Kernel regression for fast myelin water imaging
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Synopsis: This work examines the use of kernel regression for myelin water imaging. Parameter estimation by kernel regression (PERK) is a machine
learning method that is very fast to train and apply for quantitative MRI problems. This abstract presents the first in vivo comparison of myelin water
fraction (MWF) estimates from standard multi-echo spin echo (MESE) scans and fast-relaxing compartmental fraction (ff) PERK estimates from an
optimized set of dual-echo steady state (DESS) scans. Results demonstrate that PERK is practical for in vivo use.

Introduction: Myelin water imaging is important for a variety of neurological disorders. The conventional method for myelin water imaging consists of
estimating MWF from a MESE acquisition [1]. To address long scan times due to long MESE repetition intervals (TR ~1-2s), researchers have estimated
ff from two-compartment models of fast steady-state scans [2,3]. There are two main challenges in ff quantification: (1) collecting data that is informative
about both the fast- and slow-relaxing water compartments, and (2) processing that data to produce accurate myelin water images. We optimized the TR
and flip angle values for DESS scans [3]; we previously applied PERK to such scans [3] anecdotally without comparison to MESE results.

Several groups have applied neural-net (NN) methods for estimating MRI parameters from a sequence of MR images having different contrasts,
including MR fingerprinting scans. Training kernel regression is very fast and well-understood, whereas training a NN takes much longer and involves
many hand-selected hyperparameters including network architecture. PERK [4] uses simple data-driven methods for tuning the few adjustable
hyperparameters for gaussian kernels, leading to a simple turn-key approach for nonlinear regression that is far faster to apply than dictionary-based
matching or nonlinear least-squares optimization methods [4] and is easier to train than NN methods. The speed benefit increases when estimating more
parameters, and for two-compartment myelin water imaging there are 6 parameters: ff, spin density MO, and four compartment-specific relaxation times,
neglecting exchange as in [3].

Methods: We acquired in vivo data using a 3T GE scanner with a 32-channel Nova receive head array. We acquired our precision-optimized DESS data
with optimized flip angles and repetition times, holding all other scan parameters fixed across DESS scans. We acquired 32-echo MESE data using
slab-selective refocusing pulses, minimal TE=9.2ms echo spacing, and TR=1s to limit scan time. We estimated B1 maps using Bloch-Siegert (BS)
SPGR scans [5,6]. To compensate for incomplete recovery in MESE only, we estimated single-compartment T1 using nine SPGR scans with variable flip
angles. All scans used a fully-sampled 3D Cartesian k-space grid and were reconstructed onto a 200x200x8 matrix over a 240x240x24 mm? field of
view. DESS, MESE, BS, and SPGR scans respectively took 3m15s, 53m26s, 4m30s, and 3m32s.

We reconstructed all coil images by 3D FFT and processed one image slice centered within the excitation slab. We combined coil images by extending
JSENSE [7] to multiple datasets. We estimated ff maps from magnitude DESS images via PERK [4], using B1 estimates to compensate for flip angle
variation. Using both B1 and T1 estimates, we estimated MWF maps from MESE echo images via nonnegative least-squares (NNLS) [8] and a I2-norm
regularized variant of NNLS (RNNLS) used in [9] to reduce MWF variability, using extended phase graphs to compensate for stimulated echo
contributions. PERK training and testing respectively took 33.4s and 0.7s, while NNLS and RNNLS respectively took 46.8s and 104.6s.

Results: This figure shows NNLS and RNNLS MWF estimates
from a MESE scan and PERK ff estimates from optimized DESS MESE-NNLS MESE-RNNLS DESS-PERK
scans. PERK ff estimates more clearly delineate cortical
white/gray matter (WM/GM) boundaries and exhibit less WM
variation than MESE MWF estimates. RNNLS MWF and PERK ff
estimates appear visually similar in lateral WM regions, but both
NNLS and RNNLS estimates are elevated in medial regions,
possibly due to overlap of the myelin water and cellular water T2
peaks in internal capsules [10].

The table compares sample statistics of NNLS, RNNLS, and
PERK estimates, computed over four WM and one cortical GM
region of interest (ROI) that are color-coded in the adjacent
anatomical image (key: Anterior, Posterior, Right, Left). Overall,
estimates are quantitatively similar. PERK estimates exhibit the
lowest variation within WM ROls and the most similar sample means ARWM |0.10+0.09 |0.06 +0.05 0.11+0.02

ROI MESE-NNLS |[MESE-RNNLS |DESS-PERK

acrgss WM ROls. RNN!_S estimates are consistently lower t?ut less WM 10.11£007 1006004 0.10 £0.02
variable than NNLS estimates. As expected, none of the estimators
measured significant myelin water content in GM. PRWM |0.16£0.09 |0.10+0.06  |0.09+0.01

Conclusion: Kernel regression (PERK) with optimized DESS scans PLWM |0.14 +0.08 |0.08 + 0.06 0.09 £ 0.01
produces myelin water images with much faster scan times and

improved SNR efficiency over conventional MESE. MESE MWF and
DESS ff estimates are in reasonable agreement. PERK is applicable
to in vivo data with only 33.4s training even with unoptimized Matlab code and no GPU processing.

GM 0.01+£0.04 |0.02+£0.03 0.02 + 0.06
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