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Synopsis
This work introduces a new framework for myelin water fraction (MWF) estimation. We use a novel scan design approach to construct a sequence a fast
steady-state sequences and optimize corresponding �ip angles and repetition times for precise MWF estimation. We quantify MWF and �ve other
parameters per voxel using a novel method based on kernel ridge regression. We obtain MWF maps in vivo that are comparable to those reported in
literature, with possibly shorter overall scan time.

Introduction
Myelin loss is central to the pathogenesis of several neurodegenerative diseases. Myelin quanti�cation is therefore of interest for monitoring the
development and progression of WM disorders.

Bulk MR signal arises from multiple water compartments with di�erent relaxation rates, and the fastest-relaxing compartment is due to water trapped
between myelin bilayers . "Myelin water fraction" (MWF) denotes the proportion of signal arising from the fast compartment relative to total signal, and
is an indirect measure of myelin content.

Multiple spin-echo (MSE) acquisitions  and accelerated variations  yield MWF estimates in agreement with in vitro measurements  but are limited by long
repetition times TR. Existing short-TR steady-state (SS) sequences are faster, but produce MWF estimates  that disagree with MSE measurements ,
possibly due to insu�cient estimation precision .

This work introduces a new SS acquisition for fast, precise MWF estimation. We design the �ip angles and repetition times of combinations of spoiled
gradient-recalled echo (SPGR) and dual-echo steady-state (DESS) sequences to optimize MWF estimation precision. We estimate MWF and �ve other
parameters using a novel method based on kernel ridge regression  (KRR). We obtain MWF maps in vivo that are comparable to those reported in MSE
literature.

Methods
This section adapts a general method for acquisition design  to formulate a cost function that characterizes MWF estimator variance. The method seeks
to minimize this cost through a novel greedy optimization procedure.

After image reconstruction, a sequence of scans (e.g., SPGR and DESS) useful for MWF estimation produce at each voxel position a sequence of noisy
voxel values , modeled as

where  denotes  latent parameters;  denotes (separately acquired and estimated) �ip angle variation;  denote prescribed �ip

angles and repetition times;  models the noiseless signals arising from  datasets; and  is complex zero-mean Gaussian noise
with covariance . We take  to model two non-exchanging water compartments. Neglecting across-compartment variation in o�-resonance e�ects, this
reduces model dependencies to six free latent parameters per voxel: MWF ; (spin-lattice, spin-spin) relaxation time constants for the myelin water 

 and slow-relaxing  compartments; and proportionality constant . We collect these  unknowns as 

.

The Cramer-Rao Bound (CRB) states that the covariance of any unbiased estimator of  is bounded below by the inverse of the Fisher information matrix

For precise MWF estimation, we seek  that achieve small (unbiased) MWF estimator variance lower bound  for a range of

typical  values. We seek to (locally) minimize the objective function

where  denotes expectation with respect to assumed and measured distributions of  and , respectively.

Since  is nonconvex in , local optimizers depend on initialization. Moreover, it is unclear a priori how to best allocate scan time amongst initial
SPGR/DESS scans, under a given total time constraint. Figure 1 diagrams our approach that greedily constructs a scan combination through a sequence
of constrained optimization problems interleaved with SPGR/DESS scan additions. Table 1 lists optimized scan parameters found by our greedy design.

In all experiments, we estimated six parameters per voxel from SPGR/DESS data via non-iterative KRR  initialization, followed by iterative local
optimization. We evaluate only MWF estimates in the following.

Experimentation and Results
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We �rst show through BrainWeb  simulations how greedy scan construction can �nd desirable scan combinations. Figure 2 and Table 2 demonstrate
that for a given total scan time, the proposed acquisition (Table 1) consisting of 4 SPGR and 3 DESS scans with optimized �ip angles and repetition times
outperforms a sequence of 9 SPGR and 9 DESS scans with �xed minimum TR.

We next estimate MWF in vivo using the proposed acquisition. We collected 3D axial SPGR/DESS data from a 32-channel Nova receive head array in a 3T
GE scanner using optimized �ip angles and repetition times and �xed 4.67ms echo time;  matrix size; and cm  �eld of view.
We also collected two Bloch-Siegert (BS) SPGR scans for separate  estimation . SPGR/DESS and BS acquisitions respectively took totals of 10m8s and
1m40s.

Figure 3 provides representative MWF estimates and compares corresponding sample statistics with WM/GM regions of interest (ROIs). MWF sample
means in WM are comparable to those in recent MSE studies .

Summary
We introduced a new SS acquisition comprised of fast SPGR/DESS scans optimized for precise MWF estimation. We constructed this acquisition using a
novel, greedy design framework and CRB-based optimization . We estimated MWF in vivo using a novel method based on KRR . MWF estimates from an
optimized SPGR/DESS acquisition are in reasonable agreement with literature MSE measurements, and may a�ord shorter overall scan times.
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Figure 1: Block diagram of greedy acquisition design. We set an original acquisition consisting of three SPGR and three DESS scans whose �ip angles 

and repetition times  are respectively initialized randomly and minimally. We optimize the original acquisition subject to several constraints: 

deg and ms for SPGR; deg and ms for DESS; and ms. We then seek to improve the

acquisition by appending another SPGR or DESS scan and repeating (constrained) optimization. This process iterates until additional scans no longer
improve estimation precision.
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Table 1: Flip angles  and repetition times  of SPGR and DESS scans optimized for MWF estimation precision under a total time constraint 

ms, selected to allow 9 SPGR and 9 DESS scans each at minimal , similar to existing steady-state methods . Remarkably, such scan

combinations involving  variation can achieve better MWF estimation precision than �xed short-  acquisitions (Table 2), even though the latter can
utilize more scans for a given time budget.

Figure 2: Estimated MWF maps in BrainWeb  simulation, compared to (left) ground truth. (Center) MWF estimates from a scan combination consisting of
9 SPGR and 9 DESS scans with optimized �ip angle but �xed short repetition times. (Right) MWF estimate from a scan combination consisting of 4 SPGR
and 3 DESS scans with optimized �ip angles and repetition times (listed in Table 1). Both MWF maps are estimated via the same novel method based on
KRR . Voxels outside WM/GM regions are masked out for display. Colorbar range describes a relative signal fraction and is unitless.

Table 2: Sample means  sample standard deviations of simulated MWF estimates (Figure 2), computed over 7810 WM-like and 9162 GM-like voxels.
Scan combinations with variable repetition times admit MWF estimates with greater WM/GM accuracy and precision over combinations with short, �xed
repetition times, even though the latter can use more scans for a given time budget.

Figure 3: (Left) Myelin water fraction map in a healthy volunteer, estimated via a novel method based on kernel ridge regression  from fast CRB-
optimized SPGR and DESS sequences. Colorbar range describes a relative signal fraction and is unitless. (Right) Manually selected WM (magenta) and GM
(cyan) ROIs, overlaid on a representative (coil-combined SPGR) image. Within-ROI pooled sample means  sample standard deviations are 

 and , computed over 725 WM and 176 GM voxels, respectively.
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