaries.

Figure 2: Our training data consisted of patches from the three images depicted above. We used an axial slice of the brain from a dataset provided by Prof.
Lustig at UC Berkeley, a knee slice from the Fast MRI dataset from NYU and an additional T1 weighted axial brain slice. All three images were complex valued.

Figure 3: Table comparing the PSNR values of the proposed method to the recent blind SOUP dictionary learning. We compared reconstruction performance at
4x and 5x retrospective Undersampling Factors (UF), and found that across the four complex valued images, Super-BReD improves PSNR by 0.2 to 1.1 dB.
The highest PSNR corresponding to each image and UF has been highlighted in bold, and  denotes the PSNR gain over blind SOUP-DIL when using the
proposed Super-BReD.

Figure 4: Visualization of the reconstructions of one brain and one knee image from our experiments. Certain portions of the images are magnified to showcase
the differences between Super-BReD and blind SOUP. Residual maps with the ground truth are shown as well. We find that while brain images report higher
PSNR gain using the proposed methods, most of the improvements are concentrated in the skull, where the highest errors are. For knee images, the difference
in the reconstruction quality of both methods is most prominent in the finer details of the image (highlighted using arrows).

Figure 5: PSNR curves across iterations for de-aliasing Brain Image 1 at 4x acceleration, comparing Super-BReD and SOUP-DIL. We find that the former
increases PSNR faster, and converges to a higher PSNR solution.
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